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This study analyzes the immediate effects of wearing a Therasuit on sagittal plane lower

limb angular displacements during gait in children with unilateral spastic cerebral palsy

(US-CP). Seven participants (median age = 7.00 years; ranging from 5.83 to 9.00

years) with US-CP, levels I and II of the Gross Motor Function Classification System,

were assessed with kinematic gait analysis in three different conditions: (A) Baseline; (B)

Therasuit without elastics and (C) Therasuit with elastics. Significant improvements were

observed at the hip joint of both lower limbs during most of the gait cycle in participants

wearing a Therasuit, including a decrease in the flexion pattern at the initial contact and

swing phase in both lower limbs, and an increase in the extension pattern in the paretic

lower limb during the stance phase. At the knee joint in the paretic lower limb, significant

differences were found between the baseline and Therasuit with elastics conditions on the

knee angle at initial contact, and between baseline and both Therasuit conditions on the

flexion angle at swing phase. However, the inter-individual variability in kinematic patterns

at the knee joint was high. At the ankle joint, decreased plantar flexion at initial contact and

increased dorsiflexion during stance and swing phases were observed at the Therasuit

with elastics condition, helping to correct the equinus-foot in the paretic lower limb during

the whole gait cycle. The Z-values showed large effect sizes particularly for most of

the angular hip variables in both lower limbs and for the angular ankle variables in the

paretic lower limb. The Therasuit seems to have some positive immediate effects on gait

kinematics in children with spastic unilateral cerebral palsy by providing a more functional

and safer gait pattern. Future investigations with larger samples are recommended to

further support these findings.

Keywords: cerebral palsy, hemiparetic, suit therapy, kinematic gait analysis, dynamic orthosis, physical therapy

INTRODUCTION

Cerebral Palsy (CP) is a group of pediatric disorders presenting movement and posture symptoms
caused by disturbances occurring during the development of the fetal or infant brain. Children
with unilateral (or hemiplegic) spastic CP (US-CP) have multiple physical impairments, including
muscle weakness, sensory loss, and spasticity, in the upper and lower limbs of one side of the body
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(1), typically on the opposite side of the brain injury (2).
Asymmetry between the paretic and the non-paretic sides is
common (3), particularly a decrease in muscle volume on the
paretic side (4, 5) and lower limb length discrepency (6). US-
CP is the most common syndrome in children born at term and
is second in frequency only to spastic diplegia among preterm
infants (7–9).

Although “hemiplegia” refers to disorders affecting only one
side of the body, hemiplegic children often also have motor
impairments on the non-paretic side, particularly in more
severe types of hemiplegia, which are typically characterized by
altered gait patterns in both lower limbs (10). Compensatory
movement patterns are adopted which often result in functional
difficulty andmusculoskeletal dysfunction. Physical therapy aims
to maximize functional independence and minimize secondary
complications (11).

New technologies have been introduced in rehabilitation
programs to promote and/or enhance the engagement of children
with CP in a variety of physical activities and tasks. For instance,
dynamic orthoses (12) address different CP-related problems:
balance control (11); limb symmetry, walking speed and cadence
(13); trunk control (14); motor function in all categories of Gross
Motor Function Measure (15); and self-care (16). Furthermore,
since the 1990s, different types of therapeutic suits have been
used in children with CP (16–18), such as Theratogs (TTs) and
Therasuit R© (TS). TTs are custom manufactured lycra garments
covering the trunk and limbs that exert a compressive force
on the body (16–19). The TS is a soft dynamic proprioceptive
orthotic (including vest, shorts, knee pads, and specially adapted
shoes) that aligns the body by placing pressure on specific areas
through a system of interconnected elastic cords (13). The TS
was created from a prototype developed for Russian astronauts to
counter the effects of long-term weightlessness on the body while
in space (13, 16, 20). The elastic cords are systematically adjusted
based on the individual needs and functional limitations of the
child (16). The TS Method was designed to be used in intensive
rehabilitation programs, including vigorous strengthening and
stretching exercises, and training of specific motor activities
(13). However, despite the popularity of short intensive TS
therapy interventions, a recent systematic review and meta-
analysis showed they have small effects on the functional skills
of children and adolescents with CP (21). The authors raised
concern about the lack of evidence for the beneficial effects of this
dynamic orthosis, and suggested that specific immediate effects of
TS therapy on postural control and gait should be analyzed. The
aim of this study is to determine the immediate effects of wearing
TS on joint angle displacements in both lower limbs during gait in
children with US-CP. The results from this analysis may provide
evidence to support the applicability of TS in physical therapy
interventions, more specifically on gait training programs.

MATERIALS AND METHODS

Participants
Seven participants (3 females and 4 males, mean age = 7.17 ±

1.01 yrs; ranging from 5 to 9 years) with a medical diagnosis
of Unilateral Spastic Cerebral Palsy, level I and II of the

Gross Motor Function Classification System (GMFCS), were
evaluated using a quasi-experimental study design with one pre-
test condition (baseline) and two post-test conditions (Therasuit
without elastics and Therasuit with elastics). Participants 1, 2, and
3 had a medical diagnosis of left hemiparesis, and participants 4,
5, 6, and 7 had a medical diagnosis of right hemiparesis.

Inclusion criteria were: (a) unilateral spastic cerebral palsy;
(b) ability to walk independently (level I or II according to
GMFCS); (c) age range from 5 to 10 years old; (d) cognitive level
and emotional state facilitating understanding and cooperation
of the participant; (e) no prior experience with this type of
dynamic orthosis (TS) before this study. Exclusion Criteria were:
(a) another medical diagnosis, types and sub-types of spastic CP;
(b) congenital heart disease and cardiorespiratory problems; (c)
presence of structural deformities at the lower limbs and trunk,
or instability in the ankle joint, which could compromise the
child’s safety and performance of the motor task; (d) epilepsy;
(e) treatment with botulinum toxin in the calf muscles within
the previous 6 months; (f) surgical intervention (e.g. tendon
lengthening in lower limb) within the previous 12 months;
(g) muscle tone scored ≥2, according to Modified Ashworth
Scale; (h) severe affective or psychiatric impairments; (i) serious
vision or hearing problems. The previous clinical history of the
participants is presented on Table 1.

The Ethical Committee of the Rehabilitation Medicine Center
in Alcoitão (CMRA), Portugal (PT) ensured and approved the
conformity procedures regarding scientific research involving
human beings. Parental consents and children assents were
obtained. A convenience sample was used. Children that were
attending the CMRA and who met the inclusion criteria were
invited to participate.

Procedure
Data Collection
The protocol included two phases of data collection: (1) parental
interview and clinical examination; (2) gait analyses in three
different conditions: baseline (before TS), TS without elastics
(TSWE) and complete TS, with elastics (TS). The option of
testing two TS conditions was necessary because for gait analysis
some markers that were placed on the skin in baseline condition
required placement on the orthosis in the TS condition. In order
to avoid a possible systematic bias due to placement of the
markers on the orthosis the TSWE was included. However, the
condition TSWE could not be considered a baseline condition
because, even without elastics the TS may influence the gait
patterns of the children since its fabric is not as soft and flexible
as other orthosis (e.g., the TTs lycra).

Parental interview and clinical examination
The parental interview aimed to collect data regarding pre- and
peri-natal history and developmental milestones (Table 1). The
diagnosis of US-CP was confirmed by a pediatric neurologist
and magnetic resonance exams. Data about orthopedic surgeries
and pharmacological treatments of spasticity were also collected.
All children had been submitted to at least one application of
botulinum toxin (BTX), type A, in the paretic lower limb, with
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TABLE 1 | Previous clinical history.

Participant Gestational age

(weeks)

Gestational age

classification

Birth

weight (g)

Birth weight

classification

Type of

delivery

Neonatal

intensive care

Assisted ventilation

> 24 h

Age onset of independent

gait (months)

1 41 LT 3,075 NBW V No No 24

2 34 MLPT 1,845 LBW V Yes Yes 24

3 42 LT 2,500 NBW SC No No 24

4 25 EXPT 833 ELBW V Yes Yes 24

5 30 VPT 1,420 VLBW EC Yes Yes 24

6 25 EXPT 800 ELBW V Yes Yes 30

7 37 ET 2,660 NBW SC No No 24

LT, Late Term; MLPT, moderate to late preterm; EXPT, extremely preterm; VPT, very preterm; ET, Early Term; NBW, Normal birth weight; LBW, Low birth weight; ELBW, extremely low

birth weight; VLBW, very low birth weight; V, Vaginal; SC, Scheduled Cesarean; EC, Emergency Cesarean.

only one child (participant 1) undergoing a muscle stretching in
the paretic lower limb (15 months prior to the study).

To understand the health conditions associated with CP and
the impact on the functional activity, the clinical examination
was performed by two-experienced pediatric physical therapists
a week before gait analysis.

A bilateral goniometric assessment of passive range
of movement (ROM) was performed for both lower
limbs by the same trained physical therapist (22, 23) (see
Supplementary Table 1), and the spasticity score of the
paretic LL (PLL) was determined according to the Modified
Ashworth’s Scale (MAS) (24), (see Supplementary Table 2). All
the participants showed no structural deformities or instability
in the ankle joint of the PLL (dorsiflexion/plantarflexion range
from 15◦ to −15◦), which could compromise the child’s safety
and performance of the motor task and muscle tone scored <2.
The length of the lower limbs was clinically assessed (distance
from anterior superior iliac spine to medial malleolus).

The functional profiles (Table 2) were based on validated
tools to measure and classify the functional severity, according
to the recommendation of Surveillance of Cerebral Palsy in
Europe (SCPE) (25, 26) and the International Classification of
Functioning, Disability and Health–Children & Youth (CIF-CY)
conceptual model (27).

The gross motor function, balance assessments and functional
mobility (Table 3), were performed using the Gross Motor
Function Measure (GMFM-66 items) (34). Functional Mobility
Score (FMS) (35, 36), and the Pediatric Balance Scale (PBS)
(37) Additionally, a video gait analysis was done, to assess the
gait patterns of each participant in the sagittal plane, based in
the classification proposed by Winters, Gage and Hicks (see
Supplementary Table 3) (38). ROM and MAS scores and the
observational gait analysis were used to support the decision-
making process regarding the placement of the elastic cords in
each of the seven children (see Supplementary Table 4).

Gait analysis protocol
A week after the clinical examination, 3D gait analysis following
a standardized protocol was conducted in three different
conditions: (A) baseline (BL); (B) while wearing TS without
elastics (TSWE); and (C) while wearing the complete TS (TS).
The assessments were performed in 1 day by two experienced

pediatric physical therapists, one of them with TS certification.
The order of the conditions was the same for all children (i.e.,
baseline, TSWE, TS), increasing gradually the complexity of
the orthosis, in order to shorten the total data collection time
and to avoid possible stress or fatigue related with dressing
and undressing the TS. Data from clinical examination (ROM
and MAS) and observational gait analysis were used to guide
the placing of the elastic cords of the TS according to each
participant’s specific needs. The participant’s assent was obtained
after an initial explanation prior to the data collection procedures.

Two video-digital cameras (Basler piA1000-48gc GigE) and
six infrared cameras (VICON T10) sampled at 100Hz in
conjunction with four force-plates (AMTI OR6-7-2000) and four
analog AMTI amplifiers were used to measure 3D motion of the
lower limbs (LLs).

Anthropometric measures (height, body weight, tibial length,
distance between the femoral condyles or diameter of the knee,
distance between the malleoli or diameter of the ankle, distance
between the anterior iliac spines and thickness of the pelvis) were
collected in the two conditions. Height and weight were collected
with shoes on in both conditions.

After collecting the anthropometric measures, in the BL
condition sixteen retro-reflective markers were fixed with
double-sided adhesive tape directly on the skin in anatomical
landmarks of the pelvis and lower extremities identified by
palpation. The placement of the markers in these anatomical
landmarks allows the tracking of each functional segment’s
movement trajectory. In the TSWE and TS conditions, the
markers were placed on the dynamic orthosis in positions that
best reproduced the original anatomical references used in the
BL condition (see Supplementary Figure 1). In some cases (e.g.,
pelvis) each marker was moved laterally by an equal distance
along the ASIS-ASIS axis. The true inter-ASIS distance was then
manually measured and entered in Vicon, following the Plug-
in Gait model recommendations. In the thigh and leg segments,
rigid clusters were also used according to the Lowerbody Vincon
Model (Plug-in Gait) (39, 40). To avoid marker displacement
between the BL and both TS conditions, and to reduce the
influence of the footwear on the gait pattern, all participants
used the same model of commercially available sneakers during
the test protocol (41). The markers were placed in anatomical
landmarks equivalent to those reported in the literature (42).
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TABLE 2 | Functional Profile and associated disorders, according to SCPE (25, 26) and CIF-CY (27).

Participant GMFCS BFMF MACS VSS CFCS EDACS Epilepsy Cognitive Education

1 II III III I I I I I II

2 II III III II II I I II II

3 I III III III III III I II II

4 I II II I I I I I II

5 I II II II II I I II II

6 II III III II II II I II II

7 I II II I I I I I I

CMFCS, Global Motor Function Classification System (28); MACS, Manual Ability Classification System(29); BFMF, Bilateral Fine Motor Function (30); VSS, Viking Speech Scale (31);

CFCS, Communication Function Classification System (32); EDACS, Eating and Drinking Classification System (33); Associated disorders and education (school participation) evaluated

according to Cans (25) and Andrada et al. (26).

TABLE 3 | Gross motor function, balance and functional mobility.

Participant GMFM (%) PBS FMS

5 m 50 m 500 m

1 94 43/56 6 6 5

2 94 43/56 6 6 5

3 96 44/56 6 6 5

4 97 45/56 6 6 5

5 96 45/56 6 6 5

6 94 43/56 6 5 5

7 98 52/56 6 6 6

GMFM, Gross Motor Function Measure (66 items) (34); PBS, Pediatric Balance Scale (37);

FMS, Functional Mobility Score (35, 36).

For the hallux and heel, the markers were placed on the shoe in
positions that best reproduced the reported barefoot anatomical
references (42).

After placing the markers, a reference position was captured
to determine the overall position and orientation of the markers
within the body segments (43). To this end, the participants
were instructed to remain in an orthostatic position with their
feet aligned in the center of the force platform. The reference
position was determined after collecting themarker data for 5 s in
each condition. Next, the participants were instructed to walk up
and down at a comfortable walking speed until they were asked
to stop, in order to perform a total of 10 trials (about 20m).
Kinematic variables were recorded until at least five successful
trials (range: 5–8) for each lower limb in each condition. Rest
breaks of 20min were allowed between conditions.

Different outcome variables regarding the kinematic measures
of lower limbs in the sagittal plane were analyzed in this
study (Table 4).

Data Analysis
Acquisition and processing of the biomechanical data were
performed with the Vicon R© system by using the software Nexus
version 1.8.5. We analyzed the kinematic data with the Plug-in-
Gait model (44), which is widely used in clinical gait analysis (45).
The Polygon version 3.5.2. software was used for the analysis. All
data used in this analysis was previously archived in folders and

TABLE 4 | Kinematic measures of lower limbs in sagittal plane.

Joint Description

Hip joint

(flexion/extension)

- Hip initial contact: value of hip angle at initial contact;

- Hip angle at mid-stance: minimum of hip flexion in

mid-stance sub-phase;

- Hip angle at mid- swing: peak of hip flexion at mid

swing sub-phase;

Knee joint

(flexion/extension)

- Knee angle at initial contact: value of knee angle at initial

contact;

- Knee angle at mid-stance: minimum of knee flexion at

mid-stance sub-phase;

- Knee angle at mid-swing: peak of knee flexion at mid-

swing sub-phase;

Ankle joint

(dorsi/plantar

flexion)

- Ankle angle at initial contact: value of the ankle joint

angle at the initial contact.

- Ankle angle at mid-stance: ankle joint angle at mid-

stance sub-phase;

- Ankle angle at swing phase: value of the ankle joint

angle at mid-swing phase.

exported to Excel files. Each file stored task and evaluation data
corresponding to one participant.

A descriptive exploratory analysis was carried out to identify
aspects or behavior patterns characterizing the variables under
study. The Wilcoxon test for paired samples, with Bonferroni
correction, was performed to compare the mean ranks of each
variable in the BL, TSWE and TS conditions. SPSS 24 was
used for the statistical analyses with a p < 0.05 as the level
of statistical significance. However, the p value cannot provide
full information about the practical significance of the results or
about whether or not the result is replicable. In studies with small
samples the p-value could not reflect if the underlying difference
is real. We therefore used the Z-scores to calculate correlation
coefficients (46) and to quantify the effect sizes of the TS therapy.
Values were considered small if r ≥ 0.10; moderate, if r ≥ 30 and
large if r ≥ 0.50 (47–49).

RESULTS

Hip Joint
The hip joint sagittal plane angular displacements in the seven
children during a gait cycle, as well as the group average and
SD values in the three conditions, for the PLL and NPLL, are
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presented in Figure 1. All participants showed a tendency to have
lower hip flexion pattern in the TS conditions, in both lower
limbs during the gait cycle.

Table 5 presents the comparison for the hip joint kinematic
variables between conditions during the different stages of
gait cycle.

Statistically significant differences between conditions were
observed on the PLL at the different gait stages, namely: (i) hip
angle at initial contact between BL and both TS conditions (p =

0.008, r= 0.63), (ii) hip extension angle atmid-stance between BL
and TS (p = 0.016, r = 0.59); iii) hip flexion angle at mid-swing
between BL and both TS conditions (p= 0.008, r = 0.63).

For the NPLL, differences were found at the following stages:
(i) hip angle at initial contact between BL and both TS conditions
(p = 0.008, r = 0.63) and; (ii) hip flexion angle at mid-swing
between BL and both TS conditions (p= 0.008, r = 0.63).

Regarding ROM, significant differences were found between
BL and both TS conditions at the hip of the PLL (p = 0.008, r =
0.63) and of the NPLL (p= 0.016, r = 0.59).

Despite the statistically non-significant differences, there were
also large effect sizes in the PLL at: (i) initial contact between the
two TS conditions (p= 0.039, r= 0.50); (ii) stance phase between
BL and TSWE (p= 0.039, r = 0.50).

Knee Joint
The knee joint sagittal plane angular displacements in all
participants during a gait cycle and also the group average
and SD values in the three conditions, for the PLL and
NPLL, are presented in Figure 2. In contrast to the hip joint,

the seven participants showed high heterogeneity or inter-
individual variability in knee joint motor patterns in the
BL condition, which is possibly related to the lower limb
discrepancy between the PLL and the NPLL exhibited by
the children.

Table 6 presents the comparison for the knee joint kinematic
variables between conditions during the different stages of
gait cycle.

Statistically significant differences for the PLL were found at
the following stages of the gait cycle: (i) knee angle at initial
contact between both TS conditions (p = 0.016, r = 0.59);
(ii) knee flexion angle at mid-swing between BL and both TS
conditions (p= 0.008, r = 0.63) and between both TS conditions
(p= 0.016, r = 0.59).

For the NPLL differences were found at the following stages:
(i) knee angle at initial contact between BL and TSWE (p= 0.008,
r = 0.63), (ii) knee angle at mid-stance between BL and TSWE (p
= 0.008, r = 0.63).

Regarding ROM, there were differences between BL and both
TS conditions in the PLL (p = 0.008, r = 0.63) and in the NPLL
(p= 0.008, r = 0.63).

Despite the lack of statistically significant differences,
large effect sizes were observed at knee extension at mid-
stance in both lower limbs. In the PLL large effects were
observed between BL and TSWE (p = 0.039, r = 0.50),
and between both TS conditions (p = 0.039, r = 0.50). In
the NPLL, still at stance phase, large effect sizes were found
between BL and TS (p = 0.023, r = 0.56). In swing phase,
large effect sizes were noted between the BL and TSWE

FIGURE 1 | Hip joint flexion-extension. Top 3 rows represent the angular displacements in the seven children during a gait cycle, in the three conditions, for the PLL

and NPLL. Bottom row represents the group average and SD values (shaded areas) in the three conditions, for the PLL and NPLL. Negative values represent hip

extension.
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TABLE 5 | Comparison for the hip joint kinematic variables between conditions, during the different stages of gait cycle, in both lower limbs (Wilcoxon test with Bonferroni

correction and effect size).

Kinematic variables/Gait Phases/Condition Mean SD Wilcoxon/Bonferroni Correction Effect size

(◦) (◦) (*p < 0.017) (r = Z/ √
n)

Paretic lower limb 1-Hip initial contact BL 37.99 9.45 1 vs. 2; Z = −2.366, p =0.008* 1 vs. 2; r = −0.63

2-Hip initial contact TSWE 26.36 9.51 1 vs. 3; Z = −2.366, p = 0.008* 1 vs. 3; r = −0.63

3-Hip initial contact TS 19.84 11.78 2 vs. 3; Z = −1.859, p = 0.039 2 vs. 3; r = −0.50

1-Hip extension angle stance phase BL −6.31 4.07 1 vs. 2; Z = −1.859, p = 0.039 1 vs. 2; r = −0.50

2-Hip extension angle stance phase TSWE −13.40 6.09 1 vs. 3; Z = −2.201, p = 0.016* 1 vs. 3; r = −0.59

3-Hip extension angle stance phase TS −15.30 6.65 2 vs. 3; Z = −0.676, p = 0.289 2 vs. 3; r = −0.18

1-Hip flexion angle swing phase BL 46.57 8.34 1 vs. 2; Z = −2.366, p = 0.008* 1 vs. 2; r = −0.63

2-Hip flexion angle swing phase TSWE 29.49 8.18 1 vs. 3; Z = −2.366, p = 0.008* 1 vs. 3; r = −0.63

3-Hip flexion angle swing phase TS 23.20 10.91 2 vs. 3; Z = −1.778, p = 0.047 2 vs. 3; r = −0.48

1-Hip range of movement BL 52.84 5.50 1 vs. 2; Z = 2.366, p = 0.008* 1 vs. 2; r = −0.63

2-Hip range of movement TSWE 42.93 7.04 1 vs. 3; Z = −2.366, p = 0.008* 1 vs. 3; r = −0.63

3-Hip range of movement TS 39.07 5.50 2 vs. 3; Z = −1.778, p = 0.047 2 vs. 3; r = −0.48

Non-paretic lower limb 1-Hip initial contact BL 48.34 7.23 1 vs. 2; Z = −2.366, p =0.008* 1 vs. 2; r = −0.63

2-Hip initial contact TSWE 36.77 6.73 1 vs. 3; Z = −2.366, p = 0.008* 1 vs. 3; r = −0.63

3-Hip initial contact TS 34.06 6.56 2 vs. 3; Z = −1.183, p = 0.148 2 vs. 3; r = −0.32

1-Hip extension angle stance phase BL −8.66 6.88 1 vs. 2; Z = 0.000, p = 0.531 1 vs. 2; r = 0.00

2-Hip extension angle stance phase TSWE −8.76 6.05 1 vs. 3; Z = −1.270, p =0.117 1 vs. 3; r = −0.34

3-Hip extension angle stance phase TS −13.09 6.70 2 vs. 3; Z = −1.690, p = 0.055 2 vs. 3; r = −0.45

1-Hip flexion angle swing phase BL 51.46 8.19 1 vs .2; Z = −2.366, p =0.008* 1 vs. 2; r = −0.63

2-Hip flexion angle swing phase TSWE 37.96 5.05 1 vs. 3; Z = −2.366, p = 0.008* 1 vs. 3; r = −0.63

3-Hip flexion angle swing phase TS 35.76 6.84 2 vs. 3; Z = −1.270, p = 0.117 2 vs. 3; r = −0.34

1-Hip range of movement BL 60.57 10.72 1 vs. 2; Z = −2.197, p = 0.016 * 1 vs. 2; r = −0.59

2-Hip range of movement TSWE 47.90 9.27 1 vs. 3; Z = −2.197, p = 0.016* 1 vs. 3; r = −0.59

3-Hip range of movement TS 48.96 6.07 2 vs. 3; Z = −0.676, p = 0.289 2 vs. 3; r = −0.18

BL, Baseline; TSWE, Therasuit without elastics; TS, Therasuit.

(p = 0.039, r = 0.50). Large effect sizes were also noted
between the two TS conditions in the ROM of the NPLL
(p= 0.039, r = 0.50).

Ankle Joint
The ankle joint sagittal plane angular displacements in all
participants during a gait cycle, plus the group average and
SD values in the three conditions, for the PLL and NPLL, are
presented in Figure 3. Although all participants had similar
kinematic patterns in the ankle joints, there were differences
between the PLL and NPLL at different phases of the gait cycle.

Table 7 presents the comparison for the ankle joint kinematic
variables between conditions during the different stages of
gait cycle.

The results show significant differences on the PLL at different
stages of gait cycle, namely: (i) ankle angle at initial contact
between BL and TS (p = 0.008, r = 0.63) and between both TS
conditions (p = 0.008, r = 0.63); (ii) dorsiflexion angle at stance
phase between BL and both TS conditions (TSWE: p = 0.016, r
= 0.59; TS: p = 0.008, r = 0.63); (iii) dorsiflexion angle at swing
phase between BL and TS (p= 0.016, r= 0.59) and between both
TS conditions (p= 0.016, r = 0.59).

Regarding the NPLL, there were significant differences only at
the following stages of gait cycle: (i) dorsiflexion angle at stance

phase between BL and both TS conditions (p = 0.016, r = 0.59);
(ii) dorsiflexion angle at swing phase between BL and both TS
conditions (p= 0.016, r = 0.59).

Concerning ankle ROM in the PLL, there were differences
between both TS conditions (p = 0.008, r = 0.63). In the NPLL,
there were differences in ankle ROM between BL and both TS
conditions (p= 0.008, r = 0.63).

Despite the lack of statistically significant differences, there
were large effect sizes at ROMof the PLL between BL and both TS
conditions (TSWE: p= 0.039, r = 0.50; TS: p= 0.023, r = 0.54).

DISCUSSION

This study assessed the immediate effects of wearing Therasuit
on the angular displacements of the lower limbs during gait in
children with unilateral spastic cerebral palsy (US-CP). Overall
the TS showed some significant effects in the three analyzed
joints. However, the positive results in the ankle are more reliable,
since in this joint, markers were not moved between conditions,
eliminating any possible systematic bias due to the placement
of the markers between conditions. The discussion of the effects
noted in the hip, knee and ankle joints is presented below.

The results showed that wearing a Therasuit (with or without
elastics) has statistically significant effects and large effect sizes on
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FIGURE 2 | Knee joint flexion-extension Top 3 rows represent the angular displacements in the seven children during a gait cycle, in the three conditions, for the PLL

and NPLL. Bottom row represents the group average and SD values (shaded areas) in the three conditions, for the PLL and NPLL. Negative values represent knee

extension.

most of the angular hip variables in both lower limbs, correcting
the exaggerated flexion pattern during the whole gait cycle in all
participants. Even though there were no statistically significant
differences between both Therasuit conditions in this joint, the
results were most notable on the TS condition than TSWE in
the PLL, resulting in lower hip flexion pattern during whole
gait cycle.

Children with US-CP often have an exaggerated hip flexion
pattern during gait to compensate formotor control impairments
in the PLL and for leg length discrepancy (i.e., longer NPLL) (50).
Our results suggest that the Therasuit helps to reduce this greater
hip flexion pattern during the gait cycle, and this is consistent
with previous data showing an increase in hip extension at stance
phase in children with bilateral spastic (diplegia) CP, wearing
the Theratogs dynamic orthosis (51). In our study, the Therasuit
promoted a greater hip extension pattern at initial contact in
both lower limbs and at mid-stance sub-phase in the PLL and
lower hip flexion pattern in both lower limbs, at mid-swing,
resulting in a tendency to approach normative angular values
for this joint (52). This effect is likely due to the decrease of
the musculoskeletal constraints on the hip gait patterns in the
PLL. According to Hussein et al. (53), the decrease in the typical
spasticity flexion pattern allows agonist and antagonist muscles
to work in better synchrony, leading to a smother movement.

The results in the knee joint were less clear than in the
hip, probably also due to a greater heterogeneity between
children. In the PLL, most relevant differences were found in
swing phase, since the exaggerated flexion pattern exhibited in
BL decreased toward normative values in the TS conditions,

with significant differences and large effect sizes between the
three conditions. Regarding the NPLL, there were significant
differences on the knee angle at initial contact and stance phase,
between BL and TSWE, with large effect sizes. Other large effect
sizes (without statistically significant differences) were found
on the knee extension angle at stance-phase between both TS
conditions and on the knee flexion angle at swing phase between
BL and TSWE conditions. One possible explanation for these
results, may be related with the high inter-individual variability
exhibited by the seven participants in the baseline condition,
regarding the knee joint motor patterns in the PLL during
the stance phase. This variability was especially visible at mid-
stance, ranging from full extension angles similar to children with
typical development (Child 4, Child 5, Child 6, and Child 7),
to hyperextension (Child 2) and flexion patterns (Child 1 and
Child 3), usually showed in gait patterns in children with US-
CP. Considering the within participant changes, the TS seemed
to help to correct the hyperextension pattern of Child 2 and had
slightly positive effects on children with flexion pattern (Child 1
and Child 3).

Furthermore, all the participants have lower limbs length
discrepancy and four of them (Child 1, Child 2, Child 6, and
Child 7) have the PLL significantly shorter than the NPLL
(54). This clinically significant (≥1.5 cm) lower limb length
discrepancy (55) may have limited the effects of the Therasuit,
more specifically, on the hip and knee joints angles in the NPLL
at stance phase.

The fact that there were almost no significant differences
between TSWE and TS conditions on the hip and knee joints
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TABLE 6 | Comparison for the knee joint kinematic variables between conditions, during the different stages of gait cycle, in both lower limbs (Wilcoxon test with

Bonferroni correction and effect size).

Kinematic variables/Gait phases/Condition Mean SD Wilcoxon/Bonferroni correction Effect size

(◦) (◦) (*p < 0.017) (r = Z/ √
n)

Paretic lower limb 1-Knee initial contact BL 16.67 13.26 1 vs. 2; Z = −0.676, p = 0.289 1 vs. 2; r = −0.18

2-Knee initial contact TSWE 18.77 7.63 1 vs. 3; Z = −1.521, p = 0.078 1 vs. 3; r = −0.41

3-Knee initial contact TS 12.33 6.86 2 vs. 3; Z = −2.197, p = 0.016* 2 vs. 3; r = −0.59

1-Knee extension angle stance phase BL 2.80 5.37 1 vs. 2; Z = 1.859, p = 0.039 1 vs. 2; r = −0.50

2-Knee extension angle stance phase TSWE 8.36 7.05 1 vs. 3; Z = −1.185, p = 0.141 1 vs. 3; r = −0.32

3-Knee extension angle stance phase TS 4.67 2.87 2 vs. 3; Z = −1.859, p = 0.039 2 vs. 3; r = −0.50

1-Knee flexion angle swing phase BL 64.57 7.16 1 vs. 2; Z = −2.366, p = 0.008* 1 vs. 2; r = −0.63

2-Knee flexion angle swing phase TSWE 53.46 7.29 1 vs. 3; Z = −2.366, p = 0.008* 1 vs. 3; r = −0.63

3-Knee flexion angle swing phase TS 45.31 10.42 2 vs. 3; Z = −2.197, p = 0.016* 2 vs. 3; r = −0.59

1-Knee range of movement BL 61.83 9.15 1 vs. 2; Z = 2.366, p = 0.008* 1 vs. 2; r = −0.63

2-Knee range of movement TSWE 45.29 10.87 1 vs. 3; Z = −2.371, p = 0.008* 1 vs. 3; r = −0.63

3-Knee range of movement TS 41.09 12.03 2 vs. 3; Z = −1.778, p = 0.047 2 vs. 3; r = −0.48

Non-paretic lower limb 1- Knee extension angle stance phase BL 9.86 2.94 1 vs. 2; Z = −2.366, p = 0.008* 1 vs. 2; r = −0.63

2-Knee extension angle stance phase TSWE 19.66 4.72 1 vs. 3; Z = −2.028, p = 0.023 1 vs. 3; r = −0.56

3-Knee extension angle stance phase TS 16.21 4.86 2 vs. 3; Z = −1.521, p = 0.078 2 vs. 3; r = −0.41

1-Knee initial contact BL 17.63 7.01 1 vs. 2; Z = −2.371, p = 0.008* 1 vs. 2; r = −0.63

2-Knee initial contact TSWE 26.49 7.17 1 vs. 3; Z = −0.593, p = 0.305 1 vs. 3; r = −0.16

3-Knee initial contact TS 19.84 5.87 2 vs. 3; Z = −1.778, p = 0.047 2 vs. 3; r = −0.48

1-Knee flexion angle swing phase BL 73.36 4.18 1 vs. 2; Z = −1.859, p = 0.039 1 vs. 2; r = −0.50

2-Knee flexion angle swing phase TSWE 69.76 6.66 1 vs. 3; Z = −1.183 p = 0.148 1 vs. 3; r = −0.32

3-Knee flexion angle swing phase TS 70.24 8.22 2 vs. 3; Z = −0.593. p = 0.313 2 vs. 3; r = −0.16

1-Knee range of movement BL 63.50 4.68 1 vs. 2; Z = −2.366, p = 0.008* 1 vs. 2; r = −0.63

2-Knee range of movement TSWE 51.09 4.86 1 vs. 3; Z = −2.366, p = 0.008* 1 vs. 3; r = −0.63

3-Knee range of movement TS 55.26 3.07 2 vs. 3; Z = −1.863, p = 0.039 2 vs. 3; r = −0.50

BL, Baseline; TSWE, Therasuit without elastics; TS, Therasuit.

might be related with the biomechanical constraints caused by
the TS fabric.

Regarding the ankle joint, the results showed significant
differences and large effect sizes on all kinematic variables in the
PLL between BL and TS with elastics, during whole gait cycle.
These differences with BL only occurred in stance phase for the
TSWE condition. Comparing both TS conditions, the significant
differences and large effect sizes were also noted, at initial contact
and swing phases. Conversely, in the NPLL, there were significant
differences and large effect sizes on the dorsiflexion angles, at
stance and swing phases, between BL and both TS conditions.

The ankle joint showed an asymmetrical pattern. While in the
baseline condition the ankle joint on the PLL is plantarflexed at
initial contact and swing phases, the NPLL is characterized by
a greater ankle dorsiflexion pattern, in these phases of the gait
cycle. According to our findings, the TS with elastics successfully
controlled the excessive ankle plantar flexion (equinus foot)
in the PLL at swing phase, correctly pre-positioning the foot
for an initial heel contact. This correction was observed in
all the participants and led the ankle angles values at initial
contact toward the normative values (52), with the exception
of participant 1 (the only participant submitted to orthopedic
surgery), who exhibited an ankle angle higher than the normative
values. In turn, in the NPLL at initial contact in the BL

condition, most participants showed a greater dorsiflexion than
typically developing children (52), which was maintained in TS
conditions. According to Allen et al. (55) and Cimolin et al.
(52), the motor control changes observed in most participants in
the NPLL, probably result from compensatory strategies used to
overcome the structural and functional limitations of the PLL,
thereby allowing greater stability over time.

Interestingly, the effects of the Therasuit were also observed
on the distal ankle joint. These findings contradict previous
research with other dynamic orthoses (i.e., Theratogs) that cause
improvements at a proximal level but not at a distal level (56).
These conflicting results may be explained by the differences in
the samples (participants with bilateral spastic CP at Rennie’s
study vs. unilateral spastic CP in the present study) or by
differences in the orthoses (Theratogs vs. Therasuit). In contrast
to Therathogs, the Therasuit allows the correction of the ankle
joint by adjusting the elastic cords attached to the shoes, thus
augmenting the possibilities to improve distal control.

In summary, our results suggest that wearing a Therasuit
could allow a greater extension pattern in the initial contact and
stance phases on the PLL (hip and knee joints), as well as a greater
dorsiflexion at the ankle joint during the whole gait cycle. These
changes promote better dynamic control in the sagittal plane,
caused by the reduction of the biomechanical constrains in that
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FIGURE 3 | Ankle joint flexion-extension. Top 3 rows represent the angular displacements in the seven children during a gait cycle, in the three conditions, for the PLL

and NPLL. Bottom row represents the group average and SD values (shaded areas) in the three conditions, for the PLL and NPLL. Negative values represent

plantarflexion.

limb. These adaptations consequently lead to more functional
gait patterns in our sample (seven 6- to 9-year-old children, with
US-CP and with minimal degree of spasticity on the PLL).

Clinical Implications
The (re)habilitation of gait disorders in children with CP is
one of the main objectives of physical therapeutic intervention,
because the gait has a critical role in the autonomy and quality
of life of a child and family (30). The implementation of
therapeutic innovations, including Therasuit, into the physical
therapist’s clinical practice to facilitate more efficient gait
patterns in children with US-CP, should be based on a clear
understanding of the biomechanical factors underlying themotor
and proprioceptive impairments of this subtype of CP. It is also
important to note that the inherent complexity of the Therasuit
orthosis requires experienced physical therapists for placing the
elastic bands in a way that restrains compensatory patterns while
simultaneously promoting new and more efficient gait patterns.

This study has important clinical implications since it
emphasizes on one hand the presence of differentiated kinematic
patterns between the paretic and non-paretic lower limbs (52)
and, on other hand, it reinforces the presence of significant
compensatory motor strategies in the NPLL that result from
neuromuscular factors, biomechanical constraints and primary
growth disturbances (e.g., limb length discrepancy) of the
PLL (55).

In order to implement an evidence-based practice, the best
research evidence should be available. Thus, from a clinical
perspective, the identification and precise quantification of gait

patterns in both lower limbs (paretic and non-paretic) of children
with unilateral spastic CP is a central issue for development
of effective and specific (re)habilitation programs. Despite the
limitations presented next, the results of the present study may
constitute a first step to guide physical therapists in the selection
of appropriate dynamic orthoses to promote more functional gait
patterns in this particular CP subtype (unilateral spastic).

Methodological Considerations and
Limitations
To our knowledge, this is the first study to investigate the
immediate effects of Therasuit on the gait pattern of children
with CP. Most studies have addressed the effects of Therasuit
interventions (21) and therefore have various confounding
variables (e.g., different activities performed during therapy and
different intensities of training), making the interpretation of
the results challenging and the specific effects of Therasuit
difficult to determine. The clinical type and severity level of
children with CP influence the functional prognosis and the
aims of (re)habilitation programs. For this reason, a previous
systematic review has suggested the use of homogeneous samples
for studying the effects of Therasuit in the gait pattern of
children with CP (21). In this study, we used a homogeneous
sample comprising children with similar medical diagnoses (US-
CP). Moreover, two experienced pediatric physical therapists
performed a detailed physical examination, to ensure similar
functional profiles between the participants. Finally, the same two
experienced physical therapists were responsible for placing the
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TABLE 7 | Comparison for the ankle joint kinematic variables between conditions, during the different stages of gait cycle, in both lower limbs (Wilcoxon test with

Bonferroni correction and effect size).

Kinematic variables/Gait phases/Condition Mean SD Wilcoxon/Bonferroni correction Effect size

(◦) (◦) (*p < 0.017) (r = Z/ √
n)

Paretic lower limb 1-Ankle initial contact BL −10.49 6.31 1 vs. 2; Z = −1.521, p = 0.078 1 vs. 2; r = −0.41

2-Ankle initial contact TSWE −7.47 4.72 1 vs. 3; Z = −2.366, p = 0.008* 1 vs. 3; r = −0.63

3-Ankle initial contact TS −0.29 6.16 2 vs. 3; Z = −2.366, p = 0.008* 2 vs. 3; r = −0.63

1-Ankle dorsiflexion stance phase BL 4.53 4.87 1 vs. 2; Z = −2.197, p = 0.016* 1 vs. 2; r = −0.59

2-Ankle dorsiflexion stance phase TSWE 10.01 7.97 1 vs. 3; Z = −2.366, p = 0.008* 1 vs. 3; r = −0.63

3-Ankle dorsiflexion stance phase TS 11.66 3.36 2 vs. 3; Z = −0.676, p = 0.289 2 vs. 3; r = −0.18

1-Ankle angle swing phase BL −9.44 7.25 1 vs. 2; Z = −0.507, p = 0.344 1 vs. 2; r = −0.14

2-Ankle angle swing phase TSWE −11.07 10.19 1 vs. 3; Z = −2.197, p = 0.016* 1 vs. 3; r = −0.59

3-Ankle angle swing phase TS 3.86 7.89 2 vs. 3; Z = −2.197, p = 0.016* 2 vs. 3; r = −0.59

1-Ankle range of movement BL 39.11 11.26 1 vs. 2; Z = −1.859, p = 0.039 1 vs. 2; r = −0.50

2-Ankle range of movement TSWE 52.39 21.27 1 vs. 3; Z = −2.028, p = 0.023 1 vs. 3; r = −0.54

3-Ankle range of movement TS 28.14 5.14 2 vs. 3; Z = −2.366, p = 0.008* 2 vs. 3; r = −0.63

Non-Paretic lower limb 1-Ankle initial contact BL 8.56 2.73 1 vs. 2; Z = −1.521, p = 0.078 1 vs. 2; r = −0.41

2-Ankle initial contact TSWE 14.49 7.02 1 vs. 3; Z = −1.352, p = 0.109 1 vs. 3; r = −0.36

3-Ankle initial contact TS 14.43 9.37 2 vs. 3; Z = −0.169, p = 0.469 2 vs. 3; r = −0.05

1-Ankle dorsiflexion stance phase BL 13.70 1.89 1 vs. 2; Z = −2.201, p = 0.016* 1 vs. 2; r = −0.59

2-Ankle dorsiflexion stance phase TSWE 22.19 6.10 1 vs. 3; Z = −2.201, p = 0.016* 1 vs. 3; r = −0.59

3-Ankle dorsiflexion stance phase TS 20.79 5.05 2 vs. 3; Z = −0.676, p =0.289 2 vs. 3; r = −0.18

1-Ankle angle swing phase BL 9.90 3.31 1 vs. 2; Z = −2.197, p = 0.016* 1 vs. 2; r = −0.59

2-Ankle angle swing phase TSWE 16.10 3.35 1 vs. 3; Z = −2.197, p = 0.016* 1 vs. 3; r = −0.59

3-Ankle angle swing phase TS 15.64 3.55 2 vs. 3; Z = −0.423, p = 0.367 2 vs. 3; r = −0.11

1-Ankle range of movement BL 27.87 2.96 1 vs. 2; Z = −2.366, p = 0.008* 1 vs. 2; r = −0.63

2-Ankle range of movement TSWE 37.07 4.60 1 vs. 3; Z = −2.366, p = 0.008* 1 vs. 3; r = −0.63

3-Ankle range of movement TS 36.64 4.51 2 vs. 3; Z = 0.000, p = 0.531 2 vs. 3; r = 0.00

BL, Baseline; TSWE, Therasuit without elastics; TS, Therasuit.

elastic bands of the TS, in order to ensure the best correction of
the musculoskeletal constraints, according to individual needs of
each participant.

Nevertheless, this study has some limitations, namely: (1)
a convenience sample was used, although the authors had no
previous therapeutic relationship with the children until the
beginning of the study; (2) the small sample size does not
allow the generalization of the results, which should always
be made with caution in these type of population; (3) only
the sagittal plane was analyzed, hindering the calculus of an
index of overall gait pathology, such as the Gait Deviation
Index (57) or Gait Profile Score (58), which could help to
better understand the clinical significance of the results; (4)
the inherent problems associated to the kinematic analysis
using markers, namely soft tissue artifact, particularly when
not applied directly on the skin in both TS conditions. The
placement of some markers on the TS, requires an estimation
of the position of anatomical landmarks, which may have
produced some error in the results, even being performed by
an experienced professional. Due to this, and since we cannot
determine the error magnitudes associated with the placement
of the markers on the soft tissue, we believe that results
regarding the hip and knee joints should be interpreted with
extra caution.

Recommendations for Future Research
Comparative studies with children with unilateral spastic CP are
difficult to perform because cortical compromise may generate
different patterns of gait. It therefore remains challenging to
develop a universal gait classification system for standardizing
participant samples and data comparisons between studies (59).
The wide variety of interventions used in children with US-CP
likely results from the current knowledge gap in what causes the
gait pattern changes in these children. Indeed, many of these
interventions are insufficiently supported by scientific evidence.
Thus, we suggest that future research with more representative
samples (i.e., bigger and larger age range samples) should
address the immediate and long-term effects of the Therasuit
dynamic orthosis on spatial, temporal and angular variables in
the three planes (sagittal, frontal, and transverse), not only in
this particular CP subtype, but also in other types of CP, such as
the dyskinetic type, and in particular, the coreathetotid subtype.
Coreathetotid children are characterized by low muscular tone,
involuntary movements and loss of postural stability. For these
reasons, it would be interesting to understand if the TS could
promote adaptive changes in the gait patterns of children with
a clinical diagnosis totally different from children with spastic
CP. It would also be important to analyze the immediate effects
of Therasuit on orthostatic postural control (and to calculate
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the symmetry index) to determine its potential in promoting a
more symmetric postural alignment, a fundamental condition
for all functional motor tasks. Finally, studies addressing the
immediate effects of Therasuit on gait kinematic parameters in
children with US-CP using other methodologies, such as muscle
recruitment data, extracted from electromyography, could allow
a better identification of the neuromuscular behavior, thereby
providing better information and guidance for the placements of
the Therasuit elastic cords.

CONCLUSION

The results in this study should be analyzed with caution due
to the limitations previously mentioned (e.g., small convenience
sample with minimal spasticity degree). Despite this, our results
seem to suggest that wearing a Therasuit promotes: (1) positive
kinematic changes on gait pattern in the paretic lower limb;
(2) decrease hip flexion angles at initial contact in both lower
limbs; (3) increase of the extension pattern at the hip joint during
stance phase in the paretic lower limb, and a decrease of the
flexion pattern during swing phase in both lower limbs; (4) a
decrease of the equinus-foot pattern at the ankle joint in the
paretic lower limb, during whole gait cycle, particularly on TS
condition (with elastics). As this is the first study addressing
the immediate effects of Therasuit on the gait pattern of
children with hemiplegic CP, these findings may have important
clinical implications.

Although our research only focused on the immediate effects
of wearing Therasuit, the results suggest that the TS may be
included by physical therapists in gait training programs for

children with CP as an alternative dynamic orthosis, which may
drive the child to use a new motor program, resulting in a safer
and more functional gait pattern. Thus, our findings add to the
growing body of evidence supporting the efficacy of Therasuit
therapy for treating gait disorders in children with unilateral
spastic CP.
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