

DEPARTAMENTO DE INFORMÁTICA E SISTEMAS

Injecting Software Faults in Python Applications

Relatório de Trabalho de Projeto para a obtenção do grau de
Mestre em Informática e Sistemas

Especialização em Desenvolvimento de Software

Autor

Henrique Manuel Domingues Marques

Orientadores

Prof. Jorge Bernardino

Prof. Nuno Laranjeiro

Coimbra, janeiro de 2022

INSTITUTO POLITÉCNICO
DE COIMBRA

INSTITUTO SUPERIOR

DE ENGENHARIA
DE COIMBRA

This page is intentionally left blank.

Abstract

Software fault injection techniques have been largely used as means for evaluating the
dependability of systems in presence of certain types of faults. Despite the large diversity
of tools offering the possibility of emulating the presence of software faults, there is little
practical support for emulating the presence of software faults in Python applications,
which are increasingly being used to support business critical cloud services. In this thesis,
we present a tool (named FIT4Python) for injecting software faults in Python code and
then use it to analyse the effectiveness of OpenStack’s test suite against new probable
software faults. We begin by analysing the types of faults affecting Nova Compute, the
core component of OpenStack. We use our tool to emulate the presence of new faults in
Nova Compute API to understand how well OpenStack’s battery of unit, functional, and
integration tests cover these new, but probable, situations. Results show clear limitations
in the effectiveness of OpenStack developers’ test suites, with many cases of injected faults
passing undetected through all three types of tests and that most of the analysed problems
could be detected with trivial changes or additions to the unit tests.

Keywords

Software Faults, Bug Reports, Orthogonal Defect Classification, Fault Injection, Mutation
Testing, Dependability Evaluation

iii

This page is intentionally left blank.

Resumo

As técnicas de injeção de falhas de software têm sido amplamente utilizadas como meio
para avaliar a confiabilidade de sistemas na presença de certos tipos de falhas. Apesar
da grande diversidade de ferramentas que oferecem a possibilidade de emular a presença
de falhas de software, há pouco suporte prático para emular a presença de falhas de soft-
ware em aplicações Python, que cada vez mais são usados para suportar serviços cloud
críticos para negócios. Nesta tese, apresentamos uma ferramenta (de nome Fit4Python)
para injetar falhas de software em código Python e, de seguida, usamo-la para analisar a
eficácia da bateria de testes do OpenStack contra estas novas, prováveis, falhas de software.
Começamos por analisar os tipos de falhas que afetam o Nova Compute, um componente
central do OpenStack. Usamos a nossa ferramenta para emular a presença de novas falhas
na API Nova Compute de forma a entender como a bateria de testes unitários, funcionais
e de integração do OpenStack cobre essas novas, mas prováveis, situações. Os resultados
mostram limitações claras na eficácia da bateria de testes dos programadores do Open-
Stack, com muitos casos de falhas injetadas a passarem sem serem detectadas por todos
os três tipos de testes. Para além disto, observamos que que a maioria dos problemas
analisados poderia ser detectada com mudanças ou acréscimos triviais aos testes unitários.

Palavras-Chave

Falhas de Software, Análise de bugs, Orthogonal Defect Classification, Injeção de falhas,
Testes de mutação, Resiliência de software

v

This page is intentionally left blank.

Acknowledgments

This work has been supported by national funds through the FCT - Foundation for Science
and Technology, I.P., within the scope of the project CISUC - UID/CEC/00326/2020 and
by European Social Fund, through the Regional Operational Program Centro 2020; by
project VALU3S - Verification and Validation of Automated Systems’ Safety and Security,
H2020-EU.2.1.1.7. - ECSEL, Grant agreement ID: 876852; and by project AIDA: Adap-
tive, Intelligent and Distributed Assurance Platform project, co-financed by the European
Regional Development Fund (ERDF) through the Operational Program for Competitive-
ness and Internationalization – COMPETE 2020 (POCI-01-0247-FEDER-045907) and by
the Portuguese Foundation for Science and Technology under CMU Portugal Program.

We also would like to acknowledge the National Distributed Computing Infrastructure
(INCD) for providing access to computing resources to execute the fault injection test
campaign.

I would like to express my sincere gratitude to Prof. Nuno Laranjeiro and Prof. Jorge
Bernardino for the invaluable guidance and motivation provided during my MSc thesis,
their knowledge and plentiful experience made me grow as an engineer.

I would also like to thank my family and my fiancee for the incredible support during this
long endeavor.

vii

This page is intentionally left blank.

Contents

1 Introduction 1

2 Background and Related Work 4
2.1 Background concepts . 4
2.2 Fault injection . 7
2.3 Mutation testing . 10
2.4 Related Work Gaps . 12

3 FIT4Python – A Software Fault Injection Tool for Python 14
3.1 Tool Overview . 14
3.2 FIT4Python Components and Operation . 15

4 Fault Model 18

5 OpenStack Case study 26

6 Fault Reduction Analysis 32

7 Main Findings 36

8 Threats to Validity 40

9 Conclusion and Future Work 42

ix

This page is intentionally left blank.

Acronyms

API application programming interface. 5, 6

DHCP Dynamic Host Configuration Protocol. 5

IaaS Infrastructure as a Service. 5

IP Internet Protocol. 5

ODC Orthogonal Defect Classification. 4, 5, 8, 12

SUT System Under Test. 7, 8

VLAN Virtual Local Area Network. 5

VM virtual machines. 5, 6

xi

This page is intentionally left blank.

List of Figures

2.1 Openstack’s component architecture. Adapted from [OpenStack, 2021]. . . . 6
2.2 Software fault injection process, adapted from [Natella et al., 2016b] 7
2.3 Mutation testing process. 10

3.1 Basic operation of the FIT4Python tool. 14
3.2 FIT4Python components and operating mode. 15

6.1 Distribution of R2 by number of fault types 35

xiii

This page is intentionally left blank.

List of Tables

2.1 Fault injection operators proposed by [Durães and Madeira, 2006]. 9

4.1 OpenStack component development metrics. 19
4.2 ODC defect type results . 19
4.3 ODC qualifier results . 20
4.4 Verification results for Defect Type. 20
4.5 Verification results for Qualifier. 20
4.6 Accuracy and Cohen’s Kappa Agreement between researcher1 and researcher2. 21
4.7 Fault types based on the ODC extension in [Durães and Madeira, 2006]. . . 22

5.1 Experimental results overview. 27
5.2 Experimental results grouped by Defect Type. 28
5.3 Experimental results grouped by Qualifier. 28
5.4 Analysed problems and necessary corrections. 30

6.1 Sufficient fault types. 34

xv

This page is intentionally left blank.

Chapter 1

Introduction

Software Fault Injection is a well known technique used for evaluating dependability of
systems in presence of faults. Traditionally aiming at reproducing the effects of hardware
faults it was later used to reproduce effects of software faults [Hsueh et al., 1997]. Some
approaches put particular focus on the emulation of the software fault itself, by usually
inserting the faulty code in the target application [Natella et al., 2016a].

The injection of code changes may occur in several different ways depending on factors
that mostly relate to the nature of the programming language and associated tools used.
If a particular language compiles to machine code, possible techniques include changing
the source code or change the machine code directly [Durães and Madeira, 2006]. In case
the language is interpreted, the immediate option is to change source code to emulate the
presence of software defects [Fonseca et al., 2014]. If intermediate code compilation exists,
byte code manipulation may also be a viable option [Sanches et al., 2011]. In many cases,
we are able to use abstract forms of the code (e.g., an abstract syntax tree) to inject a
particular kind of fault [Cotroneo et al., 2019, Hajdu et al., 2020].

The programming language itself limits the constructs available, rendering certain types of
known software faults useless, or, on the other hand, creating space for new types of faults
to emerge. For instance, a well-known software fault like missing value assignment [Durães
and Madeira, 2006] is caught by current Java compilers, thus it should not be used when
injecting faults in Java-based software. In addition, a fault model designed for C, such as
the one presented in [Durães and Madeira, 2006], will not include faults related with, for
instance, exception handling that may occur if the language used is Python, Java or C#.
Certain faults may appear more rarely due to the different context involved, including the
maturity of development tools which may warn the developer of certain mistakes and, thus,
potentially lower their probability of occurrence. This kind of specificities brings in the
need for new specialized approaches and tools for software fault injection [Natella et al.,
2016a].

With the growing popularity of Python [Tiobe, 2019], especially in business-critical envi-
ronments, having a way to emulate software faults in Python code can be extremely helpful
for two main general reasons: i) during software verification activities, a fault injection tool
may be used to create representative faulty versions of a certain system under test, which
can be used to assess the effectiveness of an existent test suite (e.g., allowing the test suite
to be corrected or extended, thus fostering the system’s dependability) [Natella et al.,
2016b, Pizzoleto et al., 2019]; and ii) after other software verification activities, a fault
injection tool can be used to introduce faults in a system component, allowing to evaluate
fault tolerance mechanisms and, overall, allowing to understand how dependable the whole

1

Chapter 1

system is in presence of a faulty component [Natella et al., 2016b, Kanoun and Spainhower,
2008]. Such tool must include not only the basic ability to inject representative faults (i.e.,
faults that represent typical mistakes performed by developers), but also the associated in-
frastructure for handling all the process (e.g., reading configuration regarding the faults to
inject, manipulating code files). Indeed, recent work has emphasized the fact that research
targeting Python software is scarce, especially in what concerns software fault injection
[Cotroneo et al., 2019].

The goal of this thesis is two-fold: i) we present a tool for injecting software faults (i.e.,
software bugs) by applying code changes to Python source code; and ii) we use the tool to
analyse the effectiveness of the test suite of OpenStack, a Python-based business-critical
cloud platform, against new probable software faults injected by our tool. We begin by
analyzing the types of software faults (i.e., software bugs) affecting OpenStack’s main
component – Nova Compute, and define a fault model for this core component. Based
on this fault model, we implement our tool and run it to create faulty versions of the
Nova Compute API. We then run OpenStack developers’ unit, functional, and integration
tests against the faulty versions. Our results, which are available in detail at [Marques
et al., 2021], were collected from the execution of more than 245 Million tests (i.e., 21,683
tests present in the test suite ran against 11,309 faulty versions) and show not only the
ability of the tool to inject different kinds of faults, but especially show the fault detection
limitations of the OpenStack developer’s test suite, with several cases of faults passing
silently undetected through the tests. Moreover, we show that, for the analyzed issues, it
would be trivial to correct or extend most of OpenStack tests, in order to increase their
coverage regarding those (probable) faults, which currently pass undetected through the
different types of tests that compose OpenStack’s test suite.

The main contributions of this work are the following:

• A tool for injecting software faults in Python applications, freely available at [Mar-
ques et al., 2021];

• A fault model characterizing software faults that affect OpenStack, a well-known
Python-based cloud platform used in business-critical environments (labelled dataset
available at [Marques et al., 2021]);

• The practical application of the tool to the OpenStack Nova Compute API in more
than 245 Million tests, with the identification of clear limitations in the effectiveness
of OpenStack’s battery of unit, functional, and integration tests, which showed to
not be able to detect the presence of certain types of probable bugs.

The outcome of this work is the publication of the following paper:

• Henrique Marques, Nuno Laranjeiro, Jorge Bernardino, "Injecting Software Faults in
Python Applications: The OpenStack Case Study", accepted for publication in the
Journal of Empirical Software Engineering, doi:10.1007/s10664-021-10047-9.

The remainder of this thesis is organized as follows. Chapter 2 presents background on the
characterization of software faults and basic concepts regarding OpenStack and proceeds
with related work on two aspects that are central to this thesis: i) fault injection tools and
techniques; ii) and mutation testing approaches and tools. Chapter 3 presents a concep-
tual view of the fault injection tool architecture and operating mode of its components.
Chapter 4 describes the characterization of software faults performed for OpenStack, the

2

Introduction

selected Python case study for this work, whereas Chapter 5 presents the experimental
evaluation carried out to illustrate the practical usefulness of the tool. Chapter 6 explores
the cost/benefit trade-off associated with injecting larger numbers of faults. Chapter 7
summarizes the main findings we observed during the execution of our work, while Chap-
ter 8 discusses the main threats to the validity of this work. Finally, Chapter 9 concludes
this thesis.

3

Chapter 2

Background and Related Work

This chapter presents background concepts on two main topics. First, we discuss methods
for characterizing software faults, which is an important aspect that should be considered
in fault injection campaigns. Second, we overview OpenStack - the system we selected
to be part of our the experimental evaluation. The chapter then proceeds with two main
parts: i) the discussion of related work on fault injection techniques; and ii) tools and the
related work on mutation testing tools and approaches. The chapter concludes with a brief
discussion regarding the main differences between the related work and this thesis.

2.1 Background concepts

There are a few relatively well-known fault classification schemas, which, in this context, are
useful means for defining fault models, and that are essentially sets of types of faults known
to be representative of what is experienced by a certain system during operation. Hewlett-
Packard’s Defect Origins, Types and Modes (DOTM) [Grady, 1992], IEEE’s standard 1044-
2009 (IEEE-1044) [IEEE, 2010], and Orthogonal Defect Classification (ODC) [Chillarege,
1996, IBM, 2013] are relatively well-known.

Orthogonal Defect Classification is a set of analytical methods mostly used for the analysis
of software development and test processes [Chillarege, 1996, IBM, 2013]. ODC was created
with the intention of bridging two methods commonly used for analyzing defects, namely
Statistical Defect Modelling [Wood, 1996] and Root Cause Analysis [Wilson et al., 1993].
It allows the defect classification process to be faster (as in the former method) and have
better accuracy in categorizing issues (similarly to the latter) [Chillarege, 1996].

The Orthogonal Defect Classification characterizes software defects according to eight or-
thogonal attributes, grouped into two sections: opener section and closer section [IBM,
2013]. The opener section refers to attributes that can be classified when the defect is
found (i.e., it does not consider the aspects related with the correction of the defect) and
includes the following attributes:

• Activity: describes the activity being performed at the time the defect was identified
(e.g., system testing);

• Trigger: indicates what caused the defect to surface, i.e., the required condition that
allowed the defect to manifest;

4

Background and Related Work

• Impact: refers to either the impact a user experienced when the defect surfaced, or
to the impact a user would have suffered, if the defect had surfaced.

The closer section refers to the attributes that can be classified when a defect has been
corrected and the correction information becomes available. Of the following attributes of
the closer section, we highlight defect type and qualifier, as they characterize the type
and nature of a certain software fault [IBM, 2013]:

• Target: the object of the correction (e.g., source code); Age: the instant in time in
which the defect was introduced (e.g., introduced during the correction of another
bug); Source: whether the defect was introduced by an external component, or was
something introduced in-house, i.e., by the team developing the product;

• Defect Type: refers to the type of change that is performed to correct a certain bug
(e.g., changing a checking condition) and can take one of the following seven values:
Assignment/Initialization, Algorithm/Method, Checking, Function/Class/Object, Tim-
ing/Serialization, Relationship, and Interface/O-O Messages;

• Qualifier: Describes the implementation prior to having been corrected. That is,
whether it was missing, incorrect, or extraneous (i.e., present but unnecessary).

To be applied correctly, ODC, requires a couple of conditions to be achieved:

• The semantic information of the known defects must be available to be possible to
classify the opener section of the concept.

• The code fix for each defect must be available to be possible to classify the closer
section of the concept.

OpenStack Nova [Rosado and Bernardino, 2014], an open-source cloud computing platform
that provides Infrastructure as a Service, widely used in the industry, fulfills both previ-
ous conditions. The semantic information of the defects can be found at the Launchpad
platform https://launchpad.net/nova and the code fix for each defect is linked to the issue
itself. Nova’s code is available at https://github.com/OpenStack/nova and the platform
itself is composed by several components. Figure 2.1 presents the conceptual relation be-
tween the components of Openstack. We describe the responsibilities of each component
in the following paragraphs.

• Compute (Nova): OpenStack compute (codename: Nova) is the component that
allows the user to create and manage virtual servers using the machine images. It
is considered the brain of the OpenStack and it is responsible for provisioning and
managing large networks of virtual machines interacting with hypervisors, such as
KVM, Xen, VMware, and Hyper-V. For being considerate the core component of
OpenStack it was chosen as the subject for this study.

• Glance: Glance is the OpenStack Image Service. It provides an API to Nova for
discovering, retrieving and registering VM images.

• Neutron: Neutron provides network connectivity as a service, it allows for managing
DHCP, static IP and VLAN.

5

Chapter 2

Provides network connectivity

Neutron

Volume backup

Provides volumes

Cinder

ProvisionsNova

Provides images

Glance

Ceilometer

Swift

Keystone Horizon

VM

Provides auth Provides UI Monitor

Provision

Fetchs images

Ironic

Provision, operation

and management

Boots database

Register images

Backups databasesTrove

Provides PXE network

Orchestration

Heat

Register hadoop images Boots data processing instances

Assign jobs

Save data or job binary

Orchestrates clusters

Sahara

Figure 2.1: Openstack’s component architecture. Adapted from [OpenStack, 2021].

• Swift and Cinder: Swift and Cinder provide storage mechanisms for OpenStack with
the difference being on the type of storage. Swift is a highly available object/blob
store and allows users to store and retrieve files from it. Cinder is a more persistent
storage and is used by Nova to store volumes for VM, manipulate those volumes and
save snapshots.

• Keystone: Keystone is a single point of integration between all components of Open-
Stack and provides token and authentication for users and services interaction.

• Horizon: OpenStack has a dashboard that provides a user interface for managing
and interacting with all services and APIs, called Horizon.

• Ceilometer: Ceilometer is an optional component that provides billing and metering.
With Ceilometer is possible to measure CPU and network costs.

• Ironic: Ironic is an integrated Openstack program responsible for provisioning bare
metal machines instead of virtual machines.

• Trove: Trove provides scalable and reliable cloud database as a service.

• Heat: Heat allow the creation of human and machine accessible services for managing
the entire lifecycle of infrastructure and applications within Openstack clouds.

• Sahara: Sahara provides means to provision a data-intensive application cluster
(Hadoop or Spark) on top of Openstack.

6

Background and Related Work

2.2 Fault injection

Software fault injection is a vastly explored field, where research has focused on the injection
of the effects of faults in the software or, more precisely, on the emulation of software faults.
The main idea involved is the possibility of evaluating the behavior of the target system
(e.g., in terms of dependability) in presence of a certain faulty component [Natella et al.,
2016b, Kanoun and Spainhower, 2008]. The characteristics of the injected fault should
ideally be representative of what is found in real systems [Durães and Madeira, 2006].

Fault injection can be performed mostly using three different techniques [Natella et al.,
2016a]: injection of data errors [Arlat et al., 2003, Barton et al., 1990], interface error
injection [Miller et al., 1995, Koopman and DeVale, 2000] and injection of code changes
[Durães and Madeira, 2006], illustrated in Figure 2.2 and explained in more detail in the
next paragraphs.

Component interfaces
Code Data /

Memory

Software under test

Compilers, linkers, ...

Source code

Injection of
code changes

Injection of
data errors

Injection of
interface errors

Software components

Figure 2.2: Software fault injection process, adapted from [Natella et al., 2016b]

Injection of data errors aims to reproduce the effects of hardware faults by corrupting
memory or registers that are being used by the System Under Test (SUT) through software.
The Fault-Injection-based Automated Testing environment (FIAT) [Barton et al., 1990], was
one of the first tools developed for software fault injection, and was capable to emulate
both hardware and software faults by injecting data errors on memory. The tool was able
to overcome the operating system restrictions that prevented one process to modify the
memory under use by another process. The tool consisted on a dynamic library that would
be linked to the SUT at compile time. This required the code of the SUT to be publicly
available which is not the case for all kinds of programs (e.g., third-party software).

After the proposal of FIAT, The integrated software fault injection environment (DOC-
TOR) [Han et al., 1995] was created. This injector was implemented at the kernel level
allowing to introduce a layer in the protocol stack to intercept the communication between
the SUT and lower protocol layers to inject data errors. This technique was not designed
to emulate software faults in a representative way as software faults can be much different
then faults caused by hardware errors such as bit-flips. Moreover, these injected faults
might not have an effect on the target system if the injected location is not being actively
used by the SUT or if the memory is overwritten before being used.

Interface error injection focuses on corrupting the input and output of components that
are part of the software being tested.

The Fuzz and Ptyjig: Robustness Testing of UNIX Applications Through Interface Error
Injection [Miller et al., 1990] was one of the first studies to be published on interface error
injection with the goal to evaluate the robustness of UNIX utilities. Two tools, Fuzz and

7

Chapter 2

ptyjig, were developed to submit random stream of data as input to the SUT applications,
and the study found that a significant number of utility programs were vulnerable to
interface errors. Injecting random data streams as input proved to be a cheap but effective
way to discover bugs in commercial applications, fueling further research on how to generate
corrupted data in a systematic way.

The FIG: Robustness Testing of UNIX Applications Against the C Library [Broadwell et al.,
2002] aimed to test the robustness of desktop and server applications by injecting errors
from the C library. To accomplish this task, a wrapper library was developed to mimic
the C library but returning the most common erroneous return codes from methods such
as malloc, read, write, select and open (e.g., failed memory allocation).

Finally, injection of code changes tries to emulate bugs by introducing wrong code in
the software and analysing the behaviour of the application, as a whole, when that bug
is executed. Several works have looked at the problem of injecting faults via changing
program code. In [Mahmood et al., 1984], the authors placed faults in source code with
the main goal being to understand the effectiveness of code assertions in capturing errors.
In [Hudak et al., 1993], a tool was used to inject software faults in source code, with the
goal of evaluating different fault tolerance mechanisms. A tool that is able to introduce
faults in binary code is presented in [Kao et al., 1993] and was used to evaluate Unix
operating systems in presence of faults. The types of faults supported were extended later
in [Wei-Lun Kao and Iyer, 1994] and the tool was improved to support execution in a
distributed environment.

In [Ng and Chen, 2001], the authors use fault injection to evaluate the Rio file cache, which
has the main goal of allowing the use of main memory for persistent storage by surviving
operating system crashes. A fault model including different types of typical software faults
like initialization, off-by-one or interface error, was designed to be used for the evaluation.
Some of the faults are injected in machine code, other by modifying behavior of kernel
functions.

The problem of emulating representative software faults for software reliability and de-
pendability assessment, and, in particular, the aspect of injecting software faults in a
source-code independent manner was studied in [Durães and Madeira, 2006]. The authors
analyse a total of 668 real software defects in C applications and classify them using the
Orthogonal Defect Classification. Despite providing a solid foundation for the emulation of
faults, the ODC attributes defect type and qualifier are too broad and do not characterize
developers mistakes in a detailed manner, at least not with the sufficient detail necessary
for fault injection campaigns (e.g., a fault that is of type assignment and qualified as in-
correct may take numerous forms). Considering this aspect, a finer detailed analysis of the
defects is carried out in [Durães and Madeira, 2006] where, for instance, assignment faults
that are qualified as incorrect are further divided in different 13 cases (identified in the
authors’ dataset). This finer characterization, which can be seen as an extension to ODC,
include cases like wrong arithmetic expression used in assignment and wrong miss-by-one
value used in variable initialization, which represent the necessary information to represent
a certain software fault. In total the authors identified 62 of these ’fault operators’ listed
in Table 2.1, that allow carrying out fault injection campaigns and that were defined based
on real developer mistakes found in C applications.

A tool for software fault injection in Java applications, named JACA, is presented in
[Martins et al., 2002]. JACA uses Reflection to inject faults by corrupting attribute values,
methods parameters or return values. In [Sanches et al., 2011] the authors present the
Java Software Fault Injection Tool, that does not require the presence of source code as
injection is carried out directly in the compiled form of the code.

8

Background and Related Work

Table 2.1: Fault injection operators proposed by [Durães and Madeira, 2006].

ODC Defect Type ODC Qualifier ID
Extraneous EIFS

MCA
MFC
MIEA
MIEB
MIES
MIFS
MLPA
MLPL
MCS
MBC
MLPS
WALD
WALR
WFCD
WBC1
WSUC
WFCS
EVAV
EVAL Extraneous variable assignment using a variable
MVAE
MVAV
MVIE
MVIV
MVAI
MVAD
MLOA
MLAA
WIDS
WIDSL
WSUT
WVAE
WVAL
WVAM
WVAV
WVIV
WPLA
WVIM Wrong miss-by-one value used in variable initialization
WIDI
WIDIM
WIDM

Extraneous ELOC
MIA
MLAC
MLOC
WLEC
WPLC
WAEC

Missing MFCT
Wrong WALL

MPFC
MLOP
MLAP
MRS
WPFL
WPFO
WPLP
WLEP
WAEP
WPFML
WPFV
WRV

Wrong parenthesis in logical expression in parameters of function call
Wrong logical expression in parameter of function call
Wrong arithmetic expression in parameter of function call
Miss by one value in parameter of function call

Missing case: statement(s) inside a switch construct
Missing break in case

Wrong branch construct - goto instead break
Wrong conditional compilation definitions

Wrong miss-by-one constant in initial data
Wrong initial data - array has value in worng order

Assignment / Initialization

Wrong

Extraneous "OR EXPR" in expression used as branch condition

Checking

Wrong

Missing variable auto-increment
Missing variable auto-decrement
Missing OR sub-expr in larger expression in assignment
Missing AND sub-expr in larger expression in assignment

Wrong parenthesis in logical expression used in assignment

Algorithm / Method

Missing

 Interface /O-O Messages

Wrong

Extraneous

Missing

Wrong parenthesis in logical expression used as branch condition
Wrong arithmetic expression in branch condition

Missing paremeter in function call

Missing return statement
Wrong value used in parameter of function call
Wrong paramenter order in function call

Wrong variable used in parameter of funtion call
Wrong return call

Missing OR sub-expression in parameters of function call
Missing AND sub-expr in parameters of function call

Function / Class / Object
Missing functionality
Wrong algorithm - large modifications

Wrong value used in variable initialization

Missing
Missing if construct around statements
Missing "AND EXPR" in expression used as branch condition
Missing "OR EXPR" in expression used as branch condition
Wrong logical expression used as branch condition

Wrong constant in initial data

Wrong string in initial data - missing one char
Wrong data types or conversion used
Wrong arithmetic expression used in assignment
Wrong logical expression used in assignment
Miss by one value assigned to variable
Wrong value assigned to variable

Wrong function called with same parameters
Extraneous variable assignment using another variable

Missing variable assignment using an expression
Missing variable assignment using a value
Missing variable initialization using an expression
Missing variable initialization using a value

Wrong string in initial data

Missing if-else construct plus statements
Missing if construct plus statements
Missing small and localized part of the algorithm
Missing large part of the algorithm

Missing sparcely spaced parts of the algorithm

Wrong

Wrong Algorithm - small sparce modifications
Wrong Algorithm - code was misplaced
Wrong function called with different paramenters

Description
Extraneous Function Call

Missing

Missing iteration construct around statements
Missing function call
Missing If construct plus else plus statements around statements
Missing if construct plus statements plus else before statements

The SAFE tool is used in [Natella, 2011], which is able to inject software faults in C and
C++ applications. The tool implements 13 fault operators, with injection being performed
at the source code level. In [Cotroneo et al., 2019] the authors empirically analysed a total
of 179 OpenStack bug reports (i.e., about 8% of the total number of bugs analysed in this
work and about one third of the bugs for which we have performed a detailed analysis).
The authors use a tool which generates an Abstract Syntax Tree and inject faults in the
tree, converting the result back to source code and place their focus on understanding
failures. The authors have recently further developed their work in [Cotroneo et al., 2020]
to propose a fault injection tool offered as a service, which supports the user through
the definition of some of the key steps of a fault injection campaign (e.g., workload and

9

Chapter 2

faultload definition, failure data analysis).

One well known problem of fault injection approaches is the cost to execute tests. As the
number of potential faults and locations to inject them is generally very high, in practice
the tester may be faced with numerous cases that must be executed, which is a time-
consuming activity. This is a very well-known problem in the mutation testing community
[Woodward, 1993].

2.3 Mutation testing

Fault injection is mostly used to understand the effect of the activation of faults in a certain
system, thus the target is set on the behavior of the system (e.g., if the system can tolerate
the activation of a certain fault). On the other hand, mutation testing has the main
goal of improving the tests effectiveness, by firstly evaluating their ability to defect software
faults (which allows improving the tests themselves) [Natella et al., 2016b] like illustrated
in Figure 2.3. Mutants (i.e., faulty versions of a certain program being evaluated) are
created by fault injection (fault types are named mutation operators), which results in the
problem of generating too many different mutants [Pizzoleto et al., 2019].

Mutation Testing Framework Tests

Mutated Source

Original source code

Mutated
source test

results

Original
source test

results

Mutation Testing Framework

Mutation test
results

Compare results

Killed mutants

Survivor mutants

Improve
source and
test code

Figure 2.3: Mutation testing process.

A huge number of different solutions for the above mentioned problem have been proposed
over the last decades and generally target the following goals, as discussed in detail in
[Pizzoleto et al., 2019]: i) reducing the total number of mutants; ii) detecting equivalent
mutants (i.e., mutants that are equal to the original program); iii) reducing the execu-
tion time; iv) reducing the number of test cases; v) generating specific mutants only; vi)
generating test cases.

Within the whole set of specific techniques that aim at reducing the overall cost of muta-
tion testing, and that range from parallel execution [Li et al., 2015, Wang et al., 2017], to
random mutation techniques [Kurtz et al., 2016, Petrović and Ivanković, 2018], compiler
optimization [Denisov and Pankevich, 2018, Kintis et al., 2018], minimization and priori-
tization of test sets [Derezińska, 2013, Zhang et al., 2013], evolutionary algorithms [Lima
and Vergilio, 2018, Fraser and Arcuri, 2015], among several others, we find classic cases
that particularly focus on reducing the application of certain mutation operators, namely
selective mutation [Zhang et al., 2013, Praphamontripong and Offutt, 2017] and sufficient
operators [Namin et al., 2008].

Parallel execution [Byoungju and Mathur, 1993] is a technique, where mutants are executed
against tests at the same time, by utilising the multiple cores of the processor. In [Li et al.,
2015], parallel execution of mutation testing was performed utilising several Amazon EC3

10

Background and Related Work

virtual machines with different characteristics and a performance and cost analysis was
done. The results showed that the testing tool was capable of taking advantage of the
numbers of cores and more powerful machines executed the tests in less time.

Selective mutation proposes to avoid operators that are responsible by large number of
mutants or that generate mutants that are killed by tests (i.e., do not pass the tests) that
also kill mutants of other operators. Selective mutation techniques have been proposed, for
instance, in [Praphamontripong and Offutt, 2017], where the authors evaluate the degree
of redundancy among mutation operators for Web applications by analyzing the types of
mutants that can be killed by tests that have been created with the purpose of killing
other types of mutants. Another example can be found in [Delgado-Pérez et al., 2017],
where authors evaluate operators for C++ classes using two rankings. One of the rankings
sorts the operators based on their redundancy, the other one sorts operators based on the
quality of the tests they allow to generate.

Sufficient operator techniques, which can also be seen as a particular case of selective
mutation, focus on discovering a subset of operators that still accurately measures the
effectiveness of the tests for the system under test. As examples, in [Just and Schweiggert,
2015], the authors propose non-redundant versions of a few operators (e.g., conditional
replacement, unary insertion, relational replacement), which allowed for a decrease of over
20% in the run time of the experiments. In [Namin et al., 2008], the authors apply statistical
methods, namely linear regression analysis, to programs written in C to identify a set of
sufficient operators. Previous research has discussed the fact that the mutation scores used
may be inflated, due to the fact of some mutants being redundant with respect to each
other, which centers the problem on finding more realistic mutation scores [Kurtz et al.,
2016].

Mutation testing is an established technique that is supported by numerous tools that
allow generating mutants and collecting results from the execution of the tests. There
are a few tools built for mutation testing of Python code, such as Mutmut [Hovmöller,
2021], Cosmicray [AS, 2021], Mutatest [Kepner, 2021], or MutPy [Hałas, 2021]. In general,
these tools use code as input, produce an abstract form of it (e.g., an abstract syntax
tree), generate mutants, based on predefined operators, and run certain types of tests
(e.g., typically unit tests).

Mutatest [Kepner, 2021] uses a list of 12 relatively low-level operators (e.g., bitwise compar-
ison and shift, arithmetic operation mutations) that mostly fit the Assignment/Initialization
and also Checking ODC defect type attributes. MutPy [Hałas, 2021] is based on a limited
list of 20 operators that tend to represent higher level operations like exception handler
deletion, break/continue replacement and also touches the Interface/O-O messages and
Relationship ODC defect type attributes. Mutmut [Hovmöller, 2021] relies on the follow-
ing types of mutations: i) operator mutations (e.g., replacing ’+’ with ’-’, replacing ’or’
with ’and’); ii) keyword mutations (e.g., replacing ’in’ by ’not in’); iii) numeric mutations
(e.g, adding one to a number); iv) name mutations (e.g., replacing ’copy’ with ’deepcopy’);
v) argument mutations (e.g., changing the name of a key in a key-value data structure);
and vi) string mutations (i.e., appending a constant to strings). In the case of Mutmut,
despite the large variety of operators, the focus is set on cases that mostly tend to fit
Assignment/Initialization and also Checking defect types. As we will see, in Chapter 4,
our study identifies representative faults with a level of detail that is not present in any of
these tools.

11

Chapter 2

2.4 Related Work Gaps

As a summary, current works on fault injection tend to resort to generic fault models (e.g.,
such as the one proposed in [Durães and Madeira, 2006]), built based on the analysis of C
applications, which may not be a good fit for newer types of systems, written in different
programming languages and different contexts. In the state of the art, research targeting
Python code is quite scarce (e.g., an example can be found in [Cotroneo et al., 2019], but
based on the analysis of a relatively small number of bug reports). The fault injection
applied in this thesis differs from mutation testing, with more operators being applied and
with more relevance based on the analysis of known faults using ODC.

In this work, we aim towards the definition of a configurable and extensible tool (in terms
of implemented faults) that is particularly tailored for the evaluation of multiple target
systems in a distributed manner and in parallel (i.e., for reducing the overall execution
time). By applying our tool, we aim at understanding, the overall effectiveness of the
battery of tests of a business-critical cloud platform (OpenStack, in our case), pinpointing
cases of tests that need to be modified, missing test cases, and summarizing general recom-
mendations for developers and testers, based in our findings. We also apply a typical fault
reduction technique [Namin et al., 2008], with the goal of understanding the cost/benefit
involved with running the battery of tests against all faulty OpenStack versions, or running
them against just a subset.

12

This page is intentionally left blank.

Chapter 3

FIT4Python – A Software Fault
Injection Tool for Python

In this chapter, we provide an overview of the main fault injection concept supported by
our tool, which we named FIT4Python (Fault Injection Tool for Python). We then go
through a basic view of its architecture, identifying the main components involved and
their role in the operation of the tool.

3.1 Tool Overview

The main idea behind FIT4Python is to allow emulating the presence of a certain type of
software fault in Python code. In practice it is able to modify the code, so that the bug is
inserted at an adequate code location, as illustrated in Figure 3.1.

Bug definition list

Source code Abstract
syntax tree

Faulty abstract
syntax tree

Faulty
source code

Figure 3.1: Basic operation of the FIT4Python tool.

Based on a certain bug definition (e.g., missing assignment, incorrect check), our tool is
able to: i) identify candidate locations at the source code of a certain system being tested;
and ii) insert the bug at one selected location. Starting from a source code file, the tool first
generates the corresponding Abstract Syntax Tree (AST). Then, based on the definition of
a single software fault (i.e., a software bug of a certain type, like a missing assignment or
invalid check) it is able to identify candidate locations in the AST and change one single
location, so that the AST now carries the bug. It then converts the AST back to source
code, which results in the generation of a faulty code version (i.e., carrying one known bug
of a certain type) that is then ready to be used. This is the main concept supported by
the tool, which we describe in further detail in the next section.

14

FIT4Python – A Software Fault Injection Tool for Python

3.2 FIT4Python Components and Operation

Figure 3.2 illustrates the four main components of our tool (in dark blue in Figure 3.2)
and how they collaborate at runtime, so that it is possible to generate and test a faulty
version of a given Python application.

Test Manager

Fault Injector

Connection
configuration

Connection
pool

Remote SUT
setup and
test scripts

Source code to be
manipulated

Bug definition list

1

3

Virtual machines
running SUT
instances

2

4 Faulty code to be
uploaded to the VMs

Tests results
queue

Report
generator7

5 Faulty code upload
and initiate tests

6

Figure 3.2: FIT4Python components and operating mode.

Our tool begins by reading the configuration, namely the connection configuration to re-
mote machines (e.g., virtual machines (VM) that will be accessed by SSH and SFTP)
responsible for running tests. Besides performing fault injection, FIT4Python is also able
to trigger a set of predefined tests (provided by the user of the tool) to be run over faulty
version(s). It then configures a connection pool (step 1 in Figure 3.2) to be used later to
prepare and execute tests.

In step 2, a given number of virtual machines is prepared to run tests, namely a copy
of the System Under Test (SUT) without artificially introduced bugs is deployed and a
battery of tests (e.g., unit, functional, and integration tests) is uploaded. Thus, all virtual
machines are setup with the unmodified SUT instances ready to be executed.

The Test Manager, in step 3, orders the Fault Injector to read one file (the first file of a list
of target files with size T , selected by the tool user) that will be used as the target of fault
injection. At the same time, it also informs the Fault Injector that it should use the first
software fault from a list of predefined software faults (with size B and represented by ’Bug
definition list’ in Figure 3.2) for performing fault injection. Based on the two inputs (i.e.,
the target file and the fault definition), the fault injector identifies all candidate locations
(L) in the AST corresponding to the source code of the provided file, where it is possible
to inject the software fault. Certain faults will also have additional configuration (C); for
instance, it is possible to emulate a wrong assignment with a boolean, text, or date, which
represents three different cases. It then generates faulty versions of the file, with each
version corresponding to the application of one fault at one of the identified locations for
the provided file and using one particular configuration. The injection of the fault follows
the procedure explained earlier in Figure 3.1.

Considering that the user of the tool sets no particular restrictions, for a certain list of
T target files, a list of B faults, the corresponding number of candidate locations L (that
depends on the file and on the fault to be injected) and particular fault configuration C,

15

Chapter 3

we will have the following number N of faulty versions:

N =
T∑
i=1

B∑
j=1

Lj ∗Cj (3.1)

Note that for certain faults, we may have 0 (zero) candidates if the tool finds there is no
suitable place to inject that particular fault. The list of predefined faults and the list of
candidate locations can obviously be reduced by the tool user to subsets that comply with
her/his requirements (e.g., available resources for executing experiments).

It is relevant to mention at this point that, the list of faults that we are using in this work is
described in Chapter 4 and that we opted to build this list based on the analysis of reported
bugs for a popular Python-based system (OpenStack). We are essentially using the ODC
- Orthogonal Defect Classification [IBM, 2013] along with a customized characterization
of faults based on the one defined by Durães and Madeira [Durães and Madeira, 2006].
Please refer to Chapter 4 for the complete details.

The resulting faulty files are returned to the Test Manager (step 4), and then distributed
(step 5) among the VM instances (one faulty version per instance), replacing the original
component in the SUT that had been previously uploaded in step 2. Each VM instance
will hold a different faulty file and in case there are no sufficient instances for all faulty
versions, the remaining faulty files will be placed on a waiting queue for later execution.

In step 6, the Test Manager orders the previously configured tests to start and waits for
each VM instance to conclude. Whenever an instance concludes, tests results are copied
back to the test manager and pushed to a results queue. In case tests block, the tool is
able to continue from the last succeeded set of tests. Whenever an instance becomes free,
the waiting queue is analyzed for any faulty files and if any files are present in the queue,
the next file is uploaded and tests begin against the new faulty SUT. The Test Manager
is also responsible for resetting the state of the VMs whenever the user finds appropriate
(e.g., after running a set of tests).

Periodically, the Report Generator (step 7) checks the results queue, processes the results
and generates a summary for easier analysis. Each line of the summary holds basic infor-
mation that allows to easily identify problematic cases (as signaled by the test battery).
This information includes basic aspects necessary for understanding the outcome of tests,
like the identifier of the test, the fault type identifier, the original code line, the faulty code
line, details the outcome of the test, the ratio of tests failed and a summary of the test
execution.

The whole process is centered around a pre-built list of faults, but it is fairly easy to add
a new fault. In practice, the user needs to extend AbstractFault and implement the
following methods:

i) get_fault_id, which returns a fault identifier (e.g., WVAV);

ii) count_all, which provides a total count of the candidate locations where the fault is
applicable;

iii) transform, which uses source code and the respective AST (which are created when the
new fault class is instantiated) to produce modified code along with metadata for reporting
(e.g., the affected code line number(s), the original code line(s), the modified code line(s)).

Thus, we mostly reduced the developer’s tasks implementing the concept behind the fault
in the transform method.

16

FIT4Python – A Software Fault Injection Tool for Python

Finally, the new class should be added to the tool’s faults module in order to be dynami-
cally instantiated by the tool and the fault identifier included in the configurations (in case
the intention is to run just part of the existent faults).

17

Chapter 4

Fault Model

In this chapter, we describe how we built the list of software faults used by our tool. We
built it based on the analysis of bug reports for OpenStack, a Python-based system. We
selected OpenStack due to its popularity and usage in business-critical scenarios. The
alternative would be to resort to a more generic fault model [Durães and Madeira, 2006],
however possibly less representative of a Python case and not accounting for software faults
that may occur in Python, but not in C (e.g., exception handling related faults). We went
through the following steps:

i. Selection of a random set of bug reports from OpenStack’s public bug tracking sys-
tem;

ii. Manual classification of each software fault present in a particular bug report, car-
ried out by one researcher (named researcher1) and using the Orthogonal Defect
Classification (ODC);

iii. Independent verification (i.e., classification by a different researcher, named researcher2)
of 1/4 of the software faults classified in the previous step;

iv. Manual classification of 1/4 of software faults using an extension to ODC, based on
the extension proposed in [Durães and Madeira, 2006].

We began by randomly selecting about one fifth of all OpenStack Nova bug reports, that
had been marked with ’fixed and released’. Duplicates were filtered out during search and
no particular importance filter was applied to the search (i.e., the bugs touch all importance
levels defined by OpenStack developers, from unknown to critical). Also, no particular
profile was selected (i.e., it may be any kind of bug, it may be a security vulnerability or
not).

The data was extracted from OpenStack Nova bug tracking system available at launch-
pad.net/nova. OpenStack is built around several components, in which the Nova compo-
nent plays a central role, as it provides a way to provision compute instances (i.e., virtual
servers). Table 4.1 identifies OpenStack components, as defined in the system’s conceptual
architecture [OpenStack, 2021], and presents their associated development metrics.

As we can see in Table 4.1, Nova is the oldest OpenStack component and the second largest
in terms of lines of code. Since its inception it has been the most actively developed, also
gathering a larger community of developers. It also holds the highest number of reported
bugs, which is important for analysis activities, as diversity tends to increase with larger

18

Fault Model

Table 4.1: OpenStack component development metrics.

Component Lines of Code # Commits # Developers Reported bugs Creation date
Ceilometer 36927 7035 336 1355 Nov 2012
Cinder 548311 18984 757 5308 Nov 2012
Glance 247202 7214 391 2127 Aug 2011
Heat 233995 15829 392 26 Dec 2012
Horizon 135535 16012 641 5005 Oct 2011
Ironic 203389 11504 406 15 May 2013
Keystone 162253 14611 456 2648 May 2013
Neutron 349789 25091 748 8031 Sep 2011
Nova 537880 58843 1076 10152 Jul 2010
Sahara 60989 6467 202 10 Oct 2013
Swift 317604 9472 311 1656 Jul 2010
Trove 94180 4573 232 24 Jun 2013

numbers of software defects. We aimed at analysing precisely 2,048 bugs (which represent
nearly 20% of 10,152 ’fixed and released’ bugs, as of July 2021), so we began randomly
extracting bug reports and pre-analysing them to understand if they were valid candidates
or not. This resulted in the collection of 2,566 bugs from which we eliminated 518 bugs.
The reasons for eliminating these bugs were the following:

- Bug target is documentation. We are only interested in bugs that require a code fix.

- Bug fits in OpenStack’s wish list. Suggestions or improvements were discarded.

- Bug refers to an error in unit tests or functional tests. Tests are not part of this
system, as they are not part of the release or executable code in production.

By the end of this process, we reached a dataset composed of a total number of 2,048
unique bug reports, from which 182 had been marked with a Common Vulnerabilities and
Exposures (CVE) identifier. Manual classification using ODC was then performed by
an Early Stage Researcher, named researcher1, against each of the 2,048 reported software
defects. In this work, we are using the ’Defect Type’ and ’Qualifier’ ODC attributes (the
useful attributes for our purpose), although in our detailed results available at [Marques
et al., 2021], the reader may find the data for other attributes for which we had suffi-
cient information to perform the classification (i.e., Activity, Trigger, Impact) and also the
severity associated with each reported bug classified using the CRASH scale [Kropp et al.,
1998].

Table 4.2 shows the distribution found for the ODC ’Defect Type’ attribute in our dataset
and Table 4.3 shows the distribution found for the ODC ’Qualifier’ attribute. We can
observe the distinct prevalence of the different values, which is useful to understand which
types of bugs are frequent.

Table 4.2: ODC defect type results

Defect type Percentage
Interface/O-O Messages 17.63
Assignment/Initialization 13.53
Algorithm/Method 45.75
Function/Class/Object 13.13
Checking 7.47
Timing/Serialization 0.83
Relationship 1.66

To verify the classification of the software defects and to understand the overall quality
of the classification process, we asked an Early Stage Researcher (named researcher2) to
perform an independent classification of a subset of defects composed of 25% of the software

19

Chapter 4

Table 4.3: ODC qualifier results

Qualifier Percentage
Incorrect 52.83
Missing 42.73
Extraneous 4.44

defects present in the whole dataset (i.e., 512 bugs). As this is a time consuming activity,
we used this number of bugs, essentially due to human resource limitations. However, it
should be sufficient to provide a first indicator of the quality of the dataset. Note that this
is nearly the size of the dataset found in [Durães and Madeira, 2006], which is composed
of 668 bugs.

Table 4.4 shows the detailed outcome of the verification procedure for the Defect Type
attribute and Table 4.5 presents the same for the Qualifier attribute. In each of the
matrices, each cell holds the total number of defects marked with a particular attribute
value, whereas the values that are read in the rows represent the outcome of the verification
carried out by researcher2. In the diagonal, we mark the true positives (the defects in which
both researchers agreed).

Table 4.4: Verification results for Defect Type.

A/I C A/M F/C/O T/S I/OM R
Assignment/Initialization (A/I) 60 2 15 2 0 9 1
Checking (C) 0 25 2 0 0 0 0
Algorithm/Method (A/M) 2 6 233 25 1 19 0
Function/Class/Object (F/C/O) 1 0 6 39 0 3 1
Timing/Serialization (T/S) 0 0 0 0 0 0 0
Interface/O-O Messages (I/OM) 3 3 5 0 1 37 1
Relationship (R) 1 0 5 0 0 2 2

Table 4.5: Verification results for Qualifier.

Incorrect Missing Extraneous
Incorrect 206 22 3
Missing 29 233 1
Extraneous 3 0 15

Despite the several cases of disagreements between both researchers, the reality is that the
main cases of disagreement are just a few. For Defect Type the most frequent disagreements
(considering the absolute numbers) are between bugs marked as Assignment/Initialization
by researcher1 but marked as Algorithm/Method by researcher2 and also between Al-
gorithm/Method marked by researcher1, which were marked as F/C/O or I/OM by re-
searcher2.

We also analyzed the inter-rater agreement using Cohen’s Kappa coefficient (k), which
characterizes the agreement between two raters that classify items in mutually exclusive
categories [Cohen, 1960]. The definition of k is given by the following Equation 4.1:

k =
po − pc
1− pc

(4.1)

where po is the relative observed agreement between raters (i.e., accuracy) and pc is the
probability of agreement by chance. If both raters fully agree, then k = 1, if there is no
agreement beyond what is expected by chance, then k = 0, and, finally, a negative value
reflects the cases where agreement is actually worse than random choice. The following

20

Fault Model

qualitative terms apply for the following values of k: poor when k < 0, slight when
0 <= k <= 0.2, fair when 0.21 <= k <= 0.40, moderate when 0.41 <= k <= 0.60,
substantial when 0.61 <= k <= 0.80, and finally almost perfect when 0.81 <= k <= 1.00
[Landis and Koch, 1977]. Table 4.6, presents the accuracy results (i.e., the number of true
positives divided by the total number of defects) for both ODC attributes being considered,
and the respective Kappa value.

Table 4.6: Accuracy and Cohen’s Kappa Agreement between researcher1 and researcher2.

Accuracy Cohen's Kappa Term
Defect Type 0.77 0.74 Substantial
Qualifier 0.89 0.83 Almost perfect

Table 4.6 shows that we obtained at least substantial agreement values for both attributes,
which increases our confidence in the overall quality of the dataset.

Finally, we performed an extended review of 25% of the bugs (512 bugs) based on
the extension to ODC proposed by Durães and Madeira [Durães and Madeira, 2006]. We
actually augmented the authors extension, mostly due to the fact that certain types of bugs
were not observed in their work with C applications (e.g., faults related with exception
handling, which does not exist in C, or faults related with Object Oriented Programming).
Table 4.7 presents our extension to ODC and the resulting classification for these 512 bugs,
including their prevalence in absolute numbers and a marker indicating if the fault is new
(i.e., with respect to [Durães and Madeira, 2006]).

The data in Table 4.7 indicate, in a detailed manner, which types of faults are more
prevalent which is useful for carrying dependability evaluation experiments, namely those
based on the definition of fault models - in this case for Nova Compute, the core component
of OpenStack. There are two relevant aspects to mention regarding the data in Table 4.7.

- More than one fourth of the faults identified are new, with respect to the ODC
extension proposed in [Durães and Madeira, 2006], which reflects the specificity of
the context and also the number and type of analysed software defects.

- Of the new faults, more than half are directly related to Python features, in particular
those related with exception handling, and object-oriented features like the use of
constructors and inheritance.

Listings 1, 2, and 3 illustrate three cases of faults that are specific to the Python context.
The listings respectively present particular cases of each of the three possible values for
the Qualifier ODC attribute: extraneous, missing, and wrong.

As we can see, Listing 1 represents a very simple case of an extraneous defect, where the
code is modified to handle a runtime exception that should not be caught at that particular
location (i.e., in line 9). Listing 2 calls a super class constructor in line 5 (whose function
would be to inject a reference to a database driver), and we can see that the faulty code
omits such call. Finally, Listing 3 presents the case where an exception is being handled
(ValueError in line 5) and we can see that the corresponding faulty version tries to catch
an exception that is not related with the original one (i.e., SystemExit in line 16). Please
refer to our replication package at [Marques et al., 2021], which includes one example of
the application of each of the fault types to the Nova Compute API.

Overall, the identified types of faults reflect the overall prevalence of defects found in
Nova Compute and, in this sense, there may be more faults that relate to the context

21

Chapter 4

Table 4.7: Fault types based on the ODC extension in [Durães and Madeira, 2006].

Defect Type Qualifier ID # New
EALD 2 ✓
EIFS 3
MCA 4
MFC 25
MIEA 2
MIEB 1
MIES 5
MIFS 42
MLPA 28
MLPL 5
MLPS 18
WALD 44
WALR 9
WASL 59 ✓
WFCD 7
WFCS 11

Extraneous EVAV 3
MVAE 13
MVAV 7
MVIE 1
MVIV 2
WIDS 13
WIDSL 2
WSUT 1
WVAE 3
WVAL 2
WVAM 0
WVAV 15
WVIV 5

Extraneous EIA 3 ✓
MIA 17
MLAC 6
MLOC 1

Wrong WLEC 9
Extraneous EFCT 3
Missing MFCT 33
Wrong WALL 31

ECEFL 2 ✓
EPFC 4 ✓
MCEFL 23 ✓
MPFC 13
MRS 2
WCEFL 2 ✓
WPFL 10
WPFO 1
WPFV 10
WRV 2
MICAFC 1 ✓
MSC 1 ✓
WASC 2 ✓
WCE 1 ✓
WDFSC 1 ✓

Missing MAS 1 ✓
Missing MSFC 1 ✓

Timing /
Serialization

Missing Serialization calls
Missing Synchronization calls

Description

Relationship

Missing
Missing Object construct around function call
Missing Super Classe construct call

Wrong
Wrong arguments in super construct
Wrong String encoding
Wrong derivation from super class

Missing parameter in function call
Missing return statement

Wrong

Function /
Class /
Object

Extraneous functionality
Missing functionality
Wrong algorithm - large modifications

Interface /
O-O Messages

Extraneous
Extraneous caught exceptions for function call
Extraneous parameter in function call

Missing
Missing caught exceptions for function call

Wrong caught exceptions for function call
Wrong value used in parameter of function call
Wrong paramenter order in function call
Wrong variable used in parameter of funtion call
Wrong return call

Checking

Extraneous if construct around statements

Missing
Missing if construct around statements
Missing "AND EXPR" in expression used as branch condition
Missing "OR EXPR" in expression used as branch condition
Wrong logical expression used as branch condition

Wrong

Wrong string in initial data
Wrong string in initial data - missing one char
Wrong data types or conversion used
Wrong arithmetic expression used in assignment
Wrong logical expression used in assignment
Miss by one value assigned to variable
Wrong value assigned to variable
Wrong value used in variable initialization

Wrong Algorithm Small Localised modifications
Wrong function called with different paramenters
Wrong function called with same parameters

Assignment /
Initialization

Extraneous variable assignment using another variable

Missing

Missing variable assignment using an expression
Missing variable assignment using a value
Missing variable initialization using an expression

Wrong

Wrong Algorithm - small sparce modifications
Wrong Algorithm - code was misplaced

Algorithm /
 Method

Missing variable initialization using a value

Extraneous
Extraneous Algorithm - Small sparsed modifications
Extraneous Function Call

Missing

Missing iteration construct around statements
Missing function call
Missing If construct plus else plus statements around statements
Missing if construct plus statements plus else before statements
Missing if-else construct plus statements
Missing if construct plus statements
Missing small and localized part of the algorithm
Missing large part of the algorithm
Missing sparcely spaced parts of the algorithm

of the Python programming language. Still, in the analysed project, we found them to
not be representative and, as such are not part of this set of faults. Also, it is worthwhile
mentioning that current mutation testing tools like Mutatest [Kepner, 2021], Mutpy [Hałas,
2021], or Cosmic Ray [AS, 2021] do not capture some of the identified faults in this work,
namely the higher level ones (e.g., missing synchronization calls, missing object construct
around functional call). At the same time, our tool does not implement some of the
operators provided by current tools, as they were not present in our software defects dataset
(e.g., break continue replacement) and, in this sense, were found to not be representative.

Overall, the list in Table 4.7 aims at characterizing real mistakes made by developers, in
a fine granularity (e.g., missing if construct plus else plus statements around statements;

22

Fault Model

1 ### Original code:
2 if instance.locked and not context.is_admin:
3 raise exception.InstanceIsLocked(instance_uuid=instance.uuid)
4

5 ### Faulty code:
6 try:
7 if instance.locked and not context.is_admin:
8 raise exception.InstanceIsLocked(instance_uuid=instance.uuid)
9 except:

10 aux = 'extraneous caught exception'

Listing 1: Extraneous caught exceptions for function call (ECEFL).

1 ### Original code:
2 def __init__(self, rpcapi=None, servicegroup_api=None):
3 self.rpcapi = rpcapi or compute_rpcapi.ComputeAPI()
4 self.servicegroup_api = servicegroup_api or servicegroup.API()
5 super(HostAPI, self).__init__()
6

7

8 ### Faulty Code:
9 def __init__(self, rpcapi=None, servicegroup_api=None):

10 self.rpcapi = rpcapi or compute_rpcapi.ComputeAPI()
11 self.servicegroup_api = servicegroup_api or servicegroup.API()

Listing 2: Missing super class constructor call (MSC).

missing variable initialization using an expression), and within the context of this work.
The tool presented in this thesis implements all the faults shown in Table 4.7.

23

1 ### Original code:
2 def _get_image_meta_obj(image_meta_dict):
3 try:
4 image_meta = objects.ImageMeta.from_dict(image_meta_dict)
5 except ValueError as e:
6 # there must be invalid values in the image meta properties so
7 # consider this an invalid request
8 msg = _('Invalid image metadata. Error: %s') % six.text_type(e)
9 raise exception.InvalidRequest(msg)

10 return image_meta
11

12 ### Faulty code:
13 def _get_image_meta_obj(image_meta_dict):
14 try:
15 image_meta = objects.ImageMeta.from_dict(image_meta_dict)
16 except SystemExit as e:
17 # there must be invalid values in the image meta properties so
18 # consider this an invalid request
19 msg = _('Invalid image metadata. Error: %s') % six.text_type(e)
20 raise exception.InvalidRequest(msg)
21 return image_meta

Listing 3: Wrong caught exceptions for function call (WCEFL)

This page is intentionally left blank.

Chapter 5

OpenStack Case study

In order to illustrate the capabilities of our tool, we selected a popular Python application
to carry out a fault injection campaign. The application selected was the latest stable
version (at the time of the experiments) of OpenStack – version Ussuri (openstack.org), a
cloud management platform used nowadays to support business-critical systems. We aimed
at its core component Nova (which is bundled in version 21.0.0 in the Ussuri version
of OpenStack). Nova’s key component is Compute, which aims at providing massively
scalable, on demand, self-service access to compute resources. The Compute file api.py
holds the main operations that support the Compute service and that we selected to be
the target of fault injection. This file is composed of 3,870 source lines of code resulting in
2,975 logical lines of code, spread across 233 blocks (i.e., classes, functions, methods), and
for which McCabe’s cyclomatic complexity [McCabe, 1976] reaches 17.0.

Our tool was configured with the scripts to remotely deploy OpenStack Ussuri and run
OpenStack developers’ full battery of tests, which comprise unit, functional, and integra-
tion tests.

Using the resources made available by INCD, we setup 5 virtual machines running Ubuntu
Server 16.04 LTS with 8 core CPU, 16GB of RAM, and 50GB of storage with the main
intention of decreasing the total time required to run the time-intensive experiments.

We implemented all 54 fault types shown earlier in Table 4.7 and, as a result of the fault
injection process, we ended up with a total of 11,309 faulty versions to test. These versions
were the result of injecting most of the faults in all possible candidate locations. The
exception is the set of faults of type EALD, MLPA, MLPS, WALD, WALR, WASL, EIA
for which we injected a single fault per code block (i.e., per method) because these faults
can result in an undetermined amount of injection candidates. This is very clear in the
particular case of EIA (i.e., extraneous if construct around statements), which is a fault
of type checking, where there is the presence of extraneous code, which can obviously
take numerous forms and which we implemented using a basic case as example. In this
particular case of EIA, we randomly select an interval of lines of code within the method
and add an if construct around them, with the condition validating to false (i.e., so that
it affects the code execution). Notice also that, in Table 5.1, the fault type WCE (wrong
string encoding) does not have any injected locations due to the fact that there is no string
encoding conversion in the code file under test. The faulty versions were then integrated
in the deployment of OpenStack setup in the virtual machines (as illustrated earlier in the
description of Figure 3.2).

With the faulty deployment in place, our tool started the tox command, which creates

26

OpenStack Case study

virtual environments, populates them with dependencies and runs all of the tests associated
with OpenStack’s Continuous Integration system. The tool runs 17,344 unit tests, 2,272
functional tests, and 2,197 integration tests, for which we analyse the outcome in the next
paragraphs.

We performed more than 245 million test case executions and first identified the cases where
the fault injected was not detected by any of the tests ran by the continuous integration
system used by OpenStack developers. Table 5.1 presents the results, in particular the
number of faults injected by fault type and, from those, how many were undetected by
OpenStack Unit tests, Functional tests, and Integration tests.

Table 5.1: Experimental results overview.

% # % # % # %
EALD 233 0 0% 10 4% 233 100% 0 0%
EIFS 501 0 0% 261 52% 498 99% 0 0%
MCA 53 0 0% 11 21% 53 100% 0 0%
MFC 1310 0 0% 583 45% 1306 100% 0 0%
MIEA 63 0 0% 24 38% 63 100% 0 0%
MIEB 63 0 0% 17 27% 63 100% 0 0%
MIES 63 0 0% 9 14% 61 97% 0 0%
MIFS 293 0 0% 132 45% 293 100% 0 0%
MLPA 233 0 0% 77 33% 233 100% 0 0%
MLPL 129 0 0% 26 20% 129 100% 0 0%
MLPS 233 0 0% 12 5% 233 100% 0 0%
WALD 233 0 0% 0 0% 222 95% 0 0%
WALR 233 0 0% 7 3% 232 100% 0 0%
WASL 233 0 0% 0 0% 213 91% 0 0%
WFCD 297 0 0% 90 30% 274 92% 0 0%
WFCS 382 0 0% 0 0% 367 96% 0 0%
EVAV 190 0 0% 27 14% 190 100% 0 0%
MVAE 39 0 0% 0 0% 39 100% 0 0%
MVAV 7 1 14% 3 43% 7 100% 1 14%
MVIE 213 35 16% 44 21% 211 99% 19 9%
MVIV 31 4 13% 9 29% 31 100% 1 3%
WIDS 9 6 67% 8 89% 9 100% 6 67%
WIDSL 9 4 44% 4 44% 9 100% 4 44%
WSUT 13 1 8% 4 31% 13 100% 1 8%
WVAE 26 8 31% 13 50% 25 96% 5 19%
WVAL 19 3 16% 6 32% 18 95% 1 5%
WVAM 2 0 0% 0 100% 2 100% 0 0%
WVAV 5 0 0% 4 80% 5 100% 0 0%
WVIV 24 9 38% 11 46% 24 100% 5 21%
EIA 233 0 0% 35 15% 233 100% 0 0%
MIA 356 67 19% 121 34% 355 100% 45 13%
MLAC 109 0 0% 62 57% 109 100% 0 0%
MLOC 26 0 0% 22 85% 26 100% 0 0%
WLEC 260 38 15% 93 36% 258 99% 26 10%
EFCT 5 0 0% 0 0% 5 100% 0 0%
MFCT 233 0 0% 63 27% 204 88% 0 0%
WALL 5 0 0% 0 0% 4 80% 0 0%
ECEFL 233 0 0% 64 27% 232 100% 0 0%
EPFC 1238 0 0% 285 23% 1150 93% 0 0%
MCEFL 76 8 11% 34 45% 76 100% 7 9%
MPFC 969 172 18% 383 40% 966 100% 125 13%
MRS 187 16 9% 27 14% 186 99% 9 5%
WCEFL 82 0 0% 66 80% 79 96% 0 0%
WPFL 49 0 0% 27 55% 49 100% 0 0%
WPFO 711 0 0% 201 28% 645 91% 0 0%
WPFV 1132 0 0% 445 39% 1086 96% 0 0%
WRS 187 0 0% 59 32% 186 99% 0 0%
MICAFC 25 0 0% 13 52% 25 100% 0 0%
MSC 3 1 33% 1 33% 3 100% 1 33%
WASC 3 0 0% 0 0% 3 100% 0 0%
WCE 0 - - - - - - - -
WDFSC 5 0 0% 3 60% 5 100% 0 0%
MAS 1 0 0% 1 100% 1 100% 0 0%
MSFC 42 41 98% 35 83% 42 100% 34 81%

Undetected by Integration Undetected by all

Al
go

rit
hm

/M
et

ho
d

Ch
ec

ki
ng

As
si

gn
m

en
t/

In
iti

al
iz

at
io

n

Injected
Locations

Fault
Fault
Type

Undetected by Unit

F/
C/

O
In

te
rf

ac
e/

O
-O

 M
es

sa
ge

s
Re

la
tio

ns
hi

p
T/

S

Undetected by Functional

Our experiments revealed a total of 290 cases of faulty versions passing undetected through

27

Chapter 5

OpenStack’s battery of tests. Overall, we observe that the unit tests are the most effective
in detecting the injected faults (capturing 96.3% of all injected faults), followed by the
functional tests which, on their own, detect about two thirds of the faults (i.e., 69.6%).
The integration tests show a residual performance, being able to detect 2.9% of the faults.
Two thirds of the faults that escape the unit tests also elude detection by the functional
tests. Of the 293 faults that reach the integration testing level, only 1% are captured at
this level.

Table 5.2 presents the results from the Defect Type point of view. As we can see, in

Table 5.2: Experimental results grouped by Defect Type.

% # % # % # %
Algorithm/Method 4552 0 0% 1259 28% 4473 98% 0 0%
Assignment/Initialization 587 71 12% 133 23% 583 99% 43 7%
Checking 984 105 11% 333 34% 981 100% 71 7%
F/C/O 243 0 0% 63 26% 213 88% 0 0%
Interface/O-O Messages 4864 196 4% 1591 33% 4655 96% 141 3%
Relationship 36 1 3% 17 47% 36 100% 1 3%
T/S 43 41 95% 36 84% 43 100% 34 79%

Fault Type Injected
Locations

Undetected by Unit Undetected by Functional Undetected by Integration Undetected by all

Table 5.2, the Timing/Serialization faults tend to pass undetected by all tests, which re-
flects the general difficulty of detecting this kind of faults. Assignment/Initialization and
Checking are the next contributors, much at a much lesser extent. Also, it is worthwhile
mentioning the fact that the tests were able to capture all Algorithm/Method and all Func-
tion/Class/Object faults, which are all detected at the unit test level. The unit tests are
also quite effective with Interface/O-O Messages and Relationship faults. Functional tests
show slightly better performance with Assignment/Initialization, Function/Class/Object,
and Algorithm/Method, but generally perform in a balanced manner (with the exception
of Timing/Serialization defects). Integration tests are generally ineffective in detecting the
various types of faults.

Table 5.3 presents the results grouped by the Qualifier attribute. By analysing the results

Table 5.3: Experimental results grouped by Qualifier.

% # % # % # %
Extraneous 2633 0 0% 682 26% 2541 97% 0 0%
Incorrect 3919 69 2% 1041 27% 3728 95% 48 1%
Missing 4757 345 7% 1709 36% 4715 99% 242 5%

Qualifier Injected
Locations

Undetected by Unit Undetected by Functional Undetected by Integration Undetected by all

from the point of view of the Qualifier attribute, we mostly see that ’missing’ faults con-
tribute the most to the number of undetected faults, while ’extraneous’ do not contribute
at all. From the testing level perspective, we again see the high effectiveness of the unit
tests, in particular capturing the ’extraneous’ faults, which are totally detected at this
testing level.

We further analysed 25% (72) of the total undetected cases (i.e., a sample that would
allow us to obtain insights regarding the quality of the test suite). We performed this
analysis focusing on two key aspects: i) understanding if the injected fault could really
affect the regular behavior of the application (via code inspection); ii) understanding which
action should be taken so that the particular (probable) fault is caught by the tests (e.g.,
modifying an existent unit test or creating a new one). We did the individual analysis of
each undetected case by inspecting calls (made by the different tests) to the affected area,
thus identifying the test or set of tests involved, and then analysing them for a potential
modification or need for a new test.

28

OpenStack Case study

Each corrective action was marked with one of three numeric values in Table 5.4, charac-
terizing the associated difficulty (1 for trivial, 2 for moderate, 3 for complex) and described
as follows. We consider a correction to be trivial if it involves validating if a returned value
is the expected, which includes asserting that fields of a returned object hold non-null
values, or, in the case the function under test throws exceptions, verifying if an exception
raised is the expected. A correction marked with moderate also involves validating spe-
cific branches in the code (e.g., validating that certain inner function calls are executed
and also return expected values), by providing diverse input values to the functions under
test. This definition aligns with the term ’simple path’ used in the ODC trigger attribute
[IBM, 2013]. Finally, a correction marked with ’complex’ aims at executing specific mul-
tiple combinations of code paths (i.e., execute multiple branches under several different
conditions). This definition aligns with the term ’complex path’ used in the ODC trigger
attribute [IBM, 2013]. In practice, this type of fix may require substantial refactoring of
existing tests or a significant amount of effort to create a new test.

In what concerns corrections, we set the focus at the unit test level, which allows early
disclosure of defects, preventing them to reach later testing phases (e.g., integration). We
did, however, consider to correct functional or integration tests, in case the difficulty of the
correction would be complex. Table 5.4 overviews the analysed problems (i.e., the sample
of 25% of the total number of undetected faults) and necessary corrections. All detailed
results are available online at [Marques et al., 2021].

As we can see in Table 5.4, all problems disclosed could be solved directly at the unit testing
level (we did not identify any particularly difficult case that should be handled otherwise).
Of the 72 analysed problems, about half of them (i.e., 34) are marked with trivial, 38%
with moderate, and only 15% are considered to be complex. More than half (i.e., 57%) can
be fixed by adding a new unit test(s). The most common problems detected are related
with wrong exceptions being raised and incorrect values being passed as parameter to other
functions that might result in incorrect values being returned. In the next paragraphs, we
highlight a few illustrative cases including the action required to detect each case.

Injected fault 4 (WIDS) modifies a string assigned to a global variable. This variable
is used to raise an exception based on a string passed as parameter. The fault causes an
incorrect exception to be raised and, because there are no unit tests for the given function,
the fault is not detected. To deal with this issue, a trivial correction would consist in
creating a new unit test that verifies the raised exception against the value passed as
parameter.

Injected fault 179 (MIA) affects a method that receives a set of VM instance attributes
that are used in a lookup operation (e.g, system metadata, security groups). In case None
is provided to the method, the defaults are used, otherwise the method arguments are
used. The injected fault removed the if condition that controls this decision; thus, the
default values are always used making it impossible to fetch specific details about a certain
instance, which breaks the intended functionality. This passes undetected by the unit tests
because the method is tested precisely with values that are equal to the defaults. To cover
this case, a test case using diverse combinations of the different attributes involved should
be added (the correction is marked with moderate).

In the case of Injected fault 560 (WLEC), a branch condition is modified causing a
variable holding an attachment id to be set incorrectly, this variable is later passed as
parameter to a function that detaches a volume (a block-level storage device that can be
attached to an instance). The tests do not detect this because there is no validation of
the parameters passed to the function. To cover this case, the tests should be modified to
test complex paths and branch execution using data input diversity. This diversity should

29

Chapter 5

Table 5.4: Analysed problems and necessary corrections.

Type Fault Id Problem summary
MVAV 1953 Incorrect exception log Modify - Validate exception message 1

1724 Incorrect exception log Modify - Validate exception message 1
1779 Incorrect field initialization Modify - Validate all object's fields 1

1821, 1834 Incorrect value passed to function call Add - Test multiple input variations 2
1852 Incorrect value passed to function call Modify - validate inputs to mock function 1

MVIV 1938 Incorrect exception raised Add - Add test to validate exception raised 1
2, 3, 4 Incorrect exception raised Add - Add test to validate exception raised 1

1 Incorrect value passed to function call Add - Test multiple input variations 2
6, 7 Incorrect exception log Modify - Validate exception message 1

WIDSL 1975, 1976, 1977 Incorrect exception raised Add - Add test to validate exception raised 1
WSUT 1981 Incorrect exception raised Add - Test multiple input variations 2

2004 Exception not thrown Add - Test multiple input variations 2
2001 Incorrect value passed to function call Modify - Validate all object's fields 1
2013 Incorrect exception log Modify - Validate exception message 1

WVAL 2033 Incorrect value passed to function call Modify - validate inputs to mock function 1
2039, 2042 Incorrect log message Add - Test multiple input variations 2

2041 Return an incorrect value Modify - validate inner function output 2
2045 Return object with incorrect value Modify - Validate returned object's values 1
2065 Return an incorrect value Modify - Add validation for complex paths and branch execution 3
159 Extraneous exception log Modify - Add testing for complex paths and branch execution 3
66 Return an incorrect value Add - Test multiple input variations 2
64 Extraneous function call Add- Assert method not called 2

165, 351 Functionality broken Add - Add validation for complex paths and branch execution 3
150 Extraneous function call Modify - Add validation for complex paths and branch execution 3

326, 321, 36 Return an incorrect value Add - Test multiple input variations 2
179 Functionality broken Add - Test multiple input variations 2
188 Incorrect value passed to function call Modify - validate inputs to mock function 1
98 Extraneous exception log Modify - Add validation for complex paths and branch execution 3

265 Incorrect exception raised Add - Test with multiple mock outputs 2
377 Incorrect log message Modify - Validate log output 1
439 Return an incorrect value Modify - Add validation for complex paths and branch execution 3
560 Incorrect value passed to function call Modify - Add validation for complex paths and branch execution 3
593 Incorrect exception raised Add - Test with multiple mock outputs 2
606 For loop interrupted Add - Test multiple input variations 2
614 Cache reset Add- Assert method not called 2
546 Extraneous function call Add- Assert method not called 2

630, 645, 683 Incorrect exception raised Add - Add test to validate exception raised 1
648 Incorrect exception raised Add - mock function to raise exception 1

641, 642 Exception raised Add - Add test to validate exception raised 1
1015, 1018, 1667 Incorrect exception log Modify - Validate exception message 1

1036 Return object with incorrect value Modify - Validate all object's fields 1
1447 Function not called Modify - validate inputs to mock function 1
1124 Functionality broken Add - Test multiple input variations 2

1004, 1511 Incorrect log message Modify - Validate log output 1
1530, 1081 Functionality broken Modify - validate inputs to mock function 1

2140, 2142, 2222 Functionality broken Add - Test with multiple mock outputs 2
2197, 2198, 2199 Incorrect value passed to function call Modify - Add validation for complex paths and branch execution 3

2214 Return an incorrect value Add - Test with multiple mock outputs 2
T/S MSFC 718, 719, 720 Functionality broken Add - Test multiple input variations 2

MCEFL

Correction summary Difficulty

WIDS

MIA

WLEC

WVIV

MVIE

WVAE

As
si

gn
m

en
t/

In
iti

al
iz

at
io

n
Ch

ec
ki

ng
In

te
rf

ac
e/

O
-O

 M
es

sa
ge

s

MPFC

MRS

allow all cases of the if condition to be exercised, which combined with the validation
of the parameters in the inner function calls, would detect the fault. This correction is
marked with complex due to its nature, which involves exercising complex paths.

In Injected fault 645 (MCEFL) a try-except block is removed, leaving a set of in-
structions responsible for fetching a volume snapshot (which is a copy of a volume at a
specific moment) from the database, without any exception handling. This can result in
an exception being raised (not caught by any tests, which are not prepared for this kind
of exceptional behavior). Raising an unhandled exception in this context will result in a
stack trace logged, instead of the programmed error message. To cover this issue, new tests
cases should be added to trigger and assert that the expected exception is raised (i.e., a

30

OpenStack Case study

trivial correction).

Injected fault 718 (MSFC) removes a wrapper responsible for checking the VM instance
state and confirming it is not in a locked mode. The fault breaks the functionality because
it is possible to perform actions like shelving (stop instance and take a snapshot), that
should not be allowed. This fault is not detected by the unit tests because the instances
provided as parameter to the function have the locked state set to false. To cover this
case new tests should be added using input diversity for the instance locked state (i.e., a
trivial correction).

Injected fault 1511 (MPFC) removes the VM instance parameter on a log function
call, resulting in an incomplete log message, which may impair maintainability. The fault
is not caught by the unit tests because there is no validation on the log output. To cover
this case, the tests should be modified to validate if the log output is the expected (i.e., a
trivial correction).

It is worthwhile mentioning that although the use of simple techniques like coverage analysis
may be helpful in detecting some of the identified issues (e.g., 560, 179), in many other cases
they are not useful (e.g., 614, 641). This emphasizes the need of specialized approaches,
such as the one used in this thesis, when reliability is a critical requirement.

31

Chapter 6

Fault Reduction Analysis

In the previous chapter, we showed how our approach can be used to detect problems in the
system under test and especially the limitations in the OpenStack test suite. However, in
situations where time or resources are limited, it may not be possible to apply the approach
using its full configuration. This is because, depending on the system, the application of
our fault model can result in a very large number of faulty code versions that must then
be passed through the entire OpenStack’s (or some other system being tested) test suite.

During our experimental evaluation, the 54 implemented faults resulted in the generation
of 11,309 faulty versions. Running the entire OpenStack test suite over the faulty versions
with the tests being distributed over 5 virtual machines (in the conditions mentioned in
the previous chapter), takes about 235 days. Depending on the tester’s priorities, this
can make the approach very expensive to apply, which is a well known problem in the
mutation testing community [Pizzoleto et al., 2019, Zhang et al., 2013, Praphamontripong
and Offutt, 2017, Byoungju and Mathur, 1993, Namin et al., 2008].

Previous works on mutation testing have targeted the problem of the cost of test execution,
by reducing the number of generated faulty versions (i.e., mutants) [Pizzoleto et al., 2019,
Zhang et al., 2013, Praphamontripong and Offutt, 2017, Byoungju and Mathur, 1993,
Namin et al., 2008]. In the next paragraphs, we present the application of a well established
technique that not only allows reducing the total time cost of applying our approach but
also allows selecting a set of sufficient fault types (i.e., the faults that are most effective in
disclosing problems) in an informed manner.

In [Namin et al., 2008], the authors propose an approach to reduce the number of injected
faults by selecting a sufficient subset of fault types that can still accurately measure the
effectiveness of a test suite (i.e., they are able to disclose a significant number of issues in
the test cases). The approach is based on Least Angle Regression (LARS) [Efron et al.,
2004], which is an algorithm for fitting linear regression models to high-dimensional data
that allows to estimate which variables to select and their coefficients. The algorithm input
variables are called predictors and will determine the response by linear combination. For
a given problem with multiple input variables (in our case, each variable would correspond
to one fault type) the algorithm will try to select which predictors have more influence
over the response, based on the provided sample as training data. The algorithm’s outputs
are the coefficients for each of the predictors, which indicate the weight that each predictor
has over the response, the higher the absolute value the more correlated the predictor and
the response are.

The authors in [Namin et al., 2008] propose that test suite effectiveness can be measured

32

Fault Reduction Analysis

by computing a mutation adequacy ratio (AM), as described by Equation 6.1:

AM(P, S) = KM(P, S)/NM(P) (6.1)

In Equation 6.1, P refers to the program under test and S the test suite. KM is the total
number of faulty versions generated by all the fault types that are killed by the test suite
S (i.e., versions where the fault is detected by at least one of the tests) and NM the total
number of faulty versions generated by all faults. As we can see, AM is a value greater
than or equal to 0 and less than or equal to 1, where higher values represent more effective
test suites. A value of AM that is equal to 1 means that all injected software faults are
detected by the test suite, whereas AM = 0 means that no faults are detected by the test
suite.

For defining the input data, we randomly selected 128 groups composed of 1,130 faulty
versions each (10% of all the injected bugs) from the tests executed and calculated the
mutation adequacy ratio per fault type (AMi), according to Equation 6.2 (explained in the
next paragraph) and then calculate AM (the mutation adequacy ratio, i.e., the response),
as described in Equation 6.1, for each of the 128 groups. We used a statistical measure
of goodness of fit (R2), as described later in this chapter, to determine the number of
groups (128) and faulty versions (1,130). We ran the LARS algorithm with 64, 128, 256
and 512 groups of faulty versions using 10%, 20% and 50% of the total amount of faulty
versions tested (all combinations were tested and repeated 10 times) for each of them and
discovered that groups of 128 and 10% of the total bugs yielded the best results with
R2 averaging to 0.825 with the corresponding standard deviation being 0.017 (for the 10
runs). The LARS algorithm will use each of the groups to calculate the relation between
the predictors (AMi) and the response (AM), as follows:

AMi(P, S) = KMi(P, S)/NMi(P) (6.2)

In Equation 6.2, KMi is the number of faulty versions killed by the test suite for a given
fault type i, whereas NMi is the total number of faulty versions tested for the same fault
type. In our case, we have a total of 54 input variables (i.e., the 54 different fault types),
for which we will determine the corresponding AMi. The LARS output, expressed by
Equation 6.3, will allow us to predict the effectiveness of the test suite used in our case:

AM ∼= k + c1AM1 + c2AM2 + · · ·+ cjAMj (6.3)

Graphically, Equation 6.3 can be represented by a line that represents the relation between
the predicted AM (x axis) with the subset of fault types and the true value of AM (y axis).
k (which is named intercept and is also an output of the LARS algorithm) represents the
interception of the line with the y axis and c1, ..., cj are the coefficients for each selected
fault type. Fault types with coefficients equal to zero have no correlation with the response,
which means that injected faults of that type do not have impact in the mutation adequacy
score (AM) of the solution and, as such, are not part of the sufficient subset necessary to
accurately measure the test effectiveness.

In the case of our experiments, the execution of the LARS algorithm identified the 16
fault types that precisely generate issues that the OpenStack test suite does not capture,
with the corresponding coefficients for each fault type and intercept value. The results are
presented in Table 6.1.

33

Chapter 6

Table 6.1: Sufficient fault types.

Fault type Description Coefficient
Number of

faulty versions
MPFC Missing parameter in function call 0.0895868 969
MIA Missing if construct around statements 0.03099973 356
WLEC Wrong logical expression used as branch condition 0.02339605 260
MVIE Missing variable initialization using an expression 0.02085302 213
MRS Missing return statement 0.01415938 187
MCEFL Missing caught exceptions for function call 0.00721201 76
MVIV Missing variable initialization using a value 0.00460843 31
MSFC Missing Synchronization calls 0.00341365 42
MVAV Missing variable assignment using a value 0.00236844 7
WVIV Wrong value used in variable initialization 0.00218223 24
WVAL Wrong logical expression used in assignment 0.00167488 19
WIDS Wrong string in initial data 0.00154257 9
WVAE Wrong arithmetic expression used in assignment 0.00147688 26
WIDSL Wrong string in initial data - missing one char 0.0009434 9
WSUT Wrong data types or conversion used 0.00080991 13
MSC Missing Super Classe construct call 0.00048964 3
(Intercept) 0.79422690

It is worthwhile mentioning that three of the new fault types that are specific to this work,
namely MCEFL, MSFC, MSC, are present in this set and actually account for 14.48%
(42) of the 290 faulty versions that passed undetected through the tests. We also observe
that, at the time of writing, the set of mutation tools discussed in Chapter 2 would be
able to generate about half of the fault types identified in Table 6.1. We further analysed
the adequacy of this method by calculating the R2 coefficient [Efron et al., 2004]. As
previously mentioned, R2 is a statistical measure of goodness of fit, representing how close
the data are to the fitted regression line and is defined by Equation 6.4 (extracted from
[Efron et al., 2004]):

R2 = 1−

n∑
i
(yTruei − yPredi)

2

n∑
j
(yTruej − avg_yTrue))2

(6.4)

In Equation 6.4, the numerator represents the residual sum of squares of the differences
between true and predicted values, whereas the denominator holds the total sum of squares
of the differences between the true values and the average of the true values. The best
possible output value is 1 and a negative value represents an arbitrarily worse model.

The R2 value obtained for the 16 selected faults (shown in Table 6.1) is 0.879, which is
a quite high value for this kind of scenario. The 16 fault type configuration corresponds
to 2,244 generated faulty versions, which is nearly 20% of the 11,309 total faulty versions.
Although 16 types of faults represents about 29% of the total number of types of faults,
this number allows us to execute the test suite in about 19% of the time required to execute
the whole set of faults, i.e., around 46 days in our experimental environment.

Using 16 types of faults may also still result in a high cost, depending on the tester’s
priorities and on the available resources. Thus, we tried to understand the cost of further
reducing the selected fault types. Note that this has the immediate consequence of lowering
the corresponding test execution time but potentially decreases the chances of detecting
problems in the test cases. This further reduction of the selected types of faults supports
testers in deciding how many fault types should be considered when performing this kind
of fault injection campaigns.

34

Fault Reduction Analysis

Figure 6.1 presents the results, where we can see the distribution of R2 and the correspond-
ing cost of execution in days for a certain number of fault types (x axis).

0

5

10

15

20

25

30

35

40

45

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Da
ysR2

Number of fault types
R2 Execution time (days)

Figure 6.1: Distribution of R2 by number of fault types

Figure 6.1 shows a progressive increase in cost (time of execution) with the increasing
number of fault types, but it can provide useful information for testers. For instance,
it shows that the selection of 4 fault types results in a good R2 value associated with
a relatively small execution cost (i.e., when compared with smaller values for the fault
types).

35

Chapter 7

Main Findings

This chapter highlights the main findings of our experimental evaluation. We go through
key and high-level aspects of the test suite effectiveness and present general recommen-
dations for the developers of the OpenStack, based on the results of our experiments. It
is worthwhile mentioning that we also shared our findings with OpenStack developers, to
allow any possible improvements in the test suite.

• The distribution of Orthogonal Defect Classification (ODC) defects found in Open-
Stack Nova is unique (i.e., when compared with other works using ODC [Agnelo
et al., 2020]), which reflects the specificity of the system and the expected need for
performing the software faults classification, when the goal is to define a fault model.

• The analysis of the OpenStack Nova software defects lead to the definition of an
extension of the fault model proposed in [Durães and Madeira, 2006]. In the model
proposed in this thesis, about one fourth (14) of the 54 faults that compose the model
are new and account for the specificity of the Python programming language, in the
context of the OpenStack platform.

• The majority of defects detected in Nova’s source code are of type Algorithm and
Interface/O-O Messages, which reflects the component’s complex integration in the
OpenStack system.

• During our experiments, the whole OpenStack test suite (i.e., unit, functional, and
integration tests) showed to be able to detect about 97.4% (i.e., 11,019 out of 11,309
faults) of the total amount of injected faults.

• The unit tests are the most effective in detecting the injected faults, being able, on
their own, to detect 96.3% (i.e., 10,895 out of 11,309 faults) of the faults.

• The functional tests, on their own, are able to detect 69.6% of the whole set of
injected faults (i.e., 7,876 out of 11,309 faults).

• The integration tests, on their own, are able to detect 2.9% of all injected faults (i.e.,
325 out of 11,309 faults).

• The functional tests are able to detect nearly one third of faults that escape unit tests
detection. More precisely, they detect 29.2% (i.e., 121 out of 414 injected faults) that
are not detected by unit tests, being slightly helpful in improving the overall tests
effectiveness, which raises from 96.3% (i.e., the outcome of unit testing) to 97.4%.
However, there are still 293 faults undetected by the joint set of unit and functional
tests.

36

Main Findings

• Of the 293 faults not detected by the set of unit and functional tests, the integration
tests were able to detect 1% (i.e., 3 faults), just marginally increasing the overall
effectiveness from 97.40% to 97.44%.

• From the defect type perspective, Timing/Serialization faults showed to be the most
difficult to detect (regardless of testing level), which confirms the common view of the
difficulty in detecting this kind of faults. On the other hand, the Algorithm/Method
and Function/Class/Object faults did not contribute to the undetected cases.

• The unit tests were able to detect all of the Algorithm/Method and Function/Class/Object
injected faults and showed also to be quite effective with Interface/O-O Messages and
Relationship faults. Functional tests show a relatively balanced performance across
all defect types (with exception of Timing/Serialization faults). Still, it is worth
noting that the best results at the functional testing level are obtained with Assign-
ment/Initialization defects, which show the worst values at the unit test level (i.e.,
excluding T/S faults). This highlights the complementarity of the different test levels
in this test suite. Integration tests showed to be generally ineffective in detecting the
various types of faults.

• Faults qualified as Missing are the largest contributor to the undetected cases, while
Extraneous are fully detected by the test suite. Extraneous faults are actually all
eagerly detected by the test suite, at the unit testing level.

• Three of the 14 new fault types that compose the fault model defined in this work
are actually part of the sufficient fault types set. These are MCEFL, MSFC, and
MSC, and account for 14.48% (42) of the 290 faulty versions that passed undetected
through all tests.

• Overall, we found it would be trivial to correct or extend OpenStack tests in about
half of the cases (i.e., 47%) of undetected faults. Corrections of moderate difficulty
apply to more than one third (i.e., 38%) of the undetected faults. Only 15% of the
faults would require complex corrections to be caught at the unit testing level. Also,
our analysis did not reveal particular cases, where a correction at the functional or
integration testing level was required (i.e., due to the complexity of the fix at the
unit testing level).

• Our analysis to the code shows that the most common problems resulting from the
injected faults are related with incorrect exceptions being raised, incorrect exception
messages or incorrect log messages. Wrong values or objects with wrong field values
being returned, or passed to function calls are also among the common problems
found that can break the expected functionalities.

• In general, developers writing tests that target functions with multiple conditional
control instructions, should consider placing more effort on implementing multiple
conditions coverage tests, to allow covering as many combinations of sub-conditions,
as possible.

• Tests should validate exceptions being raised, at least against predefined sets of
exceptions. The same should happen with exception messages, which should at
least be validated against expected message patterns, to minimize the generation of
incorrect information that impairs maintenance activities.

• If a certain function under testing produces logs, then the tests should also vali-
date if the logs generated are the expected, at least by matching the log messages
against expected sets of patterns, this will prevent incorrect logs that could harm
maintenance.

37

Chapter 7

• Function mocks (i.e., functions used in the tests that replace the actual implemen-
tation of functions in other parts of the program being tested) should validate the
parameters received against expected values, as using these mocks can hide potential
problems upon that function call.

• If a function returns an object, unit tests should validate, to the extent that is
possible, if all the expected fields are present, as unexpected null values are known
to be common sources of failures in software [Laranjeiro et al., 2021]. Also, unit tests
should verify if the individual values present in a returning object are the expected.
This is certainly a complex task, and even not feasible in certain cases, due to the
complexity or specificity of the software being tested (e.g., consider non-deterministic
operations). Anyway, this type of guideline should be followed, to the extent allowed
by the system and involving context.

• If the function under test is expected to call some other function under specific
conditions, the unit test should assert that the function was called, or not called,
according to the provided input (e.g., assert that the cache reset function was not
called).

38

This page is intentionally left blank.

Chapter 8

Threats to Validity

In this chapter, we briefly discuss the main threats to the validity of this work and present
mitigation strategies. We begin by mentioning that we analyzed 2,048 bug reports, which
is a subset of all reported bugs for OpenStack (the OpenStack Nova project counts 10,152
reported bugs, by July 2021), mostly due to the amount of effort required to analyse the
bug reports. Also, the reported defects are associated with the Nova project, which is just
a part of OpenStack. Thus, the set of defects used may not be fully representative of
OpenStack. We tried to mitigate this issue primarily by making sure that the size of the
main set of defects would be kept above reference works, such as [Durães and Madeira,
2006]. The set of bug reports is actually larger than the vast majority of sets used in defect
classification research [Agnelo et al., 2020]. It is also worthwhile mentioning that there may
be defects that are not reported in the platform used by the project, which could contribute
to the definition of the fault model. In this work, we use the information that is publicly
available and has been produced under the general bug reporting practice in open source
systems (at least in those of some dimension), which is the use of a bug tracking system
for reporting software defects. We must also mention that despite referring to a part of
OpenStack, the reported defects actually refer to the core component of OpenStack (i.e.,
Nova Compute), which, due to its importance in the system, should gather more attention
from developers in what concerns Verification and Validation tasks.

The software defect analysis performed in this work is carried out through the analysis of
bug reports referring to a particular component of a Python application, OpenStack Nova.
Results characterize the defects present in this particular system and, in this sense, results
cannot be generalized to other Python applications or even to other OpenStack components.
Despite this, the study lays the foundation to allow future research to confirm that other
components of OpenStack, or projects of similar nature, share the same distribution of
faults (or otherwise diverge in such distribution).

The software defect classification was carried out by one researcher. This may have resulted
in the introduction of some errors in the final labeled dataset, due to the large amount
of human effort involved, due to the quality of the bug reports (e.g., lack of or erroneous
information present in reports), or due to the technical expertise of the researcher applying
the ODC method. To mitigate this issue, the Early Stage Researcher, responsible for
performing the classification, was selected also based on his 5-year experience as a software
engineer in the industry. Moreover, we involved an additional researcher and performed
an independent classification of one fourth of the software defects, reaching substantial or
almost perfect agreement, assuring the quality of the dataset. Due to the amount of effort
involved, it is not viable to verify the complete dataset, still the verified portion provides

40

Threats to Validity

excellent indications of its overall quality.

The extended ODC classification was performed using one fourth of the whole dataset (i.e.,
512 bugs), which may not be representative of the whole set of software defects (e.g., a
larger set could allow identifying further types of faults). This was due to the huge amount
of effort involved, however we tried to reach a size similar to those used in reference re-
search, e.g., [Durães and Madeira, 2006] to mitigate this issue. The fault injection tool may
hold residual software faults that may impair its functionality (e.g., incorrectly injecting
a software fault). To mitigate this issue, we manually verified the injection of all 54 fault
types, in diverse contexts. While this does not ensure the tool is free of bugs, it provides
higher confidence in its correct operation.

41

Chapter 9

Conclusion and Future Work

In this thesis, we presented FIT4Python, a tool for performing fault injection in Python
applications and used it to analyse the effectiveness of OpenStack’s battery of tests, which
is composed by unit, functional, and integration tests. We first analysed 2,048 bug reports
from OpenStack using ODC and performed an extended classification of 512 of those bugs
to define a fault model tailored for Python, in the context of OpenStack. We implemented
our fault injection tool, based on the created fault model, and ran it to create faulty
versions of the Nova Compute API. We ran OpenStack developer’s unit, functional, and
integration tests against the faulty versions resulting in more than 245 million executed
tests (detailed results, along with the fault injection tool, are available at [Marques et al.,
2021]).

In addition to the capability of injecting different types of faults, we show the coverage
and highlight limitations of the OpenStack battery of tests, with several cases of faults
passing silently undetected through the tests. Moreover, we show that it would be trivial
to correct or extend OpenStack tests to detect many of the injected problems, which we
have shared with OpenStack developers.

As future work, we intend to make the tool simpler to use by reducing the setup effort and
configurations necessary to make the application run, as well as, make the application more
generic so that the fault injection technique can be applied to different python applications.

42

References

J. Agnelo, N. Laranjeiro, and J. Bernardino. Using orthogonal defect classification to
characterize nosql database defects. Journal of Systems and Software, 159:110451, 2020.
ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2019.110451. URL https://www.
sciencedirect.com/science/article/pii/S0164121219302250.

J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. H. Leber. Comparison
of physical and software-implemented fault injection techniques. IEEE Transactions on
Computers, 52(9):1115–1133, 2003. doi: 10.1109/TC.2003.1228509.

S. N. AS. Cosmic Ray, July 2021. URL https://pypi.org/project/cosmic-ray. original-
date: 2015-04-18T07:44:21Z.

J. Barton, E. Czeck, Z. Segall, and D. Siewiorek. Fault injection experiments using fiat.
IEEE Transactions on Computers, 39(4):575–582, 1990. doi: 10.1109/12.54853.

J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek. Fault injection experiments
using fiat. IEEE Transactions on Computers, 39(4):575–582, 1990. doi: 10.1109/12.
54853.

P. Broadwell, N. Sastry, and J. Traupman. Fig: A prototype tool for online verification of
recovery mechanisms. Workshop on Self-Healing, Adaptive and self-MANaged Systems.,
2002.

C. Byoungju and A. P. Mathur. High-performance mutation testing. Journal of Systems
and Software, 20(2):135 – 152, 1993. ISSN 0164-1212. doi: https://doi.org/10.1016/
0164-1212(93)90005-I. URL http://www.sciencedirect.com/science/article/pii/
016412129390005I.

R. Chillarege. Orthogonal defect classification. In M. R. Lyu, editor, Handbook of Software
Reliability Engineering, chapter 9, pages 359–399. IEEE CS Press, 1996.

J. Cohen. A Coefficient of Agreement for Nominal Scales. Educational and Psy-
chological Measurement, 20(1):37–46, Apr. 1960. ISSN 0013-1644. doi: 10.1177/
001316446002000104. URL https://doi.org/10.1177/001316446002000104.

D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and N. Bidokhti. How Bad Can a Bug
Get? An Empirical Analysis of Software Failures in the OpenStack Cloud Computing
Platform. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2019, pages 200–211, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-
5572-8. doi: 10.1145/3338906.3338916. URL http://doi.acm.org/10.1145/3338906.
3338916. event-place: Tallinn, Estonia.

D. Cotroneo, L. D. Simone, P. Liguori, and R. Natella. ProFIPy: Programmable Software
Fault Injection as-a-Service. In 2020 50th Annual IEEE/IFIP International Conference

43

https://www.sciencedirect.com/science/article/pii/S0164121219302250
https://www.sciencedirect.com/science/article/pii/S0164121219302250
https://pypi.org/project/cosmic-ray
http://www.sciencedirect.com/science/article/pii/016412129390005I
http://www.sciencedirect.com/science/article/pii/016412129390005I
https://doi.org/10.1177/001316446002000104
http://doi.acm.org/10.1145/3338906.3338916
http://doi.acm.org/10.1145/3338906.3338916

Chapter 9

on Dependable Systems and Networks (DSN), pages 364–372, June 2020. doi: 10.1109/
DSN48063.2020.00052. ISSN: 1530-0889.

P. Delgado-Pérez, S. Segura, and I. Medina-Bulo. Assessment of C++ object-oriented
mutation operators: A selective mutation approach. Software Testing, Verification and
Reliability, 27(4-5):e1630, 2017. ISSN 1099-1689. doi: https://doi.org/10.1002/stvr.1630.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1630.

A. Denisov and S. Pankevich. Mull It Over: Mutation Testing Based on LLVM. In
2018 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 25–31, Apr. 2018. doi: 10.1109/ICSTW.2018.00024.

A. Derezińska. A Quality Estimation of Mutation Clustering in C# Programs. In W. Zamo-
jski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, editors, New Results in
Dependability and Computer Systems, Advances in Intelligent Systems and Computing,
pages 119–129, Heidelberg, 2013. Springer International Publishing. ISBN 978-3-319-
00945-2. doi: 10.1007/978-3-319-00945-2_11.

J. A. Durães and H. S. Madeira. Emulation of software faults: A field data study and a
practical approach. IEEE Transactions on Software Engineering, 32(11), 2006.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Statist.,
32(2):407–499, 04 2004. doi: 10.1214/009053604000000067. URL https://doi.org/10.
1214/009053604000000067.

J. Fonseca, M. Vieira, and H. Madeira. Evaluation of web security mechanisms using
vulnerability attack injection. IEEE Transactions on Dependable and Secure Computing,
11(5):440–453, Sep. 2014. ISSN 2160-9209. doi: 10.1109/TDSC.2013.45.

G. Fraser and A. Arcuri. Achieving scalable mutation-based generation of whole test
suites. Empirical Software Engineering, 20(3):783–812, June 2015. ISSN 1573-7616. doi:
10.1007/s10664-013-9299-z. URL https://doi.org/10.1007/s10664-013-9299-z.

R. B. Grady. Practical Software Metrics for Project Management and Process Improvement.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992. ISBN 978-0-13-720384-0.

A. Hajdu, N. Ivaki, I. Kocsis, A. Klenik, L. Gönczy, N. Laranjeiro, H. Madeira, and
A. Pataricza. Using fault injection to assess blockchain systems in presence of faulty
smart contracts. IEEE Access, 8:190760–190783, 2020. doi: 10.1109/ACCESS.2020.
3032239.

S. Han, K. Shin, and H. Rosenberg. Doctor: an integrated software fault injection en-
vironment for distributed real-time systems. In Proceedings of 1995 IEEE Interna-
tional Computer Performance and Dependability Symposium, pages 204–213, 1995. doi:
10.1109/IPDS.1995.395831.

K. Hałas. MutPy: Mutation testing tool for Python 3.x, 2021. URL https://pypi.org/
project/mutpy.

A. Hovmöller. Mutmut: mutation testing for Python 3, 2021. URL https://pypi.org/
project/mutmut.

M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault Injection Techniques and Tools. Computer,
30(4):75–82, 1997. URL http://portal.acm.org/citation.cfm?id=619017.620685&
coll=Portal&dl=GUIDE&CFID=74933873&CFTOKEN=73521499.

44

https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1630
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1007/s10664-013-9299-z
https://pypi.org/project/mutpy
https://pypi.org/project/mutpy
https://pypi.org/project/mutmut
https://pypi.org/project/mutmut
http://portal.acm.org/citation.cfm?id=619017.620685&coll=Portal&dl=GUIDE&CFID=74933873&CFTOKEN=73521499
http://portal.acm.org/citation.cfm?id=619017.620685&coll=Portal&dl=GUIDE&CFID=74933873&CFTOKEN=73521499

References

J. Hudak, B.-H. Suh, D. Siewiorek, and Z. Segall. Evaluation and comparison of fault-
tolerant software techniques. IEEE Transactions on Reliability, 42(2):190–204, June
1993. ISSN 1558-1721. doi: 10.1109/24.229487.

IBM. Orthogonal Defect Classification v 5.2 for Software Design and Code, Sept.
2013. URL https://researcher.watson.ibm.com/researcher/files/us-pasanth/
ODC-5-2.pdf.

IEEE. IEEE Standard Classification for Software Anomalies. IEEE Std 1044-2009 (Revi-
sion of IEEE Std 1044-1993), pages 1–23, Jan. 2010. ISSN null. doi: 10.1109/IEEESTD.
2010.5399061.

R. Just and F. Schweiggert. Higher accuracy and lower run time: efficient mutation
analysis using non-redundant mutation operators. Software Testing, Verification and
Reliability, 25(5-7):490–507, 2015. ISSN 1099-1689. doi: https://doi.org/10.1002/
stvr.1561. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1561.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1561.

K. Kanoun and L. Spainhower. Dependability Benchmarking for Computer Systems. Wiley-
IEEE Computer Society Pr, 2008. ISBN 047023055X.

W. . Kao, R. K. Iyer, and D. Tang. Fine: A fault injection and monitoring environment
for tracing the unix system behavior under faults. IEEE Transactions on Software
Engineering, 19(11):1105–1118, Nov 1993. ISSN 2326-3881. doi: 10.1109/32.256857.

E. Kepner. Mutatest, June 2021. URL https://pypi.org/project/mutatest/. original-
date: 2018-12-22T15:04:53Z.

M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. L. Traon, and M. Harman. De-
tecting Trivial Mutant Equivalences via Compiler Optimisations. IEEE Transactions
on Software Engineering, 44(04):308–333, Apr. 2018. ISSN 0098-5589. doi: 10.
1109/TSE.2017.2684805. URL https://www.computer.org/csdl/journal/ts/2018/
04/07882714/13rRUxBa5ty. Publisher: IEEE Computer Society.

P. Koopman and J. DeVale. The exception handling effectiveness of posix operating
systems. IEEE Transactions on Software Engineering, 26(9):837–848, 2000. doi:
10.1109/32.877845.

N. P. Kropp, P. J. Koopman, and D. P. Siewiorek. Automated Robustness Testing of
Off-the-Shelf Software Components. In Proceedings of the The Twenty-Eighth An-
nual International Symposium on Fault-Tolerant Computing, FTCS ’98, pages 230–,
Washington, DC, USA, 1998. IEEE Computer Society. ISBN 978-0-8186-8470-8. URL
http://dl.acm.org/citation.cfm?id=795671.796919.

B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and N. Gökçe. Analyzing
the validity of selective mutation with dominator mutants. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, pages 571–582, New York, NY, USA, Nov. 2016. Association for Computing
Machinery. ISBN 978-1-4503-4218-6. doi: 10.1145/2950290.2950322. URL https://
doi.org/10.1145/2950290.2950322.

J. R. Landis and G. G. Koch. The Measurement of Observer Agreement for Categorical
Data. Biometrics, 33(1):159–174, 1977. ISSN 0006-341X. doi: 10.2307/2529310. URL
https://www.jstor.org/stable/2529310.

45

https://researcher.watson.ibm.com/researcher/files/us-pasanth/ODC-5-2.pdf
https://researcher.watson.ibm.com/researcher/files/us-pasanth/ODC-5-2.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1561
https://pypi.org/project/mutatest/
https://www.computer.org/csdl/journal/ts/2018/04/07882714/13rRUxBa5ty
https://www.computer.org/csdl/journal/ts/2018/04/07882714/13rRUxBa5ty
http://dl.acm.org/citation.cfm?id=795671.796919
https://doi.org/10.1145/2950290.2950322
https://doi.org/10.1145/2950290.2950322
https://www.jstor.org/stable/2529310

Chapter 9

N. Laranjeiro, J. Agnelo, and J. Bernardino. A Systematic Review on Software Robustness
Assessment. ACM Computing Surveys, 54(4):89:1–89:65, May 2021. ISSN 0360-0300.
doi: 10.1145/3448977. URL https://doi.org/10.1145/3448977.

N. Li, M. West, A. Escalona, and V. H. S. Durelli. Mutation testing in practice using Ruby.
In 2015 IEEE Eighth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 1–6. IEEE Computer Society, Apr. 2015. ISBN
978-1-4799-1885-0. doi: 10.1109/ICSTW.2015.7107453. URL https://www.computer.
org/csdl/proceedings-article/icstw/2015/07107453/12OmNvUaNme.

J. A. P. Lima and S. R. Vergilio. Search-Based Higher Order Mutation Testing: A Mapping
Study. In Proceedings of the III Brazilian Symposium on Systematic and Automated
Software Testing, SAST ’18, pages 87–96, New York, NY, USA, Sept. 2018. Association
for Computing Machinery. ISBN 978-1-4503-6555-0. doi: 10.1145/3266003.3266013.
URL https://doi.org/10.1145/3266003.3266013.

A. Mahmood, D. M. Andrews, and E. J. McCluskey. Executable assertions and flight
software. In Digital Avionics Systems Conference, pages 346–351. American Institute
of Aeronautics and Astronautics, 1984. doi: 10.2514/6.1984-2726. URL https://arc.
aiaa.org/doi/abs/10.2514/6.1984-2726.

H. Marques, N. Laranjeiro, , and J. Bernardino. Injecting software faults in python
applications: The openstack case study - supplemental material, Mar. 2021. URL
https://doi.org/10.5281/zenodo.4581121.

E. Martins, C. Rubira, and N. Leme. Jaca: a reflective fault injection tool based on
patterns. In Proceedings International Conference on Dependable Systems and Networks,
pages 483–487, June 2002. doi: 10.1109/DSN.2002.1028934.

T. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering, SE-2
(4):308–320, Dec. 1976. ISSN 2326-3881. doi: 10.1109/TSE.1976.233837.

B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of unix utilities.
Commun. ACM, 33(12):32–44, Dec. 1990. ISSN 0001-0782. doi: 10.1145/96267.96279.
URL https://doi.org/10.1145/96267.96279.

B. P. Miller, D. Koski, C. Pheow, L. V. Maganty, R. Murthy, A. Natarajan, and J. Steidl.
Fuzz revisited: A re-examination of the reliability of unix utilities and services. Technical
report, University of Wisconsin-Madison Department of Computer Sciences, 1995.

A. S. Namin, J. Andrews, and D. Murdoch. Sufficient mutation operators for measur-
ing test effectiveness. In 2008 ACM/IEEE 30th International Conference on Software
Engineering, pages 351–360, 2008. doi: 10.1145/1368088.1368136.

R. Natella. Achieving Representative Faultloads in Software Fault Injection. PhD Thesis,
Università degli Studi di Napoli Federico II, Napoli, Italy, Nov. 2011. URL http:
//www.fedoa.unina.it/8833/.

R. Natella, D. Cotroneo, and H. S. Madeira. Assessing dependability with software fault
injection: A survey. ACM Comput. Surv., 48(3):44:1–44:55, Feb. 2016a. ISSN 0360-0300.
doi: 10.1145/2841425. URL http://doi.acm.org/10.1145/2841425.

R. Natella, D. Cotroneo, and H. S. Madeira. Assessing Dependability with Software Fault
Injection: A Survey. ACM Computing Surveys, 48(3):1–55, Feb. 2016b. ISSN 0360-0300,
1557-7341. doi: 10.1145/2841425. URL https://dl.acm.org/doi/10.1145/2841425.

46

https://doi.org/10.1145/3448977
https://www.computer.org/csdl/proceedings-article/icstw/2015/07107453/12OmNvUaNme
https://www.computer.org/csdl/proceedings-article/icstw/2015/07107453/12OmNvUaNme
https://doi.org/10.1145/3266003.3266013
https://arc.aiaa.org/doi/abs/10.2514/6.1984-2726
https://arc.aiaa.org/doi/abs/10.2514/6.1984-2726
https://doi.org/10.5281/zenodo.4581121
https://doi.org/10.1145/96267.96279
http://www.fedoa.unina.it/8833/
http://www.fedoa.unina.it/8833/
http://doi.acm.org/10.1145/2841425
https://dl.acm.org/doi/10.1145/2841425

References

W. Ng and P. Chen. The design and verification of the Rio file cache. IEEE Transactions
on Computers, 50(4):322–337, Apr. 2001. ISSN 2326-3814. doi: 10.1109/12.919278.

OpenStack. Conceptual Architecture, 2021. URL https://docs.openstack.org/
install-guide/get-started-conceptual-architecture.html.

G. Petrović and M. Ivanković. State of mutation testing at google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering in
Practice, ICSE-SEIP ’18, pages 163–171, New York, NY, USA, May 2018. Association
for Computing Machinery. ISBN 978-1-4503-5659-6. doi: 10.1145/3183519.3183521.
URL https://doi.org/10.1145/3183519.3183521.

A. V. Pizzoleto, F. C. Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro. A systematic
literature review of techniques and metrics to reduce the cost of mutation testing. Journal
of Systems and Software, 157:110388, 2019. ISSN 0164-1212. doi: https://doi.org/10.
1016/j.jss.2019.07.100. URL http://www.sciencedirect.com/science/article/pii/
S0164121219301554.

U. Praphamontripong and J. Offutt. Finding redundancy in web mutation operators. In
2017 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 134–142, 2017. doi: 10.1109/ICSTW.2017.30.

U. Praphamontripong and J. Offutt. Finding Redundancy in Web Mutation Operators. In
2017 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 134–142, Mar. 2017. doi: 10.1109/ICSTW.2017.30.

T. Rosado and J. Bernardino. An overview of openstack architecture. In Proceedings
of the 18th International Database Engineering and Applications Symposium, IDEAS
’14, page 366–367, New York, NY, USA, 2014. Association for Computing Machinery.
ISBN 9781450326278. doi: 10.1145/2628194.2628195. URL https://doi.org/10.1145/
2628194.2628195.

B. P. Sanches, T. Basso, and R. Moraes. J-SWFIT: A Java Software Fault Injection Tool.
In 2011 5th Latin-American Symposium on Dependable Computing, pages 106–115, Apr.
2011. doi: 10.1109/LADC.2011.20.

Tiobe. TIOBE Index, Dec. 2019. URL https://www.tiobe.com/tiobe-index/.

B. Wang, Y. Xiong, Y. Shi, L. Zhang, and D. Hao. Faster mutation analysis via equivalence
modulo states. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2017, pages 295–306, New York, NY, USA, July
2017. Association for Computing Machinery. ISBN 978-1-4503-5076-1. doi: 10.1145/
3092703.3092714. URL https://doi.org/10.1145/3092703.3092714.

Wei-Lun Kao and R. K. Iyer. Define: a distributed fault injection and monitoring envi-
ronment. In Proceedings of IEEE Workshop on Fault-Tolerant Parallel and Distributed
Systems, pages 252–259, June 1994. doi: 10.1109/FTPDS.1994.494497.

P. F. Wilson, L. Dell, and G. Anderson. Root cause analysis: A tool for total quality
management. ASQ Quality Press, 1993.

A. Wood. Software Reliability Growth Models. Technical Report 96.1, Tandem Computers,
1996.

M. Woodward. Mutation testing—its origin and evolution. Information and Software
Technology, 35(3):163 – 169, 1993. ISSN 0950-5849. doi: https://doi.org/10.1016/

47

https://docs.openstack.org/install-guide/get-started-conceptual-architecture.html
https://docs.openstack.org/install-guide/get-started-conceptual-architecture.html
https://doi.org/10.1145/3183519.3183521
http://www.sciencedirect.com/science/article/pii/S0164121219301554
http://www.sciencedirect.com/science/article/pii/S0164121219301554
https://doi.org/10.1145/2628194.2628195
https://doi.org/10.1145/2628194.2628195
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/3092703.3092714

Chapter 9

0950-5849(93)90053-6. URL http://www.sciencedirect.com/science/article/pii/
0950584993900536.

L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid. Operator-based and random mu-
tant selection: Better together. In 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 92–102, 2013. doi: 10.1109/ASE.2013.
6693070.

L. Zhang, D. Marinov, and S. Khurshid. Faster mutation testing inspired by test pri-
oritization and reduction. In Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ISSTA 2013, pages 235–245, New York, NY, USA,
July 2013. Association for Computing Machinery. ISBN 978-1-4503-2159-4. doi:
10.1145/2483760.2483782.

48

http://www.sciencedirect.com/science/article/pii/0950584993900536
http://www.sciencedirect.com/science/article/pii/0950584993900536

	Introduction
	Background and Related Work
	Background concepts
	Fault injection
	Mutation testing
	Related Work Gaps

	FIT4Python – A Software Fault Injection Tool for Python
	Tool Overview
	FIT4Python Components and Operation

	Fault Model
	OpenStack Case study
	Fault Reduction Analysis
	Main Findings
	Threats to Validity
	Conclusion and Future Work

