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A B S T R A C T   

Chest radiographies, or chest X-rays, are the most standard imaging exams used in daily hospitals. Responsible 
for assisting in detecting numerous pathologies and findings that directly interfere in the patient’s life, this exam 
is therefore crucial in screening patients. This work proposes a methodology based on a Convolutional Neural 
Networks (CNNs) ensemble to aid the diagnosis of chest X-ray exams by screening them with a high probability 
of being normal or abnormal. In the development of this study, a private dataset with frontal and lateral pro-
jections X-ray images was used. To build the ensemble model, VGG-16, ResNet50 and DenseNet121 architec-
tures, which are commonly used in the classification of Chest X-rays, were evaluated. A Confidence Threshold 
(CTR) was used to define the predictions into High Confidence Normal (HCn), Borderline classification (BC), or 
High Confidence Abnormal (HCa). In the tests performed, very promising results were achieved: 54.63% of the 
exams were classified with high confidence; of the normal exams, 32% were classified as HCn with an false 
discovery rate (FDR) of 1.68%; and as to the abnormal exams, 23% were classified as HCa with 4.91% false 
omission rate (FOR).   

1. Introduction 

Imaging exams are practical tools to aid in the diagnosis of diseases. 
Among them, radiography or X-ray examination is a low-cost and easy- 
to-operate technique. Due to its low cost, it is the most performed im-
aging exam in the world. For example, according to the National Health 
Service, in England, it has been performed about 16 million times be-
tween April 2020 and March 2021.1 Present in developing or difficult- 
to-access regions, it is commonly used as a primary diagnostic tool, 
allowing specialists to observe pathologies that are difficult to trace. X- 
ray is one of the few imaging modalities that cover all regions of the 
human body. Among the main areas, the chest is where several pa-
thologies associated mainly with the lungs and heart are found, such as 

pneumonia, pleural effusion, cardiomegaly and pulmonary nodules. 
The development of computational methodologies that identify the 

aforementioned diseases would enable the development of computer- 
aided diagnostic (CAD) system that can assist in detecting and 
following up patients. In recent years, several works based on deep 
learning models have been successfully applied to problems commonly 
found in the medical field [1–3]. For example, mainly due to the 
pandemic caused by COVID-19 [4], researchers used techniques based 
on deep learning models to identify patients infected with this disease in 
computed tomography (CT) [5] and X-ray images [6–8]. 

Hospitals can use CAD systems to reduce costs and help to prioritize 
more extreme care, speeding up service lines. However, to provide such 
benefits, these systems must have an error rate close to 1% from a 
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medical point of view [9]. In addition, there are other challenges for the 
correct prediction of exams, such as: obtaining technically limited exams 
that tend to make diagnosis difficult, problems related to resolution, 
positioning, and the existence of exams produced using different 
equipment. 

Besides to the challenges, there are numerous pathologies or changes 
detectable in chest X-rays. However, specific abnormal findings are 
located in close regions or have similar characteristics, making it diffi-
cult to identify them correctly. Another adversity for developing CAD 
systems is the acquisition of properly labeled datasets or errors from the 
PACS system, such as receiving other types of exams. Given the 
numerous challenges for building a methodology that can generalize all 
existing changes, a new methodology that tends to help reduce errors 
and consequently increase accuracy is proposed. 

The proposed methodology has as main objective to provide high 
confidence chest X-ray predictions for normal (High Confidence Normal 
- HCn) and abnormal (High Confidence Abnormal - HCa) cases, i.e., 
classes. Initially, we pre-process the images and perform deep fine- 
tuning of pre-trained architectures. We used an ensemble with the ar-
chitecture originating from the frontal projection (posteroanterior (PA)) 
and another one trained only with lateral projections in order to make 
predictions with high confidence. Based on the ensemble’s results, we 
used confidence factors to define which exams belong to the HCn and 
HCa classes. Here, the normal class is represented by exams that do not 
have any finding or alteration, regardless of whether they are benign. In 
contrast, an abnormal class represents the complement of the normal 
class. 

Among the main contributions of this study, we can highlight: (1) 
evaluation in a heterogeneous database with different abnormalities and 
findings that are not present in state-of-the-art public databases; (2) pre- 
processing task for resizing images with different resolutions and pre-
serving the input size ratio; (3) new ensemble methodology using 
different state-of-the-art Convolutional Neural Network (CNN) archi-
tectures and different projections; (4) new evaluation methodology 
considering the probability of CNNs to generate ratings based on con-
fidence factors; and (5) proposal of a fully automatic solution that can be 
easily implemented in different medical facilities, mainly in hospitals. 

The remainder of this article is organized as follows. Related state-of- 
the-art works are presented in Section 2, and the dataset used in the 
experiments is described in Section 3.1. The proposed methodology is 
detailed in Section 3.2, as well as the built classifier models. In Sections 4 
and 5, results and discussions about the challenges and comparisons 
with related works found in the literature are presented. Finally, in 
Section 6, the main contributions and conclusions achieved in this study 
are pointed out. 

2. Related works 

The current literature as to the development of methodologies that 
identify changes in chest X-rays is vast. According to Çallı et al. [10], 
most of the published works presented methodologies based on image 
classification. Among the primary approaches studied, we can highlight 
the screening of exams and their binary classification and the pre-
diction/detection of specific abnormalities. Therefore, we surveyed 
works in the literature aligned with the objective proposed in this study. 

One of the main difficulties in large hospitals is the patient screening 
system. Difficulties generated by the delay in patients care can lead to 
severe consequences in some cases. Therefore, diverse authors have 
proposed methodologies for differentiating healthy and abnormal chest 
X-rays. The proposed solutions intend to streamline patient screening 
automatically. However, we observed that in the literature, the primary 
methodologies still have limitations regarding the number of alterations 
found in chest exams [11–13]. This difficulty is also related to the 
availability of datasets in the literature. The ChestX-ray14 dataset [14], 
with about 112,000 images and 13 types of pathologies, is the most 
popular. 

Among the works analyzed, we can highlight the work of Yates et al. 
[15], were two distinct datasets were used to build the two classes that 
were addressed separately with 94.6% of accuracy. It is noteworthy that 
this approach favors getting high correctness rates since each dataset has 
a distinct characteristic in terms of resolution, imaging equipment and 
applied pre-processing techniques, which tends to favor the learning of 
the used CNN. The work proposed by Ellis et al. [16] was the only one 
among those analyzed that applied lateral and frontal projections in the 
classification of the exams, concatenating both images for later classi-
fication with a CNN. In Dunnmon et al. [17], the authors used a very 
extensive evaluated dataset with 216,431 images and obtained 91% of 
accuracy using the DenseNet121 architecture. In Wong et al. [18], the 
authors used the concatenation of CNNs to develop a multi-model 
feature pyramid approach; two databases were evaluated, and a 
Receiver operating characteristic (ROC) of 0.821 was obtained. 

In Tang et al. [19], the authors proposed evaluating different CNNs 
for the classification of frontal X-ray exams into healthy or abnormal. 
The evaluated VGG-19, ResNet18, ResNet50, InceptionV3 and Dense-
Net121 architectures did not present significant differences in their re-
sults. Furthermore, images with different resolutions, ranging from 256 
× 256, 512 × 512 and 1024 × 1024 pixels, were evaluated and the 
results were not significantly different. However, among the used ar-
chitectures, the one that obtained the highest average of results was 
ResNet18, with a accuracy of 94.64%. 

In the work of Dyer et al. [20], an algorithm for identify healthy 
X-ray exams with a high confidence factor was presented. The approach 
intended to reduce the workload of radiologists, offering results with a 
high probability of being healthy. The methodology is based on an 
ensemble formed by DenseNet and EfficientNet B4 architectures, which 
reduced by up to 15% the number of exams evaluated by the physician 
with an HCn with an error of 2.3%. The authors used 3887 images to 
develop their solution. 

When analyzing the problem involving the classification into healthy 
and abnormal, we observed that the best performance achieved by 
different methodologies was not reached by combining various abnor-
malities, which is critical for implementation in actual conditions of use, 
such as the ones found in common hospitals and clinics [21]. 

Table 1 presents the state-of-the-art methodologies found with 
particular relevance in this study. 

From Table 1, one can realize that some of the works found in the 
literature used private datasets and others used public ones. However, 
none of the works used datasets with a good balance between the 
healthy and pathological classes. This confirms the demand for datasets 
that better represent both classes. Even in the ChestX-ray 14 dataset, 

Table 1 
Summary of the related works found in the literature.  

Work Year Methodology Number of Images Availability Performance results 

Normal/Abormal Classification 
Yates et al. [15] 2019 InceptionV3 + Fine-tuning 53,149 Public Acc of 94.6% 
Dunnmon et al. [17] 2019 DenseNet121 216,431 Private Acc of 91% 
Ellis et al. [16] 2020 DenseNet121 7000 Private Acc of 82% 
Wong et al. [18] 2020 VGG16+ResNet50 pyramid 128,886 Public AUC of 0.821 
Tang et al. [19] 2020 ResNet18 141,617 Public Acc of 94.64% 
Dyer et al. [20] 2021 Ensemble (DenseNet121 and EffIcientNet b4) 3887 Private 15% of all examinations with HCn of 97.7%  

L. Vogado et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 145 (2022) 105442

3

which has a large number of images with pathologies, the “no findings” 
class does not guarantee that the exams are normal. In addition, the 
heterogeneity of the used dataset is crucial for obtaining a model 
capable of generalizing different pathologies in real scenarios, where 
any finding can appear. This heterogeneity is only present in the works 
of Tang et al. [19] and Yates [15], where the proposed methodologies 
were developed and evaluated using multiple datasets. Even so, these 
authors did not explore the use of lateral projection images, which can 
be decisive for an efficient diagnosis. 

In the found state-of-the-art works, a common factor is the use of 
fine-tuning techniques in convolutional neural networks and the eval-
uation of different architectures. The authors achieved results with 
consolidated state-of-the-art CNNs, such as DenseNet, ResNet, and 
Inception. This demonstrates that, despite the proposal of numerous 
CNNs, for implementation in real systems in order to aid the diagnosis, 
the consolidated architectures are the ones that tend to achieve better 
effectiveness. 

The critical point is that the authors did not present evidence that the 
proposed methodologies can be used in real scenarios. The exception is 
the proposal by Dyer et al. [20], which prioritized the accuracy of the 
methodology to assist the radiologist in issuing normal reports. There-
fore, observing the need for approaches with reliable answers, consoli-
dated architectures, heterogeneous datasets, and the use of all 
incidences, we developed a methodology based on committees with 
CNNs to help radiologists with the production of predictions with high 
precision. 

3. Materials and methods 

This section describes the development of the proposed methodol-
ogy. Hence, we emphasize the images dataset used in the experiments 
and its labeling method, the deep learning approaches employed, and 
the evaluated architectures. In the end, we present the evaluation 
methodology that seeks to validate the results obtained according to the 
main metrics found in the literature. 

3.1. Image dataset 

The need for large amounts of data to train methodologies based on 
the Deep Learning paradigm is well known. However, there are other 
challenges to the development of diagnostic aid tools for real world use. 
One of the main problems are the data labeling and pre-processing. 
Among the public datasets used in the found state-of-the-art works, 
there are inaccuracies regarding data labeling, especially when multiple 
classes are taken into account. Another fact that usually affects public 
databases is the overlap and dependency between the studied classes 
[10]. 

The data collection was performed in 84 Brazilian hospitals, total-
izing 217,302 collected exams. The dataset has 352,460 anonymous 
images, and the image resolutions range from 727 × 692 to 4892 × 4020 
pixels. The exams were obtained in DICOM format and converted into “. 
png” format for further processing. The Photometric Interpretation 
attribute came with the Monochrome1 parameter for some exams, 
making that the lowest pixel value is displayed by the color white, 
contrasting most of the exams that came with Monochrome2. Therefore, 
the images have been adjusted to satisfy the Monochrome2 standard. 

The exams were obtained according to the frontal (anteroposterior/ 
posteroanterior) and lateral views. It is worth noting that it is not always 
that the protocols require the physician to request the lateral projection. 
Thus, all exams have at least one frontal image and one or no lateral 
image, in a total of 224,042 images of frontal projection and 128,418 of 
lateral projection. In Table 2, the main characteristics of the used dataset 
are presented. Fig. 1 gives examples of the included chest X-rays, with 

Table 2 
Details about the dataset used in the experiments.   

PA Lateral Labels Labeling 
method 

Binary 
classification 

Built 
Dataset 

224,042 128,418 2 RP, RIR Normal: 236,350 
Abnormal: 
116,110  

Fig. 1. Examples of normal (a)–(c) and abnormal (d)–(f) chest x-ray images belonging to the used dataset.  
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their frontal and lateral projections. 
We used two labeling methodologies for the exams included in the 

dataset. The first was the Report Interpretation Radiologist (RIR) [10], 
where the specialist analyzes the medical report and classifies it ac-
cording to content. This methodology was used for all exams in the 
normal class, and for part of the abnormal exams. The second used la-
beling methodology was Report Parsing, where we applied automatic 
techniques to classify the reports. In this work, we used a dictionary 
collected from radiologists with terms that denote abnormalities or 
findings, and we searched the reports for terms that were not classified 
as normal in the first methodology. A fact to be highlighted is the 
definition of the term “abnormal”. Here, since we intended to simulate 
the most accurate medical knowledge, we used any term that escapes 

normality as abnormal. Thus, unlike other datasets, findings such as 
calcified nodules, granulomas, accessions and pacemakers are consid-
ered abnormal. 

3.2. Proposed methodology 

In this study, we propose a methodology based on an ensemble of 
CNNs to aid the diagnosis of chest X-ray exams through screening exams 
with a high probability of being normal or abnormal, Fig. 2. Initially, the 
images go through a pre-processing task in order to adapt them for the 
input of CNNs. We refined and evaluated three widely used CNNs ar-
chitectures for Chest X-ray classification, ranked the exams according to 
the confidence factor, and defined three classes of responses according 

Fig. 2. Flowchart of the proposed classification methodology.  
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to the combined probability between the evaluated architectures. 

3.2.1. Pre-processing 
Due to the high dimensionality, different resolutions of the input 

images, and a metallic token with the original medical examination 
result, we implemented a pre-processing task to identify the region of 
interest (ROI) and adapt the input images to the input pattern of CNNs. 
Fig. 3 depicts the implemented pre-processing task. 

The default input for CNNs is square images. In addition, the large 
number of operations performed makes it challenging to process images 
with large dimensions. Thus, based on empirical tests, evaluations with 
medical specialists, and the evaluation results of several dimensions 
presented in TANG, we defined the input images’ size at 256 × 256 
pixels. However, resizing images to this dimension distorts the image 
regions, as there is a big difference between the images’ height and 
width. Thus, we identified the region of interest: the lung area, before 
resizing the input image, by applying an Otsu threshold [22]. Then, the 
image’s background region is removed, and the image is cropped to 
contain only the chest region. After this process, the image is trans-
formed into a square image using zero paddings. Finally, the square 
image is resized to the desired size. 

According to Refs. [23,24], the presence of metallic tokens in X-ray 
images can bias the learning of CNNs. Fig. 4 shows the influence that a 
metallic token can have on the learning process of CNNs. Hence, it il-
lustrates a VGG-16 activation map for the frontal scan in a scenario with 
and without a token. In the scenario where the input image has the token 
(Fig. 4(a)), it is observed that one of the regions where the heat map is 
more intense (red) is the region pf the token (Fig. 4(b)). This fact in-
dicates that the CNN considered the token essential for decision-making. 
When the input image for the CNN is the result of a token removal 
process (Fig. 4(c)), the activation map (Fig. 4(d)) in the region where the 
token was removed is predominantly blue, which suggests that the re-
gion is not considered relevant for the prediction. 

As such, the deep learning architecture will learn the token pattern 
and not critical features that exist in the exam. Therefore, we propose 
token segmentation through U-Net [25]. We chose a CNN to segment 
this region because there are no standards for the tokens’ size and 
location in the exams. Thus, training a U-Net with few convolutional 
filters and less complexity is more effective for different situations. 

Fig. 3. Steps of the proposed pre-processing task.  

Fig. 4. Heatmaps with the regions that had the most significant influence on 
the prediction of the used CNN: After the token removal, the used CNN archi-
tecture does not consider the region of the token as a relevant region for the 
final result. 
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For the U-net training and evaluation, the specialist manually labeled 
the token of 239 images; then, we used 80% of this data to train the 
network. We used the remaining 20% of the data to evaluate the seg-
mentation of the token regions. This methodology obtained an accuracy 
of 99.96%. Then, the token was removed from the image under study 
using the Fast Marching Method (FMM) proposed by Telea et al. [26], 
which considers the information of neighboring pixels, starting from the 
edges of the region of interest. The region’s pixels are replaced by the 
weighted and normalized sum of all pixels in the neighborhood. 

3.2.2. Transfer learning 
The use of techniques based on deep learning has been used over the 

years in solutions to the most diverse problems. In the literature, Con-
volutional Neural Networks have been applied to develop solutions that 
involve the diagnosis of medical images. These networks have high 
generalizability, overlaying traditional techniques commonly presented 
in the literature [10]. Among the main techniques involving CNNs, we 
can highlight the transfer learning technique, where a CNN is 
pre-trained in a generic dataset and then used as the basis for changes in 
the architecture by fine-tuning to a new problem. 

In this work, we used the fine-tuning technique to train the proposed 
architecture. In Vogado et al. [27], the authors used different fine-tuning 
techniques to develop an architecture that correctly classifies blood 
slides with or without leukemia. Among the approaches presented, the 
modified Deeply Fine-Tuning (mDFT) consists of fine-tuning the entire 
CNN architecture and readjusting the fully connected layers. This 
fine-tuning technique achieved the best results for the given problem 
considering challenges such as the dataset size and the presented 
problem. Therefore, we used mDFT to train the architectures used in the 
proposed methodology. 

3.2.3. Evaluated CNNs 
Defining the fine-tuning technique to be used was just one step in 

developing the proposed methodology. Another fundamental step was 

the definition of the base CNN for the development of the proposed 
architecture. 

Over the years, several CNN architectures have been proposed to 
solve computer vision and machine learning problems. These architec-
tures can generalize different datasets and provide accurate results. 
From the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 
[28], architectures with distinct characteristics such as depth, number of 
parameters and convolutional layers, were presented. Among them, we 
can highlight VGG-16 [29], ResNet50 [30] and DenseNet121 [31]. In 
works presenting methodologies for the classification of chest X-ray 
images, these three deep learning models are the most commonly used 
[10]. In Table 3, the main characteristics of these three architectures are 
indicated. 

We observed that the number of parameters needed to train the ar-
chitectures was reduced over the years, from over 138 million to 8 
million. However, the topological depth increased from 23 to 168, and 
then 159 layers. In the experiments, we applied mDFT with these three 
architectures on front and lateral image projections. 

3.2.4. Ensemble 
An ensemble of classifiers consists of combining different predictions 

from different classifiers to issue a single answer about the input data 
[32]. Among the main advantages of using ensembles, we can mention 
the reduction in overfitting, variance, and the minimization of the 
instability of the learning algorithms. 

The ensemble application can be compared with the assessment 
carried out by radiologists in identifying whether an exam is normal or 
not. This common feature is due to one or more projections, mainly, 
frontal and lateral, on chest X-rays. The combination of the evaluation of 
each projection helps the physician in the final decision. Therefore, the 
ensemble employed in this work acts similarly since two CNNs are 
trained respectively with two projections of one exam. So, it is possible 
to output a final prediction using predefined rules. 

To provide answers with a high probability of being normal or 
abnormal. We present the use of Confidence Threshold (CTR) to define 
the predictions into High Confidence Normal (HCn), Borderline classi-
fication (BC), or High Confidence Abnormal (HCa), according to the 
probability given by each CNN. The CTR helps to reduce errors and, 
consequently, increase the proposed methodology’s accuracy. In this 
way, the approach can reduce the physician’s workload and help to 
improve the quality of medical reports through the issuance of pre- 

Table 3 
Characteristics of the studied deep learning models.  

Model Topological depth Number of parameters Year 

VGG-16 23 138,357,544 2014 
ResNet50 168 25,636,712 2015 
DenseNet121 159 8,062,504 2017  

Fig. 5. Example of how the first stage of the ensemble works with confidence factors: The image was classified as normal in the first line, because the prediction 
probability (0.96) was higher than CTRn (0.94). In the second line, the image was classified as Borderline, because the prediction probability (0.16) was between 
CTRa (0.2) and CTRn (0.8) values. 
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reports. Thus, the physician will only review the response given by the 
methodology. Therefore, we define an image as one of the three classes 
according to: 

Ri =

⎧
⎨

⎩

HCn if Pi > CTRn,
HCa if Pi < CTRa,
BC if Pi > CTRa and Pi < CTn,

(1)  

where R is the answer obtained from the ensemble and Pi is the proba-
bility of the first neuron obtained by the softmax activation layer for an i 
image. The confidence factor represented by CTR can assume values 
according to the class, being n normal and a abnormal. 

It is noteworthy that the values for CTRa and CTRn were defined 
empirically, ranging from 0.5 to 1.0 for the normal class, and from 0.5 to 
0 for the abnormal class. Fig. 5 presents an example of how the built 
ensemble works in the classification of images using random values for 
CTRa and CTRn for a frontal and a lateral projection. 

After classifying all exam images according to the confidence factor 
values, we carry out the second ensemble stage, which decides the final 
class. Likewise the assessment by confidence factor, we follow the same 
pattern of classes presented in the decision by image. However, we 
implemented rules according to medical knowledge for decision-mak-
ing:  

where e represents the evaluated exam. In the implemented rules, if 
there is at least one i image classified as HCa, the entire exam will be 
HCa. Therefore, to classify the exam in HCn, the quantity of HCn images 
must be greater than the quantity of BC, or all of them are HCn. 

3.3. Evaluation metrics 

The metrics generally used to assess diagnostic aid methodologies 
are based on the confusion matrix. Based on this matrix, it is possible to 
visualize and evaluate the performance of a prediction algorithm 
through the verification of predictions. Thus, for binary problems, we 
can represent the confusion matrix according to the following values: 
true positive (TP), false positive (FP), false negative (FN) and true 
negative (TN). 

In the problem addressed in this study, the normal class is repre-
sented as negative and the abnormal as positive. Thus, TP represents 
what was correctly classified as abnormal, and FP what is normal but 
classified as abnormal, TN represents the images correctly classified as 
abnormal, and FN the abnormal images classified as normal. From these 
values, we can calculate the valuation metrics. We evaluated the 
following metrics to select the best models from the performed experi-
ments: accuracy (Acc), precision (P), recall (R), specificity (S), kappa 
(K), and area under the ROC curve. 

Metrics aligned with the results from the classification ensemble 
were also used. The first is the False Discovery Rate (FDR), and the 
second is the False Omission Rate (FOR): 

FDR =
FN

TN + FN
, (3)  

FOR =
FP

TP + FP
. (4) 

These metrics are calculated according to the confusion matrix 
resulting from the classification ensemble, agreeing with the number of 
HCn and HCa responses. 

In addition to the FDR and FOR metrics, we propose two metrics for 
selecting the best ensembles. Since the main objective is to increase the 
percentage of responses with high confidence (HC) and reduce FDR and 
FOR errors, we propose the Commitment (CM) metric that represents 
the weighted average of the number of responses and the error obtained 
in that class, which were defined according to: 

CMn = (0.4 ∗ HCn) + (0.6 ∗ FDR), (5)  

CMa = (0.4 ∗ HCa) + (0.6 ∗ FOR), (6)  

where a represents the abnormal class, and n the normal class. We 

defined 0.4 as the weight for HCn and HCa, and 0.6 for the respective 
errors by class: FDR and FOR. In this way, the error has a substantial 
influence on the decision of the best ensemble approach. From selecting 
the best commitment for each class and with the defined approaches, it 
is still necessary to make a final decision among the combinations of 
different ensembles. For this, we used the weighted average of the 
Commitment values (ACM) for each class, giving greater weight to the 
normal class, with 0.6 and 0.4 for the abnormal class. 

4. Results 

For the development of the proposed methodology, we split the ex-
periments into three phases, namely: (1) selection of the best models for 
frontal projections, (2) selection of the best models for lateral pro-
jections, and (3) building of the evaluation ensemble between the 
models. The used criteria for selecting the models in the first two phases 
took into account metrics from the literature such as accuracy, precision, 
recall, specificity, kappa, and AUC. To rank the results, we considered 
AUC as the primary metric. After choosing the models, the ensemble was 
evaluated using the confidence factors for the HCa and HCn responses. 
The selection criteria for the best combinations of the ensemble’s models 
was the best result for the CMa and CMn metrics. 

The results presented in this section were obtained without using 
data augmentation. Despite data augmentation being a widely used 

Table 4 
Best results achieved for frontal projection images using the validation set with different architecture configurations (best values in bold).  

Approach Fc layers Acc P R S K 

VGG-16 1024 88.43% 86.06% 81.40% 92.46% 0.7472 
VGG-16 1024–512 87.99% 84.06% 82.67% 91.04% 0.7397 
VGG-16 1024–256 88.29% 87.14% 79.57% 93.28% 0.7423 
ResNet50 256 87.89% 87.29% 78.10% 93.50% 0.7324 
DenseNet121 512 87.67% 86.89% 77.85% 93.28% 0.7275  

Re =

⎧
⎨

⎩
HCa if  at  least  one Ri⩵HCa, HCn if  all Ri⩵HCn or  the  number  of HCn > BC, BC if  all Ri⩵BC or  the  number  of BC ≥ HCn,

(2)   
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technique to improve CNNs training and avoid overfitting, it was not 
necessary in this work. We performed tests with and without data 
augmentation in the initial experiments and found that they performed 
statistically equal. Thus, we chose not to use data augmentation, 
reflecting a scenario closer to the one commonly found by physicians. In 
addition, we verified that, due to the number of available images, the 
fine-tuned CNNs did not suffer from the overfitting problem. 

4.1. Results for frontal projection images 

Table 4 presents the best results achieved for the three architectures 
evaluated in the validation set for the frontal projection images. The 
architectures are presented according to the metrics obtained and the 
number of fully connected layers used. In addition, we ranked the results 
according to the AUC metric. As a tiebreaker, we selected the model with 
the best performance in the kappa index. Fig. 6 presents the ROC curve 
and AUC for each architecture indicated in Table 4. To calculate the ROC 
and AUC curve, we used the probability of each image belonging to the 
positive class and its actual class. This information was extracted from 
the CNNs softmax layer. The threshold used to differentiate the positive 
and negative classes was 0.5. 

Also, from Table 4, we can realize that the best validation perfor-
mance was achieved by VGG-16 with 1024 neurons in the fully con-
nected layer, with 88.43% of accuracy, 0.7472 as to kappa, which is 
considered very good, and 0.8693 for AUC. For the VGG-16 with two 
fully connected layers of 1024 and 512, we got a AUC of 0.8685. 
However, a higher sensitivity was obtained for the best result. Among 
the architectures with the greatest depth, the ResNet50 256 achieved 

only 87.89% of accuracy, but had the highest precision and specificity 
values. 

A fact to be observed in the obtained results is that with the increase 
in the amount of fully connected layers, VGG did not obtain superior 
results than its configuration with only one layer with 1024 neurons. 
The same can be observed for ResNet50, whose best result was achieved 
with only one layer of 256 neurons, and DenseNet121 with 512 neurons. 

It is noteworthy that among the studied architectures, VGG-16, even 
being older and shallower than the others, achieved superior results, 
noting that it was the architecture that best generalized the images in the 
validation set for this dataset. This can be justified due to shallower 
CNNs producing better results for binary problems or with few classes 
than deeper architectures. This is because deeper architectures are more 
susceptible to overfitting in binary problems [27]. 

Table 5 illustrates the results of an ablation study to verify the 
relevance of metallic token removal in the five best approaches defined 
in Table 4. From the results, we observed that the use of tokens added a 
bias in CNN’s learning and did not present superior results in any of the 

Fig. 6. ROC curve and AUC of the best results obtained for the frontal pro-
jection images. 

Table 5 
Comparison between the best results with and without token removal in frontal projections images.   

With Token Without Token 

Approach Fc layers Acc K AUC Acc K AUC 

VGG-16 1024 87.67% 0.7212 0.8445 88.43% 0.7472 0.8692 
VGG-16 1024–512 87.84% 0.7171 0.8544 87.99% 0.7397 0.8684 
VGG-16 1024–256 87.46% 0.7296 0.8433 88.29% 0.7423 0.8642 
ResNet50 256 87.52% 0.7243 0.8543 87.89% 0.7324 0.8578 
DenseNet121 512 87.07% 0.7158 0.8518 87.67% 0.7275 0.8555  

Table 6 
Best results achieved for the lateral projection images using the validation set 
with different architecture configurations (best values in bold).  

Approach Fc layers Acc P R S K 

ResNet50 1024 83.62% 66.97% 76.25% 86.3% 0.5991 
VGG-16 1024–512 85.0% 71.96% 71.83% 89.8% 0.6167 
ResNet50 512 84.1% 68.88% 73.79% 87.86% 0.6028 
ResNet50 256 84.95% 71.77% 71.9% 89.7% 0.6157 
VGG-16 1024–256 84.72% 71.75% 70.55% 89.88% 0.6075  

Fig. 7. ROC curve and AUC of the best results obtained for lateral projection.  
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illustrated metrics [24]. Among the evaluated metrics, only the accuracy 
presented similar results with a significance level of 5% 

4.2. Results for lateral projection images 

Table 6 presents the results achieved by the models under compar-
ison for the validation set in the used dataset with lateral projection 
images. Fig. 7 presents the ROC curve and AUC for each architecture 
indicated in Table 6. 

From the best achieved results, one can highlight ResNet50 with 
1024 neurons, which obtained 0.8127 of AUC and a recall of 76.25%. 
However, even with the best AUC, this CNN configuration had the 
lowest accuracy, precision, specificity and kappa. In contrast, the 
second-best result obtained by VGG-16 with 1024-512 achieved the best 
results in three metrics, and the second-best AUC tied with ResNet50 
with 512 neurons. However, VGG-16 is considered superior according to 
the tiebreaker defined by the value obtained as to kappa. 

Table 7 illustrates the results of an ablation study to verify the 
relevance of metallic token removal in the five best approaches defined 
in Table 6. As discussed in the frontal view, the results obtained with the 
token presence are inferior to those obtained without the presence. For 
the lateral view, only in the ResNet50 configuration with 1024 neurons, 
the token approach obtained a higher accuracy with 84.1% against 
83.62%. However, looking at the value of K and especially the AUC, we 
verify that the approach with removal was superior. 

4.3. Exam screening ensemble 

From the results obtained in the validation set and the selection of 
the five best models of CNNs, we evaluated the ensemble classifier for 
the exams screening. Due to the number of existing combinations be-
tween all models, we reduced the scope to only the two best results with 
frontal projection images, and the two best with lateral projection im-
ages. Hence, from the selected models, we studied eight combinations. 
Table 8 indicates the ensemble results for the validation set along with 
the five best achieved matches. 

Among the objectives outlined for building the ensemble classifier, 
one of the main ones is to provide high confidence, that is, a high 
probability of actually belonging to a specific class. Therefore, we in-
crease class precision and decrease error. On the other hand, there is a 
reduction in the number of responses issued, now released as BC. 
Furthermore, to develop and select the best combinations, it was 
necessary to impose rules to limit the amount of normal and abnormal 
responses. We observed through empirical experiments that with HCa 
and HCn rates above 30%, the values for FOR and FDR would be above 
5% in most cases. To limit the error to be obtained, we established HCa 
and HCn between 20 and 30%, always looking for the best FOR and FDR 
value between these two response ranges. 

During the tests to build the ensemble classifier, we varied the CTRn 
and CTRa confidence factors for the frontal and lateral models and used 
the CM as a parameter to balance the number of responses issued by 
class and the error obtained. Thus, we observed that we obtained the 
best confidence factors from the best CM values. 

Among the obtained results, we verified that in the five combinations 

Table 7 
Comparison between the best results with and without token removal in lateral projections images.   

With Token Without Token 

Approach Fc layers Acc K AUC Acc K AUC 

ResNet50 1024 84.1% 0.5981 0.8025 83.62% 0.5991 0.8127 
VGG-16 1024–512 84.89% 0.6083 0.7999 85.0% 0.6167 0.8082 
ResNet50 512 82.29% 0.5725 0.8032 84.1% 0.6028 0.8082 
ResNet50 256 83.41% 0.5922 0.8079 84.95% 0.6157 0.8080 
VGG-16 1024–256 79.95% 0.5345 0.7944 84.72% 0.6075 0.8021  

Table 8 
Ensemble results ranked considering different architectures for frontal and lateral projection images in the validation set (best values in bold).  

CTRn - CTRa 

Frontal CNN Lateral CNN Frontal Lateral BC Responses HCn FDR HCa FOR CMn CMa ACM 

VGG-16 1024 
VGG-16 
1024-512 

VGG-16 1024 
-512 

0.94–0.06 0.8–0.2 8959 
(47.07%) 

10074 
(52.93%) 

29.57% 
(5629) 

2.58% 
(145) 

23% 
(4445) 

4.5% 
(200) 

70.28 67.36 69.112 

VGG-1024 ResNet50 1024 
VGG-16 1024- 
512 

0.95–0.16 0.81–0.13 8222 
(43.2%) 

10811 
(56.8%) 

29.91% 
(5692) 

2.78% 
(158) 

27% 
(5119) 

5.92% 
(303) 

70.29 67.2 69.054 

VGG-16 1024 
VGG-16 
1024-512 

ResNet50 1024 0.93–0.15 0.81–0.04 8659 
(45.49%) 

10374 
(54.51%) 

29.62% 
(5637) 

2.79% 
(157) 

25% 
(4737) 

4.33% 
(205) 

70.17 67.35 69.042 

VGG-16 1024 VGG-16 1024- 
512 

0.95–0.16 0.84–0.07 8385 
(44.06%) 

10648 
(55.94%) 

29.82% 
(5675) 

2.91% 
(165) 

26% 
(4973) 

5.43% 
(270) 

70.18 67.19 68.984 

VGG-16 1024 ResNet50 1024 0.94–0.14 0.83–0.04 8510 
(44.71%) 

10523 
(55.29%) 

29.81% 
(5673) 

3.0% 
(170) 

25% 
(4850) 

5.03% 
(244) 

70.12 67.17 68.94  

Table 9 
Ensemble results considering different architectures for frontal and lateral images in the test dataset.  

CTRn - CTRa 

Frontal CNN Lateral CNN Frontal Lateral BC Number of 
answers 

HCn FDR HCa FOR CMn CMa ACM 

VGG-16 1024 VGG- 
16 1024-512 

VGG-16 1024 
-512 

0.94–0.06 0.8–0.2 8524 
(45%) 

10263 (55%) 32% 
(6010) 

1.68% 
(101) 

23% 
(4253) 

4.91% 
(209) 

71.78 66.10 68.97  
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presented, the number of responses was higher than 50%. For the frontal 
CNNs, the CTRn values were higher than 0.9 of probability, while for the 
lateral CNNs, none of the CTRn exceeded the 0.85 range. We believe that 
the confidence factors of the lateral CNNs were lower because some of 
the findings or alterations are not visible on lateral images. However, it 
does not decrease system performance because, according to the medical 
protocol, only the frontal view is necessary for some instances, and the 
examination with the lateral view is not required. Thus, for cases of 
exams with only frontal projection, the probability emitted by the 
frontal CNN is the only one taken into account in the classification into 
HCa, HCN, or BC. 

When analyzing the HCn values, we observed that they were closer to 
the 30% defined as the limit, while the FDR values were, until then, 
equivalent to or less than 3%. This same behavior was not observed in 
the abnormal class, which presented HCa values far from 30% and STR 
rates higher than 5% in some cases. This fact demonstrates that models’ 
ability to classify normal exams and that the unbalance between the 
classes, even mitigated, interfered in the final result. 

Initially, for the evaluation of the architectures, we considered the 
combination of two models, a frontal and a lateral model. However, we 
calculated the average between the probabilities obtained by two 
models of the same projection to obtain better results. To rank the re-
sults, we calculated the Average Commitment Metric (ACM) according 
to the values of CMn and CMa. With the ensemble between the front and 
lateral models, we found the best result using the frontal VGG-16 1024 
and VGG-16 1024-512 models, and the lateral VGG-16 1024-512 model. 
Furthermore, we observed that, among the five best results, the three 
that obtained the highest ACM values had a combination of models. 

We calculated the results for the test set from the best combination of 
models and definition of CTR values. In Table 9, one can observe that 
some metrics were superior to the validation set, demonstrating that the 
approach managed to generalize the results to a set never seen by the 
models. 

For the test dataset, the results for the normal class were higher than 
those obtained for the validation set, with HCn equal to 32% and FDR of 
1.68%. In abnormal class, the results obtained were close to those in the 
validation set, with 23% HCa and FOR of 4.91%. It is noteworthy that 
the CTR values were defined using the validation set, so these are 
replicated to the test set without limitations regarding the amount of 
HCa or HCn responses. The proposed methodology presented a number 
of answers superior to 50% of the total cases as in the validation dataset. 

We performed a Z-test [33] to statistically compare and evaluate the 
results among the proposed ensemble (Table 8) and the individual 
CNNs, Frontal VGG-16 1024, Frontal VGG-16 1024 512 and Lateral 
VGG-16 1024-512 (Tables 4 and 6), with a significance level of 5% to 
assess if the results were significantly different from each other. The 
results shown that the ensemble approach achieved markedly higher 

Table 10 
Comparison of the proposed methodology with state-of-the-art ones on the bi-
nary classification of chest X-ray exams.  

Work Year Images Acc AUC 

Yates et al. [15] 2019 53,149 94.6% – 
Dunnmon et al. [17] 2019 216,431 91.0% – 
Ellis et al. [16] 2020 7000 82.0% – 
Wong et al. [18] 2020 128,886 – 0.8210 
Tang et al. [19] 2020 141,617 94.64% 0.9824 
Proposed Methodology 2022 352,460 87.54% 0.8721  

Table 11 
Comparison between the proposed methodology and the one suggested by Dyer 
et al. [20].  

Work Year Images HCn FDR 

Dyer et al. [20] 2021 3887 15% 2.3% 
Proposed Methodology 2022 352,460 32% 1.68%  

Fig. 8. Percentage of responses with high confidence for the validation (a) and test (b) sets obtained by the proposed methodology.  

Table 12 
Comparison among the results obtained by the proposed methodology and the 
ones obtained by state-of-the-art methodologies in public image datasets (best 
values in bold).  

Work Year Acc P R S AUC 

Indiana þ NIH Datasets 
Yates et al. 2018 94.60% 99.80% 94.60% 93.4% 0.98 
Proposed 

Methodology 
2021 98.85% 62.00% 85.00% 98.62% 0.92 

NIH-RSNA Dataset 
Tang et al. 2020 92.34% 88.09% 97.40% 87.55% 0.9871 
Proposed 

Methodology 
2022 89.63% 92.83% 86.23% 93.21% 0.8972  

Table 13 
Comparison among the results obtained by the proposed methodology and the 
ones obtained by state-of-the-art methodology in our image dataset (best values 
in bold).  

Work Year Methodology Accuracy AUC 

Yates et al. [15] 2018 Fine tuning with 
InceptionV3 

86.89% 0.8364 

Dunnmon et al. [17] 2019 Fine tuning with 
DenseNet121 

86.95% 0.8456 

Tang et al. [19] 2020 Fine tuning with 
ResNet18 

87.19% 0.8450 

Proposed 
Methodology 

2022 mDFT VGG-16 1024 88.43% 0.8693  
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performance than the individual CNNs. 

5. Discussion 

From Table 10, it is possible to compare the results achieved by the 
proposed and state-of-the-art methodologies on the binary classification 
of exams into normal and abnormal. On the other hand, from Table 11, it 
is possible to compare the HCn results obtained ny the proposed meth-
odology with the ones of Dyer et al. [20], the only work found in the 
literature that, like the proposed methodology, proposes to issue an 

initial diagnosis in exams with high confidence. 
In Table 10, it is indicated the results obtained for the test set with 

the proposed methodology and CTR values equal to 0.5, which is the 
default value found in the literature as to binary problems. This meth-
odology obtained 87.54% of accuracy and 0.8721 as to ROC, which 
highlights the generalizability of the proposed models for the test set. 
Furthermore, when compared with methodology in the literature, we 
observed that the results achieved by the proposed methodology are in 
the range of the results presented in the state-of-the-art. 

A fact noted during the results analysis was the number of images 

Fig. 9. Samples with visual interpretations for images correctly classified as normal.  

Fig. 10. Samples with visual interpretations for images correctly classified as abnormal.  
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Fig. 11. Samples with visual interpretations for images incorrectly classified as abnormal.  

Fig. 12. Samples with visual interpretations for images incorrectly classified as normal.  

Table 14 
FDR and FOR values obtained with different assessment sets.  

Assessment set FDR FOR 

Validation 2.58% 4.50% 
Test 1.68% 4.91% 
Supervision 1.40% 7.02%  

Table 15 
Top five pathologies identified in the exams incorrectly classified as normal in 
the supervision assessment.  

Pathology Number of exams (% of total errors) 

Nodules 23 13.21% 
Granuloma 21 12.06% 
Cardiomegaly 19 10.91% 
Opacities 16 9.19% 
Consolidation 9 5.17%  
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and the different datasets used in the found state-of-the-art works. While 
the proposed approach used more than 300,000 images to develop the 
methodology, some authors presented methodologies with only frontal 
images. Only the work of Ellis et al. [16] made use of the two projections 
in their experiments. However, the authors evaluated the proposed 
methodology using a small dataset with only 7000 images. 

Taking into account the answers given by the proposed ensemble 
based methodology, we compared its results with the ones achieved by 
the methodology of Dyer et al. [20], Table 11. Analyzing the percentage 
of responses with HCn, the methodology suggested by Dyer et al. [20] 
reached 15%, while the proposed methodology obtained 32%. The error 
for the normal class of the proposed methodology was lower than that 
the one presented by Dyer et al. [20]. 

Fig. 8 illustrates the percentage of HCn and HCa responses for the 
validation and test sets. We observed that the proposed methodology 
classified more than 50% of the exams with a precision greater than 95% 
for both classes. 

In addition to the previous indirect comparison, Tables 12 and 13 
present direct comparisons with state-of-the-art methodologies. 

Formerly, we investigated the performance of the proposed meth-
odology on the public image sets used by Yates et al. [15], and Tang 
et al. [19]. The first set of images was composed of the Indiana Dataset 
and NIH databases, while the second one is a simplified version of the 
NIH-RSNA dataset. In this situation, we did not select the best param-
eters. We simply executed the proposed methodology with the param-
eters previously defined based on the training of our dataset. The 
obtained results are presented in Table 12, where it is possible to observe 
that the proposed methodology achieved competitive results, being 
better in at least two metrics. 

We also evaluated the performance of state-of-the-art methodologies 
on our image dataset. Among the authors who provided sufficient details 
to reproduce or make the source code publicly available, we found: 
Yates et al. [15], Dunnmon et al. [17] and Tang et al. [19]. For this 
evaluation, the implementations were carried out considering all the 
information presented in the respective works and only the frontal 
projection was used since these works were developed to be applied only 
in this projection. In addition, the training and test sets were the same 
used in the definition of the proposed methodology. 

Table 13 presents the results of this evaluation. The methodology by 
Tang et al. [19] achieved an accuracy of 87.19%, being considered the 
best among the three works found in the literature. However, the per-
formance was lower than that the one obtained by the proposed meth-
odology, which obtained an accuracy of 88.43%. In fact, the 
state-of-the-art methodologies performed worse than the five best ar-
chitectures evaluated in this study using frontal projection (Table 4). 

5.1. Visual interpretation 

CNNs currently provide excellent learning and generalization capa-
bilities. However, due to their complexity, they do not present trans-
parency of what was learned. Therefore, a crucial aspect of 
understanding the most relevant features used in the prediction is the 
visual data interpretation. 

Visual interpretation can be classified into two categories: interpre-
tation of an instance and general network interpretation. The first 
category is divided into gradient-based and perturbation-based 
methods. Gradient-based ones such as Class Activation Mapping 
(CAM) and Grad-CAM [34] use the latest convolutional layer to provide 
a visual interpretation at the pixel level and have class discrimination 
capability. On the other hand, pertubation-based methods consider an 
element as essential for decision making if its removal changes the 
output considerably. The importance of this disturbing element can be 
estimated by comparing the network output with and without the 
element. In images, for example, it is intuitive that changes in the pixels 
that most contribute to a result lead to a different prediction. The Local 
Interpretable Model-agnostic Explanations (LIME) [35] method is one of 
the perturbation-based methods and represents the discriminative 
importance of the class using superpixels. 

To help interpret the results obtained by the proposed methodology, 
we implemented and evaluated examples correctly and incorrectly 
classified as normal and abnormal. In addition, we also present the 
ground-truth with color marking defined by a radiologist for different 
findings and pathologies. We used Grad-CAM and LIME to provide a 
visual interpretation of the exams. The Grad-CAM was represented 
employing the heat map, with the most intense region being the one that 
contributed the most to the prediction. The LIME represented the top 10 
superpixels that positively (represented in green) and negatively (rep-
resented in red) contributed to the prediction. In addition, we used the 
two best frontal architectures obtained during the development of the 
methodology and which are part of the proposed ensemble classifier. 

The images were randomly selected for this analysis, and examples of 
True Negatives and True Positives images are shown in Fig. 9 and 
Fig. 10, respectively. 

In the exams of Fig. 9, one can observed that, in both visualizations, 
the models considered the pulmonary and cardiac regions as the critical 
areas. In addition, in the third example, it can be noted that the region of 
interest was the aorta, where most of the cases of alterations were 
concentrated. We concluded that this is a region of great relevance for 
classification as HCa. 

In the examples in Fig. 10, one can observe three cases with very 
evident alterations when compared to TN examples. The first exam 
contains a sternorrhaphy and cardiac pacemaker and an enlargement in 
the heart area. Through interpretation, we observed that the Grad-CAM 
highlighted the heart regions, denoting that cardiomegaly was the 

Fig. 13. Sample of chest X-rays images with the presence of pulmonary nodules.  
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primary influence on the prediction as abnormal. LIME also highlighted 
the area of the pacemaker. In the second example, the highlighted points 
of interest escaped the abnormality, concentrating on regions close to 
the heart that were configured as a thickening and the altered aorta. The 
third example shows opacities in both lungs and reduced transparency of 
the right lung base. In addition, tubes, center access and clips are visible. 
Both methods highlighted the lungs regions as the most relevant for 
classification. Furthermore, additional findings were considered in 
Grad-CAM of VGG-16 1024 512. 

It is noteworthy that in all examples, Grad-CAM generated different 
heatmaps. This denotes the ensembles’ ability to use distinct image 
features to obtain the exam’s final prediction, corroborating the pro-
posed methodology’s robustness. 

Figs. 11 and 12 illustrate exams incorrectly classified as abnormal or 
normal, that is, False Positive and False Negative results. Among the two 
types of errors, we highlight a greater severity in FNs, as they can pre-
sent risks to the patient. It is noteworthy that, in these cases, the exams 
tend to resemble normal cases visually. Still, they were configured as 
abnormal through the identification of barely perceptible changes in the 
images. 

For FN cases, we observed visually similar results to those shown in 
Fig. 9 with the lung region free and changes in cardiac volume. 
Furthermore, when comparing the areas of interest demarcated by Grad- 
CAM and LIME with the Ground Truth marked by the radiologist, we 
observed that the CNNs considered the regions of the findings as rele-
vant for the prediction. To predict the exams as normal, the considered 
region of interest was the cardiac one. In the first examination pre-
sented, the finding visualized was the central venous access highlighted 
in yellow. In the second exam, the doctor observed the arthrosis in the 
spine. However, the change can be considered invisible due to the 
reduction in the exam quality due to the resizing. In the third example, 
infiltration in the right lung was observed using the LIME with the VGG- 
16 1024 architecture. However, the network considered that this finding 
contributed positively to the normal classification. 

In the examples illustrated in Fig. 12, the interpretations provided by 
Grad-CAM and LIME are focused on regions that present risks to the 
patient, such as the heart and lungs. Factors contributing to the 
appearance of these errors are the quality of examination acquisition, 
the radiologist’s interpretation of what should or should not be 
considered a severe alteration, or even the need for additional tests to 
confirm the alterations. 

5.2. Validation with supervising physicians 

We implemented the proposed methodology on a Picture Archiving 
and Communication System (PACs) server to validate and certify the 
quality of the responses with radiologists. Two image sets were avail-
able, with 12,804 exams classified as HCn and 7183 classified as HCa. 
The agreement achieved for the class HCn was 98.60% (12,630) and as to 
FDR was 1.4% (174). While for the class HCa, we obtained 92.98% 
(6679) of agreement and a FOR of 7.02% (502). Table 14 presents the 
FDR and FOR values obtained in the three evaluation scenarios: vali-
dation, testing, and supervision. 

For normal exams, the FDR value in the validation set did not match 
the test and supervision sets’ results. The lowest FDR value was obtained 
in the supervision. The FOR obtained in the validation and test sets were 
similar, while in the supervision, a higher value was obtained, indicating 
more false positives. 

For abnormal exams (FOR metric), we observed that improvements 
in the proposed methodology are still required to increase the agreement 
with experts. However, we can emphasize that the physicians’ inter-
pretation of what should or should not be considered a pathology is a 
determining factor in the accuracy of a computational methodology. 
Other factors can contribute to the difference in the results obtained 
with the same CTRa and CTRn values, such as the existing diversity in 
the dataset with different pathologies. 

Among the 172 exams classified as abnormal by the specialist, a large 
part contains granulomas (12.06%), which appear due to the healing 
process of previous diseases and generally do not present any risk to the 
patient. Table 15 presents the top five pathologies or findings among the 
false negatives classified by the specialist in the supervision assessment. 

Among the pathologies and findings presented in Table 15, nodules 
and granulomas are challenging to identify by computational method-
ologies based on image classification due to usual performed image 
resizing. In addition, opacities and consolidations, representing 9.19 and 
5.17% of the total cases, respectively, in situations where they are more 
discrete in the lung base, represent a challenge for the proposed meth-
odology. Besides, Cardiomegaly can vary according to the physician’s 
interpretation, but it still is a critical error. 

5.3. Strengths and limitations of the proposed methodology 

Based on the presented results, we can observe that the proposed 
methodology developed based on the definition of confidence factors is 
relevant in this scientific context and applicable in a practical scenario. 
Compared with methodologies found in the state-of-the-art, we pro-
posed a more robust pre-processing of the images used in training and 
not just a common resizing of the input images. Another interesting 
feature is the use of the lateral projection in the ensemble, which is not 
commonly taken into account in the literature. It is worth noting that 
this incidence, when present in the examination, is crucial for medical 
analysis since several abnormalities cannot be adequately observed with 
only the frontal projection. 

One of the limitations of the proposed methodology is the classifi-
cation of the input images into only two classes (binary). Despite this, it 
has benefits for physicians and hospitals. To the physicians because the 
use of confidence factors. Thus, it is able to issue more accurate answers, 
helping them to reduce the response time for normal exams and giving a 
prior opinion on the presence of pathologies. Besides, it is possible to use 
precise answers in queue control for the screening of exams, optimizing 
the service flow. In addition, several hospitals are isolated from big 
centres and do not have radiologists available to evaluate/report exams, 
so, with the proposed methodology, it is possible to obtain results with a 
high success rate that help inexperienced physicians in their diagnosis. 
Additionally, one can note that the screening of healthy or pathological 
exams is crucial for a later stage where it will be possible to detect 
specific pathologies. 

We emphasize that pulmonary nodules (solid and round lesions) are 
one of the main challenges faced in developing computational meth-
odologies to diagnose chest X-rays. Following the flow of the proposed 
methodology, during image resizing, the characteristics of this finding 
are usually missed, especially when they are close to the lung base. In 
some exams, the nodule is the only existing alteration, and the rest of the 
exam is entirely healthy. Cases like this increase the number of false 
negatives and require more specific methodologies for their detection. 
Fig. 13 shows examples of chest X-rays with the presence of pulmonary 
nodules. 

6. Conclusion 

This work presented a methodology based on an ensemble of clas-
sifiers and CNNs for classifying chest X-ray projections into normal or 
abnormal. In the development of the proposed methodology, we eval-
uated different architectures of CNNs and hyper-parameters on a multi- 
example and heterogeneous image dataset. In addition, we carry out 
assessments that tend to reduce the error per class and, consequently, 
achieve more accurate results. 

Comparing the proposed methodology with the ones found in the 
state-of-the-art, our methodology classified more than twice the number 
of exams with a lower error rate, thus indicating better reliability in its 
predictions. We believe that using a heterogeneous image dataset in the 
training stage gave the proposed methodology the capacity to extract 
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features considered essential for the correct prediction, which leads to a 
high generalization power. Through answers based on high confidence, 
the methodology can reduce the medical effort to classify normal exams 
or organize an optimized and prioritized workflow. 

The proposed methodology is susceptible to errors, mainly in the 
presence of nodules and discrete opacities, due to the variety of findings 
and their distribution in the dataset. In these cases, it is necessary to 
implement a further step for the specific classification of some changes. 
As a next step for developing a complete methodology, we will evaluate 
the detection of different pathologies or findings resulting from a normal 
responses. We intend to provide a hierarchical methodology less sus-
ceptible to errors, and perform new experiments to increase the tradeoff 
between the percentage of responses and accuracy. 
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