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Abstract: This work aims to analyse the free-vibration response of functionally graded, simply
supported beams with different gradient directions, taking into account nonlocal effects. To this
purpose, the first-order shear deformation theory and the nonlocal elasticity theory of Eringen are
used, in order to assess the influence of size dependency effects on the free-vibration responses of
those beams. The influence of other factors such as the aspect ratio of the beams and the evolution of
the constituents’ mixture through the beam thickness and along its length is also considered. In this
last case, a mixture distribution is proposed, accounting for the boundary conditions’ characteristics.
The finite element model is first verified against existing alternative solutions, to assess and illustrate
its performance. Based on the conclusions achieved, a set of parametric studies is then developed.
The results are discussed considering the material distribution profiles, and conclusions are drawn
with respect to their relative performance under the analysed conditions.

Keywords: Eringen’ nonlocal theory; first-order shear deformation theory; functionally graded
materials; free vibrations; finite element analysis

1. Introduction

With the increasing use of micro- and nanoscale components and systems in a diversity
of engineering and science applications, the need for a more complete understanding of
their mechanical behaviour arose as an important research area.

In recent years, the understanding and prediction of the mechanical responses of such
structures, considering nonlocal approaches, has been addressed by several researchers.
Among these published works, one can refer to Reddy [1], where different beam theories
were reformulated by the nonlocal differential constitutive relations of Eringen [2,3], ob-
taining the equations of motion and their variational statements in terms of the generalized
displacements. The nonlocal behaviour of beams was illustrated and analysed through
analytical solutions for the bending, vibration and buckling. Later, Reddy and Pang [4]
presented analytical solutions based on nonlocal theories of the Euler–Bernoulli and Tim-
oshenko beam theories for the analysis of straight beams subject to diverse boundary
conditions under bending, buckling and free natural vibrations. The authors concluded
that increasing the nonlocal parameter would diminish fundamental frequencies and
buckling loads, while in the opposite sense it would increase the static deflections.

Eringen’ theory of nonlocal elasticity states that the stress at a reference point in a
continuous body depends not only on the strains at that point but also on the strains at
all other points of the body. As such, if one considers that those effects may be neglected,
one achieves classical theory of elasticity, which can thus be seen as a particular case of the
nonlocal one.

Nejad and Hadi [5] studied the static bending of Euler–Bernoulli nanobeams made of
bidirectional metal–ceramic functionally graded material considering small-scale effects.
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To this purpose, the authors used Eringen’s nonlocal elasticity theory. The generalized
differential quadrature method was used to solve the governing equations for various
boundary conditions so as to analyse the influence of the material length scale parameter
and inhomogeneity on the static behaviour of nanobeams. Moreover, considering Euler–
Bernoulli beam theory, Ghaffari et al. [6] developed an analytical solution based on the
nonlocal elasticity theory to analyse arbitrary loading profiles and boundary conditions.
The authors analysed the influence of size, nonhomogeneity and nonuniform loads on the
nanobeams’ bending, buckling and vibration behaviours.

Lu et al. [7] proposed a size-dependent sinusoidal shear deformation beam model to
study nanobeams’ free vibration based on the nonlocal strain gradient theory. Navier’s
method was used to obtain analytical solutions for natural frequencies of simply supported
nanobeams. The authors found that frequencies predicted by nonlocal strain gradient
theory were higher than those obtained by nonlocal theory and lower than those obtained
by strain gradient theory. In other work by the same authors, Lu et al. [8], a unified, size-
dependent, higher-order beam model was developed to study the influence of the nonlocal
stress and strain gradient on the bending and buckling responses of nanobeams. It was
concluded that the Timoshenko beam model predictions and other higher-order models’
predictions were almost the same.

More recently, Danesh and Javanbakht [9] studied the free-vibration behaviour of
nonlocal nanobeams using nonlocal integral Timoshenko beam theory and two-dimensional
nonlocal integral elasticity theory. Different boundary conditions were considered to assess
the first three natural frequencies. The authors concluded on the nonlocal parameters’
softening effect on the natural frequencies for all the boundary conditions.

According to Koizumi [10], the concept of a functionally graded material was in-
troduced in 1984 by material researchers in the Sendai area, due to the need to develop
thermal barrier materials. These new materials revealed not only that they were able
to respond to such requirements but also that, due to the continuous variation in their
material composition, they provided a continuous variation of material properties that
brought additional gains namely by minimizing abrupt stress transitions. In fact, FGMs
are known for their relative advantages when compared to traditional laminates, because
they can provide smooth property variations from point to point, which did not happen
when considering the interface between laminate plies. Additionally, while at each ply
level within a composite laminate one usually finds an anisotropic behaviour, an FGM
shows isotropic behaviour at each point in spite of their global heterogeneous nature.

In this context, some review papers have been published, such as the one by Zhang
et al. [11], which presents an overview of published work comprising the stability, buckling
and free-vibration analyses of FGM structures. Based on that review, the authors also
suggest further work pathways. Saleh et al. [12] also presented a comprehensive overview
of FGM manufacturing methods and a summary of the diversity of applications and the
foreseen future trends for research that will be needed for the design and manufacturing of
these materials. Rajak et al. [13] also presented an overview of composite materials, their
characterization, classification and main advantages linked to physical and mechanical
properties based on recent studies.

Linking the nonlocal approach to the analysis of FGM structures, El-Borgi et al. [14]
investigated the free- and forced-vibration response of simply supported FGM nanobeams
resting on a nonlinear elastic foundation. Eringen’s nonlocal elasticity model with material
length scales was jointly used with Euler–Bernoulli beam theory with von Kármán geomet-
ric nonlinearity. The effects of nonlocal parameter, power-law index, and the parameters of
the nonlinear elastic foundation on the nonlinear frequency response were analysed.

Ebrahimi and Barati [15] investigated the combined influence of moisture and temper-
ature on the free vibrations of FGM nanobeams resting on elastic foundations. The authors
used different beam theories able to model shear deformation needless of shear correction
factor, and they also assumed the material properties to be temperature dependent and
varying gradually through thickness. Size-dependent effects were considered by applying
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the nonlocal elasticity theory of Eringen. The influence of hygrothermal loadings, elastic
foundation, power-law exponent, nonlocal parameter and beams’ slenderness ratio on the
free vibrations was analysed.

The free-vibration responses of nonlinear symmetric power and sigmoid function-
ally graded nonlocal nanobeams were studied by Hamed et al. [16]. In this work, the
material mixture was assumed to vary across the thickness and symmetric distribution
with reference to the mid-plane, e.g., ceramic–metal–ceramic and metal–ceramic–metal
configurations were considered. Nonlocal differential Eringen’s elasticity was used to
include size-dependent effects. The influences of the distributions, the gradient indexes
and nonlocal parameter on the natural frequencies were evaluated.

Aria and Friswell [17] considered the first-order shear deformation theory to propose
a finite element model to study free vibration and buckling behaviour of through-thickness
FGM nanoscale beams. The stretching–bending coupling effect was eliminated by using the
neutral axis concept. Buckling loads and natural frequencies were calculated for different
nonlocal coefficients, boundary conditions, power-law exponents and aspect ratios.

Pajand and Mokhtari [18] developed a study on the bending, buckling and free vibra-
tion of two-directional FGM nanobeams based on Reddy–Bickford beam theory. Material
properties were described by an arbitrary power-law form in both the axial and thickness
directions. A symmetric, smoothed, particle hydrodynamics meshless method was used to
implement the model and assess the effects of gradient indexes, boundary conditions, size
scale parameters, aspect and elastic modulus ratios on static and dynamic responses.

A higher-order element based on Timoshenko beam theory and considering a two-
node beam element with Hermitian functions of a fifth-degree polynomial was proposed by
Katili et al. [19] to perform static and free-vibration analyses of FGM beams. The influence
of different boundary conditions and the exponent of the FGM power law were assessed
and allowed the conclusion that the coupling of axial bending has a relevant influence.

Uzun and Yayli [20] studied the free vibration of through-thickness FGM nanobeams
resting on Winkler–Pasternak elastic foundations, using Euler–Bernoulli beam theory and
Eringen’s nonlocal elasticity theory. A parametric study was carried out to characterize non-
locality effects. Akgöz and Civalek [21] studied the bending response of nonhomogenous,
simply supported microbeams embedded in an elastic medium using the modified strain
gradient elasticity theory jointly with different beam theories. The elastic medium was
modelled as a Winkler foundation, and the bending problem of the FGM simply supported
microbeams was solved using Navier’s procedure. Sobhy [22] investigated the bending
response, free vibration, mechanical buckling and thermal buckling of FGM nanoplates in
a Pasternak foundation. The material mixture was assumed to vary through the thickness.
The Eringen’s nonlocal elasticity theory was also considered to derive the equations of
motion from Hamilton’s principle. The author studied the influence of nonhomogeneity,
nonlocal parameters, elastic foundation stiffness, plate aspect ratio and side-to-thickness
ratio on the nanoplates’ response. The size-dependent behaviour of FGM microbars was
investigated by Rahaeifard [23] using the modified couple stress theory. The equation of
motion and corresponding boundary conditions were derived using Hamilton’s principle to
study the static and dynamic behaviour of a microbar with fixed–free boundary conditions.

Considering a more specific type of composite material, namely the metal functionally
graded materials, where comparatively a minor number of works has been published,
Sobczak and Drenchev [24] carried out a review in the area of metal FGMs, on their
characterization, properties and production methods, mainly focussing on systematizing
manufacturing techniques. Experimental and theoretical methods for the qualitative and
quantitative estimation of properties evolution profiles were also considered.

Later, Chen and Liou [25] made a survey study concerning research progress in metal
FGMs by additive manufacturing (AM) in which findings in the research and development
of major types of AM are discussed. The authors also addressed the technical aspects of
metal FGMs’ AM and their industrial applications.
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Kumar and Chaudhary [26] recently denoted the importance of aluminium compos-
ites as the most potential candidate for structural and functional applications, in diverse
application fields such as in marine, defence, automotive, aerospace and heat-prone areas.
This review article addresses this topic in a comprehensive perspective with regard to
mechanical properties, the effect of various reinforcements, various challenges and future
research potential in the development of composites. In line with this research potential,
Sudherson at al. [27] discussed the positive effect of using cadmium on aluminium alloys
to achieve better characteristics for application sectors in which corrosion and wear are
more severe. The authors also concluded on the need to develop further studies in the vast
area of metal matrix composites.

It is in this context that one presents a study on the free-vibration behaviour of
moderately thick and thin metal–metal functionally graded beams ruled by through-
thickness and lengthwise material phase mixture. Material phase mixture can have an
important effect in a FGM structures’ response; therefore, in the analysis of non-thick beam
structures, it is likely that a lengthwise mixture distribution can play a significant influence
when compared to a through-thickness one. This design variable can also be suited to
deal with different beam boundary conditions, thus being the reason for the proposed
distribution. These were the aspects that motivated this work, and they have not been
addressed as far as the authors’ knowledge in other published works.

A nonlocal first-order beam model is developed and implemented, and parametric
studies are carried out to characterize nonlocality effects in connection to other beam
characteristics. The model is verified against other authors’ solutions, showing a very good
agreement. It is also verified that the proposed lengthwise distribution is able to confer an
improved free-vibration response for the considered beams.

2. Materials and Methods
2.1. Functionally Graded Materials

Given the tailormade characteristics of composite materials, functionally graded
materials are also well known for this capability. In this latter type of composite, the
constituents’ mixture is ruled by mathematical expressions, which can either correspond to
the designed composition evolution that one desires the materials to present or correspond
to the one that those materials effectively present, as in the works [28,29].

In the present work, one considers the possibility of the materials’ mixture to occur
both through the beam thickness Equation (1) and along the beam length (Equation (2)). In
the first case, we will use the well-known power law [30–34], and in the second case, we
propose a symmetrical evolution of the mixture, centred at the beam mid-span considering
that we aim to specifically address simply supported beams.

Vf =

(
1
2
+

z
h

)pz
(1)

Vf =

∣∣∣∣∣∣
(

x− L
2

)
L
2

∣∣∣∣∣∣
px

(2)

where Vf represents the volume fraction of a specific phase (to choose); h and L denote
the thickness and the length of the beam, respectively; and the exponents pz and px are
adjustment parameters that govern the mixtures’ rate, as illustrated in Appendix A.

The last distribution is inspired by a previous work in the context of variable stiffness
plates’ analysis [35].

For each of these volume fractions’ distributions, two different FGMs will be consid-
ered according to Voigt rule of mixtures, as in Equations (3) and (4).

EFGM1 = Vf EAl +
(

1−Vf

)
ECd (3)
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EFGM2 = Vf ECd +
(

1−Vf

)
EAl (4)

with EFGMt representing the Young’s modulus of the FGM (t = 1,2), and EAl , ECd standing
for the Young’s modulus of aluminium and cadmium, respectively.

The constituent materials that will be considered in this work are aluminium and
cadmium, not only because of their chemical compatibility [26] but also due to the improved
wear that cadmium brings to the aluminium [27], hence being relevant to the assessment of
the mechanical behaviour of such materials.

The material distributions will then be designated as FGM1-K or FGM2-K depending
on whether they are ruled by the rule of mixtures defined in Equations (3) or (4), respectively.
The K variable associated to the designation of the material, may assume the character X
or Z depending on whether the material mixture evolution occurs along the length (x) or
through the thickness (z) direction, respectively; thus, leading to four possible situations:
FGM1-X, FGM1-Z, FGM2-X and FGM2-Z.

In the implementation stage, the FGM1-X and FGM2-x distributions were first submit-
ted to a variable change procedure within each finite element calculation, to carry out the
corresponding integrations in [−1..1].

The Voigt’ rule of mixtures was also considered to estimate the effective Poisson’s
ratio of the functionally graded materials, although in this last case, this quantity is equal
for both material constituents. These dual-phase composites will be considered later in the
numerical applications section.

2.2. Constitutive Relations and Equilibrium Equations
2.2.1. Displacement and Strain Fields

The first-order shear deformation’ displacement field that describes the beam kine-
matics in the xz plane, can be written as [36]

u(x, z, t) = u0(x, t) + zθ0
x(x, t)

w(x, z, t) = w0(x, t)
(5)

where u0, w0 are the mid-plane displacements along the x and z directions, which are in
correspondence to the length and thickness directions of the beam (Figure 1).
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Figure 1. Beam coordinate system and displacement field’s degrees of freedom.

θ0
x is the rotation of the beam’ mid-plane around the y direction. The superscript 0

denotes the association of the degree of freedom to the mid-plane of the beam. The model
based on this displacement field will be referred to as FSDT in short.

The corresponding strain displacement is obtained by applying the elasticity kinemati-
cal relations for small deformations to the displacement field, as in Equation (6). The axial
strain εx is described as a linear function of the thickness coordinate, and the transverse
shear strain γxz denotes the known constant profile through the thickness.

εx = ∂u0

∂x + z ∂θ0
x

∂x
γxz =

(
∂w0

∂x + θ0
x

) (6)



J. Compos. Sci. 2022, 6, 125 6 of 21

2.2.2. Constitutive Relations

Considering that a functionally graded material can be considered as an isotropic
material at each point, the constitutive relation for the present model can be written as [36]

σx = Q11εx
σxz = Q55γxz

(7)

with the elastic stiffness coefficients, which may depend either on the thickness or on the
length coordinates, being given as

Q11 = EFGM(x, z)
Q55 = EFGM(x,z)

2(1+νFGM(x,z)) ks
(8)

with ks being the shear correction factor, which in the present study was set to 5/6. This
value was selected because the references considered in the verification cases also consid-
ered it and because although the material distribution can affect this factor, this value is
widely adopted in published works. However, this factor can also be calculated as for
example in [37–40].

The stress resultants [41] will be defined as

(Nx, Mx) =
∫

A
(1, z)σxdA; Qxz =

∫
A

σxzdA (9)

which by considering the constitutive relation and the generalized strains, yield
the following: [

Nx
Mx

]
=

[
A11 B11
B11 C11

][ ∂u0

∂x
∂θ0

x
∂x

]
; [Qxz] = [A55]

[
∂w0

∂x + θ0
x

]
(A11 B11 D11) =

∫
A Q11

(
1 z z2) dA; ; (A55) =

∫
A Q55 dA

(10)

with A standing for the beam’ transverse cross-section area.

2.2.3. Equilibrium Equations

The equilibrium equations are derived through Hamilton’s principle [42]:

δ

t2∫
t1

(T − (U + Ω)) dt = 0 (11)

where δT, δU and δΩ denote the variations of the kinetic energy, of the elastic strain energy
and of the external forces’ potential energy, respectively. Carrying out the integration in the
cross-section area, they can be written as

δT =

l∫
0

(
I0

.
u0δ

.
u0 + I1

.
u0δ

.
θ0

x + I1

.
θ0

xδ
.

u0 + I2

.
θ0

xδ
.

θ0
x + I0

.
w0δ

.
w0
)

dx (12)

δU =

l∫
0

(
∂

∂x
Nxδu0 +

(
∂

∂x
Mx + Qxz

)
δθ0

x +
∂

∂x
Qxzδw0

)
dx (13)
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where (.) denotes the first time derivative. As one aims to consider free-vibration analyses,
we will only have these two terms. The Hamilton principle, thus, leads to the equations:

δu : I0

..
u0 + I1

..
θx = ∂Nx

∂x

δθx : I1

..
u0 + I2

..
θx = ∂Mx

∂x + Qxz

δw : I0
..
w = ∂Qxz

∂x − qz

(14)

with (..) standing for the second time derivative. The mass moments of inertia, Ik, are given
as (I0 I1 I2) =

∫
A ρ
(
1 z z2) dA with ρ standing for the density. A possible transversely

distributed load is represented by qz, which will be null as one aims at performing free-
vibration analyses.

As stated by Eringen [2,3], the stress field at a specific point in an elastic continuum
body also depends on the strains at all other points of that body, as given in Equation (15):(

1− µ∇2
)

σ = t; µ = (e0a)2 (15)

where σ is the stress tensor at a generic point x, and t is the macroscopic stress tensor at
that point. µ represents the nonlocal parameter, and it is a function of the material constant
e0 and the characteristic length a. Expanding Equation (15) for the present model, one will
achieve the corresponding nonlocal constitutive relation:

σx − µ ∂2

∂x2 σx = Q11εx

σxz − µ ∂2

∂x2 σxz = Q55γxz
(16)

and accordingly, the stress resultants will be expressed by

Nx − µ ∂2

∂x2 Nx = A11
∂u0

∂x + B11
∂θ0

x
∂x

Mx − µ ∂2

∂x2 Mx = B11
∂u0

∂x + C11
∂θ0

x
∂x

Qxz − µ ∂2

∂x2 Qxz = A55

(
∂w0

∂x + θ0
x

) (17)

Considering these relations and the equations of motion, after some mathematical
manipulation one can write

δU =
l∫

0
( A11

∂u0

∂x
∂δu0

∂x + B11
∂θ0

x
∂x

∂δu0

∂x + C11
∂φ0

x
∂x

∂δu0

∂x + B11
∂u0

∂x
∂δθ0

x
∂x

+C11
∂θ0

x
∂x

∂δθ0
x

∂x + A55
∂w0

∂x
∂δw0

∂x + A55θ0
x

∂δw0

∂x + A55θ0
xδθ0

x

+A55
∂w0

∂x δθ0
x

)
dx

(18)

δT =

l∫
0

(
1− µ

∂2

∂x2

)(
I0

..
uδu0 + I1

..
θxδu0 + I0

..
wδw0 + I1

..
uδθ0

x + I2
..
θxδθ0

x

)
dx (19)

which allows one to obtain and implement the nonlocal FSDT beam model considering
free and harmonic vibrations.

The finite element method is used to implement and perform the free-vibration anal-
yses using a quadratic beam finite element (three nodes) with three degrees of freedom
per node, namely

{
u0, w0, θ0

x
}

. According to the finite element method, the generalized
displacements will be described as linear combinations of the corresponding nodal degrees
of freedom and the nodal shape functions. Strains will be obtained accordingly by con-
sidering Equation (6). Considering this and Equations (11), (18) and (19), one obtains the
equilibrium equation at the element level [36].(

Ke −ω2
i Me

)
qi = 0 (20)
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with Ke and Me standing for the stiffness and mass matrices of the e-th element, and qi
representing the vibration mode for the i-th natural vibration frequency ωi.

Considering the contribution of the elements that will jointly constitute the whole
discretized domain and after the boundary conditions’ imposition, one will achieve the
reduced system that will allow the eigenvalues and corresponding eigenvectors to be ob-
tained [43]. Finally, one will determine the structure’s frequencies and respective vibration
modes.

A schematic description of the analysis procedure is provided below:

Declaration of variables
Selection of volume fraction law (Equation (1) or Equation (2)
Selection of Voigt’s rule equation (Equation (3) or Equation (4))
Constitution of the discretized domain
Calculation of reduced stiffness coefficients (Equation (8))

For each set of parameters
(

µ, L
h , px, pz, FGM1, FGM2

)
, perform the following:

Calculation of element stiffness matrix (associated to Equation (18))
Calculation of element mass matrix (associated to Equation (19))
Assembly of the element matrices into the global matrices
Imposition of boundary conditions
Calculation of eigenproblem solution (Equation (20))
Calculation of natural frequencies
Vibration modes’ representation

with the natural frequencies being obtained from the square root of the
eigenvalues obtained.

3. Results and Discussion

The first two cases here presented are verification cases, whose objective is to demon-
strate the performance of the developed beam finite element model and to assess its
convergence. In the first verification case, a local approach is used to assess the behaviour
of an FGM beam, and in the second verification case, the nonlocal approach that will be
used in the following case studies is also compared with alternative nonlocal results.

Following the verification cases, a set of parametric studies is considered to character-
ize the influence of specific parameters on the free vibrations’ nonlocal response of simply
supported (SS) metallic FGM beams.

The simply supported boundary conditions correspond to the following restrictions:
in the discretized domain’s first node (left-hand side of the beam), the constrained dis-
placements are

{
u0, w0}, and at the domain’ final node (right-hand side of the beam), the

constrained displacement is
{

w0}.

3.1. Model Verification
3.1.1. Verification Case 1

A first verification study was carried out to assess the present model’s performance
concerning the free vibration of functionally graded beams, taking as reference Sina
et al. [42], who used Timoshenko beam theory, and Simsek [43], who considered dif-
ferent shear deformation models. A pinned–pinned aluminium–alumina FGM1-Z beam
with a length-to-thickness ratio of 10 and with the exponent pz = 0.3 was analysed.
The material properties of the two constituent phases used by the references were as fol-
lows: for the aluminium E = 70 GPa, ν = 0.23, ρ = 2700 kg.m−3 and for the alumina
E = 380 GPa, ν = 0.23, ρ = 3800 kg.m−3. This case was also used for convergence
test purposes.

The nondimensional results in Table 1 were obtained by using the multiplier

Ωadim = ΩL2
√

I0
EI , where I0 stands for

∫ h/2
−h/2 ρFGMdz and EI = h2 ∫ h/2

−h/2 EFGMdz.
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Table 1. Nondimensional fundamental frequency Ωadim of metal–ceramic FGM beam. Conver-
gence test.

Elements

L/h Sina et al. [42] Simsek [43]
(FSDBT) 5 10 15 20

10 2.695 2.701 2.703 2.702 2.702 2.702
30 2.737 2.738 2.739 2.738 2.738 2.738
100 2.742 2.742 2.743 2.743 2.743 2.743

As one can conclude from Table 1, even with coarse meshes, good agreement was
obtained with Simsek [43] and with Sina et al. [42]. Based on that, and although with five
elements the results are also in good agreement, we decided to proceed with a ten elements’
discretization for the next case studies.

3.1.2. Verification Case 2

This verification case is focused now on the characterization of the nondimensional
fundamental frequencies of simply supported beams (SS) using Eringen’s nonlocal theory.
To this purpose, the work developed by Reddy [1] was taken as the reference. According to
the reference, the beam parameters used were length of the beam L = 10, elasticity modulus
and Poisson’s ratio E = 30 × 106 and ν = 0.3, and a unitary density ρ. The nondimensional

frequencies were obtained by using the expression Ωadim = ΩL2
√

I0
EI and are presented in

Table 2 for two length-to-thickness ratios.

Table 2. Nondimensional fundamental frequencies (Ωadim ) in SS homogeneous beams.

L/h = 100 L/h = 10

µ TBT [1] FSDT Dev % TBT [1] FSDT Dev %

0 9.8683 9.8183 −0.507 9.7454 9.6602 −0.874
0.5 9.6335 9.5847 −0.507 9.5135 9.4303 −0.875
1 9.4147 9.367 −0.507 9.2973 9.2161 −0.873

1.5 9.2101 9.1634 −0.507 9.0953 9.0159 −0.873
2 9.0183 8.9726 −0.507 8.9059 8.8282 −0.872

2.5 8.838 8.7933 −0.506 8.7279 8.6517 −0.873
3 8.6682 8.6243 −0.506 8.5601 8.4854 −0.873

3.5 8.5077 8.4646 −0.507 8.4017 8.3283 −0.874
4 8.3558 8.3135 −0.506 8.2517 8.1797 −0.873

4.5 8.2118 8.1703 −0.505 8.1095 8.039 −0.869
5 8.075 8.0342 −0.505 7.9744 7.9048 −0.873

From Table 2, one can also observe a good agreement between the results obtained by
the present model and the ones in [1] for both aspect ratios.

3.2. Parametric Case Studies

Following the previous verification cases, a set of parametric studies was carried out
to characterize the influence of different parameters on the predictions for nonlocal natural
frequencies of aluminium–cadmium simply supported beams.

The nonlocal parameter may assume scattered values as one can find in literature,
however for similar situations, such as the ones in [1,39,40] one finds values between 1
and 5. Hence, it was decided to carry out the case studies within the range 0 ≤ µ ≤ 3.
The material properties of the two constituent phases for these parametric studies were,
for the cadmium, E = 55.2 GPa, ν = 0.33, ρ = 8640 kg.m−3 and, for the aluminium,
E = 68.3 GPa, ν = 0.34, ρ = 2690 kg.m−3. This case was also used for convergence
test purposes.

The case studies are organized according to the following structure:
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• Nondimensional fundamental frequencies of FGM1-Z beams;
• Nondimensional fundamental frequencies of FGM1-X beams;
• Nondimensional first three natural frequencies of FGM1 beams;
• Nondimensional first three natural frequencies of FGM2 beams.

The first two cases are focused in the nondimensional fundamental frequencies of the
beams of a specific type of FGM in which the aluminium phase is progressively mixed with
the cadmium phase. The aim here was to carry out detailed studies for a single type of
FGM (FGM1 selected for that purpose), wherein the mixture progresses according to two
different directions’ volume fraction distribution laws along Z or X direction (Equations (1)
and (2)).

In the last two case studies, both types of FGMs were considered to illustrate how
each one influenced the beams’ higher-order frequencies. This was done in a first stage
for the FGM1 type of beams and in a second stage for the FGM2 one. A set of parametric
analyses were conducted for comparative purposes and to highlight the differences among
the constructive solutions.

3.2.1. Case 1—Nondimensional Fundamental Frequencies of FGM1-Z SS Beams

The first study considers simply supported beams in which the material mixture is
ruled by the power law FGM1-Z (Equations (1) and (3)). Two length-to-thickness ratios
and a set of pz exponent values are considered to analyse the influence of the nonlocal
parameter in the fundamental frequencies Ω.

The results obtained are presented in Table 3 in a nondimensional manner, using

Ωadim = ΩL2
√

I0Al
EAlI

with I0Al =
∫

A ρAldA.

Table 3. Nondimensional fundamental frequencies (Ωadim ) of SS FGM1-Z beams.

pz

µ 0 0.1 0.5 1 2 10

L/h = 10

0 9.657 8.734 7.064 6.315 5.759 5.100
1.0 9.213 8.333 6.739 6.024 5.494 4.865
2.0 8.825 7.982 6.455 5.771 5.263 4.661
3.0 8.482 7.672 6.205 5.547 5.058 4.480

L/h = 30

0 9.801 8.866 7.171 6.410 5.845 5.176
1.0 9.748 8.818 7.132 6.375 5.813 5.148
2.0 9.696 8.770 7.093 6.341 5.782 5.120
3.0 9.644 8.724 7.055 6.307 5.751 5.093

In this case (FGM1-Z), as the exponent pz increases, the material becomes less stiff and
the mass increases. From this trade-off, we can observe that the nondimensional frequencies
decrease as the exponent increases. This trend is verified for both aspect ratios. The slender
beam presents greater nondimensional frequencies, which is expected considering the
multiplier used. The nonlocal parameter was found to introduce a decreasing effect on

the nondimensional fundamental frequencies. Figure 2 presents the ratio
(

ΩFGM1−Z
adim

(ΩFGM1−Z
adim )

µ=0

)
between nonlocal fundamental frequencies and the corresponding local ones (µ = 0) for
the FGM1-Z thicker beams. The ratio is presented for different values of pz exponent
{0, 0.1, 0.5, 1, 2, 10}.
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The figure clearly represents the increasingly reducing effect that the increase in the
nonlocal parameter µ has in the nondimensional fundamental frequency, being clearly
visible for any exponent value. This reduction assumes a 4.6% value for µ = 1 and 12.2%
for µ = 3, taking as reference the nondimensional local prediction (µ = 0).

3.2.2. Case 2—Nondimensional Fundamental Frequencies of FGM1-X Beams

Here, we develop a study similar to the one carried out in the previous case; however,
now, the object of study is FGM1-X, SS beams. The influences of the length-to-thickness ra-
tio, of the px exponent (Equations (2) and (3)) and of the nonlocal parameter are considered.

The nondimensional results are presented in Table 4, using the multiplier defined in
the previous case study.

Table 4. Nondimensional fundamental frequencies (Ωadim ) of SS FGM1-X beams.

px

µ 0 0.1 0.5 1 2 10

L/h = 10

0 9.657 8.316 6.352 5.622 5.162 4.861
1.0 9.213 7.995 6.152 5.447 4.991 4.662
2.0 8.825 7.708 5.970 5.288 4.836 4.485
3.0 8.482 7.450 5.802 5.141 4.695 4.327

L/h = 30

0 9.801 8.434 6.436 5.694 5.229 4.930
1.0 9.748 8.396 6.412 5.674 5.209 4.906
2.0 9.696 8.359 6.389 5.654 5.189 4.882
3.0 9.644 8.322 6.366 5.634 5.170 4.859

In this case, and according to the volume fraction expression in Equation (2) and the
rule of mixtures in Equation (3), we see that as the exponent px increases, the Young’s
modulus value will decrease in the major part of the beam length only retaining the
higher value for aluminium near the beam extremities. The density evolution presents the
opposite profile.
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In correspondence with these properties’ profiles, one concludes that the nondi-
mensional frequencies decrease with the exponent increase and the corresponding stiff-
ness reduction. The nonlocal parameter introduces a visible reducing influence for all
the exponents.

This decreasing effect due to nonlocal parameter increase is also illustrated through

the ratio
(

ΩFGM1−X
adim

(ΩFGM1−X
adim )

µ=0

)
established between nonlocal fundamental frequencies and the

corresponding local ones (µ = 0) presented in Figure 3. As we observe, this ratio does
not follow a uniform reducing pattern for the different exponent values as happened in
the previous case study, with this effect being greater when the mixture is globally less
heterogeneous as one may conclude from Figures A3 and A4.
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For the considered domains, the greater reducing influence occurs for the null px
exponent for all the nonlocal parameters, assuming this reduction at a 12.2% value for
µ = 3.

For different nonlocal parameter values (µ = 1–3), the nondimensional frequencies
suffer minor reductions for the exponent value px = 1, varying from 3.1% for µ = 1 to 8.6%
for µ = 3.

3.2.3. Case 3—Nondimensional First Three Natural Frequencies of FGM1 Beams

In this case, one proceeds to a comparative analysis of the first three nondimensional
natural frequencies of the FGM1-Z and FGM1-X beams. The material and geometric
characteristics remain constant. The results obtained are presented in Table 5.

Table 5 allows the conclusion that the FGM1-X configuration has a greater impact
in the nondimensional frequencies’ reduction than the FGM1-Z, taking as reference the
homogeneous aluminium beam (null exponent). Figure 4 illustrates the first three vibration
modes for this case.
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Table 5. Nondimensional first three natural frequencies (Ωadim ) of SS FGM1-Z and FGM1-X beams.
L/h = 10.

pz px

µ 0 1 2 5 10 1 2 5 10

0
9.657 6.315 5.759 5.306 5.100 5.622 5.162 4.910 4.861

36.887 24.113 21.993 20.266 19.483 24.056 21.263 19.247 18.720
54.413 35.638 32.277 29.543 28.437 35.501 32.185 29.517 28.460

1
9.213 6.024 5.494 5.062 4.865 5.447 4.991 4.725 4.662

31.234 20.419 18.625 17.161 16.497 20.305 18.172 16.564 16.058
53.754 35.163 31.852 29.171 28.087 35.060 31.785 29.152 28.111

2
8.825 5.771 5.263 4.849 4.661 5.288 4.836 4.560 4.485

27.575 18.028 16.443 15.151 14.565 17.886 16.122 14.755 14.279
46.642 30.476 27.801 25.622 24.635 30.412 27.492 25.235 24.374

3
8.482 5.547 5.058 4.660 4.480 5.141 4.695 4.410 4.327

24.959 16.318 14.884 13.714 13.183 16.163 14.636 13.431 12.984
40.597 26.532 24.204 22.304 21.443 26.459 23.940 22.019 21.274
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From Table 5, it can also be concluded that with the increase in the nonlocal parameter
µ, the three nondimensional natural frequencies decrease, as already observed in the case
of the nondimensional fundamental frequency.

Figure 5 complementarily illustrates for the FGM1-Z that for higher modes’ frequencies
the decreasing effect associated with the nonlocal parameter is more evident and increases
with the mode. This is also visible for the effect of the pz exponent within each mode.

Figure 6 depicts the curves for the ratios
(

ΩFGM1−X
adim

ΩFGM1−Z
adim

)
, denoting the relations between

the nondimensional fundamental frequencies of FGM1-X and FGM1-Z beams for different
exponent values.

From Figure 6, one observes that as the nonlocal parameter grows, the ratio between
the two material models becomes closer to 1 in opposition to the local approach (µ = 0).
It is also visible that, for globally less homogeneous mixtures, which are the case of the
intermediate exponents, the frequency differences between the FGM1-X and FGM1-Z
models are greater as the nature of the distribution acquires a greater influence.
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The differences identified previously concerning the ratios between nondimensional
nonlocal and local fundamental frequencies are here reflected by the curve profiles with
respect to ratio behaviour near the 1, 2 exponents’ values.

From the results achieved in this case, it can be said that FGM1-Z beams perform
globally better than FGM1-X ones.
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3.2.4. Case 4—Nondimensional First Three Natural Frequencies of FGM2 Beams

This case study now considers the FGM2 material models and proceeds with the
comparative analyses of the first three nondimensional natural frequencies of those beams.
The material and geometric characteristics are the same as well as the boundary conditions
used previously. The mixture of the constituent materials is now ruled by Equation (4),
and this significantly affects the beams’ response. As expected, the beams now become
globally stiffer as the exponents increase, and this is reflected by greater nondimensional

frequencies as observed in Table 6. Those results were obtained using Ωadim = ΩL2
√

I0Cd
ECdI

with I0Cd =
∫

A ρCddA.

Table 6. Nondimensional first three natural frequencies (Ωadim ) of SS FGM2-Z and FGM2-X beams.
L/h = 10.

pz px

µ 0 1 2 5 10 1 2 5 10

0
9.657 12.589 14.018 16.017 17.310 14.432 16.644 18.601 19.088

36.900 48.069 53.502 61.105 66.047 47.956 55.576 66.735 19.088
54.413 71.046 79.634 91.369 98.507 70.772 79.164 90.790 97.860

1
9.214 12.010 13.373 15.281 16.514 13.447 15.403 17.295 17.913

31.245 40.706 45.306 51.742 55.926 40.479 46.004 53.864 57.957
53.754 70.099 78.552 90.178 97.279 69.894 78.178 89.660 96.647

2
8.826 11.504 12.810 14.637 15.819 12.639 14.403 16.227 16.929

27.584 35.939 40.000 45.681 49.374 35.656 40.092 46.327 49.954
46.673 60.755 67.589 77.157 83.410 60.772 67.839 76.585 81.939

3
8.483 11.058 12.313 14.069 15.205 11.961 13.575 15.334 16.090

24.967 32.530 36.206 41.348 44.690 32.221 35.986 41.248 44.530
40.624 52.893 58.842 67.165 72.604 52.643 58.774 66.255 70.678

In this case, when the exponents assume the zero value, one has a homogeneous
cadmium beam. The nonlocal parameter continues to show a decreasing effect in the
nondimensional frequencies, with this influence being greater as the exponents increase.
Their effect is also greater for higher modes’ frequencies. This is visible in Figures 7 and 8.
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Figure 7. FGM2-Z nondimensional frequencies (Ωadim) for different vibration modes. L/h = 10.
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Figure 8. FGM2-X nondimensional frequencies (Ωadim) for different vibration modes. L/h = 10.

Table 6 and also Figure 9 allow the conclusion that the beams with a non-null gradient
mixture along their length (FGM2-X) show greater nondimensional frequencies when
compared with the FGM2-Z beams. In such a situation, one obtains ratios for the nondi-
mensional fundamental frequencies that range from 15% to 19% within the exponents’ set
{1, 2, 5}.
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For the nonlocal parameter µ. values {1, 2, 3}, this ratio decreases, successively assum-
ing the maximum values 15%, 12% and 10%, respectively.

As we previously concluded, as µ increases, the differences between the predicted
frequencies start to present a decreasing trend.

For the second mode, the nondimensional frequencies ratios are not so high, but for
the nonlocal parameter values {0, 1, 2, 3}, one achieves maximum values of 9.2%, 4.1%,
1.4% and 1% for the exponents {5, 5, 5, 1}, respectively.



J. Compos. Sci. 2022, 6, 125 17 of 21

In the third mode case, the ratio maximum values occur for the maximum exponent
considered, assuming successively the values 0.7%, 0.6%, 1.8% and 2.7%, as the nonlocal
parameter goes from 0 to 3.

It can, thus, be said that, for the studied parameter domain, FGM2-X beams present a
better performance when compared to the corresponding FGM2-Z ones.

As a final note, if one considered the use of the multiplier used in the previous case

studies, Ωadim = ΩL2
√

I0Al
EAlI

. with I0Al =
∫

A ρAldA, where the elastic properties of the
aluminium phase are used, the present case nondimensional frequencies will globally
present lower values when compared with the ones in Table 6, as can be seen in Table 7,
although maintaining the same trends. This is expected considering the relation between
the material properties used in the two multipliers.

Table 7. Nondimensional first three natural frequencies (Ωadim) of SS FGM2-Z and FGM2-X beams,
using aluminium as reference. L/h = 10.

pz px

µ 0 1 2 5 10 1 2 5 10

0
4.844 6.315 7.032 8.034 8.683 7.239 8.349 9.331 9.575

18.510 24.113 26.838 30.652 33.131 24.056 27.878 33.476 9.575
27.295 35.638 39.946 45.833 49.413 35.501 39.710 45.542 49.089

1
4.622 6.024 6.708 7.665 8.284 6.745 7.727 8.676 8.986

15.673 20.419 22.727 25.955 28.054 20.305 23.077 27.020 29.073
26.964 35.163 39.403 45.236 48.798 35.060 39.216 44.976 48.480

2
4.427 5.771 6.426 7.342 7.935 6.340 7.225 8.140 8.492

13.837 18.028 20.065 22.915 24.767 17.886 20.111 23.239 25.058
23.412 30.476 33.904 38.704 41.841 30.485 34.030 38.417 41.102

3
4.255 5.547 6.176 7.057 7.627 6.000 6.810 7.692 8.071

12.524 16.318 18.162 20.741 22.418 16.163 18.052 20.691 22.337
20.378 26.532 29.517 33.691 36.420 26.407 29.483 33.235 35.454

However, when one considers the relation between these nondimensional values
(corresponding to the FGM2 beams) and the analogous ones in Table 5 (corresponding to
the FGM1 beams), we achieve the results presented in Table 8.

Table 8. Relation between nondimensional first three natural frequencies (Ωadim ) of SS FGM2 and
FGM1 beams, using aluminium as reference. L/h = 10.

pz px

µ 0 1 2 5 10 1 2 5 10

0
0.502 1 1.221 1.514 1.703 1.288 1.617 1.900 1.970
0.502 1 1.220 1.512 1.701 1.000 1.311 1.739 0.511
0.502 1 1.238 1.551 1.738 1.000 1.234 1.543 1.725

1
0.502 1 1.221 1.514 1.703 1.238 1.548 1.836 1.927
0.502 1 1.220 1.512 1.701 1.000 1.270 1.631 1.810
0.502 1 1.237 1.551 1.737 1.000 1.234 1.543 1.725

2
0.502 1 1.221 1.514 1.702 1.199 1.494 1.785 1.893
0.502 1 1.220 1.512 1.700 1.000 1.247 1.575 1.755
0.502 1 1.220 1.511 1.698 1.002 1.238 1.522 1.686

3
0.502 1 1.221 1.514 1.702 1.167 1.450 1.744 1.865
0.502 1 1.220 1.512 1.701 1.000 1.233 1.541 1.720
0.502 1 1.220 1.511 1.698 0.998 1.232 1.509 1.667
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These results allow us to conclude that FGM2 beams in a majority of situations can
provide higher values of nondimensional frequencies when compared to FGM1 beams.
The decreasing effect of the nonlocal parameter is also visible here.

4. Conclusions

This work presented a study on the free-vibration response of simply supported beams
made of through-thickness and lengthwise metal–metal functionally graded materials,
taking into account nonlocal effects. In order to assess the influence that size-dependent
effects introduce on free-vibration responses, the first-order shear deformation theory and
the Eringen’ nonlocal elasticity theory were considered.

The metallic phases involved were aluminium and the cadmium due to its chemical
compatibility and also due to the improvement in terms of corrosion and wear resistance
according to recent investigation. Taking into account the boundary conditions of the
beams to be studied, two material-phase mixture laws were adopted; namely the known
power law and another mixture distribution, proposed in the present study.

The beam model’s performance was verified with alternative solutions, demonstrating
its good agreement in the considered domains. The influence of parameters such as the
beams’ aspect ratios, the evolution of the constituents’ mixture and the influence of the
nonlocal parameter of Eringen’ theory were analysed, and conclusions were drawn with
respect to their better relative performance.

It was found that, for the FGM1-type beams, for which the null exponent corresponded
to a full-aluminium beam, with the mixture evolution along the thickness direction, FGM1-
Z, produced a minor decrease in the nondimensional frequencies when compared with
the beams with a material distribution along the length, FGM1-X, for the same exponents.
For the other beams, the FGM2-type beams, for which the null exponent corresponded
to a full-cadmium beam and as expected, the opposite trend was observed. For similar
exponents, the FGM2-X presents higher nondimensional frequencies when compared to
the FGM2-Z.

It was also possible to conclude that the nonlocal effects introduced a decreasing
influence in the natural frequencies, regardless of the frequency mode, which corresponds
to an expected trend. This effect was found to be influenced by the exponents associated
with the metals’ mixture profiles.

The nondimensional frequencies increased with the aspect ratio increase, agreeing with
other authors results, and regardless of the aspect ratio value considered, the decreasing
effect in the nondimensional frequencies due to the increase in the nonlocal parameter
was evident.

The relation between the nondimensional frequencies of FGM2 and FGM1 beams,
allows the understanding that the first ones provide higher values, with a decreasing trend
for higher nonlocal parameter values.

As an overall conclusion, it can be stated that the proposed materials’ lengthwise
distribution can be an effective design option to consider as it is able to provide an improved
free-vibration response.
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Appendix A

In this appendix, the Young’s modulus and the density evolutions through the beam
thickness and along the beam length are presented with a complementary illustrative
purpose. The corresponding curves are ruled by Equations (1)–(4), considering the material
properties used in the parametric studies.

In the next figures, the horizontal axis is presented in a nondimensional way, while
the vertical axis’ units are referenced in the corresponding figures’ legend.

It is very clear that different distributions lead to different properties evolutions and
hence to different mechanical responses, thus demonstrating the ability to meet specific
operating requirements.

Figure A1a,b illustrate the evolution of the Young’s modulus through the thickness for
the FGM jointly ruled by Equation (1) and by Equations (3) and (4), respectively.
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