
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Detection of Cyberattacks on a
Multi-tenant Service

Ângelo Daniel Pereira Mendes Moura

Mestrado em Engenharia Informática e Computação

Supervisor: António Miguel Pontes Pimenta Monteiro

March 11, 2022

© Ângelo Daniel Pereira Mendes Moura, 2022

Detection of Cyberattacks on a Multi-tenant Service

Ângelo Daniel Pereira Mendes Moura

Mestrado em Engenharia Informática e Computação

March 11, 2022

Abstract

In today’s technological world, cyberattacks and cybercrime are ever more prevalent. Because
the world is becoming increasingly dependent on informatic systems, protecting these systems is
becoming indispensable. As such, the purpose of this thesis is to research ways to detect cyberat-
tacks, explore solutions that are capable of preventing them and validate their effectiveness when
implemented into a multi-tenant service.

To accomplish the above, extensive research is made into the concept of monitoring and log-
ging tools, as these tools are often cited as effective countermeasures against cyberattacks. After
this research has been done, one such tool is implemented onto a multi-tenant service serving as a
case study. After the implementation itself, multiple tests designed to validate the tool’s effective-
ness were performed: simulated cyberattacks, tests regarding information-gathering capabilities,
and performance impact tests.

When faced with the tests performed, the monitoring and logging tool selected performed
admirably, correctly detecting and identifying the attacks launched against the platform. It also
demonstrated satisfactory levels of information gathering, a necessity when avoiding repeated
attacks and evaluating and repairing damages after one. It could also respond automatically to an
attack, significantly decreasing the response time. Furthermore, it demonstrated the qualifications
to be adjusted to the case-study needs without affecting its performance in a significant way.

The positive results from the tests performed demonstrated that monitoring and logging tools
are indeed a valuable line of defence against the ever more common cyberattacks and should be,
whenever possible, integrated into any informatic system. However, as most things are in the
realm of cyber security, these are merely one line of defence and should not be thought of as the
end-all solution. Because as technology evolves, so do the tactics employed by attackers, and it is
only with constant vigilance and awareness that systems can be kept safe.

Keywords: Cyberattacks, Monitoring, Logging, Vulnerabilities, Security

i

Resumo

No mundo tecnológico atual, os ciberataques e o cibercrime são cada vez mais prevalentes. Como
o mundo está a tornar-se cada vez mais dependente dos sistemas informáticos, a proteção destes
sistemas está a tornar-se indispensável. Como tal, o objetivo desta tese é investigar formas de
detetar os ciberataques, explorar soluções capazes de os prevenir e validar a sua eficácia quando
implementados num serviço multi-tenant.

Para tal, é feita uma extensa investigação sobre o conceito de ferramentas de monitorização e
registo, uma vez que estas ferramentas são frequentemente citadas como contramedidas eficazes
contra os ciberataques. Após esta investigação ter sido feita, uma dessas ferramentas é implemen-
tada num serviço multi-tenant, servindo este como um caso de estudo. Após a implementação,
foram realizados múltiplos testes concebidos para validar a eficácia da ferramenta: ciberataques
simulados, testes relativos a capacidades de recolha de informação, e testes de impacto de desem-
penho.

Quando confrontada com os testes realizados, a ferramenta de monitorização e registo sele-
cionada comportou-se admiravelmente, detetando e identificando corretamente o ataque lançado
contra a plataforma. Demonstrou também níveis satisfatórios de recolha de informação, uma
necessidade para evitar ataques repetidos e para avaliar e reparar danos após um. Também demon-
strou a capacidade de responder automaticamente a um ataque, diminuindo significativamente o
tempo de resposta. Além disso, demonstrou ser ajustável às necessidades do caso de estudo e não
afetou o desempenho deste de forma significativa.

Os resultados positivos dos testes realizados demonstram que as ferramentas de monitoriza-
ção e registo são de facto uma valiosa linha de defesa contra os ciberataques, que são cada vez
mais comuns, e devem ser, sempre que possível, integradas em qualquer sistema informático. No
entanto, como a maioria das coisas no domínio da cyber segurança, estas ferramentas são apenas
uma linha de defesa e não devem ser vistas como uma solução universal. Porque à medida que
a tecnologia evolui, o mesmo acontece com as táticas utilizadas por atacantes, e é apenas com
vigilância e estudo constante que os sistemas podem ser mantidos em segurança.

Keywords: Ataques Cibernético, Monitorização, Registo, Vulnerabilidades, Segurança

ii

Acknowledgements

In creating this project, I have received a tremendous amount of support, and for it, I would like to
extend my thanks and appreciation to the following people.

I want to thank my supervisor, professor Miguel Pimenta Monteiro, who allowed me to take
this massive opportunity as my final thesis project.

I want to express immense gratitude to the people of Altice Labs for their support and willing-
ness to help throughout every stage of this project. Especially Jose Melo for his continuous advice,
guidance and general grammar corrections. And Paulo Sousa for his guidance, accommodation,
and excellent team leadership.

I also want to express as much gratitude as possible to my family and friends. To my mom
Rosa Pereira, for too much to put into words, so let us keep it at everything. To my brother Andre
Moura for always supporting me no matter my choices. To my dad Ângelo Moura, for shaping
the way I am today. I couldn’t have done any of this without them. To my closest friends Daniel,
Ricardo, Tiago and Simão for helping me relax and keeping me sane and humble. May we meet
all again at the same place as always.

Ângelo Daniel Pereira Mendes Moura

iii

“If you think you know-it-all about cybersecurity,
this discipline was probably ill-explained to you.”

Stephane Nappo

iv

Contents

Abstract i

Resumo ii

Acknowledgements iii

Abbreviations ix

1 Introduction 1
1.1 Objectives . 1
1.2 Related Works . 2
1.3 Document Structure . 3

2 Cyber Security 5
2.1 Overview . 5
2.2 Vulnerabilities of Computer Systems . 7
2.3 Cyberattacks . 9

2.3.1 Reconnaissance Attacks . 9
2.3.2 Network Intrusion Attacks . 10
2.3.3 Network Intrusion Cover-Up Methods 14
2.3.4 DoS Attacks . 15

3 Monitoring and Logging Tools 17
3.1 Overview . 17
3.2 Purpose and Goals . 17
3.3 Logging Guidelines . 18

3.3.1 Data Selection . 19
3.3.2 Formatting Guidelines . 21

3.4 The Monitoring Process . 22
3.5 Market . 23

4 Case Study: The DataPlaxe Platform 25
4.1 Overview . 25
4.2 Architecture and Components . 26
4.3 Security Needs . 30

5 Implementing a Monitoring and Logging System in the DataPlaxe Platform 32
5.1 Approach . 32
5.2 Selection . 32

v

CONTENTS vi

5.3 Wazuh . 34
5.4 Tests Performed . 35

5.4.1 Test Implementation . 35
5.4.2 Tests Performed and Results . 36

5.5 Implementation . 65

6 Conclusions and Future Work 67
6.1 Conclusion . 67
6.2 Further Work . 68

References 69

A Wazuh Configuration Files 73
A.1 File Containing the Trojan Signatures . 73

List of Figures

2.1 Security as the result of the intersection of CIA (Correia, 2020) 6
2.2 DoS Attacks compared to DDoS Attacks (EC-Council, 2021) 16

3.1 Cyber Security Monitoring Phases (Creasey, 2015) 23

4.1 Overview of the DataPlaxe Architecture . 26
4.2 Data Injection Process of the DataPlaxe platform. 28
4.3 Data Processing Process of the DataPlaxe platform. 29

5.1 Overview of Wazuh’s architecture (Wazuh Inc., 2022). 35
5.2 Installation diagram of the Wazuh Manager, Filebeat, Elasticsearch, and Kibana. . 36
5.3 Graphic of the alerts generated by Wazuh in response to the brute-force attack . . 37
5.4 The abbreviated list of detected vulnerabilities within the test machine. 49
5.5 The Severity distribution of the vulnerabilities detected. 49
5.6 The graph showing the distribution of the logs generated by the log flood script. . 64

vii

List of Tables

3.1 Log Sources (Creasey, 2015) . 20

4.1 Data Ingestion and Access Layer cluster’s Ports and Services 27
4.2 Platform Service cluster’s Ports and Services 28

5.1 Monitoring and Logging tools Requisites Comparison. 33
5.2 The summary of the Wazuh alerts generated in response to the brute-force attack 37
5.3 The truncated details of both Wazuh alerts generated in response to the brute-force

attack . 38
5.4 The truncated details of the Wazuh alert generated in response to the SQL Injection

attack . 40
5.5 The truncated details of the Wazuh alert generated in response to the Shellshock

attack . 41
5.6 Alert generated by Wazuh in response to the creation of the test file. 43
5.7 Alert generated by Wazuh in response to the first modification of the test file. . . 43
5.8 Alert generated by Wazuh in response to the second modification of the test file. . 43
5.9 Alert generated by Wazuh in response to the deletion of the test file. 44
5.10 A comparative look at the alerts generated in the detecting file changes test. . . . 44
5.11 Additional field present in the modification related alerts. 45
5.12 The truncated details of the Wazuh alert generated in response to the suspicious

binary . 46
5.13 The abbreviated list of detected vulnerabilities sorted with descending severity. . 50
5.14 The abbreviated details of an example Vulnerability 50
5.15 The truncated details of the Wazuh alert generated in response to the black-listed

Netcat Command . 53
5.16 The truncated details of the Wazuh alert generated in response to the usage of the

Diamorphine rootkit. 55
5.17 The Wazuh alerts generated in response to the Docker commands executed. . . . 57
5.18 The truncated details of the Wazuh alert generated in response to the command

executed by the monitored user. 59
5.19 The truncated details of the Wazuh alert generated in response to the "know at-

tacker" access. 61
5.20 The truncated details of the Wazuh alert generated from the automated response. . 62
5.21 The truncated details of the Wazuh alert generated from the log flood script. . . . 64
5.22 The Wazuh alerts generated from the filling of the Agent’s buffer due to the log

flooding script. 65

viii

Abbreviations

ACL Access Control List
AES Advanced Encryption Standard
ARP Address Resolution Protocol
CDN Content Delivery Network
CIA Confidentiality, Integrity and Availability
CI/CD Continuous Integration and Continuous Deployment
CMS Content Management System
CSP Content Security Policy
DHCP Dynamic Host Configuration Protocol
DLP Data Loss Protection
DNS Domain Name System
DoH DNS-over-HTTPS
DOM Document Object Model
DoS Attack Denial-of-Service Attack
DDoS Attack Distributed Denial-of-Service Attack
EDR Endpoint Detection and Response
EPS Events Per Second
FTP File Transfer Protocol
GDPR General Data Protection Regulation
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
ICMP Internet Control Message Protocol
IDS Intrusion Detection Systems
IOC Indicators of Compromise
IoT Internet of Things
IP Address Internet Protocol Address
IPS Intrusion Prevention System
LotL Living of the Land
MITM Man-in-the-middle
NIDS Network-Based Intrusion Detection System
NIPS Network-Based Intrusion Prevention System
NIST National Institute of Standards and Technology
PII Personally Identifiable Information
OWASP Open Web Application Security Project
SIEM Security Information and Event Management
SOC Security Operations Center
SSH Secure Shell
SSRF Server Side Request Forgery

ix

ABBREVIATIONS x

SQL Structured Query Language
UI User Interface
URL Uniform Resource Locators
VPN Virtual Private Network
XSS Cross-Site Scripting

Chapter 1

Introduction

Cyberattacks are ever more common, and with today’s ever depend world on technology, the con-

sequences of these attacks can be disastrous. Should a cyberattack be successful on a healthcare

system, a banking system or a news system, it could mean the loss of irreplaceable data and even

goods or money. As such, the field of cyber security needs to be constantly evolving and im-

proving. As the ways of attacking increase, so must the computer systems defence rise to match

them.

The main goal of this dissertation is to explore ways to detect cyberattacks and find ways to

prevent them and the damages they may cause to people. It aims to investigate the space and

validate the effectiveness of the tools and techniques available and contribute to the ever raging

war against cyberattacks and cybercrime.

This paper focuses on a set of tools collectively referred to as monitoring and logging tools.

These tools are cited regularly as an effective way to detect and safeguard systems against cyber-

attacks. But in part due to their complexity and seemly specialised usages are often underused and

not fully understood outside of the space of cybersecurity professionals.

This introductory section presents a breakdown and further specification of the main objective

for this project, the steps taken in the pursuit of these goals, and a description of this document

structure.

1.1 Objectives

As stated above, the main goal of this dissertation is to explore ways and mechanisms that detect

and protect systems against cyberattacks. In pursuit of this goal, this dissertation explores the

knowledge contained in the cybersecurity field while focusing on the different cyberattacks and

what kinds of vulnerabilities are usually held within a computer system.

From this research, the concept of monitoring and logging tools was discovered being often

referred to as countermeasures against cyberattacks and as a best practice inclusion when develop-

ing a system. When implemented onto a system, these tools are cited as capable of detecting when

1

Introduction 2

a cybersecurity attack is targeting the system effectively. They also are stated to have the capa-

bilities to support systems to prevent cyberattacks and provide invaluable information to perform

system repairs and damage reports should one be successful.

Due to these claims, this project aimed to confirm the capabilities of logging and monitoring

tools. And to do this, it implemented one such tool onto a multi-tenant service, serving as a case

study. Then it proceeded to perform several tests designed to emulate real-world scenarios and

use cases while recording the responses created by the implemented tool. These tests consist of

different types of cyberattacks, information gathering and monitoring showcases, and performance

impact checks.

In the end, the results were analysed to determine if monitoring and logging tools are indeed

capable of detecting cyberattacks and if they can support systems in preventing and recovering

from them.

1.2 Related Works

In this section, this dissertation will take a moment to highlight similar or related works to it.

These works include research into monitoring and logging tools themselves or pieces that have

used them to explore other avenues.

The work made by Vitsunee Teeraratchakarn and Yachai Limpiyakorn titled “Exploring Net-

work Vulnerabilities for Corporate Security Operations” (Teeraratchakarn and Limpiyakorn, 2020).

In it, they explored the capabilities of an open-source monitoring and logging product called Elas-

tic Stack (Elastic NV, 2022) to discern the most common user names used by attackers during a

brute-force attack. The ultimate goal was to advise organisations to regulate their internal identities

better as an added safety measure (Teeraratchakarn and Limpiyakorn, 2020). Although their con-

clusion shares similarities with this dissertation’s ultimate conclusion, their exploration of moni-

toring and logging tools was limited to brute-force attacks due to their focus on identities and user

names.

The work made by Ferdy Mulyadi, Leela Anman, Ridnarong Promya and Chalermpol Charn-

sripinyo titled “Implementing Dockerized Elastic Stack for Security Information and Event Man-

agement” (Mulyadi et al., 2020). In it, they present an implementation of Elastic Stack (Elastic

NV, 2022) utilising Docker (Docker Inc., 2022) technology. Although similar to this dissertation,

this work focuses more on the impact on system performance such an installation has.

The work made by Wen-Lin Cheng, Ting-Che Chuang, Chien-Wen Yang, Yueh-Hsien Lin,

Min Liu and Chuan Yin titled “An Integrated Security Monitoring System for Digital Service

Network Devices” (Cheng et al., 2017). In it, they provide telecom operators with a solution to

establish device security monitoring and centralized statistical analysis, a monitoring and logging

tool (Cheng et al., 2017). Although similar to this dissertation, this work focuses on providing

telecom operators with an adequate monitoring and logging solution rather than studying its capa-

bilities.

1.3 Document Structure 3

The work made by various authors titled “On Vulnerability and Security Log analysis: A

Systematic Literature Review on Recent Trends” (Svacina et al., 2020). In it, they compiled a

summary of strategies to perform log analysis and discuss issues they have identified with the

logging mechanism of software systems (Svacina et al., 2020).

The work made by Yong Sun and Haiwen Wang titled “Intelligent Computer Security Moni-

toring Information Network Analysis” (Wang et al., 2019). In it, they developed a system capable

of effectively responding to network security attacks (Wang et al., 2019).

The work made by Rui Miguel Almeida Oliveira titled “Analysis of Intrusion Detection Log

Data on a Scalable Environment” (Oliveira, 2020). They developed an application capable of

capturing large amounts of network traffic logs, which then used to create a ground truth. After

which, it uses machine learning techniques to classify traffic and detect intrusion attempts, with a

general focus on detecting DDoS attacks (Oliveira, 2020).

The work made by Muhammad I.H. Sukmana, Kennedy A. Torkura, Feng Cheng, Christoph

Meinel, and Hendrik Graupne titled “Unified Logging System for Monitoring Multiple Cloud

Storage Providers in Cloud Storage Broke” (Sukmana et al., 2018). In it, they developed a logging

system capable of unifying the different formatted logs of 3 cloud storage providers (Sukmana

et al., 2018).

The work made by Yun Wang and Qianhuizhi Zheng titled “A Logging Overhead Optimization

Method Based on Anomaly Detection Model” (Wang and Zheng, 2020). In it, they propose an

optimisation method for the logging overhead problem by combining a new log parsing method

with a deep learning-base anomaly detection method (Wang and Zheng, 2020). Tangential related

to this dissertation demonstrates the work to ensure efficiency when processing logs.

1.3 Document Structure

Besides the introduction, this document has five more chapters.

Chapter 2 serves as a general introduction to the cyber security field. There is a broad definition

of cyber security, a list of the most common vulnerabilities plaguing computer systems, and the

most common types of cyberattacks and their recommended countermeasures.

Chapter 3 dives deep into the concept of monitoring and logging tools as a way to counteract

cyberattacks. There the purpose and goals of these tools are highlighted. It also contains general

guidelines for the correct implementation, usage and maintenance of these tools. Additionally, it

includes a non-intensive list o currently available tools in the market.

Chapter 4 introduces the multi-tenant service used as a case study in this thesis, the DataPlaxe

platform. It goes over its architecture and components and its most prevalent security needs.

Chapter 5 describes the approach taken for the implementation of a monitoring and logging

tool on the DataPlaxe platform. It describes the selection process and highlights why the tool

chosen was chosen, namely Wazuh. Then it describes the tests made to oversee the effectiveness

of Wazuh, serving as a representative of the capabilities of monitoring and logging tools in general.

These tests consist of simulated cyberattacks, information gathering and system monitoring trials,

Introduction 4

and general performance and utility tests. These last ones are more directed to the specific needs

of the DataPlaxe platform.

Chapter 6 serves as the conclusion of this thesis. The results obtained from the previous

chapter are considered, and an evaluation of the effectiveness of monitoring and logging tools as

a cyber security asset is made. It also discusses possible avenues to fool when thinking of future

works within this space.

Chapter 2

Cyber Security

2.1 Overview

The field of cyber security is large and expansive. In today’s digital world, as more of everybody’s

life is dependent on digital systems, the safety of these systems is even more relevant and essential.

It is easy to understand security instinctively, but defining it by words or principles can be tricky.

As such, this chapter introduces this field by offering a simple explanation of the most fundamental

concepts at the core of this massive and ever-expanding field of study.

At the core of cyber security, there are two primordial questions: what makes a system secure,

and how can we guarantee the security of a system. The answers to these two questions are

constantly being debated, refined, and adapted to the ever-evolving world of technology.

Before it is possible to answer the first question, it is essential to define security properly. In

the digital world, security is usually considered the result of the intersection of Confidentiality, In-

tegrity and Availability (commonly abbreviated by the sigla CIA) (Correia, 2020). Confidentiality

can be defined as “the property that information is not made available or disclosed to unauthorised

individuals, entities, or processes” (Beckers, 2015). Integrity is “guarding against improper infor-

mation modification or destruction” (Nieles et al., 2017). And Availability can be defined as “the

property of being accessible and usable upon demand by an authorised entity” (Beckers, 2015).

From this interpretation of security, a secured system can be interpreted as a system that pro-

tects its information “from unauthorised access, use, disclosure, disruption, modification, or de-

struction in order to ensure confidentiality, integrity, and availability” (Nieles et al., 2017).

In the simplest terms, a secured system can be interpreted as giving complete control over its

information to only authorised individuals. Although it is rare for any individual to have complete

control over the entire system’s data, it is the norm for any system’s user to have ownership over

parts of it; personal information is the typical example. (Intersoft Consulting, 2021)

As to how it is possible to guarantee the security of a system, that is a rather complex problem

to solve. Providers and developers may use many techniques and tools to achieve the inherent goal

present in the question.

5

Cyber Security 6

Figure 2.1: Security as the result of the intersection of CIA (Correia, 2020)

There is the concept of Secure by Design, where a system is designed with security as afore-

thought. This simple but powerful approach to system development results in security tactics being

enforced by the system’s architecture. (Santos et al., 2017)

Developers can mitigate the risks and consequences of many vulnerabilities by upholding the

Principle of Least Privilege. This principle enforces every program and user to have only the

minimum necessary permissions to perform their tasks and only while performing them. (Saltzer

and Schroeder, 1975)

And there is the concept of Defence in Depth, which consists of adding multiple layers of

security, creating redundancy within the system, and having various checks in place for the system

activity flow. (Groat et al., 2012)

And developers can also develop or implement auxiliary subsystems that complement the

system’s security. These can be an antivirus that performs a system analysis in search of com-

promising software, firewalls that enforce policy rules on information traffic, or the focus of this

dissertation, logging and monitoring systems that monitor the system’s internal workings in search

of abnormal activity.

The concept of logging and monitoring systems is presented in a later chapter. For now, this

study will go over the common threats to a system’s security. This way, it will become more

apparent how monitoring and logging systems can mitigate and solve a significant part of these

threats.

2.2 Vulnerabilities of Computer Systems 7

2.2 Vulnerabilities of Computer Systems

As stated before, one of the core aspects of cyber security is guaranteeing the security of a system.

In truth, no system is genuinely unbreakable. New forms of attack are constantly being invented,

and these are then followed by a way to safeguard systems against them. Developers and attackers

are always trying to get the upper hand on one another, and it is the job of developers to make sure

their platforms are as vulnerability free as possible. As this is the only way to maintain a system

secure, it is essential to clarify what a vulnerability is.

The National Institute of Standards and National Institute of Standards and Technology (NIST)

defines a vulnerability as “a weakness in an information system, system security procedures, inter-

nal controls, or implementation that could be exploited by a threat source” (Blank and Gallagher,

2012). The origin of most of these can usually be traced to a fault in some security control.

They can surge due to insufficient testing, lack of validation of software sources, or simply by

uninformed design. However, some vulnerabilities appear over time as the context of the system

changes around it. These changes can happen due to the advent of new technologies, new attack

techniques, software changes and updates, or even shifts in the companies’ focus and environment.

Over time, all existing security controls may become inadequate. Because of this tendency of se-

curity controls to become outdated and insufficient, systems must undergo regular security risk

assessments and have a continuous monitoring program to help detect abnormal activity. (Blank

and Gallagher, 2012)

Failing to fix a vulnerability can prove disastrous to any system, as it can be exploited to obtain

sensitive information or compromise the system’s internal workings. Because of this enormous

risk, companies and developers have created and maintained lists with descriptions of the most

common and worst vulnerabilities that can plague a system. These lists aim to educate their peers

on what to look for in the developing phase or when managing a system.

One of the most recognised is the one maintained by the Open Web Application Security

Project (OWASP) Foundation. Which every year compiles the OWASP Top 10, a “document

outlining the 10 most critical security concerns for web application security” (OWASP Foundation,

2021a). The 2021’s list is summarised below (OWASP Foundation, 2021b):

1. Broken Access Control

A system that contains a broken or lacking Access Control cannot enforce its user to act

within their permissions. Meaning that a standard user may view, alter, or even delete

privileged information. (OWASP Foundation, 2021b)

2. Cryptographic Failures

Cryptographic Failures occur whenever the required protections for data in transit and at

rest are not met. (OWASP Foundation, 2021b)

Cyber Security 8

3. Injection

Code injection is usually the result of poor filtering of the input data provided by the users of

a system. Because this data is not appropriately treated, an attacker can upload foreign code

to the system. Allowing him to access private information, take over part or the entirety of

the system, etc. (OWASP Foundation, 2021b)

4. Insecure Design

Insecure design covers many weaknesses that originated from the lack of security awareness

during the design phase. An error in the system’s implementation may cause vulnerabilities,

but a perfect implementation of a faulty design is sure to have security problems. This par-

ticular concern serves to provide ways to improve the design process of a system: promote

the usage of secure design patterns and libraries, divide the system depending on exposure

and protection needs, use unit and integration testing to validate critical flows of informa-

tion, etc. (OWASP Foundation, 2021b)

5. Security Misconfiguration

Security Misconfiguration covers many similar situations where system settings were not

adequately cared for or set to secure values. Some examples are: “unnecessary features

are enabled or installed (e.g., unnecessary ports, services, pages, accounts, or privileges)”

(OWASP Foundation, 2021b), “Default accounts and their passwords are still enabled and

unchanged” (OWASP Foundation, 2021b), upgraded systems have their latest security fea-

tures disabled or not configured, etc. (OWASP Foundation, 2021b)

6. Vulnerable and Outdated Components

The title of this point is self-explanatory. It warns developers to be aware of the version of

the components used, directly or indirectly, on the system and perform regular maintenance

to keep them as up to date as possible. (OWASP Foundation, 2021b)

7. Identification and Authentication Failures

“Confirmation of the user’s identity, authentication, and session management is critical to

protect against authentication-related attacks.” (OWASP Foundation, 2021b) This point cov-

ers any possible vulnerability that allows a user to access the system without being correctly

authenticated. Some examples are allowing automated attacks such as brute force or creden-

tial stuffing, allowing weak passwords such as “Password1” or “admin”, exposing the ses-

sion identifier in the URL, or a missing or ineffective multi-factor authentication. (OWASP

Foundation, 2021b)

8. Software and Data Integrity Failures

Software and Data Integrity Failures focuses on vulnerabilities that originate due to the use

of unvalidated code or critical data without verifying its integrity. Unvalidated code may

come from multiple different sources: the use of untrusted repositories or content delivery

2.3 Cyberattacks 9

networks (CDNs), malicious code introduced by unauthorised access to an insecure CI/CD

pipeline and from applications auto-update functionalities. This point highlights techniques

and procedures used to ensure the integrity of the used code and data. (OWASP Foundation,

2021b)

9. Security Logging and Monitoring Failures

Security Logging and Monitoring Failures focus on ensuring the correct usage and imple-

mentation of monitoring and logging tools. It provides developers with warnings on not

storing logs locally, having proper alert definitions and thresholds, ensuring real-time detec-

tion, escalation and alerting, and many more. The correct usage of monitoring and logging

tools is crucial as, without them, active breaches cannot be detected. (OWASP Foundation,

2021b)

10. Server Side Request Forgery (SSRF)

Server Side Request Forgery can happen when a web application uses a resource provided

by an end-user without proper validation of the URL. An attacker can exploit this fact and

coerce the application to send a crafted request to an unexpected destination bypassing fire-

walls, VPNs, or another type of network access control list (ACL). (OWASP Foundation,

2021b)

2.3 Cyberattacks

Now that the concept of vulnerabilities has been explained, it is also essential to understand the

other side of Cyber Security: the attacking side. Cyberattacks are a constant threat to any sys-

tem, and as attackers innovate and respond to technological evolutions, they become more varied.

Because of this variety, it becomes necessary to categorise them to present them more efficiently.

There are three types of cyberattacks: Reconnaissance Attacks, Network Intrusion Attacks and

Denial of Service (DoS) Attacks. (Duarte, 2008)

In this section, this dissertation will go over the different types of attacks that can target a

system. It will provide a short explanation for each one and highlight the recommended defences

for each.

2.3.1 Reconnaissance Attacks

Reconnaissance Attacks are designed to gather information about the system instead of the usual

goal of information contained within the system. They are usually a precursor to a more signif-

icant directed attack, as they allow an attacker to understand its target system and possibly find

vulnerabilities that can be exploited. These types of attacks usually take the form of sweeping

scans that look for open connection points, or ports as they are typically called, and try to discover

the connection protocols used by the system. (Duarte, 2008)

Cyber Security 10

A non-extensive list of the most common Reconnaissance Attacks a system might be targeted

by can be seen next.

• Domain Name System (DNS) Request (Duarte, 2008)

Description: Although not necessarily an attack, by making a DNS request, an attacker can

gather a lot of crucial information about the target system. A DNS entry holds information

such as the IP address, other hostnames used by the system and the mail exchanger. (Liu

Cricket and Albitz Paul, 2006)

Solution: The DNS has been an integral part of the Internet since 1985, and it wasn’t

designed with modern security concerns. Because of this, attackers have exploited it many

times, and there isn’t any definitive way to improve it. There have been some attempts to

mitigate its outdated design. For example, in 2018, Google and Mozilla have started using

DNS-over-HTTPS (DoH), a technology that uses the secure HTTPS protocol for DNS data

transmission (Kaspersky, 2021). But the best way to avoid giving out too much information

via the DNS system is not to use it. If the system uses a local area network or a site network,

it may not need the DNS system and instead use an alternative technology for the same

effect. (Liu Cricket and Albitz Paul, 2006)

• Ping sweeps or ICMP sweeps (Duarte, 2008)

Description Although not necessarily an attack, an attacker might use what it’s called a ping

sweep to determine the live hosts in a range of IP addresses. (Duarte, 2008)

Solution: There is no good way to avoid ping sweeps, it’s possible to block ICMP packets

using firewalls, but this compromises network capabilities (Duarte, 2008). Although most

monitoring tools or intrusion prevention systems (IPS) can detect one is underway.

• Port Scanning (Duarte, 2008)

Description: Port scanning can come in two different forms: horizontal, where the same

port is scanned on other hosts, or vertical, where multiple ports of a single host are scanned.

The goal of both is to check for vulnerable ports, as the scan can identify the port’s status

(open, closed, firewall-protected), what service is running on the port and the device type

and operating system. (Duarte, 2008)

Solution: Most monitoring tools, intrusion prevention systems (IPS) or firewalls can detect

port scanning. And, upon detection, they can temporarily open all ports to feed false infor-

mation to the attackers. Although the best solution is to only open the necessary ports for the

system’s functionalities and keep these as secure as possible behind a firewall. (Kaspersky,

2021)

2.3.2 Network Intrusion Attacks

Network Intrusion Attacks are what most people are referring to when they discuss cyberattacks,

as these are by far the most damaging to any system. When successfully performed, these types

2.3 Cyberattacks 11

of attacks can expose sensible and private information contained in the system or, in some rarer

cases, they can even allow complete system takeover. (Duarte, 2008)

As the name suggests, these attacks compromise the network of information of the system by

performing unauthorised activities. This disruption can be done in several ways, and the exact

results of the attack can also vary somewhat. In this section, this dissertation will go over the

most common types of Network Intrusion Attacks, explain what the consequences of these attacks

might be if left unchecked and highlight the most common defence mechanisms used against them.

(Awake Security, 2021; Duarte, 2008)

• Living Off the Land (LotL) (Awake Security, 2021)

Description: Living off the land (LotL) describes an attack where the attacker takes advan-

tage of legitimate software present in the system to gather information. These legitimate

software are usually operating system utilities, business productivity software and script-

ing languages; all commonly used and legitimate software widely used in many systems.

Since the attackers use legitimate and already present software, this attack does not leave

any physical trace, making detection challenging. (Awake Security, 2021; Kaspersky, 2021)

Solution: Because this attack does not leave malicious files on the system, techniques such

as comparing file signatures do not work. Additionally, some tools, such as the ones con-

nected to the operating system, can be in the allowlist and therefore trusted, making detec-

tion even harder. Indeed, the best and possibly only way of detecting these types of attacks is

to adopt solutions based on behavioural analysis. These technologies can see the abnormal

program and user activity, indicating an ongoing intrusion attack. (Kaspersky, 2021)

• Man-in-the-middle (MITM) (Duarte, 2008)

Description: A Man-in-the-middle attack involves an attacker intercepting data flow be-

tween two entities without stopping it. Making all information flow through the attacker,

but both communicating parties are none the wiser as they do not perceive any change. This

interception can be accomplished through multiple techniques at very different communica-

tion points. The most common is impersonating a trusted entity along the communication

chain, entities like the Address Resolution Protocol (ARP) or a DNS, which is a technique

called spoofing. (Duarte, 2008)

Solution: There is no good way to detect a MITM attack, making prevention the best

defence against these attacks. Ensuring a secure connection by having robust encryption

mechanisms on wireless access points and having strong router credentials can prevent an

attacker from brute-forcing its entry onto the network. Using a VPN or forcing the usage of

the HTTPS protocol ensures that the data will be unreadable to the attacker. And having a

public and private key authentication system is the best way of guaranteeing the authenticity

of the entities involved in the communication chain. (Rapid7, 2021)

• Stack Smashing (Awake Security, 2021)

Cyber Security 12

Description: Stack Smashing or Buffer Overwriting is a cyberattack that aims to execute

foreign and malicious code. This execution is done by overwriting certain sections of the

device’s memory with commands and instructions designed by the attacker to gain control

over a vulnerable application. Thus, allowing a malicious script to be run in the system with

the permissions of the hijacked application. (Awake Security, 2021; Kaspersky, 2021)

Solution: The best way to prevent a stack smashing attack is to endow the system with a

robust boundary-checking logic, preventing vulnerable applications from rewriting crucial

memory sections. The system should also have as few vulnerable applications as possible,

preferably none. And mechanisms that detect executable code or malicious strings before

they are written to memory should also be implemented. (Awake Security, 2021)

• Malware Attacks (Rapid7, 2021)

Description: Malware is a general term that encompasses many types of malicious software

such as viruses, worms and trojan horses. The specific attacks these types of software can

perform are numerous. They may encrypt a machine making it unusable until a ransom

is paid, making the malware ransomware. They can watch, log, and transmit all activity

performed on the device, making the malware spyware. Or they can even take complete

control over the machine. (Rapid7, 2021)

Solution: When it comes to preventing a malware attack, one should focus on eliminating

the main entry points used by these types of software. There are two main ways malware

can find its way onto a system: through user error and poor access control onto the system’s

network. User error, as in uniformed downloads, the insertion of unknown media onto

machines and more, can be mitigated by continuous education, which should be provided to

system collaborators. Ensuring a secure network is done using proven technologies such as

firewalls, intrusion prevention systems (IPS), intrusion detection systems (IDS), and VPNs.

(Rapid7, 2021)

Besides these measures, the system should also have a suitable antivirus solution that per-

forms regular analysis and constant monitoring to detect malware should it find its way onto

the system. (Rapid7, 2021)

• SQL Injection (Rapid7, 2021)

Description: Many commercial and open-source databases use Structured Query Language

(SQL) to manipulate and manage data. A SQL injection attack targets these databases using

maliciously crafted SQL statements to extract or modify data contained in the system’s

database. (Rapid7, 2021)

Solution: Most SQL injection attacks happen due to poor sanitisation of user-provided

inputs, which, as a rule, should always have any special characters replaced by harmless but

equivalent ones. Additionally, a system should avoid using dynamic SQL and instead only

use prepared statements and parameterised queries. The system should never leave sensitive

2.3 Cyberattacks 13

data in plaintext, and it should only give the bare minimum of privileges required to users,

as it will limit what an attacker can do should they gain access. (Rapid7, 2021)

• Cross-Site Scripting (XSS) (Rapid7, 2021)

Description: A cross-site scripting attack involves the injection of malicious client-side

scripts into a user’s web browser. These scripts can be injected in several ways and carry out

undesirable actions from the user’s browser. They could be transmitted through a malicious

URL which an attacker tricked the user into clicking on (reflected XSS). Or they could be

stored into a vulnerable website, either directly on its hosted content (persistent XSS) or

in the vulnerable client-side scripts provided by the site/app (DOM-based XSS). (Rapid7,

2021)

Solution: The best way to avoid an XSS attack is by sanitising all user inputs and encoding

outputs to prevent malicious scripts from automatically loading and running. The system

should also limit the use of user-provided data. Additionally, implementing a Content Secu-

rity Policy (CSP) will provide additional levels of protection. (OWASP Foundation, 2021b)

• Brute-Force and Dictionary Attacks (Duarte, 2008)

Description: Brute-force and dictionary attacks are designed to guess the authentication

data of registered and trusted users. Brute-force attacks involve going through every possible

combination of letters, numbers and symbols until a match is found. Dictionary attacks,

instead of random combinations, try common ones used by many users, such as “password”,

“12345”, “asdf”, and many more. (Duarte, 2008)

Solution: All passwords, given enough time, will eventually be discovered by brute-force

and dictionary attacks. The best way to defend against them is by having a long and complex

password, as it could take years for a brute-force attack to guess it, and a dictionary attack

will not find it in its word database. (Rapid7, 2021)

Aside from that user side safety measure, a system could enforce some delaying standards

that activate in response to multiple failed login attempts. A system could artificially delay

repeated logins; a legitimate user would barely notice a slight delay, but it would quickly pile

up for an attacker. A system could force the completion of captchas as these have become

difficult for computers to complete, or it could simply lock the account. (Rapid7, 2021)

Besides those delaying measures, a system could also monitor user accounts, signalling any

unusual behaviour such as logins from unrecognised locations or devices or multiple failed

login attempts. These alerts could then be handled in real-time by a Security Operations

Center (SOC). (Rapid7, 2021)

• Phishing Attacks (Duarte, 2008)

Description: Phishing attacks are designed to trick normal users into divulging private

information such as passwords, credit card numbers and banking information. They do this

by employing social engineering techniques in messages sent in bulk to a high number of

Cyber Security 14

users. These messages are designed to enlist an emotional and impulsive reaction from the

receivers, with the usual goal of making them follow a link into a website controlled by

the attacker. This website sometimes mimics known and trusted ones, but the attacker then

receives all information placed here by the user. (Rapid7, 2021)

Large organisations need to be very cautious of phishing attacks. Due to the high number of

employees and collaborators, there is a high chance of at least one of them falling victim to

one of these attacks, mainly because attackers sometimes tailor these messages to contain

company logos and other identifiable marks. And the capture of the credentials of a high

position member could mean the loss of company secrets, company accounts and much

more. (Rapid7, 2021)

Solution: The best solution against phishing attacks is continuous user education and ex-

ercise. By reminding users to be vigilant constantly, it is possible to diminish the chances

of a phishing attack being successful drastically. A good measure is also to promote the

usage of two-factor authentication. This measure would ensure that if the credentials were

stolen, there would be an extra step to the login process, not easily performed by an attacker.

(Rapid7, 2021)

Aside from that solution, some mail and messaging services also have mechanisms to detect

and filter emails and messages with malicious URLs and suspicious attachments. (Rapid7,

2021)

2.3.3 Network Intrusion Cover-Up Methods

After a successful network intrusion attack, attackers will usually cover their tracks and avoid

detection. Delaying the fixing of the exploited vulnerability allows the attacker to perform the

same action. This practice can also hide the changes made to the system components or data. And

it can also be used to avoid prosecution. (Awake Security, 2021)

Some network intrusion attacks, such as living off the land and using non-malware tools, have

the advantage of blending into business justified usage, making them harder to detect. In addition,

there are three practices used by attackers to circumvent security infrastructures. (Awake Security,

2021)

• Deleting logs (Awake Security, 2021)

Description: Deleting logs is the action of deleting access logs after an attack has been

accomplished. Deleting these logs makes it almost impossible to understand the attackers’

actions while accessing the system. (Awake Security, 2021)

Solution: The best way to combat this practice is to regularly review logs and centralise

them into a separate secure location where the attackers can’t tamper with them. (Awake

Security, 2021)

• Using encryption on departing data (Awake Security, 2021)

2.3 Cyberattacks 15

Description: When stealing data from a system, attackers tend to encrypt it or, at least, try

to pass the transmission as regular system traffic. This practice is used to obfuscate their

movements from security infrastructures. (Awake Security, 2021)

Solution: There are multiple ways to combat this practice. Developers can set up firewalls

to stop any unauthorised outgoing traffic. Most monitoring tools or intrusion prevention

systems (IPS) detect abnormal outgoing traffic. And a robust logging system can keep track

of the data accessed during the attack.

• Installing rootkits (Awake Security, 2021)

Description: After a successful intrusion attack, attackers will usually install software that

allows them to access and control the system without being detected. These software are

traditionally called rootkits, and attackers use them to analyse a system calmly and exploit

it over long periods. (Awake Security, 2021)

Solution: The detections of rootkits can be tricky as they operate on the same level as

the operating system. Some antivirus solutions have a rootkit scan specifically designed

to detect rootkit infection on the device, which should be run regularly. It is also possible

to detect the presence of the rootkit using behavioural analysis performed by a monitoring

system. (Kaspersky, 2021)

2.3.4 DoS Attacks

Denial-of-Service (DoS) Attacks have a different goal than the ones presented before. The purpose

of these attacks is not to steal information or gain control over the system. These attacks wish to

interrupt a system’s normal functions and block access to regular users. They do this by flooding

the system with useless requests or meaningless data to process, congesting the system so that

valid requests and data cannot be processed. (Vyncke and Paggen, 2007)

Due to the massive improvements in the processing power of machines, especially the ones

used by commercial services, simple DoS Attacks are rare. Because a typical device can not

generate enough data to block a target completely, attackers usually coerce multiple machines to

act in coordination to perform the attack. This coordinated attack performed by various devices is

called a Distributed Denial-of-Service Attack (DDoS). (Duarte, 2008; Kaspersky, 2021)

There are multiple techniques to perform a DDoS attack. Next in this section, 3 of these

techniques are highlighted as they are the most used.

• DNS Amplification (Kaspersky, 2021)

Description: This DDoS attack abuses the DNS technology to generate massive amounts

of data to flood the target device. An attacker makes multiple small-sized requests to a

DNS service while impersonating the target device by placing the victim’s IP address as the

source. The DNS’s responses, which are much larger than the requests, are then sent to the

target device, flooding him with data. (Kaspersky, 2021)

Cyber Security 16

Figure 2.2: DoS Attacks compared to DDoS Attacks (EC-Council, 2021)

• Smurf Attack (Kaspersky, 2021)

Description: To perform this DDoS attack, an attacker broadcasts network requests (ICMP)

while impersonating the victim’s device, using a technique called IP spoofing. The victim

is then flooded with the responses from all network nodes.

• Trojan-DDoS (Kaspersky, 2021)

Description: A trojan-DDoS is a malicious program that attackers place on multiple vul-

nerable devices. After a substantial number of devices are infected with this program, the

attacker can then coordinate and control them to send numerous requests to a target device,

flooding and blocking him.

It is tricky to defend systems against DDoS attacks. Some paid services provide additional

processing power to systems temporarily. There is also the technique of Sinkholing, which consists

of redirecting traffic to a sinkhole server that analyses and blocks it. (Kaspersky, 2021) Monitoring

tools can detect and block abnormal traffic before reaching the system. But all these techniques

merely defend against the attack. Any system will inevitably fall against a big enough DDoS

attack. The best defence against these attacks is for the system to be efficient and have enough

processing power to withstand it.

Chapter 3

Monitoring and Logging Tools

3.1 Overview

Previously in this dissertation, monitoring and logging tools have been said to detect and defend

systems against cyberattacks. The OWASP Foundation has gone so far as to consider failures in

these systems as one of the top vulnerabilities plaguing systems in 2021 (OWASP Foundation,

2021a; Rivera-Ortiz and Pasquale, 2020). In this chapter, this dissertation will better explain what

these tools are, how they function, the challenges they face, and the advantages they bring when

implemented into a system.

The simplest definition of a monitoring and logging tool is a tool that is capable and respon-

sible for detecting every action performed within a system and logging it for future consulting.

Besides detecting and logging, such tools can also be programmed to respond automatically to

specific types of actions, such as those that violate internal policies. (Creasey, 2015)

Besides detecting and responding to outright policy violations, these tools can define a “nor-

mal” state for the system using the log history. If that “normal” state is compromised, either with

abnormally high network flow, uncommon access locations, or other common signs of an outgo-

ing attack, it can detect that abnormal state and respond accordingly. This response can be to alert

security personnel or perform a more specialised automated response. (Oliveira, 2020; Qin et al.,

2018)

In this section, this dissertation will go through a detailed look at the inner workings of these

tools. It will go from a more in-depth look at their purpose and goals to the abstract phases of

monitoring a system. It will also present guidelines for effectively creating, storing, and handling

logs to effectively use a monitoring and logging tool.

3.2 Purpose and Goals

This dissertation has quickly gone through the essential functions of monitoring and logging tools.

But this section will further break down their purpose and what they are used for, both in cyber

security and support functions for the system or business.

17

Monitoring and Logging Tools 18

Regarding cyber security, monitoring and logging tools are used for the identification of secu-

rity incidents, to monitor policy violations, and help defend against vulnerability identification and

exploitation; in short, monitoring and logging tools help to avoid and detect cyberattacks (Creasey,

2015; Wang et al., 2019). They also serve to establish system baselines, such as network traffic and

system access patterns, which, when deviated, can signify an ongoing attack (Oliveira, 2020; Qin

et al., 2018). They can also provide insightful information about problems and unusual conditions

and supply additional application-specific data for incident investigation (OWASP Foundation,

2021c).

Besides security-related functions, monitoring and logging tools can also provide valuable

business information, sometimes neglected. These include sales data, audit trails (e.g., data ad-

dition, modification and deletion, and data exports) and system performance information such as

data load time and page timeouts. Additionally, they can also be used for the legally sanctioned in-

terception of data (application-layer wiretapping). As well as supply data for subsequent requests

for information (e.g., litigation information and data relevant to police and other regulatory inves-

tigations) and other business-specific requirements. (AppDynamics, 2021; OWASP Foundation,

2021c)

3.3 Logging Guidelines

As stated previously, a core part of these systems is creating and handling logs. These logs contain

vast amounts of information, and by analysing them, it is possible to discern user behavioural

patterns and system performance and even detect and track cyberattacks. Due to their content, logs

should be stored centrally and be protected against unauthorised access and analysed regularly.

(OWASP Foundation, 2021c)

Ideally, one would record and store every action performed by and within the system, but that

is usually not possible. And even if it was possible, it might not be desirable. When dealing with

a platform that serves millions of users, storing every action that every user performs can quickly

pile up (Rivera-Ortiz and Pasquale, 2020; Wang and Zheng, 2020). And even if enough storage

space is available, these logs still need to be appropriately and effectively processed and presented

to be of any use (Safdar et al., 2018).

Therefore, these logging systems should be configured to log suitable cybersecurity-related

events and should be regularly tuned to reduce the number of false alerts to acceptable levels.

These security-related logs should also be normalised into a standard and suitable format (Suk-

mana et al., 2018), and their timestamps should be synchronised to a common trusted source

(OWASP Foundation, 2021c). They should also be adequately analysed because sometimes seem-

ingly innocent and smaller logs can be correlated and aggregated to paint a much larger security

incident (Rivera-Ortiz and Pasquale, 2020).

Additionally, the employer of the logging system should also establish cybersecurity-related

logging standards and procedures such as log retention and rotation periods. And, of course, take

3.3 Logging Guidelines 19

fast and effective actions to remediate any issues identified and respond to any cyber security

incidents that happen. (Creasey, 2015)

Because of the challenges of storing and processing massive amounts of logs, developers need

to prioritise what should and shouldn’t be logged (Wang and Zheng, 2020). And although the

specific selection should be tailored for the individual system or business, some standard guide-

lines exist as a basis for this process (Creasey, 2015; OWASP Foundation, 2021c; Rivera-Ortiz and

Pasquale, 2020). These data selection guidelines and some regarding the format of the singular

logs are presented in the following subsections.

3.3.1 Data Selection

As stated previously, it is essential to prioritise what data should and shouldn’t be logged. This

prioritisation is needed because logs can quickly pile up, mainly if the business or system has lim-

ited dedicated storage due to budget constraints (Wang and Zheng, 2020). Ideally, any company

should perform an internal analysis and select the relevant data it wants and needs to log. But

general guidelines exist on what to and don’t log and which sources are most important from a se-

curity standpoint (Creasey, 2015; OWASP Foundation, 2021c; Rivera-Ortiz and Pasquale, 2020).

These guidelines are presented in this section.

The following table contains a list that complies experts’ opinions on which types of logs

are typically most important for identifying possible cyber security attacks. It also includes their

relative cost to obtain, i.e., purchase costs and ongoing use of any relevant tools and services.

Technically all logs have an associated cost (e.g., acquiring, storing, and analysing), but in the

table, log sources marked as “Free” are already available in systems, networks, tools, or services

the organisation should already have. It is important to note that the priority stated in this table

is not valid for every business or system, and log management should be evaluated for each case.

(Creasey, 2015)

Monitoring and Logging Tools 20

Table 3.1: Log Sources (Creasey, 2015)

Log Source Priority Relative Cost

Email Essential Free

HTTP proxy Essential Free

Malware protection logs Essential C

NIDS Essential CC

NIPS Essential CC

System activity logs (e.g., Admin) Important Free

Firewall Important Free

DNS Important Free

DHCP Important Free

Web Server Logs Important Free

SQL Server Logs Important Free

Sandboxing techniques (including virtual execution engines) Important CCC

Endpoint (and agent-based) logs Useful C

Authentication logs (e.g., Windows) Useful Free

Physical Useful CC

VPN Useful Free

Netflow Useful Free

FTP Useful Free

Appflow Useful Free

Data loss protection (DLP) Useful CC

Besides considering the source of logs, one should also investigate individual events and pon-

der which should be logged. These are again highly dependent on the system or business, and a

blind checklist approach can lead to real problems being undetected amidst the clutter (OWASP

Foundation, 2021c; Wang and Zheng, 2020). But some events are highly recommended to be

logged.

When possible, one should always log validation failures: input, e.g., protocol violations, un-

acceptable encodings, invalid parameter names and values, or output, e.g., database recordset mis-

match and invalid data encoding. Authentication successes and failures and session management

failures, e.g., the modification of the cookie session identification value. Authorisation failures

issue by the access control system. Application and systems start-ups, shutdowns, logging ini-

tialisations, and any errors these might encounter, e.g., syntax and runtime errors, connectivity

problems, performance issues, third party service error messages, file system errors, file upload

virus detection and configuration changes. And legal and other opt-in options information such as

permissions for mobile phone capabilities, terms of use, terms and conditions, personal data usage

consent and authorisation to receive marketing communications. (OWASP Foundation, 2021c)

Additionally, if possible, one should always log any use of higher-risk functionalities. These

3.3 Logging Guidelines 21

are the establishment of network connections. The addition or deletion of users, changes to priv-

ileges, assigning users to tokens, adding or deleting tokens. The use of systems administrative

rights, access by application administrators, all actions by users with administrative privileges.

Access to payment cardholder data, the use of data encrypting keys, key changes, creation, and

deletion of system-level objects. And data imports and exports, including screen-based reports

and submission of user-generated content, especially file uploads. (OWASP Foundation, 2021c)

Optionally, if possible and desirable for the system or business, it is valuable also to log se-

quencing failures, excessive use of system elements and changes to data, configurations and ap-

plication’s code files and memory. And it could also prove helpful to log any incident of fraud

and other criminal activities and suspicious, unacceptable, or unexpected behaviour. (OWASP

Foundation, 2021c)

Parallel to the previous list, there is also a list of what should be excluded from the logs. This

list mainly comprises data not legally sanctioned to be logged and stored. Therefore, the elements

of the following list should not usually be recorded directly in the logs. Preferably they should

be removed, but if a business deems them necessary, they should take measures to mask, sanitise,

hash, or encrypt the data. (OWASP Foundation, 2021c)

There should not be a direct record of applications’ source code, access tokens and session

identification values (if these are needed to track session-specific events, they should be replaced

with a hashed value). Also, systems shouldn’t record sensitive personal data and some forms of

personally identifiable information (PII), e.g., health, government identifiers and vulnerable peo-

ple identifiers. They should never directly store authentication passwords, database connection

strings, encryption keys and other master secrets, bank account or payment cardholder data and

commercially sensitive information. And they should never log data of a higher security classifica-

tion than them, information that is illegal to collect and that the user has opted out or not consented

to collect. (OWASP Foundation, 2021c)

Additionally to those elements, one should also have unique care when logging file paths,

internal network names and addresses and non-sensitive personal data, e.g., personal names, tele-

phone numbers and email addresses. (OWASP Foundation, 2021c)

A good rule of thumb when handling personal data when the individual’s identity is not re-

quired is to implement de-identification techniques such as deletion, scrambling or pseudonymi-

sation of direct and indirect identifiers. (OWASP Foundation, 2021c)

3.3.2 Formatting Guidelines

Having looked at what should and shouldn’t be logged, this dissertation will now focus on the in-

dividual logs’ format. As stated previously, records should be normalised and consistent, meaning

they should have a defined form (Sukmana et al., 2018). The specific structure is dependent on

the system’s needs and goals, but there are some required fields that a log should have (OWASP

Foundation, 2021c).

Logs should have a date and time in a standardised format that is consistent for all records and

synchronised with a standard and trusted source. They should identify the precise location where

Monitoring and Logging Tools 22

the logged event occurred. This location identifier could be the application or service name and

version, and application address (e.g., cluster/hostname or server IPv4 or IPv6 address and port

number, workstation identity, local device identifier), geolocation, a window/form/page or even a

location in the code. Additionally, they should also have who performed the event being logged,

be it human or machine, e.g., user identity or source address. And a description of the event being

logged. (OWASP Foundation, 2021c)

Besides those fields, logs could also contain additional information such as the original in-

tended action, the affected objects, the result status, and the result’s reason. They could also have

the HTTP codes, headers, or user agents. As well as the user type (e.g., public, authenticated

user, CMS user, search engine, authorised penetration tester, uptime monitor), the event responses

and other extended details such as stack trace, system error messages, debug information, HTTP

request body, HTTP response headers and body. (OWASP Foundation, 2021c)

3.4 The Monitoring Process

After investigating the logging process of these systems, this dissertation will now focus on the

monitoring process. The main goal behind monitoring a system is to detect potential cyber security

incidents. This detection is done by looking for indicators of compromise (IOC). (Creasey, 2015)

Indicators of compromise (IOC) are identified by a combination of event identification, cyber

security intelligence and the individual system context. The diligent keeping of logs does the event

identification. And cyber security intelligence encompasses the knowledge of threat agents, their

sources and motives, of attack methodologies, as well as attack types and tools. (Wang et al.,

2019)

The monitoring process can be divided into four core phases performed in a continuous loop

that combine these three elements. These phases are the collection phase, the fusion phase, the

analysis phase, and the action phase. (Creasey, 2015)

The collection phase is mainly automated, and, as the name suggests, it is in this phase

that logs are collected. Additionally, records are normalised, filtered, and stored in this phase.

(Creasey, 2015)

The fusion phase is also automated. In this phase, mechanical systems fuse seemingly be-

nign logs into larger, more complete pictures, revealing possible indicators of compromise (IOC).

(Creasey, 2015)

The analysis phase is where human intervention and cyber security intelligence is most re-

quired. In this phase, professionals, armed with the knowledge of current attack patterns and

vulnerability trends, analyse the most pertinent logs of the last step to determine if any of them

indicate a compromise, an actual IOC. (Creasey, 2015)

The action phase is the last phase of the loop, and although it mostly requires human inter-

vention, some of it can be automated. In this phase, a specific response to the detected IOC is

3.5 Market 23

Figure 3.1: Cyber Security Monitoring Phases (Creasey, 2015)

performed. Some examples of actions performed in this phase are remediation and recovery, es-

calation both internally or externally, further investigation, reporting or any other kind of incident

management. (Creasey, 2015)

3.5 Market

Now that the concept of monitoring and logging tools has been established. This dissertation will

give a short breakdown of tools in this space currently available in the market. This breakdown

includes relevant security information and event managers (SIEM), which focus on providing

customers with real-time analysis of event logs and processing security alerts and endpoint security

tools, focusing on maintaining and ensuring the security of machines within a network. This list

is by no means intensive, nor is it a deep dive into the characteristics of these tools. It is simply a

starting point for people who need such tools for their own companies or systems.

• IBM QRadar (IBM Security, 2022)

QRadar by IBM Security is a Security Information and Event Manager (SIEM) to help

security teams detect, prioritise, and respond to threats across an enterprise. Its focus is

primarily on serving businesses. Its most significant appeal is his capability to monitor

thousands of devices, endpoints, and apps across a network.

• LogRhythm NextGen SIEM (LogRhythm, 2022)

NextGen SIEM by LogRhythm is a SIEM tool whose focus is primarily on automation,

machine learning and artificial Intelligence. It is award-winning software that minimises

the time needed to respond to any attack or threat.

Monitoring and Logging Tools 24

• OSSIM (AT&T Business, 2022)

The Open-Source Security Information and Event Management, abbreviated to OSSIM by

AlienVault, is an open-source SIEM solution created by security engineers to fill the gap of

open-source products in the market. It provides the essential security capabilities needed

within a unified platform while allowing users to contribute and receive real-time informa-

tion about malicious hosts by leveraging AlienVault’s Open Threat Exchange.

• RSA NetWitness (RSA Security LLC, 2022)

NetWitness by RSA is a SIEM solution that also utilises Open XDR to have an AI-powered

and accelerated approach to detection and response. It can collect and analyse data from

multiple sources such as logs, packets, Netflow and endpoints while being compatible with

any computing platform, physical, virtual or cloud-based.

• Sagan (Quadrant Information Security, 2022)

Sagan by Quadrant Information Security is an open-source log analysis engine that utilises

multi-threaded technology for higher performance. It also contains the capabilities to track

user behaviour and create custom security rules and alerts. Combining seamlessly with other

specialised tools can easily be coupled into a software stack to perform highly efficient log

analysis.

• Snort (Cisco, 2022)

Now developed by Cisco, Snort is an open-source network intrusion detection system (IDS).

It works as a package sniffer and, by using its set of rules, it can define and detect malicious

network activity and generate alerts in response.

• Sumo Logic (Sumo Logic, 2022)

Sumo Logic focuses on providing data analysis tools that use cloud technology. Concen-

trating on cyber security, they offer a massive collection of features from SIEM capabilities,

intrusion detection and prevention systems, cloud monitoring, and virtualisation tools mon-

itoring and are compatible with most software being used today.

• Wazuh (Wazuh Inc., 2022)

Wazuh is an open-source security monitoring solution. While having scaling capabilities

up to enterprise levels, it provides many essential security features within a single software.

These include intrusion detection, file integrity monitoring, vulnerability detection, incident

response and cloud and containers security.

Chapter 4

Case Study: The DataPlaxe Platform

4.1 Overview

The DataPlaxe platform is a cloud service that aims to incorporate the functions of a Smart IoT

platform with the storage, injection, and processing capabilities of a Data Lake. While simulta-

neously providing components for the execution of analytic or machine learning processes. Ad-

ditionally, it gives a functional web interface for managing, exploring, and visualising data and

processes.

The platform is unique as it allows users to upload both data and data-processing code into a

controlled and scalable environment, providing users with enough processing power and resources

to run their code with their data as they desire. As it aims to step into the realm of Big Data, the

platform seeks to grab the attention of companies that wish to compile and draw conclusions from

considerable amounts of data, such as finances or sales histories. These companies usually do not

have the in-house resources to process this data, and the market still hasn’t any great solutions to

solve this issue.

Additionally, the DataPlaxe platform also contains a marketplace. In this marketplace, users

can monetise their data, processing algorithms or even visualisation tools. A possible use case may

occur because some companies wish to relate their collected data with data they don’t have, but a

different user might provide. For example, a company may want to know how weather conditions

impact sales; instead of tracking the weather themselves, they can buy such a collection of data

from a company that provides it through the DataPlaxe marketplace.

By allowing its users to use their processing code, the DataPlaxe platform offers total control

and flexibility over their data. However, due to the unpredictability of the uploaded code, ensuring

the system’s integrity is a very complex and arduous task. Because this code will run on the

platform’s environment. It opens the system to many forms of attack, which must be appropriately

contained and stopped to avoid abuse of the system’s resources and stored data.

25

Case Study: The DataPlaxe Platform 26

4.2 Architecture and Components

The DataPlaxe platform comprises three server clusters connected by three private networks. The

clusters are the Data Ingestion and Access Layer cluster, the Platform Service cluster and the

Administration and Service Monitoring cluster. At the same time, the three networks are the Client

Network, the Data Network, and the Management Network. The DataPlaxe platform segregates

its network traffic using these three networks, increasing efficiency and security.

Figure 4.1: Overview of the DataPlaxe Architecture

The Data Ingestion and Access Layer cluster also referred to internally as the edge nodes, is

the only one connected to the Public Network. Because of this fact, this cluster is responsible for

exposing the DataPlaxe’s internal services for data ingestion, querying, and reporting. It contains

an OpenResty (OpenResty Inc, 2022) web server and a Minio S3 (MinIO, 2022) storage system.

This cluster’s services and its associated ports can be seen in the following table.

4.2 Architecture and Components 27

Table 4.1: Data Ingestion and Access Layer cluster’s Ports and Services

Service Short Description Port

AuthD Handles the authentication process of the DataPlaxe platform. 9755

Job Manager Service that handles the scheduling of jobs withing the platform 9753

Plaxe Manager Sevice responsible for handling domains and associated users 9751

Web Console Service responsible for receiving requests and operation for the

platform to process.

8585

Web Marketplace Exposes items for acquisition and tracks subscriptions details 9595

The OpenResty (OpenResty Inc, 2022) web server redirects requests into the correct services.

It works as a proxy for all user available functions and processes. All incoming traffic for the Dat-

aPlaxe platform will first meet the OpenResty web server and then be forwarded to the appropriate

service. The Minio S3 (MinIO, 2022) storage system is used to hold information and execution

logs about the jobs executed by the users. This information is present in this cluster to be easily

accessed and consulted using the web console interface component of the DataPlaxe platform.

As said previously and made clear by its name, it’s through the Data Ingestion and Access
Layer cluster that all data enters the DataPlaxe platform. This injection process is driven by

accessing the Web Console service, proxied by the OpenResty web server, which, upon receiving

a request, forwards it to the Plaxe Manager service the appropriate parameters for data injection.

Upon receiving those parameters, a user can insert data into the primary Minio S3 storage system

present in the Platform Service cluster.

Case Study: The DataPlaxe Platform 28

Figure 4.2: Data Injection Process of the DataPlaxe platform.

The Platform Service cluster, also referred to internally as the data nodes, is the cluster that

holds all the platform primary services and processes for data storage and processing. It utilises

Minio (MinIO, 2022) as its S3 storage solution, having a cluster that holds the DataPlaxe users’

data. At the same time, it has access to the Minio S3 cluster present in the edge nodes, as this

one is mounted in this cluster. Its data processing services utilise Docker (Docker Inc., 2022)

containers and the combination of Hive (The Apache Software Foundation, 2022) with Presto

(The Presto Foundation, 2022) as the SQL query engine for data contained in the S3 storage

cluster. Additionally, it uses Metabase (Metabase, 2022) as the data analytics and visualisation

tool of choice, allowing users to perform queries on their data and representing them in appealing

graphics. This cluster’s services and its associated ports can be seen in the following table.

Table 4.2: Platform Service cluster’s Ports and Services

Service Short Description Port

Job Executer Handles the execution of a requested operation 9752

As stated previously, it’s the Platform Service cluster that handles data processing within the

DataPlaxe. Still, the request for such a service must first come from the Data Ingestion and

4.2 Architecture and Components 29

Access Layer cluster. When a user requests a data processing operation or a job for short, it does

so in Web Console service available in the edge nodes. This request is then forwarded to the Job

Manager, that schedules the job and places it into a pool stored in a PostgreSQL database (The

PostgreSQL Global Development Group, 2022). The Job Executor Service then picks up the job

within the Platform Service cluster. After that, the job is executed in a contained environment

using a Docker container. This process is illustrated in the following image.

Figure 4.3: Data Processing Process of the DataPlaxe platform.

The Administration and Service Monitoring cluster also referred to internally as the admin

nodes, is responsible for monitoring and managing the tools used in the DataPlaxe platform. One

of its primary functions is to keep the base software of all clusters upgraded and up to date. Addi-

tionally, the core components of a monitoring and logging tool shall be deployed in this cluster.

The Client Network is a private 10Gbit internal network that connects the Internet-facing edge

nodes to the backend platform services. Because it needs to accommodate bulk data ingestions, it

needs a large bandwidth.

Case Study: The DataPlaxe Platform 30

The Data Network is where the bulk of the traffic of the DataPlaxe platform will occur, al-

though most will occur within the Platform Service cluster. It is also a 10Gbit network, but it

uses dual connections with active load balancing for added bandwidth and redundancy in case of

hardware failure.

The Management Network holds all traffic dedicated to managing and monitoring the differ-

ent clusters of the DataPlaxe platform. Additionally, it provides SSH access to cluster nodes for

administration.

Additionally, an Idrac Network is connected to the DataPlaxe platform, allowing network

access via VPN. This network exists to provide access to the platform for updates and support.

4.3 Security Needs

After specifying the DataPlaxe platform architecture, this section will now focus on the security

needs for the platform. One of its main lacking features from a security standpoint is the absence

of a monitoring and logging tool. Missing this crucial feature leaves the platform vulnerable to

cyberattacks due to its lack of intrusion detection and any form of incident analysis and response.

It is also essential to consider what this monitoring and logging tool must provide to maximise

its usefulness within the DataPlaxe environment. From this consideration, the following list of

priority features is compiled:

• Platform wide Logging and Monitoring

Any monitoring and logging tool implemented onto the DataPlaxe platform must monitor

and collect logs from the entire application, including all service APIs, data ingestions, and

different clusters.

• Endpoint Detection and Response (EDR)

The monitoring and logging tool implemented must detect suspicious behaviour that may

reach the platform’s open ports and server endpoints on the Internet-facing nodes of the

Data Ingestion and Access Layer cluster. Dataplaxe utilises an Openresty web server, and

the chosen tool must be compatible.

• Intrusion Detection

Intrusion detection is a given necessity in today’s network-dependent environment. The

monitoring and logging tool implemented must monitor and track users to detect intruders

and their means of entry.

• Malware Detection

The Dataplaxe platform comprises many interconnected machines. An effective form of

malware detection is crucial to prevent a single infected machine from polluting the entire

system.

4.3 Security Needs 31

• Incident Response

In today’s internet world, an automated and programmed response to common types of

attacks is a big necessity, as dependency on human responses is simply unfeasible.

• Security Information and Event Management (SIEM) incorporation or integration

Due to the Dataplaxe platform complexity and expansion intentions, a proper SIEM solution

capable of compiling and processing vast amounts of logs and presenting only the relevant

information in a readable way is needed.

• Vulnerability Detection and Component Monitoring

The implemented monitoring and logging system must detect vulnerabilities within the sys-

tem. As these vulnerabilities are mostly expected to come from the different software com-

ponents of the platform becoming outdated over time, these two points are heavily inter-

linked. But vulnerability detection can extend beyond the software components, as it also

includes unnecessary open port monitoring, lacking input sanitisation and insecure connec-

tion usage.

• Containers Security

Containers are a crucial necessity of the DataPlaxe platform. Due to its reliance on Docker

containers to perform data manipulation and processing, it is imperative that the monitoring

and logging tool implemented be compatible and able to monitor and log Docker related

events properly.

Chapter 5

Implementing a Monitoring and
Logging System in the DataPlaxe
Platform

5.1 Approach

This dissertation has first taken a look at the cyber security field as a whole, highlighting in the pro-

cess common security attacks and vulnerabilities that plague informatic systems. Next, it explored

the concept of monitoring and logging tools, as these are often referred to as either solutions or

countermeasures to detect and prevent cyberattacks. After that, this dissertation took a look into

the DataPlaxe platform, a multi-tenant service made by Altice Labs whose lack of a monitoring

and logging tool puts it at risk from cyberattacks.

In this section, this dissertation will focus on finding a monitoring and logging tool that meets

all the security requirements of the DataPlaxe platform. After this selection, a test installation of

the tool will be implemented. Various tests will then be performed to confirm if such a tool meets

the basic requirements of a monitoring and logging tool and the more specific requirements of the

DataPlaxe platform. These tests then serve two purposes. They will showcase the capabilities of

monitoring and logging tools. They will demonstrate if the specific tool selected is desirable to be

implemented onto the DataPlaxe platform or any other product from Altice Labs.

5.2 Selection

As stated previously, there are many monitoring and logging tools in the market, some more

specialised and some more generic. It is essential to add direction and guidelines to the selection

process of the monitoring and logging to be implemented onto the DataPlaxe platform. For this, it

is crucial to consider the security requirements of the DataPlaxe platform, as a tool that meets more

of them is more valuable than one that meets less. Additionally, the developers of Altice Labs have

a general preference for open-source tools, so this can also be used as a decision making factor.

32

5.2 Selection 33

After considering the security requirements of the DataPlaxe platform, a study was performed

on eight currently available tools on the market to see if they meet said requirements. These tools

are QRadar by IBM Security (IBM Security, 2022), NextGen SIEM by LogRhythm (LogRhythm,

2022), OSSIM by AlienVault (AT&T Business, 2022), NetWitness by RSA (RSA Security LLC,

2022), Sagan by Quadrant Information Security (Quadrant Information Security, 2022), Snort by

Cisco (Cisco, 2022), the SIEM solution by Sumo Logic (Sumo Logic, 2022) and Wazuh by the

company of the same name (Wazuh Inc., 2022). The following table was created from this study,

highlighting the requirements met by each tool and their price and if they are or not open-source.

Table 5.1: Monitoring and Logging tools Requisites Comparison.

Monitoring and Logging Tools

Q
R

ad
ar

N
ex

tG
en

SI
E

M

O
SS

IM

N
et

W
itn

es
s

Sa
ga

n

Sn
or

t

Su
m

o
L

og
ic

W
az

uh

R
eq

ui
si

te
s

Platform Wide L&M1 ✓ ✓ NC2 ✓ ✓ ✓ ✓ ✓

EDR ✓ ✓ ✓ ✓ ✓ ✓

Intrusion Detection ✓ ✓ ✓ ✓ ✓ ✓ ✓

Malware Detection ✓ ✓ ✓ ✓

Incident Response ✓ ✓ ✓ ✓

SIEM ✓ ✓ ✓ ✓ ✓ ✓ ✓

Vulnerability Detection ✓ ✓ ✓ ✓

Component Monitoring ✓ ✓

Containers Security ✓ ✓

Open-Source ✓ ✓ ✓ ✓

Price
$800

m

$28k

y
Free

$857

m
Free Free

$13.75/h

m
Free

QRadar by IBM Security (IBM Security, 2022) fails to meet most requirements of the Data-

Plaxe platform; this is because it is a highly specialised log processing and managing tool. Al-

though it is compatible with some other very famous specialised tools, it lacks most features as

stand-alone software, which is why it was not chosen.

OSSIM by AlienVault (AT&T Business, 2022) was discarded because it works as an operating

system, and there was a risk for the DataPlaxe platform not being fully compatible with it. Addi-

tionally, because the test implementation will only encompass a section of the platform, there was

1Logging and Monitoring
2Not Compatible with the DataPlaxe Platform

Implementing a Monitoring and Logging System in the DataPlaxe Platform 34

a desire to avoid unexpected conflicts between the platform parts that could arise from running on

different operating systems.

Sagan by Quadrant Information Security (Quadrant Information Security, 2022) was not cho-

sen for a similar reason as QRadar, as it is a highly efficient multi-threaded engine for log analysis.

And because it needs to be coupled with other software, it was not selected.

Snort by Cisco (Cisco, 2022) is also a specialised tool that works as a network packaging sniff-

ing software to detect malicious traffic. It was discarded because it needed other complementing

tools to meet all the DataPlaxe requirements. Additionally, it was unclear if it could be easily

configured to handle the three internal networks used by the platform.

NextGen SIEM (LogRhythm, 2022), by LogRhythm, and NetWitness (RSA Security LLC,

2022), by RSA, were not chosen because other tools met more of the requirements of the DataPlaxe

Platform.

Finally, Sumo Logic (Sumo Logic, 2022) and Wazuh (Wazuh Inc., 2022) both meet all the

requirements of the DataPlaxe platform. But Wazuh was ultimately chosen as the monitoring and

logging tool to be implemented onto the DataPlaxe platform because, unlike the SIEM solution by

Sumo logic, it is open-source and, as a bonus, free.

5.3 Wazuh

Since Wazuh has been chosen to be implemented into the DataPlaxe platform, this section serves

as a further presentation of Wazuh and its relevant inner workings. However, this does not replace

the tool’s documentation, which can be found in Wazuh Inc. (2022).

As stated earlier, Wazuh is a free, open-source monitoring and logging tool. It offers many

valuable features that our case study needs, such as security analytics, intrusion detection, log data

analysis, vulnerability detection, and containers security. Additionally, it is easily scalable for any

sized system (Wazuh Inc., 2022).

Wazuh was three integral parts, the Wazuh Agents, the Wazuh Manager, and the Elastic Stack

(Wazuh Inc., 2022).

The Wazuh Agent is to be installed on the machines to monitor. These agents monitor the sys-

tem endpoints and send information to the Wazuh Manager. Additionally, they provide prevention,

detection, and response capabilities to their host machines (Wazuh Inc., 2022).

The Wazuh Manager is to be installed on a server machine or a cluster of servers. It receives

the information from the many Wazuh Agents and processes it. It looks for indicators of compro-

mise (IOCs) utilising thread technology and a set of decoders and rules, both general and custom

(Wazuh Inc., 2022).

The Elastic Stack is a set of 3 software, Filebeat, ElasticSearch, and Kibana, all of each open

source and made by Elastic (Elastic NV, 2022). Filebeat transfers pertinent events and alerts from

the Wazuh Manager to ElasticSearch. Kibana is a web interface used for visualising and analysing

data, being the most appealing entry point of this system for human eyes. ElasticSearch can be

5.4 Tests Performed 35

seen as the database used by Wazuh. It works as a distributed full-text search and analytics engine,

and it is here that Wazuh stores and indexes its alerts (Wazuh Inc., 2022).

Figure 5.1: Overview of Wazuh’s architecture (Wazuh Inc., 2022).

As stated above, the Wazuh Manager works by employing rules. These rules can be seen as

pattern templates that trigger an alert upon matching with data sent by the Wazuh agents. These

alerts are then associated with a severity level from 0 to 15, depending on the corresponding rule.

Alerts with levels 0 to 3 are related to regular system operation and are usually discarded by the

Wazuh Manager not to fill up storage with nonrelevant information. Alerts with levels 4 to 7

are connected with error messages sent by the system. Alerts with levels 8 to 12 are generated in

response to unusual and suspicious events in the monitored machines, like multiple user-generated

errors in quick succession or modification to necessary system files. Alerts with levels 13 to 15

are high severity alerts and should be investigated immediately as they most definitely indicate an

ongoing attack. The full breakdown of these rules levels can be seen in Wazuh Inc (2022).

5.4 Tests Performed

5.4.1 Test Implementation

A simple test environment was created to perform tests to see if Wazuh meets the necessities of

the DataPlaxe platform.

A Wazuh agent was installed in three Administration and Service Monitoring cluster machines:

machines edge01, edge02 and edge03. These agents shall monitor these machines by collecting

logs and sending them to the Wazuh Manager via a connection with AES encryption.

The Wazuh Manager was installed on a machine outside of the DataPlaxe environment. In

this same machine, ElasticSearch and Kibana were also installed. ElasticSearch is a free and

open-source search and analytics engine for all types of data used by Wazuh to process its logs.

And Kibana is an ElasticSearch data visualisation and management tool, which also has a Wazuh

plugin allowing it to visualise Wazuh logs and alerts. Additionally, the open-source software

Filebeat sends Wazuh logs to ElasticSearch. This software stack is usually not installed on a single

Implementing a Monitoring and Logging System in the DataPlaxe Platform 36

machine, confusing the installation. But it was made this way to resemble better the structure that

should be made if Wazuh is implemented in the DataPlaxe platform. The additional details of this

installation can be seen in the following diagram.

Figure 5.2: Installation diagram of the Wazuh Manager, Filebeat, Elasticsearch, and Kibana.

5.4.2 Tests Performed and Results

5.4.2.1 Detecting a Brute-force attack

• Overview

This test performs a brute-force attack on a machine with a Wazuh Agent installed. It is

expected that the test installation of Wazuh will be able to detect and correctly identify the

multiple authentications attempts in quick succession by a user as a brute-force attack.

This test aims to highlight the capabilities of a monitoring and logging tool to detect and

correctly identify a cyber-attack, in this case, a brute-force attack. As well as demonstrate

that Wazuh, while in the DataPlaxe platform, does have such capabilities.

To perform the brute-force attack, we will use Hydra, an open-source parallelised login

cracker. (Kali Linux, 2021)

• Prerequisites

We will need an external Linux system with Hydra and SSH installed to serve as an attacker

to perform this test.

• Test Steps

5.4 Tests Performed 37

Run the following command to use Hydra to perform multiple logins attempts on a machine

with a Wazuh Agent.

$ hydra -l <user_name> -p <user_password> <agent.endpoint> ssh

The implementation of the previous command used on the test is the following:

$ hydra -l victim -p wrong_password <machine edge1 IP address>

ssh

In this case, a brute-force attack is performed on the machine identified as “edge1”. This

attack tries to gain access to the “victim” ’s account. Because this is just a simple test, it

will always attempt the password “wrong_password”. This field would be changed on every

attempt in an actual situation, which would also be more numerous.

• Test Results

After executing the previous command, we access the Wazuh Alerts in the Security Events

module of the Wazuh Kibana plugin. There, we find that in response to the experiment,

Wazuh has generated multiple copies of two alerts with rule IDs numbers 5710 and 5712.

The abbreviated details of each can be seen below.

Figure 5.3: Graphic of the alerts generated by Wazuh in response to the brute-force attack

Table 5.2: The summary of the Wazuh alerts generated in response to the brute-force attack

Rule ID Description Level Count

5710 sshd: Attempt to login using a non-existent user 5 47

5712 sshd: brute force trying to get access to the system. 10 4

Implementing a Monitoring and Logging System in the DataPlaxe Platform 38

Table 5.3: The truncated details of both Wazuh alerts generated in response to the brute-force
attack

Field Name Alert Id: 5710 Alert Id: 5712

rule.description sshd: Attempt to login using

a non-existent user

sshd: brute force trying to

get access to the system.

rule.firedtimes 47 4

rule.id 5710 5712

rule.level 5 10

rule.mitre.tactic Credential Access Credential Access

rule.mitre.technique Brute Force Brute Force

Additionally to the field above, alerts with rule ID 5712 have an additional entry called

previous_output. This field contains the multiple unsuccessful attempts that have been ag-

gregated to trigger a warning with rule ID 5712. An example of such a field can be seen

below.

"previous_output":

Dec 31 03:49:54 dplx-tst-edge1 sshd[17759]: Invalid user victim

from 10.112.208.10 port 63674

Dec 31 03:49:51 dplx-tst-edge1 sshd[17757]: Failed password for

invalid user victim from 10.112.208.10 port 63672 ssh2

Dec 31 03:49:49 dplx-tst-edge1 sshd[17757]: Invalid user victim

from 10.112.208.10 port 63672

Dec 31 03:49:49 dplx-tst-edge1 sshd[17755]: Invalid user victim

from 10.112.208.10 port 63670

Dec 31 03:49:45 dplx-tst-edge1 sshd[17747]: Failed password for

invalid user victim from 10.112.208.10 port 63668 ssh2

Dec 31 03:49:43 dplx-tst-edge1 sshd[17747]: Invalid user victim

from 10.112.208.10 port 63668

Dec 31 03:49:43 dplx-tst-edge1 sshd[17745]: Invalid user victim

from 10.112.208.10 port 63666

As we can see, multiple alerts 5710 trigger an alert of type 5712, which means that Wazuh

can identify numerous individual alerts of a failed user login as a brute-force attack.

5.4 Tests Performed 39

5.4.2.2 Detecting an SQL Injection attack

• Overview

This test performs a SQL injection attack on a machine with a Wazuh Agent installed. It is

expected that the test installation of Wazuh will be able to detect and correctly identify the

SQL patterns, such as "select" or "union", present in the attack.

This test, much like the last, aims to highlight the capabilities of a monitoring and logging

tool to detect and correctly identify a cyber-attack, in this case, an SQL Injection attack. It is

also essential to demonstrate the ability of Wazuh to detect such attacks, as an SQL Injection

attack on the DataPlaxe platform could prove disastrous as it is a data storing platform.

• Prerequisites

We will use an Apache server running on the monitored machine to perform this test.

Additionally, the Wazuh needs to be configured to capture events from the Apache server.

This setup can be done by adding the following block to the monitored machine’s /var/

ossec/etc/ossec.conf file.

<localfile>

<log_format>apache</log_format>

<location>/var/log/httpd/access_log</location>

</localfile>

After changing the configuration, it is necessary to restart the Wazuh Agent.

systemctl restart wazuh-agent

• Test Steps

We shall send the following request to the Apache server from an external machine:

$ curl -XGET "http://<apache_web_server_address>/?id=SELECT+*+

FROM+users";

• Test Results

After executing the command above, we access the Wazuh Alerts in the Security Events

module of the Wazuh Kibana plugin. We can see the alert created in response to the previous

server request, which has been correctly identified as a SQL injection attack, meaning that

Wazuh can detect SQL injection attacks.

Implementing a Monitoring and Logging System in the DataPlaxe Platform 40

Table 5.4: The truncated details of the Wazuh alert generated in response to the SQL Injection
attack

Field Name Alert Details

data.url /?id=SELECT+*+FROM+users

rule.description SQL injection attempt.

rule.groups web, accesslog, attack, sql_injection

rule.id 31103

rule.level 7

rule.mitre.tactic Initial Access

rule.mitre.technique Exploit Public-Facing Application

5.4.2.3 Detecting a Shellshock attack

• Overview

A shellshock attack is a type of code injection attack. This attack aims to run shell com-

mands on the target machine by sending maliciously crafted web requests. When a server

receives these requests, the device is tricked into running foreign shell commands if proper

filtering and escaping don’t occur, causing disastrous effects.

This test also aims to highlight the capabilities of a monitoring and logging tool to detect and

correctly identify a cyber-attack. Although this is already demonstrated by the tests above,

this particular cyber-attack requires greater attention as the DataPlaxe platform could be

vulnerable to such types of attacks due to its architecture and data processing methodology.

As the platform users provide the data processing code, malicious attackers could use this

unique vector to attempt these cyberattacks. Should they be successful, they could compro-

mise the Platform Service cluster machines, where data is stored.

This test performs a shellshock attack on a machine with a Wazuh Agent installed. It is

expected that the test installation of Wazuh will be able to detect and correctly identify the

shell commands present in the attack.

• Prerequisites

We will use an Apache server running on the monitored machine to perform this test.

Additionally, the Wazuh agent needs to be configured to capture events from the Apache

server. This setup can be done by adding the following block to the monitored machine’s

/var/ossec/etc/ossec.conf file.

<localfile>

<log_format>apache</log_format>

<location>/var/log/httpd/access_log</location>

</localfile>

After changing the configuration, it is necessary to restart the Wazuh Agent.

5.4 Tests Performed 41

systemctl restart wazuh-agent

• Test Steps

We shall send the following request to the Apache server from an external machine:

$ curl -H "User-Agent: () { :; }; /bin/cat /etc/passwd" <

apache_web_server_address>

• Test Results

After executing the command above, we access the Wazuh Alerts in the Security Events

module of the Wazuh Kibana plugin. We can see the alert created in response to the previous

server request, which has been correctly identified as a Shellshock attack, meaning that

Wazuh can detect Shellshock attack attempts.

Table 5.5: The truncated details of the Wazuh alert generated in response to the Shellshock attack

Field Name Alert Details

data.url /

full_log

"GET / HTTP/1.1" 403 4897 "-" "() { :; };

/bin/cat /etc/passwd"

rule.description Shellshock attack attempt

rule.groups web, accesslog, attack

rule.id 31166

rule.level 6

rule.mitre.tactic Privilege Escalation, Initial Access

rule.mitre.technique Exploitation for Privilege Escalation, Exploit Public-Facing

Application

5.4.2.4 Detecting File Changes

• Overview

This test aims to check if Wazuh can detect changes to files within the system. Additionally,

it seeks to see what information is logged when these changes are detected and if it is

possible to track the origin or author of the change.

An integral part of recognising and tracing the route of cyber-attack is the logging of sys-

tem file changes. These logs should include information on when these changes happen

and who performed these changes. This capability of these tools is crucial for performing

damage recovery and preventing repeated attacks from happening. As such, this test aims to

Implementing a Monitoring and Logging System in the DataPlaxe Platform 42

demonstrate this ability and observe if Wazuh provides satisfying amounts of details when

file systems are changed.

• Prerequisites

Wazuh file integrity monitoring is configured by default on installation. The default settings

are present in /var/ossec/etc/ossec.conf, and from this file it is possible to see that

Wazuh is already monitoring the following directories: /etc, /usr/bin, /usr/sbin,

/bin, /sbin and /boot.

To record the author of the events in the monitored directories, Wazuh needs an auditing

subsystem. For Linux machines, this subsystem is the Linux Audit subsystem, which can

be installed with the following command.

yum install audit

• Test Steps

1. The following entry will be added in the Wazuh configuration file /var/ossec/

etc/ossec.conf:

<directories check_all="yes" report_changes="yes" whodata="

yes" tags="test">/home/<user_name>/test</directories>

This entry configures Wazuh also to monitor the directory /home/<user_name>

/test. The modifier “check_all” allows recording file sizes, permissions, owner, last

modification date, and more. At the same time, the modifier “whodata” will use the

Linux Audit subsystem to record the author of the events in the directory. The modifier

“report_changes” will ensure that the logs will also contain the changed content of the

file.

2. Restart the Wazuh-agent.

systemctl restart wazuh-agent

3. After adding the entry, a test file will be added, changed, and deleted in the /home/

<user_name>/test directory.

• Test Results

The following tables show the Wazuh alerts generated in response to the changes in the

folder /home/<user_name>/test. They correctly display the file’s creation, the two

changes made to it and its deletion.

5.4 Tests Performed 43

Table 5.6: Alert generated by Wazuh in response to the creation of the test file.

Field Name 1st Alert Details

rule.id 554

rule.description File added to the system.

rule.level 5

syscheck.audit.login_user.name ptin_admin

syscheck.audit.effective_user.name ptin_admin

syscheck.audit.process.name /usr/bin/touch

syscheck.event added

syscheck.path /home/ptin_admin/test/test_file.txt

Table 5.7: Alert generated by Wazuh in response to the first modification of the test file.

Field Name 2nd Alert Details

rule.id 550

rule.description Integrity checksum changed.

rule.level 7

syscheck.audit.login_user.name ptin_admin

syscheck.audit.effective_user.name ptin_admin

syscheck.audit.process.name /usr/bin/nano

syscheck.event modified

syscheck.path /home/ptin_admin/test/test_file.txt

Table 5.8: Alert generated by Wazuh in response to the second modification of the test file.

Field Name 3rd Alert Details

rule.id 550

rule.description Integrity checksum changed.

rule.level 7

syscheck.audit.login_user.name ptin_admin

syscheck.audit.effective_user.name root

syscheck.audit.process.name /usr/bin/nano

syscheck.event modified

syscheck.path /home/ptin_admin/test/test_file.txt

Implementing a Monitoring and Logging System in the DataPlaxe Platform 44

Table 5.9: Alert generated by Wazuh in response to the deletion of the test file.

Field Name 4th Alert Details

rule.id 553

rule.description File deleted.

rule.level 7

syscheck.audit.login_user.name ptin_admin

syscheck.audit.effective_user.name root

syscheck.audit.process.name /usr/bin/rm

syscheck.event deleted

syscheck.path /home/ptin_admin/test/test_file.txt

If we take a closer look at the alerts generated, it is possible to see that they contain fields

that allow the identification of the author of the changes and what process was used to make

the changes. In the case of this test, it’s possible to see that the file was created by the user

“ptin_admin” with the command "touch" and then altered with the process "nano". After

that, the user “ptin_admin”, as effective user “root”, changed the file again with "nano" and

then deleted the file with the command "rm".

Table 5.10: A comparative look at the alerts generated in the detecting file changes test.

rule.description 2login_user.name 2effective_user.name 2process.name

File added to the system. ptin_admin ptin_admin /usr/bin/touch

Integrity checksum changed. ptin_admin ptin_admin /usr/bin/nano

Integrity checksum changed. ptin_admin root /usr/bin/nano

File deleted. ptin_admin root /usr/bin/rm

Additionally, both modification-related alerts have fields containing the details of the change

made to the file.
2syscheck.audit.

5.4 Tests Performed 45

Table 5.11: Additional field present in the modification related alerts.

Field Name 2nd Alert Details 3rd Alert Details

rule.id 550 550

rule.description Integrity checksum changed. Integrity checksum changed.

syscheck.event modified modified

syscheck.changed_attributes size,mtime,md5,sha1,sha256 size,mtime,md5,sha1,sha256

syscheck.size_before 0 38

syscheck.size_after 38 73

syscheck.diff
0a1,2
> First line of text as a normal

user.
>

1c1
< First line of text as a normal

user.
−−−
> Replacing the first line of text

as the same user but with
root access.

As it is possible to see, Wazuh can catalogue and show both the author of the change and the

changes made to the file. Therefore, Wazuh can provide crucial information on the aftermath

of an attack for its identification and tracing.

5.4.2.5 Detecting Suspicious Binaries

• Overview

This test aims to discern if the Wazuh installation can detect malware attacks by identifying

suspicious binaries such as trojans or viruses. An original system binary is replaced by a

“harmless” trojan version for this test.

Malware related attacks are one of the most common forms of cyberattacks. By utilising

a combination of file monitoring and pattern recognition, monitoring and logging tools can

detect such malicious files within a system before they cause damage to the infected system.

This test aims to demonstrate this ability of monitoring and logging tools and see if Wazuh

has such capabilities.

• Prerequisites

Wazuh already comes with a list of common trojan locations and signatures in the /var/

ossec/etc/shared/rootkit_trojans.txt file, available in A.1. By combining the

contents of this file with the capabilities demonstrated in the Detecting File Changes test,

Wazuh should be capable of detecting changes to the system provoked by malware and

trojans.

Implementing a Monitoring and Logging System in the DataPlaxe Platform 46

Additionally, Wazuh should be configured to check for malware and trojans every 12 hours

by default on installation; this can be verified in the monitored machine’s configuration file

/var/ossec/etc/ossec.conf.

• Test Steps

1. First, we will create a copy of an original system binary with the following command.

For this test, we will use the binary /usr/bin/w. This standard command in Unix

systems provides a quick summary of every user logged into the computer and its

activity. But for this test, it is unimportant which binary is used.

cp -p /usr/bin/w /usr/bin/w.copy

2. Next, we will replace the original system binary with the following script.

#!/bin/bash

echo "‘date‘ this is evil" > /tmp/trojan_created_file

echo ’test for /usr/bin/w trojaned file’ >> /tmp/

trojan_created_file

#Now running original binary

/usr/bin/w.copy

• Test Results

After executing the previous steps, we access the Wazuh Alerts in the Security Events mod-

ule of the Wazuh Kibana plugin. We can see the alert created in response to the trojan file,

proving that Wazuh has successfully detected the suspicious binary.

Table 5.12: The truncated details of the Wazuh alert generated in response to the suspicious binary

Field Name Alert Details

data.file /usr/bin/w

data.title Trojaned version of file detected.

full_log

Trojaned version of file ’/usr/bin/w’ detected.

Signature used: ’uname -a|proc\.h|bash’ (Generic).

rule.description Host-based anomaly detection event (rootcheck).

rule.groups ossec, rootcheck

rule.id 510

rule.level 7

5.4 Tests Performed 47

5.4.2.6 Detecting Vulnerable Applications

• Overview

This test aims to see if Wazuh can detect and identify vulnerable applications within the

system.

An essential function of monitoring and logging tools is to detect vulnerabilities within a

system. These vulnerabilities can have many different sources, but most commonly are from

applications or tools not being up to date and lacking an upgrade. This test aims to demon-

strate this ability of monitoring and logging tools and see if Wazuh has such capabilities.

• Prerequisites

Wazuh already has a vulnerability detector module, and it just needs to be correctly config-

ured for the test installation within the DataPlaxe machines.

• Test Steps

1. Enable the vulnerability detector module in the /var/ossec/etc/ossec.conf

file at the Wazuh Manager. As the machines run on CentOS for this test installation,

the configuration will be as follows.

<ossec_config>

<vulnerability-detector>

<enabled>yes</enabled>

<interval>5m</interval>

<ignore_time>6h</ignore_time>

<run_on_start>yes</run_on_start>

[...]

<!-- RedHat OS vulnerabilities -->

<provider name="redhat">

<enabled>yes</enabled>

<os>5</os>

<os>6</os>

<os>7</os>

<os>8</os>

<os allow="Centos Linux-8">8</os>

<update_interval>1h</update_interval>

</provider>

[...]

Implementing a Monitoring and Logging System in the DataPlaxe Platform 48

<!-- Aggregate vulnerabilities -->

<provider name="nvd">

<enabled>yes</enabled>

<update_from_year>2010</update_from_year>

<update_interval>1h</update_interval>

</provider>

</vulnerability-detector>

</ossec_config>

2. Restart the Wazuh Manager

systemctl restart wazuh-manager

3. Configure the “syscollector” module in the /var/ossec/etc/ossec.conf file at

the Wazuh Agent. As this test installation uses Linux machines, the configuration file

will be as follows.

<wodle name="syscollector">

<disabled>no</disabled>

<interval>1h</interval>

<scan_on_start>yes</scan_on_start>

<hardware>yes</hardware>

<os>yes</os>

<network>yes</network>

<packages>yes</packages>

<hotfixes>yes</hotfixes>

<ports all="no">yes</ports>

<processes>yes</processes>

</wodle>

4. Restart the Wazuh Agent

systemctl restart wazuh-manager

• Test Results

After activating Wazuh’s vulnerability detector module, we can access the Vulnerabilities

section of the Wazuh Kibana plugin. We find that each machine of our test implementa-

tion, as they are copies of each other, have around 940 vulnerabilities. A high number was

expected as these are merely test machines and haven’t been updated in a while.

5.4 Tests Performed 49

Figure 5.4: The abbreviated list of detected vulnerabilities within the test machine.

Additionally, each vulnerability is assigned a severity level from critical to low. This classi-

fication makes the prioritisation of fixes easier.

Figure 5.5: The Severity distribution of the vulnerabilities detected.

Implementing a Monitoring and Logging System in the DataPlaxe Platform 50

Table 5.13: The abbreviated list of detected vulnerabilities sorted with descending severity.

data.vulnerability.package.name data.vulnerability.cve data.vulnerability.severity

nss-tools CVE-2021-43527 Critical

expat CVE-2015-2716 Critical

nss-sysinit CVE-2021-43527 Critical

nss CVE-2021-43527 Critical

python-perf CVE-2021-37576 High

python-perf CVE-2020-10757 High

minio CVE-2020-11012 High

dhclient CVE-2021-25217 High

Each vulnerability also contains a field explaining it, which gives helpful context to devel-

opers when fixing it.

Table 5.14: The abbreviated details of an example Vulnerability

Field Name Vulnerability Details

data.vulnerability.title CVE-2021-43527 affects nss-tools

data.vulnerability.package.name nss-tools

data.vulnerability.cve CVE-2021-43527

data.vulnerability.severity Critical

data.vulnerability.rationale NSS (Network Security Services) versions prior to 3.73 or

3.68.1 ESR are vulnerable to a heap overflow when han-

dling DER-encoded DSA or RSA-PSS signatures. Appli-

cations using NSS for handling signatures encoded within

CMS, S/MIME, PKCS #7, or PKCS #12 are likely to be

impacted. Applications using NSS for certificate valida-

tion or other TLS, X.509, OCSP or CRL functionality

may be impacted, depending on how they configure NSS.

*Note: This vulnerability does NOT impact Mozilla Fire-

fox.* However, email clients and PDF viewers that use

NSS for signature verification, such as Thunderbird, Libre-

Office, Evolution and Evince are believed to be impacted.

This vulnerability affects NSS < 3.73 and NSS < 3.68.1.

It is possible to see that Wazuh can detect vulnerabilities within a system.

5.4 Tests Performed 51

5.4.2.7 Detecting Unauthorised Processes

• Overview

This test aims to see if Wazuh can detect the execution of black-listed processes.

Monitoring running processes on a system is a valuable capability of monitoring and log-

ging tools. This capability alerts when crucial processes or functions stop unexpectedly

and identifies unknown or unwanted ones suddenly starting within the system. This test

aims to demonstrate this ability of monitoring and logging tools and see if Wazuh has such

capabilities.

• Prerequisites

For this test to occur, it is necessary to configure the Wazuh agent to obtain a list of currently

running processes periodically. That configuration can be done by adding the following

code block to the <localfile> section of the /var/ossec/etc/ossec.conf file of

the monitored machine.

<ossec_config>

<localfile>

<log_format>full_command</log_format>

<alias>process list</alias>

<command>ps -e -o pid,uname,command</command>

<frequency>30</frequency>

</localfile>

</ossec_config>

This code block configures the Wazuh agent to run ps -e -o pid,uname,command to

obtain the running process list every 30 seconds.

As a reminder, it is necessary to restart the Wazuh agent after adding the code block.

systemctl restart wazuh-agent

The Wazuh manager must also be configured to receive the running process list correctly.

This configuration can be done by adding the following rule in the var/ossec/etc/

rules/local_rules.xml file of the Wazuh Manager.

<group name="ossec,">

<rule id="100050" level="0">

<if_sid>530</if_sid>

<match>^ossec: output: ’process list’</match>

<description>List of running processes.</description>

<group>process_monitor,</group>

</rule>

</group>

Implementing a Monitoring and Logging System in the DataPlaxe Platform 52

This rule level is marked as zero, meaning that the collection of running processes will not

trigger an alert. Additionally, the <match> section pairs with the configuration block added

to the Wazuh Agent.

Additionally, it is necessary to choose a process to black-list. In the case of this test, we will

black-list Netcat, a standard computer networking utility that allows for port scanning and

port listening. Netcat can be easily installed with the command.

yum install nmap-ncat

• Test Steps

1. First, it is necessary to create a rule that triggers with the execution of Netcat. This

rule shall be a child to the process list rule, and, as such, it shall be added in the var/

ossec/etc/rules/local_rules.xml file of the Wazuh Manager. An example

of an implementation of this rule can be seen below.

<rule id="100051" level="7" ignore="900">

<if_sid>100050</if_sid>

<match>nc -l</match>

<description>Netcat listening for incoming connections

.</description>

<group>process_monitor,</group>

</rule>

2. Restart the Wazuh Manager

systemctl restart wazuh-manager

3. Next, to trigger the created rule, it is necessary to run Netcat with the following com-

mand.

$ nc -l 8000

• Test Results

After executing the previous command, we access the Wazuh Alerts in the Security Events

module of the Wazuh Kibana plugin. We can see the alert created in response to the execu-

tion of the black-listed Netcat command.

5.4 Tests Performed 53

Table 5.15: The truncated details of the Wazuh alert generated in response to the black-listed
Netcat Command

Field Name Alert Details

location process list

rule.description Netcat listening for incoming connections.

rule.groups ossec, process_monitor

rule.id 100051

rule.level 7

These results demonstrate that Wazuh can monitor the running processes within the system

and be configured to detect unwanted changes to the list of running processes.

5.4.2.8 Exposing Rootkits and Hidden Processes

• Overview

This test aims to see if Wazuh can detect rootkits that can hide from the kernel module list

and hide their processes from the “ps” command.

This test can be seen as a continuation of the previous one, as it demonstrated that Wazuh

was capable of monitoring running processes. Still, it did so by analysing the list provided

by the system. This test aims to see if Wazuh can detect processes if those have been hidden

by a rootkit, a standard cover tactic used by malicious attackers.

The rootkit Diamorphine will be installed on the machine to perform this test, as it matches

the description above.

• Prerequisites

The Wazuh agent is configured by default to check for rootkits and hidden processes every

12 hours. It does this by utilising system calls such as setsid(), getpid() and kill()

that indirectly expose any processes running in the system. This function can be sped up for

the sake of this test in the “rootcheck” and “syscheck” sections of the var/ossec/

etc/ossec.conf file.

As the Wazuh is already configured, it is just a matter of downloading and installing the

Diamorphine rootkit. The steps for the installation are the following.

yum -y update

shutdown -r now

yum -y install kernel-devel libgcc gcc git

git clone https://github.com/wazuh/Diamorphine.git

Implementing a Monitoring and Logging System in the DataPlaxe Platform 54

• Test Steps

The rootkit kernel module first needs to be loaded, which can be done with the following

command.

insmod diamorphine.ko

As a note, if an error occurs after executing the command, the best solution is to restart

the machine and start again. Multiple restarts may be needed to perform this test, but the

installation should be correct if the following sequence can be executed without error.

1. # lsmod | grep diamorphine

This command should have no output as Diamorphine is hidden until it receives the

following kill command.

2. # kill -63 509

lsmod | grep diamorphine

This last command should show Diamorphine running without issue, which became

visible after the kill command.

3. # kill -63 509

lsmod | grep diamorphine

This last kill command is to make Diamorphine hidden again.

After the rootkit has been correctly loaded, it can hide processes from the “ps” command.

The following command hides the rsyslogd process, a typical system utility that supports

local and remote logging.

kill -31 $(pidof rsyslogd)

This hiding function of Diamorphine can be checked with the following command, which

should have no output.

ps auxw | grep rsyslog | grep -v grep

• Test Results

After executing the previous steps, we access the Wazuh Alerts in the Security Events mod-

ule of the Wazuh Kibana plugin. We can see the alert created in response to the Diamorphine

rootkit hiding a process from the “ps” command, meaning that Wazuh has successfully de-

tected the hidden processes running in the machine.

5.4 Tests Performed 55

Table 5.16: The truncated details of the Wazuh alert generated in response to the usage of the
Diamorphine rootkit.

Field Name Alert Details

data.title Process ’1045’ hidden from /proc.

full_log Process ’1045’ hidden from /proc. Possible kernel level rootkit.

rule.description Possible kernel level rootkit

rule.id 521

rule.level 11

rule.mitre.tactic Defense Evasion

rule.mitre.technique Rootkit

5.4.2.9 Monitoring Docker

• Overview

Docker is a commonly used platform to deploy, ship, and run applications quickly and

effectively. Developers use it because it separates the applications from the infrastructure

used to develop or run them. This separation is possible because Docker allows the creation

of a semi-isolated environment called a container. This container has all the application’s

necessities and can be easily distributed and maintained. (Docker Inc., 2022)

Because the DataPlaxe platform utilised Docker for many of its components, it is essential

to check if Wazuh can correctly log Docker related events.

• Prerequisites

It is necessary to configure a Docker listener in the monitored machine to log Docker events.

This configuration can be done in var/ossec/etc/ossec.conf with the following

code block.

<ossec_config>

<wodle name="docker-listener">

<interval>10m</interval>

<attempts>5</attempts>

<run_on_start>yes</run_on_start>

<disabled>no</disabled>

</wodle>

</ossec_config>

If it was necessary to configure the Docker listener, it is also required to restart the Wazuh-

agent.

systemctl restart wazuh-agent

Implementing a Monitoring and Logging System in the DataPlaxe Platform 56

Additionally, but somewhat obviously, it is necessary to have Docker installed on the ma-

chine. Although for the particular installation of Docker of the DataPlaxe platform, it is also

required to add some python related dependencies. These libraries can be added with the

following commands.

pip3 install docker

yum install python-docker

• Test Steps

To generate the Docker related Wazuh logs, we shall

1. Pull a Docker image, in this case, Nginx.

$ docker stop ‘docker ps -a -q‘ && docker rm ‘docker ps -a -

q‘

$ docker pull nginx

2. Start the Docker container.

$ docker run -d -P --name nginx_container nginx

3. Run a Docker command.

$ docker exec -ti nginx_container cat /etc/passwd

$ docker exec -ti nginx_container /bin/bash

$ exit

4. And then Delete the container.

$ docker stop nginx_container

$ docker rm nginx_container

• Test Results

We can then visualise the Wazuh logs in the Wazuh Kibana plugin, and in every record, the

field titled "data.docker.Action" states the action it was performed.

5.4 Tests Performed 57

Table 5.17: The Wazuh alerts generated in response to the Docker commands executed.

rule.description rule.level data.docker.Action

Container nginx_container created 3 create

Network bridge connected 3 connect

Container nginx_container started 3 start

Command launched in container nginx_container.

Action: "exec_start: cat /etc/passwd"
3

exec_start:

cat /etc/passwd

Started shell session in container nginx_container 5
exec_start:

/bin/bash|

Container nginx_container received the action: kill 7 kill

Container nginx_container received the action: die 7 die

Network bridge disconnected 4 disconnect

Container nginx_container stopped 3 stop

Container nginx_container destroyed 5 destroy

These alerts demonstrate that Wazuh can monitor Docker-related events, which was one of

the leading security requirements of the DataPlaxe platform.

5.4.2.10 Auditing Commands Run by a User

• Overview

This test aims to see if Wazuh can log and report commands executed by a pre-determined

user.

System users, here differentiated from platform users, can come in many forms, from admin

or root users to even software-related ones. Due to their permissions, some of these system

users can perform system defining actions. It may be valuable to monitor these users and

confirm that their activity does not compromise the platform either because of misconfigu-

ration or genuine compromise.

• Prerequisites

To record the author of the executed commands, Wazuh needs an auditing subsystem. The

Linux Audit subsystem was already used in the Detecting File Changes test. But as a re-

minder, this system can be installed with the following command.

yum install audit

The Wazuh agent should be configured by default to read the audit.log file. But this can

be checked in the /var/ossec/etc/ossec.conf file, where the following code block

should be present.

<localfile>

Implementing a Monitoring and Logging System in the DataPlaxe Platform 58

<log_format>audit</log_format>

<location>/var/log/audit/audit.log</location>

</localfile>

Additionally, it is necessary to add auditing rules to the Wazuh agent. These auditing rules

contain the user id of the monitored user. They configure the Wazuh agent to report every

command logged by the Linux auditing subsystem that that user executed. These rules need

to be added to the /etc/audit/rules.d/wazuh.rules file and have the following

format:

-a exit,always -F euid=<monitored_user_id> -F arch=b32 -S

execve -k audit-wazuh-c

-a exit,always -F euid=<monitored_user_id> -F arch=b64 -S

execve -k audit-wazuh-c

The command to load the auditing rules is the following:

auditctl -R /etc/audit/rules.d/wazuh.rules

As a quick note, it is not recommended to use the root user for this test as the root user,

being a unique user, performs many actions in the background, and it can be challenging to

discern what is happening for testing purposes.

• Test Steps

With the auditing rules in place, it is needed to log into the machine with the Wazuh Agent as

the monitored user and perform a command. For this test, the monitored user will perform

a simple ping to reach www.google.com with the following command:

$ ping www.google.com

• Test Results

After executing the previous command, we access the Wazuh Alerts in the Security Events

module of the Wazuh Kibana plugin. We can see the alert created in response to the ping

command. Every detail about the executed command is present: from the arguments used,

in the “execve” fields, to the user’s id, which in the case of this test was 1003.

5.4 Tests Performed 59

Table 5.18: The truncated details of the Wazuh alert generated in response to the command exe-
cuted by the monitored user.

Field Name Alert Details

data.audit.auid 1003

data.audit.command ping

data.audit.cwd /home/ptin_admin

data.audit.euid 1003

data.audit.exe /usr/bin/ping

data.audit.execve.a0 ping

data.audit.execve.a1 www.google.com

data.audit.exit 0

rule.description Audit: Command: /usr/bin/ping

These reports created by Wazuh have enough information to perform a complete picture of

the activity of a system user, which could prove irreplaceable information on the aftermath

of a cyber-attack.

5.4.2.11 Block a Malicious Actor

• Overview

The purpose of this test is to see if Wazuh is capable of handling and blocking a known

attacker. Once a bad actor has been identified, a monitoring and logging system is expected

to have a certain level of an automated response. This test aims to evaluate the response

capabilities of Wazuh and see if they are acceptable.

• Prerequisites

For this test, the “know attacker” will try to access an Apache server running on the moni-

tored machine. As such, this server needs to be installed and prepared.

Additionally, the Wazuh agent needs to be configured to capture events from the Apache

server. This setup can be done by adding the following block to the monitored machine’s

/var/ossec/etc/ossec.conf file.

<localfile>

<log_format>apache</log_format>

<location>/var/log/httpd/access_log</location>

</localfile>

After changing the configuration, it is necessary to restart the Wazuh Agent.

systemctl restart wazuh-agent

Implementing a Monitoring and Logging System in the DataPlaxe Platform 60

Next, Wazuh needs a list of known bad actors to reference. The Alienvault IP reputation

database (FireHOL, 2022) will be used for this test as it is compatible with Wazuh. After

this list has been downloaded to the Wazuh manager, the “know attacker” IP address will

be added to the list. This “know attacker” is an outside machine from the test environment.

After adding the new IP address, the list is compiled into a readable format for Wazuh. The

commands to perform these actions are the following:

wget https://raw.githubusercontent.com/firehol/blocklist-

ipsets/master/alienvault_reputation.ipset -O /var/ossec/etc/

lists/alienvault_reputation.ipset

echo "<know_attacker_ip_address>" >> /var/ossec/etc/lists/

alienvault_reputation.ipset

wget https://wazuh.com/resources/iplist-to-cdblist.py -O /tmp

/iplist-to-cdblist.py

python /tmp/iplist-to-cdblist.py /var/ossec/etc/lists/

alienvault_reputation.ipset /var/ossec/etc/lists/blacklist-

alienvault

rm -rf /var/ossec/etc/lists/alienvault_reputation.ipset

rm -rf /var/ossec/etc/lists/iplist-to-cdblist.py

chown ossec:ossec /var/ossec/etc/lists/blacklist-alienvault

chmod 660 /var/ossec/etc/lists/blacklist-alienvault

After compiling the list into a readable format for the Wazuh Manager, a custom rule is

created to use the created list in the /var/ossec/etc/rules/local_rules.xml file.

For this test, the rule has the following body:

<group name="attack,">

<rule id="100100" level="10">

<if_group>web|attack|attacks</if_group>

<list field="srcip" lookup="address_match_key">etc/lists/

blacklist-alienvault</list>

<description>IP address found in AlienVault reputation

database.</description>

</rule>

</group>

The previous rule makes it so Wazuh detects our “know attacker”, but to respond to his

access, the following code block needs to be added to the var/ossec/etc/ossec.conf

file:

<ossec_config>

<ruleset>

...

5.4 Tests Performed 61

<list>etc/lists/blacklist-alienvault</list>

...

</ruleset>

...

<active-response>

<command>firewall-drop</command>

<location>local</location>

<rules_id>100100</rules_id>

<timeout>60</timeout>

</active-response>

...

</ossec_config>

The previous code block configures Wazuh to reference the previously created list and to,

upon having a match on the created rule, with id 100100, drop the connection for 60 seconds.

After changing the configuration, it is necessary to restart the Wazuh Manager.

systemctl restart wazuh-manager

• Test Steps

With the Wazuh Manager configured to timeout for 60 seconds every connection attempt

from the IP addresses contained in the created list, to perform this test, the “know attacker”

machine will attempt to connect to the Apache server on the monitored machine through a

simple web browser.

• Test Results

After attempting to connect to the monitored machine, in the Security Events module of the

Kibana plugin, it is possible to see the alerts created by Wazuh. In those, it is possible to see

the correct identification of the attacker and the automated response that was configured.

Table 5.19: The truncated details of the Wazuh alert generated in response to the "know attacker"
access.

Field Name Alert Details

data.id 404

data.protocol GET

data.srcip know_attacker_ip_address

rule.description IP address found in AlienVault reputation database.

rule.firedtimes 32

rule.groups attack

rule.id 100100

rule.level 10

Implementing a Monitoring and Logging System in the DataPlaxe Platform 62

Table 5.20: The truncated details of the Wazuh alert generated from the automated response.

Field Name Alert Details

data.parameters.alert.data.id 404

data.parameters.alert.data.protocol GET

data.parameters.alert.data.srcip know_attacker_ip_address

data.parameters.alert.rule.description IP address found in AlienVault reputation database.

data.parameters.alert.rule.firedtimes 33

data.parameters.alert.rule.groups attack

data.parameters.alert.rule.id 100100

data.parameters.alert.rule.level 10

data.parameters.program active-response/bin/firewall-drop

rule.description Host Blocked by firewall-drop Active Response

rule.firedtimes 33

rule.groups ossec, active_response

rule.id 651

rule.level 3

5.4.2.12 Dealing with a Log Flood

• Overview

The purpose of this test is to see if Wazuh can handle a heavy number of logs. A log

flood may happen for multiple reasons, from misconfigured applications to malicious actors’

activity such as DDOS attacks, and it’s important to discern if Wazuh does not overtax the

network on such an event.

This test will lower the event transmission speed of a Wazuh agent, and then it will generate

a more significant number of logs than that. After that, it will observe the actions performed

by Wazuh while experiencing a log flood.

• Prerequisites

To perform this test, the Wazuh agent needs to be configured to produce fewer logs than what

is advised in a real situation. This change can be done in the /var/ossec/etc/ossec.

conf file in the <client_buffer> section by changing the <events_per_second>

value. For this test, this value will be set to 50 events per second (EPS), making the above

section look like this:

<client_buffer>

<!-- Agent buffer options -->

<disabled>no</disabled>

<queue_size>5000</queue_size>

<events_per_second>50</events_per_second>

5.4 Tests Performed 63

</client_buffer>

After changing the configuration, it is necessary to restart the Wazuh Agent.

systemctl restart wazuh-agent

Additionally, to see the full extent of the Wazuh behaviour during this test, it is necessary

to lower the Wazuh manager alert severity threshold. This change is needed because some

alerts from this test only have a severity level of 2, and Wazuh manager is configured by

default to only report alerts with severity levels above or equal to 3. This configuration

can be done in file /var/ossec/etc/ossec.conf of the Wazuh manager, by changing

the <log_alert_level> field from 3 to 1, making the <alerts> section look like the

following.

<alerts>

<log_alert_level>1</log_alert_level>

<email_alert_level>12</email_alert_level>

</alerts>

After changing the configuration, it is necessary to restart the Wazuh manager.

systemctl restart wazuh-manager

Furthermore, this test utilises Netcat to create the logs for the log flooding, so this tool needs

to be installed in the machine with the Wazuh agent.

yum install nmap-ncat

• Test Steps

This test needs to create logs above the 50 EPS configured, and for that, the following script

will be used. This script utilises Netcat to write logs directly into the Wazuh agent internal

socket, registering 10000 log entries faster than 50 EPS.

#!/bin/bash

for i in {1..10000}

do

echo -n "1:floodtest:Feb 3 03:08:47 linux-agent centos:

fatal firehose $i" | ncat -Uu /var/ossec/queue/sockets/queue

echo -n "."

done

Having created the above script, named makeflood, it is just a matter of making the script

executable and running it to perform this test.

chmod 700 <path_to_script>/makeflood

makeflood

Implementing a Monitoring and Logging System in the DataPlaxe Platform 64

• Test Results

After executing the script, it is possible to see Wazuh’s behaviour within the Security Events

module of Kibana.

The following graph aggregates the alerts created by the test script into one second periods.

It is possible to confirm that the Wazuh agent does not transmit more than 50 alerts per

second. Although, due to this limitation, it has discarded and lost some alerts, as it only

captured 5264 out of 10000. But this is an acceptable compromise, as the alternative is to

run the risk of overtaxing the network with redundant data and stopping activity flows of the

DataPlaxe system.

Figure 5.6: The graph showing the distribution of the logs generated by the log flood script.

Table 5.21: The truncated details of the Wazuh alert generated from the log flood script.

Field Name Alert Details

full_log Feb 3 03:08:47 linux-agent centos: fatal firehose 9995

location floodtest

rule.firedtimes 10,662

rule.id 1002

rule.level 2

The Wazuh agent also sends alerts notifying that it is experiencing a log flood. The details

of these can be seen in the following table.

5.5 Implementation 65

Table 5.22: The Wazuh alerts generated from the filling of the Agent’s buffer due to the log
flooding script.

rule.description rule.level full_log data.level

Agent event queue is 90% full. 7 Agent buffer: ’90%’. 90%

Agent event queue is full.

Events may be lost.
9 Agent buffer: ’full’. full

Agent event queue is flooded.

Check the agent configuration.
12 Agent buffer: ’flooded’. flooded

Agent event queue is back to normal load. 3 Agent buffer: ’normal’. normal

As it is possible to see from the obtained results, Wazuh is indeed capable of handling a

heavy amount of logs in a way that does not overtax the internal network of the DataPlaxe

platform.

5.5 Implementation

Having taken a look at Wazuh and its capabilities, this section will describe the ideal implementa-

tion of this tool in the context of the DataPlaxe platform.

Considering the purpose of monitoring all of the platform’s components, Wazuh Agents must

be installed on every single machine of the Data Ingestion and Access Layer cluster and the Plat-

form Service cluster.

Next, the traffic generated by the agents should be funnelled through the Management Network

onto the Wazuh Manager installed in the Administration and Service Monitoring cluster machines.

The Administration and Service Monitoring cluster machines should be divided into two sub-

groups. The first group will have multiple instances of Wazuh Managers, which adds redundancy

in case of technical failure, and Filebeat. These managers should be configured as a sub-cluster

to perform load balancing and send their logs via Filebeat to the second group. The second group

will have ElasticSearch instances in a sub-cluster setup to perform load balancing. The Kibana

server can be installed onto a single device as long as it is configured to communicate with the

managers and the ElasticSearch sub-clusters correctly.

The Wazuh Agents should be configured to collect logs from the OpenResty server in the

Data Ingestion and Access Layer cluster. As OpenResty is based on Nginx (Nginx Inc, 2022),

this configuration can be done in the /var/ossec/etc/ossec.conf file of the Wazuh agents

present in the edge nodes by adding the following code block.

<ossec_config>

<localfile>

<log_format>apache</log_format>

<location>/var/log/nginx/access.log</location>

</localfile>

Implementing a Monitoring and Logging System in the DataPlaxe Platform 66

<localfile>

<log_format>apache</log_format>

<location>/var/log/nginx/error.log</location>

</localfile>

</ossec_config>

And in the Platform Service cluster, the agents need to be configured to capture Docker re-

lated events. This configuration can be done in the var/ossec/etc/ossec.conf file with the

following code block.

<ossec_config>

<wodle name="docker-listener">

<interval>10m</interval>

<attempts>5</attempts>

<run_on_start>yes</run_on_start>

<disabled>no</disabled>

</wodle>

</ossec_config>

Chapter 6

Conclusions and Future Work

6.1 Conclusion

This dissertation aimed to find a way of detecting, preventing and securing systems against cyber-

attacks. The concept of monitoring and logging tools was discovered and explored by researching

books and the words of authority figures in the cyber security space. By utilising the DataPlaxe

platform, a multi-tenant service by Altice Labs, as a case study and a testing ground for one of

these tools, namely Wazuh, it seeks to validate if monitoring and logging tools are indeed capable

of detecting cyber-security attacks. Secondarily it also aimed to provide the DataPlaxe platform

with added security and resistance to cyberattacks by again utilising the concept of monitoring and

logging tools.

Most of the current literature available on monitoring and logging tools is, like most cyber

security literature, mainly focused on guidelines and best practices and often from an organisation

perspective and level. This focus makes it difficult to grasp these concepts from a developer and

implementation level. As such, this dissertation exposed the monitoring and logging concepts

from a more ground-level approach in the hopes of filling this perspective vacuum regarding this

subject.

But even though the usage of monitoring and logging tools is often lacking in modern systems,

these tools do populate the market should one look for them. And even though this dissertation

only deeply investigated one of them, the results from the tests performed were entirely satis-

factory. These tools can detect cyberattacks, as made clear by the brute-force, SQL injection,

shellshock and malware tests. Additionally, these tools can collect valuable information from the

happenings within the system they are implemented, as demonstrated by the detecting file changes

test, the auditing commands from a user test and the Docker monitoring test. And, if correctly con-

figured, they could respond automatically, faster than any human, at known and common forms

of attacks as demonstrated by the blocking a malicious actor test. They serve as a great line of

defence against cyberattacks that should be used whenever possible.

Regarding the secondary goal of this dissertation of improving the security of the Dataplaxe

platform, the selected monitoring and logging tool, Wazuh, performed admirably, as stated previ-

67

Conclusions and Future Work 68

ously, as general-purpose and all-encompassing monitoring and logging tool. And it was even able

to meet additional requirements specific to the DataPlaxe platform as it demonstrates the capabil-

ities to monitor Docker activity and avoid overtaxing the platform’s internal networks in the event

of a log flood. It has become clear that the security of the DataPlaxe platform would significantly

improve with the implementation of a monitoring and logging tool, and Wazuh has proven to be

capable of meeting the expectation of such a tool within the platform.

6.2 Further Work

This dissertation answered how to detect cyberattacks with monitoring and logging tools. And

although that is a helpful answer and a topic that needs more general awareness. There could

be other ways to detect cyberattacks and many other forms to prevent them and mitigate their

damages should they occur, which should also be studied and highlighted.

Additionally, further exploration of the monitoring and logging tools available in the market is

needed. Many of them are very specialised in what they do. This dissertation has glanced chiefly

over them, preferring instead to look at a more general all-purpose tool.

For the DataPlaxe platform, there is the implementation of Wazuh on the platform as described

in the sub-chapter Implementation. And its configuration and adjusting when the platform is made

available to the public.

Additionally, the concept of integrating Wazuh with a network intrusion detecting system

(IDS) was untouched by this dissertation. Wazuh can be combined with Suricata (OISF, 2022)

an open-source network IDS, and should Suricata be compatible with the DataPlaxe platform, it

could allow for better monitoring of the platform’s internal networks and their network traffic.

References

AppDynamics. Logging vs Monitoring: Best Practices for Integra-
tion | AppDynamics, 2021. URL https://www.appdynamics.com/
product/how-it-works/application-analytics/log-analytics/
monitoring-vs-logging-best-practices.

AT&T Business. OSSIM: The Open Source SIEM | AlienVault, 2022. URL https://
cybersecurity.att.com/products/ossim.

Awake Security. Network Intrusion Definition and Examples, 2021. URL https://
awakesecurity.com/glossary/network-intrusion/.

Kristian Beckers. Pattern and security requirements: Engineering-based establishment of security
standards. Springer International Publishing, jan 2015. ISBN 9783319166643. doi: 10.1007/
978-3-319-16664-3. URL www.springer.com.

Rebecca M Blank and Patrick D Gallagher. Guide for Conducting Risk Assessments, sep
2012. URL https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/
final.

Wen Lin Cheng, Ting Che Chuang, Chien Wen Yang, Yueh Hsien Lin, Min Liu, and Chuan
Yin. An integrated security monitoring system for digital service network devices. In 19th
Asia-Pacific Network Operations and Management Symposium: Managing a World of Things,
APNOMS 2017, pages 118–122, Seoul, South Korea, nov 2017. Institute of Electrical and Elec-
tronics Engineers Inc. doi: 10.1109/APNOMS.2017.8094189.

Cisco. Snort - Network Intrusion Detection & Prevention System, 2022. URL https://www.
snort.org/.

João Marques Correia. Execução segura com contentores. M.s. thesis, UA, Aveiro, Portugal, jul
2020. URL https://ria.ua.pt/handle/10773/29674.

Jason Creasey. Cyber Security Monitoring and Logging Guide DTP notes A Good Tip Cyber Secu-
rity Monitoring and Logging Guide. CREST, 2015. URL http://www.crest-approved.
org.

Docker Inc. Docker overview | Docker Documentation, 2022. URL https://docs.docker.
com/get-started/overview/.

Nuno Filipe Lopes da Costa Duarte. Segurança contra intrusão em redes informáticas. M.s. thesis,
Instituto Politécnico do Porto. Instituto Superior de Engenharia do Porto, Porto, Portugal, 2008.
URL https://recipp.ipp.pt/handle/10400.22/1883.

69

https://www.appdynamics.com/product/how-it-works/application-analytics/log-analytics/monitoring-vs-logging-best-practices
https://www.appdynamics.com/product/how-it-works/application-analytics/log-analytics/monitoring-vs-logging-best-practices
https://www.appdynamics.com/product/how-it-works/application-analytics/log-analytics/monitoring-vs-logging-best-practices
https://cybersecurity.att.com/products/ossim
https://cybersecurity.att.com/products/ossim
https://awakesecurity.com/glossary/network-intrusion/
https://awakesecurity.com/glossary/network-intrusion/
www.springer.com
https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final
https://www.snort.org/
https://www.snort.org/
https://ria.ua.pt/handle/10773/29674
http://www.crest-approved.org
http://www.crest-approved.org
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://recipp.ipp.pt/handle/10400.22/1883

REFERENCES 70

EC-Council. What Is a Denial-Of-Service (DoS) Attack, 2021. URL https://www.
eccouncil.org/what-is-a-denial-of-service-dos-attack/.

Elastic NV. Free and Open Search: The Creators of Elasticsearch, ELK & Kibana | Elastic, 2022.
URL https://www.elastic.co/.

FireHOL. alienvault_reputation by Alien Vault, reputation IPs list, at FireHOL IP Lists, 2022.
URL https://iplists.firehol.org/?ipset=alienvault_reputation.

Stephen Groat, Joseph Tront, and Randy Marchany. Advancing the defense in depth model. In
Proceedings - 2012 7th International Conference on System of Systems Engineering, SoSE 2012,
pages 285–290, Genova, Italy, jul 2012. IEEE. ISBN 9781467329750. doi: 10.1109/SYSOSE.
2012.6384127.

IBM Security. IBM Security QRadar SIEM | IBM, 2022. URL https://www.ibm.com/
qradar/security-qradar-siem.

Intersoft Consulting. General Data Protection Regulation (GDPR) – Official Legal Text, 2021.
URL https://gdpr-info.eu/.

Kali Linux. Hydra | Kali Linux Tools, 2021. URL https://www.kali.org/tools/hydra/.

Kaspersky. Kaspersky IT Encyclopedia, 2021. URL https://encyclopedia.kaspersky.
com/.

Liu Cricket and Albitz Paul. DNS and BIND, 5th Edition | Cricket Liu, Paul Albitz | download.
O’Reilly, fifth edition, 2006. ISBN 9780596100575. URL https://pt1lib.org/book/
3677472/5fa27c.

LogRhythm. SIEM Solution | Security Information & Event Management | LogRhythm, 2022.
URL https://logrhythm.com/solutions/security/siem/.

Metabase. Metabase, 2022. URL https://www.metabase.com/.

Inc MinIO. MinIO | High Performance, Kubernetes Native Object Storage, 2022. URL https:
//min.io/.

Ferdy Mulyadi, Leela Aditya Annam, Ridnarong Promya, and Chalermpol Charnsripinyo. Im-
plementing Dockerized Elastic Stack for Security Information and Event Management. In In-
CIT 2020 - 5th International Conference on Information Technology, pages 243–248, Chonburi,
Thailand, oct 2020. Institute of Electrical and Electronics Engineers Inc. ISBN 9781728166940.
doi: 10.1109/INCIT50588.2020.9310950.

Nginx Inc. Advanced Load Balancer, Web Server, & Reverse Proxy - NGINX, 2022. URL
https://www.nginx.com/.

Michael Nieles, Kelley L. Dempsey, and Victoria Y. Pillitteri. An Introduction to Information Secu-
rity. Special Publication (NIST SP), National Institute of Standards and Technology, Gaithers-
burg, MD, Gaithersburg, MD, jun 2017. doi: 10.6028/NIST.SP.800-12R1. URL https:
//www.nist.gov/publications/introduction-information-security.

OISF. Home - Suricata, 2022. URL https://suricata.io/.

https://www.eccouncil.org/what-is-a-denial-of-service-dos-attack/
https://www.eccouncil.org/what-is-a-denial-of-service-dos-attack/
https://www.elastic.co/
https://iplists.firehol.org/?ipset=alienvault_reputation
https://www.ibm.com/qradar/security-qradar-siem
https://www.ibm.com/qradar/security-qradar-siem
https://gdpr-info.eu/
https://www.kali.org/tools/hydra/
https://encyclopedia.kaspersky.com/
https://encyclopedia.kaspersky.com/
https://pt1lib.org/book/3677472/5fa27c
https://pt1lib.org/book/3677472/5fa27c
https://logrhythm.com/solutions/security/siem/
https://www.metabase.com/
https://min.io/
https://min.io/
https://www.nginx.com/
https://www.nist.gov/publications/introduction-information-security
https://www.nist.gov/publications/introduction-information-security
https://suricata.io/

REFERENCES 71

Rui Miguel Almeida Oliveira. Analysis of Intrusion Detection Log Data on a Scalable
Environment. M.s. thesis, FEUP, UP, Porto, Portugal, aug 2020. URL https://
repositorio-aberto.up.pt/handle/10216/128588.

OpenResty Inc. OpenResty® - Official Site, 2022. URL https://openresty.org/en/.

OWASP Foundation. OWASP Top Ten Web Application Security Risks | OWASP, 2021a. URL
https://owasp.org/www-project-top-ten/.

OWASP Foundation. OWASP Top 10:2021, 2021b. URL https://owasp.org/Top10/.

OWASP Foundation. Logging - OWASP Cheat Sheet Series, 2021c. URL https://
cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html.

Tao Qin, Chao He, Hezhi Jiang, and Ruoya Chen. Behavior rhythm: An effective model for
massive logs characterizing and security monitoring in cloud. In 2018 IEEE Conference on
Communications and Network Security, CNS 2018, Beijing, China, aug 2018. Institute of Elec-
trical and Electronics Engineers Inc. ISBN 9781538645864. doi: 10.1109/CNS.2018.8433138.

Quadrant Information Security. Open Source - Quadrant Information Security, 2022. URL
https://quadrantsec.com/sagan_log_analysis_engine/.

Rapid7. Common Types of Cybersecurity Attacks, 2021. URL https://www.rapid7.com/
fundamentals/types-of-attacks/.

Fanny Rivera-Ortiz and Liliana Pasquale. Automated Modelling of Security Incidents to rep-
resent Logging Requirements in Software Systems. In Proceedings of the 15th International
Conference on Availability, Reliability and Security, New York, NY, USA, 2020. ACM. ISBN
9781450388337. doi: 10.1145/3407023. URL https://doi.org/10.1145/3407023.
3407081.

RSA Security LLC. NetWitness Platform – See Everything, Fear Nothing, 2022. URL https:
//www.netwitness.com/.

Aneela Safdar, Hanif Durad, and Masoom Alam. Design and implementation of real-time vi-
sualization tool for network security monitoring. In Proceedings of 2018 15th International
Bhurban Conference on Applied Sciences and Technology, IBCAST 2018, volume 2018-Janua,
pages 477–483, Islamabad, Pakistan, mar 2018. Institute of Electrical and Electronics Engineers
Inc. ISBN 9781538635643. doi: 10.1109/IBCAST.2018.8312267.

Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information in Computer Systems.
Proceedings of the IEEE, 63(9):1278–1308, aug 1975. ISSN 15582256. doi: 10.1109/PROC.
1975.9939.

Joanna C.S. Santos, Katy Tarrit, and Mehdi Mirakhorli. A Catalog of Security Architecture
Weaknesses. In Proceedings - 2017 IEEE International Conference on Software Architec-
ture Workshops, ICSAW 2017: Side Track Proceedings, pages 220–223. Institute of Electri-
cal and Electronics Engineers Inc., apr 2017. ISBN 9781509047932. doi: 10.1109/ICSAW.
2017.25. URL https://www.researchgate.net/publication/317929320_A_
Catalog_of_Security_Architecture_Weaknesses.

Muhammad I.H. Sukmana, Kennedy A. Torkura, Feng Cheng, Christoph Meinel, and Hendrik
Graupner. Unified logging system for monitoring multiple cloud storage providers in cloud

https://repositorio-aberto.up.pt/handle/10216/128588
https://repositorio-aberto.up.pt/handle/10216/128588
https://openresty.org/en/
https://owasp.org/www-project-top-ten/
https://owasp.org/Top10/
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://quadrantsec.com/sagan_log_analysis_engine/
https://www.rapid7.com/fundamentals/types-of-attacks/
https://www.rapid7.com/fundamentals/types-of-attacks/
https://doi.org/10.1145/3407023.3407081
https://doi.org/10.1145/3407023.3407081
https://www.netwitness.com/
https://www.netwitness.com/
https://www.researchgate.net/publication/317929320_A_Catalog_of_Security_Architecture_Weaknesses
https://www.researchgate.net/publication/317929320_A_Catalog_of_Security_Architecture_Weaknesses

REFERENCES 72

storage broker. In International Conference on Information Networking, volume 2018-Janua,
pages 44–49, Chiang Mai, Thailand, apr 2018. IEEE Computer Society. ISBN 9781538622896.
doi: 10.1109/ICOIN.2018.8343081.

Sumo Logic. Cloud Log Management, Monitoring, SIEM Tools | Sumo Logic, 2022. URL
https://www.sumologic.com/.

Jan Svacina, Jackson Raffety, Connor Woodahl, Brooklynn Stone, Tomas Cerny, Miroslav Bu-
res, Dongwan Shin, Karel Frajtak, and Pavel Tisnovsky. On Vulnerability and Security Log
analysis: A Systematic Literature Review on Recent Trends. In Proceedings of the In-
ternational Conference on Research in Adaptive and Convergent Systems, pages 175–180,
New York, NY, USA, 2020. ACM. ISBN 9781450380256. doi: 10.1145/3400286. URL
https://doi.org/10.1145/3400286.3418261.

Vitsunee Teeraratchakarn and Yachai Limpiyakorn. Exploring Network Vulnerabilities for Corpo-
rate Security Operations. In Lecture Notes in Electrical Engineering, volume 621, pages 341–
351. Springer, Singapore, 2020. ISBN 9789811514647. doi: 10.1007/978-981-15-1465-4_35.
URL https://link.springer.com/chapter/10.1007/978-981-15-1465-4_35.

The Apache Software Foundation. Apache Hive TM, 2022. URL https://hive.apache.
org/.

The PostgreSQL Global Development Group. PostgreSQL: The world’s most advanced open
source database, 2022. URL https://www.postgresql.org/.

The Presto Foundation. Presto | Distributed SQL Query Engine for Big Data, 2022. URL https:
//prestodb.io/.

Eric. Vyncke and Christopher. Paggen. LAN switch security : what hackers know about your
switches. Cisco Press, first edition, 2007. ISBN 978-1-58705-256-9.

Lina Wang, Ying Ren -, Steven Lam, Warren Dodd, Kelly Skinner, Al , Yong Sun, and
Haiwen Wang. Intelligent Computer Security Monitoring Information Network Anal-
ysis. IOP Conference Series: Materials Science and Engineering, 612(4):042042,
oct 2019. ISSN 1757-899X. doi: 10.1088/1757-899X/612/4/042042. URL https:
//iopscience.iop.org/article/10.1088/1757-899X/612/4/042042https:
//iopscience.iop.org/article/10.1088/1757-899X/612/4/042042/meta.

Yun Wang and Qianhuizhi Zheng. A Logging Overhead Optimization Method Based on Anomaly
Detection Model. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 12634 LNCS, pages 349–
359. Springer, Cham, dec 2020. ISBN 9783030706258. doi: 10.1007/978-3-030-70626-5_37.
URL https://link.springer.com/chapter/10.1007/978-3-030-70626-5_37.

Wazuh Inc. Rules classification - Ruleset · Wazuh documentation, 2022. URL
https://documentation.wazuh.com/current/user-manual/ruleset/
rules-classification.html.

Wazuh Inc. Wazuh · The Open Source Security Platform, 2022. URL https://wazuh.com/.

https://www.sumologic.com/
https://doi.org/10.1145/3400286.3418261
https://link.springer.com/chapter/10.1007/978-981-15-1465-4_35
https://hive.apache.org/
https://hive.apache.org/
https://www.postgresql.org/
https://prestodb.io/
https://prestodb.io/
https://iopscience.iop.org/article/10.1088/1757-899X/612/4/042042 https://iopscience.iop.org/article/10.1088/1757-899X/612/4/042042/meta
https://iopscience.iop.org/article/10.1088/1757-899X/612/4/042042 https://iopscience.iop.org/article/10.1088/1757-899X/612/4/042042/meta
https://iopscience.iop.org/article/10.1088/1757-899X/612/4/042042 https://iopscience.iop.org/article/10.1088/1757-899X/612/4/042042/meta
https://link.springer.com/chapter/10.1007/978-3-030-70626-5_37
https://documentation.wazuh.com/current/user-manual/ruleset/rules-classification.html
https://documentation.wazuh.com/current/user-manual/ruleset/rules-classification.html
https://wazuh.com/

Appendix A

Wazuh Configuration Files

This section contains the Wazuh configuration files relevant to the tests performed.

A.1 File Containing the Trojan Signatures

Copyright (C) 2015-2020, Wazuh Inc.

#

This program is a free software; you can redistribute it

and/or modify it under the terms of the GNU General Public

License (version 2) as published by the FSF - Free Software

Foundation

#

rootkit_trojans.txt, (C) Daniel B. Cid

#

Imported from the rootcheck project.

Some entries taken from the chkrootkit project.

#

Blank lines and lines starting with ’#’ are ignored.

#

Each line must be in the following format:

file_name !string_to_search!Description

Common binaries and public trojan entries

ls !bash|^/bin/sh|dev/[^clu]|\.tmp/lsfile|duarawkz|/prof|/

security|file\.h!

env !bash|^/bin/sh|file\.h|proc\.h|/dev/|^/bin/.*sh!

echo !bash|^/bin/sh|file\.h|proc\.h|/dev/[^cl]|^/bin/.*sh!

chown !bash|^/bin/sh|file\.h|proc\.h|/dev/[^cl]|^/bin/.*sh!

chmod !bash|^/bin/sh|file\.h|proc\.h|/dev/[^cl]|^/bin/.*sh!

73

Wazuh Configuration Files 74

chgrp !bash|^/bin/sh|file\.h|proc\.h|/dev/[^cl]|^/bin/.*sh!

cat !bash|^/bin/sh|file\.h|proc\.h|/dev/[^cl]|^/bin/.*sh!

bash !proc\.h|/dev/[0-9]|/dev/[hijkz]!

sh !proc\.h|/dev/[0-9]|/dev/[hijkz]!

uname !bash|^/bin/sh|file\.h|proc\.h|^/bin/.*sh!

date !bash|^/bin/sh|file\.h|proc\.h|/dev/[^cln]|^/bin/.*sh!

du !w0rm|/prof|file\.h!

df !bash|^/bin/sh|file\.h|proc\.h|/dev/[^clurdv]|^/bin/.*sh

!

login !elite|SucKIT|xlogin|vejeta|porcao|lets_log|sukasuk!

passwd !bash|file\.h|proc\.h|/dev/ttyo|/dev/[A-Z]|/dev/[b-s,

uvxz]!

mingetty !bash|Dimensioni|pacchetto!

chfn !bash|file\.h|proc\.h|/dev/ttyo|/dev/[A-Z]|/dev/[a-s,

uvxz]!

chsh !bash|file\.h|proc\.h|/dev/ttyo|/dev/[A-Z]|/dev/[a-s,

uvxz]!

mail !bash|file\.h|proc\.h|/dev/[^nu]!

su !/dev/[d-s,abuvxz]|/dev/[A-D]|/dev/[F-Z]|/dev/[0-9]|

satori|vejeta|conf\.inv!

sudo !satori|vejeta|conf\.inv!

crond !/dev/[^nt]|bash!

gpm !bash|mingetty!

ifconfig !bash|^/bin/sh|/dev/tux|session.null|/dev/[^cludisopt]!

diff !bash|^/bin/sh|file\.h|proc\.h|/dev/[^n]|^/bin/.*sh!

md5sum !bash|^/bin/sh|file\.h|proc\.h|/dev/|^/bin/.*sh!

hdparm !bash|/dev/ida!

ldd !/dev/[^n]|proc\.h|libshow.so|libproc.a!

Trojan entries for troubleshooting binaries

grep !bash|givemer!

egrep !bash|^/bin/sh|file\.h|proc\.h|/dev/|^/bin/.*sh!

find !bash|/dev/[^tnlcs]|/prof|/home/virus|file\.h!

lsof !/prof|/dev/[^apcmnfk]|proc\.h|bash|^/bin/sh|/dev/ttyo|/

dev/ttyp!

netstat !bash|^/bin/sh|/dev/[^aik]|/prof|grep|addr\.h!

top !/dev/[^npi3st%]|proc\.h|/prof/!

ps !/dev/ttyo|\.1proc|proc\.h|bash|^/bin/sh!

tcpdump !bash|^/bin/sh|file\.h|proc\.h|/dev/[^bu]|^/bin/.*sh!

pidof !bash|^/bin/sh|file\.h|proc\.h|/dev/[^f]|^/bin/.*sh!

A.1 File Containing the Trojan Signatures 75

fuser !bash|^/bin/sh|file\.h|proc\.h|/dev/[a-dtz]|^/bin/.*sh!

w !uname -a|proc\.h|bash!

Trojan entries for common daemons

sendmail !bash|fuck!

named !bash|blah|/dev/[0-9]|^/bin/sh!

inetd !bash|^/bin/sh|file\.h|proc\.h|/dev/[^un%]|^/bin/.*sh!

apachectl !bash|^/bin/sh|file\.h|proc\.h|/dev/[^n]|^/bin/.*sh!

sshd !check_global_passwd|panasonic|satori|vejeta|\.ark|/hash

\.zk|bash|/dev[a-s]|/dev[A-Z]/!

syslogd !bash|/usr/lib/pt07|/dev/[^cln]]|syslogs\.h|proc\.h!

xinetd !bash|file\.h|proc\.h!

in.telnetd !cterm100|vt350|VT100|ansi-term|bash|^/bin/sh|/dev[A-R

]|/dev/[a-z]/!

in.fingerd !bash|^/bin/sh|cterm100|/dev/!

identd !bash|^/bin/sh|file\.h|proc\.h|/dev/[^n]|^/bin/.*sh!

init !bash|/dev/h

tcpd !bash|proc\.h|p1r0c4|hack|/dev/[^n]!

rlogin !p1r0c4|r00t|bash|/dev/[^nt]!

Kill trojan

killall !/dev/[^t%]|proc\.h|bash|tmp!

kill !/dev/[ab,d-k,m-z]|/dev/[F-Z]|/dev/[A-D]|/dev/[0-9]|proc

\.h|bash|tmp!

Rootkit entries

/etc/rc.d/rc.sysinit !enyelkmHIDE! enye-sec Rootkit

ZK rootkit (http://honeyblog.org/junkyard/reports/redhat-

compromise2.pdf)

/etc/sysconfig/console/load.zk !/bin/sh! ZK rootkit

/etc/sysconfig/console/load.zk !usr/bin/run! ZK rootkit

Modified /etc/hosts entries

Idea taken from:

http://blog.tenablesecurity.com/2006/12/detecting_compr.html

http://www.sophos.com/security/analyses/trojbagledll.html

http://www.f-secure.com/v-descs/fantibag_b.shtml

/etc/hosts !^[^#]*avp\.ch!Anti-virus site on the hosts file

/etc/hosts !^[^#]*avp\.ru!Anti-virus site on the hosts file

Wazuh Configuration Files 76

/etc/hosts !^[^#]*awaps\.net! Anti-virus site on the hosts file

/etc/hosts !^[^#]*ca\.com! Anti-virus site on the hosts file

/etc/hosts !^[^#]*mcafee\.com! Anti-virus site on the hosts file

/etc/hosts !^[^#]*microsoft\.com! Anti-virus site on the hosts file

/etc/hosts !^[^#]*f-secure\.com! Anti-virus site on the hosts file

/etc/hosts !^[^#]*sophos\.com! Anti-virus site on the hosts file

/etc/hosts !^[^#]*symantec\.com! Anti-virus site on the hosts file

/etc/hosts !^[^#]*my-etrust\.com! Anti-virus site on the hosts file

/etc/hosts !^[^#]*nai\.com! Anti-virus site on the hosts file

/etc/hosts !^[^#]*networkassociates\.com! Anti-virus site on the

hosts file

/etc/hosts !^[^#]*viruslist\.ru! Anti-virus site on the hosts file

/etc/hosts !^[^#]*kaspersky! Anti-virus site on the hosts file

/etc/hosts !^[^#]*symantecliveupdate\.com! Anti-virus site on the

hosts file

/etc/hosts !^[^#]*grisoft\.com! Anti-virus site on the hosts file

/etc/hosts !^[^#]*clamav\.net! Anti-virus site on the hosts file

/etc/hosts !^[^#]*bitdefender\.com! Anti-virus site on the hosts

file

/etc/hosts !^[^#]*antivirus\.com! Anti-virus site on the hosts file

/etc/hosts !^[^#]*sans\.org! Security site on the hosts file

	Front Page
	Abstract
	Resumo
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Objectives
	1.2 Related Works
	1.3 Document Structure

	2 Cyber Security
	2.1 Overview
	2.2 Vulnerabilities of Computer Systems
	2.3 Cyberattacks
	2.3.1 Reconnaissance Attacks
	2.3.2 Network Intrusion Attacks
	2.3.3 Network Intrusion Cover-Up Methods
	2.3.4 DoS Attacks

	3 Monitoring and Logging Tools
	3.1 Overview
	3.2 Purpose and Goals
	3.3 Logging Guidelines
	3.3.1 Data Selection
	3.3.2 Formatting Guidelines

	3.4 The Monitoring Process
	3.5 Market

	4 Case Study: The DataPlaxe Platform
	4.1 Overview
	4.2 Architecture and Components
	4.3 Security Needs

	5 Implementing a Monitoring and Logging System in the DataPlaxe Platform
	5.1 Approach
	5.2 Selection
	5.3 Wazuh
	5.4 Tests Performed
	5.4.1 Test Implementation
	5.4.2 Tests Performed and Results

	5.5 Implementation

	6 Conclusions and Future Work
	6.1 Conclusion
	6.2 Further Work

	References
	A Wazuh Configuration Files
	A.1 File Containing the Trojan Signatures

