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Abstract—Traditional speech therapy approaches for speech
sound disorders have a lot of advantages to gain from computer-
based therapy systems. With speech recognition techniques the
motivation elements of these systems can be automated in order
to get an interactive environment that motivates the therapy
attendee towards better performances. Here we propose a robust
phoneme recognition solution for an interactive environment for
speech therapy. We compare the results of hierarchical and flat
classification, with naive Bayes, support vector machines and
kernel density estimation on linear predictive coding coefficients
and Mel-frequency cepstral coefficients.

Index Terms—Speech Therapy, Phoneme Detection, Kernel
Density Estimation, Naive Bayes, Support Vector Machines.

I. INTRODUCTION

Speech sound disorders (SSD) of many different types and
severities are very common during childhood. As reported
by Guimarães et. al [1] for data on European Portuguese
(EP), 8.8% of preschool-aged children show SSD. Children
with these problems can have difficulty to correctly express
themselves, which may affect their related quality of life, and
in more severe cases, it can affect the natural development of
social skills.

Speech therapy can (and should) be used to address these
disorders. Traditional speech therapy approaches for speech
sound disorders have many advantages to gain from computer-
based therapy systems. Some computer tools for speech ther-
apy exist and many such as SpeechViewer [2] and Box of
Tricks [3] are described as already well established [4].

Existing speech therapy tools provide different approaches
in aiding speech therapy. Many complex systems, such as
TERAPERS (for Romanian) and Ortho-Logo-Paedia (OLP),
focus on providing high-quality speech therapy aids and ther-
apy exercises in different forms [5], [6].

Other systems take a less comprehensive approach and
target specific aspects of the therapy by providing exercises
in a more fun and entertaining way, like ARticulation TUtoR
(ARTUR) or the Comunica project [4], [7]. ARTUR uses a
virtual tutor, which when needed provides the person with vo-
cal tract animations. The virtual tutor approach makes human
computer interaction more natural, as described in [8]. The
Comunica [7] framework uses automatic speech recognition to

analyse the children’s vocalizations (in Spanish) and provide
feedback.

For EP there are also some computer aids to speech therapy
like a Game for Vowel Training [9], or the Lisling 3D [10] and
VITHEA [11]. The Interactive Game for Vowel Training is a
simple car racing game where the car actions are controlled
by uttering 5 vowels. In Lisling 3D tasks, such as writing
or selecting words, are given to patients throughout a virtual
3D environment. The VITHEA system is an online platform
where people with aphasia can do exercises from a browser.
Exercises are guided with a virtual tutor. An automatic word
naming recognition module evaluates the patients responses
and provides feedback.

VisualSpeech is an interactive environment for speech ther-
apy for children with SSD [12]. The main novelty of this work
is the integration of visual-feedback with gamification compo-
nents. By combining visual-feedback with adapted traditional
speech sound exercises, it is possible to create an environment
with motivation focused elements that can improve children’s
performance and engagement in speech therapy sessions.

VisualSpeech addresses the first stage of speech therapy:
phoneme productions. Since languages are different and have
a different number and combinations of sounds, computer
tools are language bounded. VisualSpeech was designed for
European Portuguese (EP).

This environment includes motivational elements that aim
at keeping the child motivated and focused in the therapy
exercises. In particular, the environment has a performance
bar which indicates how well the child is performing in the
exercise (ice cream in figure 1). These elements also provide
useful feedback to the child, who can see changes in the
environment that depend on his performance. With a bar that
increases or decreases according to the child’s performance,
the child can be encouraged to outperform his last speech
productions.

Since controlling the performance bar is a new task that
requires the speech and language therapists’ (SLT) care and
may divert their attention, this process should have the op-
tion of being automatic. For that reason, while we do not
want to substitute the SLTs, and the final decision should



Fig. 1. VisualSpeech motivational elements. Progress bar (ice cream) and
reward (virtual button).

be theirs, we are investigating ways of making the progress
bar advance automatically. Speech recognition techniques can
provide valuable feedback to the SLTs, suggesting when to
advance the progress bar. To achieve this, we explored robust
speech recognition techniques with EP phonemes (sections II).

In this paper, we propose a robust phoneme recognition so-
lution for analyzing the child’s performance in VisualSpeech.
We have focused our attention in exercises that allow a robust
interaction without false negatives that could be the cause of
frustration of the child. While it is our intention to expand this
work so as to cover all EP phonemes, we started by giving
special attention to the a, e, i, o, u vowels and the EP rhotic
consonant sound.

II. SCORING SPEECH EXERCISES

VisualSpeech focuses on phoneme productions during
speech exercises. In order to have the scores computed auto-
matically, the environment needs to perform phoneme recogni-
tion. Below we discuss our approach to robust phoneme recog-
nition: The first step consist of extracting audio features from
the speech productions, (section II-B), while the second step
consists of using those features in a classification algorithm
(section II-C).

A. Speech exercises

As mentioned above, the proposed environment addresses
phoneme productions. Phonemes do not necessarily represent
sounds of letters, since not only a letter can have different
sounds in different contexts (words), but also in some cases a
sole letter does not represent anything. To accurately represent
phonemes in written language, the International Phonetic
Alphabet (IPA) is used [13].

While it is our intention to expand this work so as to cover
all EP phonemes, we started by giving special attention to the
a, e, i, o, u vowels. In EP these correspond to the phonemes
/a/, /E/, /i/, /O/, /u/.

Following the suggestion of SLTs, we also addressed the EP
rhotic consonant sound, that is, the sound of R at the beginning
of a word, like in rato (mouse) or double R in the middle of

Fig. 2. Regions of the mouth.

words, like in carro (car). This sound is of particular interest
because of the accent variations and because often it is one of
the last sounds to be mastered in childhood [14].

Rennicke and Martins report that this consonant can be a
voiced uvular fricative (/K/), or, less commonly, a voiceless
uvular fricative (/X/). The uvular fricatives are done with the
back of the tongue against the uvula (figure 21). They can be
voiced if there is vibration of the vocal cords, and voiceless
otherwise. This consonant can also be an alveolar trill (/r/),
which is made with vibrations of the tip of the tong against
the upper alveolar ridge (between the teeth and the hard palate)
for longer than two or three periods. When produced in this
way, the consonant sounds like the double R in the Spanish
word perro (dog). Another variation is done by a vibration of
the palatine uvula, in which case it is known as uvular trill (/ö/)
and it can be stronger or weaker depending on the vibration.
Finally, another not very common variation is the voiceless
velar fricative (/x/), which is done with the back of the tongue
against the soft palate. Since the voiced uvular fricative is one
of the most common pronunciations, we will use the symbol
/K/ when denoting the EP rhotic consonant in general.

The /K/ sounds included in our study are the following: /Ka/,
/K5/, /K@/, /Ko/ and /Ku/. More details about these sounds are
given in section III-A.

B. Audio features

We extracted two types of features from the speech pro-
ductions: linear predictive coding (LPC) coefficients and Mel-
frequency cepstral coefficients (MFCC).

LPC uses a linear predictive model to estimate the spectral
envelope of speech signals. This method assumes that speech
sound results from the vocal tract as an all-pole filter, that is
applied to the larynx vibrations. This approach tries to predict
the current window of a sample as a linear combination of the
past windows while minimizing the error. The goal of LPC is
to get p coefficients of the p linear equations that minimize the
prediction error. Using these coefficients, the formants can be

1From http://medical-dictionary.thefreedictionary.com
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estimated. These are representations of the acoustic resonance
of the human vocal tract. The number of poles used affects
the number of formants that can be estimated with LPC. The
ideal number of poles varies according to the speakers gender,
age, and sampling rate of the audio file.

Although the human ear can hear a wide range of frequen-
cies (20Hz to 20 kHz) our auditory system filters the spectrum,
giving more importance to some frequency regions than others.
These filters are not uniformly spaced, and our ears have more
filters in the lower pitch region of the spectrum and less on
the higher pitch region.

The Mel frequency cepstrum (MFC) is a short-time repre-
sentation of the sound’s spectrum that uses the Mel scale: a
nonlinear frequency scale of triangular filters for the frequen-
cies in order to approximate the human hear. The coefficients,
that is the MFCCs, are time-varying functions. When given a
windowed input signal, a filter-bank of n triangular filters is
applied and the average spectrum around the center frequency
computed. The resulting features, that is the n MFCCs, are
cepstral arrays. Since the MFCCs are time-varying, we used
the mean of each MFCC to train the learning algorithms
described in section II-C. In other words, our feature vectors
are vectors of n mean values.

C. Phoneme recognition

In order to score the phoneme productions we compared the
performance of three algorithms: the Naive Bayes (NB), Sup-
port Vector Machines (SVM) and Kernel Density Estimation
(KDE) [15].

The Naive Bayes is a generative classifier that applies
the Bayes probability theorem. The NB classifier is well
suited when the data dimensionality is high and there is a
strong independence among the dimensions. NB estimates the
probability of a phoneme label by modeling each dimension
independently of the others given the class label (this is the
conditional independence assumption). The phoneme sample
is then classified with the label that maximizes the sample
likelihood.

The SVM is a popular technique, that classifies a sample
into one of two classes. A discriminating hyperplane is learned
from the training data by selecting samples as support vectors.
These support vectors define the hyperplane that maximizes
the margin between the two classes. When a new sample is
up for classification, this technique projects the sample onto
the hyperplane and decides the class of the sample.

The KDE is an approach to estimate the true probability
density distribution from the training data. This method uses
the entire training set to compute a smoothed estimate of
the true probability density distribution. It applies a Kernel
function to every point of the training set to compute the
contribution of every training sample. This Kernel function
is usually a standard probability distribution function. For
a matter of convenience, we will use a Gaussian Kernel,
K(z) = 1√

2π
e−

1
2 z

2

.
To estimate the density function on a given test point x, the

aggregated contributions of all training samples correspond to

f̂(x) =
1

n

n∑
i=1

K(
x− xi
h

).

In practice the x variable correspond to the MFCCs and LPCs
feature vector. The h parameter is the kernel bandwidth is
estimated from the data by some method. We followed the
Silverman’s rule of thumb and used the data variance σ to set
the kernel bandwidth to h = ( 4σ

5

3n )1/5.
Formally, we have one function f̂lj (x) for each label lj of

our problem, where j = 1, ..., L. In our case, we will have a
function f̂lj (x) for each training phoneme sample. Thus, each
training sample contributes exclusively to the density function
of its own label.

It is now straightforward to address the multi-class nature
of phoneme detection. Using Bayes’ theorem we can merge
all individual density estimates f̂lj (x) with j = 1, ..., L:

p(l = lj |X = x0) =
πlj f̂lj (x0)∑L
i=1 πif̂li(x0)

,

where πi corresponds to the label i prior. This definition
allow us to compute the probability of one speech sample x0
corresponding to a certain phoneme label lj . To classify test
phonemes, we only need to find the label lj that maximizes
the above expression.
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Fig. 3. Hierarchical classifiers.



NB SVM KDE KDE Silverman

MFCC 9 82.51 87.93 91.73 89.35
MFCC 10 83.65 88.12 91.73 89.54
MFCC 11 82.89 88.02 91.73 88.78
MFCC 12 81.94 88.02 91.83 89.26
MFCC 13 80.52 87.26 91.54 88.59
... ... ... ... ...

MFCC 21 70.91 85.36 91.25 84.03
MFCC 22 69.87 85.08 91.44 83.65
MFCC 23 67.97 84.79 91.35 83.84

LPC 22 57.13 48.19 0.481939 N/A
LPC 24 58.27 48.29 0.476236 N/A

TABLE I
ACCURACY RESULTS OF HIERARCHY 1

D. Hierarchical vs Flat classifiers

To achieve phoneme scoring the features and classifiers
used in phoneme recognition need to be able to detect all
meaningful speech sounds. To this purpose two different
approaches were experimented, the hierarchical and the flat.
The former aims at classifying in binary in-line fashion, and
the latter all possibilities concurrently. Since in our experi-
ments we used ten different speech sounds the number of
possible combinations for the hierarchical approach are far
too many to try. We selected three different hierarchies based
on the accuracies obtained in preliminary tests: hierarchy 1
orders from best to worse accuracies across both vowels and
phonemes; hierarchy 2 does the same but distinguishes vowels
from phonemes; and hierarchy 3 does the same as hierarchy
2 but in reverse order. All three hierarchies are illustrated
in figure 3, they are sorted from best to worst accuracy to
minimize misclassification along the binary decisions of each
hierarchy level.

III. EVALUATION

To compare the performance of the different approaches
discussed in the previous section (the flat and the hierarchical
approach with each of the three classification algorithms
discussed and the two types of features) we used two data
sets of speech productions. The results are discussed below.

A. Phoneme Data

In order to address phoneme recognition, we started with
a data set with the EP vowel phonemes /a/, /E/, /i/, /O/, /u/
[16]. These samples were recorded from 44 different speakers:
27 child speakers, 11 female adult speakers and 6 male
adult speakers. The data set contains a total of 220 manually
segmented samples, that is, 44 samples for each phoneme. (For
more details, please see [16].)

Following the suggestion of SLTs, we also created a data set
with the uvular sonorant /K/. This data set was created from
67 audio recordings performed at Escola Superior de Saúde do
Alcoitão (ESSA). For these recordings the 67 participants read
an EP version of a phonetic balanced short tale ‘The story of
Arthur the Rat’ with six words that include the sound /K/ [17].

Feature NB SVM KDE KDE Silverman

MFCC 9 82.60 87.83 92.02 90.40
MFCC 10 83.84 88.02 92.11 90.21
MFCC 11 83.08 87.83 92.02 89.64
MFCC 12 82.03 87.93 92.02 89.83
MFCC 13 81.46 87.17 91.73 89.26
... ... ... ... ...

MFCC 21 74.62 85.27 91.54 84.79
MFCC 22 73.67 84.98 91.73 84.32
MFCC 23 73.48 84.70 91.64 84.51

LPC 22 59.98 48.19 53.42 N/A
LPC 24 60.17 48.29 52.95 N/A

TABLE II
ACCURACY RESULTS OF HIERARCHY 2

Feature NB SVM KDE KDE Silverman

MFCC 9 82.60 87.83 92.02 90.40
MFCC 10 83.84 88.02 92.11 90.21
MFCC 11 83.08 87.93 92.02 89.64
MFCC 12 82.04 87.93 92.02 89.83
MFCC 13 81.46 87.17 91.73 89.26
... ... ... ... ...

MFCC 21 74.62 85.36 91.54 84.79
MFCC 22 73.67 85.08 91.73 84.32
MFCC 23 73.48 84.79 91.64 84.51

LPC 22 52.85 48.19 22.81 N/A
LPC 24 53.80 48.29 22.15 N/A

TABLE III
ACCURACY RESULTS OF HIERARCHY 3

Feature KDE KDE Silverman

MFCC 9 92.59 93.35
MFCC 10 92.68 94.68
MFCC 11 93.06 94.39
MFCC 12 93.35 95.06
MFCC 13 93.25 94.68
... ... ...

MFCC 21 93.82 92.59
MFCC 22 94.11 92.21
MFCC 23 94.39 91.54

LPC 22 44.20 N/A
LPC 23 41.92 N/A
LPC 24 41.73 N/A

TABLE IV
ACCURACY RESULTS WITH THE FLAT APPROACH.



Fig. 4. Phonemes detection confusion matrices.

65 adult female speakers and 2 male adult male speakers
participated in the recordings. Most were university students
but there were also some voice professionals participating in
these recordings. The participants were from different regions
of Portugal, which means that the recordings include different
accents.

To create the data set, we manually extracted the section
containing the uvular /K/ followed by a vowel from the six
words with this sound:
• /Ka/ from Rato,
• /K5/ from Terra,
• /K@/ from Respondia and Repente,
• /Ko/ from Terror, and
• /Ku/ from Ruı́nas.

This data set is composed of 827 samples: 530 /Ka/ samples,
57 /K5/ samples, 120 /K@/ samples, 63 /Ko/ samples and 57 /Ku/
samples. Since in spoken EP it is common to have reduction
or deletion of unstressed vowels, some vowels present in the
words above are not heard in some of the samples. This is the
case for /@/ in respondia and repente.

B. Scoring Phonemes
As discussed in section II, in order to score the produced

phonemes, we used hierarchical and flat approaches with fea-
tures extracted from LPC (with 22 and 24 poles) and MFCCs
(with 9 to 23 cepstra) on NB, SVM and KDE classifiers.
Here we compare the results of the different approaches. For
the KDE classifier, we experimented with a h = 0.2 kernel
bandwidth and we also tried the KDE with the Silverman’s
method for bandwidth selection. The leave-one-out cross-
validation method was used to tune all the parameters.

The results obtained for the hierarchical approach are pre-
sented in tables I, II and III. The first column in the tables
indicates the features used and the number of cepstra and
poles for the MFCCs and LPC, respectively. The remaining
columns show the accuracy results for each of the classifiers
used. The best accuracies are indicated in bold. As illustrated
in the tables, the MFCCs performed much better than LPC.
All methods performed well with accuracies above 80.0% with
the NB performing worse. The best was the KDE method with
constant bandwidth. While hierarchy 1 shows the worst results,
there seems to be no much difference between hierarchies 2
and 3.

The flat classification approach uses KDE for compari-
son with the hierarchical classifiers configuration (with both
h = 0.2 bandwidth and Silverman’s method). The results
for all /K/ and vowel phonemes are presented in table IV.
In this approach the standard KDE performed as well as
the hierarchical approach, but worse than the flat KDE with
Silverman’s bandwidth, that reached 95% overall accuracy
making it the best method.

A visualization of the cross-phonemes’ confusion is pre-
sented in figure 4. There was no detected confusion between
phonemes of vowels and /K/. The key message to extract
from these confusion matrices is that the confusion across the
different classes is very low, making these methods and speech
exercises robust to be used in an interactive environment with
children.

IV. CONCLUSIONS

Here we discussed robust phoneme recognition of EP vowel
phonemes and the EP rhotic consonant sound for a speech



therapy environment. The environment includes motivational
elements such as a progress bar. While we do not want to
make the bar fully automatic (since SLTs should always have
some control of the bar), robust phoneme recognition can give
the SLTs valuable feedback, suggesting when to advance the
progress bar.

We explored hierarchical and flat classifiers with NB, SVM
and KDE that use LPC coefficients and MFCCs. The best
results were obtained with the flat KDE with Silverman’s
bandwidth using MFCCs. A reproducible evaluation of the
cross-phoneme confusion showed it to be robust enough to be
used in interactive environments.

As future work we plan to explore the recognition of other
more complex utterances and speech productions.
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