OPTIMIZATION TOOLS AND BIM: A MARRIAGE WITH A FUTURE?

PTBIM 2022 4 May 2022, 18:05h, S4B

Alfredo Soeiro, João Poças Martins and Adeeb Sidani University of Porto

Situation

- Design's efficiency
- > Optimization algorithms
- Meta-heuristic
- Multiple objectives and mixed variables
- Linear and nonlinear constraints
- Performance, geometric conditions and material choices
- Objective function plus constraints
- Gradient based
- Search and stabilize

BIM

- BIM is the acronym that started as Building Information Model, then Modelling and currently Management.
- > Digital Twins
- Quantity surveying, design clash conflicts, planning and scheduling, safety, architectural design, structural analysis, comfort (acoustic and thermal) evaluation
- Visualize operations and verify compliance with regulations, norms, owner objectives, costs, and intended outcomes

BIM (cont.)

Store and manage information in construction Engineers, technicians, architects, designers, technical directors, regulators, and educators Facilitate access to the data in an organized manner. > Complexity versus making proper decisions Decision-making and optimization tools synergy with **BIM tools**

Optimization methods

- > System's responses and sensitivity
- Max or Min F(x) subject to G(x)
- Generally gradient based
- Planning schedules, choice of materials, design of structures and other systems, topology of elements or systems, costs or profit improvement and performance
- Neural networks, network theory, sequential quadratic programming, and interior-point methods, particle swarm optimization (PSO) algorithm ant lion optimizer (ALO), grey wolf optimizer (GWO) and mine blast algorithm (MBA)

Reflections

 \succ Speed, robustness solution quality > Nonlinear spaces Discrete versus continuous > Acceptable vs better > Simulation \succ Evolutionary > Imitation

Strategies and Tactics

Cloud computing

Data base

Use of building information

≻Access

> Structuring

Machine learning

> Algorithms

Possible "marriages"

- Application Programming Interfaces (APIs)
- Visual Programming Languages (VPLs)
- First case Construction safety
 - Priority
 - Effectiveness
 - Cost
 - 3D visualization

Possible "marriages" (cont.)

Second Case - Materials

Legal Performance **Attractiveness Execution techniques** Third Case – Topology **Aesthetics Feasibility**

Conclusions

Customizable BIM tools Performance based designs > Less need for programming skills > APIs and VPLs > Unlimited possibilities > Information "rich" models with "hungry" data algorithms \succ Complex designs