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A review of velocity-type PSO variants
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Abstract

This paper presents a review of the particular variants of particle swarm optimization, based on the velocity-type class.

The original particle swarm optimization algorithm was developed as an unconstrained optimization technique, which

lacks a model that is able to handle constrained optimization problems. The particle swarm optimization and its

inapplicability in constrained optimization problems are solved using the dynamic-objective constraint-handling

method. The dynamic-objective constraint-handling method is originally developed for two variants of the basic particle

swarm optimization, namely restricted velocity particle swarm optimization and self-adaptive velocity particle swarm

optimization. Also on the subject velocity-type class, a review of three other variants is given, specifically: (1) vertical

particle swarm optimization; (2) velocity limited particle swarm optimization; and (3) particle swarm optimization with

scape velocity. These velocity-type particle swarm optimization variants all have in common a velocity parameter which

determines the direction/movements of the particles.
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Introduction

The particle swarm optimization (PSO) has a coopera-
tive nature.1 Over time several applications of PSO
have been developed, but a disadvantage of this algo-
rithm is the lack of assurance that will find the optimum
solution, and also the high computational cost asso-
ciated with the fitness function (FF). Compared to gen-
etic algorithm, the PSO is faster when looking close to
ideal solutions, although it is also faster to prematurely
convergence.2

In the literature, many variants of PSO are available.
Sedighizadeh and Masehian3 categorized these variants
according to fuzziness, continuity, accordance, top-
ology, attraction, velocity-type, activity, grouping,
mobility, hierarchy, divisibility, interaction, etc.

In this review, we rely on the category called
‘‘velocity-type’’ which is composed by five PSO variants
including the PSO with: restricted (and unrestricted)
velocity, self-adaptive velocity, vertical velocity, limited
velocity, and escape velocity.

The restricted velocity PSO (RVPSO) appeared
due to constrained optimization problems (COPs).
Lu and Chen4 went further, introducing a new con-
straint treatment technique called dynamic-objective

constraint-handling method (DOCHM). This method
transforms COPs into unconstrained optimization
problems (UPSO).

The basic PSO algorithm was initially developed to
solve the unconstrained optimization problems. Hence,
it lacks a mechanism to adapt the algorithm to opti-
mization problems with constraints. Thus, the self-
adaptive velocity PSO (SAVPSO) is an algorithm
that employs a mechanism to study the impact of con-
straints on the basic PSO algorithm in order to enhance
the particle’s search ability in the feasible region.
Therefore, each particle will have the capacity to self-
adaptively regulate its velocity according to the existing
characteristics in the feasible region.5

In some interactions of the PSO, the global optimum
is not perfected and the particles remain near the opti-
mum point but do not reach it. As the movements of
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the particles depend on its previous movements, they
tend to move to a local optimum. The vertical PSO
(VPSO) algorithm was developed to overcome the limi-
tations of the basic PSO algorithm. The VPSO assumes
that the particles fly in two directions: towards the
global best particle or in vertical direction. At each iter-
ation, a random number is generated, measuring the
probability of flying in both directions. Yang6 states
that the PSO and the VPSO are used to train neural
network (NN) and applies a neural network based on
VPSO (VPSONN) in soft-sensor modeling of acrylo-
nitrile yield.

The velocity limited variant (VLPSO) introduced by
Xu and Chen7 arose to help with financial decisions
about the construction of a portfolio of investments
with minimal risk but with maximum expected return,
considering constraints for velocity and position of the
particles. Here, the return rates were considered as sto-
chastic variables being applied to the VLPSO algorithm
to solve this problem.

The PSO with escape velocity (EVPSO) is an algo-
rithm that enables the particles with an escape velocity
so that they can free themselves from the local opti-
mum. Thus, it is possible to prevent premature conver-
gence observed in the basic PSO algorithm and enhance
the population diversity of the swarm, safeguarding the
efficient performance of PSO.8

Particle swarm optimization

Kennedy and Eberhart9 were the first to introduce the
particle swarm optimization (PSO) algorithm based on
the observation of the behavior of a birds flock in
search for food. This meta-heuristic algorithm has a
population nature based on cooperation. In compari-
son with other evolutionary algorithms, the PSO does
not have crossover between individuals nor mutation
during iterations of the algorithm.

In the PSO, the swarm’s particles start the explor-
ation of the search space with randomly generated pos-
ition and velocity, and the particles move only within
the search space guided by the velocity in the previous
instant, the best position found by the particle in ques-
tion and the best position found by the set of particles
in the neighborhood of the particle itself, in each
iteration.

The PSO concept consists in updating the velocity of
each particle, at each instant of time, relatively to the
best position found by the particle and the best position
found by the neighborhood. Thus, supposing that the
search space is d-dimensional, then we can represent the
current position of the particle in the search space
by vector Xi ¼ ðxi1, xi2, . . . , xidÞ

0, the best position of
the particle until then, i.e., its cognitive memory can
be represented by Pi ¼ ð pi1, pi2, . . . , pidÞ

0 and finally

the particle’s velocity is given by Vi ¼ ðvi1,
vi2, . . . , vidÞ

0. Also, defining g as an index to the best
particle in the swarm, updating the position and vel-
ocity at each iteration is made by the following
equations10

~vkþ1i ¼ w~vki þ c1r1ð~p
k
i � ~x

k
i Þ þ c2r2ð~p

k
g � ~x

k
i Þ ð1Þ

~xkþ1i ¼ ~xki þ ~v
kþ1
i ð2Þ

w is the inertia weight; c1, c2 are two positive constants
called cognitive and social coefficients, respectively; r1,
r2 are random numbers of the interval [0, 1] generated
at each iteration of the algorithm, for each particle in
each dimension; and k¼ 1,2,. . ., defines the number of
iterations.

PSO is influenced by multiple control parameters
such as the inertia weight, the neighborhood size, the
size of the problem, the population size, the maximum
velocity, the cognitive and social parameters, and so on.
The update equation of velocity presented includes the
inertia weight, w, which is important to ensure conver-
gent behavior. The most famous way to adjust the iner-
tia weight is to use a large parameter w at the beginning
of the exploration, and gradually reduce it along the
iterations.

Compared to other evolutionary computation (EC)
techniques, the lack of a velocity control mechanism in
the PSO resulted in its low efficiency in terms of per-
formance.11 There are several researchers who study the
neighborhood’s size. For example, Eberhart and
Kennedy12 concluded that a small local neighborhood
is best to avoid local minimum, since a global neigh-
borhood converges rapidly.

PSO and its inapplicability to COPs

The basic PSO algorithm, first proposed in 1995,9,12 has
been developed to handle unconstrained optimization
problems.5 In this section, the aspects of the inapplic-
ability of basic PSO algorithm for solving COPs will be
examined.

Considering equation (1), the right member can be
decomposed into three parts.13 The first part w~vki rep-
resents the particle’s velocity in the previous instant.
The second part c1r1ð~p

k
i � ~x

k
i Þ represents the cognitive

portion of the particle, i.e. symbolizes what it has been
capable of learning in the optimization process so far.
The third part c2r2ð~p

k
g � ~x

k
i Þ represents the social behav-

ior of the particle, i.e. indicates the best position found
in the particle’s neighborhood.

The sum of c1r1ð~p
k
i � ~x

k
i Þ with c2r2ð~p

k
g � ~x

k
i Þ is seen as

the new velocity term acquired, while the term w~vki is
the particle’s velocity at the previous instant. The sum
of the terms described above results in the obtainment
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of ~vkþ1i . These two terms do not consider the influence
of the feasible region, and thus, for example, if one or
both terms are large, the particle will leave the feasible
region. This shows the great difficulty of the basic PSO
in solving COPs.

Dynamic-objective constraint-handling method

Lu and Chen4,5 formulated COPs as follows

minimize f ð~xÞ ¼ ~x ¼ ðx1, x2, . . . ,xnÞ 2 R
n
ð3Þ

where f ð~xÞ is the objective function, ~x 2 S \ F , S � F ,
S � R

n defines the search space by parametric
constraints ld � x2 � ud and feasible region F is
defined by

gið~xÞ � 0, i ¼ 1, . . . , q ð4Þ

hið~xÞ ¼ 0, j ¼ qþ 1, . . . ,m ð5Þ

Typically, the equality constraints are transformed
into inequalities shaped

hið~xÞ
�� ��� � � 0, j ¼ qþ 1, . . . ,m ð6Þ

The solution ~x is considered feasible if gið~xÞ � 0, for
i ¼ 1, . . . , q and hið~xÞ

�� ��� � � 0, for j ¼ qþ 1, . . . ,m,
where � was defined as 0.001.

When we apply the PSO to a COP, each particle
moves toward the promising region in the search
space. According to Lu and Chen,4 a COP can be
seen as a bi-objective unconstrained optimization.
The first objective is to enter the feasible region, and
the second is to optimize the original function of the
COP, in order to find the optimal solution. Therefore, it
is reasonable to imagine that only after a particle
entered the feasible region, it is possible to approach
the optimal solution.

During the search process of the PSO, the mechan-
ism presented by the authors is designed in such a
way that the particle has the ability to adjust
depending on their goals, whether it lies inside or out-
side the feasible region, and hence this mechanism
is designated dynamic-objective constraint-handling
method (DOCHM).

A simple way to optimize all optimal solutions to the
COP is given by the following function

�ð~xÞ ¼
Xq
i¼1

maxð0, gð~xÞÞ þ
Xq
i¼1

maxð0, hj ð~xÞ
�� ��� �Þ ð7Þ

Evidently �ð~xÞ is the sum of constraint violations,
�ð~xÞ � 0, and thus �ð~xÞ ¼ 0 for 8~x 2 F . Here, all the

great solutions �ð~xÞ are the feasible region F of the
original problem.

In DOCHM, the function (3) is only used as a way
to measure the distance that the particle is from the
feasible region. Therefore, the initial COP is converted
into the following bi-objective unconstrained problem

min Fð~xÞ ¼ ð�ð~xÞ, f ð~xÞÞ

~x ¼ ðx1, . . . , xnÞ � S 2 R
n ð8Þ

In theory, only when �ð~xÞ ¼ 0 does the particle
begins to minimize f ð~xÞ. But in practice, f ð~xÞ can be
optimize initially by indicating a threshold � � 0 such
that �ð~xÞ � �, so that the particle begins to optimize
f ð~xÞ. Thus, � controls when the optimization process
f ð~xÞ should start.

Notice that after starting the optimization f ð~xÞ, there
is a probability of the particle to be projected out of the
feasible region. If it happens, the particle should give up
optimizing f ð~xÞ and go back to minimizing �ð~xÞ. Thus,
each particle has the ability to dynamically adjust its
objective, according to its current position in the search
space.

The incorporation of DOCHM with a PSO algo-
rithm makes it easy to get the update strategies ~pi and
~pg, i.e. if the current position of a particle is within the
feasible region, then ~pi is defined as the strongest viable
solution of f ð~xÞ found so far. Otherwise, the solution
found ~pi is defined as the position closer to the feasible
region. For ~pg, if all cluster positions fall outside the
feasible region then ~pg is taken as the nearest position
from the feasible region. Moreover, ~pg is defined as the
best suited feasible solution found by the swarm. This
constraint of the generic method of treatment is suit-
able for several variants of the PSO algorithm. The
DOCHM pseudo-code on upgrading ~pi and ~pg is
described as

�ibest ¼ �ð~piÞ, fibest ¼ f ð~piÞ, �i ¼ �ð~x
k
i Þ

if �i 5�ibest then ~pi  ~xki , �ibest �i end
if �i ¼ �ibest and �ibest � � then

fi ¼ f ð~xki Þ
if fi � fibest then ~pi  ~xki , fibest  fi end

end

�gbest ¼ �ð~pgÞ, fgbest ¼ f ð~pgÞ
if �i 5�gbest then ~pg  ~xki , �gbest  �i end
if �g ¼ �gbest and �gbest � � then

if fi � fgbest then ~pg ~xki fgbest  fi end
end

Restricted velocity PSO

As mentioned above, the basic PSO was originally
designed to solve unconstrained optimization prob-
lems, so it does not take into account the impact of
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the feasible region, i.e. constraints on the search mech-
anism, when it comes to solving COPs.

Lu and Chen4 conducted a modification in the basic
PSO search system in order to embed the impact factor
from the feasible region and to improve algorithm per-
formance on the COP resolution. Thus, the authors
propose a new algorithm, the restricted velocity particle
swarm optimization (RVPSO), which includes the
impact of the feasible region in the velocity of the par-
ticle swarm.

Consider the update velocity equation (1) of basic
PSO divided into two parts. The first part w~vki is the
particle’s velocity in the immediately preceding
moment, and the second part c1r1ð~p

k
i � ~x

k
i Þ þ c2r2

ð~pkg � ~x
k
i Þ is the particle’s velocity towards the potential

region around ~pki and ~pkg. Thus, the authors presented
the following two changes

. Set c1 ¼ c2 ¼ 1, making the potential location
~xki þ r1ð~p

k
i � ~x

k
i Þ þ r2ð~p

k
g � ~x

k
i Þ not to go far from ~pki

and ~pkg, improving efficiency of the particles.
. Replacing w~vki by wð~pkg � ~p

k
j Þ, where pkj is the best

position of a particle randomly selected, and j is a
random integer number uniformly distributed in the
interval ½1,N�. This is because, on one hand, w~vki in
the basic PSO does not use the information on the
feasible region and should be replaced by a term of
appropriate velocity, being able to reflect the impact
of the feasible region. On the other hand, when ~pkg and
~pkj lie within the feasible region ð~pkg � ~p

k
j Þ, it reflects

the approximate size of the feasible region around ~pkg.

Bearing in mind the two modifications presented
above, the authors presented a new PSO algorithm, the
restricted velocity particle swarm optimization, which is
especially applied in COPs. Furthermore, the term ~vkþ1i

of velocity update equation (1) can be canceled. As a
result, there is only one RVPSO update equation, the
update equation of the position of the form:

~xkþ1i ¼ ~xki þ r1ð~p
k
i � ~x

k
i Þ þ r2ð~p

k
g � ~x

k
i Þ þ wð~pkg � ~p

k
j Þ

ð9Þ

When applying RVPSO for COPs, it is necessary to
incorporate a method of treating constraints, as noted
above. The authors propose the DOCHM that is rooted
in the PSO search mechanism. Thus, Lu and Chen4 pro-
posed the combination of RVPSO with DOCHM, a
union of algorithms in order to solve COPs.

Moreover, the authors presented a simple way to
hold the particles within the search space, i.e. if
xkid 4 ud or xkid 5 ld, then

xkid ¼ ð p
k
id þ pkgd þ pkjd þ pkj0dÞ=4, d ¼ 1, . . . ,N ð10Þ

where d is the d-dimension of the search space, j and j0

are two uniformly distributed random integers in the
range ½1,N�.

Pseudo-code of DOCHMþRVPSO

Step 0: Initialize ~x0i , li � x0id � ui, i ¼ 1, . . . ,N and
d ¼ 1, . . . , n;

Step 1: Update ~xkþ1i according to equation (9), and
clamp down the particles by use of equation (10)
(if needed);

Step 2: Calculate ~pi and ~pg according to the procedures
describes in DOCHM pseudo-code;

Step 3: If stop criteria are not satisfied, then go to
Step 1.

Self-adaptive velocity PSO

The basic PSO algorithm was initially developed to
solve unconstrained optimization problems; hence, it
lacks a mechanism to solve COPs. Much of the lit-
erature about the solving of COPs with the basic
PSO focuses on the way to deal with such constraints
and not on their impact on the PSO search
mechanism.

Lu and Chen5 developed an algorithm called
SAVPSO that uses a mechanism capable of dealing
with COPs and that studies the impact of the con-
straints in that mechanism, in order to improve the
PSOs ability. The SAVPSO algorithm claims that
each particle of the swarm has the ability to self-
adapt its velocity taking into account some character-
istics of the feasible region.

To deal with constraints, SAVPSO adopted the same
mechanism used in RVPSO. DOCHM operates in the
inherent search mechanism, showing the impact of con-
straints and forcing the particles to seek the feasible
region in the search space.

In SAVPSO, the particles of the swarm are handled
according to the following equations

~vkþ1i ¼ w ~pki0 � pki
�� ��signð~vki Þ þ rð~pki � ~x

k
i Þ þ ð1� rÞð~pkg � ~x

k
i Þ

ð11Þ

~xkþ1i ¼ ~xki þ ~v
kþ1
i ð12Þ

where r 2 U 0, 1½ �; i0 2 intU 1,N½ �; w is the inertia weight
and sign ð~vki Þ is the sign of ð~vki Þ.

The update equation of velocity of SAVPSO was
obtained by changing the update equation of velocity
of basic PSO stated in equation (1). Comparing with
equation (1), in the equation ~vkþ1i of SAVPSO was set
c1 ¼ c2 ¼ 1 and r1 ¼ 1� r2. So the new velocity term
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will cause the particle i to fly to a position located
between pg and pi and will push the particle i to near
the feasible region or to the feasible region.

Another modification done was the replacement of
w~vki by w ~pki0 � ~p

k
i

�� ��signð~vki Þ, where signð~vki Þ represents the
sign of ð~vki Þ and indicates the flight direction of ð~vki Þ
taken in the search space. The magnitude of the particle
i is determined by w ~pki0 � ~p

k
i

�� ��, taking into account the
effect of the feasible region. Thus, since pi and pi0 are
contained or near the feasible region, ~pki0 � ~p

k
i

�� �� repre-
sents approximately the size of the feasible region.

Consequently, with w ~pki0 � ~p
k
i

�� ��, the particle i will not
diverge much from the feasible region. It should be
noted that the value of ~pki0 � ~p

k
i

�� �� may change in a self-
adaptively way, depending on the changes of the search
scope of the swarm.

Making an integration of SAVPSO to solve COPs,
we have to keep in mind that the limits of the feasible
region may be very close to the parametric limits xl

and/or xu so it is very probable that some particles
close to the limits of the feasible region violate the para-
metric constraints.

In order to overcome this problem, Lu and Chen4,5

have adopted the same technique used above in
RVPSO. Thus, ~xki was randomly reviewed and the fol-
lowing equation appeared

~xki ¼
�xk þ ar4ðx

l � �xkÞ, if ~xki 5 xl

�xk þ ar4ðx
u � �xkÞ, if ~xki 4 xu

(
ð13Þ

where �xk ¼
PN

i¼1 ~x
k
i

� �
=N, r4 2 U 0, 1½ �, and a is a con-

stant number in the range 0, 1½ �.
Finally, the authors describe the integrated SAVPSO

algorithm in pseudo-code, where Imax is the maximum
number of iterations, where it is possible to see that the
SAVPSO incorporates DOCHM as one of the compo-
nents of its search technique.5

Pseudo-code of the Integrated SAVPSO:
Create and initialize an n-dimensional swarm
For k¼ 0 to Imax

�xk ¼
XN
i¼1

~xki

 !
=N, k ¼ 1, 2, . . . , n

For i¼ 1 to N
For k¼ 1 to n
~xkþ1i ¼ ~xki þ ~v

kþ1
i

~vkþ1i ¼ w ~pki0 � pki
�� ��signð~vki Þ þ rð~pki � ~x

k
i Þ

þð1� rÞð~pkg � ~x
k
i Þ

If ~xkþ1i 4 xu Then ~xkþ1i ¼ �xk þ ar4ðx
u � �xkÞ

End

If ~xkþ1i 5 xl Then ~xkþ1i ¼ �xk þ ar4ðx
l � �xkÞ

End

End

Call Procedure for Calculation ~pkþ1i and ~pkþ1g

End

End

Vertical PSO

The vertical PSO algorithm is a variant of the PSO
developed to solve the basic PSOs problems such as
premature convergence to local optimums, the loss of
population diversity, and so on.

Considering equation (1), if there is not an improve-
ment of the best global fitness of the neighborhood for
a few iterations, so when the swarm’s particles are close
to the best global position found, they will move in the
same direction and converge to a local optimum.
Therefore, to solve this problem VPSO was proposed.

VPSO claims that the particles can move in two dif-
ferent directions: towards the position of the global best
particle or in vertical direction. Furthermore, in each
iteration, a random number is generated to measure the
probability of a particle to move in any of the above-
mentioned directions.6

In VPSO, the velocity of the particle and its new
position will be given by the following equations

vi ¼ wvi þ c1r1ð pi � xiÞ þ c2r2ð pg � xiÞ ð14Þ

vvi ¼ vvi �
dot vi, vvið Þ

dot vi, við Þ

� �
� vi ð15Þ

xi ¼ xi þ rand� vi þ 1� randð Þ � vvi ð16Þ

where rand is a random number generated at each iter-
ation representing the probability of moving in either
direction and belongs to the interval U 0, 1ð Þ; dotðÞ is a
dot distributing between vi and vvi; vi ¼ vi1, vi2, . . . , vidð Þ

represents the direction of the global optimum;
vvi ¼ vvi1, vvi2, . . . , vvidð Þ represents the vertical direction
to vi.

The application of VPSO in the soft-sensor model
of acrylonitrile yield

Acrylonitrile is the main material of polyacrylonitrile
production. The fabrication of acrylonitrile is a
complex industrial process and thus, during the
making of acrylonitrile, its yield is a very signifi-
cant product indicator. Therefore, it is vital to
obtain the precise acrylonitrile yield online and on
real time to accurately control the fabrication of
acrylonitrile.

Monitoring the acrylonitrile yield online with an
analysis instrument can be ineffective, so Yang6 sug-
gests soft-sensing technology to control acrylonitrile
yield online. He also claims that the VPSO algorithm
is used to train neural network, and so the VPSONN
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emerges and it is applied in soft-sensor modeling of
acrylonitrile yield.

The acrylonitrile yield is affected by seven variables:
reaction pressure, temperature, the amount of pure pro-
pylene, the amount of ammonia, the amount of air,
activators density, and reaction speed. To measure the
acrylonitrile yield, it is crucial to discover the relation-
ship between the acrylonitrile yield and the seven vari-
ables mentioned before. The VPSONN is utilized to
determine that relationship. Since VPSONN is applied
in soft-sensor modeling of acrylonitrile yield, it is
important to define the objective function of the soft-
sensing model6

minE ¼
X
ðt� yÞ2 ð17Þ

where t is the observed value of acrylonitrile yield; y is
the predicted value of acrylonitrile yield. The mean
square error (MSE) and the mean absolute error
(MAE) are used to calculate the performance of the
soft-sensor model and are defined as following

MSE ¼
1

n

Xn
1

ðt� yÞ2 ð18Þ

MAE ¼
1

n

Xn
1

t� y
�� �� ð19Þ

The VPSONN algorithm is defined in the

subsequent stages6

Stage 1: Initialize the structure of NN and the param-
eters of VPSO.

Stage 2: Initialize the state of each particle. Calculate
the corresponding output fitness of NN, and store
the individual best position and the best fitness of
each particle, and the best position and the best fit-
ness of the whole swarm.

Stage 3: Update the velocity and position according to
equations (14), (15), (16), respectively. If necessary,
limit the particles velocity and position.

Stage 4: Calculate the corresponding fitness of each
particle, update and store the individual best pos-
ition and individual best fitness of each particle,
update and store the global best position and
global best fitness of whole swarm.

Stage 5: If the stopping condition is not satisfied, go to
Step3. Otherwise, stop iterating and output the
global best position and the global best fitness of
the whole swarm as the result.

Velocity limited PSO

One of the most important financial decisions that
people and institutions have to deal with is to elaborate

an investment portfolio. Here comes the modern
portfolio theory, where the investor chooses the pro-
portions of the portfolio assets, rationally, seeking to
maximize the expected return and minimize the asso-
ciated risks.

In order to formalize the problem, the authors
resorted to the mean-variance model of Markowitz14

that elucidates how it should be done with the selection
of the portfolio with N risky assets ðN � 2Þ. The rate of
return �ri for i assets is a random variable with expected
return Ri ¼ Eð�riÞ, i ¼ 1, . . . ,N. Let xi to be the invest-
ment rate for i assets. Conveniently set X ¼ ðx1,
x2, . . . , xnÞ

0, �R ¼ ð�r1, �r2, . . . , �rnÞ
0,F ¼ ð1, 1, . . . , 1Þ0, v ¼

ð�ijÞN�N where �R is the return vector and V is the
covariance matrix of returns. Its description is given
by the following quadratic programming

min X0VX

s:t: X0R ¼ R0

X0 F ¼ 1

ð20Þ

here R0 is the expected return of the investor and
X0 F ¼ 1 is the constraint condition.

Xu and Chen7 considered the rates of return
expected as stochastic variables, in order to solve the
problem by applying swarm optimization. A major goal
of the authors is to overcome the global and local
search limitation of traditional numerical algorithms
in order to solve nonlinear programming problems.
So a new variant of PSO algorithm is introduced,
called velocity limited particle swarm optimization
(VLPSO).

The basic PSO algorithm is not enough to solve
optimization problems in small regions, because the
best solution is frequently lost. We also know that
the efficiency and accuracy of an optimization are
determined by the exploration-exploitation trade-off,
and is controlled by the velocity update equation (1).
Therefore, focusing on the information obtained
by the velocity equation, if we limit the velocity
in a different scope, we can find a different best
solution.

To VLPSO, the following limits were defined: firstly,
if the particle velocity is greater than vmax, it was set
equal to vmax; if the velocity is smaller than vmin, it was
set equal to vmin. Secondly, if the found solution is
greater than pmax, it was set equal to pmax; if the solu-
tion is smaller than pmin, it was set equal to pmin, where
pmax and pmin are the range solution. For the constraint
condition, the strategy used is preserve only the par-
ticles that satisfy the constraint condition, while the
others are abandoned. The authors also presented
the pseudo-code of VLPSO algorithm for the model
of the investment portfolio7

28 Journal of Algorithms & Computational Technology 11(1)



Initialize N particle;
{Set constants w, c1,c2;
Randomly initialize particle positions xi0 2 D in R

for i ¼ 1, 2, . . . , p, which satisfy constraint condition
X0 F ¼ 1;

Randomly initialize particle velocities 0 � vi0 � vmax
0

for i ¼ 1, 2, . . . , p;
Evaluate function values fi0 using design space

coordinates xi0 for i ¼ 1, 2, . . . , p;
Set f ibest ¼ f i0 and pi0 ¼ xi0 for i ¼ 1, 2, . . . , p;
Set f gbest to best f ibest and g0 to corresponding xi0;
}
While (not determinated) do

{
For each particle

{Evaluate function values fik using design
coordinates xik, for i ¼ 1, 2, . . . , p;
If fik is not satisfied constraint condition
then (fik ¼ C(C is big enough))
If fik � fibest then fibest ¼ fik, p

i ¼ xik
}

For each particle
{Calculate particle velocity vikþ1 according
to equation. (1);

If vikþ1 4 vmax, then vikþ1 ¼ vmax

If vikþ1 5 vmin, then vikþ1 ¼ vmin

Update particle position xikþ1 according to
equation (2)

If xikþ1 4 pmax, then xikþ1 ¼ pmax

If vikþ1 5 pmin, then xikþ1 ¼ pmin

}
}

PSO with escape velocity

The basic PSO algorithm often converges prematurely
and its performance is adversely affected by the loss of
population diversity. The variant of PSO with escape
velocity equips the swarm’s particles with an escape
velocity, and thus they escape from local optimum.
Consequently, through this variant, it will be possible
to overcome the imperfections of the basic PSO namely
the rapid convergence and the lack of population
diversity.

To make it possible to provide the particles with the
escape velocity, i.e. the ability to move continuously, it
is necessary to define a new equation for each particles
velocity8

~vkþ1i ¼ w~vkev þ c1r1ð~p
k
i � ~x

k
i Þ þ c2r2ð~p

k
g � ~x

k
i Þ ð21Þ

~vev ¼

Vi,j tð Þ, Vi,j tð Þ
�� ��4 ec

rj �
Vmax

�
, Vi,j tð Þ

�� ��5 ec

8<
: ð22Þ

where rj is a sequence of random numbers selected from
U �1, 1ð Þ; � is a factor that controls the domain of the
escape velocity; and ec is the limit that affects the con-
dition of the escape case.

The EVPSO is useful when most of the particles are
concentrated in the same convex subset, indicating
other points outside of this subset by updating the par-
ticles velocity. If the point found in another convex
subset is less than the current best global value, the
new point will be adopted as the new best global
value. Eventually, all the particles will move to the
new convex subset. The exploration of the search
space will end only when the algorithm converges to
the crucial minimum subset.

The performance of the EVPSO algorithm is directly
dependent on the choice of values for the parameters ec
and �. Large ec values provide a global search while
small ec values favor a local search. And large �
values reduce the particle’s escape domain, while
small � values increase the escape domain.

Wang et al.8 stated that to obtain the desired
exploration-exploitation trade-off, it is necessary to
divide the particle search into two parts: initially ec is
set at a large value and � is set at a small value; in the
last stage, ec is set as a small value and � as a large
value. Thus, initially, the particles will perform big
movements and will search the entire search space in
pursuit of good local optimums while in the final stage,
the particles will execute a fine grain search. Modifying
equation (22), a new update equation for velocity is
given

~vev ¼

Vi,j tð Þ, Vi,j tð Þ
�� ��4 ecðtÞ

rj �
Vmax

�ðtÞ
, Vi,j tð Þ

�� ��5 ecðtÞ

8<
: ð23Þ

Conclusion

In this review, we tried to present a specifically type of
basic PSO variants, called velocity-type PSO variants.
The main feature they all have in common is that it is
possible to determine the direction or movements of the
particles by defining a velocity parameter.

Based on the current literature, the PSO algorithm
has experienced several changes in the form of variants,
in order to overcome its faults. The variants presented
in this paper are only a small portion of a long list of
PSO variants.

Since its beginnings, the basic PSO algorithm has
proven incapable of dealing with COPs. In order to
solve this obstacle, the DOCHM emerged as a potential
solution. Moreover, two PSO velocity-type variants
have appeared and are associated with this mechanism,
namely RVPSO and SAVPSO. The incorporation of
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DOCHM in RVPSO and SAVPSO provides efficiency
and effectiveness to the final results.

To solve another limitations of the basic PSO, three
other variants of velocity-type are analyzed, specifically
the VPSO, VLPSO, and EVPSO algorithms. The VPSO
states that particles fly towards the global particle or in
vertical direction. The VLPSO suggests the finding of
optimal solution with the lowest number of interactions
as possible. The EVPSO introduces an escape velocity
to improve the particle’s search capability. They all try
to avoid the classical issue of basic PSO, which is the
rapid convergence to local optimums.

The purpose of this review is to serve as a guide for
future research, since due to the flexibility of the PSO
algorithm, it has enormous applications in several
areas. The PSO algorithm has a huge potential and
room for improvement, placing it as a method of excel-
lence for solving the most complex optimization prob-
lems. It is also important to study its variants in order
to constantly update the algorithm and subsequently
achieve the best results possible.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

References

1. El-Abd M. Cooperative models of particle swarm optimi-
zers. PhD thesis, 2008, University of Waterloo, Waterloo,

Ontario.
2. Banks A, Vincent J and Anyakoha C. A review of particle

swarm optimization. Part I: background and development.

Nat Comput 2007; 6: 467–484.

3. Sedighizadeh D and Masehian E. An particle swarm opti-
mization method, taxonomy and applications. Proc Int J
Comput Theor Eng 2009; 5: 486–502.

4. Lu H and Chen W. Dynamic-objective particle swarm
optimization for constrained optimization problems.
J Combin Optimiz 2006; 12: 409–419.

5. Lu H and Chen W. Self-adaptive velocity particle swarm

optimization for solving constrained optimization prob-
lems. J Global Optim 2008; 41: 427–445.

6. Yang WP. Vertical particle swarm optimization algo-

rithm and its application in soft-sensor modeling. Proc
IEEE/ICMLC Int Confer Mach Learn Cybernet 2007; 4:
1985–1988.

7. Xu F and Chen W. Stochastic portfolio selection based
on velocity limited particle swarm optimization. In:
Proceedings of IEEE/ WCICA of the sixth world congress

on intelligent control and automation, Dalian, 2006, IEEE,
Vol. 1, pp. 3599–3603.

8. Wang X, Wang Y, Zeng H, et al. Particle swarm opti-
mization with escape velocity. Int Confer Comput Intell

Security 2006; 1: 457–460.
9. Kennedy J and Eberhart R. Particle swarm optimization.

Proc IEEE Int Confer Neural Networks 1995; 4:

1942–1948.
10. Shi Y and Eberhart R. A modified particle swarm opti-

mizer. Proc IEEE Int Confer Evolution Comput 1998; 1:

69–73.
11. Angeline PJ. Evolutionary optimization versus particle

swarm optimization: philosophy and performance differ-
ences. In: Porto VW, Saravanan N, Waagen D, et al.

(eds) Evolutionary programming VII, Vol. 1447. Berlin
Heidelberg: Springer, 1998, pp.601–610.

12. Eberhart R and Kennedy J. A new optimizer using par-

ticle swarm theory. In: Sixth international symposium
on micro machine and human science, Nagoya, 1995,
IEEE, pp.39–43.

13. Shi Y. Particle swarm optimization. IEEE Neural
Network Soc 2004; 2: 8–13.

14. Markowitz HM. Portfolio selection. J Finance 1952; 7:

77–91.

30 Journal of Algorithms & Computational Technology 11(1)


	XPath error Undefined namespace prefix
	XPath error Undefined namespace prefix

