
Novel Time-Frequency Based Scheme
for Detecting Sound Events from Sound

Background in Audio Segments

Vahid Hajihashemi1(B) , Abdorreza Alavigharahbagh1 , Hugo S. Oliveira1 ,
Pedro Miguel Cruz2 , and João Manuel R. S. Tavares3

1 Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
Hajihashemi.vahid@ieee.org

2 Bosch Security Systems S.A., Ovar, Portugal
3 Departamento de Engenharia Mecânica, Faculdade de Engenharia,

Universidade do Porto, Porto, Portugal

Abstract. Usually, Sound event detection systems that classify different
events from sound data have two main blocks. In the first block, sound
events are separated from sound background and in next block, differ-
ent events are classified. In recent years, this research area has become
increasingly popular in a wide range of applications, such as in surveil-
lance and city patterns learning and recognition, mainly when combined
with imaging sensors. However, it still poses challenging problems due
to existent noise, complexity of the events, poor microphone(s) qual-
ity, bad microphone location(s), or events occurring simultaneously. This
research aimed to compare accurate signal processing and classification
methods to suggest a novel method for detecting sound events from sound
background in urban scenes. Using wavelet and Mel-frequency cepstral
coefficients, the analysis of the effect of classification methods and min-
imization of the number of train data are some of the advantages of
the proposed method. The proposed methods’ application to a standard
sounds database led to an accuracy of about 99% in event detection.

Keywords: Signal processing · Wavelet transform · Machine
learning · Event detection

1 Introduction

Information processing algorithms are a paramount step in artificial intelli-
gence growth. However, the current modes of human-machine communication
are geared more towards living with the limitations of computer input/output
devices, mainly as to sound and image, rather than the convenience of humans.
Sound is one of the primary modes of communication among humans or between
environment and humans. On the other hand, it would be interesting if comput-
ers could listen to sound and understand meanings. Automatic speech recogni-
tion and sound event detection are processes of deriving the word sequence or
sound reason, given the speech waveform. Speech understanding goes one step
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further, and describe the meaning of the signal in terms of human communi-
cation. Intelligent agents such as mobile phones, hearing aids or robots could
also hear, but they cannot exactly interpret what is heard. Sound is often a
supplement to content such as video and contains information about the envi-
ronment. The difference is that often the sound can be collected and processed
in easier ways. The information gathered from a meaningful sound analysis can
be useful for other processes such as robot routing, user alerting, or analysis and
understanding details of an event.

A sound event is a designation commonly used to describe a recognizable
event in an audio segment. This designation usually enables a person to under-
stand the meaning of an event and how it relates to other events. Sound events
can be used to represent a scene symbolically; for example, a hearing scene
on a busy street includes cars passing, cars crash and footsteps of pedestrians.
Sound scenes can be described with different specific sound events to assign
the main subject, for instance, a street Semantic and automatic event detection
and understanding are fundamental requirements in modern urban surveillance
systems towards smarter and safer cities. While such systems rely heavily on
imaging data, other types of data, such as audio data, can be used to overcome
the weaknesses of the visual-based systems and enhance the outcomes of the
systems towards better decision making by the city authorities. Because of the
fuzzy nature of sound events interpretation, artificial intelligence still has many
weaknesses in comparison to the human system. Based on challenges in sound
event detection in urban scenes, in this article, a comprehensive analysis of usual
state of the art features in sound event detection is presented, and a novel time-
frequency method is suggested to automatically detect sound events from sound
background in audio segments acquired in urban scenes. This article is struc-
tured as follows: the next section gives an overview of state-of-the-art researches
in sound event detection. The third section describes the mathematical and the-
oretical fundamentals of wavelet transform (WT), Mel-frequency cepstral coeffi-
cients (MFCCs), K-nearest neighbor (KNN) and support vector machine (SVM),
which are used in the proposed method. Section 4 presents details of the used
database and then describes the proposed method. Simulation results and con-
clusions are given in Sects. 5 and 6, respectively.

2 Literature Review

In recent years, efforts have been made to expand the issue of sound event recog-
nition to a comprehensive set of events in environments. Most audible scenes are
complex in terms of events, as they usually involve several simultaneously active
overlapping sound events. There are two ways to automatically detect a sound
event: 1) Finding the start and end time of an event in an audio segment, and
then make a single-channel (Monophonic) sequence including events as output
[1]. This method is called single-channel detection (Monophonic Detection). 2)
Finding some events in a multi-channel (Polyphonic) sequence of events, which is
called multi-channel recognition [2,3]. A lot of research has been done in sound
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event detection. An unrelated field approach was proposed in [4], which con-
sists of two steps: automatic background detection and sound event detection.
A method for modeling the previous probabilities of overlapping events was pro-
posed using a probabilistic latent semantic analysis (PLSA) to calculate previous
probabilities and learn the relationships between event sources [2].

There are two ways to detect events in multi-source environments that can
detect multiple overlapping sound events. The first uses uniform single-channel
recorded sounds (mixed signals), and in the detection stage, uses several limited
Viterbi [5] transitions to record overlapping events [6]. The second uses Unsuper-
vised Source Selection as a processing step to minimize the impact of overlapping
events, and the detection step is performed separately for each system, [7]. In [3],
two methods based on an iterative algorithm for Exception Maximization (EM)
used to select the desired voice: one, based on the most probable current selection;
and another, based on the gradual elimination of the most probable current from
the training. The relationship between sound and label in a sound database was
studied by evaluating the semantic similarity of sample labels with similar seman-
tic sounds in [8]. On the other hand, a method for combining sound similarity and
semantic similarity in a single similarity criterion was proposed in [9].

In some research, the audio signal is recognized as a single-channel signal with
one event at a time [10,11]. LeCun et al. proposed a system for detecting an event
in a real-life recorded file, using deep learning [12]. In [2], a Probabilistic Latent
Semantic Analysis (PLSA), a method close to Non-negative Matrix Factorization
(NMF), was proposed to detect overlapping sound events. Simultaneously with the
occurrence of events, the degree of overlap of a polyphonic part is represented. Cot-
ton and Ellis applied NMF to MFCCs and tested proposed method on the detec-
tion of heterogeneous sound events [10]. In speech recognition applications, a usual
assumption is the existence of a dominant source that should be analyzed [13], but
this assumption is not true in event detection.One strategy tomanagemulti-voiced
signals is to separate sound resources and analyze each source separately [7,14]. In
[14], a study on computational analysis of auditory scenes was performed to study
human-robot interaction by recognizing auditory information. A review of the lat-
est research in the category of sound event categorization is presented in [15], where
various types of convolutional neural network (CNN) architectures used to cate-
gorize sound events are described.

Many researchers have focused on sound denoising to increase the sound
event detection accuracy. According to our review, considerable research has
been done on urban noise modeling and not so on noise removal. Usual noise
management approaches are focused on the reduction of the noise energy [16]. In
event detection, noise is usually defined as any unwanted normal environment
sound that may decrease the accuracy of the abnormal sound detection. Two
categories have been introduced for noise removing: energetic masking (EM) and
informational masking (IM). EM uses similar time-frequency locations [17,18]
and has weakness in high-energy [17,19]; therefore, EM alone is not a good
choice [20]. IM is an indirect saliency-based method [21,22] of auditory attention
[23,24].
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A wide range of features in different domains has been used to detect sound
events, namely: Spectrogram [25], patterns similarity in the time domain [26,27],
and spectrum as suggested in [28]. Linear predictive coding was used in [29]
for sound-based rare-event detection. Mel scale [30], Discrete Cosine Transform
[31,32], Mel-Frequency Cepstral Coefficients [33,34], Wavelet decompression [35],
Perceptual linear prediction (PLP) [36], Linear prediction cepstral coefficients
(LPCCs) [37], and Line spectral frequencies (LSFs) [38] are other features that
have been used for sound event detection in different researches.

Each of the aforementioned features has its weaknesses and advantages and
none of the mentioned research works were able to specify a feature as the
best in sound event detection. Based on our review, some challenges in sound
event detection are the presence of different events in one soundtrack, unbal-
anced number of event data versus normal data in the training process, dynamic
context-dependent form and different speed of occurrence. Recent researches
usually use MFCCs and Wavelet based features as better features. Various clas-
sification methods can be used (based on differences between features) for sound
event detection and understanding. Some of the most well-recognized classi-
fication methods that have been used in this topic are Logistic Regression,
SVM, KNN, Fuzzy C-means clustering, Adaptive Neuro-Fuzzy Inference Sys-
tems, Näıve-Bayes, and Deep learning (mainly, Convolutional Neural Networks).
In the proposed method, MFCCs and wavelet were selected as feature extractors,
and a novel statistical scheme based on normalized histogram is used for feature
processing. In the second step, SVM and KNN are used as detection methods.

3 Theoretical Framework

3.1 Wavelet Transform

One of the common feature extraction methods in sound processing is WT. In
practice, audio signals are time-domain signals in their raw format. That is,
whatever the signal is conveying, is a function of time. In many cases, the most
distinguished information is hidden in the frequency content of the signal. The
need for WT arises because in sound events, is necessary to have both the time
and the frequency information at the same time depending on the particular
application, and the nature of the signal in hand, since no frequency information
is available in the time-domain signal, and no time information is available in
the Fourier space [2,3].

The basic element of WT is known as the “mother wavelet” function, Ψ(t).
The Fourier transform of Ψ(t), which is defined as Ψ(ω), must satisfy the follow-
ing condition:

+∞∫

−∞
|Ψ(ω)|2

ω dω = CΨ < +∞. (1)

Performing scaling and translation operations on Ψ(t) creates a family of
scaled and translated versions of the mother wavelet function:
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ψa,b(t) = 1√
|a|ψ

(
t−b
a

)
, (2)

where a is the scaling and b is the translation parameters, respectively. Given
a mother wavelet function Ψ(t), the continuous wavelet transform (CWT) of
function f(t) is:

CWTf (a, b) = |a|−1/2
∞∫

−∞
f (t)ψ∗ (

t−b
a

)
dt a, b ∈ R, a �= 0, (3)

where ∗ denotes the complex conjugate. For discrete wavelets, scale-time param-
eters a and b are discretized as a = am

0 and b = nb0a
m
0 .

This family of mother discretized wavelet functions {Ψm,n (t)} is given as:

Ψm,n (t) = a
−m/2
0 Ψ

(
a−m
0 t − nb0

)
m,n ∈ Z. (4)

So, by using Eq. (4), Eq. (3) can be rewritten as:

(DWTf )mn = a
−m/2
0

∞∫

−∞
f (t) ψ

(
a−m
0 t − nb0

)
dt. (5)

The mother wavelet functions used in this work are:

Ψ(t) = 2√
3
π− 1

4
(
1 − t2

)
exp

(
− t2

2

)
, (6)

Fn (t) =
n∑

j=−n

(
1 − |j|

n+1

)
eijt = 1

n+1

{
sin n+1

2 t

sin t/2

}2

, (7)

Ψ (t) =

⎧
⎨

⎩

1 0 ≤ t < 0.5
−1 0.5 ≤ t < 1
0 otherwise

. (8)

3.2 Mel-Frequency Cepstral Coefficients

MFCCs are based on the known variation of the human ear’s critical bandwidths.
In MFCC, some filters spaced linearly at low frequencies and logarithmically at
high frequencies have been used to capture the phonetically important charac-
teristics of sound signals. The Mel-frequency scale is a combination of linear
frequency spacing 1000 Hz and a logarithmic spacing 1000 Hz. A block diagram
of the structure of a MFCC scheme is given in Fig. 1. The audio signal is typically
recorded at a sampling rate above 10 kHz. These sampled signals can capture
all frequencies up to 5 kHz, which cover most energy of sounds that are heard
by humans. The main purpose of the MFCCs is to mimic the behavior of the
human ears. In addition, rather than the sound waveforms themselves, MFCC’s
are shown to be less susceptible to noise.
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Fig. 1. Block diagram of the MFCC scheme.

3.3 Support Vector Machine

Since SVM classifiers are suitable for binary classification, in this study, a SVM
is used for building a binary classifier between any sound event and sound back-
ground in audio segments. For the SVM classifier, different kernels were tested.
SVM classifies the input data by building an imaginary hyperplane based on
its kernel and tries to maximize the margin of that hyperplane to build a safe
boundary for binary classification, as well as helping to find non-linear data pat-
tern to classify input. Given a training set of N data points {yk, xk}N

k=1 where
xk ∈ Rn is the k-th input pattern and yk ∈ R is the k-th output pattern, the
classifier can be constructed using the SVM method in the form:

y(x) = sign

[
N∑

k=1

αkykK(x, xk) + b

]

, (9)

where αk is a non-negative Lagrange multiplier, b is a constant, and K (·, ·)
is the kernel, which can be either K (x, xk) = xT

k x - linear SVM, K (x, xk) =
(xT

k x + 1)d - polynomial SVM of degree d, K (x, xk) = tanh[κ xT
k x + θ ] - multi-

layer perceptron SVM, or K (x, xk) = exp{−‖x − xk‖22 /σ2 } - RBF SVM, where
κ, θ and σ are constants. First, a safety margin (Λ) is defined as:

if(x ∈ class 1) ⇒
N∑

k=1

αkykK(x, xk) + b ≥ Λ,

if(x ∈ class − 1) ⇒
N∑

k=1

αkykK(x, xk) + b ≤ −Λ.

(10)

The SVM training step uses kernel function parameters, αks and b, to maxi-
mize Λ and the total accuracy. Many analytical, numerical and heuristic methods
have been suggested for finding αks, b and the selected kernel parameters using
training data.
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3.4 K-Nearest Neighbor Classifier

KNN is a simple and non-parametric supervised classification algorithm that can
be useful for classification and regression problems. In KNN classification, the
output can be defined as a multiclass output. An object is classified by computing
its distance to some known centers and the object is assigned to the class most
similar, near or common among its k nearest neighbors (k is a positive integer,
typically small). If k = 1, then the object is simply assigned to the closest nearest
center. In KNN regression, the output is the property value for the object, which
is the mean of the values of k nearest neighbors. The number of neighbors and
similarity or distance metric are the main factors of KNN. The distance measure
can be selected as Euclidean, Hamming, Manhattan, or Minkowski distance. In
this research, the centers for each event were separately found using k-means
clustering. The distance of new input were compared to all centers and each one
assigned to background or event.

4 Proposed Method

The train step pseudo-code of the proposed system is given by Algorithm 1.

Algorithm 1: Training procedure
Input: Labelled recorded signal from urban scenes (Si)

Split recordings into one-second non-overlapping sections (Ssi)
Apply one-dimensional wavelet transform to Ssi and make
two output signals (cAssi , cDssi)
Reshape the outputs to N × 8 matrices

Calculate the 16-bin normalized histogram of two output 
signals (According to columns) and make 16×16 feature 
matrix 
Assign event and non-event label to each feature matrix

Train classifier (SVM)
Output: Trained classifier 

For sound event detection, many databases were collected and labelled by
humans. In the evaluation of our method, the US-SED dataset [39,40] was used
because, at first, it is easily accessed and converted to different software formats
and, second, it covers several important urban sound events.

4.1 The US-SED Dataset

US-SED is a large dataset of 10,000 ten-second soundscapes and includes ten
different sound classes: air conditioner, car horn, children playing, dog bark,
drilling, engine idling, gunshot, jackhammer, siren and street music, which has
been used for training and evaluating Sound Event Detection (SED) algorithms.
All soundscapes were extracted from the UrbanSound8K dataset, approximately
1000 per each of ten urban sound sources (each clip contains one of the ten
sources), as the soundbank. UrbanSound8K is pre-sorted into 10 stratified folds,
and so can be used as folds 1–6 for generating 6000 training soundscapes, 7–8
for generating 2000 validation soundscapes, and 9–10 for generating 2000 test
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soundscapes. Soundscapes were generated using the following strategy: first, a
background sound normalized to -50 LUFS (Loudness Units relative to Full
Scale) was added. The same background sound file for all soundscapes was used
in combination with a 10-second clip of Brownian noise, which resembles the
typical “hum” often heard in urban environments. By using a purely synthesized
background, the database maker was guaranteed that it does not contain any
spurious sound events that would not be included in the annotation. Next, the
label was chosen randomly from all 10 available sound classes, and the source
file was chosen randomly from all clips matching the selected label [39,40].

4.2 Pre-processing

In the pre-processing, the steps of removing noise and dividing the audio signal
into non-overlapping segments are performed. In the first step, signals with a fre-
quency of less 20 Hz and above 20 kHz, whose range is outside the human hearing
range, are removed. Hence, all noises outside the hearing frequency band, which
may have been transmitted to the signal, are eliminated. In the second step, the
event situation is assumed constant in each non-overlapping segment. To make
this assumption correct, the audio signals are divided into segments of typi-
cally 100 ms without overlap. The classifier then classifies the features extracted
from these segments. In other words, the event in one tenth second signal is
supposed constant. Based on this assumption, each incoming sound is broken
into non-overlapping segments with one tenth second length. After splitting the
sound into non-overlapping segments, each audio segment is labeled related to
including or non including a sound event. In this case, a binary vector is made,
which was established based on event segments versus background segments in
the database. The 0 (zero) is equivalent to the background segment, and one
shows that a sound event has occurred. After denoising, splitting and labeling
steps, the audio signal is ready to enter the feature extraction block.

4.3 Feature Extraction

At this block, WT is applied to the input audio signal in order to decompose
it and obtain the approximation and detail coefficients. A total of 15 mother
wavelet functions with different parameters were implemented in the feature
extraction block and studied in terms of the accuracy and efficiency. The used
wavelet functions are indicated in Table 1.

Due to the sampling frequency of the input audio signal, which was 44100 Hz,
enough samples are available for wavelet. The coefficients of two approximations
coefficients cA1 and detail coefficients cD1 resulting from the WT are arranged
into two 8 × N matrices and then merged in a 16 × N matrix. For each row,
the probability density function (PDF) of the amplitudes is calculated. The
number of intervals for PDF is 16 and the length of all intervals are supposed the
same. Finally, the output of all rows is added together and arranged as a vector
with length equal to 256. Obviously, the length of the feature vector is equal
for all types of wavelet functions. The second approach is MFCC. In MFCC,
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Table 1. Designation and number of used wavelet functions.

Wavelet designation Wavelet number

Haar –

Daubechies 10, 20

Symlet 2, 10, 20

Coiflet 1

Discrete Meyer –

Fejer-Korovkin 4, 8, 22

Reverse biorthogonal 1.1, 2.4

Biorthogonal 1.1, 2.4

firstly the short-term Fourier transform (STFT) is applied to the signal using
the Hanning window. The selected Hanning window is considered periodic and
its length is equal to 512. In addition, 128 overlapping samples are considered
for each segment. The output of the short-time Fourier transform is applied
as input to the MFCC feature extraction step, and according to the sampling
frequency available in the database, the feature-length of the MFCC output is a
13 × 11 matrix. Each row of this matrix is analyzed using a PDF, according to
20 intervals, in order to have the closest adaptation to the wavelet features. The
final feature vector of MFCC has 260 elements. The feature vectors are input of
detection block.

4.4 Detection

In this study, due to the very high imbalance problem between the background
sound segments and the ones with specified sound events, a KNN or a binary
SVM is trained to separate background from event sound segments. In this
case, the classifier does not need to know type of events occurred in one tenth
second segment; therefore, an audio segment is tested in such a way that it can
include any event or has only background sound. Simulations were performed
to evaluate the accuracy of the different SVM kernels and KNN on different
feature types, including mother wavelet functions and MFCCs. After training,
the trained classifier should be tested. The pseudo code of the test step is given
by Algorithm 2.
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Algorithm 2: Test procedure
Input: Labelled recorded signal from urban scenes (Si)

Split recordings into one-second non-overlapping segments (Ssi)
Apply one-dimensional wavelet transform to Ssi and make
two output signals (cAssi , cDssi)
Reshape the outputs to N × 8 matrix

Calculate the 16-bin normalized histogram of two output 
signals (according to columns) and make a 16×16 feature 
matrix 
Apply feature matrix to the trained classifier

Calculate the method accuracy for test data
Output: Accuracy 

5 Simulation Results

In order to determine whether WT can be a good option for separating events
from background sound in audio segments, the time domain and two channels
of corresponding WT for four different classifiers were considered, Fig. 2.

Fig. 2. Original audio signal and corresponding wavelet output for background and
event sound segments.

As can be seen in Fig. 2, when the number of events increases, the signal
pattern is compressed over time. Especially in cD, the amplitude and shape
changes are obvious. These changes can be seen in time domain, but in WT, the
changes are even clearer. It should be noted that all three audio segments in Fig. 2
were selected from the same environment and microphone, so the background
noise and sound recording conditions are exactly similar for the three signals. To
show the difference between event and background sound segments in MFCC,
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the short-time Fourier transform of the signals were extracted using Hanning
window as a main block of MFCC, Fig. 3.

Fig. 3. (a) 3D STFT output for a background sound segment; (b) 3D STFT output for
a segment including one sound event, and (c) 3D STFT output for a signal including
more than one sound event.

Given the three-dimensionality of the analysis, it can be seen that in a no
event segment, the amplitude range is between −50 and 5 dB, and the maximum
signal strength is located in a narrow band at the end of bands. After a sound
event occurred in the environment, the energy is expanded to the intermediate
bands, and the signal pattern has completely changed relative to the signal with-
out sound events (Fig. 3). Additionally, It is more compact and the amplitude is
changed significantly when more than one sound event occurred. It can be seen
that in the field of Mel coefficients, the signal changes are quite obvious in the
background and event sounds, which can be used as a criterion for detecting the
background signal from including events signal. In the training classifier step,
for eliminating the effect of a random selection of training data, the classifier
was trained 20 different times using different wavelet functions, and the aver-
age accuracy of 20 times is reported as the final value. It should be noted that
in each training, the train and test samples were similar for all feature types.
The results obtained using KNN and different SVM kernels are given in Fig. 4.
Due to a large number of samples, only 10% of the existing 1 million segments
(100,000 samples) were used for training, and all the remaining data was used
as test data. Although the percentage of training data is low, it can be seen
that the accuracy was still very good, and the trained system was able to detect
background vs event sounds in the audio segments.

In Fig. 4, the accuracy for KNN and studied SVM kernels, including linear,
RBF and Polynomial, is given separately for train and test sets. In RBF and
Polynomial cases, Mel’s coefficients, which have been cited as best feature in
various researches, showed better accuracy than other methods, although, in
linear kernel and KNN, Mel coefficients did not work well due to their non-linear
properties.

Among each of the studied kernels, the best accuracy was obtained using
MFCC with Polynomial Kernel (99.9%), which indicates the very good accuracy
in separating the event signal from the background signal. Figure 4, shows that
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Fig. 4. Accuracy obtained by three different SVM kernels: a) linear, b) RBF, c) Poly-
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RBF and polynomial kernels had better accuracy than the linear kernel and
KNN. In the meantime, RBF shows closer values in train and test sets (difference
between test and train accuracy in all cases was lower than 1%), so for training
stability, RBF is better than polynomial. In addition, the results indicate that
the system can be easily trained using a small percentage of the available data.

6 Conclusion

In this study, a method based on efficient sound features and classifiers, which
can be used in urban scenarios to differentiate the presence of sound events
from the background sound in audio segments is proposed. The method uses
Mel’s coefficients and WT in combination with normalized histogram to separate
sound events from the background sound with good accuracy. In the training
step, SVM with Polynomial kernel showed the best accuracy, which was equal
to 99.9%. As to the training stability, SVM with RBF kernel showed the closest
values in train and test sets. Therefore, the proposed method can be used as a
pre processing step to separate sound events from background sound in sound
event classification systems. The simplicity and the good accuracy are among
the advantages of the proposed method.
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