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Abstract

Mechanical systems play an integral part in our everyday lives. A subset of these
systems can be described as underactuated; the defining characteristic of underactuated
mechanical systems is that they have fewer control inputs than degrees of freedom. Airplanes,
rockets, helicopters, overhead crane loads, surface vessels, and underwater vehicles are all
examples of such systems. The control challenges associated with these systems arise from both
the underactuation of the control input and the nonlinear nature of the dynamic equations
describing the system’s motion.

In this work, a control method for stabilization and tracking based on Lyapunov stability

theory is presented. The remarkable result of this tracking controller development is that we
arrive at three matching equations that are (with the exception of K ,) identical to matching

equations developed for stabilization as shown in White et al. (2006, 2007, 2008). Asymptotic
stabilization of the tracking errors (s) is not obtained. However, the norm of s (||s||) will decrease
until an ultimate bound is reached, then it will stay within this bound. A lemma is provided for
estimating this bound and it is shown that the magnitude of the bound depends upon the
eigenvalues and norms of certain matrices in the Lyapunov formulation.

Three examples are presented to illustrate the effectiveness of the direct Lyapunov
approach. Two examples of holonomic systems are presented. The first is an inverted pendulum
cart which is used to illustrate the formulations performance to tracking a desired path on the cart
position or actuated axis. The second example is a ball and beam system in which a desired path
is tracked by the ball or unactuated axis.

The tracking control technique is also applied to an example of a nonholonomic system, a
rolling wheel. The control technique is applied in two alternate manners. Finally, the controller
is implemented on a laboratory inverted pendulum cart system in hard real time. A desired
trajectory for the cart position is tracked and the control law is used to define the desired

pendulum trajectory.
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CHAPTER 1 - Introduction

Mechanical systems play an integral part in our everyday lives. A vast quantity of
mechanical systems such as automobiles, aircraft, and cranes are employed everyday for
transportation or material handling. A subset of these systems can be described as
underactuated; this chapter discusses the qualities of such systems, provides examples, and
contains a review of work that has been done in recent years to advance control theory in the area
of underactuated mechanical systems.

The defining characteristic of underactuated mechanical systems is that they have fewer
control inputs than degrees of freedom. Recently there has been extensive research in the control
of the underactuated mechanical systems due to the broad range of available applications. Many
everyday mechanical systems are underacuated. Airplanes, rockets, helicopters, overhead crane
loads, surface vessels, and underwater vehicles are all examples of such systems. The control
challenges associated with these systems arise from both the underactuation of the control input
and the nonlinear nature of the dynamic equations describing the system’s motion. In general,
these systems can have holonomic and/or nonholonomic constraints. The equations of motion
can be determined from the Euler-Lagrange equation,

d(oL(g.q)) oLlgd)
dr[ % J g 2 t-b

where the vector ¢ € R” is a vector of generalized coordinates. L(g,§):R>" — R is the

Lagrangian defined as the kinetic energy minus the potential energy of the mechanical system.
The vector @’ contains the constraints and applied control input forces/moments (Greenwood,
2003).

For fully actuated systems, a broad range of techniques for optimal, robust, and adaptive
control have been developed in the last two decades. These techniques rely on a number of
useful system properties inherent in fully actuated systems such as feedback linearizability,
passivity, and linear parametrizability. For underactuated systems, these properties may not
exist; furthermore, undesirable properties such as higher relative degree (Khalil, 2002) and non-

minimum phase behavior may be present. The absence of some of these useful system properties



and the addition of unwanted ones make control design for underactuated systems very
challenging.

The research conducted on the control of underactuated mechanical systems usually
address either stabilization or tracking. The goal of stabilization is to drive a disturbed system
back to a nominal equilibrium point, while tracking addresses the problem of having the system
follow a predetermined path or trajectory. Stabilization was once the primary focus of control
researchers such as Bloch, Leonard, and Marsden (2000, 2001) with controlled Lagrangians,
Olfati-Saber (1998, 2000, and 2001) with backstepping, Ortega, Spong, Gémez-Estern,
Blankenstein (2002) in addition to Acosta, Ortega, Astolfi and Mahindrakar (2005) with
interconnection damping assignment — passivity based control (IDA-PBC), Auckly, Kapistanki,
and White (2000) with the A method, and White, Foss, Patenaude, Xin, and Garcia (2008) with
the direct Lyapunov approach (DLA). However, research in tracking control of underactuated

systems is starting to see more activity.

Non-matching Based Approaches

Recent developments of continuous nonlinear tracking control design approaches for
underactuated mechanical systems can be categorized into two main areas, matching based and
non-matching based. Non-matching based approaches to underactuated system tracking include
the work of Driessen and Sadegh (2000) where optimal control techniques were used for
minimum time path following of an underactuated manipulator. Their computations were made
possible by linearization of the system about the trajectory.

Path following applications for fully actuated systems have also influenced the
approaches taken for underactuated systems. A number of researchers have considered inverse
dynamics in developing a path for which the trajectory history of each axis is found in advance.
Blajer and Kolodziejczyk (2007) developed a feed forward control scheme based on inverse
dynamics for their gantry crane applications. It should be noted that the inverse dynamics for
underactuated systems are complicated by the reduction in the possible paths caused by the
underactuation. These complications have led researchers to try other methods that avoid the
need for such calculations.

A notable contribution in the area of non-matching based techniques was made by

Sandoz, Kokotovi¢, and Hespanha (2008) with their trackablity filter scheme. This approach



employs a filter which produces an augmented reference signal derived from a nominal input.
This new signal is zero error trackable by the underactuated system provided that its zero
dynamics are input to state stable (ISS). Alternatively, Ashrafiuon, and Erwin (2004) presented
a sliding mode control approach which can drive an underactuated system onto a sliding surface.
Lyapunov theory was used to develop the controller used to reach the sliding surface, however
asymptotic stability of the sliding surface was not established for the general case. The
determination of asymptotically stable surfaces could prove to be a limitation of this technique.
In Boskovic and Krstic (1999), a Lyapunov based control law is developed for attitude/position
regulation of a six degree of freedom, nonholonomic underwater vehicle. While the controller
was designed for fixed point regulation, the tracking error remained small for slowly varying
desired trajectories. For faster moving trajectories, this controller could not be expected to
perform as well.

Backstepping has also proven to be a popular tool for the design of tracking controllers.
Do, Jiang, and Pan (2002) employed this technique in the derivation of a controller for an
underactuated surface ship that would asymptotically track a reference trajectory of straight line
or curve segments. In Hongrui, Yantao, Siyan, and Zhen (2008) a backstepping technique is
applied to a ball and plate system for stabilization and tracking. The authors were successful in
tracking a curved reference trajectory with the ball while stabilizing the plate. The backstepping
control approach used was dependent upon the system dynamics being expressed in strict-
feedback form. While backstepping has proven effective on a case by case basis, it relies heavily

upon the designer’s creativity in handling undesirable terms from the dynamic equations.

Matching Based Approaches

Research on extending matching equation based stabilization techniques to tracking has
also been increasing recently. For example, in Singhal, Patayane, Banavar (2006), the authors
derive tracking controllers using the method of interconnection damping assignment-passivity
based control (IDA-PBC) and a direct Lyapunov approach and they compared the performance
of the two controllers. These controllers were limited in application due to the zero acceleration
assumption for the desired trajectory. In Wang and Goldsmith (2008), an IDA-PBC formulation
was presented that contained an additional matching equation allowing for tracking control of

underactuated port-controlled Hamiltonian (PCH) systems (without the zero acceleration



assumption). However, the authors did make use of inverse dynamics in their development so
that the path following techniques of Slotine and Li (1988) could be applied to fully actuated
systems.

The goal of this work is to develop a systematic framework for nonlinear controller
design that could be applied to holonomic and nonholonomic systems without requiring inverse
dynamics. For a system having n degrees of freedom, the controller design method assumes that
only m of the degrees of freedom have a specified smooth trajectory history. These histories
might be determined by a rudimentary path planner given the initial and ending system
configurations or by some similar method. Smoothness of the path is required due to the
necessity of determining the velocity and acceleration of each degree of freedom having a
specified history. The attractiveness of the approach is that given the m specified histories, the
control law to be presented will determine, at each point of time, suitable kinematic values for
the n —m degrees of freedom not having specified trajectory histories. This aspect of the control
law saves the designer the effort of having to generate these trajectories from inverse dynamics
prior to the start of the motion and thus decreasing the response time to handle trajectory
changes.

Part of the path following control law presented by Slotine and Li (1988) is the starting
point for the controller design. Given the form of the control law, the dynamics of the system are
recast in terms of a sliding mode. The control law for the new dynamic equation is developed
from a direct Lyapunov approach very similar to that presented in White et al. (2008). Once the
control law for the sliding mode dynamic equation is known, it can be incorporated into the
original path following control law. Because the path following control law is to be applied to an
underactuated system, n — m of the components of the control law vector must be identically
zero. These control law equations allow the determination of the accelerations associated with
the desired path of the degrees of freedom having unspecified histories. Integration of these
accelerations determines the velocities and positions on the unspecified axes. It is demonstrated
that there is an upper bound on the norm of the sliding mode variable and thus the error is not
asymptotically stable. This bound is partially dictated by the eigenvalues of certain matrices
used in the Lyapunov formulation.

In the following chapter, the derivation of the control law and a discussion of the

expected performance are presented. In Chapter 3, two examples of holonomic systems are



provided. A DLA controller is derived to drive the system along a desired trajectory. In Chapter
4, a nonholonomic example is presented and the control law is once again derived to drive the
system along a desired trajectory. The response of the systems is simulated using Matlab
SIMULINK. Chapter 5 contains a hard real time implementation of the DLA control scheme on
an inverted pendulum cart. The dynamic model is presented and system identification is
performed to determine several unknown parameters. Finally, a desired path is defined for the
cart position and the experimental results are presented. In Chapter 6, conclusions and
recommendations are presented to improve the DLA controller tracking performance and ease of

design.



CHAPTER 2 - Lyapunov Formulation

This chapter details the development of the Lyapunov formulation. Discussion on how
certain terms that are introduced to the formulation are dealt with is presented along with the

expected system performance when following a path.

The Matching Equations

The mechanical system is described by the nonlinear matrix equation
. 2\ - . T
Wi+ Clad+ i 6la)=| | @

where the vector g € R" is a set of generalized coordinates for the n degrees of freedom of the
mechanical system while the time derivative of ¢ specifies the n generalized velocities. The
right-hand side of (2.1) contains the vector 7 € R” where m<n for underactuated systems. It is
assumed that the degrees of freedom are ordered so that the first m elements of the right side

vector contain the nonzero inputs. Also in (2.1), M(q) € R"™ is the positive definite mass and/or
inertia matrix, C (q, q')ti € R" consists of centripetal and Coriolis forces and/or moments, and
G(q) € R" consists of forces and/or moments stemming from gradients of conservative fields.

The requirement of the control law is to both stabilize and drive the system along the
specified trajectory. The tracking controller presented by Slotine and Li (1988) was developed
for fully actuated systems. In order to apply this sliding mode approach to underactuated
systems, modifications of the original controller must be made. The proposed control law for an
underactuated system is

M = M(q)i, +Clg,q)q, +Cpd, ~ Kps {

u+F
: }L P(t)'VO(q) (2.2)
u,

Where the matrix K, € R"™ is a positive definite, Hermitian matrix, ®(q) is a real scalar

potential function of the generalized coordinates, P(f) € R"™ is a positive definite matrix, and

the gradient is computed with respect to the generalized coordinates. The vector u#, which refers



to the vector [u; us]", is used to provide stabilization to the lower n-m equations of (2.2). The

vectors ¢, and g, are the reference velocity and acceleration, respectively where

q.r:qd_Aq:qd_A(q_qd). (2.3)
In equation (2.3), ¢4 is the vector of desired coordinate positions and A € R"™ is a

constant, positive definite, and symmetric matrix. When comparing (2.2) to the control law
presented by Slotine and Li (1988), it is seen that the gravitational term is not included in (2.2)
and that there are additional terms included which are necessary due to the underactuation. The
gravitational term will be seen at a later point to be related to part of F and the gradient of ®(g).
Taking the time derivative of (2.3) produces the reference acceleration. The quantity § consists
of the difference between the actual and the desired coordinates and this together with its time
derivative constitute the tracking errors. The sliding mode vector s is given by

s=q4—q,=q+A47 . (2.4)
If the control drives the sliding mode vector to the sliding surface where the vector s vanishes,
we see that the tracking error then decays to zero.

Combining equations (2.1) and (2.2) yields
M (q)i +Cla,4)i + C 4 +Glg)= Mlg)i, + Clg,4)d,

— + F 2.5
+Cyq, ~Kps+ {"’ } + P(t)'V(q). 22)
u,
Canceling like terms and using the definitions from (2.3) and (2.4) reduces the last result to
. . — u, +F 4
M(q)s+C( ,q)s+CDs+G(q):—KDs+ +P(t) V(D(q) (2.6)
u, :

The direct Lyapunov approach (White et al. 2006, 2007, 2008) is used to complete the

design of the control law for the system. The candidate Lyapunov function is
V=%STKDS (2.7)

where

Kpy=P()M(q), (2.8)
and P(f) is a positive definite matrix defined so that K, € R"™ is a symmetric, positive matrix.
This matrix was seen previously in the control law stated in (2.5). Computing the time derivative

of candidate Lyapunov function (2.7) produces



V:sTKDS+§sTKDs=—sTKv$+5U(s,u)£0 (2.9)

where K, € R"" is symmetric and at least positive semi-definite, and u again refers to the vector
[u) u>]" on the right side of (2.6), ¥and u will be defined later in the analysis. Substituting the

time derivative of s from (2.6) into (2.9), we obtain

o ol - caa-os-cta) Koo o vatg | Lok o)
=—s"K,s+¥(s,u). 2
Following a procedure similar to that of White et al. (2008), we decompose (2.10) into three
matching equations. Defining the control input F as
F=F +F,+F, (2.11)
where F; will be used with the i™ matching equation. With the substitution of (2.11) into (2.10)

we define the first matching equation as

sTKDM(q)I(— c(q,q)s{‘gl D+ Lok =0: (2.12)
the second matching equation as
STKDM@,){(_ €, -, )+ BD K (2.13)
and finally the third matching equation as
KM (q)[_ Glo)+ ﬁ) } + P(e) vcp(q)j 0. (2.14)

The First Matching Equation
Two symmetric matrices C, e R"" and €, € R"™" are subtracted from the first matching

equation and added to the second. These matrices will aid in the solution of these two matching

equations. The first two matching equations are rewritten as

5, 0) | (clad)- €[ ]| 1o (2.15)
and

STKDM@((_ €y, Co+C)lss KD: Ko - (2.16)

Notice that the sum of (2.15) and (2.16) is the same as the sum of (2.12) and (2.13).



Following the formulation presented in White et al. (2008), the vectors F; and F; are
factored as
F =F, s (2.17)
where the vector ¢ in White et al. (2008) has been replace with s. Note that F;, in this

factorization is an m*n real matrix. Using this factorization, the vector s can be stripped from
either side of (2.15). However, in order for the scalar equation (2.15) to be true in the most
general case, we must require the symmetric part of the resulting matrix equation to be zero.

This realization leads the following requirement
K, ~K,M(q)'(C(g.4)+C,)-(Clg.d)+C, ] Mlg) 'K,

' KDM(q)I[- Cor [‘ZD+ (_ Cor ﬁ;DTM(q)lKD o @19

This is the same result as in White et al. (2008). The elements of F},, and C ,are chosen so that

the last two terms of (2.18) will equal
KDM(q)l[—CD +{IE’”D+(—C0 +F2)’"D M) K,=-pK,-K,) (2.19)

where [ is a negative constant and Ky is the final form of the matrix Kp, i.e. the form that K
attains when equilibrium is reached. In order to satisty (2.19), n(n+1)/2 equations can be written

to determine the same number of unknowns. In (2.19), there are a total of n(n+1)/2 + nm
unknowns in the matrices C,and Fy,.. The matrix C ,can be used exclusively to solve (2.19),
however there is some advantage in using both of the arrays C,and F},, to solve (2.19). The
reason for this will be discussed in consideration of the second matching equation.

Replacing the left hand side of (2.19) in (2.18) with the right hand side of (2.19) the first
matching equation becomes

K, - K,M(g)"(Clg.)+ C,)-(Cla.d)+ €, Mlg)" K, - K, - K, )<0. (220

This set of ordinary differential equations is evaluated numerically as part of the feedback
process. The matrix C), will be defined in the discussion of the second matching equation. A
convenience of (2.20) is that by choosing £ large and a path in which ¢ remains small, the

matrix Kp remains relatively constant.



The Second Matching Equation

Again, using the factorization of (2.17) and stripping off the vector s from both sides of
(2.16) produces the same equation as in White et al. (2008),

P(t)\-C, K, +Cp+C, )+ P(t)ré'"} 'S 2.21)

The matrix C  is already defined from the solution of the first matching equation and the sign of
its eigenvalues are indeterminate, thus, ¢, will be used to eliminate this term from the second
matching equation and to provide additional “virtual damping” (see White et al. 2008) if desired.
Given these definitions, note that all of the matrices C » and C, together with the matrix F,, all
vanish as equilibrium is approached and the first matching equation shows the time derivative of
K vanishes.

The solution of (2.21) involves the determination of the matrix K, as well as the control
law contribution F»,. A requirement of solving (2.21) is that K, is symmetric and at least
positive semi-definite. Should the four matrices in the parentheses in (2.21) be zero, then it is
easy to see that K, is not of full rank. Suppose the matrices Cp and C are zero. Past examples

in White et al. (2007, 2008) have shown that if the viscous damping coefficient matrix (Cp)
contributes positive damping on the un-actuated axes, then K, will have positive eigenvalues. A
useful illustration of this point is the ball and beam example shown in White, Foss and Guo

(2007) where the damping on the un-actuated axis was contributed by the ball rubbing against a
potentiometer sensor. However, should C)» be nonzero then the nature of K, is hard to determine

since Cp is based upon the difference of Kp and Kpy. Because the matrix Cp can cause

difficulty in the controller performance, the first step in reducing the influence on the
eigenvalues of K, is to make Cp as sparse as possible. Thus, when (2.11) is solved, the elements

of F,, are used along with only those elements of Co necessary.

To solve (2.21), a two step process is used, the first step of which is

[FS'”} =-P(t)" K, (2.22)

for which the solution is

10



K,=YaPP (2.23)

i=1

where the ¢; are constants chosen so that K, is positive semi-definite and P; is the i column of
P(?). Applying (2.22) and (2.23) to (2.21) shows that

Pi)\-c,-K,+C,+C,)=-K,, (2.24)
where K, is defined as the sum of K,; and K,,. The matrix K p 1s defined as

K, =M(q) (2.25)

where y is a positive constant. The product of P(f) and the matrices in the parenthesis in (2.24) is
not symmetric, however, the pre and post multiplication by s extracts the symmetric portion of

the matrix product. With the matrix €/, defined as C}) = —C,, we must require

o R A0 229

Note that F»,, from (2.22) times the vector s provides the control signal F,. Because the matrices
on the left of (2.25) are positive definite and symmetric, the resulting matrix sum
Kv = Kvl+Kv2 (227)

is also symmetric and positive definite.

The Third Matching Equation

Stripping off the vector s from (2.14), we arrive at

KM (q)(_ Glg)+ {F } ; P(t)IVQ(q)J 0. (2.28)

0
The solution procedure for (2.28) can be done in the same manner as shown in White et al.
(2007). The remarkable result of this tracking controller development is that we have arrived at
three matching equations that are (with the exception of K ) identical to matching equations
developed for stabilization as shown in White et al. (2006, 2007, 2008). However, it should be
pointed out that control law (2.2) contains the sum of the vector containing F3 and the gradient of
®(g). Upon examining (2.28) we see that this vector sum must be equal to G(g). The effect of
this cancelation of non stable elements from the dynamic equations on the robustness of the

closed loop system will be examined in the inverted pendulum cart example in Chapter 3.
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Following The Path

The quantities involved in the evaluation of (2.6) require further explanation. The control
law is given by (2.2) and the constraint that the lower n — m elements of the actuation vector are
zero is used to determine the vector u,. That the function #(s,u) is intended to be non-positive
will be used to determine the vector u;.

The path following discussion will pertain to the case where the path motion constitutes a
path that is contained in the solution space of the system. In order to have the system follow a
prescribed trajectory, there are several possibilities. The first is to use the path information to
determine the time histories of the generalized coordinates. By knowing the time histories of the
coordinates (assumed to be sufficiently smooth) the generalized velocities and accelerations are
also known. There are a total of n degrees of freedom and the path may specify either all or a
subset of the generalized coordinates. If all coordinates are specified and the desired motion is
possible given the underactuation, this represents one extreme in the classes of possible path
following problems. At the other end, there is the situation where m coordinate histories are
specified because fewer than m constraints may lead to redundant solutions. The m history
constraints provide conditions to determine the m actuations. If m coordinate histories are
specified, then the other n-m coordinate histories could be determined through inverse dynamics.
In the general case, inverse dynamics is unattractive due to the time and complexity involved in
the solution process. This complexity limits the ability of the system to respond rapidly to a
given task. It should also be noted that in an underactuated system having m actuators,
specifying m coordinate histories can in certain systems lead to redundant solutions for the other
n—m axes. This short discussion shows that there is a wealth of problem classes that can be
considered.

Examples of three different classes of problems will be given in Chapters 3 and 4. In the
ball and beam and inverted pendulum cart examples in Chapter 3, the number of specified
coordinate histories equals the number of actuated axes. No inverse dynamics will be performed
for those axes where the coordinate histories are not specified. However, one example in
Chapter 5 with the rolling wheel will make use of inverse dynamics to determine all

coordinates to follow a figure eight shaped path. Given these classes of problems, there are four
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subclasses that need to be considered. The first subclass includes those problems where the
coordinate histories are specified for the unactuated axes. The second subclass involves those
problems where the specified coordinate histories describe the motion of actuated axes. The third
subclass consists of those problems were all n generalized coordinates have a specified
coordinate history. A fourth subclass also exists for which some unactuated axes and some
actuated axes have specified coordinate histories. An example of this type of implementation is
given in Chapter 4.

In (2.6) it is assumed that m degrees of freedom have been specified, leaving n — m
coordinates unspecified. In (2.2), the lower n — m equations are solved for the reference
accelerations of the unspecified coordinates. This step is always possible because the
mass/inertia matrix M(q) is of full rank. That the lower n — m rows of (2.2) are equal to zero
allows the reference accelerations to be found. In general, these n — m equations are nonlinear
and possibly unstable. The control u; is used to stabilize these lower n — m differential
equations. How to best select u, to stabilize these differential equations is a problem dependent
exercise. Regardless of whether the solution of the lower n — m equations is performed for
actuated or non-actuated reference accelerations, the steps of the procedure are the same. Once
the input vector u, is determined, then u; can be chosen to satisfy (2.9). If all n coordinates are
specified, as in the first rolling wheel example presented in Chapter 4, then once the time
histories and time derivatives are substituted into the lower n — m equations, the vector u, can be
used to assure that the lower n — m equations of (2.2) are all zero.

Removing the matching equations from (2.10), the remaining terms are

STK, M (qy)t:1 } = W(s,u) (2.29)
2
In order to satisfy Lyapunov, we desire that the right side of (2.28) is non-positive. This last
relation completely defines the scalar function ¥(s,u). It is desired that the vector u; in (2.29) be
chosen so that ¥is less than zero or at least the right hand side of (2.9) is non-positive. It will be
shown that this is not always possible and the conditions for which (2.9) can be satisfied will be

presented. If ¥is to be other than positive, we must have
T u,
s P(t)[ } <0 (2.30)

or if P(q) is partitioned as

13



Pi)=[P, P], (231)
we would then have

s"Pu, <-s"Pu,. (2.32)
Depending upon the dimension of u;, the ability to satisfy (2.30) might be limited. One
possibility of satisfying (2.30) would be to determine u, so that ¥is zero. Experience has shown
that this approach often results in a #; vector that becomes extremely noisy as the vector s
becomes small. Upon examining (2.2) it is seen that this noisy u; is applied directly to the
actuated states which can lead to undesirable system performance.

Instead of (2.30) a least squares approach is adopted in the determination of u;. We

desire that

[P, P, ]{"1 } =-s, (2.33)
u

2
which can be rewritten as
Pu =-s—Pu,, (2.34)

for which there are more equations than unknowns. Solving (2.34) in the least squares sense
yields

u,=-(P"P)' P’s—(PTP) P Pu,. (2.35)
This last relation provides a continuous dependence of #; on s and u,. Equation (2.35) seems to
work well with the exception of when s is orthogonal to the columns of P;, in which case ¥
becomes —sTquz, which may not remain negative.

In general, the control vector # will become zero as the system comes to rest, otherwise it
will be nonzero. In equation (2.9), we see that the first term on the right hand side is quadratic in
s and the second term is linear in 5. As s becomes small, it becomes increasingly difficult to
assure that the sum of the two terms is non-positive. From this we see that there is a limit to our
ability to ensure that the right hand side of (2.9) is negative as s becomes small. This implies that
the norm of s will decrease until an ultimate bound is reached and once reached, will stay within
this bound. It should be noted that once within this bound s cannot be guaranteed to decrease to
zero. As seen in Lemma 2.1, this bound on s is a function of the eigenvalues of K, Kp, and the
vector u. For increased tracking accuracy this bound should be made as small as possible by the

choice of Kp, K,, and u>.
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Lemma 2.1

From (2.6) the sliding mode dynamics are

. 4 — u +F .
s=M (q -K, s+ —C(q,q)s—CDs (2.36)
u,
whose nominal form is
. 4 — F .
§=M"(q) -K,s+ ol Clg,d)s—Cps |. (2.37)

Let s=0 be an exponentially stable equilibrium of the nominal system, and L(¢,s) be a Lyapunov
function for the nominal system that satisfies (2.38-2.40). Suppose there exists positive constants

c1, €2, €3, and c4 such that

2

¢ ||s||2 <L(t,s)<c, ||s , (2.38)
L<—cls|’, (2.39)
oL
Hg <cyld]. (2:40)

and in [0,00) x D, where D={scR" | ||s||<r}. Suppose the perturbation on the nominal system

st =|u-taf ]

for all £0, all se D, and some positive constant <1. Then for all||s(t0 )|| < /ir , the solution of
)

satisfies

<5<% S (2.41)

¢, \¢c,

s(¢) of the perturbed system (2.36) satisfies

_(1—‘9)"3 —ty
Is(o)] < Fe o ) Vi, <e<i 4T (2.42)
€

and

Jsto] <=
(&

129 st 4T (2.43)
s V¢ @

for some finite time 7.

15



Proof of Lemma 2.1
Using (2.7) as the candidate Lyapunov function for the nominal system (2.37-2.40) yield,

Do (K S < Vits) = %STK,,S <&, s (2.44)
V= —sT(KV )s <A (KV ms ? (2.45)

oV oK oK

P I‘KDS+ST8—SDS <|K,+s" 2 ls]|- (2.46)

If K remains virtually constant as in White et al. (2007, 2008) or if s remains small the last

inequality can be approximated as

oV
< . 24
o<1l 247

For the perturbed system the candidate Lyapunov derivative (2.10) becomes

ov

et

< sl + c,0ls]| = ~(1- Ohesfls — s s+
< (1-0), s, Vs> % .

Applying Theorem 4.18 of (Khalil, 2002) the ultimate bound is

V=—s"K,s+¥(s.u)<—c|s|" +

S

, 0<6<1 (2.48)

B=0,"(ax(2)) (2.49)
where

z= ZZ—:, (2.50)

a,(r)=A,. (K, ), (2.51)

a,(r)=|K,|r*, (2.52)
thus,

|_&,] olK,|
B= : (2.53)
)lmin (KD) 9||KV ||
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From this result we can see that the ultimate bound (B) depends on the magnitude of the

perturbation” 2(¢,5)|, the norm of matrices Kp and Ky, and the minimum eigenvalue of K.
Chapter Summary
In this chapter the development of the direct Lyapunov formulation for tracking control
has been presented. There are two remarkable results of the tracking controller development.

The first is that we arrived at three matching equations that are (with the exception of K )

identical to matching equations developed for stabilization as shown in White et al. (2006, 2007,
2008). The second is that it is not necessary to perform inverse dynamics to specify every
coordinate history to perform a system maneuver. Instead, the control law provides a means for
determining the necessary unspecified coordinate histories. In addition a discussion on the
expected performance of the tracking control scheme has been presented along with a lemma for
estimating the ultimate bound on the norm of's. This bound is a function of the eigenvalues of

K,, K), and the vector u.
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CHAPTER 3 - Holonomic Examples

In this chapter two examples of holonomic systems are presented. First, the inverted
pendulum cart is presented and a desired trajectory is tracked with the actuated axis. The
robustness of the control law in regards to system identification errors in G(q) is also discussed.
Next, the ball and beam system is presented in which a desired trajectory is tracked with the ball,
or unactuated axis. This chapter is concluded with a discussion on the observed performance of

the tracking controllers for these two underactuated holonomic systems.

The Inverted Pendulum Cart
The inverted pendulum cart system is shown in Figure 3.1. The objective of the control
law is to control the movement of the cart such that the pendulum remains upright while the cart

tracks a desired path. The equations of motion for the system in the form of (2.1) are

_ ml
mo =2eos(0) H+ 0 m?lsin(e)é H +! mal ]{F } (3.1)
_n;l‘cos(e) J o1 o 0 o] |~ @) o

where m and / are the mass and length of the pendulum, respectively, m is the mass of the
pendulum and cart, J is the mass moment of inertia of the pendulum about the pendulum base,
and g is the acceleration of gravity. The state variables x and 6 are as defined in Figure 3.1. The
derivation of the dynamic equations for the examples presented in Chapter 3 and 4 are available
for download at NLCLab.mne.ksu.edu (2007). The procedures outlined in Chapter 2 were
followed to develop the DLA control law. Table 3.1 contains the system identification and the

DLA controller parameters.
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Table 3.1: Inverted Pendulum Cart Parameters

Quantity Value Quantity Value
J 0.4 Kg m’ ai 2m
M 1.5Kg ) 35 rad/s
m 5.0Kg y 1.0
L 0.7m a 1.0
G 9.81 m/s’ i -1000.0

200.0  —300.0 0.1 0.0
Koy {— 300.0 5500 } A {0.0 1.0}
AY
(@) (@) > X
0 J
* |

Figure 3.1: Inverted Pendulum Cart System

The desired x trajectory was defined as x,, (t) = a, (1 - cos(wt)). The desired pendulum

angle was determined by solving for the second time derivative of 6 from the lower n — m rows
of (2.2), then numerically integrating in time. This equation may be stable or unstable depending
upon the system dynamics; however, the control law component u, is meant to provide
stabilization to the resulting matrix differential equation. For the inverted pendulum cart the
resulting differential equation is unstable, thus u; used to provide feedback linearization and was

chosen as
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u, = %ml cos(0)¥, - 2, (-, )+ %mlsin(@)

. o . (3.2)

S milcos(O)i—, + 4 (x—x,))+ J(6-6,)+ 1,6)

where 4; and 7, are the [1,1] and [2,2] elements of A. In this example, the tracking of the cart
position received a higher priority. This was accomplished by changing the relative magnitudes
of A and A, until the desired performance is obtained. How to best scale the relative weighting
of 41 and 4, to achieve optimal tracking performance is an area of interest for future work. The
control law component u; was found through the evaluation of equation (2.35) and the matrix Kp,
was chosen to be positive definite and symmetric.

The closed loop system response was simulated using MATLAB Simulink 7.5 for a
period of 80 seconds. The initial position and velocity of the cart were set at zero. The
pendulum position and velocity were initialized at 0 rad and 15 rad/s, respectively. Figure 3.2
shows the desired and actual cart position as a function of time. Figure 3.3 and Figure 3.4 show
the desired and actual pendulum position and the sliding mode variables as a function of time
respectively. The ultimate bound as defined in Lemma 2.1 and the norm of s (||s||) are shown in

Figure 3.5 and the constants used to calculate the ultimate bound are given in Table 3.2.

Cart Position (m)

Figure 3.2: Desired and Actual Cart Position
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Table 3.2: IP Cart Ultimate Bound Constants
Quantity Value Quantity Value
r 408.5253 1 99.9962
0 0.9993 €2, C4 750.1403
0 23.3836 C3 129.9686

From Figures 3.2-3.4 we see that the control law successfully rejects the initial
disturbance and follows the desired trajectory on the actuated axis with minimal error. We can
also see that the error on the pendulum axis seems to be greater than the cart tracking error. This
supports the early statement concerning placing emphasis on the desired axis by adjusting A.

Despite the good performance of the DLA tracking controller some questions still linger.
Upon examining (2.6) and (2.27), we see that the control law is, in effect, canceling out the
conservative field vector G(q). Because this vector was the cause of systems’ instability, this
raises questions about the robustness of such an approach when confronted with identification
errors. In effect, will poor system identification with regards to terms contained in G(q) greatly
degrade the control law performance?

In an effort to test the robustness of the closed loop system to this kind of identification

error, 50 percent of the pendulum mass was added/subtracted to the system identification used in
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the control law implementation. Additionally the desired position of the cart was set to zero.
This results in a stabilization problem in the tracking sense. For this type of implementation we
can test the robustness based upon the whether the cart can successfully reject a disturbance. If
the cart can no longer return to the origin, or if its trajectories are greatly altered, by this type of
error we can say that our controller is not robust to these types of errors.

The system response was simulated three times for a period of 60 seconds. In the first
simulation the mass of the pendulum was the same in both the DLA implementation and the
dynamic model. In the second and third, 50% of the mass was add and subtracted, respectively,
from the DLA implementation but the mass in the dynamic model was kept the same. The initial
cart position and velocities were zero. The pendulum position and velocity were initialized at
zero and 15 rad/s, respectively. Figure 3.6 shows the desired and actual position of the
generalized coordinate for a system with perfect identification and with the 50 percent
added/subtracted from the pendulum mass. In comparing the response of the poorly indentified
systems to response of the perfectly identified system in Figure 3.6 we can see that the DLA
controller seems to be very robust to poor system identification of G(q). It is also apparent that

the DLA controller is quiet robust to disturbances.

1.5

1+- R

Cart Position (m)

Figure 3.6: Perfect and Poor System ID Response
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The Ball and Beam
Figure 3.7 shows the ball and beam system. The goal for the controller is for the
unactuated axis, or ball position, to follow a desired path while maintaining a relatively small
beam displacement angle. This contrasts with the inverted pendulum cart example for which the
goal was to follow a desired path with the actuated axis, while stabilizing the unactuated one.

The governing equations of motion are

ra 2 2 7 . J—
I+ngO + mr —ngn g . rmi rmOl o
—ZmR 7 P -mrf C, |

5 o

5" (3.3)
rmgcos(0)— R, mgsin(8)] [z
—+ =
mg sin(6) 0

where ] is the mass moment of inertia of the beam, & is the angle of inclination of the beam, r is

the radial position of ball center relative to beam center, m is the mass of the ball, R, is the radius

of the ball, and Cj; is the viscous damping coefticient of the rolling ball.

Figure 3.7: Ball and Beam System
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Table 3.3: Ball and Beam Parameters

Quantity Value Quantity Value
f 0.4 Kg m’ ai 0.1 m
M 1.5 Kg ) 0.3 rad/s
R, 0.02 m y 0.0
Cyq 0.16 N s/m a 1.0
g 9.81 m/s’ B -1000.0
y 0.05 0.0 K 50 -25.0
0.0 2.0 v ~25.0 606.0

Once again the formulation, as outlined in Chapter 2, was used to develop the DLA
controller. Table 3.3 contains the system identification and controller parameters. For this
example, the desired radial position of the ball, 74(¢), was chosen as

v, (t) =a, (l — cos(a)t))+ a . (3.4)
The desired beam angle was determined by numerically integrating in time the resulting
differential equation from the lower n-m rows (2.2). The control law component u, was chosen

by feedback linearization to provide stabilization to this differential equation and is defined as
u, =-mgsin(0)+mréf, +c,(—r, + A, (r—r,))- %m(r —A(F=7,)) (3.5)

where 4, is the [2,2] element of A. The control law component #; was found through the
evaluation of equation (2.35). For the ball and beam example, Cp is nonzero on the unactuated
axis, thus K p 1s not needed in equation (2.21) to insure the positive definiteness of K,. The
matrix Kp,was chosen to be positive definite and symmetric.

The closed loop system response was simulated in Simulink for a period of 60 seconds.
The initial position of the ball was chosen as 0.1 m and the initial angular velocity, angular
position, and the ball velocity were set to zero. Figures 3.8 and 3.9 show the desired and actual
ball and pendulum positions as a function of time, respectively. In comparing Figure 3.8 with
Figure 3.9 we see that the chosen A allows for greater relative errors in the beam angle while

having smaller errors in the ball position.
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Figure 3.11: Ball and Beam ||s|| Time History

Figure 3.11 shows the time history of the ||s|| and the ultimate bound. The constants used

to calculate the ultimate bound for this simulation are found in Table 3.4. It should be pointed

out that the initial conditions of this simulation result in s equal to zero at #p. The controller

performance in tracking the desired trajectory as seen in Figure 3.8 is very good. The ||s||, as

shown in Figure 3.11, remained well within the ultimate bound during the entire maneuver. In

fact, upon examining Figures 3.5 and 3.11 we can see that the actual ||s|| for both examples is
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much smaller than the estimate of the bound provided by Lemma 2.1. This suggests that Lemma
2.1 is too conservative. Determining a method of estimating the ultimate bound in a manner that
is less conservative presents and interesting avenue for future work.

Table 3.4: Ball and Beam Ultimate Bound Constants

Quantity Value Quantity Value
r 726.8972 ci 3.9618
0 0.9910 C2, C4 607.0432
) 0.3917 3 4.1617
Chapter Summary

In this chapter the direct Lyapunov approach control scheme has been applied to several
holonomic examples in contrasting manners. In the first example, the inverted pendulum cart,
the desired path defined the coordinate history actuated axis and the lower n-m rows of equation
(2.2) were used, in conjunction with u,, for the determination of the desired coordinate history
unactuated axis. In the second example, the ball and beam, the unactuated coordinate history
was specified by the desired path and the actuated coordinate history was determined from
equation (2.2). The use of the control law (2.2), instead of inverse dynamics, to determine the
desired coordinate histories for the unspecified axes represents a new and novel approach for the
control of underactuated mechanical systems. The DLA controller performance is for the
examples presented showed very good for tracking trajectories on the actuated axis (Figure 3.2),
or on the unactuated axis (Figure 3.8). The direct Lyapunov approach for tracking control of
underactuated mechanical systems has also been shown to work well in a system stabilization

sense (Figure 3.6) and to be quiet robust to system identification errors and disturbances.
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CHAPTER 4 - Nonholonomic Example

In this chapter the proposed control scheme is applied to a nonholonomic system. The
rolling wheel example is presented and inverse dynamics are performed to determine the desired
trajectories for the wheel to follow a figure eight shape in the X-Y plane. The desired trajectories
are then tracked on both the actuated and unactuated axes. The robustness of the control law is
discussed in regards to disturbance inputs and a comparison between feedforward and feedback
control laws is provided. Additionally, an example of the controller implementation is presented
in which one actuated and unactuated coordinate histories are defined by a desired path and (2.2)
is used to determine the desired history of the other actuated axis. This chapter concludes with a
discussion on the observed performance of the DLA tracking controller for this underactuated

nonholonomic system.

The Rolling Wheel

Figure 4.1 shows the rolling wheel system. The system is setup in a similar way to the
system described in Xu and Au (2004), where both @ (the wheel tilt) and y (the wheel rolling
displacement angle) are actuated, thus leaving ¢ (the wheel orientation angle) as the unactuated
coordinate. The goal for this example is to provide input torques that will roll the wheel in a
figure eight shape in the X-Y plane. The dynamic equations of motion were found using (1.1)
(NLCLab.mne.ksu.edu, 2007). The system was then reduced to a minimal set of generalized
coordinates through the incorporation of holonomic and nonholonomic constraints
(NLCLab.mne.ksu.edu, 2007).

The reduced system dynamic equations of motion are given in (4.1) where m is the mass
of the wheel and R is the radius of the wheel. The variables v, 6, ¢, 71, and 7, in equation (4.1)

are all as denoted in Figure 4.1.
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Figure 4.1: Rolling Wheel System

A rolling without slip assumption is made for the contact point (x,y), and inverse

dynamics were performed to determine all of the desired state histories. While inverse dynamics

were not a necessity of implementing the control law (2.2), it was required for a comparison of
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feed forward and feedback based control laws presented later. The desired coordinate histories

of w, and ¢ were determined from the nonholonomic constraints,

x—Rcos(p)y =0, 4.2)
and

y— Rsin(ply =0 (4.3)
From equations (4.2) and (4.3) we get

@, =tan” (y—d] , (4.4)

Xa
and
x,cos\@, )+ vy, sin\@
l//d: d (d)R d ( d), (45)

Fore the desired trajectories. The desired coordinate history for # was determined by
differentiating the last row of (4.1), solving for the second time derivative of 6, and then
numerically integrating the resulting differential equation in time.

The desired motion in the X-Y plane as a function of time was chosen as the solution of
x (t)z rz(xf, (t)—yj (t)), (4.6)
where
x, () = rsin(wt), (4.7)
r is the maximum desired x position, and  is the angular frequency of oscillation in rad/s. The

system identification along with the controller parameters are found in Table 4.1.

Table 4.1: Rolling Wheel System Parameters

Quantity Value Quantity Value
M 5.0Kg R 0.5m
G 9.81 m/s’ S -100.0
r 10.0 m ) 0.5 rad/s
y 0.75 o 1.0
2000 -1.0 -3.0 1.0 0.0 0.0
Ky -1.0 20.0 1.0 A 0.0 1.0 0.0
-30 1.0 2.0 0.0 0.0 10.0
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The closed loop system response was simulated for a period of 14 seconds with Simulink.

All of the states were initialized to zero with the exception of (0)=14.1421 rad/s,

6(0)=0.0531 rad/s, and @(0)=0.7854 rad. Figure 4.2 shows the desired and actual position of
the wheel contact point. Figures 4.3-4.5 show the desired and actual orientation angles as a
function of time. The matrix Kprwas chosen to be positive definite and symmetric. Because all
of the coordinate histories were specified by the inverse dynamics the control law component u,
was not needed for stabilization and, thus, it was chosen to ensure that the right had side of the

lower n-m rows of (2.2) were zero and the control law component u; was determined from the

solution to (2.35).

[ [
actual

—— — desired ||

Y Position (m)

X Position (m)
Figure 4.2: Rolling Wheel Trajectory X-Y Plane
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Figure 4.5: Actual and Desired ¢

From Figures 4.2 - 4.5, we see that the controller tracks the desired trajectories on all
axes with very little error. Since the control law performs admirably without disturbances it
raises the following questions: What will happen when a disturbance is introduced? Will the
controller be able to successfully reject this disturbance and track the desired coordinates? Also,
since we are already doing inverse dynamics why do we need to design a feedback control law?
Couldn’t the dynamic equations be used to determine the necessary torques to follow the path?
Also, is it possible to use to use the last equation from (2.2) to determine the € desired without

the use of inverse dynamics?
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Feed Forward vs. Feed Back

To answer the first three questions the previous example was modified to add a step
disturbance on the y axis. The simulated response of the system of was then compared to a
system utilizing a feed forward control scheme. The feed forward control signal was found by
substitution of the desired coordinate histories into the dynamic equations (4.1) and then

evaluating the resulting input torques. Figures 4.6- 4.9 illustrate the effect of the disturbance of

1.0 N-m from 1 to1.5 seconds on both systems.

I
actual

—— — desired

Y Position (m)

X Position (m)

Figure 4.6: RW Trajectory-Feed Forward Control with Disturbance
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Figure 4.7: Orientation Angles-Feed Forward Control with Disturbance
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Figure 4.8: RW Trajectory-Feedback with Disturbance
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Figure 4.9: Orientation Angles-Feedback with Disturbance

In comparing Figures 4.6-4.7 to Figures 4.8-4.9 we can see that even a small disturbance
can significantly alter the trajectory of the feed forward system. The feedback controlled system,
however, is able to successfully reject this disturbance and continue tracking the desired
trajectories with very little error. Since the feedback control law using inverse dynamics to
develop the desired 6 time history has been shown to reject disturbances, let us now address the

question of whether it is necessary to perform the inverse dynamic calculations to determined, .
Upon examining (4.1) and (2.2) you may notice that our previous strategies of solving the

n-m rows of (2.2) for 6 will not work because 6 , does not appear in the last row of (2.2).

Unfortunately, it must be determined because it is required for the control law calculation. To

address this problem, solve the last row of (2.2) for , and then numerically integrated the
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resulting differential equation. Because , 1s only used in the DLA control law in one place, a

N ..
backward, first order finite difference method (6, = A_td) was used to estimated,, .

For this example the desired  and ¢ histories were the same as the previous examples.

Since (2.2) was used to develop 8, the last equation of (2.2) should be satisfied, thus u, and u;

were set to zero. It should be pointed out that if both #; and u; are zero, the feedback controlled
system becomes the nominal system denoted in equation 2.37. Provided that we satisfy all of the
matching equations, the tracking error vector (s) should be exponentially stable. However, the
use of the difference method to estimate the desired acceleration on the 6 axis introduces a small
amount of error in the solution to the matching equations.

The closed loop system response was simulated for a period of 14 seconds in Simulink.
The same disturbance in the previous examples was applied to the y axis. Figure 4.10 illustrates
the desired and actual path in the X-Y plane that the wheel followed. Figure 4.11 shows the
desired and actual orientation angles of the rolling wheel system during the maneuver. From this
figure we see that the performance of the controller is excellent. The disturbance does not seem
to cause any deviation from the desired orientation angles and as a result the wheel tracks the

desired trajectory in the X-Y plane.

actual
—— — desired ||

Y Position (m)

XPosition (m)

Figure 4.10: RW Trajectory-Feedback without Inverse Dynamics
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Figure 4.11: Orientation Angles-Feedback without Inverse Dynamics

It should also be noted that the desired trajectory calculations are open loop with respect
to the x and y coordinates. It is possible that the feedback controlled system could recover from
a disturbance in the sense of the orientation angles but not return to the desired X-Y path.
Figures 4.12 and 4.13 illustrate an example of just such a case in which the ¢ was initialized to
zero. In order to handle such disturbances it is suggested that either, the system model should
not be reduced beyond the five degrees of freedom model that contains the three orientation
angles and the x and y position of the contact point, or that a navigator be developed that would
use the current position to modify the desired orientation angles in order for the system to return
to the desired trajectory. The question of which approach would yield better performance is an

area of interest for future research.
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Chapter Summary
In this chapter an example of a nonholonomic system, the rolling wheel, was presented.

A feedback control law was developed using the direct Lyapunov approach. The determination
of the desired coordinate histories was determined in two contrasting ways. In the first, inverse
dynamics and the desired path were used to determine the 8, time history. In the second, the
lower n-m equations of equation (2.2) were used to solve for the 0 ,» then the resulting equation
was numerically integrated to determine 6,. The desired acceleration on this axis was estimated
using a backwards, first order finite difference technique. The control law was shown to be
robust in regards to step disturbance inputs and initial condition errors. With the completion of
this example the performance of the direct Lyapunov controller has been shown to be very good

for both holonomic and nonholonomic system in simulation.
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CHAPTER 5 - Inverted Pendulum Cart Implementation

In this chapter the proposed direct Lyapunov approach control scheme is applied to a real
inverted pendulum cart system. The dynamic model is derived using first principles and system
identification is performed to determine certain coefficients in the dynamic model. The DLA
control scheme is applied to the real system and the positions of the cart and pendulum recorded.
Finally, this chapter is concluded with a discussion on the observed performance of the tracking
controller and some recommendations are provided which may improve the controller

performance.

The Inverted Pendulum Cart Model

In Chapter 3, the model for the inverted pendulum cart (IP cart) merely assumed that a
force was applied to the cart, however, in a real world system that force must actually be applied.
To apply this input force to the cart, the laboratory inverted pendulum cart system makes use of a
DC motor, drive chain, and several sprockets. This necessarily complicates the dynamic model
of the system due to the chain tension and back EMF of the motor. It also changes the control
input from a force to a voltage that is applied to the motor.

Figure 5.1 contains the free body diagrams of each element the IP cart system. The
dynamic model is derived using a Newton-Euler approach. Starting with the pendulum the

Newton-Euler equations are

-4, =m,%,, (5.1

-4, -m,g=m,y,, (5.2)
and

m  glsin(6) .

%:Ipﬁ, (5.3)

where I,=m, I’/3.
Assuming that the cart stays firmly on the ground, with no vertical movement, the
Newton-Euler equations for the cart are

A +B +C +F =mxX,_, (5.4)
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A,+B +C +F, -mg=0,

and

~7,+(C,~B M, ~Ad,~ (B, +C,)d,~Fd, =0.

Figure 5.1: IP Cart Free Body Force Diagram

(5.6)

(5.7)

Assuming rolling without slip and that the wheels do not leave the surface, the equations for the

back and front wheels are
T, + T, cos(¢)- B, — D, =2m,5,,
T sin(¢)— By —Dy -2m, g =0,
~Tyr,+Tyr, = D,r, =1,0,,
~T,—T,cos(p)-C, —E, =2m, i,
T,sin(¢)-C, —E, —2m,g =0,
and
Iir,-T,r,—E r, = Iwéw.
The dynamic equations for the motor sprocket are

—F, =T, cos(¢)+T, cos(¢) = m, 5.
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(5.9)
(5.10)
(5.11)
(5.12)

(5.13)

(5.14)



— F, T sin(¢)—T, sin(¢)-m,g =0, (5.15)
and

c, —n(,-T,)-C,6,=1,0,. (5.16)
Ru

|

m

R\
v, . 7,
k 6 [ —
N__]

Figure 5.2: Motor Electrical Diagram
Assuming negligible armature inductance and using Figure 5.2, the electrical dynamics of the

motor can be written as

V.=Ri +k,0 (5.17)

and
r, =ki,. (5.18)

Several kinematic equations can also be written to express the position of the center of mass of

the pendulum in terms of the cart position and pendulum angle, mainly

X, =x, —ésin(@), (5.19)
and
/
y,=y.+ Ecos(6>)+ d,. (5.20)
Differentiating equations (5.19) and (5.20) twice, with respect to time, yields,
% =1 —ésin(@)@z _ écos(é’)é, (5.21)
and
. / ool B
y, = —ECOS(G)H —Esm(ﬁ)ﬁ . (5.22)

Several other kinematic relationships can be written based on the system geometry, these are
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= A4ry, (5.23)

where 4=gear ratio,

0, =—"<,0 =-", =--<, (5.24)
rW rW rw

0, =—"2% § =1 andg, =12 (5.25)
rlrw rlrw rlrw

Using the dynamic equations (5.1-5.16), the electric equations (5.17,5.18), and the
kinematic relationships from equations (5.19-5.25) the dynamic equations can be reduced to a

two degree of freedom system written in the form of equation (2.1) as

4r,1 21 —m lcos(H) )
—2"tm, +m,+m, +4m  +— £ . i :
7"‘5]"1 P c m w T’j 2 xc .\ O mplSIH(e)e xc
—m, I cos(6) m,I? 91 |, % 0
2 3 (5.26)
kk
4r{cm + “"J : 0 nkV.
R X, . 2T e
n _ 0 { ,}_ _mpglsm(@) =| r 1R,
le’l 0 2 0
0 0

The Inverted Pendulum Cart System ID

While some of the parameters in the model such as the mass of the cart/pendulum,
pendulum length, and the radiuses of the wheels and sprocket are easy to obtain (Table 5.1), the
viscous friction coefficient (C,) and inertia of the drive assembly cannot be determined through
direct measurement. Because of this, some form of system identification is required. To
determine these unknown parameters, let us assume that the pendulum is fixed in the upright
position in such a way that it cannot move (i.e.d = @ = @ = 0), and that the cart is lifted off of the
ground so that the translational inertia does not contribute to the dynamic response. These
assumptions result in the following second order differential equation

A%, + A%, = AV, (5.27)

with a solution of

A
A 5 (1-1y)
X, =A—4£1—6A2 ]Vc, (5.28)
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where

4y, 21
A, =0 (5.29)

rwrl rw

Kk

4rz(cm+}emj

4, = A (5.30)
o

r,k
A, =0 5.31
R (5.31)

By setting the cart up on blocks and applying step inputs to the motor and measuring the
response we can determine the unknown parameters 4, and 4;. 44 was determined through
measuring the various components and consulting the motor manufacturers’ documentation.

A 6024E National Instruments (NI) DAQCard was used to provide a step voltage in
conjunction with NI LabVIEW 8.2 and a quadrature encoder to measure the cart position. A
finite difference technique was then applied to estimate the cart “velocity”. The identification of
A and A3 was done in two stages. First the data from when the cart had reached a steady state

velocity (i.e. X, = 0) was used to determine A3z using equation (5.27). Then least sum squares

was used to minimize the error between the estimated velocity from the measured data and
equation (5.28) utilizing Microsoft Excel solver. This technique was done for step voltages of 3,
6, 9 and 12 volts and the results were then averaged. Figure 5.3 shows an example of the curve
fitting solution. Table 5.1 contains the results of the system identification and the rest of the

parameter values.

Speed m/s
e Fquation 5.28

4.5

35

fv-r“g)"‘l-“lfs Ve TN e @ Tl TR ie =y geies (a3

/

15

i
05 L Y
| | N\

-0.5

Figure 5.3: ID Data for 3 Volts
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Table 5.1: IP Cart System Identification

Quantity Value Quantity Value
m,+m, +m, +4m, 10.1206 Kg R, 3.14398 Q
K; .100142 Nm/amp [ .8509 m
K, .100142 Vs/rad R, .0631m
g 9.80093 m/s” /T 4
A 1.964283 Kg A3 6.4777 Ns/m
Ay 1.859456 N/V Amp Gain 3

I
T——
bl

Figure 5.4: Inverted Pendulum Cart




The Inverted Pendulum Cart Hard Real-time Implementation

A controller based upon the direct Lyapunov approach, as outlined in Chapter 2, was
formulated. The control law was then implemented in hard real time on a PC running LabVIEW
Real Time 8.2.1 using 1* order Euler integration and a sample rate of 400 Hz. Once again, a
6024E National Instruments (NI) DAQCard was used for data acquisition and control signal
output. A Lambda F28-M power supply set to 30 volts and an Advanced Motion Control 25A8K
voltage amplifier with a gain of 3 was used to increase the implementable control signal range.
To accommodate the amp gain, A4 was multiplied by three, allowing for the control law to be
expressed in terms of DAQ voltage. Using the system identification presented in Table 5.1, a
linear observer was designed to estimate the cart and pendulum velocities (Chen 1998). A linear
observer should be sufficiently accurate provided that the displacement of the pendulum remains
small. The DLA controller parameters and observer poles are found in Table 5.2. The LabVIEW
VIs are found in Appendix 1.

Table 5.2: DLA Implementation Parameters

Quantity Value Quantity Value
Obs. Poles -10,-11,-12,-13 S -100.0
aj 2m w 0.25 rad/s
y 0.5 o 1.0
Koy [ 40.0 —so.o} ) [0.85 0.0}
-50.0 75.0 00 1.7

As in Chapter 3, the last row of (2.2) was used to determine a differential equation for the
desired pendulum angle and the control law component u, was chosen to provide stabilization to
this equation as

u, = %mplcos(é?)()'éd -2, -x, ))+%mplsin(¢9)
. | o K (5.32)
Smyleos(O)—s, + 4 (x—x, )+ Sm, (1(6-6,)+ 2,0)

The control law component #; was chosen as (2.35). A desired trajectory was defined for the

cart as xq=ai(1-cos(wt)) with a; and w as defined in Table 5.2. The matrix Kprwas chosen to be
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positive definite and symmetric and the matrix A4 was chosen with the intention of placing
greater relative weighting on the cart position. The system was operated for a period of 60

seconds and the measurements were communicated back to a PC running LabVIEW 8.2. Figures

5.5 and 5.6 contain the desired and measured trajectories during the system maneuver.

actual m
desired -

Cark Posikion

amplitude

-D']'S_I | 1 | | | | | | | 1 | I
0 5 10 15 20 25 30 35 40 45 50 55 60
Tirme

Figure 5.5: Cart Position

actuzl
desired u

Pendulum Angle

Aamplitude

|
I
T

Figure 5.6: Pendulum Position
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Upon examining Figures 5.5 and 5.6 we see that the cart tends to track the desired path
but the performance is not very good. There are several possibilities that may account for the
poor tracking performance. The largest single factor that negatively affects the performance is
probably the lack of static friction in the developed dynamic model. Since the velocity of the
cart remains small, static friction plays a significant role in the dynamics response. An
antisticktion sub VI was implemented to help offset the influence of static friction; however, it is
thought that it would be beneficial to include a model of the static friction in the controller
development. Alternatively, increasing the amplitude for the desired cart trajectory may help to
limit the effect of static friction on the system. Unfortunately the power cord and encoder cables
were a limiting factor on the size of this parameter.

The relatively low sample rate of 400 Hz is also thought to be a factor in the poor
performance. Past experience, with linear feedback controllers, has shown that a sample rate of
5000 Hz is desired for real time implementations on with this system. The sample rate was
dictated by the high overhead associated with using a function node for the DLA controller
calculation within LabVIEW Real Time 8.2.1. Optimization of the VI or a new version of
LabVIEW may increase the available sample rate. Lastly, from experience with the simulated
models presented in Chapters 3 and 4, tuning of the controller constants can play a substantial
role in improving the tracking performance. Unfortunately time constraints prevented the tuning
of these parameters to improve the tracking performance of the presented system. To date there

are no guidelines for the tuning of these parameters and this is an opportunity for future research.

Chapter Summary
In this chapter, the laboratory inverted pendulum cart system has been presented. A
dynamic model was developed and system identification was performed to determine certain
parameters. The DLA control strategy was implemented in hard real time using LabVIEW 8.2.
The DLA controller did not perform as well as expected. Several reasons, such as unmodeled
static friction and poor constant selection, etc., have been identified for the poor performance and

possible solutions outlined.
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CHAPTER 6 - Conclusions and Recommendations

In this thesis a novel feedback control scheme for trajectory tracking of underactuated
mechanical systems was developed using the direct Lyapunov approach. A literary survey is
given in Chapter 1 along with a discussion of control approaches of underactuated mechanical
systems, specifically their features and limitations. The scalability limitations of the current
control techniques and observed undesirable performance characteristics are the main
motivations of this work.

In Chapter 2, the formulation of the proposed control techniques is presented in detail.
The candidate Lyapunov function, V(s,t) is defined with Kj used to represent the kinetic and
potential part of the candidate Lyapunov function. The sliding mode control law presented in
Slotine and Li (1988) in which the lower n-m equations are zero due to the underactuation of the
control input vector provides a basis for the control law. Three matching equations are
developed from the derivative of the candidate Lyapunov function. These matching equation are
used to determine the matrices K and K, and the tracking control law. There are two

remarkable results of the tracking controller development. The first is that we arrived at three
matching equations that are (with the exception of K, ) identical to matching equations

developed for stabilization as shown in White et al. (2006, 2007, 2008). The second is that it is
not necessary to perform inverse dynamics for specifying every coordinate history for the control
law implementation. Instead, the control law provides a means for determining the necessary
unspecified coordinate histories.

A discussion on following a path and a solution strategy is presented for determining the
positive definite function ¥(s,u). This strategy does not guarantee the positive definiteness of
¥Y(s,u) when ||s|| becomes small. As a result the tracking error variable (s) is not asymptotically
stabilized. The ||s|| is instead reduced to within an ultimate bound. Lemma 2.1 provides a means
for the estimation of this ultimate bound based upon the matrices Kp and K, and the vector u.

In Chapter 3, two holonomic applications are presented to illustrate the versatility and
performance of the proposed control technique. The inverted pendulum cart was presented as

the first example. In this example a desired trajectory was tracked by the cart, or the actuated
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axis, and the control law was used to determine a desired trajectory for the pendulum, or
unactuated axis. Alternatively, in the second example, the ball and beam, a desired trajectory
was specified for the ball, or unactuated axis, and the control law was used to determine the
desired system trajectory for the beam, or actuated axis. In addition, an example of stabilization
in the tracking sense was done for the inverted pendulum cart. This example was shown to be
robust to identification errors and disturbances.

Chapter 4 presented an example of a nonholonomic system, the rolling wheel. Three
control schemes were presented for this system. The first was a feedforward scheme in which
inverse dynamics were used to determine the desired system trajectories and control torques
required for the wheel to roll in a figure eight shaped path in the X-Y plane. In the second, the
direct Lyapunov approach was used along with the desired system trajectories determined in the
feedforward example. The third example used the direct Lyapunov approach but differed in that
it used the control law, and not the system dynamic equations alone, to determine the desired
history of the wheel tilt angle. Both of the direct Lyapunov approach examples were shown to be
robust to step disturbances and initial condition errors.

Chapter 5 presented an implementation of the DLA control strategy on a holonomic
system, the inverted pendulum cart. A dynamic model was developed and system identification
was performed to determine certain parameters in the model. Next, the control law was
implemented using LabVIEW Real Time 8.2.1 with a sample rate of 400 Hz. From the plots of
the hard real time data, the tracking performance of the controller was shown to be somewhat
poor. Some possible reasons for the poor performance include, low sample rate, unmodeled
static friction, and poor controller parameter selection. Addressing all, or a subset, of these
issues should lead to better tracking performance.

In order to increase the usefulness and acceptance of the direct Lyapunov approach as a

viable and useful control scheme, some recommendations are provided. These are:

e Several modifications should be made to the laboratory inverted pendulum cart system to
insure that a uniform, repeatable, system response can be obtained. Then the control
algorithm for the hard real time implementation should be tuned by adjusting the various
parameters in the control law to determine if a better response at a 400 Hz sample rate is

achievable.
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Research into possible techniques for determining ¥(s,u) such that is remains a positive

definite function should be carried out.

If ¥(s,u) can not be made to be positive definite, additional research should be done to

increase the accuracy of estimating the ultimate bound.

Develop tools to aid in choosing controller parameters and constants.

Can the matrix Kp be made a function of ¢ alone?

The control algorithm should be tested on a real rolling wheel system such as presented in Xu

et al. (2004) to validate the simulation results and provide a useful guide for expected

controller performance.
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Appendix A - LabVIEW VlIs
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DLA sub .vi Code

//Declare variables
float64 xd,dxd,ddxd,mp,l,g, A1,A2,A3, A4 kd1fkd2f kd3falpha,lambdal,lambda2,beta,ct,u2;

//Desired Dynamics

xd=a*(1-cos(omega*time));// desired x position (m)
dxd=a*sin(omega*time)*omega;// desired x velocity(m/s)
ddxd=a*cos(omega*time)*omega*omega;// desired x acceleration (m/s"2)

//System 1D

mp = .4802; //Pendulum Mass Kg
1=.8509; //Pendulum Length m

g =9.80093; //Local acceleration of gravity
A1 =10.1206;

A4=4.9695;

A3=6.4777,

A2=2.8188;

// Control Constants
kd1f=40;
kd2f=-50.;
kd3f=75.;

alpha =.5;

lambdal =.85;
lambda2 =1.7;
beta=-100.;

/" d(KD)/dt Calculations

ct=cos(theta);

dkd1 = beta*(kd1-kd1f);

dkd2 = 1/2*(4*kd1/(4*A1+4*A2-3*mp*ct*ct)* Ad+6*kd2/1*ct/(4* A1+4*A2-

3*mp*ct*ct)* Ad)*mp*1*sin(theta)*dtheta/A4+(6*kd 1/1*ct/(4*A1+4*A2-
3*mp*ct¥ct)+12*kd2*(A1+A2)/mp/(1¥1)/(4* A1+4* A2-3*mp*ct*ct))*(1/3*mp*(1*1)*dtheta-
1/12*mp*1*(2*kd2 *1+3*kd3*ct) *(2*kd2*1+3 *kd3*ct)/(2*¥kd 1 ¥1+3*kd2 *ct)/(kd3*kd 1-kd2*kd2)*beta*(kd 1-
kd19)+1/6*(2*kd2*1+3*kd3*ct)*mp*1/(kd3*kd 1 -kd2*kd2)*beta*(kd2-kd2f)-

1/12%(2*kd 1 *1+3*kd2*ct)*mp*1/(kd3*kd 1-kd2*kd2)*beta*(kd3-kd3f))+beta* (kd2-kd2f);

dkd3 = (4*kd2/(4*A1+4*A2-3*mp*ct*ct)* Ad+6*kd3/1*ct/(4*A1+4*A2-

3*mp*ct*ct)* Ad)*mp*1*sin(theta)*dtheta/A4+2*(6¥kd2/1*ct/(4* A1+4* A2-
3*mp*ct*ct)+12¥kd3*(A1+A2)/mp/(1*1)/(4* A1+4* A2-3*mp*ct*ct) ) *(1/3*mp*(1*1) *dtheta-
1/12*mp*1*(2*kd2*1+3*kd3 *ct)*(2*kd2 *1+3 *kd3 *ct)/(2¥kd 1 ¥1+3 *kd2 *ct)/(kd3*kd 1-kd2 *kd2)*beta* (kd 1-
kd1f)+1/6*(2*kd2*1+3*kd3*ct)*mp*1/(kd3*kd1-kd2*kd2)*beta*(kd2-kd2f)-

1/12*(2*kd 1 ¥1+3*kd2*ct)*mp*1/(kd3*kd 1-kd2*kd2)*beta*(kd3-kd3f))+beta* (kd3-kd3f);

//Linear DLA Control law-used for testing purposes
/*control=(10.5502)*x+(15.7776)*dx+(-100.3822)*theta+(-31.3320)*dtheta;*/

/! U calc-chosen by feedback linearization to stabilize ddthetad equation
u2 = 1/2*mp*1*ct*(ddxd-lambdal*(dx-dxd))+1/2*mp*g*1*sin(theta)-1/2*alpha*mp*1*ct* (dx-dxd-+lambdal *(x-
xd))+1/3*alpha*mp*1*1*(dtheta-dthetad)+1/3*lambda2*mp*1*1*dtheta;

/! theta desired calculation-integrated wrt

ddthetad =3*(1/2*mp*1*ct*(ddxd-lambdal *(dx-dxd))-1/3*mp*1**dtheta*(dthetad-lambda2 *(theta-
thetad))+1/2*mp*g*1*sin(theta)-u2-1/2*alpha*mp*1*ct*(dx-dxd+lambdal *(x-xd))+1/3*alpha*mp*1*1*(dtheta-
dthetad+lambda2*(theta-thetad)))/mp/(1*1)+lambda2*(dtheta-dthetad);
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/! Control Law Caclulation

control=(A1+A2)/A4*(ddxd-lambdal *(dx-dxd))-1/2*mp*I*ct/A4*(ddthetad-lambda2*(dtheta-
dthetad))+A3/A4*(dxd-lambdal*(x-xd))+1/2*mp*1*sin(theta)*dtheta/A4*(dthetad-lambda2 *(theta-
thetad))+1/2/A4%*(-

18*kd3*kd3*A2*ct*g*sin(theta)+18*kd3*¥kd3* A2 *ct*ct*alpha*dx+18*kd3*kd3* A2*ct*ct*alpha*lambdal *x-
12*kd3*kd3*A2*ct*alpha*1*dtheta-12*kd3*kd3* A2*ct*lambda2 *1*dtheta+6*dx*kd 1 *I*|*mp*ct*ct-
12*1*dx*kd2*ct* A1-12*1*dx*kd2*ct* A2+9*1*dx ¥kd2 *ct*ct*ct*mp+6*dtheta*kd2 ¥ [**mp* ct*ct-
12*1*dtheta*kd3*ct*A1-12*1*dtheta*kd3*ct* A2+9*[*dtheta*kd3 *ct*ct*ct*mp-8*lambda2 *theta*kd2 *1*1*A1-
8*lambda2*theta*kd2*1*1* A2-12*kd3* A2*kd2*I*ct*ddxd-12*kd3* A1*kd2**alpha*ct*dxd-
12*kd3*A1*kd2**alpha*ct*lambdal*xd-12*kd2* A2*kd1*I*alpha*ct*dxd-
12*kd2*A2*kd1*1*alpha*ct*lambdal*xd-18*kd2*kd2*A2*ct*ct*lambdal *dxd-18*kd2*kd2* A2 *ct*ct*alpha*dxd-
6*kd2*kd2*ct*ct*mp*1¥1*ddxd-9*kd 1 *ct*ct*ct*mp*1*kd2*ddxd-9*kd 1 *ct*ct*ct*mp*1*kd2*lambdal *dxd-
9*kd1*ct*ct*ct*mp*1*kd2*alpha*dxd-9*kd1 *ct*ct*ct*mp*1*¥*kd2*alpha*lambdal *xd-
18*kd2*kd2*A2*ct*ct*alpha*lambdal *xd+12*kd2*kd2*A2*ct*alpha**dthetad+12*]*lambdal *xd*kd2*ct*A2-
9*1*lambdal *xd*kd2*ct*ct*ct*mp-

6*kd2*kd2*ct*ct*mp*1*1*¥*lambdal *dxd+6¥kd1 *ct*ct*mp*1¥1*¥kd2 *alpha*dthetad-12*kd2* A 1 *kd 1 *I*ct*ddxd-
12*kd2*A1*kd1*1*ct¥lambdal *dxd-

6*lambdal*xd*kd 1 *1**mp*ct*ct+8*kd2* A1*kd1 *1*1*alpha*dthetad+12*1*lambdal *xd*kd2*ct*A1-
12*kd2*A1*kd1*1*alpha*ct*dxd-12*kd2*A1*kd1**alpha*ct*lambdal*xd-
18*kd2*kd2*A1*ct*ct*alpha*dxd+8*kd2* A2*kd1*1*I*alpha*dthetad-12*kd3* A2*kd2*]*ct*lambdal *dxd-
12*kd3*A2*kd2*]*alpha*ct*dxd-12*kd3*A2*kd2**alpha*ct*lambdal *xd-18*kd3*kd3* A2*ct*ct*lambdal *dxd-
9*kd2*ct*ct*ct*mp*1*¥kd3*alpha*dxd-

9*kd2*ct*ct*ct*mp*1*kd3*alpha*lambdal *xd+6*kd2 *ct*ct*mp*1*1*kd3*alpha*dthetad-
6*kd2*kd2*ct*ct*mp*1*I*alpha*dxd-
6*kd2*kd2*ct*ct*mp*1*1*alpha*lambdal*xd+4*kd2*kd2*ct*mp*1*I*|*alpha*dthetad-8*lambdal *x*kd 1 *1*1*A1-
8*lambdal*x*kd1*1*1*A2-12*kd3*kd3*A1*ct¥*lambda2*1*dtheta-
12*kd3*A1*kd2*1*g*sin(theta)+12*kd3*A1*kd2*1*alpha*ct*dx+12*kd3*A1*kd2*1*alpha*ct*lambdal*x+18*kd3
*kd3*Al*ct*ct*lambdal*dx+12*kd2*A2*kd1*1*alpha*ct*lambdal*x+18¥kd2*kd2* A2*ct*ct*lambdal *dx-
18*kd2*kd2*A2*ct*g*sin(theta)+18*kd2*kd2* A2 *ct*ct*alpha*dx+18*kd2*¥kd2* A2 *ct*ct*alpha*lambdal *x+9*k
d1*ct*ct*ct*mp*1*kd2*lambdal *dx-

9*kd1*ct*ct*mp*1*kd2*g*sin(theta)+9*kd 1 *ct*ct*ct*mp*1¥kd2*alpha*dx+9*kd1 *ct*ct*ct*mp*1*kd2*alpha*lamb
dal*x+8*dthetad*kd2*1*1* A1-12*kd2*kd2* A2*ct*alpha*1*dtheta-
12*kd2*kd2*A2*ct*lambda2*1*dtheta+6*kd2*kd2*ct*ct*mp*1*1*lambdal *dx-
6*kd2*kd2*ct*mp*1*1*g*sin(theta)+6*kd2*kd2 *ct*ct*mp*1*1*alpha*lambdal *x-
6*kd1*ct*ct*mp*1*1¥*kd2*alpha*dtheta-

6*kd1*ct*ct*mp*1*1*kd2 *lambda2 *dtheta+12*kd2* A1*kd 1 *1*ct*lambdal *dx-
12*kd2*A1*kd1*1*g*sin(theta)+12*kd2*A1*kd 1 *I*alpha*ct*dx+8*dthetad*kd2*1*1*A2-

8*kd2* A1*kd1*1*1*alpha*dtheta-8*kd2* A1¥kd1*1*1¥*lambda2*dtheta-
18*kd3*kd3*A2*ct*ct*ddxd+12*kd2*A1*kd1 *1*alpha*ct*lambdal *x+18*kd2*kd2*A1*ct*ct*lambdal *dx-
18*kd2*kd2*A1*ct*g*sin(theta)+18*kd2*¥kd2* A1 *ct*ct*alpha*dx+18*kd2*kd2*A1*ct*ct*alpha*lambdal *x-
8*kd2* A2*kd1*1*1*alpha*dtheta-9*kd2*ct*ct*ct*mp*1*kd3*ddxd-

9*kd2*ct*ct*ct*mp*1*kd3*lambdal *dxd+8*kd3*A1*kd2*I**alpha*dthetad-
6*lambda2*thetad*kd2*1*1*mp*ct*ct+12*1*lambda2 *thetad*kd3 *ct* A 1+12*1*lambda2 *thetad *kd3 *ct* A2-
9*1*lambda2*thetad*kd3*ct*ct*ct*mp-6*kd 1 *kd 1 *ct*ct*mp*1*1*ddxd+12*1*dthetad*kd3 *ct*A2-
12*kd3*A1*kd2*1*ct*ddxd-12*kd3* A1*kd2*1*ct*lambdal *dxd-18*kd3*kd3*A1*ct*ct*lambdal *dxd-
18*kd3*kd3*Al*ct*ct*alpha*dxd-18*kd3*kd3*Al*ct*ct*alpha*lambdal *xd+8*kd3* A2*kd2*1*1*alpha*dthetad-
9*1*dthetad*kd3*ct*ct*ct*mp+12*1*dxd*kd2 *ct* A2-9*1*dxd*kd2 *ct*ct*ct*mp-
18*kd2*kd2*A1*ct*ct*alpha*lambdal *xd+12*kd2*kd2*A1*ct*alpha*1*dthetad-12*kd2* A2*kd1*1*ct*ddxd-
12*kd2*A2*kd1*1*ct*lambdal *dxd-6*kd 1 *kd 1 *ct*ct*mp*1*1*lambdal *dxd-
6*kd1*kd1*ct*ct*mp*|*1*alpha*dxd-

6*kd1*kd1*ct*ct*mp*1¥1*alpha*lambdal *xd+4*kd1*kd 1 *ct*mp*1*1*1*alpha*dthetad-
18*kd2*kd2*A1*ct*ct*lambdal*dxd-

8*kd2* A2*kd1*1*1*lambda2*dtheta+8*dxd*kd 1 *1*1*A1+12*kd3* A2*kd2*1*ct*lambdal *dx-
12*kd3*A2*kd2*1*g*sin(theta)+12*kd3* A2*kd2**alpha*ct*dx+12*kd3* A2*kd2*1*alpha*ct*lambdal *x+18*kd3
*kd3*A2*ct*ct*lambdal *dx-
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9*kd2*ct*ct*mp*1*kd3*g*sin(theta)+9*kd2 *ct*ct*ct*mp*1*kd3 *alpha*dx+9*kd2*ct*ct*ct*mp*1*kd3 *alpha*lamb
dal*x-6*kd2*ct*ct*mp*1*1*kd3 *alpha*dtheta-6*kd2*ct*ct*mp*1*1*kd3*lambda2*dtheta-

8*dtheta*kd2*1*1* A1+6¥kd2 *kd2 *ct*ct*mp*1*1*alpha*dx-4*kd2 *kd2 *ct*mp*1*1¥1*alpha*dtheta-
4*kd2*kd2*ct*mp*1*1*1*lambda2*dtheta+9*kd2*ct*ct*ct*mp*1*kd3 *lambdal *dx-
18*kd3*kd3*A2*ct*ct*alpha*dxd-

18*kd3*kd3*A2*ct*ct*alpha*lambdal *xd+12*kd3*kd3*A2*ct*alpha*1*dthetad-
6*dxd*kd1*[*I*mp*ct*ct+12*1*dxd*kd2*ct*Al-

6*dthetad*kd2 *1*1*mp*ct*ct+12*1*dthetad*kd3 *ct* A1+8*lambda2 *thetad *kd2*1*1* A 1 +8 *lambda2 *thetad *kd2*1
*1*A2+8*lambdal *xd*kd1 *1*1*A1+8*lambdal *xd*kd1*1*1* A2+12*kd3*kd3*A1*ct*alpha*1*dthetad-
18*kd2*kd2*A2*ct*ct*ddxd-18*kd2*kd2* A1*ct*ct*ddxd-8*¥kd3* A 1*kd2*1*I*alpha*dtheta-
8*kd3*A1*kd2*1*1*lambda2*dtheta-

12*1*lambda2*theta*kd3*ct* A2+9*1*lambda2*theta*kd3*ct*ct*ct*mp+8*dxd*kd 1 *1*1* A2-

8*dx*kd 1 *1*1*A1+12*kd3*A1*kd2*1*ct*lambdal *dx-
18*kd3*kd3*Al*ct*g*sin(theta)+18*kd3*kd3*A1*ct*ct*alpha*dx+18*kd3*kd3*A1*ct*ct*alpha*lambdal *x-
12*kd3*kd3*A1*ct*alpha*1*dtheta-8*kd3* A2*kd2 *1*I*alpha*dtheta-8*kd3* A2 *kd2 *1*1*lambda2 *dtheta-
8*dx*kd 1 *1*1*A2+6*kd1*kd1 *ct*ct*mp*1*1*alpha*lambdal *x+6*lambda2 *theta*kd2*1*1*mp*ct*ct-
12*1*lambda2*theta*kd3*ct*Al1+6*lambdal *x*kd 1 *[*I*mp*ct*ct-12*1*lambdal *x*kd2*ct*A1-

12**lambdal *x*kd2*ct* A2+9*1*lambdal *x*kd2*ct*ct*ct*mp-8*dtheta*kd2 *1*1* A2-
12*kd2*kd2*A1*ct*alpha*1*dtheta-12*kd2*kd2*A1*ct*lambda2 *1*dtheta+12*kd2* A2 *kd 1 *1*ct*lambdal *dx-
12¥kd2*A2*kd1*1*g*sin(theta)+12*kd2* A2*kd 1 *1*alpha*ct*dx+6*kd1*kd1*ct*ct*mp*1*1*lambdal *dx-
6*kd1*kd1*ct*mp*1*1*g*sin(theta)+6¥kd1*kd 1 *ct*ct*mp*1*1*alpha*dx-4*kd1*kd 1 *ct*mp*1*1**alpha*dtheta-
4*kd1*kd1*ct*mp*1*1*1*lambda2*dtheta-

18*kd3*kd3*Al*ct*ct*ddxd)/(4*¥kd1 *kd 1 *1*1+12*kd 1 *1¥kd2 *ct+9*kd2*kd2 *ct*ct+4*kd2 *kd2*1*1+12*kd2 *1¥kd3
*ct+9*kd3*kd3 *ct*ct)-alpha*(A1+A2)/A4*(dx-dxd+lambdal*(x-xd))+1/2*alpha*mp*1*ct/A4*(dtheta-
dthetad+lambda2 *(theta-thetad))+(-1/4/A4*1*(4* A1+4* A2-3*mp*ct*ct)/(2*kd 1 *1+3*kd2*ct) *beta* (kd1-kd 1f)-
2*%A4*(2*kd 1 *¥1+3*kd2*ct)/1/(4*A1+4* A2-3*mp*ct*ct))*(dx-dxd+lambdal *(x-
xd))+H(1/4*(kd2*ct*mp*1-+2*¥kd3* A1+2*¥kd3*A2)/A4*(2*kd2*1+3*kd3*ct)/(2*¥kd 1 *¥1+3*kd2 *ct)/(kd3*kd1-
kd2*kd2)*beta*(kd1-kd1f)-1/2/A4*(kd2*ct*mp*14+2*kd3*A1+2*kd3*A2)/(kd3*kd1-kd2*kd2)*beta*(kd2-
kd2f)+1/4/A4*(kd1 *ct*mp*+2*kd2* A1+2*kd2*A2)/(kd3*kd 1-kd2*kd2)*beta* (kd3-kd3f)-

2* A4*(2*kd2*1+3*kd3 *ct)/1/(4* A1+4* A2-3*mp*ct*ct))*(dtheta-dthetad+lambda2 *(theta-thetad));
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