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ABSTRACT 
 

Background: According to developmental psychology, individuals 
develop throughout stages of development. At each stage, they are able to 
solve an increasing number of problems and increasingly demanding 
problems. Artificial Intelligence (AI) aims to transcribe human information 
processing capabilities to the machine, eventually providing machines with 
procedures that allow for mimicking adaptation. This means learning in a 
developmental way, which implies that learning and development are 
discriminated and coordinated in a model of human information processing. 

Problem: Connectionist models are a class of AI models that approximate 
the general laws of natural information processing in the central nervous 
system. They are strong learners, yet, they do not learn in a developmental 
way. First, learning in a connectionist model is a continuous process, based 
on gradient descent techniques of weight update; second, each new 
activation pattern of a network substitutes (or updates) the previous one. 
This contradicts the discrete and cumulative nature of development. The 
fact that development is not discriminated and complemented with learning 
in a connectionist model is at the basis of the flexibility/stability dilemma. 

Aim: This dissertation aims to build a developing connectionist model, 
built in stacks. Stacks are a synonym of stages of development. It was the 
goal of the present work to provide a method that identifies the structure of 
each stack composing the global model (stage of development), to identify 
what changes from one stack to the immediately next stack (stack 
transition), and to extract a progression of change throughout stacks 
(developmental progression). 

Method: The method here designed results from the overlap of three 
communicating disciplines — Developmental Psychology, Cognitive 
Neuroscience, and Artificial Intelligence. The first thing to do to build a 
model that learns in a development way is to define stage of development. 
The Model of Hierarchical Complexity (MHC) was adopted as the 
theoretical reference, since it defines stages of development as an Order of 
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Hierarchical Complexity (OHC). The OHC is the factor that ascribes 
stability to the performance within stage. The second thing is to represent 
stages of development in a model of cognitive development. The present 
method has a two-folded application. It can be applied to the field of 
developmental cognitive neuroscience, in order to identify how stages of 
development are represented in the brain, and to connectionist models, in 
order to identify the minimal complexity network structure that represents 
each stage of development. Network structures were evaluated based on a 
varying number of units, layers, and connectivity pattern among units. This 
rationale relied on assumptions from Complex System Theory (CST), 
which gives a perspective over brain functioning as mainly implemented in 
a network of internal dependencies, as much as in connectionist models. By 
comparing networks structures of adjacent OHC, the changes that undergo 
from one structure to the next can be determined and used to ascribe 
developmental properties to the model. The simulation scenario was the 
balance scale test, a developmental test applied to children that evaluates 
their current stage of development. This scenario has been object of interest 
since the 80’s. Yet, existing attempts fall on limitations attached to the a 
priori definition and representation of stages and stage transitions. 

Results: Results allowed for identifying a connectionist structure 
underlying each OHC, which is represented by the complexity of operations 
and the number of problem dimensions. They also allowed for identifying 
two types of stack transition — memory-based and operationally-based 
transitions. Memory-based transitions occur when the problem dimensions 
increase; operationally-based transitions occur when the operation 
increases in complexity. Operationally-based transitions seems to underlie 
the transition from abstract to formal reasoning, associated with higher-
order cognition and apparently only present in humans. When the 
connectivity pattern was allowed to vary, there was a tendency for 
independently trained networks converging to the same number of 
connections. Another important result was that networks with input 
connectivity patterns showed improved performance, decreased structural 
complexity, and greater tendency for biological plausibility. Finally, results 
allowed for identifying a developmental progression across network 
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structures, even if departing from different structures. Interestingly, this 
was only true for structures sharing the same connectivity pattern. 

Discussion: The set of studies composing this dissertation allow for stating 
that the “Foundation of a Hierarchical Stacked Neural Network model for 
Simulating Cognitive Development” is based on a system that is built in 
stacks, where 1) each stack is triggered by the OHC of the problem to solve, 
2) each next stack can be built out of the elements that compose the previous 
stack, which suggests the term “Structural Integration” for describing the 
stack transition mechanism, and 3) each previous stack is protected by the 
interference of the next stack, as its components remain triggered by the 
OHC of the problem to solve. Results are preliminary, though. They are 
most useful to corroborate the plausibility of the proposed method, as a way 
for approaching the problem of flexibility and stability in artificial learning 
models, especially hierarchical stability and developmental processes. 

Contributions: This dissertation mainly contributed for the definition of 
theoretical and methodological guidelines, here corroborated by a set of 
studies, that led to approaching a model of cognitive development based on 
the MHC. These theoretical and methodological guidelines can likely 
contribute to a new research line that triangulates the fields of 
developmental psychology, developmental cognitive neuroscience, and AI.
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RESUMO 
Introdução: Segundo a psicologia do desenvolvimento, os indivíduos 
desenvolvem-se por estadios. A cada estadio, mais problemas e problemas 
mais complexos são resolvidos. A Inteligência Artificial (IA) procura 
transcrever as propriedades do processamento de informação para a 
máquina, eventualmente munindo a máquina de procedimentos que 
simulem o processo adaptativo. Ou seja, procedimentos que habilitem a 
máquina a aprender de forma desenvolvimental, o que implica a 
discriminação e a coordenação dos processos de aprendizagem e de 
desenvolvimento. 

Problema: Os modelos conecionistas formam uma classe de modelos de 
IA que pretende simular as leis gerais associadas ao processamento de 
informação no sistema nervoso central. São modelos com fortes 
capacidades de aprendizagem, mas não aprendem a resolver problemas de 
forma desenvolvimental. Primeiro, a aprendizagem nestes modelos é um 
processo contínuo, baseado em técnicas de descida de gradiente para 
atualização dos pesos que conduzem à minimização do erro; segundo, cada 
novo padrão de ativação (padrão composto pelos pesos atualizados) 
substitui o anterior. Estes dois aspetos contradizem a natureza descontínua 
e cumulativa do processo desenvolvimental. O facto de o processo 
desenvolvimental não se encontrar discriminado e em complementaridade 
com o processo de aprendizagem está na base do chamado “dilema entre 
flexibilidade e estabilidade” do sistema. 

Objetivo: Este trabalho procura construir um modelo com uma estrutura 
em andares, em que cada andar corresponde a um modelo conecionista, ou 
em rede, e representa um estádio desenvolvimental. Foi objetivo da 
presente dissertação apresentar um método que identificasse a estrutura 
particular de cada andar (estádio de desenvolvimento), que identificasse, 
também, as alterações que se aplicam na transição de um andar para o que 
se lhe segue (transições entre estádios) e que permitisse, ainda, extrair uma 
progressão de alterações ao longo de todos os andares (progressão 
desenvolvimental). 
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Método: O método aqui definido resulta da interação de três disciplinas 
próximas — psicologia do desenvolvimento, neurociência cognitiva e 
inteligência artificial. O primeiro requisito para construir um modelo que 
aprenda de forma desenvolvimental consiste na definição de estádio de 
desenvolvimento. Neste sentido, o Modelo de Complexidade Hierárquica 
(MCH) foi adotado como referência teórica, uma vez que define estádio de 
desenvolvimento em função da Ordem de Complexidade Hierárquica do 
problema (OCH). A OCH é o fator que atribui estabilidade de desempenho 
intra-estádio. O segundo requisito consiste na delineação de um método que 
permita representar estádios de desenvolvimento num modelo de 
desenvolvimento cognitivo. Foi delineado um método com aplicação 
bipartida. Pode ser aplicado à disciplina de neurociência cognitiva 
desenvolvimental, permitindo identificar a representação neuroanatómica e 
neurofuncional dos estádios de desenvolvimento, e à disciplina de IA em 
modelos conecionistas, permitindo identificar a estrutura de mínima 
complexidade que consegue representar o processamento de informação 
correspondente a cada estádio, ou andar. A estrutura de cada rede, ou de 
cada andar, foi avaliada com base num variável número de unidades, 
camadas de unidades e padrão de conectividade entre unidades. Este 
racional baseou-se em premissas extraídas da Teoria dos Sistemas 
Complexos (TSC), que compreendem a perspetiva do funcionamento 
cerebral como uma rede de dependências internas, tanto quanto nos 
modelos conecionistas. Ao comparar a estrutura de andares que 
representem OCH sucessivas, podem determinar-se as diferenças 
necessárias entre a estrutura de um andar e a do seu sucessivo, 
transcrevendo propriedades desenvolvimentais para o modelo. O cenário de 
simulação utilizado foi o teste da balança, um teste desenvolvimental 
administrado a crianças para avaliar o seu estádio de desenvolvimento. Este 
teste tem sido objeto de interesse para simulação desde os anos 80. No 
entanto, as simulações existentes pecam por limitações associadas à 
definição e representação de estádio de desenvolvimento e transições entre 
estádios. 

Resultados: Os resultados obtidos permitiram identificar uma estrutura 
subjacente a cada OCH, ou a cada andar, que é por sua vez impactada pela 
complexidade das operações conduzidas e pelo número de dimensões 
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associadas ao problema. Permitiram, também, identificar dois tipos de 
transições: as baseadas na memória e as baseadas nas operações. As 
primeiras ocorrem quando há um aumento na dimensionalidade do 
problema de andar para andar; as segundas, quando a operação aumenta de 
complexidade, parecendo, estas, estar associadas à transição de estádio das 
operações abstratas para as operações formais e pós-formais. Por usa vez, 
esta transição parece estar subjacente à cognição de ordem-superior, 
aparentemente única da espécie humana. Quando o padrão de conetividade 
entre as unidades foi, também, variável, demarcou-se uma tendência para 
que redes treinadas independentemente para o mesmo andar convergissem 
para o mesmo número de ligações entre unidades. Também importante foi 
o facto de modelos com um padrão de conectividade mais denso no que 
respeita à camada dos dados de entrada terem atingido um melhor 
desempenho, uma menor complexidade estrutural e uma maior tendência 
para cumprir plausibilidade biológica. Por último, os resultados obtidos 
permitiram identificar uma progressão desenvolvimental ao longo de todos 
os andares, mesmo que partindo de estruturas iniciais diferentes, mas desde 
que as estruturas sucessivas partilhassem o mesmo padrão de conetividade 
das anteriores. 

Discussão: A sequência de experimentos que compõe esta dissertação 
permitiu destacar que a fundação de um modelo conecionista para 
simulação do desenvolvimento cognitivo deve ser baseado numa estrutura-
mãe em andares, em que 1) cada andar é despoletado pela OCH do 
problema a resolver, 2) cada andar seguinte pode ser contruído a partir dos 
elementos do andar corrente, sugerindo um mecanismo de “Integração 
Estrutural” para descrever transições desenvolvimentais, e 3) cada andar 
anterior se mantém protegido da interferência de andares posteriores, na 
medida em que a sua ativação continua a ser despoletada pela OCH do 
problema a resolver. No entanto, é de salientar que os resultados obtidos 
são, ainda, preliminares. Acima de tudo, são úteis para corroborar a 
plausibilidade do método proposto para responder ao dilema entre 
flexibilidade e estabilidade de um sistema de IA, especialmente no que 
respeita à sua estabilidade hierárquica e propriedades desenvolvimentais. 
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Contribuições: A presente dissertação contribuiu para a delineação de 
premissas teóricas e metodológicas, corroboradas por uma sequência de 
experimentos que conduziram à iniciação de um modelo de 
desenvolvimento cognitivo baseado no MCH. Pretende-se que estas 
premissas teóricas e metodológicas contribuam, por seu lado, para um novo 
caminho de investigação que triangule as disciplinas de psicologia do 
desenvolvimento, neurociência cognitiva desenvolvimental e IA. 
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(…) the design for a bird might be as simple as ‘‘Take a planet with 
some carbon and oxygen; irradiate it with sunshine and cosmic rays; and 
leave it alone for a few hundred million years’’ (p. 52). But the mechanism 
responsible for evolution is difficult to directly observe in action, and it 
does not appear to apply straightforwardly to a chess-playing machine. If 
evolution is able to produce systems that exhibit more information than is 
contained in their design, and information cannot be spontaneously 
generated, where did this extra information come from? 

 (The Mechanical Mind (Ch. 7)) 
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 CHAPTER I 

DISSERTATION OVERVIEW 

The present dissertation, entitled “Foundation of a Hierarchical 
Stacked Neural Network model for Simulating Cognitive Development”, 
focuses on the transduction of the main premises of cognitive development 
into a connectionist model. One of these premises is that the model is built 
in stacks, as a synonym of stages of development. The definition of stack 
and the transition from one stack to another will be object of 
experimentation. The present overview includes a brief exposure of the 
relevance of the mentioned topic to Artificial Intelligence, how it has been 
here operationalized into objectives and experimental methods, and the 
contributions of the obtained results to the scientific literature. Finally, a 
description of the organization of the work is provided. 
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INTRODUCTORY NOTE 
 

This work is conducted under the realm of Biomedical Engineering. 
Today, Biomedical Engineering designates a wide field of research 
dedicated to apply engineering to biology, specifically oriented to improve 
health and well-being. Yet, if we return to the original meaning of this 
expression, “Biomedical Engineering” means “the best way to produce 
life”. 

Biomedical Engineering is an expression composed of three root 
words. Bio is a prefix meaning “life”, in Greek. Medical comes from the 
Indo-European word “MED”, which means “to evaluate, to measure”. 
“MED” influenced the formation of the Latin word “Mederis”, which 
originally meant “to know the best way to” through evaluation and 
measurement. However, “Mederis” became mostly used to designate those 
who “knew the best way to treat or cure people”, giving prevalence to the 
complement in detriment to the predicate. “Mederis” later influenced the 
formation of the term “medicus” and “medical”. These words are nowadays 
only associated with health and well-being. Engineering comes from the 
Latin word “Ingenius”, meaning “talent”. This word is composed of the 
prefix “in” added to the Indo-European root word “GEN”, which means “to 
create, to produce”. Thus, “Engineering” means “the art of producing” 
(Mota-Cardoso, 2017, personal communication). 

In the present work, two of these three root components are 
determined. Engineering concerns a computational production, under the 
connectionist paradigm. Bio, or life, is assumed as the existence of change 
within a system as interactions with the environment proceed. Within the 
scope of the present work, Bio is restricted to the cognitive apparatus and 
how it successfully responds to problems posed by the environment. The 
third component — Medical — “the best way to” — will be exposed as the 
work proceeds. It reveals the importance of the method (observations and 
measurements) applied to reach a reliable computational production of the 
cognitive system, which changes as an organism develops.  
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MOTIVATION 
 

Organisms of all species perceive salient stimuli and operate with such 
stimuli according to their biological substrate and maturational forces. As a 
result, they generate actions that interact with and manipulate the 
environment. This allows them to solve more or less problems, and more or 
less demanding problems, where problems are environmental situations 
that the organism needs to cope with, through actions, in order to adapt. 
According to developmental psychology, organisms develop in stages. At 
each next stage, they become able to solve an increasing number of 
problems and increasingly demanding problems. Humans are known to 
achieve the highest stage, as compared to other known species, opening up 
the way for what is called higher-order cognition. In other words, humans 
are able to cope with more, and more cognitively demanding problems in a 
flexible way. 

In terms of the complexity of actions and problems, 
inevitably, organisms go from performing simple actions and 
solving simple problems to performing more complex actions 
and solving more complex problems. 

Lato sensu, the main goal of Artificial Intelligence (AI) is the 
transcription of human information processing capabilities to the machine, 
eventually providing machines with procedures that allow for responding 
to and interacting with a complex and ever-changing environment. An 
intelligent system is, thus, intended to reproduce higher-order cognition and 
to establish a rich repertoire of actions with its surroundings. Given the 
above, it certainly benefits from developing through the course of its 
“maturation”, generating simple actions before more complex ones, and 
solving simpler problems before more demanding ones. 
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But what are we talking about when we talk about the 
“maturation” of an artificial system? In order to answer this 
question, this dissertation lies at the overlap between three 
communicating disciplines: developmental psychology, 
developmental cognitive neuroscience, and connectionism. 

Developmental behavioral theories and developmental cognitive 
neuroscience inform about the maturation of individuals. Thus, they can 
greatly inform about the maturation of an artificial system, as well. It is 
argued that the observed behavioral stages of development (and transitions 
across stages) that organisms go through during their developing lifetime, 
as well as the biological changes undergoing along, need to be modelled 
and implemented in an algorithm, such that the algorithm approximates 
how humans solve sets of increasingly demanding problems. 

The idea of creating a system that develops fosters the 
discrimination between learning and development. 

Two major aspects differentiate these two processes. The first is that 
learning is substitutive, development is cumulative. Learning concerns the 
substitution of old, less adaptive behavioral patterns by new and more 
adaptive ones. Differently, a developing organism generates new stages, but 
maintains the ability to move down to more elementary levels of 
information processing, if the context so requires. More elementary levels, 
or stages, does not mean less adaptive stages. It means less complex stages 
that allow for dealing with less complex problems. Hence, development is 
cumulative, imbedding the capacity to move up to complex levels and down 
to simple levels, which provides great flexibility and adaptability. The 
second distinction is that learning is continuous, implying quantitative fine-
tuning changes, whereas development is discontinuous, implying 
qualitative changes in the functional pattern at use. Given that both learning 
and development occur in parallel as a cause and an effect of biological 
maturation, it is important that AI system also differentiates between 
learning and development in its information processing procedures. 
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Connectionist models are a class of AI models, which basic 
components (computational units and connections) model the basic 
components of the natural neural architecture (neurons, roughly composed 
of cell bodies and axons). Connectionist models are strong artificial learners 
for two main reasons. First, their structure allows for distributed 
information processing capabilities, as the information spreads out to the 
computational units in the network, through connections. Second, learning 
is modeled by continuously, where poor solutions are progressively 
substituted by more adaptive ones. Input-output mappings are formed by a 
composite continuous differentiable function, where differentiability 
allows for continually updating the function parameters. When 
differentiability and continuity in connectionism started to produce robust 
results, the association between developmental psychology and the 
connectionist framework became more salient. Since late 80’s, these 
models have been used at the service of developmental computational 
cognition, with the aim of reproducing cognitive development. Yet, there 
are two limiting problems in simulating development in a connectionist 
model. 

Development is a discontinuous process, which threatens to 
corrupt continuity and differentiability. If a developing 
procedure is employed that does not corrupt continuity and 
differentiability, such as in some generative architectures, it 
corrupts the second main premise: lower stages (or previous 
structures) are no longer available to the system, as they get 
substituted by higher stages (or new structures). 

Then, how to coordinate learning and development in a connectionist 
AI system?  
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OBJECT  
 

The present dissertation focuses on the coordination of learning and 
development in a connectionist model, proposing a method for studying the 
representation of stage transitions. 

Specifically, the object of study is stage transitions, or stack 
transitions, employed at the service of simulating cognitive 
development in a stacked connectionist model. 

According to the present perspective, a stacked neural network model 
is one that develops by stacks, where each stack is the computational 
synonym of stage of development. In order to study stack transitions, the 
present study first focuses on what a stack is, and, second, on the relation 
between adjacent stacks. In order to approach such study, the present 
dissertation uses developmental theories (behavioral and biological) as the 
theoretical background, principles from Complex System’s Theory (CST) 
as methodological background, and the mathematical properties of 
Connectionist models as the experimental background. 

The Model of Hierarchical Complexity (MHC) is a general stage 
theory that will be chosen as the theoretical background for a number of 
reasons later exposed. Developmental cognitive neuroscience will be used 
to provide brain-based experimental data that corroborates the existence of 
stages of performance at a biological level, giving some insights into how 
stages are imprinted in the neural architecture.  

Principles from CST will be used to provide insights into how the 
natural language can be transduced into a computational language of the 
connectionist type. Complex Systems studies systems, independently of the 
nature of their constituents. It is used as the methodological bridge between 
developmental theory and data and experiments with connectionist 
simulations. Because CST studies the properties of systems as systems 
evolve, comparisons between the natural and the artificial systems based on 
the observed properties in action will be established, as development 
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occurs. Hence, the use of complex systems allows for interpreting the 
results back and forth from the cognitive domain to the computational 
domain. Otherwise, the comparison between the two systems — natural and 
artificial — would fall in an epistemological gap. 

Connectionist models are chosen for their biological plausibility in 
simulating the learning process, as well as for simulating the basic 
arrangement principles of the central nervous system: a network composed 
of units and connections, which activate in the face of salient information. 

This class of models will be used for conducting simulations of a 
specific developmental learning scenario: the balance scale test. This test 
was developed within the domain of developmental psychology and is one 
of the first scenarios used to simulate development in connectionist models. 
Although the present work introduces a new method for cognitive 
development simulation, it gives continuity to a line of studies with the 
balance scale test that began in the late 80’s. 
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MAIN HYPOTHESIS 
 

According to developmental theories, stage transitions concern the 
moment when an individual abandons the previous functional pattern, while 
the adoption of a qualitatively different one is taking place. This implies a 
process of emergence of each qualitatively different functional pattern. 
According to a CST, a process is, by definition, a set of procedures that are 
not visible at the periphery of the system, but contained in its structure. 

The hypothesis here elaborated is that the process underlying 
stage transitions, or stack transitions, can be seen at the level 
of the structure of a developing system, both natural and 
artificial. 

If one conducts the study of how a system’s structure changes as higher 
stages are represented in stacks, one is closer to understanding how a 
system’s structure encodes development, leading way to building a 
connectionist structure that not only learns, but also develops. 
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RESEARCH QUESTION, GOAL AND 

OBJECTIVES  
 

The study and implementation of stack transitions in a connectionist 
model raised the following research question: When a developmental 
transition occurs, the system changes from what to what, and how? 
Answering this question is the goal of the present dissertation.  

In order to accomplish this goal, the following objectives were 
delineated: 

1. Validation of Hierarchical Integration as the known 
cognitive mechanism underlying stage transitions. 
Hierarchical Integration is the cognitive mechanism that explains 
stage transitions from a behavioral developmental perspective. 
This mechanism assumes that each higher stage is formed out of 
the outputs generated at the immediately preceding stage. 

 
2. Definition of a method for identifying structural changes in 

a developing connectionist system. The first objective concerns 
the definition of a method for transducing stages of development 
into computational developing stacks. This corresponds to the 
transduction of transitions from the cognitive developmental 
domain into the computational domain, with biological 
plausibility. This method also aims to give some freedom for the 
model to represent what it needs to represent — stages of 
development and stage transitions — imposing the least 
constraints. 

 
3. Representation of stages in a connectionist model. In order to 

simulate stage transitions, it is necessary to understand how a 
connectionist model represents stages. The influence of several 
factors, such as problem dimensions, operations that link inputs 
to outputs, and the number of outputs to be generated is under 
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question in the definition of stage of development and stage 
transitions in both fields. 

 
4. Modelling structural changes across connectionist stacks. In 

order to study stage transitions, or stack transitions, it is 
necessary to compare networks that represent adjacent stages. 
The number of layers, number of units per layer, and the 
connectivity pattern among units was compared. Afterwards, the 
identification of a structural progression from the concrete stage 
to the systematic stage was possible.  
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CONTRIBUTIONS 
 

The present dissertation provides scientific contributions at a 
theoretical, methodological, and experimental levels, concerning the topic 
under investigation: simulating cognitive development in a connectionist 
model. Furthermore, it provides a parallel contribution concerning the 
applicability of the present rationale to different fields of study and practice: 
evolutionary psychology and educational practices.  

Specifically, at a theoretical level, the work here elaborated allows for 
revising some important aspects related to development. Namely, 1) how 
the concept of development is addressed across the cognitive and the 
computational fields, including the definition and inter-relation of other 
associated concepts, namely, complexity, learning, stability, and flexibility; 
2) how stage transitions are understood, defined, and modeled; 3) how the 
particular Model of Hierarchical Complexity formalizes stages of 
development and stage transitions, which has been found to lack some 
clarity. All these theoretical aspects converge to strengthen the 
understanding of the developmental process in natural and artificial 
systems. 

At a methodological level, this dissertation proposed a method that is 
valid for two intertwined fields of study, namely computational cognition 
and developmental cognitive neuroscience. Usually, a research method is 
exclusive of a determined field of studies. Yet, if the same method is 
conducted cross-disciplinarily, the interpretation of results is more robust 
and more constrained. Consequently, the theoretical constructions that such 
method provide are afforded with greater validity, and interpretations of 
results are possible in a multi-directional way. This is relevant specifically 
for two disciplines that communicate so tightly, and hopefully opens up the 
possibility that this method is put in practice beyond the scope of this work. 

At an experimental level, results first allowed to corroborate the 
proposed method, both in what refers to represent stacks, to represent stack 
transitions, and to identify a structural progression across adjacent stacks. 
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A generative architecture based on structural integration was proposed, 
where each new structure is fine-tuned by a process here called pattern-
wise learning. Different structural progressions are possible, but none could 
yet be chosen. Further work is necessary. In sum, the obtained results 
allowed for coordinating learning and development in a connectionist 
model, as long as the model is built in hierarchical stacks — a Hierarchical 
Stacked Neural Network model.  

Finally, during the course of this dissertation, the hypothesis that 
stacks (or stages) exist for different staged-problems allowed for expanding 
its applicability for other domains: evolutionary psychology and 
educational practices. First, parallel work was conducted within the scope 
of evolutionary psychology, establishing a parallelism between orders of 
complexity at a developmental scale and at an evolutionary scale. Second, 
within the scope of education, research is being conducted in order to define 
a programming course based on the hierarchical complexity of the 
programming tasks to be learned.  
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ORGANIZATION OF THE WORK 
 

This work contains four more chapters. Chapter II is dedicated to 
theoretical considerations, which set the premises for elaborating a 
methodological approach. It is composed of four sections. Section A shows 
the relevance of studying and ascribing development to a connectionist 
model, based on the concepts of flexibility and stability. Section B identifies 
the factor underlying hierarchical stability of the system. In other words, 
this is the factor that accounts for performance invariance at each 
hierarchical stage of development — the Order of Hierarchical Complexity. 
Section C corresponds to the first objective and tests a commonly known, 
widely proposed, but poorly tested, mechanism for stage transition — the 
mechanism of Hierarchical Integration. Section D, once this mechanism has 
been invalidated, reviews the parameters that underlie the representation of 
stages in the brain. The idea is to set the ground for the delineation of a 
method for representing stages in a connectionist model. Chapter III 
responds to the second objective of the present dissertation and delineates 
such method. Chapter IV applies the proposed method to a set of four 
experiments that aim to answer the third and fourth objectives. Finally, 
Chapter V presents some concluding remarks that summarize what has been 
here conducted, including its limitations, advantages and proposals for 
future work. 
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 CHAPTER II 

THEORETICAL CONSIDERATIONS FOR 
SIMULATING COGNITIVE DEVELOPMENT 

IN AN ARTIFICIAL MODEL 

The present chapter is composed of a preliminary section, highlighting 
major concepts and findings, and of four sections. Section A “Artificial 
Intelligence: Five Underlying Concepts and their Inter-Relation” 
comprehends a historical and scientific analytical overview of the problem 
of simulating the mind in a machine, highlighting the importance of using 
and simulating the notion of development. It pretends to clarify and inter-
relate five grounding concepts, where development is included, which will 
be used throughout the entire work, and will hopefully hereafter find a 
clear(er) conceptual basis. Section B “Bridging Developmental Psychology 
and Computational Cognition: The Importance of a Domain-General Stage 
Theory” consists of an analytical review of what has been done so far 
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concerning the simulation of cognitive development in connectionist 
models. Much of existing work, including this dissertation, simulates a 
particular scenario: the developmental balance scale test. For this reason, 
this is the simulation scenario covered in this analytical review. It identifies 
some theoretical limitations of previous work and suggests some 
requirements for further work. These requirements zoom in into the notion 
of development and deal specifically with the definition of stages and stage 
transitions. Section C “Developmental Cognition in Modular Neural 
Networks: Stage Transitions are not explained by Hierarchical Integration” 
is experimental. It uses the definition of stage transitions shared by 
behavioral developmental theories and applies it to a simple simulation, 
showing that developmental transitions need to be factorized, analyzed, and 
implemented differently. Finally, Section D “Neural Correlates of 
Postformal Stages of Reasoning: Biological Determinants of 
Developmental Stage” shows that there is still a lack of knowledge of how 
stages of development and stage transitions are represented in the brain. As 
a result, it proposes a new method that will allow for identifying how 
development might be imprinted in the neural signature of individuals. This 
method is shown to have applicability in the field of Artificial Intelligence 
and Computational Cognition, too, as it provides for identifying how orders 
of hierarchical complexity might be imprinted in connectionist stacks. 
Principles from Complex System’s Theory are here used to determine the 
main premises of the proposed method and to allow for an interpretative 
parallelism between both fields of study: developmental psychology and 
AI.
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• Learning and development allow for discriminating two types of 
flexibility and stability: horizontal and hierarchical 

• A natural learning system forms representations of the environment in 
a developmental way (by stages of development), following the 
direction of increasing complexity, which corresponds to hierarchical 
flexibility and stability 

• Hierarchical flexibility and stability bring about an additional 
difficulty in connectionist models — the difficulty of coordinating the 
continuous nature of learning and the discontinuous nature of 
development  

• The Model of Hierarchical Complexity is the suggested theoretical 
adoption for simulating hierarchical flexibility and stability because it 
provides evidence of a structural, universal and systematic factor 
underlying the formation of increasingly complex representations — 
the Order of Hierarchical Complexity 

• Developmental behavioral theories, including the MHC, have 
formalized stage transitions as a process of Hierarchical Integration. 
During this process, lower-order outputs are coordinated to form 
higher-order outputs 

• The study here conducted rather showed that the increase in 
complexity lies at the operations performed by the algorithm, in 
interaction with the number of problem dimensions 

• It lasts to determine how is it that OHC are represented in connectionist 
models 

• A method has been proposed to identify how OHC are represented in 
the brain. The same method has applicability to determine how OHC 
can be represented in connectionist models 

• That leads way to simulate cognitive development and hierarchical 
flexibility and stability
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In the second half of the twentieth century, a mechanistic view of 
processes and functions was dominating the philosophical and scientific 
streams of thought, in which the understanding of the mind played a major 
relevance. This mechanistic view resulted from a multidisciplinary 
confluence — philosophy, psychology, physiology, mathematics, 
engineering — and ultimately coined a new field of research: Artificial 
Intelligence (AI). Lato sensu, AI derives from a certain number of 
operationalizable concepts, which describe a certain portion or 
characteristic of human behavior. Its main goal is to transcribe the 
properties of human information processing capabilities to the machine, 
eventually providing machines with procedures that respond to the 
environment, solving sets of highly complex problems (Pennachin and 
Goertzel, 2007). To this end, AI can be used both as a method for testing 
models of information processing and as the implementation of what is 
(provisionally) known about information processing in a living organism 
(Cassimatis, 2012). Different approaches have been experimented with 
varying degree of success, both theoretically and technically. 

However, this diversity has flown into a progressively sparser 
definition the concepts AI uses and how they are 
operationalized. 

The objective of the present study is 1) to identify some grounding 
concepts of AI, 2) to clarify the definition of those concepts across fields, 
and 3) to inter-relate those concepts with each other and across fields. For 
that, this work starts with a brief exposure of the historical and scientific 
underpinnings of AI from the perspective of psychology. The concepts of 
flexibility, stability, learning, development, and complexity will be 
identified as major instances of cognition and adaptation. A solution for 
inter-relate these concepts will be proposed. Two types of flexibility and 
stability will be identified, which can be interpreted as horizontal and 
hierarchical. These two types correlate with a representation of learning and 
development, respectively, where development, which is hierarchical, 
follows the direction of increasing complexity. As will be exposed, this 
solution has biological and computational plausibility. Second, the 
implementation of these concepts in the particular case of connectionist 
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models will be reviewed. Connectionist models are chosen as the class of 
artificial learning models of reference because of their rough resemblance 
of the central nervous system, as well as for their known strong 
computational ability to learn highly complex functions (Rojas, 1996). Yet, 
it will be shown they fall short on reproducing both types of flexibility, 
specifically hierarchical flexibility (French, 1999; McCloskey and Cohen, 
1989). 

It is beneficial that general theoretical and methodological concepts 
and principles are defined, so as to underlie the object, objective and main 
premises of AI. That way, several branches and layers of intelligence, 
adaptation, and problem-solving can be joined together as a common 
computational entity (Johnson, 2011). This allows for scaling up the work 
that is conducted at smaller scales at different specialized laboratories. 
Also, this does not compromise the necessity of their specialization, but 
simultaneously does not compromise the possibility of integrating these 
specialized attempts into a global framework. 

A shared definition of fundamental concepts and methods 
certainly allows for raising the qualia of AI as a field running 
over its own rules instead of running over the rules of the 
fields which created it. 

This eventually renders AI to become a cross-paradigm, rather than a 
set of overlapping paradigms. 

1. Underpinnings of AI from the perspective of Psychology 

Back to the late eighteenth century, David Hume seeded the idea of a 
unitary factor contracting the complexity of the mind, elaborating a 
Representational Theory of Mind in “Treatise of the Human Nature” 
(Hume, 1888). Inspired by Newton, who reduced the explanation of 
movement to a unitary force, Hume was seemingly driven by the goal of 
finding the same force that would prove to be the engine of the mind. 
Despite the critics on the incompleteness of his work, Hume is first credited 
for re-introducing the experimental method in a matter as speculative as the 
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nature of the mind was. Also, Hume made a central idea flourishing — the 
idea that mental complexity could be, through observation, reduced to a set 
of inter-associated rules. His work would be of the utmost importance for 
inspiring the forthcoming philosophical Kantian doctrine, which came to 
establish throughout the nineteenth century and from which current 
approaches to AI are undeniably rooted. 

In the nineteenth century, departing from an incompatible perspective 
between logic and experience, the emerging doctrine (was) grounded (on) 
the idea that logic and experience were facets of one another. Following 
Hume’s hypotheses, there would be a set of innate biological rules, which 
would apply to extract meaning from experience. Hence, experience could 
only be object of understanding due to these rules, and, reversely, rules were 
only useful due to the existence of an experiential content. Consequently, 
the focus of attention shifted from incompatibility to the search of the 
“geography” of the overlapping area between content (experience) and 
structure (rules). 

In the second half of the nineteenth century, this content-structure 
interplay became object of research under different approaches and 
methodologies, which sought to be reportable and replicable. 
Phenomenology, founded by Husserl in northern Europe (Husserl, 1999), 
aimed at providing a logical and coherent framework for extracting 
meaning from the unimaginable large, supposedly infinite, set of possible 
experiential configurations of human activity. The “phenomenon” was 
precisely the result of structurally reducing subjective experience to a 
common meaningful ground, or nucleus. The pleonasm “subjective 
experience” is here employed to highlight the singular dynamics of 
experience, where it is not only what is experienced that matters, but also 
how it is experienced by the subject. 
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The challenge of finding a structure in which an infinite set of 
inputs would meaningfully fit in was as early driving 
scientific curiosity. Still it is today. It is precisely the nature 
of this interplay that lies at the core of AI, where experience 
is denoted by the inputs that perturb the system and structure 
is denoted by the stable operations that constitute the 
algorithm. 

In order to glimpse upon the how, or the structure, phenomenology 
largely relied on the power of the narrative — the means by which the 
subject would express the meaning of actions. In this period, meaning was 
seen as the underlying unitary force of mental and behavioral movement. 
Thus, if the narrative comprises the meaning of experience, if the narrative 
uses language to express the meaning of experience, and if thought was 
considered to be this inner abstract representation of experiential reality; 
then, language was assumed to be the tool of thought. By the end of the 
nineteenth century, this idea unfolded into several research and 
philosophical branches, namely Philosophy of Language and European 
Psychology. 

Through a detailed and logical analysis of language, Philosophy of 
Language specialized in decomposing the meaning-and-structure interplay 
of speech as a means to glimpse into how it [meaning-and-structure 
interplay] leads to the formation (and understanding) of narratives and 
thought itself (Morris, 2006). Philosophy of Language, thus, accompanied 
the ideas of a mechanical decomposition of processes and functions, having 
had a profound impact on how to reproduce the innate act of meaning-
making and meaning-understanding. As of today, the decomposition and 
re-composition of language, under the principle of compositionality, is still 
embraced not only to foster the understanding of language and 
communication, but also to reproduce its structural and developmental 
properties within the scope of artificial systems (De Beule and Bergen, 
2006). European Psychology, also relying upon the narrative, attempted to 
combine a structured model of behavioral development with the particular 
experiences of each subject. The idea was to understand the self. With slight 
variations across authors, the self was generally conceived as an integrated 
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and nuclear abstract entity underlying the dynamics of the mind and as the 
carrier of the phenomenon. The mind could only be grasped if experience 
was abstracted into clusters of meaning, until a nuclear common ground 
was reached that explained behavior in all its observable facets. Initiated by 
Eugen Bleuler and Sigmund Freud, it was followed and updated by 
posterior generations, where Jung was a prominent figure (Bair, 2004). 

Simultaneously, but bearing an opposite perspective over the 
methodology to be used, American Psychology (behaviorism), was 
materializing the idea that the complexity of mind should be disregarded in 
favor of an observable behavioral complexity. Observable behavior was 
already then being proved to be decomposable into an ordered sequencing 
of stimuli, responses and reinforcement rates (Commons and Liu, 2017). 
Behaviorists assumed that the essence of the mind should not be in question, 
as statements about the mind were equivalent to statements about behavior 
and mental states were equivalent to dispositions to behave (Nath, 2013). 
The behaviorist movement was early initiated in the beginning of the 
nineteenth century with the work of Edward Thorndike, but only slightly 
later coined by John Watson in the first half of the nineteenth century. 
Relevant work was later conducted by Ivan Pavlov and B. F. Skinner. 
Behaviorism provided that behavior was measured (and reproducible) and 
that relevant factors for modulating responses were uncovered (Nath, 
2013). 

Jung’s biographical information (Bair, 2004) suggests that his work 
might have constituted a link between the analytic approaches dominating 
in Europe and the behaviorist approach dominating in North America. 
Contemporaneous with Thorndike, Jung made possible that the qualitative 
analysis of mental phenomena carried by the self was measurable and that 
its understanding was reproducible. Furthermore, his method was valid 
when applied to humans, whereas behaviorism had only been so far 
validated with non-humans. Jung devised an empirical method based on 
stimulus-response paradigm, measuring reaction times and galvanic skin 
response during analytic sessions. He was able to show that the body is an 
inherent part of the self, containing its physical, observable, tangible 
dimension. The connection between European and American psychological 
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approaches was further impelled and highlighted by the first experiments 
with neurophysiology, which took place later in the nineteenth century. The 
first conclusions about the modulation of brain waves in response to the 
environment, in non-humans as well, were extracted by the Polish scientist 
Adolf Beck in 1890, paired with the first recordings of cerebral activity 
were published by the psychiatrist Hans Berger (Coenen and Zayachkivska, 
2013). 

Berger’s work constituted the starting point of a scientifically and 
clinically fruitful era. It was advocated that the observable and quantifiable 
set of physical properties displayed by the brain reliably represented the 
dynamics of the mind, which it could substitute for research and analytical 
purposes (Tudor et al., 2005). 

In retrospective, two major ideas were revealed. The interplay 
between content and structure lies at the core of the 
complexity of the mind, and the complexity of the mind could 
be grasped by decomposition of brain processes and 
functions. 

In the middle of the twentieth century, it resulted that the correlation 
between mind and brain was getting progressively stronger and 
consecutively corroborated. The multidisciplinary mechanical view 
underlying mental processes was starting to produce endless debates about 
whether the mind could be, or could not, and to what extent, reproduced in 
a machine. It was in such an environment imbedded within a canvas 
composed of measurable variables and outcomes that early approaches to 
AI appeared. 

1.1. Basilar concepts involved in Artificial Intelligence 

Independently of the conceptualization of the brain, the object of AI 
was soon and generally accepted to be natural intelligence, and intelligence 
could be broadly defined as the ability to adapt and succeed. It implies a 
constant interaction between the organism (structure) and its environment 
(content), where experience is the exchanging card. Furthermore, 
intelligence follows the unidirectional flow of increasing the complexity of 
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adaptive behaviors, requiring that there are changes in the organism and in 
the way the organism deals with the environment, as experience proceeds. 
Successful changes are adopted and maintained and set the reference for 
posterior changes (Dawson-Tunik et al., 2005; Elman, 1993; Inhelder and 
Piaget, 1958). 

The first attempt to implement a system resembling how adaptation is 
processed was conducted by the English neurologist Ross Ashby, who 
developed the Homeostat, in 1948. His theoretical framework “brought 
together physical, biological, and psychological theory in a novel and 
powerful form, one that he would credit Artur Rosenblueth, Norbert 
Wiener, and Julian Bigelow, and G. Sommerhoff for having independently 
discovered it in their own work” (Asaro, 2008). Ross Ashby was the first to 
apply mechanical concepts, such as equilibrium and amplification, to 
understand and implement the basic dynamics of adaptation. The author’s 
major claim was that this mechanistic view would justify and deal with the 
simplest and the most complex forms of behavior produced by an organism 
within a single explanatory framework. 

He elaborated on the “simplest nature of adaptation, as a route 
from simple physiology to complex learning”, consistently 
with the decomposition method early adopted. 

Ashby undertook an epistemological approach by breaking down 
psychological and mental processes as essentially physical and chemical 
ones. The simplest nature of adaptation would comprise flexibility (search 
for equilibrium in the face of perturbations) and stability (attaining a new 
representation of equilibrium) and was operationalized equivalently to 
Sommerhoff’s directive correlation and Rosenblueth, Wiener, and 
Bigelow’s conception of negative feedback (Asaro, 2008).  

Nowadays, machine learning embraces a similar goal: that of ascribing 
an optimal compromise between flexibility and stability of a system that is 
to be perturbed by a determined environmental set. General AI denominates 
the advent of taking machine learning to the extreme of the perturbations 
being any, because the system itself is ideally robust enough to 
(successfully) account them all. This observation was early driving 
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scientific curiosity, in the beginning of the nineteenth century. The solution 
ideally implies that both flexibility and stability are maximized. Another 
important idea is complexity. Machine learning looks forward to solve 
highly complex real-world problems. General AI has the goal of solving 
problems yet unsolved by humans, or of solving problems better than 
humans. 

Nonetheless, the route from simple to complex learning is 
different from and is more than learning complex problems. 
Solving complex problems implies that learning has already 
matured to a certain point of complexity, whereas the route 
from simple to complex learning implies that learning gets 
more complex as experience proceeds (adaptation). 

Given the above, the concepts of flexibility, stability, learning, 
development and complexity are taken as basilar for the simulation of 
intelligence and adaptation. But how are they defined and how can they be 
defined into a coherent and single framework? 

1.1.1. Flexibility and Stability 

Generally speaking, flexibility is defined by the Oxford dictionary as 
“the ability to be easily modified” or “willingness to change” (“Flexibility,” 
2010). From a psychological perspective, it is a slippery construct to define. 
It can be attributed to the capacity of a person to adapt to situational 
demands, to shift among different perspectives of the same situation, to 
reconfigure mental resources, and to balance competing needs and desires, 
all including environmental features in coordination with personal features 
(Kashdan and Rottenberg, 2010). In terms of personal features, 
psychological flexibility has been attributed, as well, to a multitude of 
concepts and constructs, namely ego-resiliency, response modulation, self-
regulation, and executive control. The latter [executive control] mostly lies 
within a cognitive perspective of flexibility. Cognitive flexibility basically 
names the ability to switch among tasks and/or perspectives with ease (short 
time intervals) and success (low error) (Scott, 1962). Executive control 
reflects the integrated functioning of a wide cortical frontal area that is the 
result of several cognitive capacities, such as selective and sustained 
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attention, working memory, and recall (Kashdan and Rottenberg, 2010). 
Neuroscience data further reveals that cognitive flexibility is correlated 
with variability in brain processes, which is innate and associated with a 
healthy cognition (Armbruster-Genc ̧ et al., 2016; Kashdan and Rottenberg, 
2010).  

Considering an engineering scope, flexibility is a composite variable 
that results from time, effort, cost, and performance of the system, and 
different from adaptability, agility and changeability (Magalhães, 2014). 
Flexibility has been considered as an inherent operating property of a 
system, which is capable of altering its internal configuration to respond to 
a new situation. Adaptability is the capacity of the system to effect internal 
changes so as to deliver its intended functionality (Schulz et al., 2000). 
Agility is the capacity of the system to implement changes rapidly. 
Changeability is a characteristic linearly associated with the set of possible 
change paths the system has. Two types of change — flexible and adaptable 
changes — which are not mutually exclusive and are based on the agent of 
change have been identified (Ross et al., 2008). Flexible changes are 
produced by external triggers, whereas adaptable changes are produced by 
internal triggers. Changeability is related to measure flexibility based on the 
degrees of freedom the system has. 

At the level of analyzing the change of a system, the principle of 
change propagation assumes that change in one element causes change in 
its closely related elements, modifying the network. Unless the elements 
that have been changed can be clearly identified, flexibility becomes a 
latent construct, meaning it cannot be directly observable or measurable. 
This is congruent with (neuro)cognitive findings. Cognitive flexibility is 
difficult to operationalize since the behavioral predictors and neural 
correlates underlying it are not clearly identified. Research concerning 
cognitive load theory points towards an intricate interaction between 
external and internal learning, behavioral, and experiential factors (Duran 
et al., 2018), and research in cognitive neuroscience points towards a 
predisposition to change of an entire brain network (Leber et al., 2008). 
This is congruent with the conceptualization of the brain as an entire 
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network of internal dependencies, as formalized by complex system’s 
theory (Mitchell, 1998; Smith, 2005). 

In computational terms, flexibility is the characteristic of a “device or 
program that can be used for multiple purposes, rather than a single 
function” (Christensson, 2014). In an artificial learning system, which is 
built to solve problems automatically, the first step is to fine-tune the model 
according to the (particular) set of problems it is intended to solve. 
Afterwards, the system is left with the task of solving them. Flexibility in 
an artificial learning system is usually related with one of two abilities. It is 
seen as the ability to generalize well to yet unseen cases, also called 
generalization ability, and/or the ability to solve an increased set of 
problems, switching between problem-solving functions as different 
problems are presented. The latter ability is closer to the definition of 
cognitive flexibility (task-switching) and has ever been way more 
problematic to implement than the first (French, 1999). In terms of the 
generalization ability, flexibility of an artificial learning system is 
associated with a specific performance measure: the variance of the model. 
The variance is the ability of the model to capture many features in the 
dataset, eventually leading to overfitting and failing to generalize well 
(Geman et al., 1992). Consequently, a system that is more flexible and less 
error-prone in the training set, in the sense of a higher variance, will only 
solve problems that are very similar to those it has been trained for, and will 
only solve a particular domain-specific set of problems. 

Nonetheless, the variance is mostly associated with the 
generalization ability of the model for a given task, not so 
much associated with the ability of the model to learn multiple 
tasks and to switch among them with ease. 

Learning multiple tasks requires the model to learn multiple features 
of the dataset in a segregated way, by attributing a subset of those features 
to particular tasks. Switching among tasks requires that flexibility is 
coordinated with stability. 

Stability is defined by the Oxford dictionary as a state of not being 
liable to undergo any physical change, or firmly established (“Stability,” 
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2010). The same principle holds for every domain of knowledge. Stability 
is the ability to keep something constant and unchanged. From a cognitive 
perspective, stability is defined as the ability to minimize the influence of 
distractors, allowing the subject to focus on a determined task (Armbruster-
Genc ̧ et al., 2016). In engineering terms, synonyms of stability are, for 
instance, robustness and uniformity (Magalhães, 2014). Robustness 
characterizes the portions of the system that are not affected by a changing 
environment, whereas uniformity means that the system achieves a similar 
performance within a determined flexibility range. In an artificial 
intelligence system, stability is the ability of the system not only to form 
unchanging representations, but to keep those representations unchanged 
even if in the presence of disrupting inputs. This corresponds to a low 
variance, which means that the relevant features have been captured, while 
irrelevant features are discarded. Hence, stability (low variance) can be seen 
as the opposite of flexibility (high variance). Another measure usually 
associated with the stability of the system is the bias. A high bias indicates 
that the model captured well, or is stable in representing a few features in 
the dataset, but failed to represent other equally important features (Geman 
et al., 1992). It represents more the error of the model rather than its 
stability. The bias/variance dilemma is a very well-known problem in 
machine learning. Models can be decomposed into these two components. 
The idea is to minimize both — a low bias indicates that the model captured 
all correct and relevant features in the dataset; a low variance indicates that 
it did not over-fit. 

Yet, as mentioned, the compromise between bias and variance 
in a machine learning model comprises its generalization 
ability, not its ability to switch among tasks with ease. 

In the natural learning system, flexibility and stability are maximized. 
Yet, as processes are not observable from the outside but exist in a self-
contained structure, they are very difficult to reproduce in an artificial 
system. At first, flexibility and stability appear to be dynamical and, more 
importantly, complementary processes. The more flexibility, the less 
stability, and vice-versa. Hence, if they are seen as opposite sides of the 
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same coin, what is at stake when maximizing flexibility and stability of a 
single system? 

Maximized flexibility and stability refer to the capacity of the 
natural system to form many “low bias and low variance” 
representations of the environment. 

Then, is the maximization of flexibility and stability achieved at the 
level of the system’s structure of at the level of its functioning? Maximizing 
flexibility and stability at the level of the structure implies building a 
system’s structure that is 50% stable and 50% flexible, which says very 
little to nothing about the dynamics of the process. 

Maximizing flexibility and stability at the level of the 
system’s functioning implies identifying 100% of the 
moments when stability should overweigh flexibility, and 
otherwise. 

Cognitive neuroscience research, although far from a coherent and 
clear understanding of the coordination between flexibility and stability, 
has provided some recent evidence that helps discriminating these two 
processes in the brain. Flexibility and stability seem no longer to be heads 
and tales of a single process, but to hold some sort of relative independency. 
For instance, brain regions like the basal ganglia, nucleous accumbens, 
prefrontal cortex and posterior parietal cortex resulted as independent 
sources of prediction of flexible behavior (Leber et al., 2008). Furthermore, 
mean brain activity (associated with stability) and variability in brain 
activity (associated with flexibility) are, as well, essentially independent 
factors, which suggests a likely essential independence of stable versus 
flexible processes. What further seems to happen is that either one or the 
other portion of the network seem to be strengthened at the expense of the 
other (Armbruster-Genc ̧ et al., 2016). Hence, subjects who perform better 
on task switching, showing decreased error rates, perform poorer on 
distraction inhibition, showing increased reaction times, and otherwise. 
Network portions are associated, but independent. 
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1.1.2. Learning and Development 

According to cognitive and psychological perspectives, learning is the 
process through which an organism acquires knowledge, by forming 
representations. As stimuli are repeatedly exposed, the organism updates 
the representation of that stimulus, until a reliable and stable representation 
is established. Each representation is acquired by a substitutive and 
continuous process, depending on a number of external and internal factors 
(Commons and Liu, 2017; Duran et al., 2018). More adaptive 
representations are gradually formed and gradually substitute less adaptive 
ones. 

Given a certain situation, an organism is able to form a certain 
number of representations, creating different categories 
(Damon et al., 2016; Dueker and Needham, 2005; Sloutsky, 
2010). Another natural capability is that of forming more or 
less complex representations, producing wider or narrower 
representations of the environment (Commons and Pekker, 
2008; Sloutsky, 2010). 

Development is the process through which an organism forms 
increasingly complex representations of a given situation, or problem. 
Differently from learning, development has been observed to progress 
throughout qualitative and discrete spurts, not continuously (Case, 1987; 
Commons and Pekker, 2008; Dawson-Tunik et al., 2005; Inhelder and 
Piaget, 1958). It is associated with the existence of stages of performance, 
or plateaus. Each stage is assumed to rely on a functional and behavioral 
pattern. Each pattern, in turn, contains the rules and operations that are 
particular and descriptive of that stage. As an organism attains a certain 
developmental stage through the course of its maturation, it will most likely 
perceive and act upon its environment according to the internal dynamics 
of the higher stage attained, which is the most adaptive. Hence, each stage 
acts as an attractor of the system, conferring it stability in the way situations 
are perceived and acted upon. 

Increasing in stage of development occurs through a process called 
stage transition. While stages of performance are characterized by 
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performance invariance, a transition from one stage to the next is 
characterized by an unstable pattern that bounces back and forth between 
two adjacent stages (Dawson-Tunik et al., 2005). It implies that new 
functional and behavioral patterns are formed throughout an organism’s 
developing lifetime, or maturation. New patterns are assumed to emerge, 
although the specifics of stage emergence are very difficult to trace and 
reproduce. According to a complex system’s perspective, emergent stages, 
or patterns, result from a process of self-organization. Self-organization is 
the ability of the system to update and re-organize itself, according to the 
perturbations it is exposed to (Mitchell, 1998; Smith, 2005). Here lies the 
second major difference between learning and development. While learning 
substitutes less adaptive representations of a situation, the transition for 
higher stages do not substitute or eliminate lower-stages. The organism 
remains the possibility of reactivating lower-stages, whenever the 
environment so requires (Fischer, 2008). 

1.1.3. Flexibility and Complexity 

How are flexibility and stability associated with learning and 
development? 

Interestingly, in natural systems, there appears to be an 
underlying universal, structural, biological factor that 
explains and discriminates flexibility and stability of acquired 
representations, as learning and development proceed. 

For instance, at the same stage, as individuals learn, there is a clear 
universal tendency to form certain categories of representations over others, 
as the individual interacts with the environment (Banks and Ginsburg, 
1985; Farroni et al., 2005). Also, evidence shows that the complexity of 
representations progresses according to a specified developmental 
universal sequence (Commons and Pekker, 2008; Sloutsky, 2010). More 
complex representations go hand-in-hand with storing more information 
about a situation, thus, the situation is handled with higher accuracy and 
higher adaptive potential (Sweller, 2004). More problems and more 
complex problems can be solved at higher stages, expanding the range of 
opportunities for success and adaptation (Leite, 2016). Hence, increasing in 
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stage allows for the system to become increasingly more flexible in the way 
it deals with the environment, while preserving the stability that 
characterizes performance within stage (Dawson-Tunik et al., 2005). 
Indeed, cognitive complexity and cognitive flexibility seem to be two 
fundamental and associated properties of cognition. Whereas cognitive 
complexity is a structural property, cognitive flexibility is a dynamical 
property. Cognitively simple subjects tend not to flexibly reorganize 
information, whereas cognitively complex subjects are more amenable to 
information reorganization, with gains in how they yield new attributes and 
concepts (Scott, 1962; Sloutsky, 2010). 

Behavioral and neuroscience data actually suggest that 
flexibility and stability need to be associated with something 
else other than learning to perform (a set of) tasks. 

On the one hand, evidence suggests that switching among tasks, or 
cognitive flexibility, comes at the expense of increasing the cost of 
performance, both in terms of time and accuracy. On the other hand, 
although increased flexibility seems to be detrimental for accurate 
performance, there is evidence that flexibility increases from childhood to 
adulthood, demonstrating its adaptive potential (Armbruster-Genc ̧ et al., 
2016), and that flexibility is a protective factor from psychopathological 
conditions (Kashdan and Rottenberg, 2010). Furthermore, greater 
variability levels of brain functioning, associated with cognitive flexibility 
and task switching, are linked to better performance specially in complex 
tasks (Armbruster-Genc ̧ et al., 2016).  

This might explain why increased cognitive flexibility is detrimental 
in some conditions (namely for performing a set of tasks of the same, low 
complexity) and favorable in others (namely for performing tasks that 
increase in complexity). It all might depend upon the a priori complexity of 
the task and on the stage of development of the individual in question 
(Duran et al., 2018). In artificial learning systems, an increased variance is 
also associated with the complexity of the task to learn, given that the model 
is required to capture more non-linear features in the dataset. Nonetheless, 
in regards to the coordination between flexibility and complexity of 
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reasoning abilities in artificial models, it has been suggested that current 
approaches in artificial intelligence fail because they fall on a reductionist 
assumption that does not consider the main characteristic of human brain 
— to solve simpler tasks before more complex ones, by performing simple 
actions before more complex ones (Commons, 2008). 

1.2. An adopted definition and inter-relation of basilar 
concepts 

Given the above, flexibility and stability, as well as learning 
and development, can be seen from the perspective of two 
axes: a horizontal and a hierarchical axis. 

Learning is represented horizontally, indicating the formation of 
several representations within stage. Development is represented 
hierarchically, indicating the formation of more or less complex 
representations across stages. 

Learning within stage implies 1) flexibly updating each representation 
as experience proceeds in a continuous and substitutive manner, 2) 
stabilizing that given representation as it acquires sufficiently descriptive 
and operative power, and 3) initiating the formation of another 
representation of the same complexity in case the input set so requires. At 
the same stage, flexibility and stability are associated with task switching, 
where the dominating criteria for improving performance lies upon the 
categories of representations that gain preference over others. 

Thus, stability defined irrespectively of stage of development, 
or horizontally, accounts for fixing diverse representations 
that might communicate and eventually overlap, but that do 
not interfere with one another. 

In architectural terms, both biologically and computationally, this 
corresponds to having multiple regions, or modules, operating 
simultaneously and in parallel, composing one stack of modules (Alnajjar 
et al., 2012; Bressler and Menon, 2010; Mengistu et al., 2016). 
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Differently, learning in a developmental way consists of creating 
successive and hierarchically more complex representations of the problem 
space within boundaries of complexity defined by stage. Hierarchical 
flexibility accounts for reorganizing information in a way that more 
complex representations of the environment are formed. 

Stability defined in a stage-like manner, or hierarchically, 
consists in setting the complexity of the formed 
representations and assuring that more complex 
representations of a given problem do not interfere with less 
complex representations of the same problem. 

Less complex representations are protected from “upwards” 
interference and remain available throughout the course of maturation of 
the system. In architectural terms, this corresponds to having hierarchical 
stacks, where each higher-order stack emerges from the lower-order stack 
(Commons, 2008). Stacks are the computational synonym of stages, which 
are seen at behavioral (Case, 1987; Commons and Pekker, 2008; Dawson-
Tunik et al., 2005; Inhelder and Piaget, 1958) and biological levels 
(Mengistu et al., 2016; Taylor et al., 2015). In computational terms, 
hierarchical stacks are beneficial for the cost of the system (Elman, 1993; 
Mengistu et al., 2016; Norris, 1990). 

2. Connectionist Models 

Connectionist models, or Artificial Neural Network models (ANN), 
are artificial learning models architecturally similar to the basic 
arrangement of a natural neural network. They are composed of 
computational units and connections linking those units. ANN are a strong 
and widely used class of artificial learning systems. They were created in 
the second half of the twentieth century and were soon revealed to be a 
major breakthrough in the pursuit of AI. A retrograde perspective shows 
that this breakthrough lies upon the fact that neural networks transformed 
the space of thresholds and rules (as in the homeostat or in cellular 
automata) into a composite continuous function. It was differentiability, the 
property of continuous functions upon which learning in ANN was devised, 
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that conferred on these models a great advantage in terms of flexibly 
adapting to subtle perturbations. ANN models were initially experimented 
in its simplest form, called the Perceptron. 

2.1. Perceptron 

The mathematical formalization of a perceptron was proposed by 
McCulloch and Pitts in 1943 and implemented by Rosenblatt during the late 
1950’s (Rojas, 1996). The Perceptron was created to computationally 
represent a neuron. It is composed by a computational unit that receives 
information from the inputs [x1, x2, …, xn] and generates transformed 
information as the output [y]. Connections that link inputs to the 
computational unit are attributed a real-valued scalar, called weight. In 
order to simulate the synaptic strength, connection weights can be of either 
sign, corresponding to excitatory or inhibitory synapses. Once inputs reach 
the computational unit, two different operations are performed. First, the 
weighted information conveyed by each connection is (usually) summed. 
Second, this weighted sum is filtered by a function, called the activation 
function. In a single perceptron, this activation function was initially set to 
be a discontinuous step function, and later substituted by a continuous 
function, namely the sigmoid function. Nowadays, the only requirement of 
the activation function is that it is continuous and differentiable. Another 
weight, called bias, is associated with the computational unit, introducing a 
shift in the y-axis of the function. It is considered another input and 
attributed the value 1 (Figure 1). 

 

Figure 1 —Representation of a Perceptron with the step function as the activation 
function 



II. Theoretical Considerations for Simulating Cognitive Development 

45 

Soon after the development of the Perceptron model, it was proved that 
the inclusion of more than one unit was computationally possible and 
efficient for solving more complex problems, creating Artificial Neural 
Networks (ANN). A Perceptron network thus became a sequence of 
horizontally positioned activation functions, all receiving input information 
and transmitting it to the output Figure 2. Each unit configures a specific 
characteristic of the input set. This layer of computations is called the 
internal-layer, as it is located in between the input and the output layer. In 
these cases, biases were linked to each computational unit. 

 

Figure 2 — Representation of a Perceptron Network with more than one 
computational unit, with a sigmoid activation function 

2.2. Multi-Layer Networks 

A Multi-Layer network (MLN), or hidden-layer network, is simply an 
ANN composed of more than one internal-layer of computations. With 
hidden-layer networks, the implementation of hierarchical processing in 
connectionism began. With the growth in hierarchical structural complexity 
of ANN architectures, any non-linear function was proved to be accurately 
approximated. Nowadays, classical ANN’s are viewed as a cascade of 
activation functions that transform the input space into another space that 
is the problem solution. This cascade of activation functions imbeds the 
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network with a greater capability of distributed representation and results 
in more powerful learning capabilities. Importantly, connections between 
units form the composite function and are basilar to the learning capabilities 
of the model. The number of layers, the number of units per layer, and how 
units are connected form the network structure, topology, or architecture. 
Units can be all connected in a feedforward manner, from the input to 
output layer (Figure 3), only some units connected to each other, and/or 
having recurrent connections, which means that a unit is connected both to 
itself and to other units. Architectural issues assume a great importance in 
ANN, subtitling the denomination of this computational paradigm — 
connectionism. 

Yet, what seemed to be a good solution for optimizing neural networks 
with one or two hidden layers became inappropriate when dealing with 
networks with more layers of computation, necessary for solving more 
complex problems, mapped by highly varying functions (Erhan et al., 
2010). The increase of the number of layers led to poor generalization for 
representing some functions (Bengio, 2009), leading modelers to limit 
architectures to one or two hidden layers (Arnold et al., 2011), called 
shallow architectures. Shallow architectures are, then, assumed to be 
suitable only for learning relatively complex problems. 

 



II. Theoretical Considerations for Simulating Cognitive Development 

47 

 

Figure 3 — Representation of a Multi-Layer Feed-Forward Neural Network 

2.3. Modular Neural Networks 

Besides the problems in learning procedures faced with MLN, another 
downside was that many features of connectionist models could now be 
experimented and combined, resulting in an absurd number of possibilities 
for building a network for a given problem. Modular Neural Networks were 
employed to reduce the risk of a poor solution. Modular Neural Networks 
are composite structures of neural network models, in which each neural 
network is a module of the global system and works as an elementary unit 
(Figure 4). Also called Stacked Generalization procedures, this option is 
commonly used to overcome the limitations of individual component 
networks when there is insufficient training data, when the training data 
carries a lot of noise or when it is highly expected that the learning 
algorithm will not find the optimal solution (Dasaratha, 1996; Ting and 
Witten, 1999). Specifically, MNN were initially used as ensemble 
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techniques (Zhou et al., 2002), feature extraction techniques (Wang et al., 
1998), and multi-class classifiers (Anand et al., 1995). Moreover, the fact 
that different networks perform differently on different regions of the input 
space leads one to reasonably expect that a combination of models might 
be more suitable to learn a complex problem. 

 
Figure 4 — Representation of a Modular Neural Network 

2.4. Generative Architectures 

There are two types of generative architectures in neural networks. 
One type is associated with unsupervised problem-solving. It consists in 
creating a model that replicates the dataset such that it learns to represent 
its relevant features. In supervised learning, generative architectures are 
those neural network structures which topology is not fixed. Generative 
architectures of this kind allow for the structure of the system to depart from 
a minimal complexity structure that evolves as more complex problems are 
presented to it, so as to improve its performance. A known generative 
architecture of the second type (of interest to the present dissertation) is 
called cascade-correlation (Fahlman and Lebiere, 1990). Hidden units or 
pools of units are added sequentially. They are trained in parallel, not 
interfering with the active network. Whenever there is no more progress on 
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training of these candidates, the one with best correlation with the output is 
selected and becomes part of the active network. 

Generative architectures of this kind were developed to overcome 
some of the currently known limitations of neural network models, namely 
in what refers to the best topology. Namely, a cascade-correlation algorithm 
dispenses with guessing the size, depth, and connectivity pattern of the 
network in advance. Also, it builds deeper networks without slowing down 
the training time and improving accuracy (Fahlman and Lebiere, 1990; 
Shultz et al., 1994). 

2.5. Deep Architectures 

Deep architectures, the latest class of connectionist models, has been 
theoretically proved to achieve maximum flexibility and maximum stability 
in highly complex scenarios of perturbations. These architectures consist of 
multiple levels, or stacks, of distributed representations. In 2006, the 
solution to effective training strategies for deep architectures was found, 
using algorithms for training deep belief networks and stacked auto-
encoders (Erhan et al., 2010; Hinton et al., 2006; Hinton and Salakhutdinov, 
2006). It was proposed that using unsupervised learning “could be a way to 
naturally decompose the problem into sub-problems associated with 
different levels of abstraction” (Bengio, 2009). Each next stack is trained to 
encode the original problem in fewer features, where the inputs and targets 
of each stack are the outputs of the previous stack. This approach can be 
summarized as an unsupervised greedy layer-wise feature extraction 
followed by supervised fine-tuning, where the features of the input are 
learned with progressive degree of abstraction, moving the parameters of 
the network into the right direction and facilitating learning afterwards 
(Figure 5). 
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Figure 5 — Representation of a Stacked-auto-encoder 

2.6. Simulating Cognitive Information Processing in a 
Connectionist Model 

Learning in ANN consists of updating the connections weights that 
link units, including the biases, such that inputs are transformed in the 
desired outputs. This update of the weights during learning is possible due 
to the existence of a cost function, or error function, which indicates 
whether the transformation input-output is matching the desired one. The 
learning algorithm defines how the output error will impact the progressive 
change in connection weights, until it [the error] is decreased to its 
minimum, by applying a gradient descent technique. The hyper-parameters 
that set the learning algorithm and the network’s topology are two main 
factors for successful learning. Both are interdependent and the best choice 
also depends upon the quantity and quality of input data. These choices 
eventually allow the understanding of how information processing circuits 
operate. Thus, they can inform and validate models of cognition under 
testing. 

In fact, cognitive modeling is necessary to understand and validate our 
understanding of human-level intelligence (Cassimatis, 2012), however, 
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reproducing descriptions does not account for understanding the 
mechanisms serving behavior (Rijn et al., 2003). It is possible to collect 
data about human cognition, build fine models that fit the data and 
accurately predict new observations — it is possible to do all this without 
actually helping to understand human intelligence (Cassimatis, 2012). This 
risk is particularly salient when simulating processes with connectionist 
models. If connectionist models are composed of a sufficient number of 
inter-connected units and a sufficient number of training cases, they become 
universal mappers. This means that inputs can always and accurately be 
transformed into the desired outputs. Hence, there is the risk that a 
connectionist simulation reproduces the set of collected data, while lacking 
the capacity to reproduce the set of procedures going on at a biological 
level. For this reason, understanding how the human brain embodies a 
solution to the intelligence problem is (…) in part a cognitive modeling 
problem (Cassimatis, 2012), and defining a methodology that allows the 
drawing of parallelisms between hypothesized natural and resulting 
artificial systems is absolutely necessary. 

As has been briefly described, architectural and algorithmic 
modifications have been progressively introduced to increase the capability 
of the model to learn complex functions. However, first, these 
modifications aimed at overcoming the difficulty of solving highly complex 
problems, rather than the difficulty of allowing the system to go from 
simple to complex learning (hierarchical flexibility). Second, for a certain 
set of complexity problems, flexibility continued to be mostly 
operationalized as the ability of the system to generalize well to unseen 
cases, rather than the ability of the system to represent multiple functions 
and to switch among them with ease (horizontal flexibility). 

2.7. Flexibility, Stability, Learning and Development in 
Connectionist models 

In terms of horizontal flexibility, it is important to restate that, across 
these models, learning capabilities refer to learning within a constrained 
problem space. 
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The capability of networks to learn more than one function 
remained restricted. The lack of (horizontal) stability 
concerns precisely the difficulty of the network to protect 
previously acquired representations in the face of new, 
dissimilar information. 

The difficulty comes from the fact that as new inputs are given to the 
model during learning, old weights that were important for older 
information (older representations), are in risk of getting lost; they are not 
preserved. Forgetting is a problem very early identified in artificial learning 
models, where connectionist models are not an exception, called stability-
plasticity problem. It concerns the duality between the rapid learning about 
world phenomena (plasticity) and the stability of memory processes 
(stability) (Carpenter and Grossberg, 1988; McCloskey and Cohen, 1989). 
The terms catastrophic forgetting or catastrophic interference are the 
extreme manifestation of what has been previously identified (Goodfellow 
et al., 2015). Although the cognitive system also exhibits forgetting of many 
older tasks that do not see a continuity in the subject’s experience, this 
forgetting is not catastrophic and depends upon a variety of factors that go 
way beyond the mere presentation of a new task (McClelland et al., 1995). 
This problem has been addressed by several authors without a single 
conclusion being reached (French, 1999; Goodfellow et al., 2015; Herd et 
al., 2014; McClelland et al., 1995; Seipone and Bullinaria, 2005). 

In terms of hierarchical flexibility, which means learning in a 
developmental way, it has been somewhat disregarded in connectionist 
models, especially after the implementation of deep learning approaches. 
Only a few works were conducted, in which the previous difficulty remains: 
simpler, less complex representations are in risk of getting lost as 
increasingly complex representations are formed. 

But why is it important to ascribe developmental abilities to a 
system instead of building it already complex? 

First, development of learning abilities is intrinsically natural. 
Maturational changes enable conditions which allow learning to be most 
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effective (Dawson-Tunik et al., 2005; Elman, 1993). In terms of simulations 
with neural networks, it has been shown that a complex task is best learned 
when the network starts with fewer components (Fahlman and Lebiere, 
1990; Seipone and Bullinaria, 2005), which induce severe memory 
limitations and restricted access to initial inputs (Elman, 1993). It has also 
been shown that solving a task in a step-wise hierarchical manner allows 
for decreasing the cost of learning (Mengistu et al., 2016). To date, 
generative architectures have best simulated learning in a developmental 
way. These architectures are also able to coordinate the continuous nature 
of learning with the discontinuous nature of development. However, more 
complex structures substitute less complex structures. This is the same as 
saying that more complex stages substitute less complex stages of 
information processing, impeding the model to reactivate less complex 
information processing patterns as inputs get, eventually, less complex. It 
seems that the only way to ascribe hierarchical flexibility to a connectionist 
model is to find a way to coordinate learning and development. 

Given the discriminative characteristics of learning and development 
identified in the present work, 

implementing learning and development in a connectionist 
model implies that 1) it is built in stacks, where each stack 
contains a network structure and solves more complex 
problems than the previous stack, 2) that each stack is built 
out of the previous stack, in a generative way, and 3) that each 
lower-order stack is always protected and available, if 
necessary. 

A good example is one concerning the problem of date-calculation. 
This work began with the study of calculating dates with a distance of 
months or even years, which begins by calculating dates with distances of 
days. A three-stack hierarchical algorithm was developed that consisted of 
the successive application of three simple rules. The second rule derived 
from the first and the third from the second. It was concluded that the “only 
way to apply more than one rule would be if rules could somehow be 
combined into a single, more complex rule, which could be executed in a 
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single step. In a multi-layered net, successive steps of the algorithm could 
be performed by successive layers of the net”. It resulted that all three stages 
of the network learned relatively quickly, and performance was very good 
(Norris, 1990). However, this was a rudimentary attempt because lower-
order rules were manually protected from the interference of higher-order 
rules (hierarchical stability), and higher order patterns were not developed 
on the basis of lower-order patterns. Another good, even better, example 
was conducted with natural language learning, a few years later. It was 
found that when the network was allowed to grow in size, changing its 
structure and incrementally being presented an increased portion of the 
input set, it was able to learn; otherwise, if the entire input set was given at 
once to a static network structure, it would fail to learn (Elman, 1993). In 
this work, the importance of building a developing architecture is 
highlighted, and one in which higher-order structures are built out of lower 
order ones. Yet, the formation of increasingly complex representations 
depended upon the size of the input set. As has been stated in the present 
work, a universal sequence of development has been identified across 
domains of knowledge and across individuals of the same species. This 
means that there is a universal factor triggering the generation of a higher-
order structure, which is not (only) the size of the input set. 

This factor needs to be clearly identified and implemented as 
the trigger for stack transition in a developing generative 
connectionist model, such that the model is not totally 
dependent upon the inputs it receives. Besides, this must be 
done in a way that lower-order stacks are protected from the 
emergence of higher-order stacks. 

3. Summary 

The present section allowed for extracting some grounding concepts 
of AI, namely, flexibility, stability, learning, development, and complexity, 
as well as for coordinating them in a single framework with biological and 
computational plausibility. 
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The duets flexibility/stability and learning/development are basilar and 
intertwined processes of human cognition. The duet learning/development 
was used to propose different conceptualizations of flexibility and stability, 
discriminating them as horizontal or hierarchical. Horizontal flexibility and 
stability are intrinsic to the learning process, in which several 
representations (functions) are formed as experience with the environment 
(inputs) proceeds. Learning a representation is a continuous and substitutive 
process. Learning several representations of dissimilar inputs implies that 
previously acquired representations are memorized and protected from 
onwards interference. Differently, hierarchical flexibility and stability are 
intrinsic to the developmental process and coincide with the formation of 
increasingly complex representations, as development occurs. Developing 
from simple to complex representations is a discontinuous and cumulative 
process. Development implies the existence of stages of performance, or 
stages of development, and implies that as a new stage is formed, previous 
stages are not eliminated. 

In machine learning, flexibility and stability are seen as 
complementary processes, measured as the variance and bias of the model. 
Implementing flexibility and stability in an artificial model, in the sense of 
forming several stable representations, has been generally problematic due 
to how representations are formed — in a substitutive manner. The 
difficulty is always to protect previously acquired representations in the 
face of new ones. The usual solution for “coordinating” flexibility and 
stability has been to constrain the problem space that a machine is intended 
to solve — the stability is manually set, while the system is allowed to 
flexibly learn within those manually set boundaries. Also, flexibility and 
stability have been conceived irrespectively of their horizontal or 
hierarchical nature. A segmentation, clarification, and inter-relation of 
these concepts, as was here provided, hopefully allows for likely 
segmenting these processes in an artificial learning model, facilitating their 
simulation. 

In the particular case of connectionist models, structural and 
algorithmic modifications have been introduced to increase the capability 
of these models to learn highly complex functions. However, because 
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learning corresponds to the update of a continuous function, the 
implementation of horizontal and hierarchical flexibility and stability 
remains problematic. Furthermore, hierarchical flexibility imposes a 
second difficulty — the coordination of the continuous nature of learning 
and the discontinuous nature of development. 

4. What Next 

The “Foundation of a Hierarchical Stacked Neural Networks model for 
Simulating Cognitive Development” highlights the importance (and the 
difficulty) of bringing the notion of development to a connectionist model. 
It is due to the existence of developmental mechanisms that human 
cognition achieved the complexity it presents today. Development is at the 
basis of solving complex problems, by forming increasingly complex 
representations as maturation occurs. Increasing complexity is, thus, at the 
basis of increasing the adaptation potential. Hence, in order to maximize 
the similitude between human cognition and artificial models, one should 
not only tap the flexibility/stability problem in forming many 
representations, or solving many tasks, but also address the 
flexibility/stability problem in forming increasingly complex 
representations. This means to adopt a longitudinal perspective-taking of 
intelligence and adaptation, simulating the development of cognitive 
abilities, which is the focus of the present dissertation. The idea is to build 
an algorithm that not only learns, but one that also develops. According to 
the view here defended, horizontal and hierarchical flexibility (and 
stability) comprise a different operationalization and different, non-
exclusive, network architectural approaches. Hierarchical flexibility 
implies a Stacked Network architecture, where each stack corresponds to a 
stage of development and operates partially independently from other 
stacks. 

Finally, the idea conveyed in this section about the existence of a 
structural, invariant, and systematic factor underlying flexibility, stability, 
learning, and development needs to be clarified and accounted in the design 
of such an artificial system. 
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The next step is, thus, to clarify this developmental factor and 
to understand how the properties of one system (natural) can 
be transduced into the properties of the other (artificial), 
particularly in regards to developmental abilities, such that a 
robust cross-disciplinary bridge is constructed. 
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Thanks to a growing trans-disciplinary culture, developmental 
psychological models have been serving computational models of cognitive 
development. This provides for artificial learning models to be built based 
on how humans process information and solve problems, which means 
developmentally, throughout well-defined stages of performance. At each 
stage, individuals are observed to solve problems that they were not able to 
solve at the immediately preceding stage. A more adequate simulation of 
cognitive development depends partly upon answering a number of 
questions. The present section responds to some of them and provides ideas 
for future work to respond to the remaining ones. For instance, which 
properties of problems interact with individuals’ cognitive abilities, such 
that some problems are solved before others? How should these properties 
be better transduced into an artificial learning model? What are the 
properties of artificial learning models that might interfere with the 
simulated developmental factor? What examples should be borrowed from 
developmental psychology and which underlying theories should be used 
in order to delineate possible answers and guide simulation experiments?  

This section starts out with the selection and description of a 
commonly used developmental test for simulation of developmental 
cognitive abilities — the balance scale test. Next, a review of the behavior 
assessment rationale (upon which existing simulations are based) is 
conducted, highlighting some of its strengths and weaknesses. Similarly, 
the strengths and weaknesses of connectionist simulations is evaluated. It 
is shown that simulations mimic both the strengths and the weaknesses of 
the behavior assessment rationale they are based upon, which stresses the 
importance of questioning the theoretical background. 

What are the observed properties of problems that interact 
with an individual’s cognitive abilities? How can they be 
better integrated with the properties of an artificial learning 
system? 

Finally, an alternative theory is introduced, the Model of Hierarchical 
Complexity (MHC), the last theoretical update of the assessment method 
proposed for the balance scale test. It is shown that the MHC covers 
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previous limitations, highlighting what needs to be further clarified. The 
major contribution of the MHC is that it is a general stage theory that a 
priori measures the difficulty of problems, ascribing a structural growth to 
the process of development. It allows for identifying a universal, structural 
and systematic developmental factor. Clarifications refer to both the 
developmental cognitive properties underlying problem-solving and the 
transduction of cognitive properties into algorithmic procedures. 

1. The Balance Scale Test 

The balance scale test is a developmental test that serves to assess the 
developmental stage at which children perform, from 5 to 17 years old 
(Commons et al., 2008; Klahr and Siegler, 1978). This test was primarily 
developed by Piaget (Inhelder and Piaget, 1958), later revised by Siegler 
(Klahr and Siegler, 1978) and even later revised by Commons and 
colleagues (Dawson-Tunik et al., 2010), using the Model of Hierarchical 
Complexity (Commons and Pekker, 2008). It consists of presenting 
children a beam with a hinge in the middle, and weights on both sides. By 
changing the weights and their distance from the center, new problem 
configurations are created. There are also two supporting blocks on each 
side, under the arms. Different behavioral assessment methodologies 
(Commons et al., 1995; Inhelder and Piaget, 1958; Klahr and Siegler, 1978) 
have been proposed to describe and explain the developmental phases 
through which children pass as they solve the balance scale test. In the 
original version of the test (Inhelder and Piaget, 1958), exploratory and 
verbal behaviors of children were observed, registered, and analyzed by 
means of an experimenter-biased procedure. Siegler (Klahr and Siegler, 
1978) introduced a standardized test procedure and assessment 
methodology, moving towards an information processing perspective — 
the Rule Assessment Methodology (RAM).  

In Siegler’s version of the test, at each new configuration, children are 
required to predict the state of the scale if the supporting blocks were 
removed from below. The three possibilities of responses are falling left, 
balancing, or falling right. Children are observed to go through the 
following sequence of response patterns: younger children are observed to 
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successfully predict those problems where only weight or distance vary on 
both sides; later, they are able to solve some conflict problems, where 
weight and distance vary on both sides, but not all problems; at last, they 
become able to solve the full range of conflict problems. The last set of 
conflict problems is called the set of Torque Difference problems, where 
children must multiply weight by distance on each side to correctly predict 
the side tipping down. The first set of conflict problems is assumed to be 
easier for two possible reasons: one is that Torque Differences are greater, 
which allows for the discrimination of the sides based on perceptive skills 
(Ferretti and Butterfield, 1986; Jasen and Maas, 2001; Schapiro and 
McClelland, 2009); the other is that this subset of problems is correctly 
solved by using the summing operation, instead of multiplication (Dawson-
Tunik et al., 2010). 

After the RAM has been proposed, the Balance Scale Test received 
growing attention from AI scientists, who used it to reproduce 
developmental cognition in artificial learning models. Simulations of the 
Balance Scale Test have been conducted using symbolic models (Schapiro 
and McClelland, 2009), and connectionist models (Dandurand and Shultz, 
2009; Dawson and Zimmerman, 2003; McClelland, 1995, 1995, 1989; 
Reyes et al., 1997, 1997; Schapiro and McClelland, 2009; Shultz et al., 
1994; Shultz and Schmidt, 1991; Zimmerman, 1999). Symbolic models are 
based on the coordination of computational rules operationalized by if-then 
statements. A correct coordination of rules leads to the generation of correct 
outputs. The more rules that are coordinated, the more complex responses 
the model generates. Connectionist models are based on connecting and 
quantifying data features that flow from input units to outputs units. They 
are assumed to capture the continuous nature of learning and gradual 
increase of performance accuracy (McClelland, 1995, 1989; Zimmerman, 
1999) and they also capture developmental spurts, associated with 
qualitative changes in performance (McClelland, 1995; Shultz et al., 1994). 
The goal of simulations is to build an artificial learning model that learns to 
solve the problem as humans do, throughout the same sequence of 
observed/assessed performance stages. 
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1.1. Rule Assessment Methodology (RAM) 

Siegler’s configurations correspond to balance scale problems, 
which are defined according to their “type” (Siegler and Chen, 2002). In 
balance problems, the same weight is placed at the same distance. In weight 
problems, one side of the scale overweighs the other, with weights placed 
at the same distance from the fulcrum. In distance problems, the same 
weight is placed at different distances on each side. In conflict-weight 
problems, different weights are placed at different distances, and the side 
tipping down is that with greater weight, not the one with greater distance. 
Conflict-distance are opposite to conflict-weight problems. The side with 
greater distance tips down. Finally, in conflict-balance problems, although 
weight and distance differ in both sides, the scale balances (Figure 6). 

 

Figure 6 — Example of Siegler’s Configurations 

Based on these six problem types, Siegler defined a set of four rules 
(Table 1) that describe problem-solving strategies. These rules are assumed 
to require increasing cognitive capabilities, having correspondence with 
domain-specific developmental stages. By classifying human behavior 
according to one of four rules, Siegler’s data showed that human’s cognitive 
abilities progress along discrete stages. For instance, during the second 
transition, behavior is modeled by a U-shaped learning curve. This means 
that when children take note of distance information together with weight 
information, their performance drops to chance level (Dawson-Tunik et al., 
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2005; Shultz et al., 1994; Zimmerman, 1999). This reflects that children are 
revising their current knowledge and updating it in order to solve different, 
more difficult problems. 

Table 1 — Siegler’s rules / stages 

Rule Mental Strategy Balance-Scale Problem 

I Considers weight only 
Balance problems 
Weight problems 

Conflict-weight problems 

II 
Considers distance as long as 

weight is the same 
Distance problems 

III 

Considers weight and 
distance as long as torque 

difference is large; otherwise, 
considers weight 

Conflict-weight problems 
Conflict-distance 

problems 

IV 
Considers weight and 

distance and calculates torque 
difference by multiplying 

Conflict-Balance 
problems 

 

RAM relies on a comparison between the actual and the expected 
response to each type of balance scale problem, as designated by rules I, II, 
III, and IV. When 80% of the actual responses correspond to the expected, 
then, the individual is classified in accordance to that rule (Klahr and 
Siegler, 1978). The definition of these rules was the fundamental aspect of 
Siegler’s approach. It made RAM a standardized and pioneering method 
that integrated Piagetian ideas into an information-processing framework 
(Zimmerman, 1999), providing for a computational basis of human 
cognition. 

1.2. Limitations of the Rule Assessment Methodology 

Some limitations are attached to this assessment method. Namely, 
when the actual responses conform to two rules with the same frequency or 
when the actual responses are less frequent than 80%, the behavior is 
unclassifiable (Siegler and Chen, 2002). In these cases, the identification of 
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the maturation of reasoning abilities is problematic. In every other 
successfully classified case, there is the problem of an arbitrary threshold 
criterion (80%) (Klahr and Siegler, 1978; Maas et al., 2007; Zimmerman, 
1999). This might prove statistically significant in some cases and not 
significant in others. A statistical method was developed that overcomes 
this classification problem. It is called Latent Class Analysis (LCA) and 
uses factor analysis for classifying behavior based on latent variables rather 
than on overt categorizations (Jasen and Maas, 1997; Maas et al., 2007). 

Furthermore, Siegler’s assessment methodology has been criticized 
because it lacks a measure of goodness of fit (Wilkening and Anderson, 
1982), criteria for classifying the type of errors, and the consideration of the 
torque difference effect (TD) in classifying performance (Zimmerman, 
1999). The TD is a phenomenon linked to information saliency effects 
(Ferretti and Butterfield, 1986). Larger TD are easier to solve than smaller 
ones. Other critics refer to test properties and task demands, arguing against 
the underestimation children’s knowledge and the incorrect classification 
of their mental strategies (Zimmerman, 1999). 

Besides these limitations, the present work adds that the major 
limitation of Siegler’s rules relies on the fact that they are categorical, 
mentalistic, and task-specific, failing to measure the increase in complexity 
that characterizes the maturation of reasoning abilities. Different 
configurations of the balance scale are assumed to be more difficult than 
others because children appear to solve them in different timeframes, 
measured in years (Klahr and Siegler, 1978). 

However, a priori difficulty is not measured. The absence of 
an a priori difficulty measurement leads to three 
consequences. 

First, although it is argued that rules encompass general aspects that 
hold across similar problems (Siegler and Chen, 2002), they result from an 
analysis of human behavior specifically applied to the Balance Scale test. 
This makes them contaminated by the nature of the problem, task-specific, 
with limited scope and open to interpretations (Zimmerman, 1999). 



II. Theoretical Considerations for Simulating Cognitive Development 

67 

Second, rules seem to face some inconsistencies. For instance, 
conflict-weight problems are actually solvable by children who apply rules 
I, III, and/or IV, as only weight needs to be considered. Also, non-
classifiable performance is a possibility when two rules are used with the 
same probability. This points torwards the effect of transition factors in 
development, which is of the utmost importance, but not covered by the 
Siegler model. 

Third, and the most relevant, it has been observed that a U-shaped 
curve only occurs in the transition from distance-problems to conflict-
weight problems (from rule II to rule III). Given that a U-shaped curve 
characterizes all developmental jumps (Dawson-Tunik et al., 2005), this 
observation questions whether there is actually an increase in difficulty in 
the remaining rule transitions. It also questions whether the properties of 
problems accounting for a developmental transition have been well defined. 
For instance, does the transition between rules I and II reflect different 
stages of development? And what about the transition between rule III to 
rule IV? 

In terms of the properties underlying developmental transitions, 
further evidence indicates that Siegler’s rules do not allow for the 
discrimination of the factors which explain why problems are solved in 
different timeframes throughout development. For instance, the TD effect 
has been assumed to rely on perceptual capabilities (Jasen and Maas, 2001; 
Schapiro and McClelland, 2009), but is only fully accounted as operative 
capabilities are matured, such as the use of multiplication. Catastrophe flag 
theory applied to the balance scale test (Jasen and Maas, 2001) relies 
predominantly on the perceptive aspects of the problem and on the training 
the individual has on certain configurations. With training, the individual 
shows a gradual tendency to attend and integrate different properties of the 
problem. Yet, at some point, when the use of perceptual abilities is no 
longer adaptive, the use of multiplication is required. 

In sum, the major drawbacks of Siegler’s assessment methodology 
derive from the fact that it categorically classifies actual human 
performance on the specific tasks of the Balance Scale test, instead of 
measuring it a priori. Consequently, RAM is framed within a specific 
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problem type, it is context dependent, and cannot be abstracted for 
measuring human development in other problems/domains. The specificity 
of such approach will necessarily prove insufficient for simulating the 
structural dynamics of cognitive developmental phenomena. Second, RAM 
does not allow for the identification of the factors that underlie cognitive 
development, neither on the balance scale test nor on any other 
developmental domain. If the factors underlying developmental transitions 
are unclear, so are the factors underlying stable stage performance. Both are 
necessary when a simulation of stages and stage transitions is aimed at. 

1.3. Connectionist Simulations of the Balance Scale Behavior 
Following the Rule Assessment Methodology 

Although symbolic and connectionist models have been used for 
simulating the balance scale test, only connectionist models will be 
reviewed for two main reasons. First, connectionist models are parallel 
processors of information by nature, which makes them a fair representation 
of the parallel structure of information processing composing the brain 
(McClelland, 1995). The structure of the network can become a great source 
of understanding of natural networks for information processing. Second, 
connectionist models can capture the magnitude of expression of a certain 
feature or input dimension. Inputs are weighted sequentially throughout the 
network, making these models more suitable for incorporating information 
saliency effects, such as the TD effect, rather than relying solely on the 
coordination of rules (Shultz et al., 1994; Zimmerman, 1999). Also, weights 
are coefficients of a composite continuous function that results from the 
connections between computational units. Weights are updated by a 
gradient descent technique, which favors the representation of the 
continuous nature of learning. 

Apart from the current dissertation, existing simulations of the balance 
scale test are based on RAM. They were initiated by McClelland 
(McClelland, 1989) under the Parallel Information Processing project, to 
which the works of McClelland (McClelland, 1995), Shultz and colleagues 
(Dandurand and Shultz, 2009; Shultz et al., 1995, 1994; Shultz and 
Schmidt, 1991), and Zimmerman (Dawson and Zimmerman, 2003; 
Zimmerman, 1999; Zimmerman and Croker, 2014) followed. These works 
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were conducted based on two main manipulations – architectural and 
environmental. The architectural manipulation refers to the structure of the 
network. Fully and not-fully feed-forward networks and cascade-
correlation networks were tested. The environmental manipulation refers to 
a training bias that over represented some input patterns, namely weight 
problems, such that contextual contingencies were simulated. In these 
experiments, the contextual bias was aimed at replicating the increased 
experience of children with weight information over distance information. 
These simulations were driven with three objectives: to simulate 1) rule-
like behavior, 2) U-shaped performance on conflict-weight problems, and 
3) the TD effect. 

In the first experiment (McClelland, 1989), the network topology 
consisted of a not-fully connected feed-forward topology, reflecting the 
segregation between weight and distance information. McClelland 
restricted the connections between input and the two internal units, in that 
weight information went to one unit and distance information went to the 
other. Weight and distance information was combined only between the 
internal and the output units. Results showed that the architectural condition 
turned out to be critical. From the perspective of a coarse-grained analysis, 
the model captured the expected developmental progression of children. 
Yet, rule IV was barely attained. Furthermore, McClelland discussed the 
continuous versus discrete nature of development, following an approach 
that was supportive of the idea of continuous developmental changes. 

In later experiments, McClelland (McClelland, 1995) tested the 
inclusion of the TD effect (Ferretti and Butterfield, 1986) and questioned 
the previous assumption of training bias. The test set and learning criteria 
were modified to accommodate a broader range of possible actions and 
possibly allow for the TD effect to become pronounced. As a result, 
although the correspondence between the new model and the proposal of a 
TD effect was not perfect, it was close enough to suggest a similarity pattern 
between the model and children’s behavior. In terms of eliminating the 
contextual bias, inputs were represented in a different way. Distance cues 
were suggested to be more complex than weight cues, in that distance 
implies establishing a relation between the target (the balance weight) and 
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the fulcrum. Distance was, then, encoded as a relative position among 
objects: the position of weights on each side and the position of the fulcrum. 
With this representation, results demonstrated a clear advantage of weight 
over distance without the need of introducing a training bias. The 
suggestion for differential information processing was again confirmed, 
and the complexity of information processing was again taken into 
consideration. However, rule II performance, which encodes distance, was 
very unstable. 

By the same time, Shultz and colleagues (Shultz et al., 1994; Shultz 
and Schmidt, 1991) conducted an experiment in which they kept the 
environmental condition proposed by McClelland (McClelland, 1989), but 
employed a different topology. They simulated the balance scale 
phenomena with a cascade correlation (CC) algorithm. The CC is a 
generative architecture that adds hidden units to progressively suppress the 
total error. If the environmental bias was introduced, this generative 
approach was successful in accomplishing all three objectives: 1) stage-like 
performance, 2) U-shaped learning in conflict problems, and 3) the TD 
effect. The learning algorithm showed quantitative and gradual changes in 
performance, demonstrating the continuous nature of development. 
Simultaneously, the inclusion of hidden units provided for qualitative 
jumps, showing developmental discontinuities. This architecture was also 
shown to be less computationally complex and to learn more rapidly 
(Fahlman and Lebiere, 1990). However, without the environmental 
condition, the network would not learn rule I and rule II steps. It 
immediately jumped to rule III, not showing either stage-like behavior or 
U-shaped learning curve in conflict-weight problems. 

Furthermore, intuitive networks, identified as those which keep an 
architecture stable and only learn from examples, perform well on all 
problems requiring rules I, II, and III, but fail to accurately represent rule 
IV. The solution encountered that leads the network to use rule IV, while 
preserving rules I and II, has been to inject a torque function, by using a 
Function Based Cascade Correlation architecture (Dandurand and Shultz, 
2009), or to inject a new assimilation function — weighted product instead 
of weighted sum (Reyes et al., 1997). The assimilation function is the first 
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computation performed at the computational units: the function that 
agglomerates the weighted information destined to that unit. Usually, the 
assimilation function is weighted sum. The modification from sum to 
multiplication is basically a shortcut to make the network solving problems 
based on a new operation. Even if this solution is efficient, none of these 
works justify how intuitive networks develop to solve problems requiring 
rule IV. 

So far, balance scale simulations were focused on evaluating the 
progression of activation of hidden units, so as to infer how the network 
develops until it learns to classify all balance scale problems. Differently, 
Zimmerman’s work (Zimmerman, 1999) consisted of a detailed evaluation 
of the final behavior of a fully-connected feed-forward neural network, or 
of a fully-developed system that already solved all balance-scale problems. 
What mostly differentiates this work from the others is that the focus was 
placed on the activation patterns of internal units after the network has 
learnt all problems. The goal was to assess the structure of balance scale 
problems and re-appreciate Siegler’s rules. Zimmerman’s results show that 
distance and weight problems lay in the same problem space (hence, the 
usage of rules I and II), while conflict problems (rules III and IV) lay in a 
separated problem space. These results question whether weight and 
distance problems have different structural properties, but fail to show that 
the TD effect introduces different problem properties to deal with. 

Zimmerman’s experiments addressed as well the 
continuity/discontinuity of development, showing that the network solves 
the tasks via approximating an additive assimilation function. Tasks are 
characterized by the continuous properties of dimensions rather than by 
discrete or nominal characteristics. Nonetheless, problems are clearly 
clustered, which simultaneously suggests that stages are discrete. Finally, 
Zimmerman argued that, because a fully-connected network learned to 
solve all problems, the effect of a segregated topology remains 
undetermined. However, the experimentation with different topologies 
serves not to solve the problems, but to study how a connectionist structure 
encodes developmental properties in problem-solving. For this reason, what 
remains unknown is what is missing in existing connectionist approaches 
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such that the simulation of an apparently simple developmental problem 
has yet been clearly achieved and explained. 

1.4. Summary of existing simulations based on the Rule 
Assessment Methodology 

In sum, all models captured a developmental course from rules I to 
IV, except McClelland’s first work, which failed to attain rule IV 
performance. All captured a U-shaped learning curve in the transition from 
rule II to rule III, as expected. All captured the TD effect, except 
McClelland’s first work, which was not intended to do that. Therefore, all 
experiments mimicked the rationale they used to explain performance on 
the balance scale test and practically all fairly achieved the objectives they 
aimed at. 

Yet, 1) none questioned the absence of a U-shaped learning 
curve in the remaining transitions, namely from rule I to rule 
II and from rule III to rule IV; 2) none questioned the 
properties underlying the TD effect that made it so difficult to 
simulate and explain with artificial models; and 3) all required 
the introduction of a contextual bias such that rules I and II 
were reproduced. 

These facts stress the importance of re-examining which properties 
of problems are observed that interact with an individual’s cognitive 
abilities and how to better integrate these properties with the properties of 
an artificial learning system. 

In fact, a U-shaped curve is observed to characterize every stage 
transition (Dawson-Tunik et al., 2005). As the child encounters a new 
experience, the conflict between the old and the new needs to be balanced 
and resolved. This process creates disequilibrium, but constitutes the 
integration of new information, known as adaptation (Bartolotta and 
Shulman, 2013). Hence, it would be expected that such a curve would 
characterize the acquisition and use of every rule, from I to IV, which is not 
the case in Siegler’s observations. 
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The fact that a manipulation always had to be introduced in the training 
set so that the models could differentiate weight (rule I) and distance 
problems (rule II) (McClelland, 1995; Shultz et al., 1994; Shultz and 
Schmidt, 1991) calls attention to the task-specificity of these rules in 
contradistinction to the general structure of development. Rule I and Rule 
II had been distinguished because children solve weight problems before 
distance problems. However, Zimmerman showed that, structurally, these 
problems overlap (Zimmerman, 1999). This calls attention to distinguishing 
between properties of problems that interact with problem-solving abilities 
and experiential factors. If the goal is to capture the general developmental 
structure of problem-solving abilities, the details of problem-solving that 
depend on experience should deliberately not become the object of 
simulation. The dependency upon the contextual manipulation also 
indirectly shows that simulations do not yet capture the right developmental 
properties of problems, as modeled by the RAM. 

Consequently, because all models are fair simulations of the 
model they follow, it is fair to assume that these limitations 
should be revised, not by insistently changing parameters of 
the artificial models, but by revising the rationale that is used 
to build simulations upon. 

In regards to to Rule III and Rule IV, these have been considered to be 
part of the same problem space — conflict problems — but their difficulty 
is agreed to depend upon information saliency effects and the effect of 
training (Schapiro and McClelland, 2009). Oppositely, in existing 
simulations, rule IV problems have been solved by injecting a different 
operator (Dandurand and Shultz, 2009; Reyes et al., 1997), not by injecting 
a different method for evaluating the input set. Hence, no clear boundary 
between conflict problems and the TD effect has been delineated, neither 
has a method been proposed for identifying where the boundary can be 
defined. 

Given the above, an argument is laid out that an alternative rationale 
for assessing human developmental behavior is necessary. We argue in 
favor of a domain-general, mathematical, objective, non-mentalistic 
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approach that can bridge developmental psychology and computational 
learning. Domain-specific approaches advocate that growth and 
development in one domain forge growth and development of adjacent 
domains or skills (Bartolotta and Shulman, 2013). 

Yet, a domain-general approach grants the advantage of 
assessing development independently of the content, allowing 
for cross-context comparisons (Dawson et al., 2003). 

Cross-context comparisons are not only valuable for coordinating 
different fields of knowledge, but also for coordinating different 
methodological fields, as is the case of developmental psychology and 
computational cognition. A domain-general theory will allow for models of 
cognitive development to go beyond capturing the particularities of 
problems, to capture the structural properties that ascribe them different 
levels of difficulty, as perceived by individuals. Only then, will one be able 
1) to identify which factors of problems interact with an individual’s 
cognitive capacity and 2) to identify which properties of the artificial 
learning models interact with the phenomena we are trying to simulate. 

2. The Model of Hierarchical Complexity (MHC) 

The Model of Hierarchical Complexity (MHC) is a Post-Piagetian 
general stage theory of development (Commons and Pekker, 2008). It 
applies a measurement method — Rasch Analysis — that assesses the 
performance on tasks differing in hierarchical complexity. The Order of 
Hierarchical Complexity (OHC) of tasks is a unidimensional measure that 
predicts developmental cognitive capacity, with correlations above 95% 
(Giri et al., 2014). 
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The major contribution of the MHC was, in fact, the 
identification of the OHC as a one-dimensional predictor of 
cognitive capacity (Giri et al., 2014). This measure has been 
shown to be independent of the environmental circumstances 
of the testing procedure, as well as independent of the 
strategies that might be at use for solving problems (Giri et 
al., 2014). 

It only addresses the hierarchical complexity of the task and whether 
the individual correctly solves it or not. Each OHC has a one-to-one 
correspondence with stages of development. 17 orders are shown to form a 
one-way equally-spaced ordinal sequence (Commons et al., 2014b). The 
estimation of stages produced by the assessment method used in the MHC 
are clearly demarcated, with robust gaps between stages, and no overlap 
(Dawson et al., 2003). Recently published evidence points towards the 
biologically structural underpinnings of the OHC, which will be described 
with more detail ahead (Chapter II, Section D). 

Also, the MHC differentiates between horizontally and hierarchically 
more complex tasks. Horizontal complexity refers to the cognitive load of 
a given task, without changing its OHC. For instance, whether an individual 
sums 3 elements or 12 elements does not change the fact that the individual 
is summing, but the number of elements of the sum makes the task more 
demanding in terms of cognitive load (Duran et al., 2018). Differently, 
hierarchical complexity deals with the coordination of more than one 
action, or operation. For instance, the distributive law is hierarchically more 
complex than addition or multiplication alone (Commons and Pekker, 
2008). In other words, horizontal complexity refers to how an information 
set is organized in chain, by modules positioned horizontally, containing 
invariances. The invariance is due to the same order of hierarchical 
complexity of problems. Hierarchical complexity refers to how an 
information set is organized into hierarchical levels of modules. A higher-
order level emerges and abstracts the information contained across modules 
in the immediately lower-order level. Hence, while horizontal complexity 
might be represented by the number of modules in a level, hierarchical 
complexity is represented by the number of levels, or orders (Figure 7). 



B. Bridging Developmental Psychology and Computational Cognition 

76 

 

Figure 7 — Non-arbitrary coordination of lower order actions 

Each higher-order is characterized by the non-arbitrary coordination 
of lower-order task-actions, according to the following definitions and 
axioms: 

1. It is defined in terms of two or more lower-order task actions. In 
mathematical terms, this is the same as a set being formed out of 
elements. This creates the hierarchy. A = {a, b} a, b are “lower” 
than A and compose set A. A ≠ {A,...} A set cannot contain itself. 
This means that higher order tasks cannot be reduced to lower 
order ones. For example, postformal task actions cannot be 
reduced to formal ones; 

2. It organizes lower order task actions. In mathematics’ simplest 
terms, this is a relation on actions. The relations are order 
relations A = (a, b) = {a, {b}} an ordered pair; 

3. This organization is non-arbitrary. This means that there is a 
match between the model designated orders and the real-world 
orders. This can be written as: Not P(a,b), not all permutations 
are allowed. 

Based on this definition, the hierarchical complexity of tasks is 
analyzed by reducing the task to its lowest order components. The number 
of recursions necessary to find these components corresponds to its OHC. 
The highest order task that individuals can solve, at least once, indicates the 
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OHC of their reasoning abilities and, consequently, their stage of 
development (Commons and Pekker, 2008). 

2.1. The Model of Hierarchical Complexity applied to the 
Balance Scale Test 

Piagetian theories of human development, including Siegler’s, 
determined that children develop their reasoning abilities throughout four 
stages, until they attain the fourth and highest stage of formal operations 
(Inhelder and Piaget, 1958). Hence, the most difficult configuration of 
Piaget’s and Siegler’s versions of the test corresponds to a formal stage 
problem, where the torque effect needs to be solved by multiplying weight 
and distance on the same side. Differently, the MHC identified a sequence 
of 17 stages of development (Commons and Pekker, 2008). It showed that 
only humans attain the formal stage (Commons et al., 2014c), but individual 
differences indicate that humans can go up until stage 17 (Meta-Cross-
Paradigmatic) (Commons and Pekker, 2008). The MHC describes the four 
Piagetian stages as 11 finer-grained stages, and includes six Postformal 
stages of development. For instance, differently from Piaget’s theory, the 
MHC discriminates between abstract and formal reasoning. At the abstract 
stage (MHC’s stage 10), children become able to create variables out of a 
sequence of similar experiences, whereas at the formal stage (MHC’s stage 
11), they become able to operate with variables. At the forthcoming stages, 
if they are eventually attained, people are able to create and to operate with 
systems of variables (systematic stage 12), to create and operate with meta-
systems (meta-systematic stage 13), and so on until stage 17 (Commons, 
2008). The more fine-grained stages are described, the easier it becomes to 
reproduce stages of development as levels of information processing in an 
artificial system. The MHC has updated the balance scale test according to 
its extended developmental sequence, from the Primary (attained around 5 
or 6 years-old) to the Meta-Systematic stage (attained by only a few adults) 
(Commons et al., 1995). The ordering of problems composing the balance 
scale test is done according to its measurement system (Commons et al., 
2008), and the most difficult configuration of the MHC’s version 
corresponds to a meta-systematic information processing acquisition. 
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The test consists of a pen-and-pencil multiple choice instrument, in 
which individuals are asked to complete the information of figures so that 
the scale balances (Dawson-Tunik et al., 2010). The positions that should 
be completed are appropriately flagged, so as to remove any exploratory 
tendency (McFadden et al., 1987). Commons’ version also attempts to 
minimize the influence of the perceptual properties of the stimulus, 
fostering the use of logical deductions and simple arithmetic for problem 
solving (Figure 8). 

Figure 8 — Commons’ version of Balance Scale tasks (Dawson, Goodheart, 
Draney & Commons, 2010) 
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Importantly, what most discriminates the MHC assessment method 
from the previous is that the MHC determines balance scale configurations 
solely based on the operations necessary to solve each OHC problem (Table 
2). It is important to mention that the Primary configurations do not yet 
require an arithmetic operation, only the determination if number are equal 
or different on both sides. Meta-systematic configurations present some 
inconsistencies (not object of the present work), reason why these two 
configurations have been excluded from behavioral studies. 

Table 2 — Operations per OHC problem 

Problems Operation 

Concrete 
Count how many pegs exist on each side 

Count how many weights exist on each side 
Abstract Sum weight and distance on each side 
Formal Multiply weight by distance on each side 

Systematic Distributive law applied on each side 
 

2.2. The Model of Hierarchical Complexity as an Alternative 
Theory for Conducting Simulations of the Balance Scale 
Test 

The fact that RAM does not measure the difficulty, or OHC, of 
tasks has been pointed out as its major limitation, from which other 
limitations followed. The MHC is assumed to cover these limitations since 
it is based on a measurement theory, classifying behavior as a function of 
the measured complexity of tasks and actions. Because the order of 
complexity of a task-action is exclusive and exhaustively classifies 
behavior, it establishes a one-to-one correspondence between problems and 
behavior (Dawson-Tunik et al., 2010), which eliminates unclassifiable 
cases. 

Furthermore, the MHC, because it measures a task’s hierarchical 
complexity, shows that rules I and II pertain to same stage, as highlighted 
by human data and computational data (Zimmerman, 1999). This statement 
is based on the fact that both these rules only require the manipulation of 
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one variable alone, whether it is weight or distance. Because children are 
assumed to have more experience with weight information than with 
distance information (McClelland, 1995), it is expected that they solve 
weight problems before they solve distance problems. However, it does not 
change that fact that they can solve problems based on one variable. The 
most we can assume is that shifting attention to the presence of distance 
indicates that a transition to integrating both variables will soon occur. 

Moreover, the MHC discriminates conflict problems and conflict 
TD problems, showing that there is a clear transition between them. The 
model discriminates both stages based on the operation required to solve 
each subset of problems. Conflict additive problems are those where the 
sum of weight and distance one each side solves the problem correctly, 
whereas conflict multiplicative problems — or conflict TD problems — 
require that the child multiplies weight by distance on each side. Hence, the 
unclear boundary between the use of perceptual abilities and the use of 
operative abilities is eliminated. Table 3 summarizes Siegler’s and 
Commons’ differences concerning the definition of developmental actions, 
referencing rules and stages to the problem types identified by Siegler. 

Table 3 — Comparison between Siegler’s and Commons’ assessment 
methodology 

Balance Scale Problem Siegler’s Commons’ 
Balance I Primary 
Weight I Concrete 

Distance II Concrete 
Conflict-weight I, III or IV Abstract or Formal 

Conflict-distance III or IV Abstract or Formal 
Conflict-balance IV Formal 

 

In sum, because it a priori measures complexity, the MHC: 

• Measures a problem’s difficulty, which moves away from a 
mentalistic, task-specific perspective and allows for a one-to-one 
correspondence between correctly solved problems and stages; 
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• Explains the absence of a U-shaped curve in the transition between 
rule I and rule II;  

• Eliminates the blurred boundary between conflict problems and 
conflict TD problems, explaining why a U-shaped curve should exist 
in the transition between both subsets of problems; 
Yet, a few clarifications are needed in further simulations that 

eventually use the MHC as a theoretical reference. According to the MHC, 
orders of hierarchical complexity are equally spaced, forming a linear 
growth (Commons et al., 2014b). This has been interpreted as transitions 
across stages being equally difficult and requiring an equally deep jump. 
Yet, the model presents some unclearness as to which factor underlies 
hierarchical complexity. These factors are simultaneously attributed to: 

• Problem dimensions (or inputs): the MHC assumes that the number of 
problem dimensions grows exponentially with stage, 2o, where o is the 
order of hierarchical complexity (Commons and Pekker, 2008). This 
is due to the fact that progressively more elements are combined by 
means of the coordinating rule R. This implies that the growth in 
complexity is directly dependent upon the number of problem 
dimensions that are combined; 

• Operations performed: the MHC also states that the order of 
hierarchical complexity is measured by the number of recursions that 
the coordinating rule R must perform on a set of primary elements. 
This growth mechanism points towards the idea that operations 
conducted from one order to the next are what matter for defining 
hierarchical orders. Even though, the nature of the coordination rule R 
is not defined; 

• Actions generated (or outputs): in the particular case of the balance 
scale test, the transition from the formal to the systematic stage relies 
not only on the number of problem dimensions (number of inputs), but 
also on the number of solution dimensions (in the systematic problem 
subset, the individual is asked to find the value of two variables instead 
of only one value) (Dawson-Tunik et al., 2010). 
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3. What further is missing in Connectionist Simulations of the 
Balance Scale Test 

If the idea is to build a system that learns to solve-problems in a 
developmental way, the concepts of learning and development should be 
clearly distinguished. This will also allow for distinguishing between 
horizontal and hierarchical flexibility/stability, respectively. The concepts 
of difficulty and problem complexity should also be defined, both in terms 
of developmental psychology and in terms of computational learning. 

3.1. Learning and Development 

Learning, as a function of experience, concerns the acquisition of 
adaptive behavioral patterns, when triggering stimuli are presented. 
Learning can be seen as the optimal linking between patterns of perception 
and patterns of response. As similar stimuli are repeatedly presented, 
learning consists in making fewer errors as repetitions occur. Stimulus 
similarity is another caveat, as it depends not only on the absolute properties 
of stimuli, but also on how these properties are captured and operated. 
Anyway, as similar stimuli are presented, previous unsuccessful responses 
are substituted by successful ones. Learning is, then, a substitutive and 
continuous process. 

Three major variables have been shown to account for the major 
variance in learning, namely the delay between stimulus, action and reward, 
the amount of reward, and the internal drive of the organism to value the 
reward (Commons and Liu, 2017). The characteristics of the task, the 
circumstances surrounding its presentation, and the circumstances of the 
individual who is solving the task also impact learning and performance 
(Duran et al., 2018). Learning modelers thrive on explaining and modeling 
how these variables interact and ultimately how they account for 
understanding and predicting learning abilities. However, while these 
factors explain the acquisition of a certain set of problem-solving skills, 
they are not sufficient to explain how organisms form many sets of problem 
solving skills, neither how organisms evolve from performing simple 
actions to more complex actions, as a result of maturation. 
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In the connectionist framework, the goal is to decrease the error as 
similar inputs are presented, such that the output generated by the model 
matches the desired output (Rojas, 1996). Learning is represented by an 
iterative weight update, in which weights change over time and substitute 
old, non-adaptive ones. 

During this process, as training inputs are fed to the system, 
the system goes from failing to succeeding. This might 
constitute a confusing aspect between learning and 
development in connectionist models, and other models in 
general. 

Specifically, development implies that new patterns of perception and 
corresponding patterns of action emerge, without substituting for old ones. 
The Model of Hierarchical Complexity (MHC) introduces an important 
discrimination between horizontal and hierarchical complexity, which 
allows for discriminating learning and developmental processes, 
respectively. Horizontal complexity of a task refers to how many elements 
in chain compose the task, increasing its load. The horizontal complexity 
of the task might make it more effortful to solve, but the difficulty of its 
operations does not change. Differently, the hierarchical complexity of a 
task corresponds to it’s a priori difficulty (Commons and Pekker, 2008). 

Developmental modelers offer models that describe how these new 
patterns emerge and progress by stages, or plateaus, in a sequential manner 
(Dawson et al., 2003). Even in the presence of new patterns, or stages, the 
organism maintains the ability to move down to more elementary levels of 
information processing and performance, if the context so requires. 
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Hence, development is cumulative and discontinuous, 
imbedding the capacity to move up to complex levels, as well 
as the “capacity to move down to elementary levels, which 
provides enormous flexibility for intelligent adaptation” 
(Fischer, 2008). 

Simulating cognitive development in connectionist models has been 
most closely achieved by generative architectures, such as the CC algorithm 
applied to problem-solving in the balance scale simulations (Dandurand 
and Shultz, 2009; Fahlman and Lebiere, 1990; Shultz et al., 1994). In 
general, generative architectures allow for the structure of the model to 
grow as the problem becomes more demanding, ascribing more complex 
information processing capabilities to the artificial system. Also, generative 
architectures allow for conciliating the continuous nature of learning and 
the discontinuous nature of development (Dandurand and Shultz, 2009; 
Shultz et al., 1995, 1994). 

Yet, they do not allow for the system to move down to more 
elementary levels of information processing, as the new added 
elements (either units or connections) do not deactivate as 
simpler problems are presented. 

This is the reason why the generative concept and procedure, in this 
perspective, should be revised. 

3.2. Complexity in Developmental Models and Connectionist 
Models 

So far, current simulations of the balance scale test are based on an 
assessment method that lies upon the notion that cognition is an information 
processing system. The goal of current simulations is to reproduce what is 
behaviorally observed — some balance scale problems are solved before 
others. The same goal is present in every attempt to simulate developmental 
problem-solving: simpler problems should be learned before more complex 
ones. 
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Yet, deducing that a reproduction of what is observed from 
the outside consequently reproduces what is ongoing inside is 
fallible. 

Reproducing descriptions does not account for understanding the 
mechanisms serving behavior (Rijn et al., 2003). This is why modelers 
should avoid using mentalistic approaches, which make rules explicit and 
fundamental for problem-solving. 

Before aiming at building a system that solves problems in a certain 
sequence, the goal should be to understand how a connectionist model 
represents developmental properties of problems, namely hierarchical 
complexity shown to apply to all domains of knowledge. If a transduction 
of problem-solving abilities is aimed at, then, modelers should concentrate 
on ways to conciliate the properties of developmental problems with the 
properties of artificial systems themselves (Elman, 1993), and allow for 
some room to the system itself finding the way to represent what it needs 
to represent. Connectionist models are the models of reference for such a 
task, as they are distributed representation models par excellence. 

4. What Next 

In order to represent the OHC, it is of the utmost importance to 
coordinate the continuous and substitutive nature of learning with the 
discontinuous and cumulative nature of development. This can be achieved 
by a generative architecture. A generative architecture allows for the 
emergence of higher-order connectionist patterns that solve more complex 
problems. An important feature of emergent patterns is that they will always 
correspond to U-shaped performance curves, where learning is taking 
place. At each new pattern, learning of the new components begins from 
scratch. 

The drawback is that OHC has been attributed by the MHC to the 
number of input dimensions, type of operations, and output generation. This 
property of problems (their complexity) needs to be further clarified in 
interaction with the properties of connectionist models, namely inputs, 
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structure, and type of desired outputs. In methodological terms, emergent 
connectionist structures should rely upon experiments that search for a 
compromise between the properties of the natural developing system and 
the properties of artificial learning systems. Another problem is how does 
the transition from one OHC to the next is processed. 

The next step is, then, to understand how an artificial learning 
model represents the OHC of the problems to solve and 
operations to conduct, and how does a transition between 
adjacent orders occurs. 
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The simulation results exposed in this section has been orally 
presented at the 51st Society for Mathematical Psychology 
&16th International Conference on Cognitive Modelling, July 2018, by 
Sofia Leite and Pedro Pereira Rodrigues, entitled as “Simulating 
Developmental Cognition: Learning by Order of Complexity in Modular 
Neural Networks” 

 

Developmental psychology has increasingly been taken into 
consideration in the design of algorithms that aim to learn in a 
developmental way. According to stage theories in developmental 
psychology, individuals improve and increase their problem-solving 
abilities as they progress through what have been called stages of 
development. 

A stage is characterized by performance invariance, whereas 
stage transition is characterized by unstable performance, due 
to the alternation between previous and emergent problem-
solving capabilities (Dawson et al., 2003). 

As mentioned, the Model of Hierarchical Complexity (MHC) 
(Commons and Pekker, 2008) is a developmental general stage theory of 
human behavior that postulates that stages of development are 
characterized by an Order of Hierarchical Complexity (OHC). The higher 
the OHC (or stage), the more hierarchically complex problems individuals 
can solve. However, in what concerns simulations of stages of 
development, it is yet to be determined how a connectionist model 
represents successive OHC, as the OHC has been unclearly attributed to the 
number of input dimensions, type of performed operations, and type and 
number of generated outputs. 
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In terms of stage transitions, although developmental theories 
(Case, 1987; Demetriou and Valanides, 1998; Fischer, 1980), 
including the MHC, do not clarify the mechanism in detail, it 
is postulated that “lower-order actions become the objects of 
higher-order actions” 

where actions are a computational synonym of outputs. This 
mechanism is called Hierarchical Integration (HI), or Hierarchical 
Organization of Information. The present experiment is a preliminary 
simulation that aims to test the validity of the mechanism of HI for stage 
transition, using Modular Neural Networks (MNN). The following 
subsection briefly justifies why MNN are the most suitable connectionist 
architectures to use in the present case. Afterwards, the hypothesis on the 
validity of hierarchical integration is laid out. 

1. Modular Neural Networks 

Modular Neural Networks are composite structures of neural network 
models, in which each neural network is a module of the global system and 
works as an elementary unit. In these structures, the first stack is composed 
of several neural network classifiers operating independently and in 
parallel. The second stack weights the outputs of each of the previous 
models to produce a second-order output (Ting and Witten, 1999). MNN 
were chosen for the present simulation due to 1) the isomorphism between 
a MNN global structure and the structure of modules that represent 
hierarchical integration (Figure 4), and 2) the fact that HI postulates that 
lower-order outputs feed networks at higher-order stacks. MNN for 
hierarchical processing prevents the global model’s complexity from 
growing with the complexity of the problem, allows data fusion from 
different sources, and allows for scalability (Rojas, 1996). 

This option is commonly used to overcome the limitations of 
individual component networks when there is insufficient training data, 
when the training data carries a lot of noise or when it is highly expected 
that the learning algorithm will not find the optimal solution (Dasaratha, 
1996; Ting and Witten, 1999). Specifically, MNN were initially used as 
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ensemble techniques (Zhou et al., 2002), feature extraction techniques 
(Wang et al., 1998), and multi-class classifiers (Anand et al., 1995). In the 
first case, as ensemble techniques, each network in the first stack solves the 
entire problem. These networks might be set with different or similar 
parameters (Furtuna et al., 2012; Piuleac et al., 2010). Because the learning 
procedure is initiated with random weights and eventually with different 
parameters, each network will output different results. The network in the 
second stack weights the previous results [from each network] and 
attributes the greatest weight to the first-order network with best result. In 
the second case, for feature extraction, networks typically output different 
features, sometimes overlapping features, as they learn to represent the 
problem with different internal parameters. These first-stack features are 
then combined in the second-stack network, which receives a much more 
detailed representation of the problem and, consequently, outputs a better 
result than if no features had been extracted first. In the third case, multi-
class classifiers, first-stack networks are used as lower-number-class 
classifiers, usually two-class classifiers. A second-order network weights 
the classifications of first-order classes. This third case is similar to the first 
case, but the difference is that, here, each first-stack network has its output 
range limited to a lower number of classes. 

MNN have been applied to statistically neutral problems, where the 
chance of each class has a probability of 0.5 (Ghorbani and Owrangh, 
2001), polymerization processes and polymer resin development 
(Fernandes and Lona, 2005; Zhang et al., 1997), time series forecasting 
(Leon and Zaharia, 2010) parsing (Irsoy and Cardie, 2014), natural 
language processing, sentence level sentiment analysis (Dong et al., 2014), 
and complex logical problems (Mengistu et al., 2016). This latter is an 
important experiment, which shows that a system evolves hierarchically to 
reduce the cost of connections, which simultaneously confers on it an 
enhanced ability to adapt. 
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Hence, MNN are not only models isomorphic to the proposed 
shape of hierarchical integration across modules, according to 
the MHC, but they appear to also approximate with biological 
plausibility the structural growth of a developing system 
(Mengistu et al., 2016). 

For instance, each new generated stack in a MNN architecture would 
correspond to the emergence of a new higher-order stage, coordinating the 
information at lower-order modules. Nonetheless, MNN have not yet been 
applied to the problem of simulating cognitive development in a task such 
as the present one, but only to solving increasingly complex logical 
problems. 

1.1. MNN applied to cognitive developmental problems: the 
balance scale problem 

According to the MHC’s current definition of HI and according to the 
regular use of MNN for hierarchical complexity processing, a stacked 
modular architecture succeeds if it is composed of two stacks. Stack 1 is 
composed of two unconnected modules or networks, each solving weight 
and distance problems, respectively. Stack 2 is composed of one neural 
network module that solves the range of conflict problems (Figure 9). Stack 
2 receives lower-stack outputs as inputs. 



II. Theoretical Considerations for Simulating Cognitive Development 

93 

 

Figure 9 — Provisional structure of MNN applied to the Balance Scale Test 

However, before an output is generated to solve a problem, the 
problem needs to be perceived. Hence, for outputs of a certain OHC to be 
generated, the problem needs to be perceived with that same OHC.If 
outputs are sequentially combined, as postulated by HI, in the limit, the 
lowest-order perceptual configuration of the problem leads to the 
generation of the highest order outputs, which is inconsistent. 

The main premise guiding this simulation is that “the 
complexity of an action is in accordance with the perceived 
complexity of a problem”. 

It is hypothesized that lower-order percepts become object of higher-
order percepts, which will, in turn, trigger correspondent-order actions. 
Hence, stack 2, where weight and distance become coordinated, would 
receive another configuration of the original inputs of the problem. These 
are here called percepts. A percept is an environmental feature that needs 
to be perceived such that the problem is solved.  In this case, the percepts 
would consist of the weight and distance on each side, each coordinated by 
the respective operation, which would be either sum (order 2 problems) or 
multiplication (order 3 problems). 
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2. Method 

This section will describe how the data were created to simulate the 
learning context of the balance scale test, and the neural networks models 
that were created per module. 

2.1. The Balance Scale Test simulation 

Data representing all possible configurations of the balance scale test 
were simulated, with weight and distance values ranging from 1 to 15. 
Balance Scale configurations are represented as 4 integer-element input 
vectors [weightright, weightleft, distanceright, distanceleft]. Outputs ranged from 
[-1,1], where -1 represented the beam falling left, 0 represented the beam 
balancing, and 1 represented the beam falling right. The cut-off always 
remained 0.5 and -0.5 for discriminating the possible states. 

The problem space was partitioned into simple and conflict problems. 
Simple problems are those where only weight or distance vary, solved by 
children at concrete stage 9. In conflict problems both weight and distance 
vary. Conflict problems were further partitioned into three classes – 
Conflict I, Conflict II, and Conflict TD. Conflict I problems are those where 
both dimensions indicate that the balance will fall to the same side. Hence, 
concrete stage 9 children are able to correctly predict the tipping side. 
Conflict II and Conflict TD problems are those where each dimension 
indicates a different side tipping down. In Conflict II problems, the sum of 
weight and distance at each side generates a successful response. Children 
at the abstract stage 10 can solve this subset of problems. In Conflict TD 
problems, only the multiplication of weight by distance on the same side 
solves the problem successfully, which requires that the child is at the 
formal stage 11. Hence, simple problems are order-1 problems, conflict II 
are order-2 problems, and conflict TD are order-3 problems. 

2.2. Modular Neural Network (MNN) models 

A control MNN composed of two stacks was created (Figure 9). The 
first stack was composed of two parallel unconnected neural network 
modules, one for solving weight problems and the other for solving distance 
problems. The second stack was composed of one neural network module 
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for solving conflict problems. Experimental networks were also created, 
consisting of alternative neural networks for the second stack of the control 
MNN. Experimental networks differed in the input sets, so as to evaluate 
the importance of lower-order outputs in the formation of higher-order 
outputs.  

 Three different input sets were experimented. The second-stack 
network of the control MNN received lower-stack outputs, as postulated by 
hierarchical integration. Experimental network 1 received lower-stack 
outputs, as well as weight and distance of each side coordinated by sum. 
Experimental network 2 received only weight and distance of each side 
coordinated by sum. Experimental network 3 received weight and distance 
of each side coordinated by multiplication. This is illustrated in Table 4 and 
represented in Figure 10. 

Table 4 —  Inputs per order of problem complexity and respective examples 

 
Problem 

Type 
Input Stack 1 Input Stack 2 

  
[wleft, wright, 
dleft, dright] 

Output 
Stack1 

Left-side 
operation 

Right-side 
operation 

Control 
Network 

Stack 1 
Simple [8, 8, 9, 6] [0] — — 
Simple [8, 8, 9, 6] [-1] — — 

Stack 2 Conflict — [0, -1] — — 
Experimental 1 Conflict — [0, -1] [8+9] [8+6] 
Experimental 2 Conflict — — [8+9] [8+6] 
Experimental 3 Conflict — — [8x9] [8x6] 
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Figure 10 — Illustration of Control Network (left), Experimental Network 1 
(center), and Experimental Networks 2 and 3 (right). Side-arrows represent left-
side and right-side operations. In the right-side figure, they represent sum and 

multiplication operations. 

2.2.1. Input data for neural network models 

Stack 1 networks were trained alone and independently of each other. 
The training set consisted of weights and distances ranging from 1 to 5, 
which resulted in 5 balance problems, 10 weight problems and 10 distance 
problems. Each training routine was repeated 10 times for each network. 
The network repetition with better accuracy and lowest total error was kept 
for the test routine. The test set consisted of weights and distances ranging 
from 6 to 15. This resulted in 100 input configurations for the networks in 
the first stack and 100 generated outputs by each network. 

At the second stack, these outputs were combined to produce second-
order inputs, resulted in a total number of possible input configurations of 
1002. The correspondent set of weight and distance inputs were also 
combined, resulting in 1002 original problem configurations. Afterwards, 
outputs were respectively concatenated to the input vectors, creating a 6-
element input vector [weightright, weightleft, outputweight, distanceright, 
distanceleft, outputdistance]. 

Of these combined configurations, balance, weight and distance 
problems summed a total of 1900 cases, which were excluded from the 
second-order dataset. The remaining 8100 configurations were conflict 
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problems. Among these, 4050 were Conflict I, 3360 were Conflict II, which 
were joined in a single class of conflict problems (7410 cases) and 790 were 
Conflict TD. Both orders of complexity problems were then split into 
training (80%) and testing subsets (20%), controlling the representativeness 
of each class (falling left, balancing, or falling right) in all subsets (Table 
5).  Conflict-II problems were fed to experimental networks 1 and 2, 
whereas conflict TD problems were fed to experimental networks 3. 

Table 5 — Number of input cases 

 Order-2 Order-3 
# of Training cases 5625 450 

# of Test cases 1875 150 
 

2.2.2. Network properties and functions 

Neural networks were programmed in R language, using the 
“neuralnet” package (Fritsch et al., 2016). The following network 
characteristics remained constant throughout the entire experiment (Table 
6). The learning rate and threshold were determined after experimentation. 

Table 6 — Network properties and functions 

# of Internal layer  Ranging from 1 to 2 
# of Units Ranging from 1 to 4 per internal layer 
Learning rate 0.05 
Threshold 0.15 
Learning 
algorithms 

Resilient backpropagation with weight 
backtracking (Igel and Husken, 2003) 

Activation 
function  

Logistic function 

Error function  Sum of squared errors 
Initialization 
weights 

Randomized in the interval [-0,1; 0,1] 

Repetitions 10 
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3. Results 

Results are divided in two sections. Results concerning the Control 
MNN are presented first and results concerning the three Experimental 
networks are presented next. 

3.1. Control network 

In stack 1, both networks learned with total accuracy and classified 
100% successfully the test set, requiring 1 unit in the internal layer. Also, 
both networks used approximately the same number of learning epochs: 80 
for the distance network and 92 for the weight network (Figure 11 and 
Figure 12, respectively). The connection weights from the input to the 
internal unit are symmetrical in both networks, showing that each side is 
encoded symmetrically. 

 

Figure 11 — Distance Network (Stack 1) 

 

 

Figure 12 — Weight Network (Stack 1) 
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Stack 2 network only received the outputs of stack 1 networks. It did 
not learn to solve conflict problems. If order-2 and order-3 problems are 
classified altogether, the network performs with an accuracy of 
approximately 51%, independently of the number of units in the internal 
layer, and independently of whether it has one or two internal layers. The 
test set was classified with an accuracy of 52%, where approximately half 
of each problem order failed the correct classification. 

This level of accuracy be considered to be at the chance level. This fact 
indicates that both orders were solved indiscriminately at the second stack, 
suggesting that either lower-stack outputs are non-informative for higher-
order problem solving, or that the artificial model does not allow for the 
discrimination of hierarchical complexity of problems, or both. This will be 
clarified by the use of the experimental networks. 

3.2. Experimental networks 

Experimental networks 1 and 2 (used for solving order-2 problems), 
learned with an accuracy of 92,5% with only one unit in the internal layer.  

Figure 13 depicts experimental network 1. If the connection weights 
are inspected, it is confirmed that lower-stack outputs are non-informative 
for information processing. The connection weights between lower-stack 
outputs and the internal unit are approximately the same (1.268 and 1.238), 
which means they do not convey discriminated information for problem-
solving. Only experimental network 1 is depicted to explicit the null impact 
of lower-order outputs. Experimental network 2 only received right-side 
and left-side summed inputs, using all the information encoded in its 
connection weights.   
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Figure 13 — Experimental Network 1 (Stack 2) 

A fundamental difference between the two networks stands out. 
Whereas experimental network 1 required 32147 steps to learn and 16.77 
seconds, experimental network 2 required 2262 steps and 1.01 seconds. 
This indicates that considering actions of the previous level accounts for no 
performance gain and for approximately 15 times more steps and time 
resources, given the parameters and network functions specified above (see 
section 2.2.2). 

Also in both networks, the test set was classified with the same 
accuracy of 92,5%, where the failed 8% of problems were all conflict TD 
problems, of order-3 complexity. This is quite an obvious result, as order-3 
problems require multiplication among the inputs and these networks 
received summed inputs. Yet, it is also interesting to note that, in the present 
case, the network did not use its distributed information processing 
capabilities to map a problem poorly represented at the input set, even with 
2 layers. Rather, its performance showed an all-or-nothing approach. This 
confirms that, at least in this particular problem, the operations required to 
coordinate the inputs are fundamental for learning. The sum operation is 
specific of the second-order problem solving of stage 10 children. 
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Experimental network 3, which received only multiplied inputs, 
learned and performed with an accuracy of 100%, correctly classifying all 
cases. Experimental network 3 only used 1 unit in the internal layer, found 
symmetrical connections weights between inputs and the internal unit, 
required 3382 steps to learn and a minimum of 1.88 seconds. 

4. Discussion 

General-domain theories of behavioral development posit that 
behavioral complexity progresses along a sequence of stages and that 
transition across stages of development occurs through a process of 
hierarchical integration (HI) (Case, 1987; Commons and Pekker, 2008; 
Dawson et al., 2003; Demetriou and Valanides, 1998). HI means that stages 
are built out of one another, by a successive coordination of outputs. The 
present work served to test the currently accepted definition of HI in a 
connectionist computational model with a modular architecture. We further 
proposed another mechanism for stage transition, or stack transition. The 
proposed hypothesis was based on the idea that a cognitive task requires an 
initial perceptual appraisal of the problem for a subsequent recruitment of 
problem-solving resources and strategies. 

It was proposed that HI is rather a mechanism in which lower-
order inputs become object of higher-order inputs that 
generate correspondent-order actions than one in which 
lower-order outputs become object of higher-order outputs. 

In sum, inputs, or percepts, should be reorganized into higher-order 
percepts, by means of certain operations, before a correspondent 
complexity output is generated. 

Results confirmed the hypothesis. It is actually plausible to assume that 
the operations an individual uses to (re)organize the information are what 
matter for problem-solving. Furthermore, it is necessary to mention that a 
certain operation can only be performed when two circumstances have been 
achieved: 1) the problem has been perceived with a certain complexity; and 
2) the individual matured enough to apply a certain operation to the 
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problem. For instance, consider a child that looks at a balance with a Torque 
Difference configuration. If the child is still performing at the abstract stage 
10, the problem will be solved based on the child’s current resources — 
summing weight and distance on both sides. The output will be incorrect. 
Given this situation, the observer cannot attest that the child perceived the 
problem as a formal one, but lacks the ability to solve it accordingly. Rather, 
it is more congruent to assume that the child, whether in the face of a simple 
or complex configuration, is only able to perceive it as an abstract one, 
according to the perceptive and cognitive skills acquired so far. 

These results have important implications for the formalization of the 
mechanism underlying stage transition, as well as for the simulation of 
stage transitions in an artificial learning system. The fact that an output that 
correctly solves a certain complexity task is necessarily of the same order 
of complexity as the task it solves, called “task-action”, is maintained 
(Commons and Pekker, 2008). Yet, the way the model postulates how 
higher-order outputs are formed has been challenged. 

It is the internal operations that matter, in combination with 
problem dimensions. 

Once the mechanism of HI has been invalidated, the use of Modular 
Neural Networks has similarly been disregarded for the purpose of 
reproducing stages of development in an artificial model. In the present 
example, the increasing complexity of operations required for solving the 
balance scale test imply that children go from the ability to count (in simple 
order-1 problems) to the ability to sum (in conflict problems of order-2), 
and from the ability to sum to the ability to multiply (in conflict problems 
of order-3). Interestingly, these three arithmetic operations are assumed to 
be recursive. 
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5. What Next 

An important question that drives future work is: how does a 
neural network model represent increasing OHC? 

An answer to this question will allow for the identification of changes 
in a connectionist structure, as new developmental capabilities emerge. In 
turn, these changes will hopefully inform how more complex capabilities 
can be generated in a developmental algorithm. Ideally, this will not only 
apply to the development of a neural network model that solves the balance 
scale test as children do, but also to other developmental domains.
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The original version of the section that follows has been published as 
“Leite, S., Barker, C.D., Lucas, M.G., 2016. Neural Correlates of 
Postformal Stages of Reasoning: Biological Determinants of 
Developmental Stage. Behavioral Developmental Bulletin. Vol. 21, pp. 33–
43 DOI:10.1037/bdb0000012. The following text includes some 
modifications, as well as some excerpts that have been added 

 

Post-Piagetian theories of development claim for the hierarchical 
development of reasoning abilities throughout life. A sequence of ordered 
stages is usually defined, even though the processes that underlie stage 
transition are debated. 

Particularly for domain-general theories of development, 
stages of development are accepted to hold some sort of 
performance invariance. Performance invariance, or stability, 
is what imposes constraints on flexibility. 

Within the scope of the present dissertation, performance invariance 
has been previously (Chapter II, Section A) discriminated as hierarchical 
and horizontal invariance, imposing different types of constraints on 
flexibility. Hierarchical performance invariance, or hierarchical stability, is 
attributed to the stage of development, and allows for flexibility within the 
boundaries of task complexity. Hierarchical performance invariance, i.e., 
stages and stage transitions, is the focus of the present work. 

The Model of Hierarchical Complexity (MHC) is one of these Post-
Piagetian theories, which formulates that stages are defined by an Order of 
Hierarchical Complexity (OHC) and demonstrates that the OHC explains 
99% of observed behavior (Giri et al., 2014). Thus, the MHC has a high 
predictive power when applied to experimental settings. Theoretically, it 
has also provided for a great degree of understanding of human behavior as 
its formulations reveal that cognition is primarily a product of a structural 
property of organisms. However, the MHC, as other behavioral theories, 
are unclear in the definition of the underlying mechanisms of stage 
transition. The lack of clarity in regards to the representation of stages and 
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stage transitions at a neurocognitive level leads to questioning what are the 
biological parameters that account for hierarchical performance invariance 
(hierarchical stability) and bound hierarchical flexibility. This is important 
for understanding the underpinnings of development in the neural 
architecture, as well as for informing how stage transitions can be 
implemented in a developing connectionist algorithm. 

To ask whether the biological architecture works as a 
biological boundary for performance flexibility and stability 
is synonymous to ask whether the OHC can be represented in 
the brain. 

In this sense, the focus is now on the contribution of developmental 
cognitive neuroscience for the understanding of growth in hierarchical 
complexity of cognitive capacity in the neural architecture. Recently 
published results suggest that the neural architecture actually supports the 
hierarchical growth in stage, both developmentally and evolutionarily. 
Combined with insights from developmental cognition and developmental 
cognitive neuroscience, this section aims at establishing a biological 
plausible ground for understanding how stage might be traced in the brain 
and which are the structures and functions that determine the growth in 
stage at a neuro-cognitive level. 

Furthermore, the MHC has yet uncovered why some individuals seem 
to be hardwired differently, leading to differences in stage of performance 
and, consequently, in behavioral patterns. 

The work here presented is a proposal for 1) identifying what 
changes in the neural signature as higher stages are achieved 
and 2) ultimately answering why, not how, some individuals 
achieve higher developmental stages than others. 

The proposal is to look for this answer through the neural correlates 
underlying stage of performance, namely through power spectra electro 
cortical activity (sEEG) and neuroimaging correlates (MRI). This proposal 
lies in the overlap between developmental psychology and developmental 
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cognitive neuroscience and aims to provide for acknowledgement of the 
biological basis of higher-order cognition, both at a structural and at a 
developmental level. Answers to these questions will also further improve 
the predictive power of the MHC, and represent an important input for 
simulating human cognitive development in an artificial intelligence 
algorithm. 

This work is divided into four subsections. First, the axioms of the 
MHC will be briefly described and how they apply to predicting behavior; 
second, some literature findings on the neural correlates of intelligence and 
cognitive development will be revised; third, some methodological 
considerations, specifically in what refers to data analysis, will be 
presented; Finally, a discussion will be elaborated on how the expected 
outputs can contribute to improving the prediction capabilities of the MHC 
and how they fit in the development of an algorithm that pretends to 
simulate human cognitive development. Given the scope of application of 
the expected outputs, although this specific study concerns the field of 
developmental cognitive neuroscience and is defined within the bounds of 
a neuroscientific study, it is included in a wider line of research concerning 
computational modeling, developmental psychology, and behavioral 
prediction, all together harvesting for a stronger theoretical construction. 

1. Biological Underpinnings of Stage of Development 

“Smartness” is defined as the ability to solve problems or tasks, which 
are measured by an Order of Hierarchical Complexity (OHC) (Commons 
and Pekker, 2008). Complexity is operationalized as the number of 
concatenation operations a task contains. At each order of complexity (or 
at each stage), the individual is able to perform the correspondent 
complexity actions and solve the correspondent complexity tasks. Higher-
order task-actions are characterized by the non-arbitrary coordination of 
lower-order task-actions. The individual becomes capable of organizing 
and combining immediately lower order actions in a non-arbitrary way. 
Non-arbitrariness is the property that imbeds new configurations with 
meaning. The discovery of the OHC as the strongest predictor of behavior 
across domains (Commons et al., 2014b) turned the MHC into a non-



D. Biological Determinants of Developmental Stage 

110 

mentalist structure-driven approach. This means that the MHC holds its 
validity independently of the mental strategies for problem-solving. This 
also means that the existence of a supporting biological structure for 
cognitive development is under proof. 

Different from Piagetian perspectives, the MHC presents a conception 
of intelligence and development that goes beyond formal operations, in that 
cognitive development is a functional mechanism that pervades throughout 
life (Commons et al., 2014a; Commons and Pekker, 2008). This post-
Piagetian conception of human development throughout adulthood 
simultaneously constitutes the major strength and weakness of the model. 
The major strength because the amount of evidence collected so far models 
the shared properties of development, showing that there is a universal 
developmental sequence for all organisms (Commons et al., 2014a). The 
major weakness comes from the fact that the model has not yet explained 
the reason underlying inter-individual variability. In other words, why some 
individuals attain higher stages than others. The present method also aims 
at ultimately answering this remaining question: what limits stage? 

The MHC provided recent evidence favoring a biological 
perspective over stage of development. 

The first is that stage holds across domains (Commons et al., 2014a; 
Giri et al., 2014),  which suggests a general activation mapping or structure 
in the brain that supports cognitive performance in all domains, even though 
concept formation and representation has been consistently shown to 
activate domain-specific regions (Bauer and Just, 2015). Second, it shows 
that stage develops as a function of log2(age), which suggests that the roots 
of stage achievements are ontogenic (Commons et al., 2014c). This finding 
has been supported by cognitive development literature (Wendelken et al., 
2015). Third, the MHC showed that a power function models the increase 
in the number of neurons as the highest stage of a species increases, with r 
= .874 (Harringan and Commons, 2014), while further work favors of a 
view of cognitive abilities that is centered on absolute numbers of neurons 
(Herculano-Houzel, 2009). This evidence does not directly provide an 
argument for stage specific differences in humans, but hints that cognitive 
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capabilities are traced back in the neural architecture across species. Fourth, 
there is intra-species evidence of behavioral development going together 
with a dynamic growth of neuronal connections (Qin et al., 2014). Hence, 
two valuable premises can be traced. One the one hand, a fixed number of 
neurons is correlated with the mean stage that a species achieves, being it 
the stage of formal operations in humans (Commons et al., 2014b). On the 
other hand, the number of connections changes throughout development, 
which points towards a dynamic adjustment of the neural architecture 
within some fixed anatomical parameters, as experience proceeds (Qin et 
al., 2014). Taken these evidences together, the MHC suggests that cognitive 
development is basically dependent upon these structural and functional 
biological correlates, providing an argument for biology controlling stage. 

1.1. Inter-stage differences 

Several brain-based indicators provide evidence that there is a 
common ground between brain dynamics and spurts of cognitive 
development, which follow positive correlations as children grow up. 
Namely, the number of neurons and synapses, brain mass, myelination, 
patterns of brain electrical activity, cortical thickness, skull size, all 
represent a partial brain-based description of cognitive development 
(Fischer, 2008; Hudspeth and Pribram, 1990). Discontinuities are evident 
in many of these brain indicators. For instance, developmental transitions 
seem to be accompanied by an overabundance of synapses. Afterwards, 
depending upon experience, some synapses are pruned-back and others are 
strengthened. These processes have been modelled based on two 
fundamental curves — one is an inverted U-shaped curve that represents 
the rapid increase and decrease of synapses, where the pruning phase 
corresponds to skill acquisition. These inverted U-shaped changes occur at 
different timespans, depending on the cortical region (Casey et al., 2005; 
Morita et al., 2016). For instance, in the visual cortex, synaptic activity 
rapidly increases around 2–3 months, achieves a maximum at 4–12 months, 
and then decreases to the level found in adults around 2–4 years. 
Differently, in the prefrontal cortex, the synaptic activity similar to that of 
adults is achieved at the age of approximately 15–20 years (Morita et al., 
2016). 
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There is also a linear linear increase with age of the volume of the 
white matter, which continues until the age of approximately 20 years old, 
as well, in all brain regions. This linear increase in white matter corresponds 
to myelination of those axons that remain active, after synapses are pruned 
back (Morita et al., 2016). Further experiments were conducted showing 
that gray matter volume and intrinsic connectivity not only can explain, but 
can further predict performance gains, opposite to explicit behavioral 
measures, such as neuropsychological assessment scores. It was still 
demonstrated that neural correlates capture structural and functional 
changes as learning and skill acquisition occur, even if in a restricted 
timeframe of 8 weeks, and even if no stage transition occurs (Supekar et al., 
2013). In general, experiments conducted to date found promising results 
to the identification of the neural signatures underlying learning, skill 
acquisition, and development, both with Magnetic Resonance Imaging 
(MRI) (Cho et al., 2012; McClelland et al., 1995; Qin et al., 2014) and with 
spectral content of electroencephalography (sEEG) data (Fischer, 2008; 
Hudspeth and Pribram, 1990; Klimesch, 1999). 

In regards to MRI data, the majority of studies have been conducted 
regarding learning and skill acquisition. It has been suggested that skill 
acquisition in children is a phenomenon accompanied by a shifting from 
procedural-based strategies to retrieval-based strategies, and that this 
shifting is mainly associated with the hippocampus-neocortex system (Cho 
et al., 2012; McClelland et al., 1995). The authors further suggest that this 
shifting is held across different domains and, thus, that this neural system 
might be critical for cognitive development in general. A subsequent study 
was conducted showing that this shift from procedure-based strategies to 
memory-based ones goes along with a decreased activation in prefrontal 
regions and increased hippocampal activation. Beyond childhood, retrieval-
strategy-use continued to improve through adolescence into adulthood and 
was associated with decreased activation, but more stable inter-problem 
representations in the hippocampus (Qin et al., 2014). A complete review 
of the role of the hippocampal-prefrontal system in learning and memory is 
supportive of these results (McClelland et al., 1995). 
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In regards to sEEG signatures, there is a considerable corpus of 
knowledge linking brain dynamics and cognitive maturation throughout life 
(Fischer, 2008). Both tonic and phasic measures of sEEG patterns have 
been linked to cognitive performance, with the latter being related to 
performance in problem solving. Relative energy shows systematic growth 
curves in the occipital-parietal regions, with this growth proceeding through 
spurts or plateaus, as is observed for cognitive development (Fischer, 
2008). Based on these findings, the nested-network hypothesis was 
proposed, which considers that the emergence of cognitive levels 
correspond to a large cycle of growth of energy, coherence, and other brain 
measures. Curiously, increases in alpha energy occur through spurts until 
adolescence, where individuals are likely to be achieving the stage of 
formal operations, the mean stage for humans. After adolescence, and 
mainly between the ages of 60-80, the pattern reverts, showing a decrease 
in alpha energy. This has been suggested to be the results of interference of 
neurological degenerative conditions (Klimesch, 1999). Furthermore, 
changes in alpha and theta power also show a positive age-related 
correlation. Delta and Theta bands power decrease with age, while alpha 
increases. Interestingly, these changes are also consistent when comparing 
children without learning disabilities with children with learning disabilities 
or neurological disorders, pointing towards the relationship between the 
power bands and cognitive performance (Klimesch, 1999). Taken together 
these findings, the alpha band has been associated with cognitive 
performance, mainly speed of processing, memory (Fischer, 2008) and 
attention (Klimesch, 1999), as well as with general cognitive performance 
throughout life ((Fischer, 2008; Hudspeth and Pribram, 1990; Klimesch, 
1999). During problem-solving, synchronization and desynchronization of 
alpha power have been studied. Lower-alpha desynchronization has been 
systematically assigned to reflect attentional resources during problem 
solving, upper-alpha has been linked to the processing of sensory-semantic 
information, whereas theta synchronization also appears to be correlated 
with working memory or episodic memory performance (Klimesch, 1999). 
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1.2. Inter-individual differences at each stage 

Both MRI and sEEG data provide strong evidence towards a shared 
developmental path inscribed in the brain. However, the majority of 
existing studies overlook inter-individual differences in cognitive 
performance. Actually, a closer look to these studies reveals that inter-
individual differences play an important role. For instance, although there 
is a common hippocampal-prefrontal connectivity pattern underlying 
learning and skill acquisition in several domains, irrespectively of 
individual differences, performance gains range from 8% to 198% (Supekar 
et al., 2013). Moreover, inter-individual variability plays as large an effect 
as that of age-related changes. Also, within the frequency bands, there is a 
high variability, too, in how to define sub-bands (Klimesch, 1999). This 
shows how variable performance gains might be under the same 
experimental circumstances, which, again, should not be overlooked. 

In one relevant study addressing this issue of inter-individual 
variability (Lee et al., 2006), subjects’ IQ was measured as a general 
cognitive capacity (g-capacity), splitting the sample into two groups — g-
superior and g-average subjects. Tasks similar in shape but differing in g-
loading were administered to each group of subjects, while their patterns of 
brain activation were measured through fMRI. A brain signature was found 
in both groups concerning bilateral activations in lateral prefrontal, anterior 
cingulate, and posterior parietal cortices. These g-task-related neural 
substrates were most likely to rely on the fronto-parietal network that was 
previously reported to constitute the neural bases for fluid reasoning and 
working memory (Lee et al., 2006). A brain signature was also found 
between groups, with the superior g-group showing much greater percent 
signal changes of the regions of interest than the average g-group. The most 
significant gap between groups was in the posterior parietal cortex. These 
findings are further supported in the literature by a recent result obtained 
from the Neurodevelopment of Reasoning Ability study (NORA) 
(Wendelken et al., 2015). It was confirmed the involvement of the Fronto-
Parietal network in detecting differential reasoning abilities. The authors 
found an increased connectivity between the Rostro Lateral Pre Frontal 
Cortex and the Inferior Parietal Lobule in the mature reasoning system, in 
opposition to an immature neural system. The fronto-parietal network is 
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also at play when differences are being measured for EEG power spectra. 
Namely, delta and theta frequency bands decrease in power with age, while 
alpha frequency band power increases, with this increase starting at 
posterior derivations and ending at more anterior recording sites (Klimesch, 
1999), which is consistent with recent big data analysis (Taylor et al., 2015). 
Recently, fronto-parietal networks have been associated to higher-order 
cognitive functions majorly because they underlie the representation and 
management of concepts with the highest levels of abstraction (Taylor et 
al., 2015). 

From the findings reported above, it is deduced that the hippocampal-
prefrontal network is involved when considering longitudinal designs for 
functional MRI data, irrespectively of inter-individual differences. This 
network is involved in a gradual change in problem-solving strategies, from 
procedural to retrieval-based, which occur independently of the rate of 
learning. However, if the focus shifts to inter-individual variability of 
reasoning abilities and differential learning rates, the regions associated 
with differential activation are no longer observed in hippocampal 
activation. These are reported to rely on the fronto-parietal network instead 
(Lee et al., 2006; Wendelken et al., 2015), which is consistent for both fMRI 
and sEEG data. 

2. Finding Stages in the Brain 

Limitations of existing studies concern, first, the fact that these 
comprise unsystematic sets of tasks, which results in outcomes 
contaminated by task specific variance. 

In other words, they do not present a sequence of tasks with a 
priori measured difficulty or processing load. This does not 
allow to extrapolate the results with confidence to other 
domains. 

Second, they restrict their object of analysis to an early period in life, 
mainly in neuroimaging studies. This impedes from taking conclusions in 
regards to the development of higher-order cognition and falls apart of the 
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questions deemed to answer: how stages are represented in the brain and 
what limits stage? Third, all these brain-developmental processes compete 
and occur in parallel, accounting for the great plasticity and flexibility of 
brain functioning, which is mainly implemented in a network (Morita et al., 
2016). The Interactive Specialization (IS) approach assumes that the 
specialization of a cortical region is interdependent with its neighbor 
regions and connection patterns. In other words, “the response properties 
of a cortical region are determined by its patterns of connectivity to other 
regions as well as by their own current activity” (Johnson, 2011). 

The emergence of a higher-order network to support a higher-
order stage is consistent with viewing cognitive regions 
functioning in a jointly integrative manner (Kanwisher, 2010; 
Smith, 2005). As regions are integrated, the network grows in 
structural complexity. 

In line with a complex system’s perspective, the IS approach suggests 
that development and skill acquisition are counterpartyed by a 
reorganization of interactions between different structures and regions. 
“This re-organization process could even change how previously acquired 
cognitive functions are represented in the brain” (Johnson, 2011), which 
makes it more difficult to operationalize, observe, and simulate. 

The current proposal is that stage of development is best understood 
as a global structure of dynamic processes and functions, rather than a set 
of identifiable elements. The method we devised aims at identifying 1) the 
global structure corresponding to each OHC, as well as 2) changes that 
occur in such structure as new stages emerge. A structure representing an 
OHC is responsible for attracting, or perceiving, a specific set of 
information from the environment, contains rules for problem-solving, and 
outputs a set of correspondent complexity actions. The emergence of a 
higher-order structure leads to perceiving the environment as a higher-order 
set of information, to processing information by higher-order rules, and to 
outputting a set of higher-order complexity actions, and so on and so forth 
until the maximum stage of development is reached and the maximum 
difficulty problems are solved. Furthermore, the variability in the highest 
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stage to be attained will certainly be correlated with variable changes in 
structure as development occurs. 

It is, then, proposed that a different canvas is necessary to uncover 1) 
the parameters that correlate with stage of development and 2) the factor 
that loads on stage variance, ultimately answering 3) what limits stage. The 
proposal is to look at inter-stage differences, as well as at inter-individual 
differences within stage. In fact, although development and brain 
maturation yield significant similarities across subjects, there is also strong 
evidence of individuals displaying different rates of development 
(Commons et al., 2014b) and different mosaics of a developmental path 
(Abellán et al., 2015), not to mention the differences that show up in 
populations with disabilities and/or neurological disorders. Hence, the 
proposed methodology hopefully allows for a comparison between neural 
activations of subjects who perform at different stages of development. This 
will allow for extracting not only the shared properties of problem solving 
in the brain, with problems, solutions, and competence operationalized by 
an OHC, but also to extract the differentiators. A set of regions of interest 
and EEG features are addressed to suggest where to look and which data to 
analyze. Namely, the percent signal activation in regions of interest (fMRI) 
and power and energy of frequency bands (sEEG). 

In order to model inter-individual variability from these data, it is 
further proposed to extract the Saturation Index (SI) for each physiological 
measure, which is claimed to represent the processing load along the 
developmental path of subjects. Ultimately, it is expected that the SI of each 
measure will be correlated and a general SI can be extracted from it. SI is 
then a within-subjects measure that intends to model the individual 
dynamics of development. It is expected that the potential to achieve a 
certain developmental stage can be characterized by a specific SI, as if the 
SI is a dynamic neural signature underlying, or carrying, development. 
Basically, the hypothesis is that the SI will face a faster relative increase for 
potentially lower stage subjects than for potentially higher stage subjects, 
reflecting that an increase in task complexity requires higher cognitive 
resources for lower stage subjects than for higher stage subjects. The SI is, 
in fact, closely related to the functional meaning of the Index of Harmony 
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(IH) calculated for assessing and predicting developmental problems from 
birth to adolescence in a ten-domain general model of child development 
(Abellán et al., 2015). The idea of a IH, an individual index of development, 
is “fundamental to give independence to the comparison of individual 
development in relation to statistical norms, since it permits each case to be 
contrasted with itself.” (Abellán et al., 2015). Further on, the SI is the 
numerical indicator that will allow this study to see continuation in different 
fields, such as artificial intelligence and behavioral prediction. In sum, the 
extraction of a SI is assumed as one of the major expected achievements of 
the present proposal, along with uncovering some regions that are 
differentially activated in the face of different stages of development, as is 
shown by some important literature findings. 

2.1. Hypotheses 

Eight hypotheses build on these findings. The first four hypotheses 
stand for characterizing patterns of brain activation across stages and tasks. 
For MRI data, it is expected that different stages will show up in the brain 
as differential patterns of activation in the Fronto-Parietal Network, namely 
in the Pre-Frontal Cortex (PFC) and in the Posterior Parietal Cortex (PPC). 
A positive correlation between activation in these regions and an increase 
in the complexity of tasks is expected (H1). It is also hypothesized that 
connectivity between PFC and PPC is positively correlated with stage (H2). 
Still, higher stage subjects show a decreased activation in the regions of 
interest when compared to lower stage subjects, when performing the same 
task, which order of complexity should be equal or lower than the order of 
lower stage subjects (H3). For sEEG data, tonic alpha power increases and 
theta decreases with the complexity of the task and that phasic changes also 
show a higher theta synchronization (H4). The remaining four hypotheses 
are concerned with modeling the SI. Fifth, for MRI data, higher stage 
individuals show a slower increase in activation in the regions of interest 
while solving tasks with increasing order of complexity, than do lower stage 
subjects (H5). Higher stage subjects show a more pronounced increase in 
the connectivity between the regions of interest that lower stage subjects 
(H6). For sEEG data, the increase in alpha and the decrease in theta power 
along increasingly complex tasks is significantly more pronounced in lower 
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stage subjects than in higher stage subjects (H7). Finally, during problem-
solving, theta synchronization is more pronounced along increasing 
complexity tasks in lower than in higher stage subject (H8), reflecting a 
more effortful working memory in the first group. 

2.2. Goals and Objectives 

In sequential order, it is the first objective to confirm existing findings 
by operationalizing reasoning abilities and stage of development as the 
order of hierarchical complexity. The first four hypotheses stand for 
characterizing mappings of brain activation, both with MRI and sEEG data, 
which are expected to confirm what has been shown in previous studies. 
The following objective is to answer why, not how, some individuals 
achieve higher developmental stages than others and to look for this answer 
through the neural correlates underlying stage of performance. This 
objective will be accomplished through calculating a Saturation Index that 
informs the progression of processing load along the problem solving of 
increasingly complex tasks. This will be done in the remaining four 
hypotheses of this study. It is still an objective to use the results of this study 
to improve the behavioral predictive MHC and to contribute for the 
development of a connectionist model that attempts to simulate the growth 
in complexity of reasoning abilities. 

3. Method 

The methodological section includes the description of dependent and 
independent variables to be considered, the proposed experimental design, 
and the data analysis rationale to conduct hypothesis testing. 

3.1. Independent and Dependent Variables 

Reasoning abilities will be operationalizable by assessing stage of 
development of participants, as is determined by the MHC. The MHC has 
a high predictive power when applied to behavioral analysis (Giri et al., 
2014), it measures the difficulty of tasks to avoid the interference of task 
variance noise in data analysis, it is in agreement with further mathematical 
behavioral developmental models that correlate age and stage (Wendelken 
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et al., 2015), and it has recently shown that the majority of intelligence tests 
fail to detect postformal capacity (Featherson et al., 2016). High IQ score 
probably represents Formal Stage and Systematic Stage 12 performance. 
The Low IQ represents Concrete Stage 9 and Abstract Stage 10 
performance. IQ does not measure Metasystematic Stage 13; however, 
given the existing data on the progression of stage (Commons et al., 2014c) 
if an adolescent is performing at the Systematic Stage 12, it is highly likely 
that the person will move up to Metasystematic Stage 13 (Featherson et al., 
2016). 

If previous studies found consistent findings given the maturity of 
reasoning abilities, irrespectively of the operationalization criteria, this 
proposed study will also certainly find these differences, concluding that 
this methodology is sensitive enough to identify differences in stage. Stage 
of development will be assessed through instruments developed so far by 
the MHC. As dependent variables, we will measure MRI and sEEG 
correlates of task performance. 

3.2. Experimental design 

This study comprises a cross-sectional experimental design, where the 
scope of observations will be restricted to abstract, formal and postformal 
stages of development, namely systematic and meta-systematic. For 
modern humans, the range of stages in intact adults is from abstract stage 9 
to postformal stages 11 and 12.  The mean stage of performance has been 
shown to be the formal operational stage 10 (Commons et al., 2014b). 
Stages beyond formal operations (Stage 10), including systematic (Stage 
11), metasystematic (Stage 12), paradigmatic (Stage 13), and two other very 
rare stages, have also been described by the Model of Hierarchical 
Complexity (Commons et al., 2014b). Hence, according to the MHC, inter-
individual variability in attaining higher-order stages is only pronounced 
when we move up to formal stages and beyond. Subjects will be selected 
for the study based on their stage of development, irrespectively of 
educational background. Experimental groups will match in gender and 
age. 
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3.3. Hypotheses testing 

Data analysis procedure will be based on Representation Similarity 
Analysis (Kriegeskorte et al., 2008). H1, H2, H3 and H4 are tested to 
confirm previous findings in what concerns the relationship between the 
increasing of reasoning abilities and the emergence of differential patterns 
of brain activation. From this confirmation, it will be demonstrated that 
operationalizing reasoning abilities as stage of development does not 
introduce an uncontrolled bias in posterior data analysis. In the following 
hypotheses H5, H6, H7 and H8, the objective it to model how mappings of 
brain activity (representation mappings) progress along the performance in 
increasingly complex tasks for a specific group of subjects. Afterwards, we 
representation mappings that show up during problem solving in 
consecutive complexity tasks will be compared; pair-wise comparison will 
be called transition mappings (Table 7). Representation mappings 
correspond to each cell on table 1 and transition mappings correspond to 
the arrows transiting from one cell to the other. Transition mappings 
underlie the functional meaning of the Saturation Index. 

Table 7 — Representation mappings and transition mappings 

  Experimental groups 
  Abstract Formal Systematic Meta-Systematic 

OHC 
of 

Tasks 

Concrete     
Abstract     
Formal     

Systematic     
Meta-systematic     

 

4. Limitations 

Two limitations are attached to this experimental design. First, one 
cannot know if the subjects who compose each experimental group have 
already attained their highest stage; one can only be aware that their neural 
architecture, when compared to matching age subjects, is higher. In order 
to overcome this limitation, one possibility is to set a lower age limit based 
on the evidence that stage progresses as log2(age) (Commons et al., 2014c); 
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however, this solution is not free from methodological problems, as setting 
a lower age limit will possibly introduce the interference of cognitive 
degeneration in more aged subjects, which might begin occurring at the age 
of 40 (Klimesch, 1999). The second limitation of this research proposal 
concerns the fact that one is not evaluating changes in the neural 
architecture as a stage transition occurs, which would be the ideal scenario, 
but only possible through capturing a once in a lifetime event. As such, 
observations are restricted to how the neural architecture changes in the face 
of different complexity tasks and assume that these changes, or 
adjustments, somehow remain after a new stage has been achieved, 
similarly to the remaining of a phylogenetic process of evolution and 
development pervading in the organism. 

5. Application & Future Work 

The question of what limits stage of development differentiates this 
study from others that have been conducted in the field of developmental 
psychology and cognitive neuroscience. This is a relevant topic of research 
that has never been addressed. In regards to the proposed method, besides 
serving the fields of psychology and cognitive neuroscience, it further 
serves other branches of application fields. For instance, the field of 
behavioral assessment and prediction and artificial intelligence. 

5.1. Behavioral Prediction 

The Model of Hierarchical Complexity is a behavioral assessment 
theory of development with a high predictive power (r = .991) (Giri et al., 
2014). Mean stage is determined as the logarithmic function of age, hence, 
younger individuals attaining higher stages than their counterparts are 
assumed to achieve higher stages in the future. However, there is no clear 
predictive evidence of this fact nor there is evidence of a biological 
mechanism controlling stage. Because this study is proposed to result in the 
extraction of the SI – an index that informs about the highest stage to be 
achieved – it is closer to further improve the predictive capability of the 
MHC in what concerns later stages of life. 
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One specific area of application concerns the development of 
educational and pedagogic practices more adequate to people’s general 
cognitive capacity. If the expected results are ultimately proven, the SI 
would be a quantitative indicator of differential educational strategies. With 
a new educational approach set up, the reverse research line can be initiated 
— whether adequate educational practices actually change the development 
of the brain along the suggested lines. The idea is similar to previous 
research on modeling general properties of development along with 
individual differences, with the goal of determining how the individual 
developmental path can be improved and optimized (Abellán et al., 2015). 
The same principle applies for hierarchical complexity measurements for 
assessing how and where employees best fit into organizations based on 
their task performance (Commons and Robinett, 2013). This is important 
because in many societies in the world, especially among certain sectors, 
there is a belief that there are no biological differences underlying how 
smart someone is. People associate differences with education and 
motivation. Hence, people who are not hardwired to achieve the highest 
stages are possibly treated unfairly because the expectations for them are 
unrealistic. If biological differences are found, it may inform interpretations 
of behaviors that support a more ethical and fair society. 

A second area of application might also concern psychiatry and law. 
Results could add a new lens for verifying that observed arrested 
development of the interpersonal domain has hierarchically complex neural 
correlates of brain behavior that correspond to observed hierarchical 
complexity performance. This can inform both psychiatry and law in their 
respective efforts to adequately approach behavioral deficits and crime to 
two ends. The first is to improve and correct maladaptive or criminal 
behavior (Commons and Miller, 2011) by applying the above mentioned 
renewed educational practices. Once again, appropriate approaches could 
be informed according to the saturation index calculated for each 
individual. The second is to predict and prevent future criminal behavior. 
This would be based on the brain signatures of individuals who carry some 
neurological limitation and which might be cause, under certain conditions, 
to suggest a higher probability for social threat. For instance, people with 
Asperger syndrome are considered the most dangerous people because they 
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show no social perspective-taking. The model for predicting crime would 
be multiplicative, with stage, neurological disorder and social perspective-
taking interacting together and all being extracted from the brain. 
Representation mappings would inform about the relative threat people 
represent at present as they convey information about current stage of 
development; the SI would inform about the social threat they might 
represent in the future, given the stage they are hardwired to achieve. 

5.2. Computational Cognition: The Hierarchical Stacked 
Neural Networks model 

The MHC is also the grounding theory for a computational model of 
cognitive development, called “Hierarchical Stacked Neural Networks”. 
This is a neural-networks algorithm that simulates successive behavioral 
hierarchical stages of development of individuals. There is an a priori 
conceptual isomorphism between the MHC and the algorithm, which stands 
for ascribing human developmental abilities to AI systems, not yet seen in 
AI field (Commons, 2008). In the artificial model, information flows 
continually from the lower order stack to the higher order stack, in the 
direction of increasing complexity. In order to do that, one needs to 
characterize stack transitions. 

To simulate successive behavioral stages of development implies 
building a system’s architecture in stacks. Each stack is the computational 
synonym of stage and consists of a neural network with a particular 
structure that makes it generating the hierarchical complex actions of the 
particular stage it simulates. In a neural networks model, the topology 
(number of units and connectivity pattern among them) and learning 
algorithm partially determine the learning and generalization capabilities, 
similarly to what happens in the brain. 
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If stages of development are imprinted in the brain and the 
emergence of new stages correspond to the emergence of new 
patterns, then, each stack is the imprint of a stage in a 
connectionist model and each new stack will comprise the 
emergence of a new stage, or network structure. 

In order to establish a parallelism with the present methodology, 
exposed for neuroscientific study, each stack accounts for representation 
mappings and stack transition accounts for transition mappings. The 
proposed method has, actually, the advantage of allowing that the same 
procedure is applied to both natural and artificial systems. This allows that 
conclusions across fields are constrained by each other and have likely more 
descriptive and explanatory power. 

6. What Next 

The primary goal of this proposed method is to find the biological 
correlates that describe, explain and limit the highest stage attained, which 
has never been addressed before. Existing studies mostly point towards the 
biological underpinnings of learning and skill acquisition. Fewer address 
the neural correlates of development. However, they carry some limitations, 
such as not controlling for stage of development, and lag behind addressing 
the crucial aspect of individual differences in performance gains and 
cognitive capacity. Those that address this issue are far from suggesting that 
biology might actually explain and limit cognitive capacity. It was 
proposed that representation and transition brain activation mappings were 
extracted from MRI and sEEG data, and that a Saturation Index (SI) was 
further calculated. This numerical indicator is expected to represent a 
predictor of the highest stage achieved, as the SI is intended to inform about 
the processing load that each increasingly complex task requires. 

The next step concerns the application of the proposed 
method to computational modeling — specifically to the 
development of a connectionist algorithm called 
“Hierarchical Stacked Neural Networks” model that aims to 
learn in a developmental way. 
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 CHAPTER III 

METHODOLOGICAL CONSIDERATIONS 
FOR SIMULATING COGNITIVE 

DEVELOPMENT IN AN ARTIFICIAL MODEL 

Given the concepts and resulting ideas from Chapter II, the present 
Chapter III, exposes methodological considerations and procedures to 
identify how connectionist stacks represent orders of hierarchical 
complexity. It responds to the second objective of the present dissertation 
“Definition of a method for identifying structural changes in a developing 
connectionist system”. All the methodological aspects and procedures here 
delineated will serve as the basis for the subsequent Chapter IV, where a 
set of studies will be presented. 
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In the field of Artificial Intelligence (AI), it is widely accepted that a 
system must be capable of generating correct actions through a process of 
learning, especially autonomous and incremental learning (Pennachin and 
Goertzel, 2007). To extend this view, this dissertation adds that the process 
of learning is complemented by a process of development, which progresses 
in a structured, systematic, and invariant manner. The Hierarchical Stacked 
Neural Network Model for simulating cognitive development is built out of 
the MHC and obeys to the general laws that rule hierarchical cognitive 
development. It is constructed in stacks, where each stack is a 
computational synonym of a stage. 

Each higher order stack is assumed to change its structure to 
accommodate the particularities of the higher order stage. 

Also, the fundamental characteristics of stacks will be asserted in terms 
of the fundamental characteristics of stages of development — stages are 
1) discrete and 2) cumulative (as mentioned in Chapter II, Section A). 
Respectively, this means that 1) the transition from one stack to another 
must be addressed as a discrete process, not continuous, making each stack 
being partially independent from the immediately lower stack, and that 2) 
as a higher order stack is formed, every lower order stack must remain 
available to the network.  

In order to implement a system that generates stacks and transits 
between stacks, it is first necessary to know what a stack is. In the present 
context, a stack is an independent neural network model that is created to 
solve a unique and independent set of OHC problems. 

Hence, it is first necessary to find out how it is that each stack 
represents problem-solving at each OHC. Second, it is 
necessary to identify what changes from one stack to the next. 

Another important aspect of cognitive development refers to the belief 
that each higher order stage of development is built out of the lower order 
stage. If this is verified, each higher order stack will be formed out of the 
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higher order stack. Hence, a progression of change will eventually be 
extracted that can be applied to the generation of a higher stack. 

Given the degrees of freedom implicated in searching how a stack 
represents problem-solving at each OHC, to interpret the changes that 
undergo from one stack to the next can be very difficult. Moreover, to 
extract a progression that can be applied to the generation of a higher order 
stack might be even more difficult. Yet, the following method, similar to 
the method delineated in Chapter II, Section D, but applied to a 
computational simulation, aims to initiate such search. 

1. Methodological Guidelines 

For an AI algorithm, three branches of systems neurosciences must be 
combined — behavioral psychology, neuroscience, and Artificial 
Intelligence (Kriegeskorte et al., 2008) — as the present work defends. 
(Figure 14). 

 

Figure 14 — Overlap between three communicating disciplines 

This triangulation is possible because correlation studies between 
explicit and implicit behavioral observations seem to confirm that the 
conceptualizations of the mind find a parallelism with neurophysiology. On 
the other hand, connectionist models were created to mimic some 
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fundamental aspects of neurophysiology. However, the knowledge of brain 
functioning is itself a theoretical construction, with several 
conceptualizations having likely explanatory power (Marques-Teixeira, 
2013, personal communication). Given that 1) developmental psychology 
is correlated with brain structure and functioning, and 2) connectionist 
models were created based on the fundamental principles of brain structure 
and functioning, one benefits from determining the characteristics of the 
brain one wants to simulate. Only then, the linkage between developmental 
psychology and connectionist simulations gains reliability. In fact, one 
should attempt to bridge levels of explanation in a consistent way across 
different levels, such that there is isomorphism between levels and areas of 
description (Johnson, 2011) and reliability in the modelling process 
(Cassimatis, 2012). It is necessary to increase the commonalities across 
fields and reach more reliable theories and simulations (Johnson, 2011). 

1.1. Conceptualization of the Brain 

The brain may be defined ontologically by its anatomical structures, 
which determine the brain as a “brain”. One may, therefore, define the brain 
as a ‘structural brain’. Mental states and psychophysiological functions may 
either be reduced to or identified with the anatomical structures, but they 
are not considered as ‘constitutive’ for this brain. Anatomical structures, in 
contrast, are ‘constitutive’ for the brain as a brain and must, therefore, be 
regarded as both necessary and sufficient conditions for the ontological 
definition of the brain as a “structural brain”. Since the anatomical 
structures of the brain can be characterized by physical properties, the 
“structural brain” may be determined as a physical brain, in an ontological 
regard. As such it must be distinguished from both “informational brain” 
and “mental brain” (Marques-Teixeira, 2013, personal communication). 
Computational Neuroscience is a subfield of AI where simulations of the 
anatomical brain are conducted. However, it is estimated that a normal adult 
human “structural brain” is composed of about 86 billion neurons 
(Herculano-Houzel, 2012) and each of these neurons can have up to 15 
thousand connections with other neurons via synapses (Nguyen, 2010). An 
intuitive assumption is that the accuracy and efficiency with which the brain 
processes information results not only from the complexity of specialized 
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cell processes, but also from the combined activity of all these cells. Also, 
aside with the functional complexity of a unit, the information conveyed 
between units (synapses) is of electrochemical nature, which is 
mathematically formalized under various parameters — frequency, 
amplitude, phase, quality and quantity of neurotransmissors, etc. 
Altogether, this leads to the conclusion that designing a developing 
architecture by defining the brain as a “structural brain” requires an 
impeditive exhaustive description of what is (provisionally) known so far, 
let alone what is not known yet. 

The brain may also be defined ontologically by its functions. In this 
case, functions, or rules, must be regarded as both a necessary and sufficient 
condition for the ontological definition of the brain as a “functional brain”. 
If the term functional refers to physiological functions, the “functional 
brain” may be determined as a physical brain as well, as physiological 
functions can be reduced to physical properties. If the term functional refers 
to computational functions, the “functional brain” may be defined as an 
“informational brain”, based on a set of inter-associated rules. If the term 
functional refers to psychological functions, in the sense of mental states, 
the “functional brain” may be determined as a “mental brain”. The “mental 
brain” is assumed as the coordinated activity of different information 
processing mechanisms, which, together, create a global pattern of 
information workflow (Marques-Teixeira, 2013, personal communication). 
Computational cognition and neuro-informatics are the subfields 
designated to test models of the cognitive architecture of the brain. The aim 
is to simulate the interaction of different regions (or cognitive modules), in 
a way that the model resembles how cognitive functions interact to produce 
behavior (Anderson et al., 2008; Anderson and Fincham, 2014). This global 
pattern is usually referred to as a functional or mental state. More recently, 
some approaches have also used the definition of the term functional from 
the perspective of the Complex Systems Theory (CST). 
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According to this perspective, processes, functions and rules 
are invisible to the periphery of the system, but contained in 
its structure. They are encoded at the level of the components 
of the system and their internal dependencies (Maturana and 
Varela, 1928), instantiating that brain functioning is dynamic 
and mainly implemented in a network (Morita et al., 2016). 

In other words, “the response properties of a cortical region are 
determined by its patterns of connectivity to other regions as well as by 
their own current activity” (Johnson, 2011). 

Differently from the definition of a structural brain, the dynamic 
functional brain dispenses with the exhaustive definition of all the elements 
composing the network. What matters is the structure of the model, or 
system — how many constituents it has and how they are connected with 
each other — and how the structure encodes the necessary operations. This 
is in line with the idea that cognitive development is the result of a non-
linear dynamic process (Smith, 2005; Smith and Sheya, 2010). This means 
that “processes and elements of a given stage are more often spoken of as 
the processes and elements of a dynamic, complex system, and stage change 
is thought of as the transformation of a system of this kind into another that 
is more hierarchically complex” (Dawson et al., 2003). 

1.1.1. Cognitive development from the perspective of 
CST 

The perspective that cognition is a complex system is actually 
necessary for understanding that it [the cognitive system] reorganizes itself 
to solve more difficult problems than those solved before (Mitchell, 1998; 
Smith, 2005; Spencer et al., 2012). According to the Model of Hierarchical 
Complexity (MHC), stages of development are seen as equivalents to 
attractor-states of the system and are represented by increasingly complex 
structural and functional patterns (Leite et al., 2016). It has also been 
suggested that each stage of development correlates with a particular neural 
signature. In other words, it is assumed that a general neural structure exists 
that evolves in structural complexity (Leite et al., 2016), throughout the so-
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called stages of development, as interactions with the environment proceed 
(Mitchell, 1998). A higher-order structure emerges such that the entropy is 
decreased (Zimmerman and Croker, 2014) by means of self-organization. 

The emergence of new more complex functional patterns and the idea 
of self-organization (Smith, 2005; Spencer et al., 2012) are core 
characteristics of both the cognitive system in particular, and complex 
systems in general. They comprise the existence of change within a system. 
Self-organization means that no single element has causal priority in the 
explanation of emergence, change, or transition. Transitions are, instead, 
best assumed to rely on ongoing intrinsic processes of the system as a whole 
(Mitchell, 1998; Smith, 2005). 

The drawback is manifested — processes are, by definition, 
invisible to the periphery of the system and contained in its 
structure, hence, difficult to operationalize, observe, and 
simulate. 

Furthermore, self-organization seems to imply that a subsequent stage 
is built upon the elements and operations of the previous stage (Dawson et 
al., 2003). Yet, if processes are not seen from the outside, the means by 
which transitions occur cannot be a priori determined. 

1.1.2. Cognitive development in connectionist models 

It is here argued that what changes across the progression of problem-
solving abilities is the structure of the cognitive and neural system. By 
structure, we refer to how it is internally arranged such that certain 
behaviors, or outputs, are produced. By analogy, in connectionist models, 
structure refers to the number of layers, number of units per layer, and how 
units are connected to each other within the network. Computational units 
are distributed information processors, where no single unit has causal 
priority in the explanation of information processing within the system, as 
in self-organization. In order to model the structure and what changes 
throughout structures underlying stages of development, one needs to 
identify the structure at each stage, as well as what changes from one stage 
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to the next, such that structure and change can be coordinated in a model 
of cognitive development. 

By analogy, if the structure in the human brain changes to 
accommodate development; the structure of a neural network 
must change to accommodate development, too. 

Throughout development, problems are observed to be systematically 
solved in an orderly manner, from the easiest ones to the most difficult ones. 
Then, the first thing to do to ascribe developmental properties to an artificial 
model is to characterize problem difficulty. The MHC postulates that 
problems are characterized by an OHC, a unidimensional measure of 
difficulty. At each stage of development, a unique OHC problems is solved 
(Commons and Pekker, 2008). According to CST, OHC should be defined 
in terms of the system’s ongoing intrinsic properties, or its structure (Smith, 
2005), as much as transitions across orders. 

If processes are contained in the structure, then, evaluating the 
structure of a connectionist model required for each subset of 
progressively more complex problems stands as a valid 
approach for understanding how more complex functional 
patterns are represented. 

The method here devised aims at identifying the connectionist 
structure that best solves each OHC problem, separately and independently, 
assuming that each OHC problem is associated with a particular optimal 
neural networks topology and learning results. The comparison of two 
structures for solving adjacent and independent OHC problems comprises 
the representation of transition in problem-solving abilities. 

1.2. Biological Plausibility 

There is biological plausibility in a priori segregating the problem 
space into disjoint subsets of OHC problems, such that the structure 
underlying problem-solving at each OHC is identified. Each stack, or 
structure, should represent stages of development; stages of development 
are seen as successive attractor-states of the model. Hence, each stack 
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jointly attracts, or perceives, a specific set of information from the 
environment, contains rules for problem-solving, and outputs a set of 
correspondent complexity actions. The emergence of a higher-order stack 
leads to perceiving the environment as a higher-order set of information, to 
processing information by higher-order rules, and to outputting a set of 
higher-order complexity actions, and so on and so forth until the maximum 
stage of development is reached and the maximum difficulty problems are 
solved. 

By a priori segregating problems by OHC, connectionist models will 
be created separately, as well. Comparing two adjacent models that were 
separately created for two subsets of adjacent OHC problems allows for 
informing about what changes in problem solving abilities from one stage 
to the next. 

Whether successive stacks can be built out of one another will 
be a matter of experimentation. In fact, one cannot 
deliberately expect that natural phenomena are mirrored in 
artificial mathematical models. 

One needs to experiment the degree of similarity of both systems in 
representing the same phenomenon — cognitive development. Until now, 
the generation of a more complex neural networks structure was done by a 
sequential addition of network components. Components were added to the 
existing structure as needed to improve the learning capabilities of the 
model (Fahlman and Lebiere, 1990). However, as new components are 
added to the existing network, the generative procedure already implied that 
each higher complexity structure was built out of the lower complexity 
structure. Furthermore, the reorganization of existing components has not 
been studied. Furthermore, if new components are added to the existing 
structure as they are in current generative architectures, the lower 
complexity structure is substituted by the higher complexity structure. This 
contradicts the cognitive capacity to move up and down in problem solving 
complexity according to the information it receives and does not allow that 
lower-order structures are protected from the interference of the emergence 
of higher-order structures. 
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1.3. Computational Plausibility  

Two important works conducted so far within the scope of cognitive 
development in a connectionist model (Elman, 1993; Norris, 1990) have 
been mentioned already (Chapter II, Section A). These underline the 
necessity of building a system in stacks, where each stack solves a less 
complex portion of the problem than its successor stack. Another work 
conducted with modular neural networks shows that hierarchical 
connections between modules is biologically plausible, and 
computationally, reduces the cost of the entire system and improves results 
(Mengistu et al., 2016). 

Yet, all these works had no general stage theory backing up 
their computational approach. In other words, they have not a 
structural criterion for determining what a stack is and what a 
stack aims to represent. 

In the present proposal, the MHC is used to provide a structural basis 
to the model. Several properties of the MHC provide for its computational 
representation. The MHC shows that the complexity of human mental 
activity is incremental in nature and that stages are equally spaced 
(Commons et al., 2014b), which counterparts a stack approach. Actually, a 
fundamental idea of stage theory is that cognitive abilities develop 
throughout a specified and largely invariant sequence that allows no 
skipping between stages (Commons et al., 2014b; Dawson-Tunik et al., 
2005). It shows that the hierarchical configuration of tasks-actions and how 
it stands for characterizing human development is domain independent 
(Giri et al., 2014), which shows that the MHC is a structure driven approach 
and improves the plausibility of the proposed method. Also, it shows that 
this structure explains human behavior beyond formal stages, which stands 
for characterizing higher-order cognition, apparently exclusive of human 
reasoning abilities (Commons et al., 2014a). Finally, the MHC only needs 
to assume that elements exist, providing an assessment framework suitable 
for evaluating and comparing human and non-human behavior, including 
machines (Commons, 2008; Commons and Pekker, 2008). 
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1.4. The Simulation Context 

The simulation context is the Balance Scale Test. It is one of the tests 
that has been used to study a child’s cognitive development (Dandurand 
and Shultz, 2009; Dawson-Tunik et al., 2010; Siegler and Chen, 2002). 
Since 1990, it has been repeatedly used as a case-study for computational 
simulation (McClelland, 1989). Although apparently simple, this tests 
presents a set of challenging characteristics for simulation, which 
specifically deal with problem difficulty and difficulty transitions. 
Although there are many different connectionist simulations for this test, 
the OHC of its sub-problems has never been manipulated. 

The test has been extensively reviewed in Chapter II, Section B. It was 
early created by Piaget to test children’s developmental stage (Inhelder and 
Piaget, 1958). A few years later, Siegler created an information processing 
method of the same test so as to standardize behavioral assessment (Klahr 
and Siegler, 1978; Siegler and Chen, 2002). His version consists of 
presenting a beam with various weights placed at various distances from 
the fulcrum, creating different configurations. The MHC measures the 
difficulty of problems, or configurations, as OHC and ascribes more 
precision to the behavioral assessment (Dawson-Tunik et al., 2010). The 
MHC created a pen-and-pencil version of the test, asking children to 
complete the configurations so that the beam balanced. The simulations 
conducted in this work will be based on the MHC assessment method, by 
segregating balance scale configurations by OHC. However, the 
representation of configurations will remain similar to Siegler’s 
representation, so as to equalize the number and type of output classes per 
OHC. What matters is that each OHC is represented by a certain operation 
(Count, Sum, Multiplication, and Distributive Law) (Table 2). Also, current 
simulations will go up to the Systematic stage because Meta-systematic 
configurations of the balance scale test present some inconsistencies (not 
object of the present work). Importantly, this systematic order  has been 
behaviorally tested (Commons et al., 2008; Dawson-Tunik et al., 2010), but 
has not been tested before in connectionist models. 
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1.4.1. Data Representing the Balance Scale Test 

Data representing all possible configurations of the balance scale test 
were simulated in two sets, A and B. Order-1 problems correspond to those 
solved at stage 9 (Concrete) and represent concrete problems; order-2 
problems correspond to those solved at stage 10 (Abstract) and represent 
abstract problems; order-3 problems correspond to those that are only 
solved at stage 11 (Formal) and represent formal problems (Dawson-Tunik 
et al., 2010); and order-4 problems correspond to those solved at stage 12 
(Systematic) and represent systematic problems, where a coordination 
between sum and multiplication need to be applied (Table 8). 

Table 8 — Operations per OHC problem 

Problems Operation 

Order-1 (concrete) 
Count how many pegs exist on each side 

Count how many weights exist on each side 
Order-2 (abstract) Sum weight and distance on each side 
Order-3 (formal) Multiply weight by distance on each side 

Order-4 (systematic) Distributive law applied on each side 
 

The first set A is a one-arm beam that contains all configurations, with 
problems ranging from the concrete to the formal stage. The second set B 
is a two-arm beam that contains all configurations, with problems ranging 
from the concrete to the systematic stage (Figure 15). 

 

Figure 15 — Representation of a one-arm beam (top beam) and of a two-arm 
beam (bottom beam) 

Balance Scale configurations of set A are represented as 4 integer-
element input vectors, where weight and distance values ranged from 1 to 
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20. Balance Scale configurations of set B are represented as 8 integer-
element input vectors (Table 9). Because the possible number of cases for 
the systematic configurations would be very high, we decided to limit the 
range of weights and distances from 1 to 5. Outputs were Boolean 3-
element vectors that represented one of each three possible classes – fall 
right [0 0 1], fall left [1 0 0], and balance [0 1 0]. Datasets were segmented 
so as to allow for controlling for the number of problem dimensions. The 
systematic-order configuration of the balance scale test increases the 
number of dimensions for problem solving (composed of two sets of 
weights per side or consisting in a four-arm beam), and uses the same 
operations as before — sum and multiplication. A slight change in the 
operations is present, though. Whereas at the abstract stage only sum was 
necessary and at the formal stage only multiplication was necessary 
(Dawson-Tunik et al., 2010; Leite et al., submitted), now both sum and 
multiplication need to be coordinately applied, by using the distributive 
law. In particular, the distributive law suggests that the task of evaluating 
𝑎 + 𝑏 	×	𝑐 is more hierarchically complex than evaluating 𝑎 + 𝑏 + 𝑐 or 
𝑎	×	𝑏	×	𝑐. Hence, the distributive law is of an order of complexity above 
than sum or multiplication alone and implies a stage transition. Whereas the 
organization of the actions of addition or multiplication is arbitrary, the 
organization of the two actions composing the distributive law is non-
arbitrary. Therefore, the distributive law is more hierarchically complex 
than addition or multiplication. Similarly, in the two-part task of first 
evaluating	 𝑎 + 𝑏  and then evaluating 𝑐	×	𝑑  yields the same result as 
first evaluating 𝑐	×	𝑑  and then 𝑎 + 𝑏 . Whenever there is no need of 
organizing actions in a non-arbitrary way, the MHC says that there is no 
increase in hierarchical complexity so there is no stage transition 
(Commons and Pekker, 2008). Otherwise is also true. The dataset 
segmentation aims at allowing for discriminating the impact of the number 
of dimensions and the operations conducted. 
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Table 9 — Representation of Datasets A and B 

𝐴′ = 	
+,-./012345
+,-./06785

9-:0;<=,12345
9-:0;<=,6785

 𝐵′ = 	

?72345_A12345
?72345_A6785

B2C5DEF7_A12345
B2C5DEF7_A6785
?72345_G12345
?72345_G6785

B2C5DEF7_G12345
B2C5DEF7_G6785

 

 

For set A, the problem space was then partitioned into three subsets, 
each corresponding to each order of complexity (Table 10).  

Table 10 — Inputs per order of problem complexity and respective examples 
for dataset A 

Order of 
configurations 

Operation Input example 
Expected 

result 

1 

Count how many 
pegs exist on each 

side 
[2, 2, 12, 16] [1, 0, 0] 

Count how many 
weights exist on 

each side 
[2, 12, 11, 11] [0, 0, 1] 

2 
Sum weight and 
distance on each 

side 
[10, 6, 10, 5] [0, 0, 1] 

3 
Multiplies weight 
and distance on 

each side 
[3, 1, 6, 18] [0, 0, 1] 

 

For set B, the problem space was partitioned into four subsets, each 
corresponding to an order of hierarchical complexity (Table 11). 
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Table 11 — Inputs per order of problem complexity and respective examples for 
dataset B 

Order of 
configurations Operation Input example 

Expected 
result 

1 

Count how many 
pegs exist on each 

side 
[5, 5, 1, 1, 5, 5, 4, 3] [1, 0, 0] 

Count how many 
weights exist on 

each side 
[2, 4, 5, 5, 4, 1, 5, 5] [1, 0, 0] 

2 
Sum weight and 
distance on each 

side 
[3, 5, 5, 3, 5, 4, 1, 1] [0, 0, 1] 

3 
Multiply weight by 

distance on each 
side 

[5, 3, 1, 1, 2, 4, 2, 2] [0, 0, 1] 

4 
Distributive law 
applied on each 

side 
[5, 3, 2, 5, 2, 4, 5, 2] [1, 0, 0] 

 

Data was, then, partitioned into training (70%), validation (15%), and 
test (15%) per each order of complexity problem. The number of cases per 
class differed per experiment, so each experiment in the following chapter 
will include a reference to that. 

1.5. Neural Networks Models 

There is a difference between applying this method to the field of 
developmental cognitive neuroscience and to the field of AI. The difference 
is that while looking into the brain allows to see how stages are (already) 
represented, in a connectionist model, the structure underlying each stage 
needs to be found. To find out how it is that each stack represents problem-
solving at each sequential OHC can be extremely difficult for two main 
reasons. First, the number of hyper-parameters that influence learning in a 
neural network model in combination with the characteristics of the inputs 
it receives is huge. Second, there is a common risk associated with 
simulating cognitive phenomena with ANN. If a network has a sufficient 
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number of units connected with each other, the information will be 
sufficiently distributed throughout the network. This will result in a system 
where inputs will always be accurately transformed into outputs. 

The risk is that the researcher is falsely led to believe that 
cognitive procedures have been simulated with biological 
reliability, while the artificial system has only been able to 
create a mathematical mapping between inputs and desired 
outputs (Cassimatis, 2012). 

The challenge, then, is to initiate the search of the minimal complexity 
connectionist structure that solves cognitive problems of each OHC, 
separately and independently, such that it [the connectionist structure] is 
more likely to inform about the possible structure of information processing 
of the nervous system per stage of development. 

Networks per each OHC problem of the balance scale test were 
created. For order-1 problems, two networks were created, one for solving 
weight problems, and another for solving distance problems. This is based 
on the notion that for order-1 problems (stage 9), the cognitive structure 
either solves weight problems or distance problems separately, indicating 
that children shift their attention to one or the other dimension alone. 

1.5.1. Networks Structure 

Several neural network models were trained to solve each OHC 
problems separately and independently. These networks were created using 
the neural network toolbox available in MatLab®, R2016b. All hyper-
parameters and stopping criteria were defined heuristically and kept 
constant throughout all experiments, with three exceptions. Exceptions 
were the number of units per layer, the number of layers, and the 
connectivity pattern among units (Figure 16). 

In order to find the minimal complexity structure, units per layer were 
added sequentially, one-by-one. Networks were composed by either an 
internal layer (perceptron networks) or two layers (hidden-layer networks) 
plus the output layer. For hidden-layer networks, for each number of units 
in the internal layer (first layer), hidden units were sequentially added in the 
hidden layer (second layer). Units were added until one of two stopping 
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criteria was reached — either if the current network reached a learning 
accuracy of 100% or if the number of units had achieved the maximum. 
The upper bound of the number of units 𝑁/I was set equal to 20, according 
to (Equation 1): 

 
where 𝑁: is the number of training samples,  𝑁- is the number of input 

units, 𝑁J is the number of output units, and 𝑝 is an arbitrary scalling factor, 
usually set between 2 and 10, here set equal to 7. This resulted in a 
maximum of 23 units for order-2 problems and a total of 35 units for order-
3 problems. However, during training, it was determined that adding more 
than 20 units per layer, in both order problems, was not informative. The 
maximum number of units was, then, based on the above equation but 
adapted to the current case. In the case of perceptron networks, 20 
possibilities were tested per OHC; in the case of hidden-layer networks, 400 
possibilities were tested (20 units in the internal layer × 20 hidden units). 
Each possibility was repeated over 20 trials to compensate for the random 
generation of initial weights. 

In regards to the connectivity pattern among units, in the first and 
second studies, all networks were feedforward fully-connected 
architectures. In the third experiment, five different connectivity patterns 
were tested, as specified in the respective subsection of the following 
chapter. Per each connectivity pattern, the procedure of addition of units 
and layers remained, as well as the stopping criteria. In this experiment, 
only models for order-3 (Formal) and order-4 problems (Systematic) were 
trained, due to the results of previous experiments. Models for order-3 
problems were trained using perceptron and hidden-layer networks. If 
stopping criteria did not apply, a total of 20 perceptron networks (1 to 20 
units in the internal layer) and 400 hidden-layer networks would be tested 
(20 units in the internal layer × 20 units in the hidden layer) per connectivity 
pattern (5 types). In total, 2020 networks were trained. For systematic 
problems, given that only hidden-layer networks were trained, a total of 
2000 networks were trained. 

𝑁/I = 	
𝑁:

𝑝	×	 𝑁- + 𝑁J
 Equation 1 
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Figure 16 — Figure scheme of experiments 

1.5.2. Networks Learning 

Activation Functions: The sigmoid activation function was set to the 
hidden units; the normalized exponential function (softmax) was set to the 
output units, as the present learning environment consists of a classification 
task. 

Initialization weights: In experiments 1, 2, and 3, weights were 
initialized according to the Nguyen-Widrow initialization algorithm, which 
chooses values in order to distribute the active region of each neuron in the 
layer approximately evenly across the layer’s input space. The values differ 
each time the network is initialized. In experiment 4, the weights of the 
lower order network, after training, were the initial weights of the higher 
order network. 

Learning Algorithm: The gradient descent algorithm with adaptive 
learning rate (lr) was chosen, with initial lr = 0.01. The learning rate 
changes as the network outputs a success or a failure during training. At 

each epoch e, if LMMNM(,)	
LMMNM(,QR)

 > 1.04, then, the lr(e+1) = 0.7 (lr(e)) and weights 

and biases of epoch e are discarded. Otherwise, lr(e+1) = 1.05 (lr(e)) and the 
weights and biases of epoch e are kept. 

Cost function: The cross-entropy loss function (CE), calculated as 
(Equation 2) 
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𝐶𝐸 = 	−𝑡	×	log	(𝑦) Equation 2 

 

Stopping criteria per network: A maximum of 10 validation steps or a 
minimum performance of 0.001 were set. As soon as one of these were 
reached, the network would stop training. 

1.5.3. Networks Performance 

All trained networks were evaluated based on mean total accuracy 
(𝐴0), total number of connections (𝑁=), and an inverse measure of efficiency 
(𝐸𝐹). 𝐴0 is the mean total accuracy of networks averaged across each set of 
20 trials. 𝐸𝐹 was calculated to identify the optimized point between 
increase in accuracy and increase in computational cost as units were added 
(Equation 3). Here, 𝐸𝐹/I represents the inverse efficiency value per number 
of units, 𝑁= represents the number of total connections of the network, and 
𝑒R.^ represents the mean error generated by the network potentiated to an 
arbitrarily defined parameter of 1.5. This parameter overweighs an increase 
in accuracy against an increase in cost such that successes are reinforced. 
After calculating the EF value, the difference in EF (DiffEF) was calculated 
(Equation 4). Negative values of DiffEF correspond to local minima of the 
EF function, which correspond to increases in Efficiency and allowed for 
selecting the best network per order of complexity problem. 

𝐸𝐹/I =
1

𝑁=×	𝑒R.^
 Equation 3 

 
𝐷𝑖𝑓𝑓cd = 𝐸𝐹/I − 𝐸𝐹/IQR Equation 4 

 
After selection, network structures of adjacent orders of complexity 

were compared in terms of changes in structure and accuracy. The fourth 
study used the selected networks across experiments 2 and 3 to extract a 
progression of change throughout network structures of adjacent OHC. For 
that, a difference in the hyper-parameters was included, regarding the 
initialization weights, as mentioned above. 
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2. What Next 

The present section exposed a method that will, hopefully, allow for 
answering the research question: “When a developmental transition occurs, 
the system changes from what to what, and how?”. For that, two steps need 
to be accomplished: 

1) to determine the structure of each stack per OHC and 2) to 
compare the structure of adjacent stacks, such that, 
eventually, a progression of change (or connectionist 
development) can be determined. 
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 CHAPTER IV 

EXPERIMENTAL STUDIES FOR 
SIMULATING COGNITIVE DEVELOPMENT 

IN A CONNECTIONIST MODEL 

The methodological considerations and procedures delineated in the 
previous Chapter III are transversal to all the four studies that are contained 
in the present Chapter IV. The present chapter begins with a preliminary 
section, which highlights the main findings. The section containing the four 
studies follows. The first and second studies, respectively, respond to the 
third objective “Identification of the factors underlying the representation 
of stages of development”. They investigate the relative influence of the 
number of problem dimensions and the required operations for successful 
problem-solving at each stack. The fourth objective “Modelling structural 
changes across connectionist stacks” is responded by all the four studies. 
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The first two, already mentioned, are two-folded, then. They also 
investigate how problem-solving of different OHC are represented in 
segregated connectionist stacks, when the number of units and layers is 
allowed to vary. The third study investigates how OHC are represented if 
the connectivity pattern among units also varies. Finally, the fourth study 
builds on the results of previous studies and shows that the previously found 
connectionist structures can emerge out of one another, forming a 
Hierarchical Stacked Neural Networks that grows in structural complexity, 
simulating cognitive development.
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• Connectionist structures per stack are able to represent the OHC by 
varying the number of units per layer, the number of layers, and the 
connectivity pattern among units 

• Connectionist structures per stack increase in complexity (concerning 
the number of units and layers) in a non-linear way 

• If balance scale problems are segregated by OHC, formal problems are 
solved with 100% accuracy 

• There are two types of structural transitions 
• Memory-based occur when the number of problem dimensions 

increases, from the concrete to the abstract stage 
• Operationally-based occur when the complexity of the required 

operation increases, from the abstract to formal and from formal to 
systematic stage, exclusive of higher-order cognition 

• In terms of developmental progression, it was possible to identify that 
a higher-order structure included the components of a lower-order 
structure, even with networks being trained separately and completely 
independently 

• Different departing structures can be the starting point for higher-order 
structures, if adjacent structures share the connectivity pattern 

• The densest connectivity pattern for networks with input connectivity 
showed the best improvements in performance, the highest resistance 
to learning rate modifications, and the best plausibility in the structural 
growth process 

• There was a slight tendency for networks with different number of 
units and different connectivity patterns converging to the same 
number of connections for formal and systematic problems 

• This suggests that, instead of Hierarchical Integration of lower order 
actions, or outputs, one might talk about “hierarchical structural 
integration”, where “the higher-order structure is formed out of the 
lower-order structure” 
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In order to maximize the similitude between human cognition and 
artificial models, one should adopt a longitudinal perspective-taking and 
simulate the development of cognitive abilities. The idea is to build an 
algorithm that not only learns, but one that also develops. As connectionist 
models are widely used to learn many complex problems, they started to be 
used to solve a more intriguing problem — the problem of solving a task 
developmentally. This implies learning simpler problems first and more 
complex ones later, sequentially (McClelland, 1995, 1989; Norris, 1990; 
Shultz and Schmidt, 1991), which has not been an easy task. Coordinating 
learning and development in a connectionist model is the starting point to 
ascribe hierarchical flexibility and stability to the system. 

The difficulty of segregating learning and development in 
connectionist models is intrinsic to the nature of learning in these models. 
They are global compositions of units and weighted connections linking 
those units, or single-corpus models. Previous work has shown that the 
model needs to change its structure as more difficult problems are 
presented. An artificial model of this kind is called a generative architecture 
and has been shown to best approximate a stage-like structure and stage-
like performance in cognitive developmental problems (Dandurand and 
Shultz, 2009; Elman, 1993; Fahlman and Lebiere, 1990; Leite et al., 
submitted; Norris, 1990; Shultz et al., 1994). Yet, as new components are 
added, all weights (the old and the new) change to form a new global 
structure. Furthermore, the properties of problems that triggered the 
recruitment of more candidate components are not a priori set. This results 
in older structures no longer available. For this reason, even existing 
generative models are single-corpus models, lacking the capability of 
hierarchical flexibility and stability, or hierarchical adaptation. 

A developing connectionist model should, thus, transform 
classical connectionist models from a single-corpus of 
knowledge to a step-wise corpus that develops by stacks. 

This fundamental change implies that each connectionist structure 
constitutes a stack and is only formed after the immediately lower order one 
has been formed, trained, and kept in memory. The algorithm needs not 
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only to learn the optimal weight combination per stack, but also to develop 
from one stack to the next. The simulation of stage transition concerns the 
ending of training of a lower-order stack and the formation and initialization 
of training of a higher-order stack. 

Developmental studies are consistent in showing the existence of 
periods of consolidation (stages of performance) and transitional periods 
(stage transitions). Stages are characterized by stable and largely 
homogeneous performance, whereas stage transitions are characterized by 
U-shaped performance (Dawson-Tunik et al., 2005). Stacks are, then, the 
computational synonym of stage of development and stack transition is the 
computational synonym of stage transition. 

Two important questions rise. 1) What homogenizes performance 
within stage and how can stages be simulated in an artificial model? The 
Model of Hierarchical Complexity (MHC) is a general stage theory that 
attributes to problems a unidimensional, abstract, linear and equally-spaced 
order of hierarchical complexity (OHC). The OHC characterizes stages of 
development, predicting cognitive capacity with high accuracy (Giri et al., 
2014). Hence, the MHC introduced an objective and accurate framework 
for explaining homogeneity of performance at each stage. However, it is 
not known yet how a connectionist model would represent OHC. Previous 
work points towards the interaction between operations and input 
dimensions, but this needs to be clarified. The second question is 2) how 
are stage transitions processed and how can they be simulated in an artificial 
model? Unfortunately, the mechanism underlying stage transitions is not 
clarified. Hierarchical Integration (HI) has been proposed at a behavioral 
level, but it finds little to no evidence in brain-based experiments and has 
been invalidated in previous work using connectionist models. Nonetheless, 
stage transitions have been object of attention by artificial learning 
modelers, who strive for building algorithms that learn to solve tasks nearly 
as efficiently and flexibly as humans do. 

1. Summary of Previous Simulations 

In developmental and evolutionary cross-species studies (Commons et 
al., 2014c; Leite, 2016), it has been identified that only humans develop 
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cognitively until they perform formal operations to solve problems. Formal 
operations no longer require the concrete experience of the problem. They 
refer to the ability of operating with abstract and theoretical concepts and 
using logic to creatively find new solutions. Pioneering theories concerning 
developmental cognition consider that the acquisition of formal operations 
is the highest point in problem-solving abilities, opening up the way for 
higher-order cognition (Inhelder and Piaget, 1958). It has been soon 
proposed that cognitive models of artificial learning should capture a 
similar progression in problem solving abilities as seen in living organisms 
(McClelland, 1989), until higher-order cognition is achieved. This idea was 
pioneering in setting forth the overlap between developmental psychology 
and computational cognition. 

The balance scale test is commonly used as a context for reproducing 
stages of cognitive development in connectionist models (Dandurand and 
Shultz, 2009; Dawson and Zimmerman, 2003; Leite et al., submitted; Leite 
and Rodrigues, 2018; McClelland, 1989; Reyes et al., 1997; Schapiro and 
McClelland, 2009; Shultz et al., 1994; Shultz and Cohen, 2004; Shultz and 
Schmidt, 1991; Zimmerman, 1999; Zimmerman and Croker, 2014). The 
goal of these simulations is to ascribe to the connectionist model the ability 
to solve problems through the same sequence as is observed in children — 
from the simpler to the most difficult problems. 

All connectionist simulations of the balance scale test are based on 
Siegler’s approach and refer to the acquisition of the fourth Piagetian stage, 
or eleventh MHC’s stage. All models are fed with all possible 
configurations of the balance scale test. Their performance is evaluated in 
terms of which problems are solved before which and how accurately. All 
these simulations depart from a pre-defined connectionist structure and 
learning algorithms that ideally represent the sequence of Siegler’s rules 
and reproduce the sequence of problem-solving capabilities. Pre-
determined does not mean fixed, as some work has been conducted with 
generative topologies. Simulations based on Siegler’s assessment method 
have limitations, which mainly relate to the controversy of defining 
difficulty of problems (homogeneity within stage) and difficulty transitions 
(stage transitions). 
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These limitations poorly answered the first question posed 
above — what homogenizes performance at a given stage? — 
hence, they poorly allowed for building developmental 
models of human cognition. 

For instance, Siegler postulates that the turning point in difficulty 
concerns the transition from solving problems where only weight or only 
distance on each side vary to solving problems where both dimensions vary 
(Siegler and Chen, 2002), referring to the first transition. Yet, simulations 
show that the most difficult transition refers to the ability of using the 
multiplication operation to solve torque problems (Reyes et al., 1997; 
Shultz et al., 1994; Shultz and Schmidt, 1991), referring to the second 
transition. Namely, intuitive networks, identified as those which learn only 
from examples, perform well on all problems requiring rules I (weight), II 
(distance), and III (large torque conflict problems), but fail to represent rule 
IV (small torque conflict problems that require multiplication). This is 
consistent with the acquisition of formal operations being the turning point 
to higher-order cognition, and raises doubts as to whether the theory 
accurately captured the underlying developmental mechanisms.  

First attempts to simulate human performance on the balance scale test 
assumed the perspective that development is continuous (McClelland, 
1995, 1989). Discrete stage transitions were not taken into account until one 
specific work showed that only a generative architecture could deal with 
the most difficult subset of problems (Shultz and Schmidt, 1991). From then 
on, cascade-correlation neural networks (Shultz et al., 1994; Shultz and 
Schmidt, 1991), and variants of cascade-correlation that attempt to simulate 
the achievement of higher-order rule IV (Dandurand and Shultz, 2009; 
Reyes et al., 1997) have been used. Generative architectures are those 
neural network structures to which units are added as problems become 
more demanding. An indicator of the difficulty of problems is performance 
dropping. The addition of units increases the distributive learning potential 
of the network, decreasing its error again (Fahlman and Lebiere, 1990). 
With these architectures, although rule IV problems could be accurately 
solved (multiplication problems), the model jumped over problems 
requiring rules I and II (Shultz et al., 1995). This is because higher-order 
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structures take over lower-order structures. The solution encountered that 
best solves this subset of more difficult problems has been to inject a torque 
function, by using a Function Based Cascade Correlation architecture 
(Dandurand and Shultz, 2009), or to inject a new assimilation function — 
weighted product instead of weighted sum (Reyes et al., 1997). 

These studies (Dandurand and Shultz, 2009; Reyes et al., 1997) 
already suggest that the structure underlying difficulty transitions is a 
generative one and that the structure for solving the more difficult problems 
needs to change more abruptly. However, the growth in difficulty and 
problem-solving abilities has yet to be explained by any of the previous 
models, as no previous work justifies why intuitive networks perfectly 
solve problems requiring rules I, II, and III, but fail to solve problems 
requiring rule IV. Also, it has yet to be clearly shown what it is that changes 
structurally in both transitions. 

None of existing simulations based on Siegler’s approach 
could yet clearly show what is at stake in developmental 
transitions, specifically in what concerns the transition to 
formal reasoning (Dandurand & Shultz, 2009; Reyes et al., 
1997). 

In terms of transition across stages, the MHC and several other authors 
have proposed that these involve transformations such as HI (Case, 1987; 
Demetriou and Valanides, 1998; Fischer, 1987), a perspective that 
prevailed until nowadays (Commons and Pekker, 2008). HI is primarily a 
Piagetian concept, which postulates that outputs generated at a lower-stage 
of performance become object of outputs to be generated at the immediately 
next stage. Previous simulations, exposed in Chapter II, Section C,  tested 
the mechanism of HI (Leite & Rodrigues, 2018). Results showed that it 
does not apply to the formation of higher-order outputs. Specifically, if the 
model was only fed with lower-order outputs, it would not learn to generate 
higher-order ones. If the model was fed with both lower-order outputs and 
a different set of inputs, such as the original percepts composing the 
problem, the model would never value the information conveyed by lower-
order outputs for the generation of higher-order outputs. 
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The generation of increasingly complex outputs during development 
is here assumed to be the result of the emergence of a new organizational 
and functional pattern. The term “new pattern” applies to behavior, to the 
neural arrangement, and, presumably, to the structure of connectionist 
stacks. Thus, the growth in stage of development always corresponds to the 
generation of a higher-order stack, which implies stack transition. 
Development enables the system to find more complex states of 
equilibrium, which account for solving increasingly complex problems, 
producing increasingly complex operations, and generating increasingly 
complex outputs. Differently, learning refers to the fine-tuning of the active 
stack. Hence, learning occurs within stack, or within stage of development. 
Learning at each stack refers to “consolidate each stage so that it is 
protected from interference caused by learning in the following stages” 
(Norris, 1990). 

2. Present Simulations 

Stage transitions, or stack transitions, are the object of study of the 
following set of four experiments, using connectionist models. This set of 
studies aims at understanding how a connectionist structure grows in 
structural complexity to solve increasingly complex problems (Commons, 
2008), as occurs throughout development. This set of four experiments 
responds to the second and third objectives of the present dissertation. 
Namely, the identification of important factors underlying the 
representation of stages of development in a connectionist stack 
(Experiments 1 and 2), and the modelling of structural changes across 
connectionist stacks (Experiments 1, 2, 3 and 4). 

Networks performance is depicted in graphs, when relevant. All graphs 
depicting this information are similar. Those depicting the performance of 
perceptron networks show the mean total accuracy (At) and standard 
deviations, total number of connections (Nc) and efficiency (EF), as units 
were added in the internal layer, from 1 to 20. Y-coordinate in At values 
represents the mean At calculated over all 20 repetitions. EF was calculated 
as a function of the represented At value. The graphs depicting the 
performance of hidden-layer networks show the mean total accuracy (At) 
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and standard deviations, total number of connections (Nc) and efficiency 
(EF), as units were added in the internal layer, too. Yet, the Y-coordinate 
in At values represents the highest mean At found across units added in the 
hidden layer. The number of units in the hidden layer correspondent to the 
highest value of At is labelled at each point of At. EF values were calculated 
as a function of the represented At value.  
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EXPERIMENT 1 
 

In the balance scale test, the first transition implies an expansion of the 
range of dimensions considered for problem solving. Children go from 
considering weight or distance alone, to considering weight and distance 
together. Differently, the second transition implies that children learn to 
coordinate weight and distance such that small torque differences between 
the sides of the scale are solved (Dandurand and Shultz, 2009; Dawson-
Tunik et al., 2010; Shultz and Schmidt, 1991; Siegler and Chen, 2002). This 
second transition implies not an increase in the range of dimensions, but an 
update of the operations that represent the coordination of weight and 
distance. The fact that this second transition is different from the first one 
suggests that simulations must not only describe the performances at each 
stage, but must also be open to the possibility that transitions from one level 
of difficulty may be different from those at another level. In other words, if 
transitions in difficulty rely on either the number of dimensions or on the 
operation that coordinate the input dimensions, how exactly is difficulty 
represented in connectionist models? 

Is the increase in hierarchical complexity of problems a matter 
of the number of problem dimensions or a matter of the 
operations used to solve it? 

This experiment has a two-folded objective. It aims to determine 1) the 
influence of the number of problem dimensions and the operations 
conducted for representing preformal and formal stages of development in 
connectionist stacks, and 2) the structural changes from preformal to formal 
stages, based on the number of computational units and layers. The 
structure of a connectionist model for each OHC problem will be analyzed 
and models of adjacent OHC problems will be compared. 

Experiment 1 was conducted using dataset A, containing 
configurations from concrete to formal problems. From a total of 160,000 
possible configurations, 15,600 were order-1, 129,860 were order-2, and 
the remaining 14,540 were order-3. In order-2 and order-3 problems, the 
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number of cases per class was balanced, which reduced the subsets to 1140 
and 1740 cases, respectively. 

Results of Experiment 1 

Networks of order-1 and order-2 problems required the same topology 
for learning with 100% accuracy — a minimum complexity structure of 1 
computational unit and 12 connections. Mathematically speaking, both 
order-1 and order-2 problems are linearly separable. Hence, a single-unit 
perceptron network was sufficient. Only when contrasting order-2 and 
order-3 problems did the structure of the networks changed significantly. 
This is congruent with the fact that order-3 problems are not linearly 
separable. Also, from order-2 to order-3 problems, there is a change in the 
operator required to solve the problem, referring to the emergence of formal 
reasoning, while the number of dimensions remains the same.  

For order-1 and order-2 problems, once the topology was similar, 
changes in the weight matrices of all three networks (weight problems, 
distance problems, and conflict large torque problems) were inspected 
(Table 12  and Table 13 ). Table 12  represents the weights that connect 
each of the four input units to the single unit in the internal layer of order-
1 and order-2 networks. Table 13  represents the weights that connect this 
single unit to the 3 units of the output layer in order-1 and order-2 networks. 

Table 12 — Weight matrix between input and internal layers 

 weightrigh weightleft distanceright distanceleft 

Order-1 
distance network 

0.000 -0.001 6.309 -6.308 

Order-1 
weight network 

5.722 -5.776 0.005 -0.005 

Order-2 
network 

4.069 -4.062 4.071 -4.074 
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Table 13 — Weight matrix between internal and output layers 

	 output unit 1 output unit 2 output unit 3 

Order-1 
distance network 9.458 0.239 -9.026 

Order-1 
weight network 8.538 0.211 -8.078 

Order-2 
network 8.646 0.269 -8.206 

 

Table 12 clearly shows that networks for order-1 problems represent a 
shift from one dimension to the other. Either distance or weight have non-
zero weights, which is quite obvious due to the structure of inputs (either 
weight or distance alone varied). In the network for order-2 problems, both 
dimensions — weight and distance — become coordinated. This 
coordination is represented by a superimposition of the weight matrices of 
the networks for both order-1 problems. Specifically, the right side is 
represented by positive weights and the left side is represented by negative 
weights of the same magnitude. This is interesting given that order-1 
networks were trained separately, with random initial weights. In what 
concerns the weights between the internal layer and the output layer (Table 
13), no significant differences were found. 

In what refers to order-3 problems, the required structure changed 
significantly. Table 14 identifies the preferential topology of each order-3 
networks, both perceptron and hidden-layer networks, based on negative 
values of DiffEF. More than 3 negative values were found. In the table, only 
those of the same order of magnitude are described. 
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Table 14 — preferential topology of each set of networks for order-3 problems 

Network 
type 

Diff 
EF 

Units 
(internal 

layer) 

Units 
(hidden 
layer) 

Connections 
Mean 

Accuracy 
(%) (∓ sd) 

Max 
accuracy 

(%) 
       

Perceptron 
networks 

-5.95 12 — 99 73,60 (± 2.43) 77,18 
-1,47 3 — 27 59,85 (± 7.86) 67,15 
-0,04 20 — 163 74,93 (± 2.79) 79,37 

       

Hidden-
layer 

network 

-418,12 14 7 199 67,85 (∓4,16) 81,32 
-208,51 10 9 179 67,13 (∓3,67) 77,41 
-198,36 19 11 351 68,90 (∓10,70) 85,57 

 

 

Figure 17 — Topology and performance of perceptron networks and hidden-layer 
networks in total accuracy (At), total number of connections (Nc) and Efficiency 

(EF) for order-3 problems 
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From the graphs (Figure 17), it is possible to observe that hidden-layer 
networks have higher variability due to the higher number of connections 
among units. Also, the difference between mean At and highest At is greater 
for hidden-layer networks than for perceptron networks (Table 14). 
Nonetheless, hidden-layer networks have a higher potential to learn the 
solution more accurately. It is important to state that a higher variability, in 
the present case, is not due to the ratio between number of training cases 
and total number of connections, as these ratios are approximately similar 
for perceptron networks and hidden layer network. 

Discussion of Experiment 1 

The most informative result is the confirmation that the two 
transitions comprising the balance scale test are of a different 
nature and that this difference is captured by the structure of 
networks. 

In the first transition, from order-1 to order-2 problem-solving, 
although the number of units and connections do not change, the weight 
matrices did change in a significant manner. The weight matrices of both 
networks for order-1 problems were superimposed to form the weight 
matrix of the network for order-2 problems. This is interpreted as a 
computational synonym of accommodation of previous knowledge. In a 
coarse-grained interpretation, this suggests a transition in difficulty perhaps 
based on a memory expansion. According to neuroscience developmental 
findings (Qin et al., 2014), as children learn to operate with a specific set of 
information, knowledge about specific problem-solving becomes stored in 
hippocampal memory. This results in a faster and less consuming retrieval 
of information, which allows new knowledge to be acquired (Zimmerman 
and Croker, 2014). A possibility about the interpretation of the first 
transition is that it captures predominantly on such memory-based 
mechanisms, allowing for order-1 knowledge to be chunked to form order-
2 knowledge (Sweller, 2004), according to the present simulation context. 
In terms of the operation conducted, from counting to summing, one can 
deduce that summing is a matter of counting with more elements. In fact, 
counting is represented by the same operator “+”. 
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In the second transition, the number of dimensions remains the same, 
and the operator changes. While order-2 problems require the use of sum, 
order-3 problems require the use of multiplication. For this reason, and 
based on previous studies (Dandurand and Shultz, 2009; Reyes et al., 1997), 
a complexity jump in information processing was identified. This jump 
consists in a shift from a perceptually-based to a formally-based 
consideration of the problem. It is easy for children to coordinate weight 
and distance when they are manipulating objects, but it is much harder to 
put together cause and effect for two variables (Zimmerman and Croker, 
2014), which characterizes formal reasoning (Dawson-Tunik et al., 2010). 
That was seen in the results. Neural networks for solving order-3 problems 
required a more complex structure to encode the multiplication operation. 
In line with previous studies (Richardson et al., 2018), adding a hidden layer 
showed a greater potential to encode order-3 problems than increasing the 
number of units in a perceptron network, although other properties and 
functions should be tested. These results indicate that from order-2 to order-
3 problems there is a structurally deepest transition in difficulty, suggesting 
that orders of hierarchical complexity are not equally spaced (Commons et 
al., 2014b), at least if represented in a connectionist model of the present 
type.  
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EXPERIMENT 2 
 

Experiment 2 was conducted using the dataset B, comprising problems 
from concrete to systematic. 

Given that dataset B consists of a two-arm beam, the impact 
of the number of problem dimensions used to characterize the 
same set of problems will be evaluated. 

Furthermore, structural changes from the concrete to the systematic 
problem-solving will also be evaluated. According to the MHC, it was 
hypothesized that the connectionist structure for solving systematic 
problems is more complex than that for solving formal problems, due to the 
distributive law, and that the transition from formal to systematic is an 
operationally-based transition. Yet, according to the distributive property 
of connectionist models, one can, as well, expect that the new coordination 
rule is a matter of information distribution conducted within the model, 
once the arithmetic operations for the systematic stage are the same (sum 
and multiplication). The present experiment, then, aims at 1) determining 
the influence of the number of problem dimensions at all OHC, given that 
all OHC problems are represented in a two-arm beam, and at 2) determining 
the nature of the transition from formal to postformal stage. 

The number of cases per class was balanced, using the number of 
“balancing cases” as a reference. At last, there were 1011 cases of order-1 
configurations, 5790 of order-2, 1128 of order-3, and 658 of order-4. Data 
was, then, partitioned into training (70%), validation (15%), and test (15%) 
for each order of complexity problem. 

Results of Experiment 2 

As in the previous experiment, networks for order-1 and order-2 
problems learned with maximum accuracy (100%) with the minimal 
structure of one unit and a total of 12 and 16 active connections, 
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respectively. Namely, order-1 networks for weight problems did not use the 
four connections responsible for encoding distance, and otherwise. 

For order-1 problems, the weight matrices of both weight and distance 
problems networks clearly show the shifting of attention between both 
dimensions (Table 15). In networks for order-2 complexity problems, the 
weight matrix between the input and internal layer illustrates that order-2 
problem-solving coordinates both weight and distance inputs, by 
superimposing both weight matrices of networks for order-1 problems. 
Learning epochs and time do not allow for discriminating the performance 
of the models (Table 16). 

Table 15 — Weight matrices between input and internal layers 

 Wr(1) Wl(1) Dr(1) Dl(1) Wr(2) Wl(2) Dr(2) Dl(2) 
Order-1 

(distance prob.) 0,00 0,00 -3,61 3,59 0,00 0,00 -3,60 3,58 

Order-1 
(weight prob.) -3,13 3,13 -0,01 0,00 -3,12 3,12 0,00 0,01 

Order-2 
network -3,40 3,40 -3,40 3,40 -3,40 3,40 -3,40 3,40 

 

Table 16 — Performance parameters of order-1 and order-2 networks  

 Accuracy # Epochs Best 
epoch Time (s) 

Order-1 
(distance prob.) 100% 221 211 0,55 

Order-1 
(weight prob.) 100% 175 175 0,43 

Order-2 
network 100% 250 244 0,83 

 

Also, similarly to the previous experiment, the performance of 
networks for solving order-3 and order-4 problems required a more 
complex structure. Their performance is depicted in Figure 18 and Figure 
19, respectively. Following the figures, Table 17 and Table 19 identify the 
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preferential structure of each set of selected networks (perceptron and 
hidden-layer) for each OHC problem, based on negative values of DiffEF. 
Table 18 and Table 20 describe the performance of each selected network, 
also for each OHC problem. In each pair of tables (for order-3 and order-4 
problems), the selected networks are numbered to facilitate comparison 
across tables. 

Networks for solving order-3 formal problems, composed of 12 units 
and 147 connections, learned the problem perfectly, performing with 100% 
on the test set. In Figure 18 (top graph), it can be observed that networks 
become increasingly efficient after the addition of 5 units, reaching 
maximum performance with 12 units, showing that the increase in units is 
highly favoring the increase in accuracy. 

Hidden-layer networks were also trained on order-3 formal problems 
to evaluate whether the addition of another layer of computations would 
maintain accuracy and decrease the number of total units and total 
connections (Figure 18, bottom graph). Yet, that was not verified (Table 
17). Furthermore, efficiency in hidden-layer networks is highly non-linear 
due to the increased number of connections. 
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Figure 18 — Topology and performance of perceptron networks and hidden-layer 
networks in total accuracy (At), total number of connections (Nc) and Efficiency 

(EF) for order-3 problems 
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Table 17 — Preferential topology of network for order-3 problems 

Network type Diff EF 
Units 

(internal 
layer) 

Units 
(hidden 
layer) 

Connections 

Perceptron 
network — 12 — 147 

Hidden-layer 
network -1046,78 17 2 198 

 

Table 18 — Performance of best network for order-3 problems 

Network type Mean 
Accuracy (∓ sd) 

Max 
Accuracy  Epochs Best Epoch 

Perceptron 
network — 100% 519 509 

Hidden-layer 
network 50,73% (∓25,42) 99,20% 738 727 

 

Networks for solving order-4 problems required a more complex 
structure than networks for order-3 problems. Their maximum accuracy 
was lower. This was true for both perceptron networks and for hidden-layer 
networks (Table 19).  

Interestingly, for perceptron networks of both orders, different 
performance patterns were found. For order-4 problems, the addition of 
units in perceptron networks allowed only for a small and subtle increase 
in learning accuracy, which resulted in an approximately linear decrease in 
networks’ efficiency (Figure 19, top graph). Furthermore, only after the 
addition of 15 units, did the perceptron networks for order-4 problems 
learned with an accuracy above 86% (but never surpassing 87,8%). In sum, 
while a perceptron network for order-3 problems benefitted from the 
addition of units and reached total accuracy (100%) with a minimum of 12 
units, perceptron networks for order-4 problems seemed to face an increase 
in the computational cost as units are added, requiring a minimum of 16 
units to reach lower accuracy (> 86%). 
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Then, hidden-layer networks were trained to solve order-4 systematic 
problems and to evaluate whether the addition of another layer would have 
a positive effect on the network’s performance. It was found that networks 
with 10 units, or more, in the internal layer and a variable number of units 
in the hidden layer achieved an accuracy bounded by 85% and 87,7%, 
which was similar to perceptron networks with a minimum of 16 units 
(Table 19). Furthermore, in hidden-layer networks for order-4 problems, 
accuracy was highly variable across trials (Table 20), as well as their 
efficiency as units were added. This was due to the increased number of 
connections. 

 

Figure 19 — Topology and performance of perceptron networks and hidden-layer 
networks in total accuracy (At), total number of connections (Nc) and Efficiency 

(EF) for order-4 problems 

 



Connectionist Models Capturing Stages and Stage Transitions 

178 

Table 19 — Preferential topology of network for order-4 problems 

Network 
type 

Numbered 
selected 

networks 
Diff EF Units 

(1st layer) 
Units 

(hidden layer) Connections 

 

Perceptron 
network 

1 -18,72 20 — 243 
2 -14,89 16 — 195 

 

Hidden-
layer 

network 

3 -934,85 11 8 222 
4 -566,99 17 13 429 
5 -474.81 18 10 385 

 

Table 20 — Performance of best network for order-4 problems 

Network type 
Numbered 

selected 
networks 

Mean 
Accuracy (%) 

Max 
Accuracy (%) Epochs Best Epoch 

 

Perceptron 
network 

1 63,82 (∓8,14) 75,68 173 167 
2 80,70 (∓3,45) 86,17 196 190 

 

Hidden-layer 
network 

3 61,84 (∓27,51) 90,91 322 311 
4 67,72 (∓26,16) 92,93 204 194 
5 62,58 (∓26,58) 90,91 202 192 

 

For both orders of complexity problems (order-3 and order-4), 
perceptron networks seem to be more, or equally, reliable in terms of 
learning accuracy, more stable in terms of performance across trials, and to 
present a more linear evolution as units are added. Yet, perceptron networks 
for order-4 problems seem to not benefit as much from the addition of units. 
Hence, it is deduced that perceptron networks are more suitable for learning 
order-3 complexity problems, whereas hidden-networks are more suitable 
for learning order-4 complexity problems. 

Finally, it is important to mention that the entire experiment was run 
several times with random selection of training cases and random 
initialization weights. Results remained similar across all simulations, 
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including the same optimal number of units in the hidden layer per number 
of units in the internal layer (and the same levels of accuracy). Moreover, 
the same experiment was also run with the same number of training and test 
cases per order of problem complexity (N = 522), as well as the same 
number of falling left, balancing, and falling right configurations per order. 
This secondary test aimed at clarifying whether the different number of 
training cases had influenced the results, which it did not. 

Discussion of Experiment 2 

The connectionist structure required for concrete and abstract order 
problems is the same as found in Experiment 1. Differently, order-3 
problems in a two-arm beam were solved with 100% accuracy, but not in a 
one-arm beam. This fact raises an interesting issue. 

For the formal order of complexity, where the operation is 
more complex, the increase in the number of problem 
dimensions favored learning. 

Furthermore, while in a two-arm beam the optimal structure was a 
perceptron network, in a one-arm beam the optimal structure for solving 
formal problems was found to be a hidden-layer network. Even though, 
maximum accuracy of one-arm hidden-layer networks was approximately 
85%. It seems that connectionist structures take advantage of having more 
input units to distribute the information until an output is generated, or, 
given less input dimensions, they require distributed connections across 
orders. This calls attention to an important aspect — there are properties of 
artificial learning models that might interfere with the properties of 
problems one wants to simulate, which stresses the importance of re-
questioning how to better integrate these properties with artificial learning 
system’s properties themselves. Namely, in humans, an increased number 
of problem dimensions is associated with an increased cognitive load, 
which decreases performance. 

In regards to systematic problem-solving, it was found that both a 
perceptron network and a hidden-layer network learned to solve the 
problem with similar values of accuracy. 
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Accuracy was always below 86%, which shows that 
something else needs to change in the structure of the system 
such that high levels of accuracy are maintained. 

The most relevant fact is that, in systematic problems, the efficiency 
curve shows that the addition of units in a perceptron network does not 
benefit learning, whereas the addition of units in hidden layer networks 
does. Second, even if a perceptron network was chosen as the optimal 
structure, the number of internal units would need to double as compared 
to the structure for formal problems. 

In terms of transitions, although there was an interaction between the 
number of problem dimensions and the operations to be conducted, results 
did not change the nature of transitions across orders. In both experiments 
1 and 2, the transition from concrete to abstract was memory-based (same 
number of units), and from abstract to formal was operationally-based 
(same number of layers, different number of units). Results also indicate 
that the transition from formal to systematic problem-solving is an 
operationally-based transition, according to the hypothesis. The idea that 
there are complexity jumps is kept, as has been repeatedly observed in 
behavioral experimental paradigms. Yet, the way the system needs to grow 
to account for more complex problems appears not to be linear. Even within 
operationally-based transitions, the system does not grow in a linear 
manner.  
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EXPERIMENT 3 
 

The present experiment aims to study the interaction between 
the number of units and the connectivity pattern in neural 
network models as more hierarchically complex problems are 
solved. 

Formal order-3 problems (stage 11) and systematic, order-4 problems 
(stage 12) were trained, separately. Lower orders 1 and 2 (stage 9 and 10) 
will not be included in this experiment because previous ones have shown 
that only one unit is required in the internal layer for the network to learn 
these problems with maximum accuracy of 100%. Hence, for order-3 and 
order-4 problems, five types of connectivity pattern networks were tested 
in hidden layer networks, two of which apply to perceptron networks, too 

(Figure 20, Figure 21,  

Figure 22, Figure 23, Figure 24, Figure 25, and Figure 26). It is 
hypothesized that a more densely connected architecture will require fewer 
units. Another alternative is that, with the same number of units and a 
denser connectivity pattern, the network will perform with higher accuracy. 
This hypothesis is based on the fact that the number of connections linking 
units grows throughout development (Geary, 2011; Johnson, 2011; Leite et 
al., 2016; Peters and Smedt, 2018), accounting for greater plasticity and 
learning abilities, due to a dynamic adjustment “within some fixed 
anatomical parameters” (Qin et al., 2014). The number of cases per OHC 
problem was equalized (N=522), where the percentage of output classes 
(falling left, balancing, falling right) was balanced. 
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Figure 20 — Network 1p: Perceptron Network with Feedforward Connections 

 

Figure 21 — Network 2p: Perceptron network with input connecitivity 

 

Figure 22 — Network 1: Hidden Layer network with Feedforward Neural 
Network 
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Figure 23— Network 2: Hidden Layer network with Input layer connected to the 
Internal and to the Hidden layers 

 

Figure 24— Network 3: Hidden Layer network with Internal layer connected to 
the Hidden and to the Output layers 

 

Figure 25— Network 4: Hidden Layer network with Input layer connected to the 
Internal and to the Hidden layers; and Internal layer connected to the Hidden and 

Output layers 
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Figure 26 — Network 5: Input layer connected to the Internal, Hidden, and 
Output layer 

Results of Experiment 3 

In regards to problem-solving for order-3 problems (formal), 
perceptron networks with different types of connectivity patterns learned 
the problem with 100% accuracy. The feedforward connected network 
required 11 units, whereas the perceptron network with inputs connected to 
both internal and output layers required 9 units. Curiously, both networks 
required exactly the same number of connections, 135, to perform with 
100% accuracy on the test set Table 21. If hidden-layer networks were used, 
three types of connectivity pattern networks performed with 100% (Table 
22). 

Table 21 — Selected perceptron networks for solving order-3 
problems  

 
Units in 

internal layer 
Units in 

hidden layer 
Connections 

Net 1p 11 — 135 
Net 2p 9 — 135 
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Table 22 — Selected hidden-layer networks for solving order-3 
problems  

 
Units in 

internal layer 
Units in 

hidden layer 
Connections 

Net 2 1 7 103 
Net 4 1 10 145 
Net 5 1 4 88 

 

In sum, formal problems were solved with a maximum accuracy by 
many types of networks, namely perceptron networks with different 
connectivity patterns and hidden layer networks with connectivity patterns 
sharing a common feature: all had input units linked to more than the 
internal layer of computations (here called input connectivity). The network 
with densest input connectivity (network 5) required the least number of 
connections. 
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Figure 27 — Graphs representing the Performance and Efficiency of networks for 
solving Systematic problems 

In regards to problem-solving for order-4 problems (systematic), all 
connectivity patterns showed a great variability in accuracy and efficiency 
(Figure 27). Nonetheless, as units were added in the internal layer, all 
network types showed an initial decrease in efficiency, followed by a first 
peak, local minimum. The network correspondent to this local minimum in 
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efficiency has been selected. Table 23 contains the values that describe one 
selected network per type of connectivity pattern. Among all connectivity 
patterns, network 4 shows the best performance. Interestingly, again, two 
networks with different connectivity patterns (network 2 and network 5) 
converged to the optimal solution with almost the same number of 
connections (194 and 195, respectively), and both with inputs linked to 
forthcoming layers. 

Table 23 — Structure of selected network per pattern of connectivity for order-4 problem-solving 

Selected 
network 

Diff EF 
(p – (p-1)) 

Diff EF 
((p+1) – p) 

Connections 
Maximum 
Accuracy 

Mean Accuracy 
(∓	sd) 

Net 1 (7-5) -864.03 169.65 121 94.87% 55.18% (∓28.41) 
Net 2 (1-14) 0* 536.11 194 92.31% 65.61% (∓24.34) 
Net 3 (10-1) -548.68 319.67 137 91.03% 60.87% (∓25.44) 
Net 4 (12-1) -1198.58 1972.13 171 96.15% 56.63% (∓23.15) 
Net 5 (9-4) -1705.64 1635.66 195 91.03% 68.79% (∓18.43) 

* a value of zero indicates that there is no previous value of Efficiency, as this is 
the first network of the sequence. 

Given the decrease in accuracy for solving systematic problems even 
with the addition of hidden units, we performed another cycle of network 
runs. We tested the same input connectivity, but added recurrent 
connections from the hidden to the internal layer. Yet, the addition of 
recurrent connections did not have an impact on the results.   

Finally, given that all these networks are more densely connected than 
feedforward neural networks, it is important to mention that the number of 
connections in the selected networks does not surpass 1/3 of the number of 
training cases. So, results are likely not due to overfitting. 

Discussion of Experiment 3 

Results were clear in demonstrating the interaction between the 
addition of units and the presence of a determined connectivity pattern. 
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They showed that when a determined connectivity pattern is 
present, performance increases. This connectivity pattern 
consists of linking input units to internal and to the 
forthcoming layers of computation: hidden and output layer. 

These networks are here called networks with input connectivity. 
When this pattern was present, the best performance was found in networks 
that converged to the same total number of connections. Moreover, 
networks with input connectivity, either perceptron or hidden-layer 
networks, surpassed performance of previous simulations.  

Formal problems, those where multiplication needs to be encoded to 
account for small torque differences, were solved with 100% accuracy. In 
what refers to perceptron networks, interestingly, networks with and 
without input connectivity recruited a number of units that resulted in the 
same number of connections. For hidden-layer networks, only those with 
input connectivity did learn the problem with 100% accuracy, but there was 
no tendency of converging to the same number of connections. The most 
important aspect was that the densest connectivity pattern recruited the least 
total number of units (8) and the least number of connections (88). For 
systematic problems, two of the three networks with input connectivity 
converged, again, to the same number of connections, approximately (194 
and 195). The third one (with input connectivity) did achieve higher 
maximum accuracy above all. What seems to be most important is that, for 
the same connectivity pattern, the structure of networks for adjacent 
complexity problems seems to share commonalities: the number of units in 
the internal layer or in the hidden layer is the same, which indicates possible 
structural progressions. Below are three most relevant options for how 
networks structure might progress along increasingly complex stacks 
(Figure 28). 
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Figure 28 — Three possible progressions across stacks (option , 2 and 3, from left 
to right). Concrete-order stack is not represented as it contains the same number 

of layers and units as the abstract-order stack. 

This suggests that different departing structures can be the 
starting point for higher-order structures. 

Finally, results point out that dependencies among subparts 
(connections) have some degree of independency: independently of the 
number of units, optimal solutions of models converged to the same number 
of connections, which indicates that connections can be seen as components 
of the system, as well.  
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EXPERIMENT 4 
 

Once different departing structures might self-organize to 
form higher-order structures (Table 24), the present 
Experiment 4 evaluated whether a higher OHC structure can 
be built out of the lower OHC structure, based on pattern-wise 
learning. 

Pattern-wise learning is similar to layer-wise learning, but uses the 
weights of previous networks instead of the weights of previous layers. In 
other words, the present work tests whether all these possibilities of 
networks structures hold if pattern-wise learning is applied to the formation 
of higher-order stacks. The goal is to aggregate the results obtained so far 
and build a stacked generative architecture that develops from the concrete 
to the systematic stack, based on pattern-wise hierarchical learning. 

Table 24 — Structural progression from concrete to systematic problem-solving 

Option Order-1 
network 

Order-2 
network 

Order-3 
network 

Order-4 
network 

1 
Network type Perceptron Perceptron Perceptron (input 

connectivity) Network 5 

# Units 1 1 9 9 — 4 
# Connections 12 16 135 195 

2 
Network type Perceptron Perceptron Network 2 Network 2 

# Units 1 1 1 — 7 1 — 14 
# Connections 12 16 103 194 

3 
Network type Perceptron Perceptron Network 5 Network 5 

# Units 1 1 1 — 4 9 — 4 
# Connections 12 16 88 195 
 

Also, pattern-wise learning is associated with the notion of hierarchical 
stability. According to a complex system’s perspective, as a system 
develops, earlier lower-order structures gain higher rigidity and stability, 
whereas higher-order structures (emergent from the previous ones) are 
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more dynamic and flexible. This means that the components of lower-order 
structures, as the system develops, change less than the components 
emerged at higher-order structures. This allows that the individual not only 
moves up to more complex stages, but also that lower-stages are protected 
from interference of higher stages. Hence, the individual also moves down 
to more elementary levels of performance, which confers on behavior great 
flexibility and ability to adapt to environmental circumstances (Fischer, 
2008). 

The weights of the components shared by the lower-order and the 
immediately higher-order stacks were kept as the initial weights of the 
higher-order stack. Yet, during learning of the higher-order stack, all 
weights were updated. According to a complex system’s perspective, the 
allowance of weight update is in accordance with the fine-tuning of 
previous structures in order to accommodate higher-order information into 
more adaptive patterns. 

Also, in order to approximate the idea that lower-order 
components become increasingly rigid and stable as the 
system develops, further tests were conducted. 

In a subsequent step, different learning rates (LR) were applied. At 
each transition, the learning rate applied over lower-order weights 
decreased by 20%, 30%, and 50%. A final test was conducted in which the 
weight matrices composed by the same number of elements as in the lower-
stack network was not allowed update. 

Results of Experiment 4 

Independently of the learning rate condition, the networks for order-2 
problems always learned with 100% accuracy. Table 25 shows the 
performance of each three options of networks for formal and systematic 
problems. The LR conditions below 100% were aggregated in one single 
column of results because results were similar across these conditions. Each 
cell of the table contains the maximum performance accuracy of each 
network. The LR modifications did not impact the results in a significant 
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manner. Yet, there is a tendency to decrease in accuracy as the LR is 
decreased, as expected. 

Table 25 — Network’s performance per structure and LR condition 

Option LR = 100 LR < 100 No learn 

 
Formal 

Network 
Systematic 
Network 

Formal 
Network 

Systematic 
Network 

Formal 
Network 

Systematic 
Network 

1 98.72% 97.44% 97.44% 97.44% 97.44% 85.90% 
2 94.87% 87.18% 94.87% 87.18% 93.59% 91.03% 
3 96.15% 96.15% 96.15% 96.15% 98.72% 85.90% 
 

Among all the three options, options 1 and 3 are the most stable in 
accuracy across OHC and the least impacted by LR modifications, as long 
as LR is different from zero. Option 2 suffers the greatest decrease in 
accuracy as pattern-wise learning is applied, as well as the greatest 
variability across orders of hierarchical complexity. Interestingly, options 1 
and 3 share the input connectivity pattern, having inputs connected to all 
forthcoming layers of computation, independently of being a perceptron 
network or a hidden layer network. 

Furthermore, the growth in the number of connections as the OHC of 
problems increased was plotted (Figure 29). The graph shows that option 3 
approximates the shape of an exponential increase in the number of 
connections, as predicted by the MHC (Harringan and Commons, 2014). 
Curiously, option 3 corresponds to the network structural growth with the 
densest connectivity pattern, among those with input connectivity. 
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Figure 29 — Number of Connections vs OHC for each three options of network 
growth 

Discussion of Experiment 4 

First, structural growth is resistant to modifications in learning 
procedures. Second, the denser the input connectivity, the more robust the 
network is to learning procedures. The most suitable connectivity pattern 
was the one with the densest input connectivity, for two reasons. First, this 
pattern showed that networks remained stable in performance as the order 
of hierarchical complexity (OHC) of problems increased, practically 
independently of the modifications in learning rate (LR). Second, the 
growth in connections across stacks approximated the shape of an 
exponential increase (Harringan and Commons, 2014). These results are in 
line with neuroscientific results, which suggest that the brain’s information 
processing capability gains more from increasing connectivity of the 
processing units than increasing processing units themselves and that, 
during development, there is an exponential increase in spike rates of 
synaptic activity (Brewer et al., 2009). 
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Interestingly, this pattern of input connectivity has already 
been discussed as a very important finding for triangulating 
behavioral development, developmental cognitive 
neuroscience, and developmental cognitive computation. 

The fact that pattern-wise learning was successfully applied and 
corroborated structural growth implies important considerations. It means 
that each stack is a good representative of the OHC, independently of the 
remaining stacks. 

It also means that the term “structural integration”, instead of 
“hierarchical integration” is well applied to the formation of 
increasing stages of development, or developmental stacks.  
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3. Global Discussion of Present Simulations 

Hierarchy within a system cannot be traced by what is observable from 
the outside, but exists at the level of the structure. This was also true for 
connectionist representations of developmental problem-solving. Results 
indicate that the OHC is a strong criterion for characterizing stages and that 
connectionist models are strong candidates for capturing the developmental 
progression across stages, when stages are represented by OHC. 

The minimal structure of each connectionist model seems to 
be efficient and informative for representing stages of 
development. 

Results also indicate that stack transitions might not be all of the same 
type, neither they make the system grow in a linear manner. Accordingly, 
opposite to the linearity that characterizes the OHC underlying stages of 
performance (from 1 to 17), neuroscientific methods have provided 
evidence of non-linear changes in structural architecture and functional 
organization in the developing brain. Hence, the OHC is represented non-
linearly in the brain: what matters is the components of the system, how 
they are connected with each other (Johnson, 2011), and how they evolve 
as interactions with the environment proceed. This non-linear progression 
of connectionist structures was, as well, found in the present set of 
experiments, where the number of units and connectivity pattern among 
units varied. 

Experiments 1 and 2 allowed for a distinction between 1) transitions 
based on an increase of the number of problem dimensions and 2) 
transitions based on a change of the operation required to coordinate 
problem dimensions. In other words, a memory-based transition occurred 
when the number of problem dimensions increased, but the operation to 
coordinate dimensions remained; and an operationally-based transition 
occurred when the number of dimensions remained, but the operation to 
coordinate those dimensions changed. This was true for the two types of 
beams, a one-arm beam and a two-arm beam. It was found that an 
operationally-based transformation underlies the passage from abstract 
reasoning to formal reasoning, representative of higher-order cognition, 
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unique in humans (Commons et al., 2014c; Leite, 2016). These difference 
in the nature of transitions matched the different transitions in this particular 
simulation scenario, from concrete to abstract and from abstract to formal, 
and showed, again, that connectionist models capture well cognitive 
phenomena. 

Yet, there is an important question attached to this interpretation. On 
the one hand, the summing operation (abstract stage 10) can be understood 
as a horizontal extension of the operation of counting (concrete stage 9). 
Specifically, in the representation of counting and summing, what changes 
is not the operator “+”, but the parcels that are to be associated by the 
operator. Differently, in the transition from abstract (stage 10) to formal 
(stage 11), the operator changes from “+” to “×”, independently of the 
parcels. The fact that the operator does not change from concrete to abstract 
might underline the fact that there is not an operationally-based transition 
here. On the other hand, the first computation performed inside the units of 
a neural network is a weighted sum. This impedes that the operation of 
summing is approximated by a composition of units, as it is already explicit 
rather than approximated. Hence, this property of connectionist models 
might impede to consider the passage from concrete to abstract as an 
operationally-based transition. In other words, the fact that artificial 
neurons in a neural network already sum the incoming inputs might give 
away a lot of the operational structural transition between counting and 
summing. This might be leading to incurring a type II interpretation error. 
An operationally-based transition might exist in some way from counting 
to summing, which artificial neurons did not capture. This limitation is 
indirectly associated with limitations of previous simulations, where the 
assimilation function was set to product, so as to adapt to multiplicative 
problem-solving (Reyes et al., 1997). 

Nonetheless, results continued showing that, once the system is 
required to transit to formal and postformal stages, the nature of transitions 
goes from memory-based to operationally-based, at least in the present 
simulation scenario. The emergence of the cognitive potential to operate 
with abstract information (formal 11 and postformal stages 12) instead of 
only creating abstractions (abstract stage 10) eventually points out a major 
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factor underlying developmental jumps, even evolutionary jumps. In fact, 
the formal stage of reasoning is assumed to be evolutionarily distinct, 
responsible for higher-order cognition, and only present in humans (Leite, 
2016). 

Findings suggest that a formal reasoning implies a shift from 
memory-based strategy for problem-solving to an 
operationally-based strategy, in accordance with higher-order 
cognition. 

Based on these results, there might be three major classes of 
development, or units of analysis. The first occurs during infancy, where 
the baby learns to recognize and coordinate sensations, perceptions, and 
actions, until representations are formed that allow the child to form 
concepts. These are called perceptual groupings or representations 
(Sloutsky, 2010). This class has not been object of the present work. The 
second class takes place afterwards, when the child becomes able to inter-
relate representations, forming concepts, and inter-relating concepts with 
other concepts, as they appear to be inter-related throughout the course of 
experience. This second class lasts until the child is able to create 
abstractions, or variables (abstract stage 10), which are the result of a 
sequence of similar experiences (Sloutsky, 2010). During this second 
developmental phase, memory-based transitions might be dominant. Once 
the child begins to use variables, a new unit of analysis has been 
“reached”. At the third class, the child, now an adolescent, starts to use 
variables as objects and relate them together, making use of formal (and 
postformal) reasoning. At this third unit of analysis, the individual focuses 
on unobservable data features or unobservable inter-relations between 
them, reason why this latter acquisition largely depends on maturational 
abilities of higher-order cognition (Sloutsky, 2010). This third phase might 
be strongly associated with operationally-based transitions. This does not 
mean that each type of transition is exclusive of each phase. 

Moreover, in Experiments 1 and 2, the dropping in accuracy values of 
networks that solved increasing OHC problems let one guessing that 
something else should be tested. Experiment 3 shows that there is a strong 
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and beneficial impact of the connectivity pattern of the networks on their 
performance, specifically in the case of input connectivity. Experiment 3 
also showed that if problems are segregated by OHC and if there is a 
network per OHC, each network performs better than a network built to 
solve all complexity problems of a set. Here, for the first time, a network 
with summing as the assimilation function was able to represent the 
multiplication operation and solve formal problems with 100% accuracy. 

The influence of connectivity pattern, besides the impact of the number 
of units, is relevant for a comparison with the natural learning system. In 
fact, one the one hand, a fixed number of neurons is correlated with the 
mean stage that a species achieves, being it the stage of formal operations 
in humans (Commons et al., 2014b). On the other hand, the number of 
connections changes throughout development, which points towards a 
dynamic adjustment of the neural architecture within some fixed 
anatomical parameters, as experience proceeds (Qin et al., 2014). In line 
with this, the densest input connectivity pattern has been associated with 
the strongest resistance to learning modifications across stacks, to better 
performance, and to greater biological plausibility due to the number of 
required units throughout stacks. 

The influence of connectivity pattern is further relevant for a 
comparison with the cognitive arrangement (Leite and Rodrigues, 2018). 
Namely, Chapter II, Section C presented a preliminary experiment that 
defended that a higher-order output is the result of reorganizing the inputs 
as more complex operations are conducted. It showed that it is not the 
lower-outputs that become object of higher-order outputs, as has long been 
advocated by many stage theories. This implies that inputs, or percepts, 
must always be used to generate increasingly complex outputs (Leite et al., 
2018). This is in line with cognitive and neuropsychology studies, too. 
These have long revealed that the attentional system is the cognitive sub-
component precursor of higher-order cognition, in that it selects the 
environmental features to be operated upon (Sweller, 2004). Hence, the 
impact of the input connectivity pattern further allows for suggesting that 
connectionist models might even be able to capture the horizontal 
organization of the cognitive apparatus, leading way to coordinate the 
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horizontal and hierarchical nature of information processing. It has not been 
possible yet to determine the rule for stack transition, but results point 
towards the necessity of growing input connections at increasingly complex 
structures. 

Still from the results of Experiment 3, it was possible to identify that a 
higher-order structure included the components of a lower-order structure. 
The fact that different departing structures can be the starting point for 
higher-order structures highlights that connectionist models eventually 
capture individual variability within structural progression. Interestingly, 
this was only true with networks with the same connectivity pattern. This 
is worthy to mention because networks per OHC problem were trained 
separately and the degrees of freedom brought about by the choice of hyper-
parameters could have made this progression very difficult, even 
impossible, to detect. This means that connectionist models, if treated as 
information processing models, fail to represent and solve problems in a 
developmental way. Differently, if connectionist models are allowed some 
room to represent problems their way (as long as problems are segregated 
by OHC), they actually capture the principles of complex systems and 
approximate the laws of cognitive and brain development. Results, thus, 
allowed for proposing a different method for developing a self-organized 
cognitive architecture, based on evolving stacks. 

The dominance of the connectivity pattern in the structural 
progression across stacks opens up the way for building 
further possible hypotheses that relate connectionist models 
and natural systems. 

The notion of endo-causality (Maturana and Varela, 1928) implies that 
a system behaves based on some form of internal causality, where its sub-
parts form dependencies with each other. Also based on the notion of endo-
causality, the present study suggests that dependencies among subparts 
(connections) have some degree of independency, as independently of the 
number of units, optimal solutions of models converged to the same number 
of connections in formal problem-solving. Hence, although the mechanism 
of HI, as is defined in the MHC, seems not to be the way of creating a 
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hierarchy of problem-solving, results still point towards the idea of a self-
fed structural hierarchy. One might talk about “hierarchical structural 
integration”, where “the higher-order structure is formed out of the lower-
order structure”. 

In sum, the method here elaborated for studying and implementing 
development in a connectionist model was corroborated by the results of 
these four experiments. Connectionist models captured stages of 
development, stage transitions, and developmental progressions. They did 
this by approaching biological plausibility, namely by being influenced by 
the same parameters that underlie stage representation in the brain — 
number of neurons and pattern of connections. They did this also by 
showing the possibility of modelling individual variability, given that 
different structural progressions are possible. Hence, it is concluded that the 
proposed method is a good starting point to study how developmental 
transitions can be ascribed and represented in connectionist models, not to 
mention that its applicability to the neuroscience domain can bring about 
valuable information. 

For now, in order to build a stacked developing connectionist 
structure that approximates and represents development, two 
conditions need to be met. 

First, each stack needs to be triggered by a given set of problems a 
priori characterized. This is important such that a lower-order structure 
never gets to be substituted by a higher-order structure. If the characteristics 
of the problem re-activate a given structure, one can be certain that lower-
order structures are always available to the global system. Second, each 
higher-order stack can be built out of the lower-order stack. This is 
important such that the global model can be said to “mature”, or to develop 
on the basis of a self-organizing force. If both conditions are true, then, 
higher-order stacks will always be generated by lower-order ones, and the 
global model will always be able to re-activate lower-order stacks, which 
means protecting simpler representations from the interference of more 
complex ones (hierarchical stability). 
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 CHAPTER V 

CONCLUDING REMARKS 

The present Chapter V is based on the joint considerations and 
results obtained throughout this dissertation. It exposes the concluding 
remarks of the work conducted for the topic under investigation — 
simulating cognitive development in a connectionist model — including 
relevant findings, limitations, and advantages. This chapter also 
summarizes the main premises for the “Foundation of a Hierarchical 
Stacked Neural Network model for Simulating Cognitive Development”, 
highlighting that the major contribution here provided is a pot of ideas and 
methodological procedures that hopefully allow for a new tripartite 
research path to emerge.
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CONCLUDING REMARKS 
 

Ascribing developmental properties to an artificial system has been 
here associated with approaching an increased hierarchical flexibility and 
stability, which is a problem never fully answered before. Above all, this 
dissertation provided a method for doing so — ascribing developmental 
properties to an artificial system — and conduced a set of experiments that 
corroborated the method itself and the possibility of building a developing 
connectionist model. Furthermore, as mentioned in the beginning of this 
dissertation, the main goal of Artificial Intelligence (AI) can be used both 
1) as a method for testing models of information processing and 2) as the 
implementation of what is (provisionally) known about information 
processing in a living organism. Here, the main premises of the Model of 
Hierarchical Complexity (MHC) have been tested in order to implement an 
artificial system that learns in a developmental way. The methodological 
considerations and obtained results can be viewed bi-directionally. They 
show that some theoretical premises of the MHC should be revised, and 
that some should be kept in order to set the foundation of a developing 
system — a Hierarchical Stacked Neural Network model that simulates 
cognitive development. The following set of shortly answered questions 
and issues aims at summarizing the findings of the present dissertation, as 
well as their backwards implications. 

1.  Bridging concepts across fields 

Theories of behavioral development have long been used to describe, 
eventually explain, how individuals produce more adaptive functional and 
behavioral patterns as they mature in cognitive capacity. The transduction 
of this adaptive movement to a machine has been analogized and 
operationalized as flexibility and stability. Flexibility concerns the 
machine’s capacity to solve diverse problems, whereas stability concerns 
the machine’s capacity to form and fix stable representations of similar 
problems. Yet, the criteria that discriminates the end of a certain type of 
problem and the beginning of another are not totally clear, which prevents 
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the clear operationalization and implementation of flexibility and stability. 
In turn, the result is that machines do not go beyond strict programmed 
constraints of learning and can only learn the narrow set of tasks they are 
programmed for and presented with. 

The present dissertation began by highlighting the relevance of 
simulating learning and development in an artificial system that aims to 
reproduce human cognition. From a psychological and cognitive point of 
view, learning and development are two intertwined, but discriminated 
products of interacting with the environment. Whereas learning is a 
continuous and substitutive process through which error rates decrease at a 
certain task performance, development is a discontinuous process, where 
successive and cumulative patterns of problem-solving get more complex. 
Hence, during learning, the functional and behavioral patterns are updated 
and substituted by more adaptive ones. During development, the functional 
and behavioral patterns that initially only solved simpler problems are 
reorganized, not substituted, and form more complex patterns. 

By discriminating learning and development, the operationalization of 
flexibility and stability were discriminated as horizontal or hierarchical. 
Horizontal flexibility and stability concern the formation of many 
representations of the same complexity. Hierarchical flexibility and 
stability concern the formation of increasingly complex representations. 
Both horizontal and hierarchical flexibility and stability show a similar 
progression across individuals, which points towards the existence of a 
structural criterion for discriminating problems. The present dissertation 
focused on the hierarchical flexibility and stability of a connectionist 
learning model. In other words, it focused on ascribing to it developmental, 
or maturational, properties. 

2. What are we talking about when we talk about the 
“maturation” of an artificial system? 

In developmental psychology terms, maturation refers to the 
developmental properties of individuals, who progress along a 
developmental stage sequence. In developmental cognitive neuroscience 
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terms, maturation refers to changes that occur at a neuroanatomical and 
physiological level, which correlate with behavioral developmental spurts. 
Hence, ascribing maturational properties to an artificial learning system is 
a synonym of representing the biological factor underlying stages of 
development. The structure of the brain is defined in terms of its 
components and connections; the structure of an artificial neural network is 
determined by its components and connections; if the structure in the human 
brain changes to accommodate development; the structure of an artificial 
neural network must change to accommodate development, too. These 
changes are the maturation of the system. 

Developmental behavioral psychology is somewhat divided into 
domain-general and domain-specific theorists. Domain-general 
developmental theories provide evidence that individuals progress along a 
one-way sequence of development that is similar across domains of 
knowledge. They strive for identifying the universal factor that describes 
and explains cognitive capacity across domains. Differently, domain-
specific theories assume that developmental sequences differ across 
domains of knowledge. However, because domains of knowledge overlap 
with each other, developments in one domain foster developments in 
other(s) domain(s), explaining the joint developmental growth across 
domains. Developmental neuroscience has focused mainly on domain-
specific development as it is easier to a priori select and identify the 
particular regions of interest, given the particularities of the task (language, 
arithmetic, memory-load, etc.). However, building a system that matures 
implies that it is imbued with a representation of a universal cross-domain 
developmental factor, which is structural, invariant and systematic. If this 
universal factor is evidenced, then, it certainly ascribes a necessary 
structure to the way individuals interact with such a changing and complex 
environment. For that, a domain-general developmental theory was chosen 
to delineate the theoretical premises underlying this work — the Model of 
Hierarchical Complexity (MHC). 
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3. The Model of Hierarchical Complexity: Horizontal versus 
Hierarchical Complexity 

The Model of Hierarchical Complexity (MHC) was chosen as the 
domain-general theoretical reference for a number of reasons. The is a 
domain-general theory that postulates that individuals go through 
successive stages of development as they mature. At each stage, they 
become able to solve increasingly complex problems. One of the 
contributions of this theory is that it formalizes the existence of two axes of 
complexity for characterizing problem-solving abilities: a horizontal axis 
and a hierarchical axis. 

The horizontal axis represents the learning process that, during 
maturation, capacitates the individual to solve tasks with an increased 
cognitive load. An increasing horizontal complexity corresponds to an 
increased memory load of a task, yet, it is not what characterizes the 
transition for a higher stage of development. This is also associated with the 
horizontal flexibility and stability of a system, which creates 
representations of several features of the environment. The vertical axis, on 
the contrary, represents the developmental process that capacitates the 
individual to solve hierarchically more complex problems. The vertical axis 
is associated with hierarchical flexibility and stability of a system, which 
uses the horizontal representations formed so far to create a more complex 
representation of the environment. The Order of Hierarchical Complexity 
(OHC) is the variable represented across the vertical axis. It is a 
unidimensional abstract measure of development that mathematically 
formalizes the existence of the universal, structural, and systematic factor 
underlying stages of development. It predicts with high accuracy the 
performance of individuals. The OHC was the criterion for setting the 
hierarchical stability of the system, given that it homogenizes performance 
within stage, across domains. The MHC also presents evidence that this 
universal factor is imprinted in the neural architecture, allowing for 
bridging developmental psychology and developmental cognitive 
neuroscience. 

Another advantage of choosing the MHC is that it departs from 
evaluating the complexity of the task to be solved, or problem. The OHC is 



V. Concluding Remarks 

207 

the property of problems that interacts with individual’s cognitive abilities, 
such that some problems are solved before others. If the individual, or 
agent, correctly solves the task, it is assumed that the stage of development 
of the solver is the same as the OHC of the task. Hence, this allows for 
assessing behavior in a structural, non-mentalist manner. More importantly, 
it allows for evaluating behavior of humans and non-humans, including 
machines, and for comparing behavior across species and across agents, 
including human-machine comparisons. Finally, the MHC assessment 
method has been applied to a number of human developmental tests, such 
as the balance scale test, allowing for a comparison between its domain-
general assessment method and other domain-specific behavioral 
assessment methodologies, relevant for the present case. The balance scale 
test is the scenario from developmental psychology borrowed to guide 
simulation experiments. 

4. How are stages represented? 

The representation of stages depends upon the OHC of tasks, or 
problems, to be solved. The OHC has been evidenced to be traced back in 
the neural architecture at birth. Hence, a study on the neural correlates of 
development is important to identify the possible bridging between 
developmental cognitive neuroscience, and developmental connectionism, 
given that there are structural similarities between a neural network model 
and the brain. A methodological proposal has been delineated to identify 
how a networked system represents the OHC, with validity for both fields. 
The difference is that, while the brain has an a priori representation of stages 
within its patterns of activation, in connectionist models one has to find the 
most suitable pattern for representing each stage and transitions across 
stages. In terms of neural network stacks, the number of units and the 
connectivity pattern among them have been here experimented. 

Furthermore, the MHC assesses very clearly the OHC of individuals, 
given their performance on a number of developmental tests, but it poorly 
describes what is at stake in the determination of the OHC. Although the 
OHC is assumed to be a unidimensional and abstract measure, is has been 
associated with three possible factors — the number of problem 
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dimensions, the type and number of coordinated operations, and the type 
and number of generated actions, or outputs. 

5. How are stage transitions processed and represented? 

It is a fundamental aspect to consider in the simulation of development 
in a connectionist model: how the system transits from one stage to the next 
The MHC also describes, along with other developmental theories, a 
mechanism for stage transition: the mechanism of hierarchical integration. 
It postulates that lower-order outputs are coordinated by means of a certain 
operation to form higher order inputs, which, in turn, form higher order 
outputs. However, the first experimental study of this dissertation did not 
validate this mechanism. It pointed out that stage transition lies at the 
operations that are conducted over the problem dimensions, but that the 
original problem dimensions need always to be taken into account to form 
higher-order outputs. Still, if OHC relies on the number of problem 
dimensions and on the operation coordinating them, complexity has a 
composite representation, which requires clarification. 

In order to represent stages and stage transitions, a new method was 
proposed. A minimal structural complexity artificial model was created to 
solve each OHC problems, separately and independently. Then, the 
structure of models of adjacent OHC was compared. This allowed to 
address two important considerations of sage transition. First, that each 
stage is relatively independent from the previous and acts as an attractor of 
the system. Second, that each stage is supposedly formed out of the 
previous. In the present experiments, by not imposing structural constraints 
on higher order networks, the most likely relation between adjacent 
networks was the OHC. Also, by not imposing any a priori relation between 
the structures of models for each OHC, the generation of a higher stage 
based on the previous was tested anew. If there was a structural relation, 
then, it would likely derive from the representation of the OHC in 
connectionist models. Results showed that the structure of a higher order 
model can actually be built out of the structure of the lower order model, 
even departing from different structures. The term Structural Integration 
was proposed to substitute the term Hierarchical Integration. Furthermore, 
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two types of structural transitions were found, which questioned whether 
stage are equally spaced in terms of hierarchical complexity. 

6. Relevance of using connectionist models 

Connectionist models, or artificial neural networks, are the artificial 
systems of reference o for a number of reasons. First, they have been created 
to approximate how the basic units of the central nervous system, the 
neurons, operate. Second, the structural complexity of connectionist models 
is based on how many units there are and how they are arranged by means 
of connections, where connections represent synapses. These models allow 
to establish the following parallelism — the connectivity of a neural 
network determines its structure; the connectivity in the human brain also 
determines its structure; the connectivity in the human brain changes to 
accommodate development; the connectivity in a neural network must 
change to accommodate development, too. Second, connectionist models 
have introduced a learning procedure based on a composite continuous 
function, which continuously substitutes the non-adaptive weights 
attributed to connections by more adaptive ones. This highly approximates 
the continuous and substitutive nature of learning observed in natural 
systems. Third, it has been proved that a sufficient number of units 
connected and distributed across layers of computations approximates any 
complex mapping between inputs and outputs, which makes these models 
potentially good learners for every task. 

7. Difficulty in simulating development in connectionist models 

However, connectionist models pose a number of problems for 
simulating development. The task of coordinating learning and 
development in a biologically plausible model, such as neural networks, is 
not straightforward. First, the discontinuity of developmental jumps 
threatens to corrupt the differentiability and continuity upon which 
connectionist learning algorithms are devised. Second, the formation of 
new developmental patterns, or connectionist structures, threatens the 
hierarchical stability of the system. This means that lower-order patterns 
are not protected from the representations created at higher-order patterns, 
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due to continuity in learning. This problem has been called the problem of 
stability, catastrophic forgetting, or catastrophic interference. In the present 
dissertation, it has been called the problem of hierarchical stability, given 
it is a matter of stability concerned with the formation or more or less 
complex representation of a certain problem. 

8. How to coordinate learning and development in a 
connectionist model? 

The idea underlying this dissertation is the creation of a connectionist 
model built in stacks, or partially independent connectionist structures, in a 
way that 1) each higher order structure is developed based on the 
components of the previous and 2) whenever a lower-order complexity 
problem is presented to the model, it reactivates a lower-order structure, 
which is protected and has not been substituted during the developmental 
process. This idea carries on a third difficulty. Because connectionist 
models are universal mappers, there is the risk that each stack, or structure, 
is not the minimal complexity structure for solving that particular OHC 
problems. This is similar to saying that there is the risk that each stack does 
not only represent the factor that accounts for hierarchical stability. Hence, 
the objective is to find the minimal connectionist structure that accurately 
represents and differentiates OHC computationally. 

9. How do the developmental properties of problems interact 
with the properties of artificial learning models themselves? 

Results showed that connectionist models represent differently the 
impact of the increase in the number of problem dimensions and the 
increase in hierarchical complexity of the underlying operation. Two types 
of problem dimensions were tested — the dimensions that participate in 
problem-solving (weight and distance), and the dimensions that participate 
in simulating the problem (a one-arm and a two-arm beam). In both a one-
arm and a two-arm beam, there were problems with differing number of 
dimensions (weight and distance). Namely, memory-based transitions 
occur when weight and distance become coordinated, but the operator to 
coordinate both sides of the beam remains, “+”. In these transitions, the 
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number of units composing the model does not change, but the number of 
used connections does. Operationally-based transitions occur whenever the 
operation needed to change. In these cases, the number of units and layers 
composing the model changes, as well as how units are best connected. 
Operationally-based transitions seem to characterize the passage to formal 
stages, characteristic of higher-order cognition. 

When comparing the performance of a one-arm and a two-arm beam, 
transitions remained the same throughout OHC, but an increased number 
of problem dimensions (for a two-arm beam) improved networks 
performance. This is opposite to natural systems. As the number of problem 
dimensions increases, problem-solving faces an increased processing load, 
which decreases performance. This is an example of how the properties of 
the artificial system interact with the simulated properties of a natural 
system, in what concerns information processing. Another example is the 
possibility that the structural transition between counting (order-1) and 
summing (order-2) might be given away, since artificial neurons in a neural 
network already sum the incoming inputs. In order to disambiguate this 
effect, further simulations are necessary. 

In sum, operations conducted over the inputs seem to dominate in the 
face of an increase in the number of inputs dimensions. These operations 
seem to be imprinted in the connectionist structure, implying changes in the 
number of units, layers, and in the connectivity pattern among units. 
Problem dimensions do not impact this structure, but they impact the ability 
of the model to solve problems more or less accurately. 

10. How does a neural network model represent operations of 
increasing OHC? 

Results have shown that each stack was able to represent the OHC 
independently of the other stacks, by varying the number of required units, 
layers, and connectivity pattern among units. A relevant tendency was 
found. Selected optimal network structures with different connectivity 
patterns, for the same OHC, tended to converge to the same number of 
connections (independently of the number of units). This is curious and 
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important, ascribing some independency to the connections. They are not 
mere links between the components of the system, but can be viewed as 
components themselves. 

Importantly, there was a connectivity pattern that seems to be more 
efficient for representing all OHC and more biologically plausible than the 
remaining—the input connectivity pattern. This means that the units in the 
input layer are connected to the units in all forthcoming layers (internal and 
hidden; internal and output; and internal, hidden and output layers). The 
third and densest input connectivity pattern showed the best accuracy, the 
strongest resistance to learning rate modifications, and an increased 
biological plausibility. Input connectivity underlines the fact that lower 
order inputs are reorganized by means of higher order operations to form 
higher order inputs, which in turn will form higher order outputs. 

11. How does a neural network model represent the progression 
of OHC? 

Results showed that adjacent OHC stacks capture a structural 
developmental progression, as long as structures share the same 
connectivity pattern. This structural progression led to suggest that the 
process of stage transition might be called “structural integration”. This was 
possible to test, instead of imposing, due to the employed method, which 
segregated the problem space into disjoint subsets of OHC and then trained 
several independent networks for each subset to evaluate the best fitting 
structure. Not only a structural progression was found, but it was also found 
that each higher-order network could be trained based on the components 
of the lower-order network. The progression across OHC has been 
represented by a process called pattern-wise learning. Pattern-wise learning 
is similar to layer-wise learning, but the elements that remain fixed from 
one stack to the other are not necessarily disposed along the same layer. 
Pattern-wise learning means that the new structure, or stack, is built out of 
the elements of the previous stack. It is important to underline that structural 
integration applies to different departing structures, as long as the adjacent 
structures share the same connectivity pattern. Hence, these findings 
allowed for determining that connectionist models capture a progression in 
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adjacent OHC and eventually can capture individual variability in the 
developmental process, but more network parameters need obviously to be 
tested and combined. 

12. What considerations are worth mentioning for simulating 
development in a developing connectionist model? 

Two of the main difficulties of ascribing maturational and 
developmental properties to a connectionist model are 1) the corruption of 
continuity and differentiability of the learning function, and 2) the 
protection of lower patterns of information processing (hierarchical 
stability). The present dissertation could answer both difficulties. The first 
was answered by the implementation of a generative architecture, that 
ascribed developmental and qualitative spurts of information processing 
procedures to an artificial neural network that were not a priori constrained. 
The second difficulty was addressed by the fact that the emergence of new 
network components was driven by a fixed criterion imposed over the input 
set — the OHC. With that in mind, new components that emerge for solving 
higher-order complexity problems are associated with that particular OHC 
and can be anytime retrieved or deactivated. This means that if a lower 
OHC problem is eventually presented to the network, the network is able to 
apply the minimal complexity structure to solve that problem. Lower order 
levels are protected from upwards interference. This is the property that 
confers on the natural system a great capacity to adapt — the ability to move 
up to more complex levels, as well as to move down to more elementary 
levels of information processing. 

13. What methodological factors limit the scope of the present 
results? 

A number of limitations are attached to the conducted studies. First, 
the hyper-parameters were heuristically chosen, which leaves plenty of 
room for variability in the results if other choices have been made. 
However, the results seem to be consistent throughout the entire set of 
studies, suggesting that the chosen independent factors are not strong 
enough to interfere in what has been observed. Second, the findings can 
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only be said to apply to the balance scale test, although the OHC is a 
domain-general variable that explains and predicts behavior across domains 
of knowledge. Third, the search for the best network is ill-defined. A visual 
inspection of the results was sometimes necessary to select one or another 
network among all those that were trained. Hence, an improved and 
automated procedure for the selection of the best network is necessary. A 
closer inspection of the final weights of each OHC is necessary, such that 
in denser connectivity pattern networks, there is a process of pruning. This 
is informative to the process of structural progression, but has not been 
conducted in the present work. 

14. What methodological factors benefit the scope of the present 
results? 

This method also presents a number of advantages. First, it is a 
biologically plausible method in several forms: 1) the segregation of the 
problem space per subsets of problems of adjacent OHC has been 
confirmed to underlie how the human brain perceives and responds to 
information; 2) there is neuroscientific developmental cognitive data that 
supports the generation of increasingly complex structures as the brain 
matures and the individual grows in stage of development; and 3) even 
though the selection criteria is yet to be clearly defined, the fact that the best 
structure is not necessarily the most complex structure for a given OHC is 
in accordance with the pruning of synapses during development. There is 
an initial overabundance of synapses followed by a steep reduction: some 
synapses remain active and some are eliminated. Second, this method 
allows to verify how is it that a connectionist model represents stages of 
development rather than to merely reproduce what is observed in human 
behavior. Third, this method has applicability in two distinct, but related, 
fields of study — developmental cognitive neuroscience and artificial 
intelligence — which facilitates a bidirectional, interdisciplinary, 
interpretation of findings. It is important to test the same phenomena at 
different levels of observation because a wide variety of theories can 
accurately account for data collected at one level of observation, namely 
cognition or developmental psychology. If the same phenomena is tested 
across fields and methods, then, “there is a more robust account of that same 
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data due to the overlap of constraints between the methods involved” 
(Johnson, 2011). 

15. How can this dissertation inform about future work? 

As mentioned in the beginning of this dissertation, it is beneficial (and 
necessary) that general theoretical and methodological concepts and 
principles are defined such that the work that is conducted at smaller scales 
at different specialized laboratories can be scaled up. In what concerns the 
field of AI, a shared definition of fundamental concepts and methods allows 
for raising the qualia of AI as a field running over its own rules instead of 
running over the rules of the fields which created it. This eventually renders 
AI to become a cross-paradigm, rather than a set of overlapping paradigms. 

The major contribution of the present work is the possibility that a 
research line emerges that triangulates developmental psychology, 
developmental cognitive neuroscience, and computational cognition, 
specifically artificial neural network models. This triangulation is important 
such that a common research entity is construed in the overlap of so closely 
communicating disciplines, strengthening the scope and validity of results 
and interpretations. In practice, this dissertation proposed a method that has 
direct applicability in the fields of developmental cognitive neuroscience 
and artificial intelligence, particularly in connectionist models. The idea of 
this method was to approach an old problem that never saw a robust solution 
— the problem of coordinating flexibility and stability, along with the 
problem of coordinating learning and development. 

In the particular case of building an artificial system that learns in a 
developmental way, there are many unanswered questions. For instance, 1) 
what other factor and network hyper-parameters influence the 
representation of OHC per stack? This seems to be a never-ending search. 
Furthermore, the representation of the OHC goes along with the ability of 
the system to identify the OHC of a given problem, allowing to activate 
lower order stacks, if needed. 2) Does the nature of stack transitions hold 
for lower order and higher order transitions? Actually, this simulation 
scenario only allowed for studying a narrow segment of the developmental 
sequence, which deserves further testing, from the lowest to the highest 



V. Concluding Remarks 

216 

OHC. 3) Is this method applicable to the simulation of other developmental 
scenarios? This is a most useful question, as one of the reasons why the 
MHC has been chosen is the fact that it is a general stage theory. The 
advantages of general stage theories for understanding and simulating 
development have been pointed out. Hence, the external validity of the 
MHC within the scope of AI needs to be tested. 4) How to ascribe autonomy 
to stack transition? Autonomy to the stack transition process is the ideal 
finding. It means that the previous questions have been answered. It also 
means that the system autonomously reproduces U-shaped learning curves 
as every transition occurs: as a new stack is initialized. Moreover, it means 
that another research question can emerge, concerning the biological and 
experiential factor that triggers the adaptive upwards movement, namely, 
the error, creativity, curiosity, etc. A last question here highlighted is 5) 
how to limit the hierarchical complexity that an artificial system achieves, 
based on the biological factor that limits stage? Is there a limit? 
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