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Abstract 

Mechanical systems play an integral part in our everyday lives.  A subset of these 

systems can be described as underactuated; the defining characteristic of underactuated 

mechanical systems is that they have fewer control inputs than degrees of freedom.  Airplanes, 

rockets, helicopters, overhead crane loads, surface vessels, and underwater vehicles are all 

examples of such systems.  The control challenges associated with these systems arise from both 

the underactuation of the control input and the nonlinear nature of the dynamic equations 

describing the system’s motion. 

In this work, a control method for stabilization and tracking based on Lyapunov stability 

theory is presented.  The remarkable result of this tracking controller development is that we 

arrive at three matching equations that are (with the exception of DK ) identical to matching 

equations developed for stabilization as shown in White et al. (2006, 2007, 2008).  Asymptotic 

stabilization of the tracking errors (s) is not obtained.  However, the norm of s (||s||) will decrease 

until an ultimate bound is reached, then it will stay within this bound.  A lemma is provided for 

estimating this bound and it is shown that the magnitude of the bound depends upon the 

eigenvalues and norms of certain matrices in the Lyapunov formulation. 

Three examples are presented to illustrate the effectiveness of the direct Lyapunov 

approach.  Two examples of holonomic systems are presented.  The first is an inverted pendulum 

cart which is used to illustrate the formulations performance to tracking a desired path on the cart 

position or actuated axis.  The second example is a ball and beam system in which a desired path 

is tracked by the ball or unactuated axis.   

The tracking control technique is also applied to an example of a nonholonomic system, a 

rolling wheel.  The control technique is applied in two alternate manners.  Finally, the controller 

is implemented on a laboratory inverted pendulum cart system in hard real time.  A desired 

trajectory for the cart position is tracked and the control law is used to define the desired 

pendulum trajectory.  
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CHAPTER 1 - Introduction 

Mechanical systems play an integral part in our everyday lives.  A vast quantity of 

mechanical systems such as automobiles, aircraft, and cranes are employed everyday for 

transportation or material handling.  A subset of these systems can be described as 

underactuated; this chapter discusses the qualities of such systems, provides examples, and 

contains a review of work that has been done in recent years to advance control theory in the area 

of underactuated mechanical systems. 

The defining characteristic of underactuated mechanical systems is that they have fewer 

control inputs than degrees of freedom.  Recently there has been extensive research in the control 

of the underactuated mechanical systems due to the broad range of available applications.  Many 

everyday mechanical systems are underacuated.  Airplanes, rockets, helicopters, overhead crane 

loads, surface vessels, and underwater vehicles are all examples of such systems.  The control 

challenges associated with these systems arise from both the underactuation of the control input 

and the nonlinear nature of the dynamic equations describing the system’s motion.  In general, 

these systems can have holonomic and/or nonholonomic constraints.  The equations of motion 

can be determined from the Euler-Lagrange equation,  

( ) ( )     Q
q

qq,
q

qq, ′=
∂

∂
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂ &

&

& LL
dt
d                 (1.1) 

where the vector nℜ∈q is a vector of generalized coordinates.  ℜ→ℜ nL 2:)( qq, &  is the 

Lagrangian defined as the kinetic energy minus the potential energy of the mechanical system.  

The vector Q’ contains the constraints and applied control input forces/moments (Greenwood, 

2003).  

For fully actuated systems, a broad range of techniques for optimal, robust, and adaptive 

control have been developed in the last two decades.  These techniques rely on a number of 

useful system properties inherent in fully actuated systems such as feedback linearizability, 

passivity, and linear parametrizability.  For underactuated systems, these properties may not 

exist; furthermore, undesirable properties such as higher relative degree (Khalil, 2002) and non-

minimum phase behavior may be present.  The absence of some of these useful system properties 
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and the addition of unwanted ones make control design for underactuated systems very 

challenging.  

The research conducted on the control of underactuated mechanical systems usually 

address either stabilization or tracking.  The goal of stabilization is to drive a disturbed system 

back to a nominal equilibrium point, while tracking addresses the problem of having the system 

follow a predetermined path or trajectory.  Stabilization was once the primary focus of control 

researchers such as Bloch, Leonard, and Marsden (2000, 2001) with controlled Lagrangians, 

Olfati-Saber (1998, 2000, and 2001) with backstepping, Ortega, Spong, Gómez-Estern, 

Blankenstein (2002) in addition to Acosta, Ortega, Astolfi and Mahindrakar (2005) with 

interconnection damping assignment – passivity based control (IDA-PBC), Auckly, Kapistanki, 

and White (2000) with the λ method, and White, Foss, Patenaude, Xin, and Garcia (2008) with 

the direct Lyapunov approach (DLA).  However, research in tracking control of underactuated 

systems is starting to see more activity. 

Non-matching Based Approaches 
Recent developments of continuous nonlinear tracking control design approaches for 

underactuated mechanical systems can be categorized into two main areas, matching based and 

non-matching based.  Non-matching based approaches to underactuated system tracking include 

the work of Driessen and Sadegh (2000) where optimal control techniques were used for 

minimum time path following of an underactuated manipulator.  Their computations were made 

possible by linearization of the system about the trajectory.  

Path following applications for fully actuated systems have also influenced the 

approaches taken for underactuated systems.  A number of researchers have considered inverse 

dynamics in developing a path for which the trajectory history of each axis is found in advance. 

Blajer and Kolodziejczyk (2007) developed a feed forward control scheme based on inverse 

dynamics for their gantry crane applications.  It should be noted that the inverse dynamics for 

underactuated systems are complicated by the reduction in the possible paths caused by the 

underactuation.  These complications have led researchers to try other methods that avoid the 

need for such calculations.  

A notable contribution in the area of non-matching based techniques was made by 

Sandoz, Kokotović, and Hespanha (2008) with their trackablity filter scheme.  This approach 
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employs a filter which produces an augmented reference signal derived from a nominal input.   

This new signal is zero error trackable by the underactuated system provided that its zero 

dynamics are input to state stable (ISS).  Alternatively, Ashrafiuon, and Erwin (2004) presented 

a sliding mode control approach which can drive an underactuated system onto a sliding surface.   

Lyapunov theory was used to develop the controller used to reach the sliding surface, however 

asymptotic stability of the sliding surface was not established for the general case.  The 

determination of asymptotically stable surfaces could prove to be a limitation of this technique.  

In Boskovic and Krstic (1999), a Lyapunov based control law is developed for attitude/position 

regulation of a six degree of freedom, nonholonomic underwater vehicle.  While the controller 

was designed for fixed point regulation, the tracking error remained small for slowly varying 

desired trajectories.  For faster moving trajectories, this controller could not be expected to 

perform as well. 

Backstepping has also proven to be a popular tool for the design of tracking controllers. 

Do, Jiang, and Pan (2002) employed this technique in the derivation of a controller for an 

underactuated surface ship that would asymptotically track a reference trajectory of straight line 

or curve segments.  In Hongrui, Yantao, Siyan, and Zhen (2008) a backstepping technique is 

applied to a ball and plate system for stabilization and tracking.  The authors were successful in 

tracking a curved reference trajectory with the ball while stabilizing the plate.  The backstepping 

control approach used was dependent upon the system dynamics being expressed in strict-

feedback form.  While backstepping has proven effective on a case by case basis, it relies heavily 

upon the designer’s creativity in handling undesirable terms from the dynamic equations.  

Matching Based Approaches 
Research on extending matching equation based stabilization techniques to tracking has 

also been increasing recently.  For example, in Singhal, Patayane, Banavar (2006), the authors 

derive tracking controllers using the method of interconnection damping assignment-passivity 

based control (IDA-PBC) and a direct Lyapunov approach and they compared the performance 

of the two controllers.  These controllers were limited in application due to the zero acceleration 

assumption for the desired trajectory.  In Wang and Goldsmith (2008), an IDA-PBC formulation 

was presented that contained an additional matching equation allowing for tracking control of 

underactuated port-controlled Hamiltonian (PCH) systems (without the zero acceleration 
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assumption).  However, the authors did make use of inverse dynamics in their development so 

that the path following techniques of Slotine and Li (1988) could be applied to fully actuated 

systems. 

The goal of this work is to develop a systematic framework for nonlinear controller 

design that could be applied to holonomic and nonholonomic systems without requiring inverse 

dynamics.  For a system having n degrees of freedom, the controller design method assumes that 

only m of the degrees of freedom have a specified smooth trajectory history.  These histories 

might be determined by a rudimentary path planner given the initial and ending system 

configurations or by some similar method.  Smoothness of the path is required due to the 

necessity of determining the velocity and acceleration of each degree of freedom having a 

specified history.  The attractiveness of the approach is that given the m specified histories, the 

control law to be presented will determine, at each point of time, suitable kinematic values for 

the n – m degrees of freedom not having specified trajectory histories.  This aspect of the control 

law saves the designer the effort of having to generate these trajectories from inverse dynamics 

prior to the start of the motion and thus decreasing the response time to handle trajectory 

changes.  

Part of the path following control law presented by Slotine and Li (1988) is the starting 

point for the controller design.  Given the form of the control law, the dynamics of the system are 

recast in terms of a sliding mode.  The control law for the new dynamic equation is developed 

from a direct Lyapunov approach very similar to that presented in White et al. (2008).  Once the 

control law for the sliding mode dynamic equation is known, it can be incorporated into the 

original path following control law.  Because the path following control law is to be applied to an 

underactuated system, n – m of the components of the control law vector must be identically 

zero.  These control law equations allow the determination of the accelerations associated with 

the desired path of the degrees of freedom having unspecified histories.  Integration of these 

accelerations determines the velocities and positions on the unspecified axes.  It is demonstrated 

that there is an upper bound on the norm of the sliding mode variable and thus the error is not 

asymptotically stable.  This bound is partially dictated by the eigenvalues of certain matrices 

used in the Lyapunov formulation. 

In the following chapter, the derivation of the control law and a discussion of the 

expected performance are presented.  In Chapter 3, two examples of holonomic systems are 
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provided.  A DLA controller is derived to drive the system along a desired trajectory.  In Chapter 

4, a nonholonomic example is presented and the control law is once again derived to drive the 

system along a desired trajectory. The response of the systems is simulated using Matlab 

SIMULINK.  Chapter 5 contains a hard real time implementation of the DLA control scheme on 

an inverted pendulum cart.  The dynamic model is presented and system identification is 

performed to determine several unknown parameters.  Finally, a desired path is defined for the 

cart position and the experimental results are presented.  In Chapter 6, conclusions and 

recommendations are presented to improve the DLA controller tracking performance and ease of 

design. 
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CHAPTER 2 - Lyapunov Formulation 

This chapter details the development of the Lyapunov formulation.  Discussion on how 

certain terms that are introduced to the formulation are dealt with is presented along with the 

expected system performance when following a path.   

The Matching Equations 
The mechanical system is described by the nonlinear matrix equation 

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=+++

0
τ

qGqCqqq,CqqM D &&&&&                                         (2.1) 

where the vector q ∈ ℜn is a set of generalized coordinates for the n degrees of freedom of the 

mechanical system while the time derivative of q specifies the n generalized velocities.  The 

right-hand side of (2.1) contains the vector τ ∈ ℜm where m<n for underactuated systems.  It is 

assumed that the degrees of freedom are ordered so that the first m elements of the right side 

vector contain the nonzero inputs.  Also in (2.1), M(q) ∈ ℜn×n is the positive definite mass and/or 

inertia matrix, ( )qqq &&,C ∈ ℜn consists of centripetal and Coriolis forces and/or moments, and 

G(q) ∈ ℜn consists of forces and/or moments stemming from gradients of conservative fields. 

The requirement of the control law is to both stabilize and drive the system along the 

specified trajectory.  The tracking controller presented by Slotine and Li (1988) was developed 

for fully actuated systems.  In order to apply this sliding mode approach to underactuated 

systems, modifications of the original controller must be made.  The proposed control law for an 

underactuated system is 

( ) ( ) ( ) ( )qP
u

Fu
sKqCqqq,CqqM

τ
D Φ∇+⎥

⎦

⎤
⎢
⎣

⎡ +
+−++=⎥

⎦

⎤
⎢
⎣

⎡ −1

2

1

0
tDrrr &&&&&   (2.2) 

Where the matrix DK ∈ ℜn×n is a positive definite, Hermitian matrix, Φ(q) is a real scalar 

potential function of the generalized coordinates, P(t) ∈ ℜn×n is a positive definite matrix, and 

the gradient is computed with respect to the generalized coordinates.  The vector u, which refers 
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to the vector [u1 u2]T, is used to provide stabilization to the lower n-m equations of (2.2). The 

vectors rq& and rq&& are the reference velocity and acceleration, respectively where  

( )dddr qqΛqqΛqq −−=−= &&& ~
.                                             (2.3) 

In equation (2.3), qd is the vector of desired coordinate positions and Λ ∈ ℜn×n is a 

constant, positive definite, and symmetric matrix.  When comparing (2.2) to the control law 

presented by Slotine and Li (1988), it is seen that the gravitational term is not included in (2.2) 

and that there are additional terms included which are necessary due to the underactuation.  The 

gravitational term will be seen at a later point to be related to part of F and the gradient of Φ(q).  

Taking the time derivative of (2.3) produces the reference acceleration.  The quantity q~ consists 

of the difference between the actual and the desired coordinates and this together with its time 

derivative constitute the tracking errors.  The sliding mode vector s is given by 

qΛqqqs r
~~ +=−= &&& .     (2.4) 

If the control drives the sliding mode vector to the sliding surface where the vector s vanishes, 

we see that the tracking error then decays to zero. 

Combining equations (2.1) and (2.2) yields 

( ) ( ) ( ) ( ) ( )

( ) ( ). Φ1 qP
u

Fu
sKqC

qqq,CqqMqGqCqqq,CqqM

2

1
DrD

rrD

∇+⎥
⎦

⎤
⎢
⎣

⎡ +
+−+

+=+++

−t&

&&&&&&&&&

    (2.5) 

Canceling like terms and using the definitions from (2.3) and (2.4) reduces the last result to 

  ( ) ( ) ( ) ( ) ( )qP
u

Fu
sKqGsCsqq,CsqM

2

1
DD Φ1∇+⎥

⎦

⎤
⎢
⎣

⎡ +
+−=+++ −t&& .  (2.6)   

The direct Lyapunov approach (White et al. 2006, 2007, 2008) is used to complete the 

design of the control law for the system.  The candidate Lyapunov function is 

sKs D
T

2
1

=V       (2.7) 

where  

KD=P(t)M(q),      (2.8) 

and P(t) is a positive definite matrix defined so that KD ∈ ℜn×n is a symmetric, positive matrix.  

This matrix was seen previously in the control law stated in (2.5).  Computing the time derivative 

of candidate Lyapunov function (2.7) produces 
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  ( ) 0≤+−=+= us,sKssKs
2
1sKs v

T
D

T
D

T ΨV &&&&                 (2.9) 

where Kv ∈ ℜn×n is symmetric and at least positive semi-definite, and u again refers to the vector 

[u1 u2]T on the right side of (2.6),Ψ and u will be defined later in the analysis.  Substituting the 

time derivative of s from (2.6) into (2.9), we obtain 

( ) ( ) ( ) ( ) ( )

( ). ,

2
11

2

11

ussKs

sKsqP
u

Fu
sKqGsCsqq,CqMKs D

Ψ+−=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ∇+⎥

⎦

⎤
⎢
⎣

⎡ +
+−−−−= −−

v
T

D
T

DD
T tV &&&   (2.10) 

Following a procedure similar to that of White et al. (2008), we decompose (2.10) into three 

matching equations.  Defining the control input F as 

321 FFFF ++=      (2.11) 

where Fi will be used with the ith matching equation.  With the substitution of (2.11) into (2.10) 

we define the first matching equation as 

( ) ( ) 0
2
1

0
, 11 =+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−− sKs

F
sqqCqMKs D

T
D

T && ,        (2.12) 

the second matching equation as 

( ) ( ) sKs
F

sKCqMK v
T

DDD
Ts −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−−−

0
21 ,          (2.13) 

and finally the third matching equation as 

( ) ( ) ( ) ( ) 0
0

131 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ∇+⎥

⎦

⎤
⎢
⎣

⎡
+− −− qP

F
qGqMKs tD

T .            (2.14) 

The First Matching Equation 

Two symmetric matrices '
DC ∈ℜn×n and DC ∈ℜn×n are subtracted from the first matching 

equation and added to the second.  These matrices will aid in the solution of these two matching 

equations.  The first two matching equations are rewritten as 

( ) ( )( ) 0
2
1

0
, 1'1 =+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−−−− sKs

F
sCCqqCqMKs D

T
DDD

T &&               (2.15) 

and 

( ) ( ) sKs
F

sCCKCqMK v
T

DDDDD
Ts −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+++−−−

0
2'1  .      (2.16) 

Notice that the sum of (2.15) and (2.16) is the same as the sum of (2.12) and (2.13). 
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Following the formulation presented in White et al. (2008), the vectors F1 and F2 are 

factored as 

sFF imi =         (2.17) 

where the vector q&  in White et al. (2008) has been replace with s.  Note that Fim in this 

factorization is an m×n real matrix.  Using this factorization, the vector s can be stripped from 

either side of (2.15).  However, in order for the scalar equation (2.15) to be true in the most 

general case, we must require the symmetric part of the resulting matrix equation to be zero.  

This realization leads the following requirement 

( ) ( )( ) ( )( ) ( )

( ) ( ) .0
00

,,

1111

1''1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−+

+−+−

−−

−−

D

T
m

D
m

DD

D
T

DDDD

KqM
F

C
F

CqMK

KqMCqqCCqqCqMKK &&&

  (2.18) 

This is the same result as in White et al. (2008).  The elements of F1m and DC are chosen so that 

the last two terms of (2.18) will equal 

( ) ( ) ( )DfDD

T
m

D
m

DD KKKqM
F

C
F

CqMK −−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+− −− β1111

00
        (2.19) 

where β is a negative constant and KDf  is the final form of the matrix KD, i.e. the form that KD 

attains when equilibrium is reached.  In order to satisfy (2.19), n(n+1)/2 equations can be written 

to determine the same number of unknowns.  In (2.19), there are a total of n(n+1)/2 + nm 

unknowns in the matrices DC and F1m.  The matrix DC can be used exclusively to solve (2.19), 

however there is some advantage in using both of the arrays DC and F1m to solve (2.19).  The 

reason for this will be discussed in consideration of the second matching equation. 

Replacing the left hand side of (2.19) in (2.18) with the right hand side of (2.19) the first 

matching equation becomes 

( ) ( )( ) ( )( ) ( ) ( ) 0,, 1''1 =−−+−+− −−
DfDD

T
DDDD KKKqMCqqCCqqCqMKK β&&& .        (2.20) 

This set of ordinary differential equations is evaluated numerically as part of the feedback 

process.  The matrix '
DC will be defined in the discussion of the second matching equation. A 

convenience of (2.20) is that by choosing β large and a path in which q&  remains small, the 

matrix KD remains relatively constant. 
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The Second Matching Equation 
Again, using the factorization of (2.17) and stripping off the vector s from both sides of 

(2.16) produces the same equation as in White et al. (2008), 

( )( ) ( ) .
0
2'

v
m

DDDD tt K
F

PCCKCP −=⎥
⎦

⎤
⎢
⎣

⎡
+++−−          (2.21) 

The matrix DC is already defined from the solution of the first matching equation and the sign of 

its eigenvalues are indeterminate, thus, '
DC will be used to eliminate this term from the second 

matching equation and to provide additional “virtual damping” (see White et al. 2008) if desired.  

Given these definitions, note that all of the matrices DC and '
DC together with the matrix F1m all 

vanish as equilibrium is approached and the first matching equation shows the time derivative of 

KD vanishes. 

The solution of (2.21) involves the determination of the matrix Kv as well as the control 

law contribution F2m.  A requirement of solving (2.21) is that Kv is symmetric and at least 

positive semi-definite.  Should the four matrices in the parentheses in (2.21) be zero, then it is 

easy to see that Kv is not of full rank.  Suppose the matrices  DC and '
DC are zero.  Past examples 

in White et al. (2007, 2008) have shown that if the viscous damping coefficient matrix (CD) 

contributes positive damping on the un-actuated axes, then Kv will have positive eigenvalues.  A 

useful illustration of this point is the ball and beam example shown in White, Foss and Guo 

(2007) where the damping on the un-actuated axis was contributed by the ball rubbing against a 

potentiometer sensor.  However, should DC  be nonzero then the nature of Kv is hard to determine 

since DC  is based upon the difference of KD and KDf.  Because the matrix DC  can cause 

difficulty in the controller performance, the first step in reducing the influence on the 

eigenvalues of Kv is to make DC as sparse as possible.  Thus, when (2.11) is solved, the elements 

of Fm1 are used along with only those elements of DC  necessary. 

To solve (2.21), a two step process is used, the first step of which is 

( ) 1
12

0 v
m t KP

F −−=⎥
⎦

⎤
⎢
⎣

⎡             (2.22) 

for which the solution is 



11 

∑
=

=
m

i

T
iiiv

1
1 PPK α        (2.23) 

where the αi are constants chosen so that Kv1 is positive semi-definite and Pi is the ith column of 

P(t).  Applying (2.22) and (2.23) to (2.21) shows that 

( )( ) 2vDDt KCCKCP DD −=′++−−                (2.24) 

where Kv is defined as the sum of Kv1 and Kv2.  The matrix DK  is defined as 

( )qMK D γ=       (2.25) 

where γ is a positive constant.  The product of P(t) and the matrices in the parenthesis in (2.24) is 

not symmetric, however, the pre and post multiplication by s extracts the symmetric portion of 

the matrix product. With the matrix DC ′  defined as DD CC −≡′ , we must require 

( )( ) ( ) ( )[ ] 22
1

v
T

DDDD tt KPKCKCP −=−−+−− .    (2.26) 

Note that F2m from (2.22) times the vector s provides the control signal F2.  Because the matrices 

on the left of (2.25) are positive definite and symmetric, the resulting matrix sum 

Kv = Kv1+Kv2       (2.27) 

is also symmetric and positive definite. 

The Third Matching Equation 
Stripping off the vector s from (2.14), we arrive at 

( ) ( ) ( ) ( ) 0Φ
0

131 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇+⎥

⎦

⎤
⎢
⎣

⎡
+− −− qP

F
qGqMK tD

.            (2.28) 

The solution procedure for (2.28) can be done in the same manner as shown in White et al. 

(2007). The remarkable result of this tracking controller development is that we have arrived at 

three matching equations that are (with the exception of DK ) identical to matching equations 

developed for stabilization as shown in White et al. (2006, 2007, 2008).  However, it should be 

pointed out that control law (2.2) contains the sum of the vector containing F3 and the gradient of 

Φ(q).  Upon examining (2.28) we see that this vector sum must be equal to G(q).  The effect of 

this cancelation of non stable elements from the dynamic equations on the robustness of the 

closed loop system will be examined in the inverted pendulum cart example in Chapter 3. 
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Following The Path 
The quantities involved in the evaluation of (2.6) require further explanation.  The control 

law is given by (2.2) and the constraint that the lower n – m elements of the actuation vector are 

zero is used to determine the vector u2.  That the function Ψ(s,u) is intended to be non-positive 

will be used to determine the vector u1. 

The path following discussion will pertain to the case where the path motion constitutes a 

path that is contained in the solution space of the system.  In order to have the system follow a 

prescribed trajectory, there are several possibilities.  The first is to use the path information to 

determine the time histories of the generalized coordinates.  By knowing the time histories of the 

coordinates (assumed to be sufficiently smooth) the generalized velocities and accelerations are 

also known.  There are a total of n degrees of freedom and the path may specify either all or a 

subset of the generalized coordinates.  If all coordinates are specified and the desired motion is 

possible given the underactuation, this represents one extreme in the classes of possible path 

following problems.  At the other end, there is the situation where m coordinate histories are 

specified because fewer than m constraints may lead to redundant solutions.  The m history 

constraints provide conditions to determine the m actuations.  If m coordinate histories are 

specified, then the other n-m coordinate histories could be determined through inverse dynamics.  

In the general case, inverse dynamics is unattractive due to the time and complexity involved in 

the solution process.  This complexity limits the ability of the system to respond rapidly to a 

given task.   It should also be noted that in an underactuated system having m actuators, 

specifying m coordinate histories can in certain systems lead to redundant solutions for the other 

n – m axes.  This short discussion shows that there is a wealth of problem classes that can be 

considered. 

Examples of three different classes of problems will be given in Chapters 3 and 4.  In the 

ball and beam and inverted pendulum cart examples in Chapter 3, the number of specified 

coordinate histories equals the number of actuated axes.  No inverse dynamics will be performed 

for those axes where the coordinate histories are not specified.  However, one example in 

Chapter 5 with the rolling wheel will make use of inverse dynamics to determine all n 

coordinates to follow a figure eight shaped path.  Given these classes of problems, there are four 
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subclasses that need to be considered.  The first subclass includes those problems where the 

coordinate histories are specified for the unactuated axes.  The second subclass involves those 

problems where the specified coordinate histories describe the motion of actuated axes. The third 

subclass consists of those problems were all n generalized coordinates have a specified 

coordinate history.  A fourth subclass also exists for which some unactuated axes and some 

actuated axes have specified coordinate histories.  An example of this type of implementation is 

given in Chapter 4. 

In (2.6) it is assumed that m degrees of freedom have been specified, leaving n – m 

coordinates unspecified.  In (2.2), the lower n – m equations are solved for the reference 

accelerations of the unspecified coordinates.  This step is always possible because the 

mass/inertia matrix M(q) is of full rank.  That the lower n – m rows of (2.2) are equal to zero 

allows the reference accelerations to be found.  In general, these n – m equations are nonlinear 

and possibly unstable.  The control u2 is used to stabilize these lower n – m differential 

equations.  How to best select u2 to stabilize these differential equations is a problem dependent 

exercise.  Regardless of whether the solution of the lower n – m equations is performed for 

actuated or non-actuated reference accelerations, the steps of the procedure are the same.  Once 

the input vector u2 is determined, then u1 can be chosen to satisfy (2.9).  If all n coordinates are 

specified, as in the first rolling wheel example presented in Chapter 4, then once the time 

histories and time derivatives are substituted into the lower n – m equations, the vector u2 can be 

used to assure that the lower n – m equations of (2.2) are all zero. 

Removing the matching equations from (2.10), the remaining terms are 

( ) ( ).,
2

11 us
u
u

qMKs Ψ=⎥
⎦

⎤
⎢
⎣

⎡−
D

T              (2.29) 

In order to satisfy Lyapunov, we desire that the right side of (2.28) is non-positive.  This last 

relation completely defines the scalar function Ψ(s,u).  It is desired that the vector u1 in (2.29) be 

chosen so that Ψ is less than zero or at least the right hand side of (2.9) is non-positive.  It will be 

shown that this is not always possible and the conditions for which (2.9) can be satisfied will be 

presented.  If Ψ is to be other than positive, we must have 

( ) 0
2

1 ≤⎥
⎦

⎤
⎢
⎣

⎡
u
u

Ps tT         (2.30) 

or if P(q) is partitioned as 
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( ) [ ]21 PPP =t ,         (2.31) 

we would then have 

2211 uPsuPs TT −≤ .       (2.32) 

Depending upon the dimension of u1, the ability to satisfy (2.30) might be limited.  One 

possibility of satisfying (2.30) would be to determine u1 so that Ψ is zero.  Experience has shown 

that this approach often results in a u1 vector that becomes extremely noisy as the vector s 

becomes small.  Upon examining (2.2) it is seen that this noisy u1 is applied directly to the 

actuated states which can lead to undesirable system performance. 

Instead of (2.30) a least squares approach is adopted in the determination of u1.  We 

desire that 

[ ] s
u
u

PP −=⎥
⎦

⎤
⎢
⎣

⎡

2

1
21 ,     (2.33) 

which can be rewritten as 

2211 uPsuP −−= ,     (2.34) 

for which there are more equations than unknowns.  Solving (2.34) in the least squares sense 

yields 

( ) ( ) 221
1

111
1

111 uPPPPsPPPu TTTT −−
−−= .         (2.35) 

This last relation provides a continuous dependence of u1 on s and u2.  Equation (2.35) seems to 

work well with the exception of when s is orthogonal to the columns of P1, in which case Ψ  

becomes -sTP2u2, which may not remain negative. 

In general, the control vector u will become zero as the system comes to rest, otherwise it 

will be nonzero.  In equation (2.9), we see that the first term on the right hand side is quadratic in 

s and the second term is linear in s.  As s becomes small, it becomes increasingly difficult to 

assure that the sum of the two terms is non-positive.   From this we see that there is a limit to our 

ability to ensure that the right hand side of (2.9) is negative as s becomes small. This implies that 

the norm of s will decrease until an ultimate bound is reached and once reached, will stay within 

this bound.  It should be noted that once within this bound s cannot be guaranteed to decrease to 

zero.  As seen in Lemma 2.1, this bound on s is a function of the eigenvalues of Kv, KD, and the 

vector u.  For increased tracking accuracy this bound should be made as small as possible by the 

choice of KD, Kv, and u2. 
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Lemma 2.1 

From (2.6) the sliding mode dynamics are  

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎥

⎦

⎤
⎢
⎣

⎡ +
+−= − sCsqq,C

u
Fu

sKqMs D&&
2

11
D    (2.36) 

whose nominal form is 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎥

⎦

⎤
⎢
⎣

⎡
+−= − sCsqq,C

F
sKqMs D&&

0
1

D .    (2.37) 

Let s=0 be an exponentially stable equilibrium of the nominal system, and L(t,s) be a Lyapunov 

function for the nominal system that satisfies (2.38-2.40). Suppose there exists positive constants 

c1, c2, c3, and c4 such that  

( ) 2
2

2
1 , ss cstLc ≤≤ ,    (2.38) 

2
3 scL −≤& ,     (2.39) 

s
s 4cL

≤
∂
∂ ,     (2.40) 

and in [0,∞) x D, where D={s∈ℜn | ||s||<r}. Suppose the perturbation on the nominal system 

satisfies 

 ( ) ( ) r
c
c

c
c

t θδ
2

1

4

3

2

11, <≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
≡ −

u
u

qMsg    (2.41) 

for all t≥0, all s∈D, and some positive constant θ<1. Then for all r
c
c

t
2

1
0 )( <s , the solution of 

s(t) of the perturbed system (2.36) satisfies 

 

( )
( )o

tt
c

c

te
c
c

t ss
0

2

3

2
)1(

1

2)(
−

−
−

<
θ

    Tttt oo +≤≤∀   (2.42) 

and 

Ttt
c
c

c
c

t o +≥∀≤    ,)(
1

2

3

4

θ
δs     (2.43) 

for some finite time T. 
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Proof of Lemma 2.1 

Using (2.7) as the candidate Lyapunov function for the nominal system (2.37-2.40) yield, 

( ) 22
min 2

1 sKsKsssK DD
T

D ≤=≤ )V(t,λ ,   (2.44) 

( ) ( ) 2
min sKss V

T λ−≤−= VKV& ,    (2.45) 

s
s

K
sKs

s
K

ssK
s

D
D

D
D ∂

∂
+≤

∂
∂

+=
∂
∂ TTV .   (2.46) 

If KD remains virtually constant as in White et al. (2007, 2008) or if s remains small the last 

inequality can be approximated as 

sK D≤
∂
∂

s
V .     (2.47) 

For the perturbed system the candidate Lyapunov derivative (2.10) becomes 

( ) ( )

( )

( ) .      ,1

10    ,1

,,

3

42
3

4
2

3
2

34
2

3

2
3

c
cssc

θscscsccc

tgVcV v
T

θ
δ

θ

δθθδ

≥∀−−≤

<<+−−−=+−≤

∂
∂

+−≤Ψ+−=

ss

s
s

sussKs&

 (2.48) 

Applying Theorem 4.18 of (Khalil, 2002) the ultimate bound is  

B=α1
-1(α2(z))      (2.49) 

where 

3

4

c
cz

θ
δ

= ,      (2.50) 

 

( ) ( ) 2
min1 rr DKλα = ,     (2.51) 

 

( ) 2
2 rr DK=α ,     (2.52) 

 

thus, 

( ) V

D

D

D

K
K

K
K

θ
δ

λmin

=B .     (2.53) 
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From this result we can see that the ultimate bound (B) depends on the magnitude of the 

perturbation ),( sg t , the norm of matrices KD and KV , and the minimum eigenvalue of KD. 

Chapter Summary 
In this chapter the development of the direct Lyapunov formulation for tracking control 

has been presented.  There are two remarkable results of the tracking controller development.  

The first is that we arrived at three matching equations that are (with the exception of DK ) 

identical to matching equations developed for stabilization as shown in White et al. (2006, 2007, 

2008).  The second is that it is not necessary to perform inverse dynamics to specify every 

coordinate history to perform a system maneuver.  Instead, the control law provides a means for 

determining the necessary unspecified coordinate histories.  In addition a discussion on the 

expected performance of the tracking control scheme has been presented along with a lemma for 

estimating the ultimate bound on the norm of s.  This bound is a function of the eigenvalues of 

Kv, KD, and the vector u. 
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CHAPTER 3 - Holonomic Examples 

In this chapter two examples of holonomic systems are presented.  First, the inverted 

pendulum cart is presented and a desired trajectory is tracked with the actuated axis.  The 

robustness of the control law in regards to system identification errors in G(q) is also discussed. 

Next, the ball and beam system is presented in which a desired trajectory is tracked with the ball, 

or unactuated axis.  This chapter is concluded with a discussion on the observed performance of 

the tracking controllers for these two underactuated holonomic systems. 

The Inverted Pendulum Cart 
The inverted pendulum cart system is shown in Figure 3.1.  The objective of the control 

law is to control the movement of the cart such that the pendulum remains upright while the cart 

tracks a desired path.  The equations of motion for the system in the form of (2.1) are  

( )

( )
( )

( ) ⎥
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⎥
⎦
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2 Fmglxmlx
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mlm
θθ

θθ
θ

θ
&

&&

&&

&&
, (3.1) 

where m and l are the mass and length of the pendulum, respectively, m is the mass of the 

pendulum and cart, J is the mass moment of inertia of the pendulum about the pendulum base, 

and g is the acceleration of gravity.  The state variables x and θ are as defined in Figure 3.1.  The 

derivation of the dynamic equations for the examples presented in Chapter 3 and 4 are available 

for download at NLCLab.mne.ksu.edu (2007).  The procedures outlined in Chapter 2 were 

followed to develop the DLA control law.  Table 3.1 contains the system identification and the 

DLA controller parameters. 
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Table 3.1: Inverted Pendulum Cart Parameters 

Quantity Value Quantity Value 

J 0.4 Kg m2 a1 .2 m 

M 1.5 Kg ω .35 rad/s 

m  5.0 Kg γ 1.0 

L 0.7 m α  1.0 

G 9.81 m/s2 β -1000.0 

KDf ⎥
⎦

⎤
⎢
⎣

⎡
−

−
0.5500.300
0.3000.200  Λ ⎥

⎦

⎤
⎢
⎣

⎡
0.10.0
0.01.0  

X

θ

M

O
x

X

θ
m, l
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m, l
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Figure 3.1: Inverted Pendulum Cart System 

 

The desired x trajectory was defined as ( ) ( )( )tatxd ωcos11 −≡ .  The desired pendulum 

angle was determined by solving for the second time derivative of θ from the lower n – m rows 

of (2.2), then numerically integrating in time.  This equation may be stable or unstable depending 

upon the system dynamics; however, the control law component u2 is meant to provide 

stabilization to the resulting matrix differential equation.  For the inverted pendulum cart the 

resulting differential equation is unstable, thus u2 used to provide feedback linearization and was 

chosen as 
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ddd
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Jxxxxml
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  (3.2) 

where λ1 and λ2 are the [1,1] and [2,2] elements of Λ.  In this example, the tracking of the cart 

position received a higher priority.  This was accomplished by changing the relative magnitudes 

of  λ1 and λ2 until the desired performance is obtained.  How to best scale the relative weighting 

of λ1 and λ2 to achieve optimal tracking performance is an area of interest for future work.  The 

control law component u1 was found through the evaluation of equation (2.35) and the matrix KDf 

was chosen to be positive definite and symmetric.   

The closed loop system response was simulated using MATLAB Simulink 7.5 for a 

period of 80 seconds.  The initial position and velocity of the cart were set at zero.  The 

pendulum position and velocity were initialized at 0 rad and 15 rad/s, respectively.  Figure 3.2 

shows the desired and actual cart position as a function of time.  Figure 3.3 and Figure 3.4 show 

the desired and actual pendulum position and the sliding mode variables as a function of time 

respectively.  The ultimate bound as defined in Lemma 2.1 and the norm of s (||s||) are shown in 

Figure 3.5 and the constants used to calculate the ultimate bound are given in Table 3.2. 
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Figure 3.2: Desired and Actual Cart Position 
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Figure 3.3: Desired and Actual Pendulum Position 
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Figure 3.4: IP Cart s Time History 
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Figure 3.5: Time History of the Norm of s 

 

Table 3.2: IP Cart Ultimate Bound Constants 

Quantity Value Quantity Value 

r 408.5253 c1 99.9962 

θ 0.9993 c2, c4 750.1403 

δ 23.3836 c3 129.9686 

 

From Figures 3.2-3.4 we see that the control law successfully rejects the initial 

disturbance and follows the desired trajectory on the actuated axis with minimal error.  We can 

also see that the error on the pendulum axis seems to be greater than the cart tracking error.  This 

supports the early statement concerning placing emphasis on the desired axis by adjusting Λ. 

 Despite the good performance of the DLA tracking controller some questions still linger. 

Upon examining (2.6) and (2.27), we see that the control law is, in effect, canceling out the 

conservative field vector G(q).  Because this vector was the cause of systems’ instability, this 

raises questions about the robustness of such an approach when confronted with identification 

errors.  In effect, will poor system identification with regards to terms contained in G(q) greatly 

degrade the control law performance?   

In an effort to test the robustness of the closed loop system to this kind of identification 

error, 50 percent of the pendulum mass was added/subtracted to the system identification used in 
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the control law implementation.  Additionally the desired position of the cart was set to zero.  

This results in a stabilization problem in the tracking sense.  For this type of implementation we 

can test the robustness based upon the whether the cart can successfully reject a disturbance.  If 

the cart can no longer return to the origin, or if its trajectories are greatly altered, by this type of 

error we can say that our controller is not robust to these types of errors. 

The system response was simulated three times for a period of 60 seconds.  In the first 

simulation the mass of the pendulum was the same in both the DLA implementation and the 

dynamic model.  In the second and third, 50% of the mass was add and subtracted, respectively, 

from the DLA implementation but the mass in the dynamic model was kept the same.  The initial 

cart position and velocities were zero.  The pendulum position and velocity were initialized at 

zero and 15 rad/s, respectively.  Figure 3.6 shows the desired and actual position of the 

generalized coordinate for a system with perfect identification and with the 50 percent 

added/subtracted from the pendulum mass.  In comparing the response of the poorly indentified 

systems to response of the perfectly identified system in Figure 3.6 we can see that the DLA 

controller seems to be very robust to poor system identification of G(q).  It is also apparent that 

the DLA controller is quiet robust to disturbances. 
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Figure 3.6: Perfect and Poor System ID Response 
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The Ball and Beam 
Figure 3.7 shows the ball and beam system.  The goal for the controller is for the 

unactuated axis, or ball position, to follow a desired path while maintaining a relatively small 

beam displacement angle.  This contrasts with the inverted pendulum cart example for which the 

goal was to follow a desired path with the actuated axis, while stabilizing the unactuated one.  

The governing equations of motion are  
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   (3.3) 

where I  is the mass moment of inertia of the beam, θ  is the angle of inclination of the beam, r is 

the radial position of ball center relative to beam center, m is the mass of the ball, Ro is the radius 

of the ball, and Cd is the viscous damping coefficient of the rolling ball. 
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Figure 3.7: Ball and Beam System 



25 

Table 3.3: Ball and Beam Parameters 

Quantity Value Quantity Value 

I  0.4 Kg m2 a1 0.1 m 

M 1.5 Kg ω 0.3 rad/s 

Ro 0.02 m γ 0.0 

Cd 0.16 N s/m α 1.0 

g 9.81 m/s2 β -1000.0 

Λ ⎥
⎦

⎤
⎢
⎣

⎡
0.20.0
0.005.0

 KDf ⎥
⎦

⎤
⎢
⎣

⎡
−

−
0.6060.25
0.250.5

 

 

Once again the formulation, as outlined in Chapter 2, was used to develop the DLA 

controller.  Table 3.3 contains the system identification and controller parameters.  For this 

example, the desired radial position of the ball, rd(t), was chosen as 

( ) ( )( ) 11 cos1 atatrd +−≡ ω .     (3.4) 

The desired beam angle was determined by numerically integrating in time the resulting 

differential equation from the lower n-m rows (2.2).  The control law component u2 was chosen 

by feedback linearization to provide stabilization to this differential equation and is defined as 

 ( ) ( )( ) ( )( )ddddd rrrmrrrcmrmg &&&&&&& −−−−+−++−≡ 222 5
7sin λλθθθu   (3.5) 

where λ2 is the [2,2] element of Λ.  The control law component u1 was found through the 

evaluation of equation (2.35).  For the ball and beam example, CD is nonzero on the unactuated 

axis, thus DK  is not needed in equation (2.21) to insure the positive definiteness of Kv.  The 

matrix KDf was chosen to be positive definite and symmetric.   

The closed loop system response was simulated in Simulink for a period of 60 seconds.  

The initial position of the ball was chosen as 0.1 m and the initial angular velocity, angular 

position, and the ball velocity were set to zero.  Figures 3.8 and 3.9 show the desired and actual 

ball and pendulum positions as a function of time, respectively.  In comparing Figure 3.8 with 

Figure 3.9 we see that the chosen Λ allows for greater relative errors in the beam angle while 

having smaller errors in the ball position.  
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Figure 3.8: Desire and Actual Ball Position 
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Figure 3.9: Desired and Actual Beam Angle 
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Figure 3.10: Ball and Beam s Time History 
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Figure 3.11: Ball and Beam ||s|| Time History 

 

Figure 3.11 shows the time history of the ||s|| and the ultimate bound.  The constants used 

to calculate the ultimate bound for this simulation are found in Table 3.4.  It should be pointed 

out that the initial conditions of this simulation result in s equal to zero at t0.  The controller 

performance in tracking the desired trajectory as seen in Figure 3.8 is very good.  The ||s||, as 

shown in Figure 3.11, remained well within the ultimate bound during the entire maneuver.  In 

fact, upon examining Figures 3.5 and 3.11 we can see that the actual ||s|| for both examples is 
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much smaller than the estimate of the bound provided by Lemma 2.1.  This suggests that Lemma 

2.1 is too conservative.  Determining a method of estimating the ultimate bound in a manner that 

is less conservative presents and interesting avenue for future work. 

Table 3.4: Ball and Beam Ultimate Bound Constants 

Quantity Value Quantity Value 

r 726.8972 c1 3.9618 

θ 0.9910 c2, c4 607.0432 

δ 0.3917 c3 4.1617 

Chapter Summary 
In this chapter the direct Lyapunov approach control scheme has been applied to several 

holonomic examples in contrasting manners.  In the first example, the inverted pendulum cart, 

the desired path defined the coordinate history actuated axis and the lower n-m rows of equation 

(2.2) were used, in conjunction with u2, for the determination of the desired coordinate history 

unactuated axis.  In the second example, the ball and beam, the unactuated coordinate history 

was specified by the desired path and the actuated coordinate history was determined from 

equation (2.2).  The use of the control law (2.2), instead of inverse dynamics, to determine the 

desired coordinate histories for the unspecified axes represents a new and novel approach for the 

control of underactuated mechanical systems.  The DLA controller performance is for the 

examples presented showed very good for tracking trajectories on the actuated axis (Figure 3.2), 

or on the unactuated axis (Figure 3.8).  The direct Lyapunov approach for tracking control of 

underactuated mechanical systems has also been shown to work well in a system stabilization 

sense (Figure 3.6) and to be quiet robust to system identification errors and disturbances.  
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CHAPTER 4 - Nonholonomic Example 

In this chapter the proposed control scheme is applied to a nonholonomic system. The 

rolling wheel example is presented and inverse dynamics are performed to determine the desired 

trajectories for the wheel to follow a figure eight shape in the X-Y plane. The desired trajectories 

are then tracked on both the actuated and unactuated axes.  The robustness of the control law is 

discussed in regards to disturbance inputs and a comparison between feedforward and feedback 

control laws is provided.  Additionally, an example of the controller implementation is presented 

in which one actuated and unactuated coordinate histories are defined by a desired path and (2.2) 

is used to determine the desired history of the other actuated axis. This chapter concludes with a 

discussion on the observed performance of the DLA tracking controller for this underactuated 

nonholonomic system. 

The Rolling Wheel 
Figure 4.1 shows the rolling wheel system.  The system is setup in a similar way to the 

system described in Xu and Au (2004), where both θ (the wheel tilt) and ψ (the wheel rolling 

displacement angle) are actuated, thus leaving φ (the wheel orientation angle) as the unactuated 

coordinate.  The goal for this example is to provide input torques that will roll the wheel in a 

figure eight shape in the X-Y plane.  The dynamic equations of motion were found using (1.1) 

(NLCLab.mne.ksu.edu, 2007).  The system was then reduced to a minimal set of generalized 

coordinates through the incorporation of holonomic and nonholonomic constraints 

(NLCLab.mne.ksu.edu, 2007).  

The reduced system dynamic equations of motion are given in (4.1) where m is the mass 

of the wheel and R is the radius of the wheel.  The variables ψ, θ, φ, τ1, and τ2  in equation (4.1) 

are all as denoted in Figure 4.1.   
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Figure 4.1: Rolling Wheel System 

 

A rolling without slip assumption is made for the contact point (x,y), and inverse 

dynamics were performed to determine all of the desired state histories.  While inverse dynamics 

were not a necessity of implementing the control law (2.2), it was required for a comparison of 
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feed forward and feedback based control laws presented later.  The desired coordinate histories 

of ψ, and φ were determined from the nonholonomic constraints, 

( ) 0cos =− ψRx && ϕ ,     (4.2) 

and 

( ) 0=− ψRsiny && ϕ .     (4.3) 

From equations (4.2) and (4.3) we get 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

d

d
d x

y
&

&1tanϕ ,     (4.4) 

and 

( ) ( )
R

sinycosx
ψ dddd

d
ϕϕ &&

&
+

= ,    (4.5) 

Fore the desired trajectories.  The desired coordinate history for θ was determined by 

differentiating the last row of (4.1), solving for the second time derivative of θ, and then 

numerically integrating the resulting differential equation in time.   

The desired motion in the X-Y plane as a function of time was chosen as the solution of  

( ) ( ) ( )( )tytxrtx 2
d

2
d

24
d −= ,     (4.6) 

where 

( ) ( )ωtrsintxd ≡ ,     (4.7) 

r is the maximum desired x position, and ω is the angular frequency of oscillation in rad/s.  The 

system identification along with the controller parameters are found in Table 4.1. 

Table 4.1: Rolling Wheel System Parameters 

Quantity Value Quantity Value 

M 5.0 Kg R 0.5 m 

G 9.81 m/s2 β -100.0 

r 10.0 m ω 0.5 rad/s 

γ 0.75 α 1.0 

KDf 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−

0.20.10.3
0.10.200.1
0.30.10.20

 Λ 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0.100.00.0
0.00.10.0
0.00.00.1
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The closed loop system response was simulated for a period of 14 seconds with Simulink.  

All of the states were initialized to zero with the exception of ( ) 1421.140 =ψ&  rad/s, 

( ) 0531.00 =θ&  rad/s, and ( ) 7854.00 =ϕ  rad.  Figure 4.2 shows the desired and actual position of 

the wheel contact point.  Figures 4.3-4.5 show the desired and actual orientation angles as a 

function of time. The matrix KDf was chosen to be positive definite and symmetric.  Because all 

of the coordinate histories were specified by the inverse dynamics the control law component u2 

was not needed for stabilization and, thus, it was chosen to ensure that the right had side of the 

lower n-m rows of (2.2) were zero and the control law component u1 was determined from the 

solution to (2.35). 
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Figure 4.2: Rolling Wheel Trajectory X-Y Plane 
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Figure 4.3: Actual and Desired ψ 
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Figure 4.4: Actual and Desired θ 
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Figure 4.5: Actual and Desired φ 

 

From Figures 4.2 - 4.5, we see that the controller tracks the desired trajectories on all 

axes with very little error.  Since the control law performs admirably without disturbances it 

raises the following questions: What will happen when a disturbance is introduced? Will the 

controller be able to successfully reject this disturbance and track the desired coordinates?  Also, 

since we are already doing inverse dynamics why do we need to design a feedback control law?  

Couldn’t the dynamic equations be used to determine the necessary torques to follow the path?  

Also, is it possible to use to use the last equation from (2.2) to determine the θ desired without 

the use of inverse dynamics? 
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Feed Forward vs. Feed Back 
To answer the first three questions the previous example was modified to add a step 

disturbance on the ψ axis. The simulated response of the system of was then compared to a 

system utilizing a feed forward control scheme.  The feed forward control signal was found by 

substitution of the desired coordinate histories into the dynamic equations (4.1) and then 

evaluating the resulting input torques.  Figures 4.6- 4.9 illustrate the effect of the disturbance of 

1.0 N-m from 1 to1.5 seconds on both systems. 
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Figure 4.6: RW Trajectory-Feed Forward Control with Disturbance 
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Figure 4.7: Orientation Angles-Feed Forward Control with Disturbance 
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Figure 4.8: RW Trajectory-Feedback with Disturbance 



36 

0 2 4 6 8 10 12 14
-0.5

0

0.5

Time (s)

θ 
(ra

d)

 

 
θ
θd

0 2 4 6 8 10 12 14
-4

-2

0

2

Time (s)

φ 
(ra

d)

 

 
φ
φd

0 2 4 6 8 10 12 14
0

50

100

150

Time (s)

ψ
 (r

ad
)

 

 
ψ
ψd

 
Figure 4.9: Orientation Angles-Feedback with Disturbance 

 

In comparing Figures 4.6-4.7 to Figures 4.8-4.9 we can see that even a small disturbance 

can significantly alter the trajectory of the feed forward system. The feedback controlled system, 

however, is able to successfully reject this disturbance and continue tracking the desired 

trajectories with very little error.  Since the feedback control law using inverse dynamics to 

develop the desired θ time history has been shown to reject disturbances, let us now address the 

question of whether it is necessary to perform the inverse dynamic calculations to determine dθ  . 

Upon examining (4.1) and (2.2) you may notice that our previous strategies of solving the 

n-m rows of (2.2) for θ&&  will not work because dθ&&  does not appear in the last row of (2.2). 

Unfortunately, it must be determined because it is required for the control law calculation.  To 

address this problem, solve the last row of (2.2) for dθ& and then numerically integrated the 
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resulting differential equation.  Because dθ&&  is only used in the DLA control law in one place, a 

backward, first order finite difference method (
t
θ

θ d
d ∆

∆
=

&
&& ) was used to estimate dθ&& .  

For this example the desired ψ and φ histories were the same as the previous examples. 

Since (2.2) was used to develop dθ , the last equation of (2.2) should be satisfied, thus u2 and u1 

were set to zero.  It should be pointed out that if both u1 and u2 are zero, the feedback controlled 

system becomes the nominal system denoted in equation 2.37.  Provided that we satisfy all of the 

matching equations, the tracking error vector (s) should be exponentially stable.  However, the 

use of the difference method to estimate the desired acceleration on the θ axis introduces a small 

amount of error in the solution to the matching equations.  

The closed loop system response was simulated for a period of 14 seconds in Simulink. 

The same disturbance in the previous examples was applied to the ψ axis.  Figure 4.10 illustrates 

the desired and actual path in the X-Y plane that the wheel followed.  Figure 4.11 shows the 

desired and actual orientation angles of the rolling wheel system during the maneuver.  From this 

figure we see that the performance of the controller is excellent. The disturbance does not seem 

to cause any deviation from the desired orientation angles and as a result the wheel tracks the 

desired trajectory in the X-Y plane. 
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Figure 4.10: RW Trajectory-Feedback without Inverse Dynamics 
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Figure 4.11: Orientation Angles-Feedback without Inverse Dynamics 

  

It should also be noted that the desired trajectory calculations are open loop with respect 

to the x and y coordinates.  It is possible that the feedback controlled system could recover from 

a disturbance in the sense of the orientation angles but not return to the desired X-Y path.  

Figures 4.12 and 4.13 illustrate an example of just such a case in which the φ was initialized to 

zero.   In order to handle such disturbances it is suggested that either, the system model should 

not be reduced beyond the five degrees of freedom model that contains the three orientation 

angles and the x and y position of the contact point, or that a navigator be developed that would 

use the current position to modify the desired orientation angles in order for the system to return 

to the desired trajectory.  The question of which approach would yield better performance is an 

area of interest for future research. 
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Figure 4.12: RW Trajectory-Initial Orientation Error 
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Figure 4.13: Orientation Angles-Initial Orientation Error 
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Chapter Summary 
In this chapter an example of a nonholonomic system, the rolling wheel, was presented.  

A feedback control law was developed using the direct Lyapunov approach.  The determination 

of the desired coordinate histories was determined in two contrasting ways.  In the first, inverse 

dynamics and the desired path were used to determine the θd time history.  In the second, the 

lower n-m equations of equation (2.2) were used to solve for the dθ& , then the resulting equation 

was numerically integrated to determine θd.  The desired acceleration on this axis was estimated 

using a backwards, first order finite difference technique.  The control law was shown to be 

robust in regards to step disturbance inputs and initial condition errors.  With the completion of 

this example the performance of the direct Lyapunov controller has been shown to be very good 

for both holonomic and nonholonomic system in simulation.   
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CHAPTER 5 - Inverted Pendulum Cart Implementation 

In this chapter the proposed direct Lyapunov approach control scheme is applied to a real 

inverted pendulum cart system.  The dynamic model is derived using first principles and system 

identification is performed to determine certain coefficients in the dynamic model.  The DLA 

control scheme is applied to the real system and the positions of the cart and pendulum recorded.  

Finally, this chapter is concluded with a discussion on the observed performance of the tracking 

controller and some recommendations are provided which may improve the controller 

performance. 

The Inverted Pendulum Cart Model 
In Chapter 3, the model for the inverted pendulum cart (IP cart) merely assumed that a 

force was applied to the cart, however, in a real world system that force must actually be applied.  

To apply this input force to the cart, the laboratory inverted pendulum cart system makes use of a 

DC motor, drive chain, and several sprockets.  This necessarily complicates the dynamic model 

of the system due to the chain tension and back EMF of the motor.  It also changes the control 

input from a force to a voltage that is applied to the motor.   

Figure 5.1 contains the free body diagrams of each element the IP cart system.  The 

dynamic model is derived using a Newton-Euler approach. Starting with the pendulum the 

Newton-Euler equations are 

ppx xmA &&=− ,      (5.1) 

pppy ymgmA &&=−− ,     (5.2) 

and 

( )
θ

θ &&
p

p I
glm

=
2
sin

,     (5.3) 

where Ip=mp l2/3. 

Assuming that the cart stays firmly on the ground, with no vertical movement, the 

Newton-Euler equations for the cart are 

ccxxxx xmFCBA &&=+++ ,     (5.4) 
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0=−+++ gmFCBA cyyyy ,    (5.6) 

and 

( ) ( ) 01234 =−+−−−+− dFdCBdAdBC xxxxyymτ .   (5.7) 
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Figure 5.1: IP Cart Free Body Force Diagram 

Assuming rolling without slip and that the wheels do not leave the surface, the equations for the 

back and front wheels are 

( ) cwxx xmDBTT &&2cos13 =−−+ φ ,    (5.8) 

( ) 02sin1 =−−− gmDBT wyyφ ,    (5.9) 

wwwx IrDrTrT θ&&=−+− 2123 ,    (5.10) 

( ) cwxx xmECTT &&2cos23 =−−−− φ ,    (5.11) 

( ) 02sin2 =−−− gmECT wyyφ ,    (5.12) 

and 

wwwx IrErTrT θ&&=−− 2223 .    (5.13) 

The dynamic equations for the motor sprocket are 

( ) ( ) cmx xmTTF &&=+−− φφ coscos 21 ,    (5.14) 
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( ) ( ) 0sinsin 21 =−−−− gmTTF my φφ ,   (5.15) 

and 

( ) mmmvm ICTTr θθτ &&& =−−− 211 .    (5.16) 
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Figure 5.2: Motor Electrical Diagram 

Assuming negligible armature inductance and using Figure 5.2, the electrical dynamics of the 

motor can be written as 

mmaac kiRV θ&+= ,     (5.17) 

and 

atm ik=τ .                (5.18)  

Several kinematic equations can also be written to express the position of the center of mass of 

the pendulum in terms of the cart position and pendulum angle, mainly 

( )θsin
2
lxx cp −= ,     (5.19) 

and 

( ) 3cos
2

dlyy cp ++= θ .    (5.20) 

Differentiating equations (5.19) and (5.20) twice, with respect to time, yields, 

( ) ( )θθθθ &&&&&&& cos
2

sin
2

2 llxx cp −−= ,    (5.21) 

and 

( ) ( )θθθθ &&&&& sin
2

cos
2

2 lly p −−= .    (5.22) 

Several other kinematic relationships can be written based on the system geometry, these are 
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r2 = 4r1,     (5.23) 

where 4=gear ratio, 

w

c
w

w

c
w

w

c
w r

x
r
x

r
x &&&&&& −=−=−= θθθ ,, ,    (5.24) 

w
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m rr

xr
rr
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rr
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1

2

1
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1

2 and,,
&&&&&& −=−=−= θθθ .   (5.25) 

Using the dynamic equations (5.1-5.16), the electric equations (5.17,5.18), and the 

kinematic relationships from equations (5.19-5.25) the dynamic equations can be reduced to a 

two degree of freedom system written in the form of equation (2.1) as  
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The Inverted Pendulum Cart System ID 
While some of the parameters in the model such as the mass of the cart/pendulum, 

pendulum length, and the radiuses of the wheels and sprocket are easy to obtain (Table 5.1), the 

viscous friction coefficient (Cm) and inertia of the drive assembly cannot be determined through 

direct measurement.  Because of this, some form of system identification is required.  To 

determine these unknown parameters, let us assume that the pendulum is fixed in the upright 

position in such a way that it cannot move (i.e. 0=== θθθ &&& ), and that the cart is lifted off of the 

ground so that the translational inertia does not contribute to the dynamic response. These 

assumptions result in the following second order differential equation  

ccc VAxAxA 432 =+ &&& ,     (5.27) 

with a solution of 
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where 

2
1

2
2

2
24

w

w

w

m

r
I

rr
Ir

A += ,     (5.29) 

1
2

2

3

4

rr
R
kk

Cr
A

w

a

mt
m ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

= ,    (5.30) 

aw

t

Rrr
kr

A
1

2
4 = .      (5.31) 

By setting the cart up on blocks and applying step inputs to the motor and measuring the 

response we can determine the unknown parameters A2 and A3.  A4 was determined through 

measuring the various components and consulting the motor manufacturers’ documentation.  

A 6024E National Instruments (NI) DAQCard was used to provide a step voltage in 

conjunction with NI LabVIEW 8.2 and a quadrature encoder to measure the cart position.  A 

finite difference technique was then applied to estimate the cart “velocity”.  The identification of 

A2 and A3 was done in two stages.  First the data from when the cart had reached a steady state 

velocity (i.e. 0=cx&& ) was used to determine A3 using equation (5.27). Then least sum squares 

was used to minimize the error between the estimated velocity from the measured data and 

equation (5.28) utilizing Microsoft Excel solver.  This technique was done for step voltages of 3, 

6, 9 and 12 volts and the results were then averaged.  Figure 5.3 shows an example of the curve 

fitting solution.  Table 5.1 contains the results of the system identification and the rest of the 

parameter values. 

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25

Speed m/s

Equation 5.28

 
Figure 5.3: ID Data for 3 Volts 
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Table 5.1: IP Cart System Identification 

Quantity Value Quantity Value 

wmcp mmmm 4+++  10.1206 Kg Ra 3.14398 Ω 

Kt .100142 Nm/amp l .8509 m 

Km .100142 Vs/rad Rw .0631m 

g 9.80093 m/s2 r2/r1 4 

A2 1.964283 Kg A3 6.4777 Ns/m 

A4 1.859456 N/V Amp Gain 3 

 

 
Figure 5.4: Inverted Pendulum Cart 
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The Inverted Pendulum Cart Hard Real-time Implementation  
A controller based upon the direct Lyapunov approach, as outlined in Chapter 2, was 

formulated.  The control law was then implemented in hard real time on a PC running LabVIEW 

Real Time 8.2.1 using 1st order Euler integration and a sample rate of 400 Hz.  Once again, a 

6024E National Instruments (NI) DAQCard was used for data acquisition and control signal 

output.  A Lambda F28-M power supply set to 30 volts and an Advanced Motion Control 25A8K 

voltage amplifier with a gain of 3 was used to increase the implementable control signal range. 

To accommodate the amp gain, A4 was multiplied by three, allowing for the control law to be 

expressed in terms of DAQ voltage.  Using the system identification presented in Table 5.1, a 

linear observer was designed to estimate the cart and pendulum velocities (Chen 1998).  A linear 

observer should be sufficiently accurate provided that the displacement of the pendulum remains 

small. The DLA controller parameters and observer poles are found in Table 5.2.  The LabVIEW 

VIs are found in Appendix 1. 

 

Table 5.2: DLA Implementation Parameters 

Quantity Value Quantity Value 

Obs. Poles -10,-11,-12,-13 β -100.0 

a1 .2 m ω 0.25 rad/s 

γ 0. 5 α 1.0 

KDf ⎥
⎦

⎤
⎢
⎣

⎡
−

−
0.750.50
0.500.40

 Λ ⎥
⎦

⎤
⎢
⎣

⎡
7.10.0
0.085.0

 

 

As in Chapter 3, the last row of (2.2) was used to determine a differential equation for the 

desired pendulum angle and the control law component u2 was chosen to provide stabilization to 

this equation as 
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The control law component u1 was chosen as (2.35).  A desired trajectory was defined for the 

cart as xd=a1(1-cos(ωt)) with a1 and ω as defined in Table 5.2.  The matrix KDf was chosen to be 
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positive definite and symmetric and the matrix Λ was chosen with the intention of placing 

greater relative weighting on the cart position.  The system was operated for a period of 60 

seconds and the measurements were communicated back to a PC running LabVIEW 8.2.  Figures 

5.5 and 5.6 contain the desired and measured trajectories during the system maneuver. 

 
Figure 5.5: Cart Position 

 
Figure 5.6: Pendulum Position 
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Upon examining Figures 5.5 and 5.6 we see that the cart tends to track the desired path 

but the performance is not very good.  There are several possibilities that may account for the 

poor tracking performance.  The largest single factor that negatively affects the performance is 

probably the lack of static friction in the developed dynamic model.  Since the velocity of the 

cart remains small, static friction plays a significant role in the dynamics response.  An 

antisticktion sub VI was implemented to help offset the influence of static friction; however, it is 

thought that it would be beneficial to include a model of the static friction in the controller 

development.  Alternatively, increasing the amplitude for the desired cart trajectory may help to 

limit the effect of static friction on the system. Unfortunately the power cord and encoder cables 

were a limiting factor on the size of this parameter.   

The relatively low sample rate of 400 Hz is also thought to be a factor in the poor 

performance.  Past experience, with linear feedback controllers, has shown that a sample rate of 

5000 Hz is desired for real time implementations on with this system.  The sample rate was 

dictated by the high overhead associated with using a function node for the DLA controller 

calculation within LabVIEW Real Time 8.2.1.  Optimization of the VI or a new version of 

LabVIEW may increase the available sample rate.  Lastly, from experience with the simulated 

models presented in Chapters 3 and 4, tuning of the controller constants can play a substantial 

role in improving the tracking performance.  Unfortunately time constraints prevented the tuning 

of these parameters to improve the tracking performance of the presented system. To date there 

are no guidelines for the tuning of these parameters and this is an opportunity for future research.   

Chapter Summary 
In this chapter, the laboratory inverted pendulum cart system has been presented.  A 

dynamic model was developed and system identification was performed to determine certain 

parameters.  The DLA control strategy was implemented in hard real time using LabVIEW 8.2.  

The DLA controller did not perform as well as expected.  Several reasons, such as unmodeled 

static friction and poor constant selection, etc., have been identified for the poor performance and 

possible solutions outlined. 
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CHAPTER 6 - Conclusions and Recommendations 

In this thesis a novel feedback control scheme for trajectory tracking of underactuated 

mechanical systems was developed using the direct Lyapunov approach.  A literary survey is 

given in Chapter 1 along with a discussion of control approaches of underactuated mechanical 

systems, specifically their features and limitations.  The scalability limitations of the current 

control techniques and observed undesirable performance characteristics are the main 

motivations of this work. 

In Chapter 2, the formulation of the proposed control techniques is presented in detail.  

The candidate Lyapunov function, V(s,t) is defined with KD used to represent the kinetic and 

potential part of the candidate Lyapunov function.  The sliding mode control law presented in 

Slotine and Li (1988) in which the lower n-m equations are zero due to the underactuation of the 

control input vector provides a basis for the control law.  Three matching equations are 

developed from the derivative of the candidate Lyapunov function.  These matching equation are 

used to determine the matrices KD and Kv, and the tracking control law.  There are two 

remarkable results of the tracking controller development.  The first is that we arrived at three 

matching equations that are (with the exception of DK ) identical to matching equations 

developed for stabilization as shown in White et al. (2006, 2007, 2008).  The second is that it is 

not necessary to perform inverse dynamics for specifying every coordinate history for the control 

law implementation.  Instead, the control law provides a means for determining the necessary 

unspecified coordinate histories.  

A discussion on following a path and a solution strategy is presented for determining the 

positive definite function Ψ(s,u).  This strategy does not guarantee the positive definiteness of 

Ψ(s,u) when ||s|| becomes small.  As a result the tracking error variable (s) is not asymptotically 

stabilized. The ||s|| is instead reduced to within an ultimate bound.  Lemma 2.1 provides a means 

for the estimation of this ultimate bound based upon the matrices KD and Kv and the vector u. 

In Chapter 3, two holonomic applications are presented to illustrate the versatility and 

performance of the proposed control technique.  The inverted pendulum cart was presented as 

the first example. In this example a desired trajectory was tracked by the cart, or the actuated 
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axis, and the control law was used to determine a desired trajectory for the pendulum, or 

unactuated axis.  Alternatively, in the second example, the ball and beam, a desired trajectory 

was specified for the ball, or unactuated axis, and the control law was used to determine the 

desired system trajectory for the beam, or actuated axis. In addition, an example of stabilization 

in the tracking sense was done for the inverted pendulum cart.  This example was shown to be 

robust to identification errors and disturbances. 

Chapter 4 presented an example of a nonholonomic system, the rolling wheel.  Three 

control schemes were presented for this system. The first was a feedforward scheme in which 

inverse dynamics were used to determine the desired system trajectories and control torques 

required for the wheel to roll in a figure eight shaped path in the X-Y plane.  In the second, the 

direct Lyapunov approach was used along with the desired system trajectories determined in the 

feedforward example. The third example used the direct Lyapunov approach but differed in that 

it used the control law, and not the system dynamic equations alone, to determine the desired 

history of the wheel tilt angle. Both of the direct Lyapunov approach examples were shown to be 

robust to step disturbances and initial condition errors.  

Chapter 5 presented an implementation of the DLA control strategy on a holonomic 

system, the inverted pendulum cart.  A dynamic model was developed and system identification 

was performed to determine certain parameters in the model.  Next, the control law was 

implemented using LabVIEW Real Time 8.2.1 with a sample rate of 400 Hz.  From the plots of 

the hard real time data, the tracking performance of the controller was shown to be somewhat 

poor.  Some possible reasons for the poor performance include, low sample rate, unmodeled 

static friction, and poor controller parameter selection.  Addressing all, or a subset, of these 

issues should lead to better tracking performance. 

In order to increase the usefulness and acceptance of the direct Lyapunov approach as a 

viable and useful control scheme, some recommendations are provided. These are: 

 

• Several modifications should be made to the laboratory inverted pendulum cart system to 

insure that a uniform, repeatable, system response can be obtained.  Then the control 

algorithm for the hard real time implementation should be tuned by adjusting the various 

parameters in the control law to determine if a better response at a 400 Hz sample rate is 

achievable. 
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• Research into possible techniques for determining Ψ(s,u) such that is remains a positive 

definite function should be carried out. 

 

• If Ψ(s,u) can not be made to be positive definite, additional research should be done to 

increase the accuracy of estimating the ultimate bound. 

 

• Develop tools to aid in choosing controller parameters and constants. 

 

• Can the matrix KD be made a function of q alone? 

 

• The control algorithm should be tested on a real rolling wheel system such as presented in Xu 

et al. (2004) to validate the simulation results and provide a useful guide for expected 

controller performance. 
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Appendix A - LabVIEW VIs 

 
DLA Real Time Implementation-Front Panel 
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DLA Real Time Implementation-Block Diagram 

 



59 

 

 

 
Antisticktion sub .vi-Block Diagram 

 

 

 
DLA sub .vi-Block Diagram 
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DLA sub .vi Code 
//Declare variables 
float64 xd,dxd,ddxd,mp,l,g,A1,A2,A3,A4,kd1f,kd2f,kd3f,alpha,lambda1,lambda2,beta,ct,u2; 
 
//Desired Dynamics 
xd=a*(1-cos(omega*time));// desired x position (m) 
dxd=a*sin(omega*time)*omega;// desired x velocity(m/s) 
ddxd=a*cos(omega*time)*omega*omega;// desired x acceleration (m/s^2) 
 
//System ID 
mp = .4802; //Pendulum Mass Kg 
 l = .8509; //Pendulum Length m 
g = 9.80093; //Local acceleration of gravity  
A1 = 10.1206; 
A4=4.9695; 
A3=6.4777; 
A2=2.8188; 
 
// Control Constants 
kd1f =40.; 
kd2f = -50.; 
kd3f =75.; 
alpha =.5; 
lambda1 =.85; 
lambda2 =1.7; 
beta=-100.; 
 
//     d(KD)/dt Calculations 
ct=cos(theta); 
dkd1 = beta*(kd1-kd1f); 
dkd2 = 1/2*(4*kd1/(4*A1+4*A2-3*mp*ct*ct)*A4+6*kd2/l*ct/(4*A1+4*A2-
3*mp*ct*ct)*A4)*mp*l*sin(theta)*dtheta/A4+(6*kd1/l*ct/(4*A1+4*A2-
3*mp*ct*ct)+12*kd2*(A1+A2)/mp/(l*l)/(4*A1+4*A2-3*mp*ct*ct))*(1/3*mp*(l*l)*dtheta-
1/12*mp*l*(2*kd2*l+3*kd3*ct)*(2*kd2*l+3*kd3*ct)/(2*kd1*l+3*kd2*ct)/(kd3*kd1-kd2*kd2)*beta*(kd1-
kd1f)+1/6*(2*kd2*l+3*kd3*ct)*mp*l/(kd3*kd1-kd2*kd2)*beta*(kd2-kd2f)-
1/12*(2*kd1*l+3*kd2*ct)*mp*l/(kd3*kd1-kd2*kd2)*beta*(kd3-kd3f))+beta*(kd2-kd2f); 
dkd3 = (4*kd2/(4*A1+4*A2-3*mp*ct*ct)*A4+6*kd3/l*ct/(4*A1+4*A2-
3*mp*ct*ct)*A4)*mp*l*sin(theta)*dtheta/A4+2*(6*kd2/l*ct/(4*A1+4*A2-
3*mp*ct*ct)+12*kd3*(A1+A2)/mp/(l*l)/(4*A1+4*A2-3*mp*ct*ct))*(1/3*mp*(l*l)*dtheta-
1/12*mp*l*(2*kd2*l+3*kd3*ct)*(2*kd2*l+3*kd3*ct)/(2*kd1*l+3*kd2*ct)/(kd3*kd1-kd2*kd2)*beta*(kd1-
kd1f)+1/6*(2*kd2*l+3*kd3*ct)*mp*l/(kd3*kd1-kd2*kd2)*beta*(kd2-kd2f)-
1/12*(2*kd1*l+3*kd2*ct)*mp*l/(kd3*kd1-kd2*kd2)*beta*(kd3-kd3f))+beta*(kd3-kd3f); 
 
//Linear DLA Control law-used for testing purposes 
/*control=(10.5502)*x+(15.7776)*dx+(-100.3822)*theta+(-31.3320)*dtheta;*/ 
 
//                                  U calc-chosen by feedback linearization to stabilize ddthetad equation 
u2 = 1/2*mp*l*ct*(ddxd-lambda1*(dx-dxd))+1/2*mp*g*l*sin(theta)-1/2*alpha*mp*l*ct*(dx-dxd+lambda1*(x-
xd))+1/3*alpha*mp*l*l*(dtheta-dthetad)+1/3*lambda2*mp*l*l*dtheta; 
 
//                         theta desired calculation-integrated wrt 
ddthetad =3*(1/2*mp*l*ct*(ddxd-lambda1*(dx-dxd))-1/3*mp*l*l*dtheta*(dthetad-lambda2*(theta-
thetad))+1/2*mp*g*l*sin(theta)-u2-1/2*alpha*mp*l*ct*(dx-dxd+lambda1*(x-xd))+1/3*alpha*mp*l*l*(dtheta-
dthetad+lambda2*(theta-thetad)))/mp/(l*l)+lambda2*(dtheta-dthetad); 
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//                    Control Law Caclulation 

control=(A1+A2)/A4*(ddxd-lambda1*(dx-dxd))-1/2*mp*l*ct/A4*(ddthetad-lambda2*(dtheta-
dthetad))+A3/A4*(dxd-lambda1*(x-xd))+1/2*mp*l*sin(theta)*dtheta/A4*(dthetad-lambda2*(theta-
thetad))+1/2/A4*(-
18*kd3*kd3*A2*ct*g*sin(theta)+18*kd3*kd3*A2*ct*ct*alpha*dx+18*kd3*kd3*A2*ct*ct*alpha*lambda1*x-
12*kd3*kd3*A2*ct*alpha*l*dtheta-12*kd3*kd3*A2*ct*lambda2*l*dtheta+6*dx*kd1*l*l*mp*ct*ct-
12*l*dx*kd2*ct*A1-12*l*dx*kd2*ct*A2+9*l*dx*kd2*ct*ct*ct*mp+6*dtheta*kd2*l*l*mp*ct*ct-
12*l*dtheta*kd3*ct*A1-12*l*dtheta*kd3*ct*A2+9*l*dtheta*kd3*ct*ct*ct*mp-8*lambda2*theta*kd2*l*l*A1-
8*lambda2*theta*kd2*l*l*A2-12*kd3*A2*kd2*l*ct*ddxd-12*kd3*A1*kd2*l*alpha*ct*dxd-
12*kd3*A1*kd2*l*alpha*ct*lambda1*xd-12*kd2*A2*kd1*l*alpha*ct*dxd-
12*kd2*A2*kd1*l*alpha*ct*lambda1*xd-18*kd2*kd2*A2*ct*ct*lambda1*dxd-18*kd2*kd2*A2*ct*ct*alpha*dxd-
6*kd2*kd2*ct*ct*mp*l*l*ddxd-9*kd1*ct*ct*ct*mp*l*kd2*ddxd-9*kd1*ct*ct*ct*mp*l*kd2*lambda1*dxd-
9*kd1*ct*ct*ct*mp*l*kd2*alpha*dxd-9*kd1*ct*ct*ct*mp*l*kd2*alpha*lambda1*xd-
18*kd2*kd2*A2*ct*ct*alpha*lambda1*xd+12*kd2*kd2*A2*ct*alpha*l*dthetad+12*l*lambda1*xd*kd2*ct*A2-
9*l*lambda1*xd*kd2*ct*ct*ct*mp-
6*kd2*kd2*ct*ct*mp*l*l*lambda1*dxd+6*kd1*ct*ct*mp*l*l*kd2*alpha*dthetad-12*kd2*A1*kd1*l*ct*ddxd-
12*kd2*A1*kd1*l*ct*lambda1*dxd-
6*lambda1*xd*kd1*l*l*mp*ct*ct+8*kd2*A1*kd1*l*l*alpha*dthetad+12*l*lambda1*xd*kd2*ct*A1-
12*kd2*A1*kd1*l*alpha*ct*dxd-12*kd2*A1*kd1*l*alpha*ct*lambda1*xd-
18*kd2*kd2*A1*ct*ct*alpha*dxd+8*kd2*A2*kd1*l*l*alpha*dthetad-12*kd3*A2*kd2*l*ct*lambda1*dxd-
12*kd3*A2*kd2*l*alpha*ct*dxd-12*kd3*A2*kd2*l*alpha*ct*lambda1*xd-18*kd3*kd3*A2*ct*ct*lambda1*dxd-
9*kd2*ct*ct*ct*mp*l*kd3*alpha*dxd-
9*kd2*ct*ct*ct*mp*l*kd3*alpha*lambda1*xd+6*kd2*ct*ct*mp*l*l*kd3*alpha*dthetad-
6*kd2*kd2*ct*ct*mp*l*l*alpha*dxd-
6*kd2*kd2*ct*ct*mp*l*l*alpha*lambda1*xd+4*kd2*kd2*ct*mp*l*l*l*alpha*dthetad-8*lambda1*x*kd1*l*l*A1-
8*lambda1*x*kd1*l*l*A2-12*kd3*kd3*A1*ct*lambda2*l*dtheta-
12*kd3*A1*kd2*l*g*sin(theta)+12*kd3*A1*kd2*l*alpha*ct*dx+12*kd3*A1*kd2*l*alpha*ct*lambda1*x+18*kd3
*kd3*A1*ct*ct*lambda1*dx+12*kd2*A2*kd1*l*alpha*ct*lambda1*x+18*kd2*kd2*A2*ct*ct*lambda1*dx-
18*kd2*kd2*A2*ct*g*sin(theta)+18*kd2*kd2*A2*ct*ct*alpha*dx+18*kd2*kd2*A2*ct*ct*alpha*lambda1*x+9*k
d1*ct*ct*ct*mp*l*kd2*lambda1*dx-
9*kd1*ct*ct*mp*l*kd2*g*sin(theta)+9*kd1*ct*ct*ct*mp*l*kd2*alpha*dx+9*kd1*ct*ct*ct*mp*l*kd2*alpha*lamb
da1*x+8*dthetad*kd2*l*l*A1-12*kd2*kd2*A2*ct*alpha*l*dtheta-
12*kd2*kd2*A2*ct*lambda2*l*dtheta+6*kd2*kd2*ct*ct*mp*l*l*lambda1*dx-
6*kd2*kd2*ct*mp*l*l*g*sin(theta)+6*kd2*kd2*ct*ct*mp*l*l*alpha*lambda1*x-
6*kd1*ct*ct*mp*l*l*kd2*alpha*dtheta-
6*kd1*ct*ct*mp*l*l*kd2*lambda2*dtheta+12*kd2*A1*kd1*l*ct*lambda1*dx-
12*kd2*A1*kd1*l*g*sin(theta)+12*kd2*A1*kd1*l*alpha*ct*dx+8*dthetad*kd2*l*l*A2-
8*kd2*A1*kd1*l*l*alpha*dtheta-8*kd2*A1*kd1*l*l*lambda2*dtheta-
18*kd3*kd3*A2*ct*ct*ddxd+12*kd2*A1*kd1*l*alpha*ct*lambda1*x+18*kd2*kd2*A1*ct*ct*lambda1*dx-
18*kd2*kd2*A1*ct*g*sin(theta)+18*kd2*kd2*A1*ct*ct*alpha*dx+18*kd2*kd2*A1*ct*ct*alpha*lambda1*x-
8*kd2*A2*kd1*l*l*alpha*dtheta-9*kd2*ct*ct*ct*mp*l*kd3*ddxd-
9*kd2*ct*ct*ct*mp*l*kd3*lambda1*dxd+8*kd3*A1*kd2*l*l*alpha*dthetad-
6*lambda2*thetad*kd2*l*l*mp*ct*ct+12*l*lambda2*thetad*kd3*ct*A1+12*l*lambda2*thetad*kd3*ct*A2-
9*l*lambda2*thetad*kd3*ct*ct*ct*mp-6*kd1*kd1*ct*ct*mp*l*l*ddxd+12*l*dthetad*kd3*ct*A2-
12*kd3*A1*kd2*l*ct*ddxd-12*kd3*A1*kd2*l*ct*lambda1*dxd-18*kd3*kd3*A1*ct*ct*lambda1*dxd-
18*kd3*kd3*A1*ct*ct*alpha*dxd-18*kd3*kd3*A1*ct*ct*alpha*lambda1*xd+8*kd3*A2*kd2*l*l*alpha*dthetad-
9*l*dthetad*kd3*ct*ct*ct*mp+12*l*dxd*kd2*ct*A2-9*l*dxd*kd2*ct*ct*ct*mp-
18*kd2*kd2*A1*ct*ct*alpha*lambda1*xd+12*kd2*kd2*A1*ct*alpha*l*dthetad-12*kd2*A2*kd1*l*ct*ddxd-
12*kd2*A2*kd1*l*ct*lambda1*dxd-6*kd1*kd1*ct*ct*mp*l*l*lambda1*dxd-
6*kd1*kd1*ct*ct*mp*l*l*alpha*dxd-
6*kd1*kd1*ct*ct*mp*l*l*alpha*lambda1*xd+4*kd1*kd1*ct*mp*l*l*l*alpha*dthetad-
18*kd2*kd2*A1*ct*ct*lambda1*dxd-
8*kd2*A2*kd1*l*l*lambda2*dtheta+8*dxd*kd1*l*l*A1+12*kd3*A2*kd2*l*ct*lambda1*dx-
12*kd3*A2*kd2*l*g*sin(theta)+12*kd3*A2*kd2*l*alpha*ct*dx+12*kd3*A2*kd2*l*alpha*ct*lambda1*x+18*kd3
*kd3*A2*ct*ct*lambda1*dx-
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9*kd2*ct*ct*mp*l*kd3*g*sin(theta)+9*kd2*ct*ct*ct*mp*l*kd3*alpha*dx+9*kd2*ct*ct*ct*mp*l*kd3*alpha*lamb
da1*x-6*kd2*ct*ct*mp*l*l*kd3*alpha*dtheta-6*kd2*ct*ct*mp*l*l*kd3*lambda2*dtheta-
8*dtheta*kd2*l*l*A1+6*kd2*kd2*ct*ct*mp*l*l*alpha*dx-4*kd2*kd2*ct*mp*l*l*l*alpha*dtheta-
4*kd2*kd2*ct*mp*l*l*l*lambda2*dtheta+9*kd2*ct*ct*ct*mp*l*kd3*lambda1*dx-
18*kd3*kd3*A2*ct*ct*alpha*dxd-
18*kd3*kd3*A2*ct*ct*alpha*lambda1*xd+12*kd3*kd3*A2*ct*alpha*l*dthetad-
6*dxd*kd1*l*l*mp*ct*ct+12*l*dxd*kd2*ct*A1-
6*dthetad*kd2*l*l*mp*ct*ct+12*l*dthetad*kd3*ct*A1+8*lambda2*thetad*kd2*l*l*A1+8*lambda2*thetad*kd2*l
*l*A2+8*lambda1*xd*kd1*l*l*A1+8*lambda1*xd*kd1*l*l*A2+12*kd3*kd3*A1*ct*alpha*l*dthetad-
18*kd2*kd2*A2*ct*ct*ddxd-18*kd2*kd2*A1*ct*ct*ddxd-8*kd3*A1*kd2*l*l*alpha*dtheta-
8*kd3*A1*kd2*l*l*lambda2*dtheta-
12*l*lambda2*theta*kd3*ct*A2+9*l*lambda2*theta*kd3*ct*ct*ct*mp+8*dxd*kd1*l*l*A2-
8*dx*kd1*l*l*A1+12*kd3*A1*kd2*l*ct*lambda1*dx-
18*kd3*kd3*A1*ct*g*sin(theta)+18*kd3*kd3*A1*ct*ct*alpha*dx+18*kd3*kd3*A1*ct*ct*alpha*lambda1*x-
12*kd3*kd3*A1*ct*alpha*l*dtheta-8*kd3*A2*kd2*l*l*alpha*dtheta-8*kd3*A2*kd2*l*l*lambda2*dtheta-
8*dx*kd1*l*l*A2+6*kd1*kd1*ct*ct*mp*l*l*alpha*lambda1*x+6*lambda2*theta*kd2*l*l*mp*ct*ct-
12*l*lambda2*theta*kd3*ct*A1+6*lambda1*x*kd1*l*l*mp*ct*ct-12*l*lambda1*x*kd2*ct*A1-
12*l*lambda1*x*kd2*ct*A2+9*l*lambda1*x*kd2*ct*ct*ct*mp-8*dtheta*kd2*l*l*A2-
12*kd2*kd2*A1*ct*alpha*l*dtheta-12*kd2*kd2*A1*ct*lambda2*l*dtheta+12*kd2*A2*kd1*l*ct*lambda1*dx-
12*kd2*A2*kd1*l*g*sin(theta)+12*kd2*A2*kd1*l*alpha*ct*dx+6*kd1*kd1*ct*ct*mp*l*l*lambda1*dx-
6*kd1*kd1*ct*mp*l*l*g*sin(theta)+6*kd1*kd1*ct*ct*mp*l*l*alpha*dx-4*kd1*kd1*ct*mp*l*l*l*alpha*dtheta-
4*kd1*kd1*ct*mp*l*l*l*lambda2*dtheta-
18*kd3*kd3*A1*ct*ct*ddxd)/(4*kd1*kd1*l*l+12*kd1*l*kd2*ct+9*kd2*kd2*ct*ct+4*kd2*kd2*l*l+12*kd2*l*kd3
*ct+9*kd3*kd3*ct*ct)-alpha*(A1+A2)/A4*(dx-dxd+lambda1*(x-xd))+1/2*alpha*mp*l*ct/A4*(dtheta-
dthetad+lambda2*(theta-thetad))+(-1/4/A4*l*(4*A1+4*A2-3*mp*ct*ct)/(2*kd1*l+3*kd2*ct)*beta*(kd1-kd1f)-
2*A4*(2*kd1*l+3*kd2*ct)/l/(4*A1+4*A2-3*mp*ct*ct))*(dx-dxd+lambda1*(x-
xd))+(1/4*(kd2*ct*mp*l+2*kd3*A1+2*kd3*A2)/A4*(2*kd2*l+3*kd3*ct)/(2*kd1*l+3*kd2*ct)/(kd3*kd1-
kd2*kd2)*beta*(kd1-kd1f)-1/2/A4*(kd2*ct*mp*l+2*kd3*A1+2*kd3*A2)/(kd3*kd1-kd2*kd2)*beta*(kd2-
kd2f)+1/4/A4*(kd1*ct*mp*l+2*kd2*A1+2*kd2*A2)/(kd3*kd1-kd2*kd2)*beta*(kd3-kd3f)-
2*A4*(2*kd2*l+3*kd3*ct)/l/(4*A1+4*A2-3*mp*ct*ct))*(dtheta-dthetad+lambda2*(theta-thetad)); 


