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Abstract: This paper presents the development of a bin-picking solution based on low-cost vision
systems for the manipulation of automotive electrical connectors using machine learning techniques.
The automotive sector has always been in a state of constant growth and change, which also implies
constant challenges in the wire harnesses sector, and the emerging growth of electric cars is proof of
this and represents a challenge for the industry. Traditionally, this sector is based on strong human
work manufacturing and the need arises to make the digital transition, supported in the context of
Industry 4.0, allowing the automation of processes and freeing operators for other activities with
more added value. Depending on the car model and its feature packs, a connector can interface with
a different number of wires, but the connector holes are the same. Holes not connected with wires
need to be sealed, mainly to guarantee the tightness of the cable. Seals are inserted manually or, more
recently, through robotic stations. Due to the huge variety of references and connector configurations,
layout errors sometimes occur during seal insertion due to changed references or problems with the
seal insertion machine. Consequently, faulty connectors are dumped into boxes, piling up different
types of references. These connectors are not trash and need to be reused. This article proposes a
bin-picking solution for classification, selection and separation, using a two-finger gripper, of these
connectors for reuse in a new operation of removal and insertion of seals. Connectors are identified
through a 3D vision system, consisting of an Intel RealSense camera for object depth information and
the YOLOv5 algorithm for object classification. The advantage of this approach over other solutions
is the ability to accurately detect and grasp small objects through a low-cost 3D camera even when
the image resolution is low, benefiting from the power of machine learning algorithms.

Keywords: bin-picking; machine learning; robotics; YOLOv5; Industry 4.0

1. Introduction

Robotic machine manufacturers targeting automatic assembly processes are being
pushed to do more and better with less waste, urged to align towards the UN Sustainable
Development Goal 12.5 (to substantially reduce waste generation through prevention,
reduction, recycling and reuse, by 2030) [1]. Automatic assembly is a complex process
that involves strict quality control, mostly by means of computer vision. If an assembled
object is faulty, it is rejected and may end up in the trash. The work described in this paper
describes an application that classifies, collects, sorts and aligns different objects for later
reuse. At the input, the system receives boxes of faulty assembled connectors (different
sizes, shapes and colors, and in different poses), while at the output, different boxes are
filled with aligned and same-type connectors, as explained later in Section 3.

The automobile industry has always imposed the growth of the cable assembly indus-
try and is characterized by many technological changes in a short period of time. Vehicles
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are becoming more comfortable, safer, more efficient and less polluting, but they are also
increasingly complex systems with lots of electronics. The Electric Distribution System
(EDS) has to constantly adapt to these changes in terms of concept quality and technological
requirements. According to recent market reports [2,3], the rise of electric vehicles is driving
the market. In 2020, global sales of plug-in electric cars increased 39% from the previous
year to 3.1 million units. By the end of 2026, annual sales of battery-powered electric
cars are expected to exceed 7 million and to contribute about 15% of total vehicle sales.
This increase in sales is mainly due to increased regulatory standards imposed by various
organizations and governments to limit emissions and promote zero-emission automobiles.
As more electric vehicles circulate, the electric harness market is also expected to witness
growth, since electric harnesses are used more in electric vehicles than in conventional
fossil fuel vehicles.

To meet the growing needs, the electric harness market needs to digitize and automate
processes to increase production levels and also reduce the number of failures, often
associated with human error. The tasks performed in wire harnesses have traditionally
been difficult for robots. Therefore, the solution involves changing the harness architectures,
through a Design-for-Automation logic, as well as automating some current processes
through robotic stations.

Traditionally, grasping and sorting randomly positioned objects requires human re-
sources, which is a very monotonous task, lacks creativity and is no longer sustainable
in the context of smart manufacturing [4]. Industrial robots, however, require a supple-
mentary cognitive sensing system that can acquire and process information about the
environment and guide the robot to grasp arbitrarily placed objects out of the bin. In
industry settings, this problem has been commonly referred to as bin-picking [5] and also
historically addressed as one of the greatest robotic challenges in manufacturing automa-
tion [6]. Bin-picking depends on visual-based robotic grasping approaches, which can
be divided into methods where the shape of the object is analyzed (analytic approaches)
or machine learning-based methods (data-driven approaches). Data-driven approaches
can be categorized as model-free or model-based, where model-based approaches require
prior knowledge of the object to determine the grasping position and model-free meth-
ods directly search for possible grasping points [7]. In the process of sorting automotive
connectors, several different object types can be present and mixed in one pile. To be
efficient, it is crucial to determine the object type before grasping as different grasping
approaches are required for different connectors. Analytic methods fall short due to the
high level of diversity in the region of interest. However, machine learning approaches
tend to generalize and cope with uncertainties of the environment. Therefore, in this article,
we focus on model-based, machine learning grasping methods.

The remainder of this paper is organized as follows: Section 2 describes the state-of-
the-art and related works. Section 3 describes the materials and methods for the bin-picking
solution. Section 4 presents the experimental results achieved and, finally, Section 5 presents
the conclusions and future work.

2. Related Work

Bin-picking is a methodology used in Vision-Guided Robotics systems in which pieces
are randomly selected and extracted in a container, using a vision system for location
and a robotic system for extraction and its subsequent replacement. In recent years, a
large number of 3D vision systems have emerged on the market that make it possible to
implement bin-picking solutions in a smart factory context. Photoneo [8] is one of these
brands which provides a 3D vision system, with software capable of training Convolutional
Neural Networks (CNN) to recognize and classify objects and integrate with different
models of robots. In addition, several other players bring machine vision solutions to the
market for bin-picking applications, including Zivid [9], Solomon [10], Pickit [11] and more.
All of these systems provide very efficient and robust features for the industry, but they
are still very expensive systems and are not accessible to the vast majority of small- and
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medium-sized enterprises (SME). This has led to the pursuit of alternative solutions based
on more low-cost 3D vision cameras, investing in the research and the improvements of
the machine learning algorithms. One such solution is proposed in [12], where the authors
propose an object detection method based on the YOLOv5 algorithm, which can perform
accurate positioning and recognition of objects to be grasped by an arm robot with an Intel
RealSense D415 camera in an eye-to-hand configuration.

Bin-picking solutions have been studied for a long time, and in [13], some limitations
and challenges of current solutions for the industry are identified and a system for grasping
sheet metal parts is proposed. In [14], a solution is proposed with an ABB IRB2400 robot
with a 3D vision system for picking and placing randomly located pieces. More recently,
in [15] the authors propose a CAD-based 6-DoF (degree of freedom) pose estimation
pipeline for robotic random bin-picking tasks using the 3D camera.

Picking only one object in a pile of random objects is a very challenging task, and
in [16] a method is proposed to first compute grasping pose candidates by using the
graspability index. Then, a CNN is trained to predict whether or not the robot can pick
one and only one object from the bin. In [17], an approach for bin-picking industrial parts
with arbitrary geometries is proposed based on the YOLOv3 algorithm. In [18], a flexible
system for the integration of 3D computer vision and artificial intelligence solutions with
industrial robots is proposed using the ROS framework, a Kinect V2 sensor and the UR5
collaborative robot.

One of the challenging tasks in bin-pinking systems is identifying the best way to grip
an object, therefore, it is necessary to identify the best gripper for the operation in addition
to locating the objects and calculating the pose. In [19], the authors propose a system for the
detection of object location, pose estimation, distance measurement and surface orientation
angle detection. In [20], an object pose estimation method based on a landmark feature
is proposed to estimate the rotation angle of the object. The sensitivity of the 3D vision
system is very important to the success rate of a bin-picking solution; obviously, low-cost
vision systems are useful for demonstrating concepts, but they are not usually suitable for
working day-to-day in industrial scenarios.

The success rate of the bin-picking solution beyond the vision sensor depends a lot
on the efficiency of the implemented algorithms. In [21], the authors compared the results
of point cloud registration based on ICP (Iterative Closest Point) with data from different
3D sensors to analyze the success rate in bin-picking solutions. Object detection is one
of the main tasks of computer vision, which consists of determining the location in the
image where certain objects are present, as well as classifying them. The rapid advances of
machine learning and deep learning techniques have greatly accelerated the achievements
in object detection. With deep learning networks and the computing power of GPUs, the
performance of object detectors and trackers has greatly improved. In [22], a review of
object detection methods with deep learning is performed, where the fundamentals of this
technique are discussed. One of the algorithms that have emerged in recent years is YOLO
(You Only Look Once). The YOLO model is designed to encompass an architecture that
processes all image resources (the authors called it the Darknet architecture) and is followed
by two fully connected layers performing bounding box prediction for objects. Since its
inception in 2015, YOLO has evolved, and in 2020 the company Ultralytics converted the
previous version of YOLO into the PyTorch framework, giving it more visibility. YOLOv5 is
written in Python instead of C as in previous versions. In addition, the PyTorch community
is also larger than the Darknet community, which means that PyTorch will receive more
contributions and growth potential in the future. The complete study of the evolution
of YOLO can be found in [23]. YOLOv5 is now a reference and is extensively used in
object detection tasks in various domains. As an example, in [24] it is used as a face
detection algorithm suitable for complex scenes, and in [25] it is used as a real-time detection
algorithm for kiwifruit defects. In this work, YOLOv5 is the algorithm implemented for the
identification and recognition of electrical connectors in a bin-picking application.
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3. Materials and Methods

This section describes the methodology followed to implement our bin-picking solu-
tion for small automotive connectors and the machine learning algorithm used for object
recognition and the respective robot navigation process. The core concept for our approach
is depicted in Figure 1.
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Figure 1. Bin-picking concept applied to unsorted small plastic connectors.

The process of assembling seals into connectors may produce a significant amount of
poorly assembled connectors. The connectors that fail the quality tests are placed in large
boxes for reuse. In the end, each box will contain multiple types of unsorted connectors, as
depicted in Figure 2a. Each box is then verted (still unsorted) in open trays and our goal
is for the robot to perform the bin-picking process and sort the connectors into different
output boxes.
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Figure 2. (a) Boxes of connectors for reuse. (b,c) Sample of some of the connectors used for recognition,
in different poses.

The operation takes place in a ‘Bin-Picking Station’ (see Figure 3), which consists of a
collaborative robot for parts’ manipulation, one Intel RealSense camera for stereoscopic (3D)
vision, one working table, two ‘Open Trays’ containing unsorted small plastic connectors
and eight ‘boxes’, where the robot will put the sorted connectors.

This station is responsible for grasping the connectors in the ‘Open Trays’ and sorting
the connectors into the output boxes, correctly aligned to be reused in other workstations
to remove seals and re-insert the connectors into the production lines. As can be seen in
Figure 3, the layout has been prepared to maximize the robot’s working area and operating
times. As a collaborative robot is used, it can work on one side of the station, left or right,
while an operator can insert new bins and remove sorted boxes on the other side, reducing
downtimes as much as possible.



Electronics 2022, 11, 476 5 of 14Electronics 2021, 10, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 3. Layout concept for the Bin-Picking Station. 

This station is responsible for grasping the connectors in the ‘Open Trays’ and sorting 

the connectors into the output boxes, correctly aligned to be reused in other workstations 

to remove seals and re-insert the connectors into the production lines. As can be seen in 

Figure 3, the layout has been prepared to maximize the robot’s working area and operat-

ing times. As a collaborative robot is used, it can work on one side of the station, left or 

right, while an operator can insert new bins and remove sorted boxes on the other side, 

reducing downtimes as much as possible. 

The success of object detection is strongly influenced by the labeling and training of 

the objects to be detected. The tasks performed in the training process for any object de-

tection are typically composed of four stages, as depicted in Figure 4. Several images of 

the connectors in different poses and under different lighting conditions were acquired to 

cover as much of the variability as possible in the Bin-Picking Workstation. Using a label-

ing application, by defining regions, references were created for all connectors, as de-

picted in Figure 5. 

 

Figure 4. Typical tasks performed in the object recognition training process. 

The outputs generated in the labeling application were then used in the training pro-

cess. In the training task, the images and labels were organized into training, testing and 

validation groups. The PyTorch-based algorithm, YOLOv5, was configured and used to 

train the data. YOLOv5 allowed us to work with different levels of complexity associated 

with neural networks. At the time, four models were of interest to us: YOLOv5s (small), 

YOLOv5m (medium), YOLOv5l (large) and YOLOv5x (extra (X)large). 

Training image 
acquisition

Labeling
Training with 

YOLOv5
Results 
analysis

Figure 3. Layout concept for the Bin-Picking Station.

The success of object detection is strongly influenced by the labeling and training
of the objects to be detected. The tasks performed in the training process for any object
detection are typically composed of four stages, as depicted in Figure 4. Several images of
the connectors in different poses and under different lighting conditions were acquired to
cover as much of the variability as possible in the Bin-Picking Workstation. Using a labeling
application, by defining regions, references were created for all connectors, as depicted in
Figure 5.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 3. Layout concept for the Bin-Picking Station. 

This station is responsible for grasping the connectors in the ‘Open Trays’ and sorting 

the connectors into the output boxes, correctly aligned to be reused in other workstations 

to remove seals and re-insert the connectors into the production lines. As can be seen in 

Figure 3, the layout has been prepared to maximize the robot’s working area and operat-

ing times. As a collaborative robot is used, it can work on one side of the station, left or 

right, while an operator can insert new bins and remove sorted boxes on the other side, 

reducing downtimes as much as possible. 

The success of object detection is strongly influenced by the labeling and training of 

the objects to be detected. The tasks performed in the training process for any object de-

tection are typically composed of four stages, as depicted in Figure 4. Several images of 

the connectors in different poses and under different lighting conditions were acquired to 

cover as much of the variability as possible in the Bin-Picking Workstation. Using a label-

ing application, by defining regions, references were created for all connectors, as de-

picted in Figure 5. 

 

Figure 4. Typical tasks performed in the object recognition training process. 

The outputs generated in the labeling application were then used in the training pro-

cess. In the training task, the images and labels were organized into training, testing and 

validation groups. The PyTorch-based algorithm, YOLOv5, was configured and used to 

train the data. YOLOv5 allowed us to work with different levels of complexity associated 

with neural networks. At the time, four models were of interest to us: YOLOv5s (small), 

YOLOv5m (medium), YOLOv5l (large) and YOLOv5x (extra (X)large). 

Training image 
acquisition

Labeling
Training with 

YOLOv5
Results 
analysis

Figure 4. Typical tasks performed in the object recognition training process.
Electronics 2021, 10, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 5. Creating references through a labeling application. 

The main difference of each version is in the complexity and number of hidden layers 

of each deep neural network, which varies from simpler (small) to more complex (Xlarge). 

To choose the best version to use in each application, a trade-off analysis between speed, 

computational processing time and accuracy is required. Larger neural networks favor 

better accuracy results, but on the other hand the computational cost tends to be very 

slow, sometimes not valid for real-time applications. All YOLOv5 versions were tested 

and the YOLOv5s was selected for the final application, as it produced the best accuracy–

speed–robustness relation for our use case. The YOLOv5 object detection algorithm works 

like a regression problem with three main components or sections, the Backbone, the Head 

and the Detection, as illustrated in Figure 6. The Backbone is a CNN that collects and 

models image resources at different granularities. The Head is a series of layers to com-

bine image resources to throw them into a prediction process. Detection is a process that 

uses Head resources and performs box and class prediction steps. To do this, a loss func-

tion for bounding boxes’ predictions based on the distance information between the pre-

dicted frame and the real frame, known as Generalized Intersection over Union (GIoU), is 

used. This function is proposed in [26] and described by Equation (1): 

𝐺𝐼𝑜𝑈𝐿𝑜𝑠𝑠 = 1 − (𝐼𝑜𝑈 −
|𝐶/𝐴 ∪ 𝐵|

|𝐶|
) (1) 

where 𝐼𝑜𝑈 is the Intersection over Union, a common evaluation metric used to measure 

the accuracy of an object detector, by comparing two arbitrary shapes (volumes) A and B: 

𝐼𝑜𝑈 =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (2) 

and C is the smallest convex shape involving A and B.  

Figure 5. Creating references through a labeling application.



Electronics 2022, 11, 476 6 of 14

The outputs generated in the labeling application were then used in the training
process. In the training task, the images and labels were organized into training, testing
and validation groups. The PyTorch-based algorithm, YOLOv5, was configured and used
to train the data. YOLOv5 allowed us to work with different levels of complexity associated
with neural networks. At the time, four models were of interest to us: YOLOv5s (small),
YOLOv5m (medium), YOLOv5l (large) and YOLOv5x (extra (X)large).

The main difference of each version is in the complexity and number of hidden layers
of each deep neural network, which varies from simpler (small) to more complex (Xlarge).
To choose the best version to use in each application, a trade-off analysis between speed,
computational processing time and accuracy is required. Larger neural networks favor
better accuracy results, but on the other hand the computational cost tends to be very slow,
sometimes not valid for real-time applications. All YOLOv5 versions were tested and the
YOLOv5s was selected for the final application, as it produced the best accuracy–speed–
robustness relation for our use case. The YOLOv5 object detection algorithm works like
a regression problem with three main components or sections, the Backbone, the Head
and the Detection, as illustrated in Figure 6. The Backbone is a CNN that collects and
models image resources at different granularities. The Head is a series of layers to combine
image resources to throw them into a prediction process. Detection is a process that uses
Head resources and performs box and class prediction steps. To do this, a loss function
for bounding boxes’ predictions based on the distance information between the predicted
frame and the real frame, known as Generalized Intersection over Union (GIoU), is used.
This function is proposed in [26] and described by Equation (1):

GIoULoss = 1−
(

IoU − |C/A ∪ B|
|C|

)
(1)

where IoU is the Intersection over Union, a common evaluation metric used to measure
the accuracy of an object detector, by comparing two arbitrary shapes (volumes) A and B:

IoU =
|A ∩ B|
|A ∪ B| (2)

and C is the smallest convex shape involving A and B.
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To obtain valid outputs, YOLOv5 requires training datasets to have a minimum of
100 images. It is known that by increasing the dataset size, the output results improve,
however, there is a side effect since we need to consider the compromise between the
dimension of the datasets and the associated processing time in the training process.
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Several training experiments were performed, with a total of about 2000 different images
of connectors.

The evaluation of the classification algorithms performance is carried out by a confu-
sion matrix. A confusion matrix is a table for summarizing the performance of a classifi-
cation algorithm. Each row of the matrix represents the instances in an actual class while
each column represents the instances in a predicted class, or vice versa. The computation
of a confusion matrix can provide a better idea of what the classification model is getting
right and what types of errors it is making.

Vision-Based Robot Navigation

Whether the grasping of objects is achieved by human resources or robotic systems,
it is one of the main requirements in many manufacturing processes. However, in highly
dense scenes, where the environment includes several uncertainties, such as randomly
distributed objects, the robot navigation is closely related to the perception of the scene.
This can be affected by features of the objects of interest as well as the previous and
following manipulations. Besides the picking and placing of the object, the robotic system
must perceive the environment and extract the required features from it to interact with
it. Precise information about the location of the object of interest in space is one of the
prerequisites to obtain a proper grasp position and therefore accomplish a successful
grasp [27].

The grasping process itself is usually split into several parts that typically depend
on the type of gripper and the object of interest. Nevertheless, several standard grasping
phases of the two-finger gripper can be identified: approaching the object, coming into
contact with the object, increasing the force until the object is securely grasped and moving
the object until it can be released in the place position [28]. In bin-picking settings, a
surrounding-aware visual perception system in a combination with the correct approach
and retreat movements is a remarkably important part of the navigation system. Objects
are randomly distributed, and unintended collisions that can occur with the bin, other
environmental elements and the robot itself should be strictly avoided [29].

The eye-to-hand system navigation is used to obtain each connectors’ pose from the
object recognition task, where the centroid of each connector is extracted and synchronized
with the depth obtained by the Intel RealSense camera. To guide the robot to each position,
the pose of the connector was calculated in the robot gripper reference frame. This process is
performed by a calibration procedure, as illustrated in Figure 7 and defined by Equation (3):

GTP =
(

BTG

)−1
× BTC × CTP (3)

where all parameters are homogeneous matrices, with rotation and position elements.
GTP is the homogeneous matrix that represents the pose of each recognized connector

in the reference frame of the gripper. As expressed by the equation, to achieve this, it
is necessary to compute the kinematics of each reference frame involved, such as the
relationship between the gripper and the robot base ( BTG), the camera pose in the robot’s
reference frame ( BTC) and the object pose in the camera reference frame ( CTP).

This equation allows knowing, at each instant, the position and orientation of the
connector to be grasped. The computation is performed in Python and the interaction with
the robot controller is performed through Modbus. Trajectory planning is performed in the
main program running at the controller.



Electronics 2022, 11, 476 8 of 14

Electronics 2021, 10, x FOR PEER REVIEW 8 of 15 
 

 

This process is performed by a calibration procedure, as illustrated in Figure 7 and defined 

by Equation (3): 

 𝐺𝑇𝑃 = ( 𝐵𝑇𝐺)−1 ×  𝐵𝑇𝐶 ×  𝐶𝑇𝑃 
(3) 

where all parameters are homogeneous matrices, with rotation and position elements. 

 

Figure 7. Coordinates reference system. 

𝑇𝑃 
𝐺  is the homogeneous matrix that represents the pose of each recognized connector 

in the reference frame of the gripper. As expressed by the equation, to achieve this, it is 

necessary to compute the kinematics of each reference frame involved, such as the rela-

tionship between the gripper and the robot base ( 𝑇𝐺 
𝐵 ), the camera pose in the robot’s ref-

erence frame ( 𝑇𝐶 
𝐵 ) and the object pose in the camera reference frame ( 𝑇𝑃 

𝐶 ). 

This equation allows knowing, at each instant, the position and orientation of the 

connector to be grasped. The computation is performed in Python and the interaction with 

the robot controller is performed through Modbus. Trajectory planning is performed in 

the main program running at the controller. 

4. Results 

This section presents the results obtained in the training and classification tasks, as 

well as the solution for grasping the recognized objects. As stated in Section 3, about 2000 

images were acquired in different poses and lighting conditions to obtain a large dataset 

that can represent the greatest possible variability of the system. With this dataset, several 

tests and training tasks were performed to obtain the most robust model that can be used 

in real-time object identification. 

Table 1 presents the results of just two setups, from a larger number of setup exer-

cises. The computation was performed by a portable computer with an Intel Core™ i7-

10510U CPU running at 1.80–2.30 GHz, and with 16 GB of RAM memory. 

Table 1. Time taken for training. 

 
Setup 1 

(For Comparison) 

Setup 2 

(Best Results) 

Image Size 640 × 480 640 × 480 

Number of training images 192 552 

Number of test images 40 56 

Number of validation images 40 72 

Figure 7. Coordinates reference system.

4. Results

This section presents the results obtained in the training and classification tasks, as
well as the solution for grasping the recognized objects. As stated in Section 3, about
2000 images were acquired in different poses and lighting conditions to obtain a large
dataset that can represent the greatest possible variability of the system. With this dataset,
several tests and training tasks were performed to obtain the most robust model that can
be used in real-time object identification.

Table 1 presents the results of just two setups, from a larger number of setup exercises.
The computation was performed by a portable computer with an Intel Core™ i7-10510U
CPU running at 1.80–2.30 GHz, and with 16 GB of RAM memory.

Table 1. Time taken for training.

Setup 1
(For Comparison)

Setup 2
(Best Results)

Image Size 640 × 480 640 × 480
Number of training images 192 552

Number of test images 40 56
Number of validation images 40 72

Method YOLOv5s YOLOv5s
Epochs 15 15

Batch Size 8 8
Training time 40 min 150 min

4.1. Results for Setup 1

Based on the confusion matrix depicted in Figure 8, this scenario was only able to
achieve good results for the classification of ref2 and ref3, and was not able to correctly
classify the references ref1, ref4 and ref5. With the weights obtained in this training,
inferences were performed in real-time, and the method presents good results only for the
recognition of the connectors with ref2 and ref3. This method proved to be unable to detect
the other references, or confused as to how.
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The output results for the YOLOv5s algorithm, based on the training dataset, are
depicted in Figure 9. A total of 15 Epochs were used to achieve a high Precision, Recall and
mean Average Precision (mAP)—additional iterations would not have led to a substantial
gain. Among all the identified KPIs, these were the most relevant for our analysis, and
their values were obtained using Equations (4)–(6), respectively:

Precision =
True positive

True positive + False positive
(4)

Recall =
True positive

True positive + False negative
(5)

mAP =
∑Q

q=1 P(q)

Q
(6)

where Q is the number of queries in the dataset and P(q) is the average precision for a
given query, q.
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Nonetheless, by correlating the results with the confusion matrix, it can be concluded
that the outcome suffers from an insufficient dataset for training (low number of samples)
(only references ref2 and ref3 were correctly identified).

Figure 10 depicts classification results produced by the image testing phase of the
training process. These were used to validate and fine-tune our classification model. As
it can be seen, almost all connectors were classified either as ref2 or ref3. Therefore, the
algorithm was not able to correctly detect the false positives.

Electronics 2021, 10, x FOR PEER REVIEW 10 of 15 
 

 

 

Figure 9. Setup 1 output results using the YOLO5vs algorithm. 

 

Figure 10. Setup 1 classification results using the YOLOv5s algorithm. 

4.2. Results for Setup 2 

Setup 2 produced better results. Despite all references being classified, due to very 

close similarity between ref4 and ref5, depending on their position on the tray, the system 

still becomes confused. These two references have the same shape and overall color—only 

the top layer has a different color. By correlating the output results from the confusion 

matrix (see Figure 11) and the results from the YOLOv5s algorithm (Figure 12), we can 

conclude that the results are not yet as desired, as they still suffer from an insufficient 

dataset for training (insufficient number of samples); however, it is now possible classify 

the five references with good precision values.  

Figure 10. Setup 1 classification results using the YOLOv5s algorithm.

4.2. Results for Setup 2

Setup 2 produced better results. Despite all references being classified, due to very
close similarity between ref4 and ref5, depending on their position on the tray, the system
still becomes confused. These two references have the same shape and overall color—only
the top layer has a different color. By correlating the output results from the confusion
matrix (see Figure 11) and the results from the YOLOv5s algorithm (Figure 12), we can
conclude that the results are not yet as desired, as they still suffer from an insufficient
dataset for training (insufficient number of samples); however, it is now possible classify
the five references with good precision values.

Figure 13 depicts classification results produced by the image testing phase of the
training process. These were used to validate and fine-tune our classification model.
By comparing with the first experiment (Setup 1), in this experiment, all five connector
references were detected with good accuracy, even in the presence of connectors with
similar characteristics, such as shape and color.
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This trained model was the one chosen for the implementation of real-time object
detection in the bin-picking solution. This choice took into account the algorithm’s per-
formance, considering its accuracy and processing time, and its comparison with other
state-of-the-art algorithms, when using the same datasets. The comparison results are
depicted in Table 2.

Table 2. Object detection results: comparison between different state-of-the-art algorithms.

Measure SSD Faster
R-CNN YOLOv5s YOLOv5m YOLOv5l YOLOv5x

Precision
Recall

mAP@0.5
CPU time

0.70
0.41
0.74

120 min

0.80
0.45
0.76

135 min

0.82
0.99
0.97

150 min

0.83
0.99
0.97

3 h 40 min

0.85
0.98
0.98

4 h 50 min

0.90
0.99
0.99

6 h 20 min
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Clearly, YOLOv5s presented better results than SSD (Single Shot Detector) [30] and
Faster R-CNN [31]. We can also observe that no significant gains were obtained when using
higher versions of YOLOv5, which provide similar precision but are more computationally
demanding.

4.3. Identification

After the pattern recognition and pose detection, a match between the identified and
trained patterns needs to take place, which occurs by moving and changing the orientation
of the robot gripper, a process illustrated in Figure 14. This task has a special interest to
identify the best pose for grasping each kind of object.
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Figure 14. Steps in identifying connector orientation. (a) search for a shape and orientation.
(b) approach to the shape. (c) matching shape.

The core goal was to achieve an average cycle time of 10 s for a robotic arm to suc-
cessfully recognize and pick up a cable connector with unpredictable positions, thanks to
AI-based machine vision. Table 3 depicts the times measured. Since this is not a collabora-
tive operation, the average time used for the pick-and-place operation is a reference value,
for non-collaborative robots.
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Table 3. Average cycle time taken to successfully pick up the cable connectors with unpredictable positions.

Average time for
pattern/object recognition

Average time for determining
pose/orientation

Average time for connector
pick-and-place in our setup

(reference value for a
non-collaborative SCARA

robot with 3 axes)

1.83 s 5.57 s 2 s

5. Conclusions

This work aimed to demonstrate that for small objects, such as automotive connectors,
bin-picking solutions with a low-cost 3D vision system are possible. The machine vision
algorithm plays an important role in correctly identifying objects, and this is only possible
due to the contribution of machine learning algorithms. The YOLO algorithm has been
shown to have great potential for these tasks, in particular, YOLOv5 was shown to recognize
these kinds of small objects with high accuracy and repeatability. Grasping this type of
connector is a challenging task due to its layout not being solid and it being capable of being
vacuum aspirated, which makes manipulation difficult. Our test scenario used a two-finger
gripper, which implies identifying the best pose for grasping the connector, and is more
propitious to collisions when interacting with very close objects. Despite these challenges,
this work demonstrated that it is possible to grasp small objects in bulk, classifying them
and sorting them into different output boxes.

As future work, the main focus will be further reducing the cycle time, possibly by
improving the time required to identify the best posture to grip the connectors. Additionally,
a new type of gripper is being considered that would be more suitable for grasping these
types of objects.
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