
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

General Purpose Task and Motion
Planning for Human-Robot Teams

Nuno Resende da Costa

Mestrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Gil Gonçalves

Second Supervisor: Liliana Antão

March 30, 2022

© Nuno Resende da Costa, 2022

Resumo

No ambiente industrial atual, a customização de produtos e flexibilidade dos processos têm
passado a tomar um papel central. As equipas colaborativas entre operadores humanos e robôs,
ou human-robot teams, emergiram para responder a esta realidade, combinando capacidades hu-
manas e robóticas e adaptando-se a diferentes cenários de uma forma otimizada. Os mais recentes
desenvolvimentos no domínio de planeamento de tarefas oferecem soluções para este problema
apresentando formas de melhorar os processos industriais. No entanto, muitas vezes não é dada
a devida atenção ao primeiro passo no planeamento de tarefas, a discretização e formalização das
mesmas, que pode ter de ser parcialmente ou completamente manual devido ao seu potencial para
elevada variabilidade e complexidade de soluções. Por outro lado, os planos de tarefas obtidos
podem nem sempre se traduzir em soluções viáveis, devido a limitações do ambiente. Conse-
quentemente, ter em consideração algum planeamento dos movimentos necessários para efetuar
as operações e avaliar a sua viabilidade torna-se essencial.

Para combater este problema, é proposta uma framework para o planeamento de tarefas e movi-
mento, que usa uma abordagem bottom-up para a definição e formalização das tarefas, baseada em
regras e configurações obtidas por uma entrada que contém uma abstração do resultado final pre-
tendido. Subsequentemente, são gerados grafos baseados nas diferentes formalizações obtidas, a
partir dos quais planos de tarefas podem ser obtidos e de seguida escrutinados por um módulo
de simulação e planmeanto dos movimentos robóticos. A saída final do programa deve conter os
planos viáveis mais eficientes.

Esta abordagem foi testada usando um caso de estudo de assemblagem de mobília modular do
Yale Social Robotics Laboratory, denominado HRC model set. Resultados foram obtidos de dois
objetos propostos no caso de estudo, uma mesa e uma móvel de prateleiras, apresentando difer-
entes níveis de complexidade. Os principais resultados mostram que apesar de não ser tão robusto
para tarefas mais complexas como a assemblagem do móvel de prateleiras, para cenários mais
simples como a mesa o sistema é capaz de definir muitas estratégias diferentes para a montagem
do objeto pretendido, resultando em planos apropriados para o operador e o robô no ambiente
colaborativo.

i

ii

Abstract

In the current industrial environment, product customization and process flexibility have taken
a central role. Human-robot teams try to answer this demand by coupling human and robot skills,
adapting to the different scenarios in an optimized way. Recent developments in task planning
offer solutions for this problem by highlighting ways of improving industrial processes. However,
the first step in task planning is many times overlooked: task’s discretization and formalization.
This phase of the process is mostly performed partially or completely manually due to its immense
variability potential and complexity of solutions in some scenarios. Resulting task plans alone
may not translate into feasible solutions, due to environment constraints. Consequently, motion
planning is essential for the evaluation of the tasks’ validity and for obtaining decent outcomes.

To combat this problem, a task-motion planning framework is proposed. The implementation
uses a bottom-up approach for the definition and formalization of the task, based on constraints
and configurations obtained from an input that holds an abstraction of the desired outcome. The
results of this formalization can be seen as different strategies of assembling the desired object.
Subsequently planning graphs are generated based on the different formalizations, where task
plans can be obtained and scrutinized by a motion planning module that simulates the robotic
movements. The output should include the most time-efficient viable plans.

This approach was tested using a furniture assembly case study, the Yale Social Robotics
Laboratory HRC model set. Results were taken from two prototypical objects suggested by this
case study, a table and a shelf, with different levels of complexity. The main results show that
despite not being as robust for more complex tasks like the shelf assembly, for simple scenarios
such as the table the system is able to lay out many different strategies to address the assembly
of the object, resulting in suitable task plans for the operator and the robot in the collaborative
environment.

iii

iv

Acknowledgements

First of all, I would like to thank my supervisors for giving me the opportunity to work on
this project and dissertation, with a special note of gratitude to Liliana for her help, patience and
positivity. It was a long journey, with a lot of highs and lows. I’d like to extend my gratitude toward
everyone who has been a part of it, one way or the other, for all the support and lessons learned
throughout this time. I could not finish off without expressing a feeling of eternal appreciation
for all those who make you laugh at the best of times and always have a kind word for you in the
worst of times. It was a without a doubt a pleasure.

Nuno Costa

v

vi

“In this terrifying world, all we have are the connections we make.”

BoJack Horseman

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem Definition . 2
1.4 Objectives . 3
1.5 Dissertation Structure . 4

2 Literature Review 7
2.1 Human Robot Teams . 7
2.2 Task Discretization and Formalization . 8

2.2.1 HTNs and graph-based planning . 10
2.3 CoppeliaSim . 12
2.4 Related Work . 14

3 Task-Motion Planning Framework 19
3.1 Case study . 19
3.2 Proposed solution . 21

3.2.1 System overview . 21
3.2.2 General Approach and List of Concepts 23

4 Task Planning Approach 27
4.1 Inputs . 27
4.2 Task Discretization and Formalization . 28
4.3 Graph generation . 33
4.4 Plan generation and final output decision . 35

5 Motion Planning Approach 37
5.1 Simulation setup . 37
5.2 Graph translation . 39
5.3 Remote API setup . 41
5.4 Movement generation . 42

6 Experiments and Results 45
6.1 Experiment definition and input design . 45
6.2 Task discretization and formalization . 47
6.3 Graph and plan generation and motion simulation 49

ix

x CONTENTS

7 Conclusions and Future Work 53
7.1 Conclusions . 53
7.2 Future Work . 54

A Appendix 55

References 63

List of Figures

2.1 HRI in different assembly scenarios. [1] . 8
2.2 Example of the planning tree structure as described by the GraphHTN approach.

[2] . 11
2.3 Generic CoppeliaSim scene with examples of robot models provided by the simu-

lation platform working simultaneous, showing the wide variety of functionalities
offered by the simulator. [3] . 12

2.4 Architecture of the Task-Motion Kit, a framework that integrates multiple methods
of task and motion planning. [4] . 15

3.1 Examples of the components proposed by the model set. 20
3.2 Prototypical objects proposed in the HRC model set. 20
3.3 System overview. 22
3.4 Approaches to the breakdown of the task. 24
3.5 Allocation of operations: robotic (Pick and Place) and human (Snap, Position

Screw and Fasten Screw). 25

4.1 Data structures that hold the configurations for object structural components and
link (bracket) components. 29

4.2 Examples of bracket configuration connections. 29
4.3 Examples of component configuration connections. 29
4.4 Part data structure. 30
4.5 Recipe data structure. 30
4.6 Structures that integrate a recipe. 31
4.7 Diagram showing the general functionality of the discretization process. 32
4.8 Logical sequence of structures built within the task planning module. 33
4.9 Example of generated graph for the table assembly task. 34
4.10 Examples of task plan, showing different possibilities of plan formation. 36

5.1 Developed scene, prepared for the assembly of the task object Table. 37
5.2 Universal Robots UR5e collaborative robotic arm. 38
5.3 Examples of component meshes used in the simulation. 38
5.4 Brackets during simulation in the dynamic content visualization mode, showing

the respondable properties of the shape. 39
5.5 Example of motion sequence, formed in the graph translation process and contain-

ing only operation nodes. 40
5.6 Structure that holds the necessary information to execute the motion operation. . 41
5.7 Process from the remote API client side. 42
5.8 Process from the remote API server side. 43

xi

xii LIST OF FIGURES

6.1 Component configurations for Case 1. 45
6.2 Component configurations for Case 2. 46
6.3 Graph A from Case 1. 49
6.4 Graph B from Case 1. 50

A.1 Results from the automatic part creation in Case 1. 56
A.2 Parts used in the formalization process in Case 2. 57
A.3 Recipes resulting from the task discretization and formalization process in Case 1. 58
A.4 Recipes resulting from the task discretization and formalization process in Case 2. 59
A.5 Recipes resulting from the task discretization and formalization process in Case 2. 60
A.6 Recipes resulting from the task discretization and formalization process in Case 2. 61

List of Tables

2.1 Literature review articles and areas of focus. 18

3.1 List of components of HRC model set prototype objects. 21
3.2 List of concepts to better understand the solution. 23

6.1 Important numbers that characterize both cases. 47
6.2 Summary of the results obtained from the task discretization experiments. Suc-

cessful processes in green and limitations in yellow. 48
6.3 Summary of the results obtained from the graph and plan generation experiments,

as well as tests in graph translation and motion simulation. Successful processes
in green and limitations in yellow. 49

xiii

xiv LIST OF TABLES

Abreviaturas e Símbolos

3D Three-Dimensional
API Application Programming Interface
CC-HTN Clique/Chain-Hierarchical Task Network
CSP Constraint Satisfaction Problem
DAG Directed Acyclic Graph
FF Fast-Forward
HAN Hierarchical Action Networks
HPN Hierarchical Planning in the Now
HR Human-Robot
HRC Human-Robot Collaboration
HRI Human-Robot Interaction
HRP Humanoid Robotics Platform
HTN Hierarchical Task Networks
IK Inverse Kinematics
JSON JavaScript Object Notation
LPL Linear Planning Logic
OMPL Open Motion Planning Library
PDDL Planning Domain Definition Language
POMDP Partially Observable Markov Decision Process
POP Partial-Order Planning
RG2 Robot Gripper Two
ROS Robot Operating System
STL Standard Triangle Language
STRIPS Stanford Research Institute Planning System
TM Task-Motion
TMP Task-Motion Planning
UR5 Universal Robots Five
XML Extensible Markup Language

xv

Chapter 1

Introduction

1.1 Context

The industry has suffered several revolutions that introduced many impactful technologies. In

the third industrial revolution, robots started to emerge in factories, creating automated assembly

lines that revolutionized the industry. In today’s industrial environment, automation is an essential

step toward success for any company. In a wide variety of sectors, countless functions that used

to be executed by human operators are now almost entirely performed by robots. These machines

have increasingly become more efficient and reliable and have proven a cost-effective replacement

to improve productivity and profits. In the last decades, such robotic systems have been a growing

research area with significant signs of progress.

Despite the inevitable trend towards using machines in all fields, with the fourth industrial

revolution (Industry 4.0), the industrial reality is being transformed. This new reality is leading

towards a more customer-oriented production, where the human operator is indispensable in ex-

ecuting specific roles that robots cannot yet perform. Humans can offer the process useful skills

like the ability to improvise, to understand time delays, to manage unscheduled events, to plan se-

quences of tasks, and to react to errors. At the same time, robots are significantly more susceptible

to fail to respond to unusual situations appropriately. Working on feasible improvements for the

robots is extremely important to ensure the tasks are performed efficiently and securely.

Additionally, customer-oriented production entails high product variability, where some tasks

may be too challenging to be fully achieved by robots or too expensive to be fully automated.

With all these factors, there was a shift in robotics towards using Human-Robot teams to perform

these tasks, taking advantage of the benefits each offer. The pair works in a complementary way

to achieve a common goal, combining robotic precision, reliability, and strength with human re-

silience, intelligence, and improvisation. Improving the cooperation between humans and robots,

i.e., Human-Robot Collaboration (HRC), is one of the most critical challenges in this field.

Most of the current research on Human-Robot teams aims to ensure the operators’ safety.

However, other important problems in HRC have not yet received the same attention, even though

they are also essential to guarantee fewer stoppages, higher productivity, and human comfort.

1

2 Introduction

The efficiency of collaboration between team members has a direct and significant impact on the

quality of the task being performed by the team; therefore, more flexible and automatic robots need

to emerge in an environment ever more oriented towards product customization and synergetic

operations.

1.2 Motivation

Given the expanding presence of machines in industrial processes, optimizing the robots’ per-

formance is a clear goal. While human operators may understand an entire process and efficiently

work out the most sensible sequence of operations, given a specific set of process parameters, a

robot’s knowledge is limited to its programming. A wide range of robots is programmed based on

existing code, which has to be adapted to different operations and process parameters. Changes

in the parameters may cause the optimal sequence of tasks to be altered. In complex situations, it

may be difficult to reconfigure the robot in a satisfactory and practical way.

Complicated sets of operations require complex and effective scheduling and planning meth-

ods for different tasks. A standard solution is to have the order of operations hard-coded in the

robot’s programming. A more efficient solution would be to have the robot schedule and organize

the planning of various activities automatically and be able to repeat that same planning exercise

with new sets of tasks and parameters in different environments. Breaking down large industrial

tasks into small operations can be challenging, but it is an extremely important factor in process

optimization. Achieving several ways of decomposing the same task can also contribute to a more

flexible work environment and facilitate product customization.

In addition to the difficulty of planning their tasks logically, there are some other obstacles

in robots’ way towards optimal performance in a collaborative environment context. Human ex-

ecuted tasks are more prone to delays or other time inconsistencies. The human factor carries a

lot of unpredictability, which may disrupt the initial programmed solution and cause the robot to

make mistakes. By contrast, at this point, the robot’s operation would be fixed, meaning the oper-

ator would have to adjust to the robot’s limitations. The robot would then be the master, dictating

the process. Simultaneously, the human would have to continually guarantee the repeated and

precise execution of the tasks, a strenuous and exhausting job, potentially leading to more process

errors, stoppages, and lower productivity. Finding ways for the robot to be more adaptable to the

operators’ tendencies when necessary and learn from process errors would change this dynamic.

Having the more intelligent and flexible actor in the process, i.e., the human, become the master

would fundamentally improve the executed tasks’ quality and efficiency.

1.3 Problem Definition

In light of the industry’s most recent changes, there is a need for new approaches that can meet

the requirements of increased customization and flexibility. In HR teams, it is always helpful to

1.4 Objectives 3

have robots with a certain degree of autonomy. However, the main goal has shifted towards devel-

oping partially-autonomous robots that can cooperate with human partners and adapt according to

the operators’ behavior. For an efficient work strategy and collaboration, robots need to be intelli-

gent in performing tasks, which involves arranging the ideal sequences of operations and planning

the trajectories associated with the performance of those same operations. Changes in the envi-

ronment can require altering the outlined plans, which can become infeasible. Robots need to be

capable of overcoming these changes and adapting to different realities. Thus, developing highly-

specific task-motion planning tools has become expendable, while generalized approaches that

can survive significant changes to process parameters have risen as the most attractive to flexible

industrial environments.

The problem consists of finding a generalized task and motion planning approach focused on

formulating viable planning sequences for task execution. In this process, the robot and a human

operator should work in a collaborative environment, being exposed to interchanging scenarios.

The problem was divided into two main areas: Task Planning and Motion Planning.

Numerous Task Planning solutions for all sorts of problems have already been implemented.

However, most of those solutions do not focus too much on a necessary first step of task planning

which is the breakdown of the task, i.e., task discretization. Most approaches work with the already

discretized task as an input, thus opting for a manual decomposition of complex tasks, which can

limit the flexibility and customization capabilities of the solution and can also steal away some

variability, resulting in a smaller set of possible plans for each desired task.

Task plans are abstract sequences of operations that may not be feasible to execute in certain

scenarios. Therefore, offering task plans without a proper test in the specific environment is in-

sufficient to solve many industrial problems. In this stage of planning, it is crucial to validate the

robotic trajectories and operation flows that are obtained in the task plans. This way, the plans can

be analyzed and scrutinized, so only the most viable and efficient ones can be offered as a solution

to the planning problem. This is where Motion Planning plays a significant role in the planning

process.

As previously mentioned, a significant challenge in task planning lies in finding generalized

approaches that can offer solutions to different scenarios. This challenge turns even more complex

when considering the automatic discretization of tasks, given that in a high-customization context,

a solution is only as good as its scalability. A generalized approach also raises difficulties on the

motion planning side, which can only contribute to finding better planning solutions if there is a

clear, efficient, and robust integration between the Task and Motion aspects of the problem.

1.4 Objectives

This dissertation addresses some of the robots’ limitations presented above in the field of

Human-Robot Teams. The project is divided into two phases, as mentioned in Section 1.3, each

meant to tackle a different set of obstacles.

4 Introduction

The first phase should provide the robot with the capability to automatically plan tasks with se-

quences of multiple operations. In this stage, tasks should be decomposed into small and straight-

forward sub-tasks or granular operations in a general and context-independent manner. A task

planning algorithm should be developed using those operations. The idea is for the robot to plan

logical sequences of granular operations using the algorithm without constant input from an oper-

ator or the need for hard-coded algorithms, which are not as dynamic and adaptable.

The second phase should engage in planning the robot’s trajectories, associated with the plan-

ning of sequences of tasks. This stage should be able to validate the formulated task plans to

provide a more complete solution to the planning of the desired task. By testing the operations’

execution, process parameters should be acquired so the best viable plans can be offered as solu-

tions.

After these two phases of the project, a robot should be able to schedule, plan, and organize

sets of operations and coordinate the robotic movement with the planning of tasks. With this,

the human-robot team capability of dealing with changes is improved. In sum, the following

objectives should be achieved:

1. The algorithm input should contain only the rules for the discretization of the task and the

necessary operation information and input process parameters;

2. The task planning algorithm should be able to break down the task according to the input

rules and formulate a planning problem with the decomposed task;

3. Task plans should be generated according to the planning formulation;

4. The robotic movement and viability of the formulated task plans should be tested in simu-

lation environments;

5. The proposed approach should be scalable to different task input configurations and scenar-

ios;

6. The best viable and simulated task plans should be outputed.

1.5 Dissertation Structure

In addition to the Introduction, this document contains six more chapters: Literature Review

(Chapter 2), Task-Motion Planning Framework (Chapter 3), Task Planning Approach (Chapter 4),

Motion Planning Approach (Chapter 5), Experiments and Results (Chapter 6) and Conclusions

and Future Work (Chapter 7).

Chapter 2 contains the information collected from the research on relevant topics to the disser-

tation, such as HR teams, task formalization and discretization methods, task and motion planning

approaches and simulation platforms.

In Chapter 3, the case study that is central to the implemented solution and that is used for

its validation is presented. This is followed by an overview of the proposed solution, accounting

1.5 Dissertation Structure 5

for general aspects that characterize the solution such as the solution architecture, the points of

similarity with the reviewed research and some important definitions to understand the implemen-

tation.

Chapter 4 reveals the task planning approach. More specifically, it details how the task is

formalized and discretized based on the inputs, how planning graphs are generated and how task

plans can be formed by traversing the graphs.

Chapter 5 accounts for the motion aspect of the solution, detailing the work done to create

motion plans that using the task graph information, to set up the simulation scene and the remote

API client and to generate the robotic movement on the simulator side.

Chapter 6 shows an account of the experiments performed to validate the different aspects of

the planning framework and the results that were obtained. The limitations of the solution are also

reported.

To conclude, Chapter 7 gathers the conclusions that were reached as well as defining some

relevant areas of future improvement.

6 Introduction

Chapter 2

Literature Review

A series of articles were carefully read and analyzed to better understand the scope of the field

and learn of some of the existing solutions for task and motion planning with human-robot teams.

This process was helpful in determining what approaches and technologies were more desirable

to use while attempting to solve the problem explained in Section 1.3. The selection of the articles

was based on the quality, clarity, and relevance of their content. Initially, the search focused on

broader subjects to get as much information as possible and find new study areas. At a later stage,

articles that failed to meet the criteria were excluded, and the information gaps were filled by more

targeted research. This chapter presents useful background information in the field, as well as a

collection of related papers.

2.1 Human Robot Teams

Human-robot teams have garnered a lot of attention in today’s industrial and scientific commu-

nity. Research efforts in this field have tried to find innovative ways to couple human and robotic

skills in a collaborative environment. Some key objectives and challenges related to human-robot

collaboration are presented in [1]. A wide range of studies on the topic is collected, which is used

to analyze the field in two major topics carefully: HR task planning & coordination and intuitive

programming.

The same article also classifies human-robot interaction, specifically in assembly problems,

according to different factors, such as:

• The type of hybrid assembly cell: based on a workspace sharing approach or a workspace

and time sharing philosophy;

• Role of the human: supervisor, operator, teammate, mechanic, programmer or bystander,

among others;

• Level of interaction between the human and robot, in other words, how much of the pro-

cess is shared between them: shared tasks and workspace, common tasks and workspace,

common tasks and separate workspace

7

8 Literature Review

Figure 2.1: HRI in different assembly scenarios. [1]

Figure 2.1 summarizes the different approaches to an HRI assembly process, relating to the

level of interaction and some of the characteristics and advantages of each one.

In the task planning field, [1] mentions different metrics that can be used for evaluating each

of the two partners in a HRI scenario. On the robot’s side, self-awareness, human awareness, and

autonomy are indicated, on the human’s side, some important factors are the situation awareness,

workload, and accuracy, while for the system as a whole, effectiveness, efficiency, quality of effort

and number of interruptions are among the main criteria. All of these process parameters are

important to manage large tasks, given that they offer information on what operations should be

assigned to the human and the robot. Equipment and environmental characteristics, as well as

ergonomics factors are also considered in this operation allocation process.

2.2 Task Discretization and Formalization

Most of the progress done in task planning has come up through the evolution and adaptation

of the Stanford Research Institute Planning System (STRIPS). According to their priorities and

objectives, a considerable number of planning strategies based on STRIPS have been tried and

tested, each weighing distinct factors differently. Heuristic search and constraint satisfaction are

considered to be two of the leading strategies for efficient task planning, according to [4]. The

former uses a heuristic function specified by the planning instance to guide the search through the

state space so as to try and find a corresponding solution, while the latter obeys a set of defined

constraints/restrictions, eventually guiding towards a viable solution. The FF Planning System,

which was a very successful approach based on heuristic search, is presented in [5]. A popular pi-

oneering study in constraint satisfaction can be found in [6]. A detailed definition of the constraint

satisfaction approach and a number of different techniques is presented in [7].

In [8], three groups of satisfaction-based approaches are mentioned: PDDL, Hierarchical Task

Networks (HTN), and Constraint Satisfaction Problems (CSP). A brief account of some of these

2.2 Task Discretization and Formalization 9

methods’ variants can be found in [9]. PDDL approaches are based on the combination of high-

level task planning with low-level motion planning through semantic attachment to a PDDL plan-

ner. The low-level planner checks action applicability and computes effects when high-level ac-

tions are executed. As described in [10], fully observable and deterministic task planning problems

are defined in PDDL by a tuple 〈A, s0, g〉, where A is a set of parameterized actions with precon-

ditions and effects, s0 is the initial state of the domain and g is a set of propositions, corresponding

to the goal condition. Some methods use symbolic description to represent geometric feasibility

conditions and action operator preconditions.

Hierarchical task networks are based on an extensive search, requiring mechanisms to increase

its speed to make it more scalable to large problems. Hierarchical Planning in the now (HPN) is

a flexible HTN-based technique capable of generating a hierarchy dynamically so that during a

transition between degrees of the hierarchy, the goal specification of the planner is defined by the

preconditions of the destination node of the transition. Some HTNs have the ability to backtrack

the geometric module’s decisions. A constraint satisfaction problem approach, which is specified

in [9], establishes the notion of an action skeleton, which is a sequence of symbolic actions with

unspecified geometric parameters. The geometric parameterization of actions occurs at a stage

where the skeleton has been fixed. In this approach, the geometric parameters of the skeleton need

to be discretized. Other CSP approaches also turn to constraint propagation to resolve geometric

constraints. These methods are all viewed by [8, 9] as insufficient for industrial environments, as

some of these approaches work well in lab robotics but may not always offer the most optimal

solutions.

Logic-geometric programming consists of another group of approaches cited by [9] that are

more focused on finding the optimal feasible solutions. This is done by treating the problem as an

optimization problem on the geometric level and controlling the constraints logically. However,

these methods’ sheer complexity significantly affects their scalability to some scenarios with a

large number of tasks. According to [11], early attempts at logical representations were found

to be infeasible. Still, more recent approaches were able to harness the upsides of logic-based

methods and reduce some of its limitation’s impact. Some alternative methods include Partial-

Order Planning (POP) and GraphPlan.

POP is a popular method that prioritizes efficiency, searching through the space of plans in-

stead of the state space. GraphPlan explores through the state space but uses an approximate reach-

ability graph with mutual exclusion constraints. A first-order linear logic approach is depicted in

[11], the Linear Planning Logic (LPL). The author defines linear logic as a resource-aware logic

that treats resources as single-use assumptions, which can enable the encoding and reasoning of

dynamic state domains. Unlike other logic-based methods, LPL combines the elegance of classical

logic with the strengths of intuitionist logic, resulting in an efficient representation of the dynamic

state. A particular downside lies in the inherent difficulty of working with a complex logic-based

method, in addition to some resource management issues.

The definition of the planning formalism is not always a main focus in many task planning

studies, and sometimes it is barely mentioned. However, as described above, it may be a deciding

10 Literature Review

factor in the applicability of the method being implemented. Some approaches may be too com-

plex and computationally heavy, resulting in scalability-related limitations. Other more simplistic

known techniques may be more efficient while at the same time not always offering the most opti-

mal possible solutions. In [12], further information can be found on different ways of representing

task formalisms and knowledge.

2.2.1 HTNs and graph-based planning

As explained above, HTNs are a constraint-based method of representing a task planning prob-

lem that is based on defining hierarchical relationships between different sub-tasks and operations

as well as restrictions along the network to reach viable solutions. In [13], a detailed analysis of

the HTN design and features can be found.

Conventional HTNs take an initial task network as an input, consisting of a set of tasks, each

with a list of relevant attributes. These attributes and the relationships between the tasks form

constraints that will originate task plan solutions. Three types of tasks are defined:

• Goal tasks, which correspond to the desired result;

• Primitive tasks, achieved by directly executing the corresponding action;

• Compound tasks, which involve several primitive tasks and possibly one or more goal tasks.

Along with the initial task network, the HTN algorithm also takes a set of operators that will

be responsible for determining the effects of each primitive task and a set of methods that describe

how to perform non-primitive tasks. Generally, the planning algorithm tries to find non-primitive

tasks along with the network and replaces them with a number of smaller tasks in accordance with

the set of methods received. When no more non-primitive tasks can be found in the network, the

algorithm produces a sequence of all tasks that satisfies all the constraints. To sum up, the planning

problem P in the HTN problem can be defined as P = 〈d, I, D〉, where d is the initial task network,

I is the initial state and D is the planning domain, containing the set of operations and methods,

defined as D = 〈Op, Me〉.
As with most formalization and planning approaches, HTNs owe their origins to STRIPS,

making that comparison unavoidable. This approach, in fact, includes all of the concepts that

STRIPS provides while offering a richer constraint language. It also provides more flexibility and

expressivity in the definition of arbitrary constraints along with multiple tasks and in handling

compound task abstractions. On the other hand, HTNs can become incredibly complex when

handling non-primitive tasks, which is why it is usually recommended to have as few as possible

non-primitive tasks or, in cases where this is unavoidable, to make them totally ordered.

In [2], GraphHTN is introduced as a hybrid approach, meant to formalize tasks and their

connections and constraints in the HTN-style format but to solve the planning problem using a

common planning-graph generation approach. This way, the solution improves HTN planning by

using planning graphs, and planning graphs sped up by exploiting HTN control knowledge. The

approach divides the problem into two data structures:

2.2 Task Discretization and Formalization 11

1. The planning tree, which holds the task decomposition rules and constraints;

2. The planning graph, generated in a way that is consistent with the constraints in the planning

tree.

Figure 2.2: Example of the planning tree structure as described by the GraphHTN approach. [2]

The planning tree consists of an AND/OR graph with all the task’s decompositions, and an

example of the structure is presented in Figure 2.2. AND/OR graphs are Directed Acyclic Graphs

(DAG) whose nodes can be AND-nodes or OR-nodes. These hierarchical structures can be a

good solution for dealing with complex tasks that can be broken into smaller operations in several

different ways. A more detailed account of AND/OR graphs applied to an assembly scenario can

be found in [14]. In the case of the GraphHTN planning tree, there are two types of nodes:

• Method nodes, which correspond to AND nodes;

• Task nodes, which correspond to OR nodes, whose children are method nodes used for the

decomposition of the task

The initial task network is composed of a special method node whose children are initial tasks.

A solution to the planning problem will be a subtree of the planning tree. The planning graph is

generated level by level recursively, in accordance with the planning tree and each iteration, the

algorithm tries to find a valid plan.

An interesting work involving the construction of HTNs is described in [15]. This variation of

HTNs, dubbed Clique/Chain HTNs (CC-HTNs), allows for robots to build their own hierarchical

interpretations of tasks by leveraging ordering constraints and knowledge from previously known

tasks to learn multiple levels of abstraction for arbitrary task networks. The presented algorithm

starts out with a task graph, where graph nodes are states and edges are actions, and sequences

of actions to perform can be formed by jumping through the nodes until task completion is guar-

anteed. Subsequently, a different graph structure named Conjugate Task Graph is formed where

nodes are now subgoals of the main task and edges represent the problem constraints. Similar

12 Literature Review

operations are grouped in an automatic generalization exercise from this new graph, forming a

clique or chain abstraction, clique for unordered sequences, and chain for ordered sequences. To

conclude, hierarchical structures are established automatically, based on a bottom-up approach

that uses the generalization previously obtained.

2.3 CoppeliaSim

For connecting task and motion planning, there is a need for a platform that can take infor-

mation from task plans and be able to originate the continuous actions, while keeping a realistic

account of the environment effects that they produce. A common reliable and flexible way to do

this is by means of a simulator.

CoppeliaSim [3] (formerly known as V-REP) is a general-purpose robot simulation framework

that is highly versatile and scalable. This tool makes simulation capabilities more accessible to

the general public by offering vast built-in functionalities and programming approaches. It also

provides low-complexity integration tools for direct and efficient remote control.

There are plenty of simulation frameworks with immense capabilities, each with its unique

approach, advantages, and weaknesses, including Gazebo [16], Webots [17], and Open HRP [18].

Compared to these and other approaches, CoppeliaSim is thought to have the more appropriate

balance between the complexity of simulation setup and control, built-in functionality capabilities,

and wide accessibility and scalability to compatible and open-source resources.

Figure 2.3 shows a CoppeliaSim scene, where it is possible to see the user interface. Among

other elements, the interface offers a model browser with a large number of resources to use in

simulations, and the scene hierarchy panel, where all objects in the scene are represented through

their handle and the connections between them in the environment are established.

Figure 2.3: Generic CoppeliaSim scene with examples of robot models provided by the simula-
tion platform working simultaneous, showing the wide variety of functionalities offered by the
simulator. [3]

2.3 CoppeliaSim 13

In [3], an account of the simulator functionality, properties, and supported techniques can be

found, with respect to:

• Control code execution: executed on another machine, on the same machine but in a differ-

ent process/thread from the main simulation loop or on the same machine and same thread

as the main simulation loop;

• Programming: embedded scripts, add-ons, plug-ins, remote API clients, and ROS nodes

• Scene objects: joints, shapes, proximity/vision/force sensors, graphs, cameras, lights, paths,

dummies, and mills;

• Calculation modules: kinematics, dynamics, collision detection, mesh-mesh distance calcu-

lation, and path/motion planning.

CoppeliaSim embedded scripts are written in Lua1 code, with a main script handling the sim-

ulation functionality and calling child scripts in a cascaded way, respecting scene hierarchy. More

detailed information on the simulation platform characteristics can be found on the CoppeliaSim

User Manual2. CoppeliaSim offers a number of tutorials and simulation scenes to help any user to

get acquainted with the platform and its functionalities.

The Designing dynamic simulations3 page offers a brief and clear explanation on basic con-

cepts necessary for the understanding of the dynamic properties of simulated environments and

guidelines for the design of those simulations. For dynamical purposes, scene objects (shapes) are

categorized according to two criteria:

• Static or non-static (dynamic): static shapes’ positions relative to their parent object are

fixed and not affected during the simulation, while dynamic shapes are directly affected by

gravity and other environment constraints that may cause their movement;

• Respondable or non-respondable: respondable shapes are influenced by other aspects of

the environment, namely other shapes they may be in contact with, while non-respondable

shapes cannot be affected by other aspects of the surrounding environment.

The most realistic category of shapes is undoubtedly the dynamic respondable shape, i.e., the

object that can be moved and that is affected by natural physical forces and influenced by what

is happening around it. However, the non-respondable and static properties in shapes can have

advantages and be useful in certain simulation scenarios.

The same CoppeliaSim user manual page also lists some necessary considerations that should

be taken into account when designing a simulation scene, as well as some guidelines for dealing

with dynamically enabled joints and force sensors in association with shape objects and how they

interact with each other in their hierarchical configurations in the scene. It also touches on the

1https://www.lua.org/
2https://www.coppeliarobotics.com/
3https://www.coppeliarobotics.com/helpFiles/en/designingDynamicSimulations.htm

https://www.lua.org/
https://www.coppeliarobotics.com/
https://www.coppeliarobotics.com/helpFiles/en/designingDynamicSimulations.htm

14 Literature Review

role of dummy links in the dynamically enabled hierarchical relations between parent and child

objects.

As previously mentioned, CoppeliaSim supports many plug-ins to perform a multitude of

tasks. There is a variety of material (user manual guidelines, simulation scenes, tutorials, among

others) on handling inverse kinematics4 (IK), path plannnig5 and remote API6 setup and control,

which can all be found and/or referenced in the user manual.

To solve inverse kinematics problems for robots in the simulation platform, using the IK plug-

in, the CoppeliaSim guidelines suggest the creation of an IK environment with IK groups based

on which the IK calculations will be computed. Each IK group can incorporate a single or several

IK elements, which in turn contain a base, a number of links and robot joints, a tip (corresponding

to the robot endpoint), and a target, i.e., a dummy that sets the position and/or orientation the tip

of the IK element should move to.

CoppeliaSim offers the Open Motion Planning Library (OMPL) plug-in for path and mo-

tion planning. Consisting of an open-source library with multiple sample-based motion planning

algorithms, OMPL is meant to be easily integrated into systems that offer the necessary basic

simulation capabilities, such as CoppeliaSim or many other simulation platforms. With regard to

remote APIs, CoppeliaSim offers some easy-to-use and lightweight options, namely the ZeroMQ,

the WebSocket, and the legacy remote APIs. A brief overview of the different possibilities can be

found in the user manual remote API page and short scripts to test client creation, connection to

the simulator, and the simulation control operating from the client-side.

2.4 Related Work

To properly address the problem, it is crucial to start by understanding the general architecture

of an implementation of this kind and all the conceptual thinking behind it. In [4], a description

of the existing dichotomy between task planning and motion planning is explained. Task planning

uses discrete reasoning to obtain decisions on certain actions’ specifications and in what order they

should be executed. Motion planning uses continuous reasoning to determine how the robot should

move to reach a certain target location. Combining task and motion planners can be challenging

and requires some adjustments. Isolated task planners are usually prepared to pick a single plan,

the best one they can find, without offering alternative plans if the chosen one turns out to be

inconceivable. In addition to that, some isolated motion planners assume a fixed configuration

space, failing to take into account changes in the kinematics and configuration changes caused by

the motion. For these reasons, integrating the two efficiently and effectively may prove to be a

demanding goal.

4https://www.coppeliarobotics.com/helpFiles/en/kinematics.htm
5https://www.coppeliarobotics.com/helpFiles/en/pathAndMotionPlanningModules.htm
6https://www.coppeliarobotics.com/helpFiles/en/remoteApiOverview.htm

https://www.coppeliarobotics.com/helpFiles/en/kinematics.htm
https://www.coppeliarobotics.com/helpFiles/en/pathAndMotionPlanningModules.htm
https://www.coppeliarobotics.com/helpFiles/en/remoteApiOverview.htm

2.4 Related Work 15

TMP has been a widely studied field, thus, many approaches focusing on distinct problems

have come up through the years. The differing methods are characterized by their specific contri-

butions to the field, what metrics they are committed to improve and how they propose to deliver

those benefits to the system. An interesting depiction of a probabilistically complete open-source

task-motion planning (TMP) framework, presented in [4], summarizes the main inputs of a task-

motion planner in the following way:

1. Task Domain, that defines possible actions/operations, including their preconditions and

effects.

2. Motion Domain, which defines the configuration parameters of the robot and the surround-

ing environment.

3. Domain Semantics, responsible for the coupling between the task and motion domains,

in a feasible, efficient, collision-free manner. This breakdown outlines the starting points

in the implementation of a task-motion planner: the definition of a planning strategy and

formalism, the motion planning specifications, and how they can be integrated with a task-

motion planner.

Figure 2.4 shows a map of the architecture proposed by [4] which lays out the necessary

structures, files, modules and tools to compose the planning algorithm.

Figure 2.4: Architecture of the Task-Motion Kit, a framework that integrates multiple methods of
task and motion planning. [4]

A proper motion planning system is significantly important for the optimization and validation

of task planning. In realistic scenarios, a planner may reach a sequence of operations that cannot

be executed due to limitations in the robot’s motion. Therefore, checking whether a task plan

can successfully translate into a set of actions performed by the robot is extremely important to

validate and adapt (if necessary) the procedures outlined by a task planner. Some motion planning

approaches include sampling-based planners, optimization-based planners, and planning through

16 Literature Review

gradient descent. A sampling-based planner is the chosen approach by [4] because it offers prob-

abilistic completeness, and therefore a solution is always found if one exists. Their planner is

adaptable to different robots, scenarios, and algorithms, which they refer to as the Task-Motion

Kit.

Some motion planning approaches have some limitations when applied to dynamic environ-

ments where objects may be moving, altering the kinematics and environment settings. In [19],

a TMP approach that focuses on the benefits of combining symbolic and geometric reasoning is

presented. This method uses an algorithm that optimizes over Cartesian frames defined relative

to target objects instead of joint configurations, which can improve the effectiveness of the com-

puted plans in scenarios with moving objects. This approach enhances integration with reactive

controllers. It also proves to have good results in environments with inaccurate perception and

imprecise control. However, the Cartesian frames approach has some limitations when compared

to a more traditional joint configuration setting, especially in adequately detecting and avoiding

robot collisions.

Most approaches currently used join different methods, resulting in an integrated solution

for the problem. In [9], an integrated approach that uses Tabu search for task assignment, linear

programming for task scheduling, and A* search for routing is mentioned, consisting of a common

combination used in path planning problems that can optimize the system and backtrack to a

high-level domain when the lower level cannot offer a feasible problem solution. The integrated

approach proposed by the article, the co-optimization approach, uses a similar layered format,

with high-level task planning and low-level motion planning, while adding a middle layer for

action planning. The top layer finds the sequence of tasks that optimizes a certain performance

metric defined by a cost function. This approach models task planning as a traveling salesman

problem. The middle layer relies on a Hierarchical Action Network (HAN) to define a sequence

of primitive actions for the implementation of a high-level task. The lower level generates the

motion plan required to perform the primitive actions. This solution takes advantage of low-

level information used in the optimization of the motion planning to improve the high-level task

planning incrementally. Initially, an algorithm creates a task plan without taking into account the

information from lower-levels. This preliminary plan is then updated based on a calculated cost

of the feasible motion plans in the lower-level.

In [20], a modular highly-extensible HRC framework for collaborative tasks in hybrid assem-

bly cells is presented. This approach entails a decision-making method, integrated within a Robot

Operating System (ROS) framework, that can efficiently allocate tasks to the different resources

it has at its disposal. Resources are defined as any human operator or robot that can participate in

the execution of the tasks’ operations. The task allocation process is carried out in three steps that

assess different criteria for each resource:

1. Suitability of the resource to perform the operation;

2. State of availability of the resource;

3. Operation time.

2.4 Related Work 17

To summarize, this method tends to choose the quickest available resources that can properly

execute the necessary operation. The way this approach optimizes its results is by optimizing a

specific process parameter, like the average resource utilization or the mean flowtime. The latter

was the selected metric by the article to illustrate the functionality of the method. In trying to

optimize the mean flowtime of the full task, the planner generates a number of alternative plans,

each one distributing operations differently through the resources. The plan with the lowest mean

flowtime would generally be the optimal plan. However, a differing choice could be taken, in case

the human need to perform concurrent work in other cells. The operator communicates with the

robot through body gestures that are detected by a depth sensor. This means of interaction makes

it possible for the human to work in a separate space, which can ease safety measures and work

constraints.

A dynamic scheduling scenario in a collaborative manufacturing assembly station is presented

in [21]. Similar to the previous approach, this methodology proposes the breakdown of the work

load into small operations that can be attributed to specific resources. A hierarchical model of the

process is proposed, enabling the re-allocation of the lowest action units to different resources.

This approach focuses on the dynamic and adaptive nature of the scheduling, offering a robust

solution to unexpected events, such as resource failure or sudden environment changes.

Many current collaborative environments are failing to harness robots’ full potential, while

still placing a significant cognitive load on the human side of the team. A framework capable of

performing role assignment and task allocation that focuses on this issue is presented in [22]. This

approach is based on a transparent system, where mental models about the executing tasks are

shared between the robot and the human. The idea is for the robot to perform the most strenuous

tasks and for the human to have a more targeted role, mostly using his/her decision making and

dexterity capabilities to more specific and unusual tasks that may prove challenging for the robots.

This way, the human is left in charge of overseeing the whole process and can easily intervene in

the most adequate tasks or when a problem occurs. The human is offered an intuitive interface that

he/she can be comfortable with, regardless of the level of experience. Communication between

the two partners is key in a transparent system. It occurs in both ways and in this case is limited to

only what is truly necessary, to avoid an exhausting work load associated with the communication

of every aspect of the process. However, it should be done effectively to avoid uncertainty in the

system. The system may be only partially observable and understandable by the robot. However,

this method also provides the robot with the ability to plan under uncertainty and in situations

where the intentions of the operators are not clear. The chosen approach is based on the merging of

high-level task planning with adptive planning under uncertainty modeled by POMDPs (Partially

Observable Markov Decision Process).

Another study using a single-agent POMDP formalism in its task planning module is pre-

sented in [23]. This approach is a perception-based analytics framework that can estimate current

and future states of actions performed by human operators. By doing so, it can improve the collab-

oration between humans and robots and assist the planning of tasks. In other words, the coupling

of inference mechanisms and task planning algorithms makes it possible for the robot to anticipate

18 Literature Review

Table 2.1: Literature review articles and areas of focus.

Article Task form.
and disc.

Graph
planning HTN Task

planning Motion HR
teams

Tsarouchi et al. [1] x x
Lotem et al. [2] x x x x
Rohmer et al. [3] x
Dantam et al. [4] x x x
Hoffman et al. [5] x x x
Kautz et al. [6] x x
Bartak et al. [7] x x
Faroni et al. [8] x x x
Zhang et al. [9] x x x
Srivastava et al. [10] x x x
Kortik et al. [11] x x
Sun et al. [12] x x
Erol et al. [13] x x
Knepper et al. [14] x x
Hayes et al. [15] x x
Koenig et al. [16] x
Michel et al. [17] x
Kanehiro et al. [18] x
Migimatsu et al. [19] x x
Tsarouchi et al. [20] x x
Nikolakis et al. [21] x x x
Roncone et al. [22] x x
Oshin et at. [23] x x

the operators’ behavior and predict their intentions, while adjusting its plans accordingly, resulting

in an effective work interaction between the two partners. The approach is based on combining

generative and discriminative models. These analytic models use a set of human skeletal joint

locations obtained by a depth map video stream. The generative models determine a future joint

position based on current and past positions, while the discriminative models calculate the prob-

ability of the future action belonging to each class within a set of action classes, displaying those

probabilities in the form of a vector. The information from the models is then used by the task

planning module, formulated as a single-agent POMDP, to improve the planning process. The

study concluded that the approach could correctly predict future joint positions and even future

actions before they start, providing a safer and more effective environment for a collaborative HR

team.

To sum up the researched information, Table 2.1 can be consulted, where the most relevant

articles are represented as well as the areas of research each one covers. It is also shows the areas

that received the most focus, which are aligned with the priorities in the developed work.

Chapter 3

Task-Motion Planning Framework

Before going into detail over the specifications of the proposed Task-Motion Planning ap-

proach, it is important to go over the case study that is used for validation of its development, later

on collecting and analysing results. Thus, this chapter presents the case study used in this project

as well as an overview of the implemented algorithm and some definitions that will be used in the

following chapters.

3.1 Case study

This section demonstrates the case study used for validation of the proposed solution. In [24],

a model set for HRC research is introduced. This tool is presented as a unified framework to

facilitate the comparison and integration of contributions to the field of HRC and it is meant to

serve as a standardized collaborative task or reference collaborative setup. It also helps to provide

experiments that can offer reproducibility and replicability.

The HRC model set1[24], consists in a common HRC scenario, a collaborative assembly of

furniture. It was developed by investigators from the Center for Engineering, Innovation and

Design and the Social Robotics Laboratory at Yale University. It offers a set of components that

are cheap to obtain or produce and that can be easily understood and adapted to flexible scenarios

of different complexity. The simple design of the components is meant to tackle the scalability

problem, making it possible for the model to be used by a wide variety of robotic platforms, to

simulate real-life problems and to facilitate a convergence towards a standardized task domain.

The work also mentions some of the tasks that can be implemented using the model set. To

summarize, the HRC model set fulfills the following requirements for a robust experiment tool:

• Easy accessibility and low cost of the components and final designs;

• Modular and scalable components, which can be re-used several times in different experi-

ments;

• Vast applicability of the model set in the HRC field;
1https://scazlab.github.io/HRC-model-set/

19

https://scazlab.github.io/HRC-model-set/

20 Task-Motion Planning Framework

• Scalability of the task complexity;

• Lightweight and small scale design, compatible with a wide variety of collaborative scenar-

ios’ payload requirements

Figure 3.1: Examples of the components proposed by the model set.2

The model set design presents four groups of components: dowels, plywoods, brackets and

screws. All of them can be acquired in a hardware store by a low price, except for the brack-

ets which have a custom design, that was made available and can be 3D printed. According to

the original proposed component features, dowels measure 1/2 in. in diameter and have varying

length; plywoods are 1/8 in. thick with varying length and width; standard #4 screws are suggested

with 1/2 in. and 1/4 in. lengths. The brackets should be scaled to fit the other components dimen-

sions, i.e., the plywood thickness and the dowel diameter. This design offers vast possibilities of

customization, making it possible to simulate in small scale all sorts of real-life scenarios. Figure

3.1 shows examples of the different types of components.

(a) Table (b) Chair (c) Shelf (d) Console

Figure 3.2: Prototypical objects proposed in the HRC model set.

Four prototypical objects are suggested in [24]: table, chair, shelf and entertainment console.

These objects are examples of assembly configurations of the proposed components to simulate

real-life objects, with distinct levels of complexity, the table being the simplest one and the con-

sole the most complex. Figure 3.2 displays the four objects at their full assembly stage. These

suggested objects can be translated into proposed assembly tasks that can be used by new and

already existing planning approaches so it becomes possible to have standard task domains and

2https://scazlab.github.io/HRC-model-set/

https://scazlab.github.io/HRC-model-set/

3.2 Proposed solution 21

task planning inputs, as well as a facilitated process of result comparison and solution validation.

Table 3.1 shows the list of components that take part in the assembly of each suggested object.

Also in the table it is possible to see all of the specific brackets, plywoods and screws that make up

the case study. Plywoods are differentiated by their dimensions and screws by their size. Brackets

take several designations according to their format and scenario they belong to: chair (back, left

and right), foot, shelf (90 and 180) and top (180 and simple top, which can also be defined as T90).

Table 3.1: List of components of HRC model set prototype objects.

Brackets Dowels Plywoods Screws
CB CL CR F S90 S180 T180 T D 6x8 6.75x2.5 6x16 1/2 1/4

Table 0 0 0 4 0 0 0 4 4 1 0 0 8 8
Chair 2 1 1 4 0 0 0 2 7 1 1 0 14 12
Shelf 0 0 0 4 4 0 0 4 8 2 0 0 16 16

Console 0 0 0 8 12 4 4 4 24 6 0 2 48 24

3.2 Proposed solution

To address the problem presented in Section 1.3, a task-motion planning framework was im-

plemented in an attempt at accomplishing the desired outcome. The developed approach is divided

into two modules: the Task Planning Module and the Motion Planning Module. The main objec-

tives of each module are outlined in Section 1.4. In this section, an overview of the developed

algorithm can be found, as well as the general thought process behind it. As explained in the pre-

vious section, the proposed solution is inspired by the presented assembly case study. Therefore it

is meant to be scalable to the generalized assembly task planning problem.

3.2.1 System overview

Regarding task planning, the approach starts by parsing a task configuration input that holds

information on what components are necessary for the assembly and how they can be connected

to result in the desired object. After that, the task discretization and formalization process begin

by determining the sub-tasks required to achieve the task object. Two types of sub-tasks are

considered: assembly sub-tasks at a higher level and build sub-tasks at a lower level. Thus, in

other words, the input configures the algorithm to determine what assembly and build sub-tasks

are required to accomplish the task, as well as some constraints on how these sub-tasks are to be

associated and ordered. The output of this process is a list of different recipes for planning graphs

based on the different ways to decompose the main task, which can be seen as distinct assembly

strategies to construct the desired object.

Each recipe should then originate a graph from which task plans can be obtained. In this part

of the process, a new lower level of the task process surges, referred to the operation level, holding

assembly operations and build operations. These operations correspond to the more granular ac-

tions (or primitive tasks as defined in Chapter 2), that is, the actions that cannot be divided further

22 Task-Motion Planning Framework

and can directly be executed by the robot or human operator. Operation actions are set up through

another input that holds ordering constraints and configurations that are used to integrate these

operations with the sub-task nodes in the planning graph.

Task sequences can be generated by traversing the planning graph, following a set of rules

and constraints. All node sequences are considered at this point as long as the constraints are

followed, and all nodes in the graph are included in the sequence. These sequences are meant to

be scrutinized through motion simulation, which will determine their validity.

The motion planning module is divided into two main parts: graph translation and movement

generation. Graph translation stands for the harnessing of the necessary information from the

graph for the robot’s motion. Motion sequences with the relevant information are obtained from

the task plans and then sent to the simulator to be executed. Movement generation refers to the

robotic movement execution on the side of the simulator. The simulator is controlled by means of

a remote API, where the client is responsible for sending the desired operations’ orders, and the

server (simulator) executes the movements it receives.

Figure 3.3 shows an overview of the developed framework, divided into the two main modules.

This architecture represents the different modules that were implemented, how they interact and

the logical sequence of the process, beginning with the parsing of the inputs and the definition of

the task discretization possibilities and corresponding planning graphs, which is followed by the

generation of task plans translated into motion plans that are tested in the simulation environment

and finishing with the choice of the best task plans to be returned as the system output.

Most of the developed work was implemented through using Python, except for the Movement

Generation which consists on a Lua script that runs in the simulator. The system inputs are XML

files and the output is a list of the chosen task plans’ sequences of nodes.

Figure 3.3: System overview.

3.2 Proposed solution 23

3.2.2 General Approach and List of Concepts

To better understand the proposed solution, Table 3.2 defines a number of terms used regularly

throughout the dissertation and to be consulted if any doubts surge. Some of the terms will be

explained in further detail along with the document in the implementation Chapters 4 and 5. This

section is meant to explain the general thought process behind the solution. To determine the

specifications of the solution, the research information mentioned in Chapter 2 was taken into

account.

Table 3.2: List of concepts to better understand the solution.

Concept Definition
Component Small single piece of the model set that cannot be subdivided into other pieces.
Part Abstract concept. Formalization of an intermediate object in the assembly process of

the final object. Represents a possible combination of a structural component with
one or more link components.

Structural com-
ponent

Component responsible for forming the final object spatial structure, e.g., a dowel
forming a leg or a plywood forming a base. Main component that integrates a Part,
also knows as the part body.

Link component Component that is responsible for forming the connections between the structural
components of the assembly task object. Secondary component integrating a Part.
Corresponds to the Bracket in the presented case study,and therefore is often referred
along the document as simply bracket.

Bracket Config-
uration

Characterization of a specific bracket, defining the types and amounts of connections
the bracket can hold. Serves as a rule or constraint included in the system input.

Component
Configuration

Holds information on Part creation possibilities and connection between components.
Consists on a set of configurations that create an abstract realization of the desired
object and offer the algorithm instructions to achieve the final object.

Recipe Structure that contains Elements and Assemblies, holding information on how the fi-
nal object was divided and how those divided pieces connect to each other. This
serves as a direct recipe for the creation of the planning graph and defining its con-
straints.Assemblies, holding the information on what

Element Practical realization of the abstract concept of Part. Belongs to a Recipe. It has a
unique ID so it can be identified within the recipe and a fixed component configuration
serving as a constraint to its attachment possibilities. It can be described as a number
of components connected to each other forming an intermediate piece.

Assembly Connection between two intermediate pieces within the recipe. In other words, it
defines a match between two Elements that are meant to be connected to each other
and the attach point in each element that partakes in the attachment.

Task Full assembly task, resulting in the complete assembly of the desired object.
Sub-task Subdivision of the task, obtained by the discretization process of the main task. Non-

primitive task that can be discretized into even smaller operations. In the presented
case study, there are two types of sub-tasks: Assembly Sub-task and Build Sub-task.

Operation Primitive action, i.e., action that cannot be decomposed into smaller actions and there-
fore is executed directly either by the human operator or the robot.

The initial formalization of the planning problem was viewed through two lenses: the assem-

bly process and the assembly object. Both approaches serve to divide the main task into smaller

actions and define how they connect with each other hierarchically. The former implies the break-

down of the task into sub-tasks and operations, while the latter breaks down the final object into

24 Task-Motion Planning Framework

smaller intermediate objects and components. Figure 3.4 illustrates the two defined approaches to

address the decomposition of the task planning problem.

Figure 3.4: Approaches to the breakdown of the task.

This kind of decomposition is present in many papers studied and analyzed in Chapter 2,

namely in [21] [15] [22]. The idea is that the task should be divided into hierarchically smaller

actions that result in the formation of larger objects until the desired final object is obtained. Thus,

the solution can be seen as a top-down approach to decomposing the task process-wise and a

bottom-up approach to incrementally generate hierarchically higher objects.

Given the immense possibilities and potential for complexity in the presented case study, only

one intermediate level object-wise was considered. This means that the small components should

be attached into parts according to the system’s rules and input constraints, and thereafter the parts

should be assembled into the final object. These two processes are thus defined as follows:

• Build sub-tasks: construction of parts, i.e., attachment of small components into intermedi-

ate pieces of the final object;

• Assembly sub-tasks: connecting the created intermediate parts, resulting in the desired ob-

ject.

The build and assembly sub-tasks are determined by the automatic task discretization and

formalization method, using a bottom-up approach to find all possible combinations of compo-

nents that lead to the task object. This approach was mostly inspired by [15], which explores the

autonomous generation of HTNs.

The actions at the operation level are determined by the operations input. This input offers the

system information, so build, and assembly sub-tasks can be subdivided into primitive actions at

the operation level accordingly. Operations are directly executed either by the human operator or

the robot, and the allocation is defined in the input. The solution foresees five different operations

with fixed allocation. The allocation is outlined in Figure 3.5 and the operations detailed below:

• Pick: performed by the robot, consists in moving toward the object in question, grasping the

object and moving back to a neutral position;

3.2 Proposed solution 25

• Place: performed by the robot, consists in moving the object held by the gripper to the target

location;

• Snap: performed by the human operator, consists in attaching two pieces together in the

correct attach points;

• Position Screw: performed by the human operator, consists in placing the screw in the cor-

rect position to be fastened;

• Fasten Screw: performed by the human operator, consists in fastening the already positioned

screw.

Figure 3.5: Allocation of operations: robotic (Pick and Place) and human (Snap, Position Screw
and Fasten Screw).

The chosen operations are common in assembly scenarios, and similar versions can be found

in many articles on the topic [21][22][24]. CoppeliaSim was the chosen simulation platform to

generate the movement of the robot, and a simulation scene was developed to test the robotic

operations.

The system supports highly changeable inputs, addressing the problem of product customiza-

tion and process flexibility explained in Section 1.3. This means that the operator can alter different

component types and specifications without compromising the program. It also can be applied to

different objects with different configurations, making it a generalized approach.

26 Task-Motion Planning Framework

Chapter 4

Task Planning Approach

This chapter describes the proposed process of task planning with regard to the parsing of

the algorithm inputs, the task domain abstractions, the formalization of the task problem, the

connection between recipes and graph creation, and the generation of planning graphs and task

plans. It is divided into four parts: input presentation and description, task discretization and

formalization, generation of planning graphs, and definition of task plans.

4.1 Inputs

This section aims to introduce the inputs necessary for the algorithm to function. This refers to

both the task discretization and formalization module input - which supplies the algorithm with the

information needed for the computation of the task assembly strategies that will, in turn, be used

in the construction of planning graphs - and the additional input to the graph generation module

that offers information on the most low-level operations. To distinguish the two, the former one

has been labeled task input and the latter operations input.

The task input is meant to offer the generalized information of the task, focusing on the high-

level process, i.e., the task and sub-task levels of the process. It consists of an XML file with the

vital information for the formalization of the planning problem and task decomposition, as well as

configurations of the task and problem constraints. The following topics detail the input:

• The desired task, i.e., the object that is meant to be built;

• A list of the components that make up the desired object to build, divided by type and

specification, e.g., Bracket and T, respectively, and accompanied by the numbers of the

specific components required to carry out the assembly;

• A configuration of the brackets, defining a set of constraints related to the connections that

each specific bracket can hold;

• A configuration of the generalized structural components, defining how the components

should connect to each other, thus serving as a recipe for the assembly of the task object;

27

28 Task Planning Approach

• A screw configuration, defining rules for what screws are meant for each possible connec-

tion;

• The part creation mode, which can be "Automatic" or "Manual."

The operations input delivers information to the system on how the sub-tasks can be decom-

posed. In other words, the input provides the graph generation module with knowledge on how

to subdivide the sub-tasks obtained from the task discretization and formalization module. The

knowledge provided includes:

• Information on the operations that the build sub-task nodes and assembly sub-task nodes are

divided into;

• Ordering constraints for the operation nodes;

• Duration of the operation execution.

In industrial terms, the inputs provide the algorithm a bill of materials and information on

product procedure. It is meant to be a set of basic rules and instructions and not a full description

of the process. This justifies the deep focus on the task discretization and formalization module,

given that the input is not a description of the graph itself.

4.2 Task Discretization and Formalization

In this section, the task discretization and formalization module implementation is described.

Throughout the section, a lot of abstract concepts previously mentioned in Chapter 3 and Table

3.2 are explained in more detail. Before this process begins, the task input mentioned in Section

4.1 is parsed, and some configuration variables used to control the task’s formalization are set up.

Figure 4.1 shows the structural component configurations and bracket configurations data

structures, obtained from the input. As explained in previous sections, the bracket configurations

offer the system knowledge on the bracket format, thus working as a constraint to what kind of

connections are supported by each bracket specification. There is one data structure object of this

kind in the program for each different bracket. The bracket configuration connections variable,

brack_conn, is a dictionary that holds the relevant information on the bracket and its format can

be seen in Figure 4.2, which shows examples for different brackets. Each bracket connection is

characterized by the type of component it connects with, e.g., Dowel, and an additional connec-

tion specification serving to distinguish bracket connections and as a constraint to the assembly

problem.

On the other hand, the component configurations offer the program information on how differ-

ent components are supposed to be connected. Therefore, the list of all component configurations

can be seen as an instruction list for the assembly of the desired object, or in other terms, an ab-

straction of the object that should be obtained at the end of the process. There is one component

4.2 Task Discretization and Formalization 29

(a) Component configuration (b) Bracket configuration

Figure 4.1: Data structures that hold the configurations for object struc-
tural components and link (bracket) components.

configuration object for each combination of connections that a specific structural component may

support. Taking a shelf assembly task as an example, as defined in Section 3.1, two component

configurations objects regarding the 6x8 object would be necessary, one that specifies the connec-

tions to Top (T) brackets (higher rack) and another to specify the connections to Shelf 90 (S90)

brackets (lower rack). This example is illustrated in Figure 4.3.

(a) Top bracket (b) Foot bracket (c) S90 bracket

Figure 4.2: Examples of bracket configuration connections.

With the configuration variables set up, the main formalization process may begin. To under-

stand the first step, the concept of Part introduced in Table 3.2 needs to be explored. A part can

be defined as a possible intermediate object obtained from a first step of assembly of components,

as is explained in Section 3.2. An example of a part object is presented in Figure 4.4. The part

connections variable is similar in structure to the component configuration connection dictionary

but it may not have a connection for all of the attach points.

Figure 4.3: Examples of component configuration connections.

30 Task Planning Approach

Figure 4.4: Part data structure.

Keeping this concept in mind, the first step of the bottom-up process, explained in Section

3.2, is triggered. This means the program finds all different possibilities of intermediate parts that

can be obtained by combining a structural component to the link components that are meant to be

placed on its attach points. This process of part creation is implemented using the combinations

method from python’s itertools package.

For more complex tasks with a large number of components and high variability in their con-

figurations, an alternative may be necessary to avoid an unnecessary number of created parts. In

this case, an additional input needs to be provided to the algorithm, carrying the information on

the more relevant parts to be created. Whether the part creation process is fully automatic or not

is defined by the given input.

The next step in the process consists in trying to attach the created parts recursively until the

final object is obtained. As matches are found between different parts, they are saved into another

structure mentioned in Table 3.2, the Recipe, which can be seen in Figure 4.5.

Figure 4.5: Recipe data structure.

A recipe can be interpreted as a set of instructions for the creation of a planning graph, accord-

ing to the obtained assembly strategy. Each recipe contains Elements and Assemblies. Elements

correspond to build sub-tasks, responsible for putting together single components into intermedi-

ate parts, while assemblies are aligned with assembly sub-tasks, the higher level attachment of the

intermediate parts that were built. Figure 4.6 details both structures.

The initial process of recipe formation starts off by setting pairs of parts and checking if there

is a way to connect them. If the number of cumulative components in the pair surpasses the

amount of a specific component in the final object, as defined by the input, the pair is automatically

discarded. At first, no parts have an assigned configuration, so all combinations are tried. Since

4.2 Task Discretization and Formalization 31

(a) Element (b) Assembly

Figure 4.6: Structures that integrate a recipe.

parts are connected through link components, i.e., brackets, the algorithm checks whether the

missing brackets in one of the part attach points, as defined by the component configuration, can

be found in the other part. If so, an additional check is required to figure out if the bracket in

question can support the connection. For that purpose the corresponding bracket configuration is

used. In case the bracket is available for a connection of that type and specification, the connection

is possible and a match has been found. The process of match finding can thus be summarized by

the following steps:

1. Generating combination pairs of all obtained parts;

2. Checking if the cumulative number of components in each pair does not surpass the input

amounts;

3. Finding all the possible combination pairs of component configurations that may be com-

patible with each part;

4. Checking for each part which brackets are missing in its connections variable;

5. Determining whether the missing brackets from one of the parts can be found in the other

and checking if the bracket supports the connection with the specification as defined in its

bracket configuration.

When matches are found, new recipes are created, with elements carrying the information on

the part and component configuration and assemblies detailing what elements are connected and

through which attach points. In case two attach points in an element are indistinguishable and

may form the connection to the other element, the multiple attach point pairs that may hold the

connection are saved in the attachment variable of the assembly structure, shown in Figure 4.6b. In

addition to the structures that will be used to form the sub-tasks, the recipe also has some internal

control variables to perform the following functions:

• Controlling the component configurations attributed to each element. As it can be seen in

Figure 4.1a, each component configuration has a recurrence variable which determines how

many times it can be attributed to an element in the same recipe;

• Controlling the connection availability of the brackets in the recipe. Whenever a bracket

holds a new connection, the control variable decrements the number of available connections

of that type and specification for that bracket.

32 Task Planning Approach

After recipes are formed in the first iteration of this process, the algorithm tries to find addi-

tional connections for those elements with the parts initially created. In each iteration, for all new

matches found, a new recipe with the updated information is created. The recipes that resulted

from the previous iteration are discarded, meaning that recipes that could not lead to new con-

nections are abandoned. This process happens recursively until recipes with all the components

determined by the input are obtained. The main differences between the first iteration and the

subsequent ones are the following:

• Combination pairs are now formed by an element of the recipe and a part as initially defined;

• The element already has an attributed component configuration. Thus, each configuration

pair contains the already assigned configuration of the element and a compatible configura-

tion for the part;

• The algorithm needs to take into account what assemblies are already expressed in the

recipe. Thus, it is not sufficient to check which brackets are missing on both sides, but also

if the brackets in their specific attach points already integrate established connections in the

recipe domain. This is where the recipe internal control variables come into the process.

Figure 4.7: Diagram showing the general functionality of the discretization process.

Figure 4.7 summarizes the make up of the discretization and formalization process. At the

end of each iteration, the algorithm checks for duplicate recipes that may have been created and

eliminates them. A final check is performed to determine whether there are recipes that already

contain all the required components for the assembly of the final object. In this case, the final

recipes are saved into a list that will serve as the output of this module. All other recipes are saved

for the next iteration of the recursive loop, which runs until new recipes cannot be formed with the

existing constraints.

4.3 Graph generation 33

4.3 Graph generation

This section explores the process of generation of the planning graphs based on the output of

the task discretization and formalization module and the operations input, explained in Section 4.1,

as well as the thought process behind the structure of the graphs.

The planning graphs’ structure can be analyzed through two points of view: the process and the

object. Process-wise, the graph contains distinct hierarchical layers, with an assembly task node

at the very top, followed by a layer of high-level sub-tasks resulting from the decomposition of the

task and finally a layer of lower-level operations resulting from the subdivision of the sub-tasks.

Object-wise, the sub-task level can be subdivided into build sub-tasks, which attach components

to create intermediate parts, and assembly sub-tasks, which associate those parts to form the final

object. Assembly sub-tasks deal with larger pieces and therefore have a higher position in the

object hierarchy and consequently in the graph as well. This can be interpreted as a top-down

approach to process decomposition resulting from a bottom-up approach to the definition of the

intermediate parts that will define the entire sub-task level of the graph, as explained in Section 3.2.

Thus, the graph sub-task level is defined based on the recipes obtained from the task discretiza-

tion and formalization module, while the operation level is obtained from the data acquired by the

system through the operation input. As can be seen in Figure 4.8, which describes the sequence

of structures obtained along the task planning module, each recipe generated is responsible for

originating a planning graph. Before being used by the graph generation module, the originated

recipes from the previous module go through an attachment assignment process with the objective

of attributing only one attachment possibility to each assembly. As explained in Section 4.2, all

attach point pairs that can establish the assembly are saved. Given that in this case they are indis-

tinguishable, they can be directly assigned. With the attachments simplified, the recipes are ready

to generate graphs.

Figure 4.8: Logical sequence of structures built within the task planning module.

The graph generation process begins by creating a graph with the task node, obtained from

the task input, and adding sub-task nodes according to the recipe in question. The graphs were

implemented using the python package NetworkX1, which is used for the creation and manipula-

tion of complex networks. Each element in the recipe leads to a build sub-task node in the graph

and each assembly leads to an assembly sub-task node. Directed edges determining the flow of

the graph are set up between the task node and the assembly sub-task nodes, as well as between

1https://networkx.org/

https://networkx.org/

34 Task Planning Approach

Figure 4.9: Example of generated graph for the table assembly task.

each assembly sub-task node and the two build sub-task nodes that correspond to the match in the

assembly.

With the task and sub-task levels complete, the operation level is then defined. From the

operations inputs described in Section 4.1, the necessary information is obtained to add to the

graph the build and assembly operation nodes and corresponding edges. Build operation nodes

form branches starting from build sub-task nodes and the same is true for assembly operations and

sub-task nodes. The complete structure of the graph can be seen in Figure 4.9. Assembly sub-task

nodes contain the following attributes:

• node_info, corresponding to the recipe assembly object that characterizes the node and car-

ries information on the match between two recipe elements and the attach points in each

element that engage in the connection;

• node_type, a string with the value "Assembly_Operation";

• object, containing a tuple of identifier strings for the two elements that form the match.

The assembly sub-task nodes’ attributes contain the necessary information for the decomposi-

tion of the sub-tasks into the assembly operations and for establishing links to the build sub-task

nodes. The build sub-task nodes contain similar attributes:

• node_info, corresponding to the recipe element object that characterizes the node and carries

information on the intermediate parts that are initially formed;

• node_type, a string with the value "Build_Operation";

• object, containing an identifier string for the element in question.

4.4 Plan generation and final output decision 35

These attributes contain the required configurations for forming branches of build operation

nodes. In a general way, the attributes of both types of sub-task nodes play a similar role to the

methods of task decomposition in traditional HTN non-primitive tasks, consisting of dividing a

larger task into granular tasks that can be directly executed.

4.4 Plan generation and final output decision

With the planning graphs formulated, the next step in the task planning approach consists in

finding sequences of nodes that may offer a solution to the assembly problem, i.e., task plans.

This section explains the general rules and constraints for obtaining viable plans from the several

graphs that may be obtained from the graph generation module.

All nodes in the graph represent a task, sub-task, or operation that is required to be performed

along the object assembly process. For this reason, in order to find a viable plan, the algorithm

needs to traverse the entire graph; otherwise, the plans would be incomplete. Given the hierarchical

nature of the graphs, which have a similar structure to trees, a good way to search through all the

nodes is a branch by branch approach. Thus to start this process, the plan generation module finds

all possible paths from the source (task) node to the leaves, which correspond to the build and

assembly operation nodes that do not have successor nodes. These paths are then divided into two

sets:

• The possible paths, corresponding to all paths from the source to the leaf build operation

nodes;

• The conditional paths, corresponding to all the paths from the source to the leaf assembly

operation nodes.

The set of possible paths holds all of the paths that can be pursued at a certain point in the plan

sequence, while conditional paths are blocked until a specific condition occurs. When a condi-

tional path is unblocked, it joins the set of possible paths, making it possible for the operations in

the specific branch to be a part of the plan. With the bottom-up approach of the object assembly in

mind, it is easy to understand that higher-level assembly sub-tasks (and their subdivided assembly

operations), which are meant to attach intermediate parts, cannot be performed without those in-

termediate parts being assembled first. These intermediate assemblies are carried out by the build

sub-task nodes (and their subdivided build operations).

Concerning the graph, this means that assembly operation nodes can only appear in the plan

sequence after the related build operation nodes. In other words, the nodes that carry out the

assembly of two parts can only show up in the plan when the nodes responsible for building those

parts have already been included. Therefore each conditional path is unblocked only when both

successors (the related build sub-task nodes) of the assembly sub-task node that belongs to the

path have been included in the sequence.

With these constraints in mind, plans can be formed by iteratively adding path nodes to a

defined plan sequence that is initially empty. This process occurs in a loop that ends when no

36 Task Planning Approach

more possible paths can be found. In each loop iteration, a path from the set of possible paths is

selected. Thereafter, the nodes in that path already included in the plan sequence are ignored, and

the remaining nodes are added to the end of the sequence. The traversal of the graph is similar

to a depth-first search approach, which implicates that when a path is initially chosen, the entire

branch all the way up to the source is explored. This means that all its operation subdivisions

follow when a build sub-task is included in the plan. In addition to that, when an assembly sub-

task is included, both its successor build sub-task nodes, corresponding to the build sub-tasks of

the pair of elements of the assembly, are explored, and after that happens, the conditional path

holding the assembly operation nodes associated to the assembly sub-task are unblocked.

(a) Example 1 (b) Example 2

Figure 4.10: Examples of task plan, showing different possibilities of plan
formation.

The final structure of the task plan is similar to the one illustrated in Figures 4.10a and 4.10b,

which show segments of plans starting with the main task node, followed by an assembly sub-task

node and the two branches formed by the two successor build sub-task nodes. Immediately after

the addition of these two branches to the plan, the corresponding assembly operations’ branch

is unblocked, i.e., added to the list of possible paths. In Figure 4.10a, the assembly operations’

branch is pursued right after becoming available, while in Figure 4.10b, the plan jumps to the

next assembly sub-task node and leaves the assembly operations’ branch for a later stage in the

sequence.

Task plan sequences are then sent to the graph translation module, which creates motion se-

quences to be generated in the simulator. From the simulation, the lead time of the process, based

on the duration of human operations and the simulated robotic operations is determined. The task

planning module then chooses the three best final plans, giving preference to the most efficient

viable plans. These plan sequences serve as the final output of the program and can be exported

as a JSON file.

Chapter 5

Motion Planning Approach

This chapter explains the developed work around the formulation of motion sequences, the

execution of robotic trajectories, and the preparation of the simulation scenarios to test task plans’

validity and obtain process parameters used for their performance evaluation. The first section

details the entire simulation preparation process. The second section explains the implemented

method of translating the operation information from task plans into executable motion sequences.

The third section describes how the movement was executed on the simulator side.

5.1 Simulation setup

To simulate the motion execution of the formulated task plans, a CoppeliaSim scene was

designed, based on a simple scene configuration similar to many collaborative environments, as

can be seen in Figure 5.1. This section goes through the process of building the scene and preparing

the simulation. In the developed scene, there are three tables, one that holds up the robot, one that

holds the case study components, and one that serves as a workstation where the assembly tasks

will be executed. The simulation scene foresees that the assembly workstation is the only one the

human operator has access to.

Figure 5.1: Developed scene, prepared for the assembly of the task object Table.

37

38 Motion Planning Approach

Figure 5.2: Universal Robots UR5e collaborative robotic arm.

The robot used for the simulation is a Universal Robots 5 (UR51), which can be seen in Figure

5.2. The UR5 is a flexible and lightweight robot arm that is a perfect robotic partner for an

HR team collaborative environment, given its fast setup, easy programming and safe working

style. The UR5 model used in the simulation was obtained from CoppeliaSim available open-

source resources2. For the end-effector, an RG2 gripper model was used, also from CoppeliaSim

resources. The RG23 gripper is a 2-finger smart robot gripper with in-built force, torque and

proximity sensors.

Figure 5.3: Examples of component meshes used in the simulation.

As for the components, dowel, plywood, and bracket STL files were imported into the scene as

mesh shapes. The STL files of the bracket models can be found in the Yale Social Robotics Lab-

oratory HRC model set GitHub repository4. The dowel and plywood files were created according

to the case study features and recommendations and imported into the scene as well. Examples of

the mesh files used to simulate the components can be found in Figure 5.3. The mesh shapes were

1https://www.universal-robots.com/products/ur5-robot/
2https://github.com/CoppeliaRobotics
3https://onrobot.com/en/products/rg2-gripper
4https://github.com/ScazLab/HRC-model-set

https://www.universal-robots.com/products/ur5-robot/
https://github.com/CoppeliaRobotics
https://onrobot.com/en/products/rg2-gripper
https://github.com/ScazLab/HRC-model-set

5.2 Graph translation 39

Figure 5.4: Brackets during simulation in the dynamic content visualization mode, showing the
respondable properties of the shape.

edited in the CoppeliaSim built-in triangle edit shape mode to comply with the necessary dynamic

properties for the development of a robust simulation design, as described in Section 2.3.

A better understanding of the steps required to properly edit the shapes can be acquired by

analysing the Building a clean model5 CoppeliaSim tutorial, which suggests simplifying the mesh

data by dividing the imported shapes into grouped smaller, convex shapes (or even pure shapes,

e.g., cuboids, cylinders or spheres, when possible) and lays out some guidelines to do so without

losing too much of the mesh original data. While dowel and plywood components have simple for-

mats and dimensions, making them attractive for simulation computation purposes, brackets have

a more complex design which requires a comprehensive editing process. Figure 5.4 exemplifies an

edited bracket in the dynamical content visualization and verification mode (see CoppeliaSim/User

Interface for more information) while the simulation is running. Screws were not considered in

the simulation. A set of simple support structures were added to the scene to hold the components,

both on the component storage and the assembly workstation sides.

The relevant reference positions and orientations for picking, placing or attaching objects are

defined by dummies, which the robot tip should move to and align with. For pieces to stay in place

when they are attached, a force sensor can be used between a pair of dummies, one from each of

the pieces.

5.2 Graph translation

This Section explains how task plans originated from the task planning graphs can be used to

form motion plans that can be interpreted and prepared to be sent by a remote API client to the

simulation for movement simulation and scene updates. Details on the establishment of the remote

API connection and the process on the side of the client and server are presented in Section 5.3,

while this Section focuses on the control and handling of the task plan sequence and the operation

data.
5https://www.coppeliarobotics.com/helpFiles/en/buildingAModelTutorial.htm

https://www.coppeliarobotics.com/helpFiles/en/buildingAModelTutorial.htm

40 Motion Planning Approach

Figure 5.5: Example of motion sequence, formed in the graph translation process and containing
only operation nodes.

From a task plan, i.e., node sequence, obtained in the previous module, a new node structure

is created using only the operation nodes, more specifically the build operation nodes and the

assembly operation nodes, and edges connecting them in the order determined by the task plan.

Figure 5.5 shows a segment of a motion sequence, obtained from a task plan for the table object.

Following this process, the remote API client can be created, the connection established, and the

simulation started, as explained in the following Section.

The translation process begins with the simulation running, starting with the first node in the

obtained motion sequence. From the node attributes, the necessary information to execute the

operation in the simulation is extracted into a data structure. This information consists of the node

name, action type, e.g., Pick, and additional data, which varies according to the action type, e.g.,

the object handle(s) that intervene in the operation.

The described data structure, which is represented in Figure 5.6 is then packed using the packb

method from the MessagePack python package, which offers an efficient binary serialization for-

mat that enables data exchange among multiple programming languages. Finally, the obtained

data package is sent to the server which handles the received order. The node name is also sent

as a string value that is meant to be the identifier of the operation. This string value plays a part

in handling the execution of the operation in the simulator and reporting to the client when the

operation has terminated, by being returned as the string signal value, as explained in Sections 5.3

and 5.4.

The data package is sent by using the remote API function for python simxCallScriptFunction,

to call a function that was implemented on the server side that unpacks the data and adds it to

a simulation variable (Lua table) that holds information on all operations that have been sent

and have not been executed. The node name, i.e., operation identifier, is sent by calling another

server function that places the string in a queue (also a Lua table) of operations to execute, thus it

represents the order for the simulator to execute the operation. After sending this request, the client

goes into an infinite loop until the string signal starts streaming the value equal to the operation

identifier string. In other words, after sending the operation data and execution order, the client

waits for the operation termination signal to proceed.

5.3 Remote API setup 41

Figure 5.6: Structure that holds the necessary information to execute the motion operation.

After the first node’s motion operation has been executed in the simulator, the algorithm skips

to the successor node to repeat the same process. The algorithm loops through all the nodes in

the sequence until it finds a node without a successor and the task is considered to have finished

executing.

5.3 Remote API setup

This section explains the setup and functionality of the remote API client and the correspond-

ing server on the simulation side. As explained in 2.3, CoppeliaSim supports several approaches

for remote API control of the simulator. The legacy remote API option was chosen for its easy use

and integration with different programming platforms. It is necessary to include some files in the

directory of the python module that establishes the remote API. CoppeliaSim offers instructions

to do just that, as was previously mentioned in Section 2.3.

The client is set up after the task plan translation into motion plans. The process on the client

side is shown in Figure 5.7 Firstly, all open connections are closed. This is done to prevent the

establishment of a connection to an undesirable server that is already opened, e.g., a different

CoppeliaSim scene. Subsequently, the client is created and attempts a connection to the server,

which results in the report of an error message in case of failure.

With the connection established, the client orders the simulation to start, and a string signal

begins being streamed between the client and the server. The string signal is created on the server’s

side and contains a string value that can offer the client status information on processes it wants to

control and oversee. Therefore, it can be used to communicate important information to the client,

e.g., when an operation has finished being executed. Before advancing in the process, the client

waits for the string signal value to be equal to the string "ready." This means the server is signaling

the client that its initialization process has been complete and it is ready to receive orders from the

client.

Subsequently, the graph translation module prepares the motion data from the first node and

sends the data package and node name to the server as detailed in Section 5.2. The remote API

client then waits for the string signal value that is being streamed to be changed to the value that

was previously sent to the server, that is, the node name. If the current node has a successor, the

process repeats itself for the next node. When a node without successors is reached, the client

42 Motion Planning Approach

discontinues the string signal and stops the simulation. Finally, the client closes the connection to

the CoppeliaSim server.

Figure 5.7: Process from the remote API client side.

On the side of the server, shown in Figure 5.8, the process begins the establishment of the

connection performed by the client. Thereafter, the server waits for the simulation to be started

by the client. After this start, the simulation variables are initialized, and the IK environment is

prepared. Once the initialization is completed, the string signal used for communicating with the

client is created and set to "ready".

Subsequently, the server looks for operations that may have been sent from the client. These

operations’ identifier strings are stored in a queue, and their motion information is saved in an

operation data Lua table, as mentioned in Section 5.2. If an operation identifier is found in the

queue, the movement generation module pulls the corresponding operation information from the

operation data table and executes the operation. The identifier and data are removed from the

queue and table, respectively and, when the operation is terminated, the string signal value is

updated with the value of the identifier. This process occurs in an infinite loop until the simulation

is stopped by the client.

5.4 Movement generation

While the previous sections described the simulation control process and the remote API es-

tablishment, this section describes the motion generation on the side of the server. In other words,

5.4 Movement generation 43

Figure 5.8: Process from the remote API server side.

this section explores the implemented Lua scripts on the side of the simulator. A child script

attached to the UR5 parent object was developed. The main function of the script include:

• A main coroutine function, created by the sysCall_init function, where the main process

occurs;

• The sysCall_init function, a built-in function which runs once at the start of the simulation;

• The sysCall_actuation function, a built-in function that runs continuously and is responsible

for checking for errors that may occur in the main coroutine.

In addition to creating the main function, the sysCall_init function is responsible for initial-

izing some simulation variables, namely the variables containing the handles of the robot joints,

tip, target, and base, as explained in Section 2.3, as well as the Lua table variables that will store

the orders sent from the client. The IK environment is then set up, following the guidelines also

mentioned in Section 2.3. Finally, the string signal that works as the means of communication with

the client is also created at this stage. The main coroutine function runs an infinite loop searching

for operations in the opToExecute queue, as explained in Section 5.3.

44 Motion Planning Approach

The two functions called on the client’s side to send the operation information and orders are

also implemented in this script. One of the functions is responsible for storing the operation data

in a Lua table (allOpData) with the operation identifier serving as a hash key, while the other

stores the operation identifier in a queue of operations to be executed (opToExecute). The gripper

parent object has its own child script responsible for controlling the action of the gripper actuator.

Another function in the UR5 child script is responsible for sending data to the gripper control

script on whether to open or close and the maximum velocity and force.

Finally, two movement generating functions were implemented, one for picking operations

and one for placing operations. When an operation is received in the operation queue, the main

coroutine calls the corresponding function, which passes along the data required to execute the

movement. These functions use a moveToPose built-in function to generate the robotic trajectories

to the intended position and orientation. For the picking operations, the robot starts by moving its

tip, with the gripper opened, to an approximate pose to the object in question, then it moves to

the grasping pose and closes the gripper. Finally, the robot returns to a neutral position carrying

the object. A similar process takes effect for placing operations, which always occur right after

picking operations. The robot starts by moving its tip close to the target pose, and then it moves to

the exact placing pose and opens the gripper. The robot turns back to a neutral position with the

object in place.

Chapter 6

Experiments and Results

In an effort to test and validate the developed work, two prototype objects from the HRC model

set case study were chosen, the table and the shelf. The input configurations for these two objects

were designed and experiments were conducted in order to obtain some relevant results and to

draw informative conclusions.

6.1 Experiment definition and input design

This section presents the two cases where experiments were conducted. It demonstrates the

common properties and the main differences between the two cases, as well as defining the neces-

sary system inputs for each one. The chosen assembly objects were the following:

• Case 1: Table assembly, presented in Figure 3.2a;

• Case 2: Shelf assembly, presented in Figure 3.2c.

<comp_config >
< d e s i g n a t i o n >6x8 </ d e s i g n a t i o n >
<component_type >Plywood </ component_ type >
< r e c u r r e n c e >1 </ r e c u r r e n c e >
< connec t ion_number >4 </ connec t ion_number >
< a t t a c h _ p o i n t t y p e =" topL ">

< c o n n e c t i o n >T</ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
< a t t a c h _ p o i n t t y p e =" topR ">

< c o n n e c t i o n >T</ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
< a t t a c h _ p o i n t t y p e =" botL ">

< c o n n e c t i o n >T</ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
< a t t a c h _ p o i n t t y p e =" botR ">

< c o n n e c t i o n >T</ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
</ comp_config >

<comp_config >
< d e s i g n a t i o n >D</ d e s i g n a t i o n >
<component_type >Dowel < / component_ type >
< r e c u r r e n c e >4 </ r e c u r r e n c e >
< connec t ion_number >2 </ connec t ion_number >
< a t t a c h _ p o i n t >

< c o n n e c t i o n >T</ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
< a t t a c h _ p o i n t >

< c o n n e c t i o n >F </ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
</ comp_config >

Figure 6.1: Component configurations for Case 1.

In both cases, the operations input as defined in Section 4.1 was the same, given that most

of the focus of this work was in addressing variability at a higher level of the process, i.e., the

45

46 Experiments and Results

<comp_config >
< d e s i g n a t i o n >6x8 </ d e s i g n a t i o n >
<component_type >Plywood </ component_ type >
< r e c u r r e n c e >1 </ r e c u r r e n c e >
< connec t ion_number >4 </ connec t ion_number >
< a t t a c h _ p o i n t t y p e =" topL ">

< c o n n e c t i o n >T</ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
< a t t a c h _ p o i n t t y p e =" topR ">

< c o n n e c t i o n >T</ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
< a t t a c h _ p o i n t t y p e =" botL ">

< c o n n e c t i o n >T</ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
< a t t a c h _ p o i n t t y p e =" botR ">

< c o n n e c t i o n >T</ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
</ comp_config >

<comp_config >
< d e s i g n a t i o n >6x8 </ d e s i g n a t i o n >
<component_type >Plywood </ component_ type >
< r e c u r r e n c e >1 </ r e c u r r e n c e >
< connec t ion_number >4 </ connec t ion_number >
< a t t a c h _ p o i n t t y p e =" topL ">

< c o n n e c t i o n >S90 </ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
< a t t a c h _ p o i n t t y p e =" topR ">

< c o n n e c t i o n >S90 </ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
< a t t a c h _ p o i n t t y p e =" botL ">

< c o n n e c t i o n >S90 </ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
< a t t a c h _ p o i n t t y p e =" botR ">

< c o n n e c t i o n >S90 </ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
</ comp_config >

<comp_config >
< d e s i g n a t i o n >D</ d e s i g n a t i o n >
<component_type >Dowel < / component_ type >
< r e c u r r e n c e >4 </ r e c u r r e n c e >
< connec t ion_number >2 </ connec t ion_number >
< a t t a c h _ p o i n t >

< c o n n e c t i o n >T</ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
< a t t a c h _ p o i n t >

< c o n n e c t i o n >S90 </ c o n n e c t i o n >
< s p e c i f i c a t i o n >up </ s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
</ comp_config >

<comp_config >
< d e s i g n a t i o n >D</ d e s i g n a t i o n >
<component_type >Dowel < / component_ type >
< r e c u r r e n c e >4 </ r e c u r r e n c e >
< connec t ion_number >2 </ connec t ion_number >
< a t t a c h _ p o i n t >

< c o n n e c t i o n >S90 </ c o n n e c t i o n >
< s p e c i f i c a t i o n >down </ s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
< a t t a c h _ p o i n t >

< c o n n e c t i o n >F </ c o n n e c t i o n >
< s p e c i f i c a t i o n > s t d < / s p e c i f i c a t i o n >

</ a t t a c h _ p o i n t >
</ comp_config >

Figure 6.2: Component configurations for Case 2.

sub-task level. However, this does not mean that the planning graphs will be exactly the same at

the operation level. Instead, it implies that there is a common configuration at the operation level

so that an informative analysis can occur at the higher level.

As for the task input, the screw configuration aspect is the same, given that for each type of

connection in the case study (bracket and plywood or bracket and dowel), the same number and

size of screws are required. The bracket configuration is also the same in both experiments, given

that it reflects the connection constraints of the bracket components to other structural components,

which are characteristic of the case study and are not changeable. Thus, the main distinguishable

factors of the two task inputs are the following:

• The list of components that form the object, which can be consulted in Table 3.1;

• The component configurations of the structural components, which hold the connection

instructions for the assembly;

• The part creation mode, fully automatic for Case 1 and manual in Case 2.

For Case 1, the task input includes a component configuration for the 6x8 plywood, with

the specified destined connection (Top bracket) for each attach point, as well as a component

configuration for all the dowels (therefore holding a recurrence of 4) with a Top bracket on one

side and a Foot bracket on the other. All connection specifications in this scenario are standard

(std), given each bracket in the object only holds one connection to a dowel and one connection

6.2 Task discretization and formalization 47

to a plywood, thus not requiring a distinction. Figure 6.1 shows the sections of the XML input

containing this information.

For Case 2, the task input includes the same component configuration for a 6x8 plywood

connected to the Top brackets with a recurrence of 1 and three additional configurations: one for a

6x8 plywood connected to S90 brackets with a recurrence of 1, one for a dowel connected to a Top

bracket and an S90 bracket with a recurrence of 4 and finally one for a dowel connected to an S90

bracket and a Foot bracket, also with a recurrence of 4. In this scenario, additional specifications

are used for connections between dowels and S90 brackets, given that this bracket supports two

connections of this type that may need to be distinguished. Thus, the up and down specifications

are used to establish this difference. The input information is represented in Figure 6.2.

Table 6.1 summarizes the main distinctions between the two objects, containing the total num-

ber of components and connections required for their assembly. Given the approach treats screws

as accessory components, it is more relevant to exclude them from the total number of components

when comparing different objects. Therefore, we can say the table has thirteen main components,

while the shelf is made up of twenty-two main components. Larger objects with more components

may lead to a higher number of created parts and more iterations necessary to assemble the object,

resulting in a more complex planning problem.

Given the proposed approach to discretization, the total number of connections and the con-

nection configurations of the brackets are also directly tied to the planning problem complexity.

While the table task has only four connections to solve, the shelf task needs to handle twelve, i.e.,

three times the number of connections. As for the brackets, i.e., link components, while the most

complex bracket type for the table (T bracket) only connects two structural components, the shelf

scenario contains the S90 bracket which holds three-way connections between components.

Table 6.1: Important numbers that characterize both cases.

Assembly
object

Total number of components Total number
of connections

Bracket with max.
number of connectionsWith screws Without screws

Table 29 13 4 T (2)
Shelf 54 22 12 S90 (3)

6.2 Task discretization and formalization

This section addresses the results obtained in Cases 1 and 2 with regard to the formalization of

the tasks into the assembly strategies that are used to configure the sub-task nodes in the graph. As

explained in Section 4.2, the first step in this process is the combination of structural components

and link components to form intermediate parts, as described in Section 4.2. In Case 1, this

process is automatic and the results are presented in Figure A.1. In Case 2, the parts shown in

Figure A.2 were given to the system manually. Table 6.2 holds an account of the results obtained

from experiments performed along this process.

48 Experiments and Results

Table 6.2: Summary of the results obtained from the task discretization experiments. Successful
processes in green and limitations in yellow.

Table ShelfTest Results Conclusion Results Conclusion

Part creation 20
(Automatic)

Predicted number
of parts obtained

7
(Manual)

Predicted number
of parts obtained

Recipe creation 16
recipes

Predicted number
of possibilities

22
recipes

Predicted number
of possibilities

Recipe structure Elements: 5
Assemblies: 4

Contains the full
required structure

Elements: 10
Assemblies: 9

Missing 3 assemblies
(should be 12)

The part creation process in Case 1 was proven successful, given it resulted in obtaining all

possible combinations of intermediate parts. This provides the opportunity to study the best way

to arrange the process at a high level. In other words, using these parts may offer us information on

the best ways to attach components in multiple pieces that need to be connected to form the final

object. In Case 2, due to the high number of components leading to a vast number of combinations,

parts were inserted manually into the program. Although this does not provide a complete account

of the domain of combinations, it makes it possible to focus the analysis on the more sensible and

less redundant solutions.

With the intermediate parts formulated, the next step is the assembly of those parts to form the

object fully. This process, explored in Section 4.2, takes the intermediate parts and combines them

to form recipes for graph creation. The resulting recipes for Case 1 are presented in Figure A.3.

The results show that all combinations of recipes were able to be created, providing the full scope

of high-level strategies to decompose the final object.

Results from Case 2 were divided between Figures A.4, A.5 and A.6. The results show that

despite being able to contain all of the elements required to solve the problem, the assemblies are

not complete. This is due to a limitation in the implementation regarding the condition to check

for finalized recipes. As they are at the moment, the recipes would lead to plans that form the

intermediate parts and connect them but miss some snap and screw operations along the lower

rack of the shelf. To solve this issue, the program would need to figure out the location of the

missing attachments and simply add them to the current finalized recipes.

With the results taken into account, one can conclude that the developed module is fully ca-

pable of addressing lower complexity assembly tasks but still requires a few minor adjustments

to be scalable to object configurations with a large number of connections between components,

especially scenarios with more complex link components. With regard to the time efficiency of

the algorithm, another expected conclusion was reached, given that the algorithm is fairly quick

for simpler scenarios but for complex tasks, it requires a long time to compute all of the combi-

nations. In the conducted experiments, the table assembly formalization process takes around a

single second to compute, while the same process for the shelf - with an already manually limited

number of parts - usually takes more than a minute. The exact times of an iteration of the code

were the following: 1.0996 (table) and 64.2139 seconds (shelf).

6.3 Graph and plan generation and motion simulation 49

Table 6.3: Summary of the results obtained from the graph and plan generation experiments,
as well as tests in graph translation and motion simulation. Successful processes in green and
limitations in yellow.

Table ShelfTest Results Conclusion Results Conclusion

Graph generation 16
graphs

All graphs generated
as expected

22
graphs

All graphs generated
as expected

Graph structure Missing branches: 0
Graphs include
all operations Missing branches: 3

Incomplete graph
due to recipe limitation

Plan generation No. of nodes equal to graph
Ordering constraints met

Viable plans
generated

Missing some expected nodes
Ordering constraints met

Incomplete plans
due to recipe limitation

Graph translation Errors in transference of
motion information: 0

Full integration of task
and motion modules Yet to be tested due to the previous limitations

Motion simulation Simulation times:
unreliable

Need for improved
simulation performance

Results expected to be similar for all objects

6.3 Graph and plan generation and motion simulation

This section gives an account of the main results obtained from the whole process, starting

with the use of the recipes to generate graphs and ending with the final plans. The objective of

these tests was to start by presenting two of the obtained graphs from each case, making it possible

to establish comparisons of graphs within the same assembly task and to compare the behavior of

the graphs for different scenarios. Then, for each case, a plan should be taken from each graph

and go through the graph translation and movement generation modules, after which its lead time

should be calculated. The main results can be found in Table 6.3.

Figure 6.3: Graph A from Case 1.

To explain the results for the object in Case 1, two graphs were extracted: Graph A in Figure

6.3 and Graph B in Figure 6.4. Both graphs can solve the problem. However, they have different

approaches. The graphs are generated from recipes that hold distinct elements and assemblies. The

recipe setup ends up working as a graph constraint that defines how components will be attached

at first, or in other words, what intermediate parts are built. Plans generated by Graph A start by

50 Experiments and Results

Figure 6.4: Graph B from Case 1.

building the table’s legs through the attachment of the top and foot brackets to the dowel and then

lead to the assembly of those parts. On the contrary, Graph B begins by building the table’s base -

through the attachment of the plywood and the top brackets - and separately the four simple legs -

through the attachment of the foot bracket to the dowel.

The obtained results from this case correspond to the foreseen outcome: a graph with four as-

sembly sub-task nodes - based on the recipe assemblies - and five build sub-task nodes - based on

the recipe elements that are decomposed into assembly operations and build operations setup by

the input configuration. Therefore, one can conclude the system succeeded in generating variabil-

ity in the plans and flexibility of the process, offering different forms to break down the process,

that can be adapted to different scenarios. The plan generation module was able to extract viable

plans from the graphs in accordance with the graph structure, the rules for its traversal and order-

ing constraints, namely in regards to the unblocking of certain paths from the top node to the leaf

nodes.

With regard to Case 2, even though all the necessary graphs can be obtained, they are all

missing some operations necessary to generate complete task plans. This is due to a propagation

of the limitation in the discretization process that creates incomplete recipes, which in turn result in

the formation of incomplete graphs. We can therefore conclude that the process of graph formation

is itself successful. However, it is affected by the previous limitations of the system. As Table 6.2

shows, the recipes for the shelf were three assemblies short. For this reason, three assembly sub-

tasks and the corresponding branches of operations they formed were missing from the graphs

generated for this object, as can be seen in Table 6.3. Going by the analysis of one of the table

graphs from Case 1 in Figure 6.3, one can see that a missing assembly sub-task means a missing

snap, position screw, and fasten screw operation. This is why it is crucial for the missing three

recipe assemblies to be added; otherwise, the lower rack of the shelf would be connected to the top

rack only through a single dowel. Thus, the correct graph structure for the shelf task should contain

6.3 Graph and plan generation and motion simulation 51

twelve assembly sub-task nodes and ten build sub-task nodes, as well as all of their corresponding

branches of assembly operation nodes and build operation nodes. To obtain the complete graphs,

one would need to fix the task discretization issue that is affecting the recipe formation.

As explained in Chapter 5, generated plans are translated into motion sequences and sent to the

simulator through a remote API for robotic movement simulation. The expected result from the

simulator was for it to execute the received operation orders and send back to the client information

on the duration of the robotic operations. For Case 1, although the connection between the client

and the server worked perfectly, e.g., communicating when an operation has been completed,

and no errors in translating the motion information were found, viable operation times could not

be retrieved due to an unforeseen simulator issue while running the simulation, related to the

performance of the simulation and robot behavior. Therefore, the graph translation process proved

to be successful, while the motion simulation process still carries some limitations. Due to time

restrictions and the previously mentioned limitations, it was not possible to achieve results for

the remaining part of the tests in Case 2. However, given the generalized nature of the translation

process, one would expect the results to be identical for the graph translation process. On the other

hand, the motion simulation is expected to have the same setbacks as in Case 1.

52 Experiments and Results

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, a task-motion planning framework for collaborative assembly scenarios

was developed to find a generalized solution for planning in this field. The developed work fo-

cuses on some important aspects of task planning and addresses the increasing demand for flexi-

bility and customizable processes. Research was carried out on task and motion planning existing

approaches as well as task discretization and formalization methods and motion simulation. The

main focus was placed on hierarchical task representation methods, namely Hierarchical Task

Networks and graph-based planning.

The proposed solution consists of an integrated approach to task-motion planning, which for-

malizes assembly tasks from inputs that offer a build of materials and information on product

procedure and constructs hierarchical planning graphs to generate task plans that can solve the

problem. The robotic operations are simulated using the CoppeliaSim simulation platform. The

motion simulation is meant to scrutinize the task plans and offer back the task planning module

information to support the choice of the task plans.

Our formalization allows for an easy and intuitive form of providing inputs so that any assem-

bly task is discretized and a task graph and plan formulated. From the conducted experiments,

the main advantage of the developed system lies in the potential for flexibility and customization

of the task planning process, which is obtained by the task formalization and graph generation

modules.

The solution still has some limitations that need to be addressed when it encounters scenarios

with a high number of components and complex brackets which hold a lot of connections in order

to make sure all attachments between components are performed. Concerning motion, there are

also some limitations in the generation of the movement on the side of the simulator that should

be improved.

53

54 Conclusions and Future Work

7.2 Future Work

Due to time restrictions and some of the limitations of the developed algorithm, the testing

phase of this project went through some complications. Therefore the first thing to address regard-

ing future work would be to fix the limitations that are holding the program back so the tests can

be performed more smoothly. In addition to that, different tests should be developed to explore the

main advantage of the approach: the variability of the process. Further tests using larger objects

and scenarios as well as more accurate studies regarding the scalability of the solution should then

be performed.

An interesting area of future development would be an algorithm that would optimize the

method of part creation and detect redundant recipes that could be dismissed by the system. This

could be an important tool to extend this solution to larger objects, given it would not necessarily

take into account the entire state space of strategies available and would instead contemplate the

ones that would offer the most variability. This addition would make the solution fully automatic

even for task objects with a very large number of components and connections.

Task allocation is another aspect that should be pursued. In the conducted experiments, the

input that configured the low-level operations was fixed, and therefore robotic, and human opera-

tions were the same along the process. Merging variability at the top and the bottom of the process

may be the best way to achieve a truly adaptable approach for all kinds of scenarios.

With regard to the motion side of the solution, a more robust motion planning layer on top

of the motion simulation should be implemented. CoppeliaSim offers the OMPL plug-in, which

can be used in conjunction with the IK plug-in to generate more efficient robotic trajectories. The

simulator is also very useful for collision detection, which can be an important aspect of task

planning validation. Adding these features to the motion planning approach could greatly improve

the plan validation capabilities of the system.

Appendix A

Appendix

55

56 Appendix

Figure A.1: Results from the automatic part creation in Case 1.

Appendix 57

Figure A.2: Parts used in the formalization process in Case 2.

58 Appendix

Figure A.3: Recipes resulting from the task discretization and formalization process in Case 1.

Appendix 59

Figure A.4: Recipes resulting from the task discretization and formalization process in Case 2.

60 Appendix

Figure A.5: Recipes resulting from the task discretization and formalization process in Case 2.

Appendix 61

Figure A.6: Recipes resulting from the task discretization and formalization process in Case 2.

62 Appendix

References

[1] Panagiota Tsarouchi, Sotiris Makris, and George Chryssolouris. Human–robot interaction
review and challenges on task planning and programming. International Journal of Com-
puter Integrated Manufacturing, 29(8):916–931, 2016. URL: http://dx.doi.org/10.
1080/0951192X.2015.1130251, doi:10.1080/0951192X.2015.1130251.

[2] Amnon Lotem, Dana S. Nau, and James A. Hendler. Using planning graphs for solving HTN
planning problems. Proceedings of the National Conference on Artificial Intelligence, pages
534–540, 1999.

[3] E. Rohmer, S. P. N. Singh, and M. Freese. CoppeliaSim (formerly V-REP): a Versatile and
Scalable Robot Simulation Framework. Proc. of The International Conference on Intelligent
Robots and Systems (IROS), 2013.

[4] Neil Dantam, Swarat Chaudhuri, and Lydia Kavraki. The Task Motion Kit. IEEE Robotics
and Automation Magazine, 25(september):61–70, 2018.

[5] J Hoffman and B Nebel. The FF Planning System: Fast Plan Generation Through Heuristic
Search. Journal of Artificial Intelligence Research, 14(27):253–302, 2001.

[6] Henry Kautz and Bart Selman. Unifying SAT-based and graph-based planning. IJCAI Inter-
national Joint Conference on Artificial Intelligence, 1:318–325, 1999.

[7] Roman Barták and Miguel A. Salido. Constraint satisfaction for planning and scheduling
problems. Constraints, 16(3):223–227, 2011. doi:10.1007/s10601-011-9109-4.

[8] Marco Faroni, Manuel Beschi, Stefano Ghidini, Nicola Pedrocchi, Alessandro Umbrico, An-
drea Orlandini, and Amedeo Cesta. A Layered Control Approach to Human-Aware Task
and Motion Planning for Human-Robot Collaboration. 29th IEEE International Conference
on Robot and Human Interactive Communication, RO-MAN 2020, pages 1204–1210, 2020.
doi:10.1109/RO-MAN47096.2020.9223483.

[9] Chongjie Zhang and Julie A. Shah. Co-optimizing task and motion planning. IEEE In-
ternational Conference on Intelligent Robots and Systems, 2016-Novem:4750–4756, 2016.
doi:10.1109/IROS.2016.7759698.

[10] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and Pieter
Abbeel. Combined task and motion planning through an extensible planner-independent
interface layer. Proceedings - IEEE International Conference on Robotics and Automation,
(L):639–646, 2014. doi:10.1109/ICRA.2014.6906922.

[11] Sitar Kortik and Uluc Saranli. Robotic Task Planning Using a Backchaining Theorem
Prover for Multiplicative Exponential First-Order Linear Logic. Journal of Intelligent

63

http://dx.doi.org/10.1080/0951192X.2015.1130251
http://dx.doi.org/10.1080/0951192X.2015.1130251
http://dx.doi.org/10.1080/0951192X.2015.1130251
http://dx.doi.org/10.1007/s10601-011-9109-4
http://dx.doi.org/10.1109/RO-MAN47096.2020.9223483
http://dx.doi.org/10.1109/IROS.2016.7759698
http://dx.doi.org/10.1109/ICRA.2014.6906922

64 REFERENCES

and Robotic Systems: Theory and Applications, 96(2):179–191, 2019. doi:10.1007/
s10846-018-0971-9.

[12] Xiaolei Sun and Yu Zhang. A review of domain knowledge representation for robot task
planning. ACM International Conference Proceeding Series, pages 176–183, 2019. doi:
10.1145/3325730.3325756.

[13] Kutluhan Erol, James Hendler, and Dana S. Nau. HTN planning: Complexity and expressiv-
ity. Proceedings of the National Conference on Artificial Intelligence, 2:1123–1128, 1994.

[14] Ross A Knepper, Dishaan Ahuja, Geoffrey Lalonde, and Daniela Rus. Distributed Assembly
with AND / OR Graphs.

[15] Bradley Hayes and Brian Scassellati. Autonomously constructing hierarchical task networks
for planning and human-robot collaboration. Proceedings - IEEE International Conference
on Robotics and Automation, 2016-June:5469–5476, 2016. doi:10.1109/ICRA.2016.
7487760.

[16] Nathan Koenig and Andrew Howard. Design and use paradigms for Gazebo, an open-source
multi-robot simulator. 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 3:2149–2154, 2004. doi:10.1109/iros.2004.1389727.

[17] Olivier Michel. WebotsTM: Professional Mobile Robot Simulation. 1(1):39–42, 2004. URL:
http://arxiv.org/abs/cs/0412052, arXiv:0412052.

[18] Fumio Kanehiro, Kiyoshi Fujiwara, Shuuji Kajita, Kazuhito Yokoi, Kenji Kaneko, Hiro-
hisa Hirukawa, Yoshihiko Nakamura, and Katsu Yamane. Open architecture humanoid
robotics platform. Proceedings - IEEE International Conference on Robotics and Automa-
tion, 1(February):24–30, 2002. doi:10.1109/ROBOT.2002.1013334.

[19] Toki Migimatsu and Jeannette Bohg. Object-centric task and motion planning in dynamic
environments. arXiv, 5(2):844–851, 2019.

[20] Panagiota Tsarouchi, Alexandros Stereos Matthaiakis, Sotiris Makris, and George Chrys-
solouris. On a human-robot collaboration in an assembly cell. International Journal of
Computer Integrated Manufacturing, 30(6):580–589, 2017. URL: http://dx.doi.org/
10.1080/0951192X.2016.1187297, doi:10.1080/0951192X.2016.1187297.

[21] Nikolaos Nikolakis, Niki Kousi, George Michalos, and Sotiris Makris. Dynamic schedul-
ing of shared human-robot manufacturing operations. Procedia CIRP, 72:9–14, 2018.
URL: https://doi.org/10.1016/j.procir.2018.04.007, doi:10.1016/j.
procir.2018.04.007.

[22] Alessandro Roncone, Olivier Mangin, and Brian Scassellati. Transparent role assignment
and task allocation in human robot collaboration. Proceedings - IEEE International Confer-
ence on Robotics and Automation, pages 1014–1021, 2017. doi:10.1109/ICRA.2017.
7989122.

[23] Olusegun Oshin, Edgar A. Bernal, Binu M. Nair, Jerry DIng, Richa Varma, Richard W. Os-
borne, Eddie Tunstel, and Francesca Stramandinoli. Coupling deep discriminative and gener-
ative models for reactive robot planning in human-robot collaboration. Conference Proceed-
ings - IEEE International Conference on Systems, Man and Cybernetics, 2019-Octob:1869–
1874, 2019. doi:10.1109/SMC.2019.8913974.

http://dx.doi.org/10.1007/s10846-018-0971-9
http://dx.doi.org/10.1007/s10846-018-0971-9
http://dx.doi.org/10.1145/3325730.3325756
http://dx.doi.org/10.1145/3325730.3325756
http://dx.doi.org/10.1109/ICRA.2016.7487760
http://dx.doi.org/10.1109/ICRA.2016.7487760
http://dx.doi.org/10.1109/iros.2004.1389727
http://arxiv.org/abs/cs/0412052
http://arxiv.org/abs/0412052
http://dx.doi.org/10.1109/ROBOT.2002.1013334
http://dx.doi.org/10.1080/0951192X.2016.1187297
http://dx.doi.org/10.1080/0951192X.2016.1187297
http://dx.doi.org/10.1080/0951192X.2016.1187297
https://doi.org/10.1016/j.procir.2018.04.007
http://dx.doi.org/10.1016/j.procir.2018.04.007
http://dx.doi.org/10.1016/j.procir.2018.04.007
http://dx.doi.org/10.1109/ICRA.2017.7989122
http://dx.doi.org/10.1109/ICRA.2017.7989122
http://dx.doi.org/10.1109/SMC.2019.8913974

REFERENCES 65

[24] Sofya Zeylikman, Sarah Widder, Alessandro Roncone, Olivier Mangin, and Brian Scassel-
lati. The HRC Model Set For Human-Robot Collaboration Research. arXiv, 2017.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem Definition
	1.4 Objectives
	1.5 Dissertation Structure

	2 Literature Review
	2.1 Human Robot Teams
	2.2 Task Discretization and Formalization
	2.2.1 HTNs and graph-based planning

	2.3 CoppeliaSim
	2.4 Related Work

	3 Task-Motion Planning Framework
	3.1 Case study
	3.2 Proposed solution
	3.2.1 System overview
	3.2.2 General Approach and List of Concepts

	4 Task Planning Approach
	4.1 Inputs
	4.2 Task Discretization and Formalization
	4.3 Graph generation
	4.4 Plan generation and final output decision

	5 Motion Planning Approach
	5.1 Simulation setup
	5.2 Graph translation
	5.3 Remote API setup
	5.4 Movement generation

	6 Experiments and Results
	6.1 Experiment definition and input design
	6.2 Task discretization and formalization
	6.3 Graph and plan generation and motion simulation

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	A Appendix
	References

