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Abstract

Children with fricative distortion errors have to learn how to
correctly use the vocal folds, and which place of articulation to
use in order to correctly produce the different fricatives. Here
we propose a virtual tutor for fricatives distortion correction.
This is a virtual tutor for speech and language therapy that helps
children understand their fricative production errors and how to
correctly use their speech organs. The virtual tutor uses log Mel
filter banks and deep learning techniques with spectral-temporal
convolutions of the data to classify the fricatives in children’s
speech by place of articulation and voicing. It achieves an ac-
curacy of 90.40% for place of articulation and 90.93% for voic-
ing with children’s speech. Furthermore, this paper discusses a
multidimensional advanced data analysis of the first layer con-
volutional kernel filters that validates the usefulness of perform-
ing the convolution on the log Mel filter bank.

Index Terms: fricatives, speech and language therapy, convo-
lutional neural networks

1. Introduction

Speech sound disorders (SSD) can affect children’s health, liter-
acy acquisition, and development processes, but also their social
interaction and quality of life [1, 2, 3]. While most children with
language acquisition difficulties can surpass these speech distor-
tions as they grow older and their speech organs develop, some
children may have a difficult time to overcome their SSD [4],
thus delaying their normal cognitive development. These chil-
dren may need to have speech and language therapy.

Many children’s speech production mistakes are distortion
errors [2, 5]. These typically consist of a slight alteration in the
production of a sound due to the use of an incorrect vocal tract
region, an incorrect tongue shape or placement, or exchanging
voiced and voiceless sounds. Speech and language pathologists
(SLPs) help children overcome distortion errors with speech ex-
ercises and by explaining how to correctly use their speech or-
gans. Yet, it may be difficult for children to understand why
their speech production is incorrect and how to correct it.

In order to help children understand how to correctly use
their speech organs, this paper describes a virtual tutor, Frica,
that can be used in speech and language therapy sessions for
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fricatives production correction and training. Frica automati-
cally detects the place of articulation of European Portuguese
(EP) fricatives and whether the vocal folds have been used.

Most previous work on automatic classification of fricatives
by place of articulation and voicing has centered on the features
that lead to good accuracy results. Studies on the classifica-
tion of American English fricatives into voicing and place of
articulation have proposed features that include the duration of
the voiceless portion, relative amplitude and spectral flatness,
spectral shape and peak location [6], and 2-D feature matrices
obtained by applying higher order singular value decomposi-
tion on modulation spectrograms [7]. Chang et al. discuss a
spectrogram frame selection procedure to improve the accuracy
of a multilayer perceptron neural network for place and man-
ner of articulation detection [8]. Cepstral coefficients have been
proposed for Greek fricatives [9]. These studies achieved ac-
curacies between 11% and 91% for place of articulation, and
between 79% and 93% for voicing detection.

Convolutional layers in deep neural architectures can cap-
ture essential data patterns at different levels of abstraction.
This paper uses convolutional neural networks (CNN) with log
Mel filter banks to learn models for classifying children’s EP
fricative production. One of the models classifies fricative voic-
ing while the other is used to detect place of articulation. The
models were trained on EP speech samples from 356 children,
and achieve an average accuracy of 90.40% for place of articu-
lation and 90.93% for voicing, with F1 scores between 87.60%
and 93.05% for place of articulation, and between 83.32% and
93.77% for voicing. While the average accuracy values are
within the range of previous studies, those studies addressed
adult speech. On the contrary, since Frica is meant to be used in
speech therapy for children, the proposed classification models
are trained on children’s speech, with their intrinsic characteris-
tics which are quite different from those of adult voices.

In addition, we carried out a multidimensional advanced
data analysis on the convolutional filters of the proposed CNN
first convolution layer aimed at contributing to a better techni-
cal understanding of how relevant features are learned from the
log Mel filter bank. This analysis shows that relevant features,
which characterize the individual classes are learned as early as
in the first convolutional layer.

http://dx.doi.org/10.21437/Interspeech.2020-2821



Use of Place of articulation

vocal folds | Labiodental | Alveolar | Palato-alveolar
Voiceless [£] [s] [
Voiced [v] [z] [3]

Table 1: Classification of fricatives by place of articulation and
use of vocal folds.

Word position Occurrences Correct
Initial Medial Final in words productions
f 7 4 11 2983
v 2 7 9 2413
S 13 11 24 6625
z 2 6 8 2251
| 6 20 13 39 11201
3 5 5 10 2879

Table 2: Number of fricative phoneme occurrences within words
and number of fricative productions.

The main contributions of this paper are: (1) the analysis
that demonstrates that the convolutional filters are efficient fea-
ture extractors for the classification of fricatives by place of ar-
ticulation and voicing, and (2) the combination of CNN models
for the real time classification of children’s fricative productions
in a virtual tutor for fricative production training. Frica gives
children instant visual feedback on their fricative performance.
With the help of this tool, children easily visualize their mis-
takes, and understand how to correct them.

2. Data collection

In order to identify the place of articulation and voicing char-
acteristics of fricative production, Frica uses two classification
models: one to identify the place of articulation, which we call
M, and another to identify whether the vocal folds were used,
which we call M, ;. The classification models were trained with
fricative sounds extracted from recordings of children’s speech.

Fricatives in EP include [f]" as in fish, [v] as in vulture, and
the sibilants [s] as in snake, [z] as in zebra, [[] as the sh sound
in sheep, and [3] as the s sound in Asia [11]. Table 1 char-
acterizes these fricatives by place of articulation and voicing.
Other fricatives in EP include variations of s and z [12] (not
addressed due to lack of samples) and variations of the rhotic
consonant r [13, 14] (not addressed due to its different nature.)

The speech samples consist of single words that were col-
lected in three schools in the greater Lisbon area. Word samples
were collected at a 44 100 Hz sampling rate, and later down-
sampled to 16 000 Hz. 356 children (182 girls and 174 boys)
from 5 to 9 years old participated in the recordings. The record-
ing sessions were led by SLPs. For more details see [15].

The recording protocol contained 79 words with 101 frica-
tive occurrences in different word positions (table 2). Children
produced 31291 words, from which 27 723 were correct pro-
ductions. The rightmost column in table 2 shows the number of
correct productions for each fricative, which add up to 35 327.

These word productions were manually labeled by an SLP
and a software engineer. In order to recognize the isolated
phonemes, a new acoustic model for the Kaldi ASR was trained
using only the correct word productions [16]. This was used
to obtain the locations of the individual phonemes, which were
then segmented. The IPA transcription was used to select only

!International phonetic alphabet (IPA) symbols [10].
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Figure 1: Log Mel filter bank features for fricative productions.

the fricative phonemes.

After being segmented, the fricatives were cut, or zero
padded, so that the single waveforms all had the same length
(=~ 1/4 s). This length was determined by observing the aver-
age length, and the maximum length for each phoneme class, in
order to avoid padding or cutting the samples excessively.

3. Frica and the classification models

The same CNN architecture was used to train the classification
models, M, and M, (section 3.1), used by the virtual tutor
(section 3.4). Each individual model was obtained by using a
different training set in the learning phase (section 3.2). After
training the models, the codification of the convolution filters
was validated (section 3.3).

3.1. The CNN architecture

After trying several neural network architectures for classifica-
tion, the best results were obtained using a CNN and log Mel
filter banks [17]. Building on these earlier results, this paper
uses a CNN architecture adjusted to the current classification
goals, that is, the classification of fricatives by place of articu-
lation and voicing.

The input to the CNN consists of matrices of log Mel filter
banks. These are 80 x 9 matrices (with 80 bins and 9 frames),
that were extracted with a 25 ms window size and 10 ms shift
size (figure 1 - the black regions in the figure are due to zero
padding). Our approach consists of applying two dimensional,
spectral-temporal, convolutions to the whole input matrix.

The CNN has two convolutional layers, each followed by
the corresponding pooling layer. The first and second convolu-
tional layers use 50 and 25 kernel filters of size 10 x 2, with a
stride of 2 x 1 and a stride of 1 respectively. Max pooling with a
2 x 2 window and a stride of 1 was used for both convolutional
layers. The LeCun normal initializer [18], with a max norm of
2, was used for the filters in both layers.

The output from the last convolutional layer is flattened and
then fed to a fully connected network with four hidden layers
with 1000, 500, 100 and 10 neurons, respectively. The size
of the output layer depends on the number of output classes,
with one neuron per class. Thus, we used three and two output
neurons to learn My, and M, s, respectively.

The convolutional and hidden layers used the rectified lin-
ear unit (ReLU) activation function, while the output layer used
the softmax function. We applied dropout to the hidden layers,
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Figure 2: Frica gives visual feedback about sound production.
The red and green symbols help the child visualize how to cor-
rectly produce the fricative sound. (a) Incorrect production of
[z] - incorrect point of articulation, but correct use of vocal
folds. (b) Correct production of [[] - correct point of articula-
tion and the vocal folds were not used.

Class | #samples | Duration (mm:ss)
Labiodental 6498 10:05
Alveolar 10606 24:37
Palato-alveolar 18223 45:18
Voiceless 9164 16:28
Voiced 26163 63:32

Table 3: Fricative samples in each class.

with a drop rate of 30% [19], and used the Adam optimizer as
the loss function. The models were trained for 100 epochs, with
a batch size of 10.

3.2. Training data

In order to learn Mp, and M,y the fricative sound samples
were combined in different ways. We created a place of artic-
ulation training set (7,) and a voicing training set (7% ¢), and
the CNN was trained with each of these sets.

Mp,q was trained by labeling the samples in table 2 by place
of articulation. More specifically, T}, has three classes: labio-
dental ([f] and [v] samples), alveolar ([s] and [z] samples), and
palato-alveolar ([[] and [3]). On the other hand, T, ¢, which was
used to train M, ¢, has two classes: unvoiced ([f], [s] and [[]),
and voiced ([v], [z] and [3]). Table 3 shows the distribution of
the data samples across the three place of articulation classes
and the two voicing classes.

In order to learn each model, the data was randomly divided
into training, validation and test sets. Since samples of the same
fricative of a specific child are likely to have some correlation,
to avoid any bias in the results, all productions of a given child
c were placed either in the training, validation or test set. Thus,
while there are several feature vectors from each child, all those
vectors belong to the same part of the data set. The production
of 70% of the children was used in the training set, 20% in the
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test set, and 10% in the validation set.

3.3. CNN feature representation

An additional analysis was carried out in order to partially val-
idate the codification made by the proposed neural network’s
first convolution layer. The direct analysis of the fricatives’ log
Mel filter banks is not feasible, since their values are highly cor-
related and do not have a direct mapping to the intended classifi-
cations. The study focuses on the first level of convolution since
the representation of input in this layer should allow access to
a neural encoding that transforms and aggregates the input in-
formation based on the classification model. Indeed, the first
layer is the one that is more easily explained regarding input
and minimizes dependencies regarding the final classification.
Recall that the first layer learns a convolution of size 10 X 2,
i.e., ten log Mel bins at two consecutive time frames. This way,
the maps learned by the first layer can be understood as relevant
combinations of related log Mel features. Also, the second layer
has a much more complex interpretation, since it combines sev-
eral filters and is more influenced by target classification.

The convolution over the log Mel filter bank feature ma-
trix (figure 1) with each filter in the first convolution layer
results in 36 X 8 maps. These maps were analysed with
help of MultiSOM, a software for exploring multidimensional
data [20]. MultiSOM allows easy qualitative visual inspection
of the input data as it is represented in the convolution map,
e.g. [21]. The results are discussed in section 4.

3.4. Frica - a virtual tutor for fricative distortion correction

Frica can be used by SLPs in speech and language therapy ses-
sions. The SLP can choose which fricative to practice, and Frica
uses the output from M,,, and M, to offer visual feedback on
voicing as well as the place of articulation used by the child.

To identify the place of articulation and voicing character-
istics of the child’s production, Frica looks into the values of
the output layer for each CNN model. By using softmax on
the fully connected output layer, the models have the scores of
all classes summing to one, which can be used as probabilities.
Fica’s current version detects isolated fricatives by requiring a
classification of at least 60%, to consider a given place of artic-
ulation or voicing characteristics for a sound production. This
value already gives some confidence on the detected produc-
tion characteristics, but higher values, like 90%, give even more
confidence on the results. Adjusting these detection thresholds,
Frica can be adapted to classify fricatives within words.

Visual feedback is given in real time on a simplified im-
age of the vocal tract drawn on top of a child’s face (figure 2).
Using the output from M,,, Frica draws a dot on the place of
articulation that the child used. This is a green dot if the place
of articulation is correct or red otherwise. When the point of
articulation is not correct, Frica draws a green arrow indicating
the expected point of articulation (figure 2.a). Similarly, Frica
uses the output from M, ¢ to indicate if the child used the vocal
folds. If the child’s fricative production was voiced, a sinusoidal
line is drawn on the vocal folds (figure 2.a). A straight line is
used for voiceless productions (figure 2.b). The line is green if
the vocal folds are correctly used, and red otherwise.

The proposed algorithm works in real time, allowing the tu-
tor to respond to children’s sound productions changes in an in-
teractive manner. In this way, when children do not produce the
desired sound correctly, they can immediately vary their speech
production and see if they achieved the desired effect (by seeing
if the dots and lines turn green).



Disabled Averace | Alveolar Palato- Labio-
filter g -alveolar dental

- | 90.40% 87.60% 93.05% | 87.99%
23 | 73,29% 80,90% 73,41% | 64,95%
37 | 79,48% 75,27% 86,44% | 72,16%

1| 86,42% 81,90% 90,06% | 83,09%
38 | 88,73% 85,70% 92,12% | 85,21%
50 | 88,98% 86,95% 91,70% | 84,45%
44 | 89,01% 86,13% 92,72% | 83,58%
35 | 89,22% 86,60% 92,43% | 84,69%
18 | 89,38% 86,24% 92,55% | 86,28%
29 | 89,49% 87,76% 92,01% | 86,18%
43 | 89,60% 87.55% 92,53% | 85,83%

Table 4: Scores after disabling the 10 most relevant filters. The
first column shows the filter that was disabled, followed by the
average accuracy score, and the F1 scores for each class. The
first row shows the values when no filter is disabled.

0.1

0.2
05 04 03
Filter 23 - R23

Figure 3: 3D Scatter plot of target sounds [s] (X) and [[] (+)
using the values of representative rows R6, R31 in filter 37,
and row R23 in filter 23 in first convolutional map.

4. Results

The M,, model achieved an overall average accuracy of
90.40%, with the best results for the palato-alveolar frica-
tives, which achieve an Fl-score of 93.05%. The labioden-
tal and alveolar fricatives achieve an Fl-score of 87.99% and
87.60%, respectively. The overall average accuracy of M,
was 90.93%, and we have an F1-score of 83.32% for the voiced
and 93.77% for voiceless fricatives.

These high F1-score values warrant that most times the vir-
tual tutor will classify the children’s fricative productions cor-
rectly, which is an important aspect in a tool for speech therapy
and to make an impact in the child’s learning process.

As mentioned in section 3.3, we performed an analysis on
the CNN filters’ representation. The discussion here focuses on
the first convolution layer but an analysis was also done on the
original input and on the second convolution layer. The origi-
nal input was found to have high feature correlation. Also, the
difficult relation between the log Mel features and target clas-
sification has shown to lead to poor accuracy in previous stud-
ies [17]. The second layer convolution matrix presents more
evolved features, but with a much stronger relationship with the
target classes. Likewise, the direct relationship of these charac-
teristics with the log Mel filter bank becomes too difficult.

The sounds with less complexity in the time domain are the
[s] and [[] fricatives (figure 1). Without loss of generality and
for better illustrative purposes, both fricatives, and their repre-
sentation in M, were selected for our discussion. This setting
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allows a better focus on the effects of the convolution transfor-
mation applied to log Mel filter banks. The analysis focused
on time frames 2 to 4 (the ones with more pure sound repre-
sentations) and discarded all representations smaller than 0.05.
Such convolution patterns did not induce further activation in
the neural classifier and so were not considered in this analysis.

There are 50 distinct convolution kernel filters generated by
the deep training process for the first layer. We selected the most
relevant ones in the M, model by a simple sensibility analy-
ses. Each filter in the first convolution layer was turned off and
the full model without that filter was applied to test data. Table
4 presents such information with each filter ordered by the score
resulting from the impact of removing this filter on the model’s
accuracy. Filters 23 and 37 were selected for further study since
these filters are ranked as having the highest impact on the av-
erage classification accuracy. The multiSOM advanced data
exploration and data mining process helped us to identify the
most representative features in each filter: features R11, R23
and R30 for filter 23 and features R6, R15, R31 for filter 37.

The 3D scatter plot of a conjunction of three of these rep-
resentative features (features R6 and R31 from filter 37, and
R11 from filter 23) shows relevant separation of both sounds
(figure 3). The higher values for filter 37 R31 with lower
enough values for filter 37 R6 and filter 23 R23 provide a
distinctive cluster for [[] sounds, while most values for the [s]
sound values are surrounding the [[] sounds. We also noticed
that — as it could be expected on an internal neural encod-
ing representation— the convolution filters presented very di-
verse and sometimes overlapping classes. Indeed the neural
network classifier is trying to maximize the representative en-
coding power of each individual feature for all the sounds and
data sets. Therefore, only by combining three characteristics it
was possible to overcome this overlap of sounds.

This analysis shows that the relevant features, which char-
acterize the individual classes, are learned as early as in the first
convolutional layer. The features are more aggregated while
also maintaining a direct relation with log Mel filter banks. The
illustrative example also shows how the discriminating power
given by composition of some features provides an important
pool of (automatically learned) different encodings.

5. Conclusion

Frica, the proposed virtual tutor gives real time visual feedback
in an easily understandable and appealing manner. In this way,
it helps children understand how to achieve correct fricative pro-
ductions. Frica uses CNN models to classify children’s fricative
productions. The models achieve F1 scores between 87.60%
and 93.05% for place of articulation, and between 83.32% and
93.77% for voicing. Also, we showed that the convolutional
layers are efficient feature extractors for the classification of
fricatives by place of articulation and voicing.

6. Acknowledgements

This work was supported by the Portuguese Founda-
tion for Science and Technology under projects BioVi-
sualSpeech (CMUP-ERI/TIC/0033/2014) and NOVA-LINCS
(PEest/UID/CEC/04516/2019). We thank Mariana Ascensdo
and the SLP students from Escola Superior de Saidde do Al-
coitdo who collaborated in the data collection, as well as Agru-
pamento de Escolas de Almeida Garrett, and the participating
children. We also thank Catia Pedrosa, Diogo Carrasco and Al-
berto Abad for the annotation of our corpus.



[1]

[2

—

[3]

[5]

[6]

[7]

[8

[t}

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

[18]

7. References

L. Furlong, S. Erickson, and M. E. Morris, “Review: Computer-
based speech therapy for childhood speech sound disorders.”
Journal of Communication Disorders, vol. 68, pp. 50 — 69, 2017.

J. Preston and M. L. Edwards, “Phonological awareness and types
of sound errors in preschoolers with speech sound disorders,”
Journal of Speech, Language, and Hearing Research, vol. 53,
no. 1, pp. 44-60, 2010.

L. Nathan, J. Stackhouse, N. Goulandris, and M. J. Snowling,
“The development of early literacy skills among children with
speech difficulties: A test of the critical age hypothesis,” Journal
of Speech, Language, and Hearing Research, vol. 47, pp. 377—
391, 2004, american Speech-Language-Hearing Association.

S. McLeod, The international guide to speech acquisition.
Thomson Delmar Learning, 2007.

I. Guimardes, C. Birrento, C. Figueiredo, and C. Flores, Teste de
articulagdo verbal. Oficina Didéctica, Lisboa, Portugal, 2014.

A. M. Abdelatty Ali, J. Van der Spiegel, and P. Mueller,
“Acoustic-phonetic features for the automatic classification of
fricatives,” The Journal of the Acoustical Society of America, vol.
109, no. 5, pp. 2217-2235, 2001.

K. D. Malde, A. Chittora, and H. A. Patil, “Classification of frica-
tives using novel modulation spectrogram based features,” Pattern
Recognition and Machine Intelligence, pp. 134139, 2013.

S. Chang, S. Greenberg, and M. Wester, “An elitist approach to
articulatory-acoustic feature classification.” Speech Communica-
tion, pp. 1725-1728, 2001.

A. Athanasopoulou and I. Vogel, “The classification of greek
fricatives with cepstral coefficients,” Journal of The Acoustical
Society of America, vol. 129, 04 2011.

Handbook of the International Phonetic Association, A guide to
the use of the international phonetic alphabet. Cambridge Uni-
versity Press, 1999.

M. Cruz-Ferreira, “Portuguese (european),” in Handbook of the
International Phonetic Association, A guide to the use of the inter-
national phonetic alphabet. Cambridge, University Press, 1999.

M. Mateus, “A mudanga da lingua no tempo e no espago,” in A
Lingua Portuguesa em Mudanga, M. Mateus and F. Bacelar do
Nascimento, Eds.  Editorial Caminho, Portugal, 2005.

I. Rennicke and P. Martins, “As realizacdes fonéticas de /R/ em
portugués europeu: andlise de um corpus dialetal e implicagdes
no sistema fonolégico,” in Encontro Nacional da Associagdo Por-
tuguesa de Linguistica, 2013, pp. 509-523.

A. Grossinho, I. Guimardes, J. Magalhies, and S. Cavaco, “Ro-
bust phoneme recognition for a speech therapy environment,” in
Proceedings of IEEE International Conference on Serious Games
and Applications for Health (SeGAH), 2016.

M. Grilo, I. Guimardes, M. Ascensdo, A. Abad, I. Anjos, J. Ma-
galhdes, and S. Cavaco, “The BioVisualSpeech European Por-
tuguese sibilants corpus,” in International Conference on Com-
putational Processing of the Portuguese Language (PROPOR).
Springer, 2020, pp. 23-33.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi speech recog-
nition toolkit,” in [EEE 2011 Workshop on Automatic Speech
Recognition and Understanding.  1IEEE Signal Processing So-
ciety, 2011.

I. Anjos, N. Marques, M. Grilo, I. Guimaraes, J. Magalhdes, and
S. Cavaco, “Sibilant consonants classification with deep neural
networks,” in Proceedings of 19th European Conference on Arti-
ficial Intelligence (EPIA), 2019.

Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Miiller, “Efficient
backprop,” in Neural Networks: Tricks of the Trade: Second Edi-
tion, G. Montavon, G. B. Orr, and K.-R. Miiller, Eds.  Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 9-48.

3160

[19]

[20]

[21]

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” The Journal of Machine Learning Re-
search, vol. 15, no. 1, pp. 1929-1958, 2014.

N. C. Marques, B. Silva, and H. Santos, “An interactive interface
for multi-dimensional data stream analysis,” in Information Visu-
alisation (IV), 2016 20th International Conference. 1EEE, 2016,
pp- 223-229.

N. C. Marques, M. Monteiro, and B. Silva, “Analysis of a token
density metric for concern detection in matlab sources using Ubi-
SOM,” Expert Systems, vol. 35, no. 4, 2018.



