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Abstract

The application of technologies that require little to no human intervention have been applied in sev-
eral domains at a worldwide scale, ever more so with the implementation of Artificial Intelligence (AI),
making services more available and efficient. However, in fields such as Call center/Contact center
operations, the challenge relies on building a service capable of impersonating human interactions, sim-
ulating natural actions and features that we possess.
The overall theme for the development of this dissertation consists of developing a system capable
of automating the communication flows of both voice (Voice over Internet Protocol) and chat (Instant
Messaging) of the IPBRICK Operating System, using AI, allowing for the consequent utilization of
virtual assistants. In the context of this dissertation, the assembly of a commercial support bot using
AI frameworks is required, granting IPBRICK clients and partners the ability to report technical issues
directly to their services, along with the development of two independent interfaces, according to the
necessary communication flows, relying on the same AI engine; and the implementation of a dashboard
interface to observe their performance.
This dissertation provides a detailed description of all implementations that were carried out for all
objectives. In a first instance, a literature review was conducted, in order to make sure that the conceptu-
alization phase would be performed in the best possible manner. Then, the implementation phase begins
by performing a thorough analysis on every architectural structure that each solution is set upon, deter-
mining the best course of action, followed by describing all applied techniques that led to a successful
implementation. The execution of virtual assistants used Rasa, a framework for building contextual AI
assistants, where IPBRICK requested the implementation of a hand-off mechanism, where human assis-
tance would be provided in a last resort scenario. For voice-based bots, Asterisk was used to perform all
telephony business logic, where the Google Cloud Platform was fundamental when introducing Speech-
to-Text and Text-to-Speech capabilities to the system. On the other hand, chat-based bots used React, a
JavaScript library dedicated to building user interfaces, along with ejabberd, an application server that
allowed users to interact with operators using IPBRICK CAFE, in the act of a human hand-off. Re-
garding the conception of the dashboard interface, KoolReport was used for data delivery, transforming
information stored in a database into an understandable format through charts and graphs.
After all solutions were developed, a controlled experiment was conducted, interacting with virtual as-
sistants through both communication flows, observing the performance of the deployed bots through the
dashboard interface. Given two instances, at the beginning and at the end of this study, these unique
time frames describe a gradual learning process, where bots initially hand over the majority of conver-
sations to a designated operator, failing to fulfill their task. After a consecutive learning process, the last
scenario showcases the performance of improved bots, where at the end of the study they are capable
of autonomously conducting most conversations without requiring human intervention. In parallel, an
analysis to voice-based components is performed, concluding that the proposed solutions resulted in a
more efficient system.
At the end of this work, the proposed solution contributed to the optimization of the performance re-
garding voice-based assistants, by effectively improving speech recognition, and devising a mechanism
that reduces the overall execution time and monetary costs. Additionally, the implementation of a con-
figurable and non-intrusive chat interface introduced a new perspective towards text-based assistants,
capable of being deployed onto any web page. A dashboard interface was also developed, monitoring
the performance of virtual assistants, facilitating the process of a proper and gradual improvement on all
bots. The devised solutions contributed to the overall reduction of required human resources, converging
all developments into an AI subsystem capable that performs tasks without human intervention.
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Resumo

As tecnologias que requerem pouca ou nenhuma intervenção humana têm vindo a ser implementadas em
vários domı́nios a uma escala mundial, sendo cada vez mais frequente a utilização de Inteligência Artifi-
cial (IA), resultando em serviços mais eficientes e acessı́veis. Contudo, em áreas de Call center/Contact
center surge o desafio de desenvolver serviços personificáveis, simulando as caracterı́sticas naturais que
o ser humano exprime regularmente.
O objetivo desta dissertação incide no desenvolvimento de um sistema capaz de automatizar os fluxos de
comunicação por voz (Voice Over Internet Protocol) e por chat (Instant Messaging) do Sistema Operativo
IPBRICK, recorrendo a IA, por forma a possibilitar que os atendimentos de voz e chat sejam efetuados
com recurso a assistentes virtuais. No contexto da dissertação, é necessário a construção de um bot
comercial de suporte usando ferramentas de IA, para que clientes e parceiros IPBRICK sejam capazes de
reportar problemas técnicos de forma autónoma, juntamente com o desenvolvimento de duas interfaces
(para cada fluxo de comunicação), recorrendo à mesma ferramenta de IA; e a implementação de uma
dashboard capaz de monitorizar a performance dos mesmos.
Esta dissertação descreve, de forma detalhada, as implementações necessárias para que todos os objetivos
sejam realizados. Em primeiro lugar, realizou-se uma revisão da literatura, com o intuito de consolidar
conhecimentos, garantindo um desenvolvimento fundamentado. Seguidamente, na fase de implementação
procedeu-se uma análise prévia à arquitetura de cada solução, determinando os focos de incidência para
que todos os desenvolvimentos sejam implementados com sucesso. Os assistentes virtuais desenvolvidos
recorreram à ferramenta Rasa, que permite construir assistentes contextuais utilizando IA, onde se inferiu
a implementação de um mecanismo de hand-off, recorrendo a intervenção humana numa situação de
último caso. Nos Voicebots, utilizou-se o software Asterisk para executar a lógica referente a um sistema
de telefonia, recorrendo ao Google Cloud Platform para introduzir os módulos de Speech-to-Text e Text-
to-Speech. A implementação de Chatbots foi desenvolvida utilizando React, uma biblioteca JavaScript
dedicada a construir interfaces, juntamente com a comunicação com um servidor ejabberd, o que permite
uma comunicação interpessoal entre utilizadores da interface chat e indivı́duos que utilizem a plataforma
IPBRICK CAFE, em circunstâncias de hand-off. Relativamente à construção da dashboard, foi utilizada
a ferramenta KoolReport, permitindo a visualização de informação proveniente de uma base de dados.
Após a implementação das soluções, realizou-se um estudo em ambiente controlado, onde se testou os
assistentes virtuais através de cada interface construı́da, e observou-se a performance dos bots pela dash-
board. Analisados dois instantes temporais, referentes ao primeiro e ao último dia de estudo, observou-se
uma aprendizagem gradual por parte dos bots, onde numa primeira análise os assistentes transferiram a
maioria dos utilizadores para um operador, devido a não conseguirem concluir a tarefa proposta de forma
autónoma. Após um processo de ajuste e correção por parte dos assistentes, observou-se que no último
dia, grande parte das conversas foram realizadas sem intervenção humana, sendo possı́vel identificar esta
evolução na dashboard. Simultaneamente, analisou-se a performance dos componentes constituintes da
interface voz, onde se concluiu que as soluções propostas resultaram num sistema mais eficiente.
A solução proposta contribuiu para a otimização da performance de assistentes que comunicam por voz,
melhorando o reconhecimento de fala e introduzindo um mecanismo que diminuiu os custos inerentes a
este serviço, e simultaneamente reduziu o tempo de execução. Adicionalmente, a implementação de uma
interface chat configurável e não intrusiva conferiu uma nova perspetiva a assistentes que comunicam
neste formato, e pode ser introduzida em qualquer página web. O desenvolvimento de uma interface
dashboard permitiu a monitorização de assistentes virtuais e contribuiu para o melhoramento de cada
bot. As soluções implementadas podem contribuir para a redução de recursos humanos, uma vez que o
desenvolvimento de um subsistema de IA trata de realizar tarefas de forma autónoma.

Palavras-chave: Rasa, Chatbot, Voicebot, Dashboard, Inteligência Artificial
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1 INTRODUCTION

1 Introduction

1.1 Context & Motivation

In recent years, there has been an exponential application of conversational Artificial Intelligence (AI)
in every aspect that demands interpersonal communication, becoming ubiquitous in our daily lives, ever
more distinct in the social domain. In a world that is continuously developing itself towards automated
services, this technology takes a fundamental role on impersonating human interactions as naturally as
possible, thereby allowing services to be fully independent, without the need for human intervention
during this process. The application of Machine Learning and Natural Language interface has allowed
for this innovative technology to be introduced to several areas of development, such as healthcare and
education, due to the advancement of computing power and the nature of its design [1]. The interaction
of these conversational agents, like chatbots or voice assistants, can be speech or text-based, being classi-
fied by their autonomous level, where the lower level forces customers to follow a rigid path, and higher
levels are capable of engaging in a conversation about a specific topic. In this regard, implementing a
service that is capable of maintaining an active dialogue by processing the input, understanding it, and
formulating a response without breaking the natural flow of the conversation in real-time is fundamental
to good execution [2].

The overall theme for the development of the dissertation is properly introduced, joined by COMCIBER
- COMUNICAÇÕES E CIBERNÉTICA LDA to devise a solution that focuses on the component of
unified communications, more specifically on voice and text services of IPBRICK Operating System
(OS), both of which hold significant roles in the solutions of Call center/Contact center of IPBRICK OS.

1.2 Goals

The objective of this project consists of developing a system capable of automating the communication
flows of both voice (Voice over Internet Protocol - VoIP) and chat (Instant Messaging) of the IPBRICK
OS, using AI, allowing for the consequent utilization of virtual assistants. In the context of this disser-
tation, the assembly of a commercial support bot using AI frameworks is required, granting IPBRICK
clients and partners the ability to report technical issues directly to their services, along with the devel-
opment of two independent interfaces, according to the necessary communication flows, relying on the
same AI engine, and the implementation of a dashboard interface to observe their performance.
For voice-based bots, it is crucial to establish an interface capable of communicating with the bot via
speech, where the bot formulates an audible response that is sent back to the listener. Being provided
with IPBRICK’s private telephony system, the focus of this work is set to enhance the baseline configu-
rations that have been implemented for AI communication, as well as to provide a solution that improves
the performance of a voice-based system.
Whereas voice-based bots operate via audible enquiries and replies, a text-based bot approach requires
an interface that communicates with the AI engine through text. To this end, an additional objective
stands on creating a text-based interface, that not only communicates with the bot but gives users the
ability to exchange information with an individual that uses the IPBRICK CAFE instant messaging sys-
tem, if requested. Moreover, this interface needs to be bot-agnostic, meaning that it needs to function
regardless of any bot that is developed under the Rasa bot Framework, as it is essential to be deployable
on any website, as a service, in order to fit any use case.
In addition to these prior objectives and the overall core development of the bot, it is also required to
implement a dashboard that resides within the IPBRICK OS, enabling clients to evaluate the perfor-
mance of their bots by analyzing key factors, as well as monitoring their performance to determine if the
deployed bots have proven to be successful. In conjunction with Rasa X, a graphical user interface tool
provided by the Rasa bot Framework, this dashboard is set to point out any imperfections that occurred
when interacting through any of the preferred communication flows, whether by voice or chat, indicating

1



1.3 Structure 1 INTRODUCTION

possible focal points that need to be adjusted in order to yield optimal results.
Finally, supplementary configurations on the IPBRICK OS are required to automate the process of cre-
ating both voice and text-based interfaces, simplifying these procedures in a general use case that is
adaptable to any instance.
An AI subsystem within the IPBRICK OS is crucial, making available all necessary management and
configuration interfaces of voice and chat-based bots, for the creation of detailed and personalized sto-
ries.

1.3 Structure

The following sections explore each major component in further detail. The current knowledge about
the implementation of a bot through the analysis of similarly published works is presented in chapter 2,
where a brief overview of the architecture of a bot is introduced. Then, a modular view of the neces-
sary components that comprise this system is demonstrated, including different classifications of a bot,
exposing some constraints and different implementations that are characterized as an obstacle for the de-
vised solutions, as well as describing the different models that have been applied in the past for response
generation and some dialogue strategies to better humanize the program’s behavior. Additionally, the
current knowledge about the technologies that are relevant for the devised solution is described, in hopes
of understanding the best approach to its implementation.
Then, section 3 details the architecture of the IPBRICK system, with emphasis on the subsystems that
this assignment will be focused on.
Subsequently, section 4 showcases the methodology that was applied throughout the progress of the
proposed work in this dissertation, describing all major developments, delineating the thought process
behind every given solution. An in-depth explanation is given to every devised interface, as well as the
construction of the commercial support bot, exposing their architectures.
In chapter 5, a critical analysis of the results obtained during the implementation phase is made, where
the commercial support bot is put into practice under a controlled environment, testing the developed
interfaces in the IPBRICK network, observing a simulated gradual development of the assistant through
the implemented dashboard.
Lastly, section 6 provides a conclusion to the work’s development, followed by future enhancements to
this matter.
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2 Literature Review

2.1 Problem Definition

When planning an AI subsystem, the proposed challenge relies on constructing each major component
of this said subsystem, the automation of both VoIP and Instant Messaging, and selecting appropriate
technologies that ensure proper interactions and quality standards between the user and its intelligent
counterpart.
In 1950, Alan Turing presented the question ”Can machines think?”, along with the Imitation Game, in
order to shed some light on that matter. Turing’s Imitation Game aims to see whether a machine displays
intelligent behavior by fooling the interrogator into thinking that utterances from the computer program
were actually from an individual [3].

For both voice-assisted bots and conversational agents alike, a dialogue system is a core element when
establishing these components, considering that it is defined as a computer program that supports spoken,
text-based, or multi-modal conversational interactions between itself and the users [4]. These can be
specified as task-oriented, if the interaction is set to accomplish a specific task, or non-task-oriented if
the conversation holds no particular purpose. These systems have been around for some time, recently
popularized with virtual assistants such as Apple’s Siri and Amazon’s Alexa, or chatbots like Cleverbot,
that can generate an answer to any given domain.
A chatbot is properly defined as an online human-computer dialog system with natural language [5], or
a software application that is able to communicate with users, by conducting a text-based conversation
using natural language [6], with the purpose of understanding the user’s intent and providing accurate
responses that are relevant to the impending problem. It is generally viewed that the first-ever conceived
chatbot is ELIZA, an early computer program conceived in 1966 that convincingly portrays the work
of a human psychiatrist. Given an input sentence, ELIZA would identify keywords and apply pattern
matching techniques to a set of pre-programmed rules, in order to generate a response [7].
When applying a dialogue system to a program that is able to recognize and translate voice-enabled
commands, the concept of a voicebot is founded. A voicebot must incorporate speech processing, con-
verting vocal input from a user to text, translating the text to an intention, and finally transforming this
intention into action. The final setup of this process results in the conversion of the generated response
to speech [8]. When giving a voice to a program, this application is personified and given character,
thus conveying an emotional bond with the user, improving quality of service. This hands-free approach
turns out to be, not only convenient, but very useful in business fields where both hands are constantly
occupied. The simple act of turning on the light in a room, while simultaneously typing on the computer,
can be easily performed by a voice assistant with a single voice command. This technology has been
actively developed over the years, providing solutions for intricate tasks up to a great extent.
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2.2 Problem Characterization

2.2.1 Bot Classification

When first introducing the concept of a chatbot, it is noticeable that there are many properties that may
differ for each application. In order to bring clarification, a generalized list of categories that classify
a bot in detail is proposed by [9], in figure 1. Some of these criteria are further uncovered in the next
chapters, such as the Response Generation Method in 2.2.3.

Figure 1: Chatbot Classification [9]

A chatbot’s Knowledge Domain is determined by the range of its cognitive content, varying from
generic, if the bot can assert any type of sentence from whichever domain; Open Domain, if the chatbot
only provides answers of a particular domain; or a Closed Domain, if it focuses on a particular set of
topics within a domain, having a limited number of responses.
When providing services, such as giving simple responses regarding Frequently Asked Questions, with
no emotional attachment to the user it is considered an Interpersonal bot. On the other hand, an In-
trapersonal bot acts as a companion that understands the user’s needs, usually interacting with other
applications or programs. An Inter-Agent chatbot communicates with other chatbots, sharing resources
between them.
A chatbot can have three sets of purposes: Informative, Chat-based/Conversational, or Task-based. The
first aims to, as the name suggests, provide information. This bot tends to follow a strict path, since it
works inside a reduced domain to supply specific information. In contrast, a Chat-based/Conversational
is usually applied to a slightly larger domain, in order to respond to different kinds of questions that
the user may query. It also inherently expresses itself, to appear more human-like. The latter is used to
perform a multitude of functions, excelling at requesting information and responding accordingly.
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A bot’s mode of operation is Human-mediated, if any human intervention is involved in the process
of supplying responses, or can be considered Autonomous if no assistance is required. This criterion
is usually connected to the chatbot’s decision-making and overall intelligence, since it can hinder or
promote its ability to respond in a flexible manner.
Lastly, as with every piece of technology, it can be considered Open-source or Commercial. When trans-
mitting information to the user, it can communicate via text, voice, or images. In this Communication
category, more than one criteria can be attributed to a chatbot [9].

2.2.2 Architecture

An in-depth layout of a chatbot’s architecture gives a good overview of its components, where a detailed
summary of each module is fundamental to the comprehension of this system. Multiple designs have
been suggested for a chatbot’s architecture. However, none of them presented a generalized solution.
Therefore, an architectural design that includes all components was proposed, detailing each element
when devising a chatbot solution [9],[10]. This architecture is comprised of 5 components: User Inter-
face Component, User Message Analysis Component, Dialog Management Component, Backend and
Response Generation Component, presented in figure 2.

Figure 2: Chatbot Architecture [9]
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User Interface Component

This interface is a fundamental component of the system, displaying the exchange of interactions be-
tween the user and the chatbot, where all inputs are introduced and the corresponding responses are
received [9]. A proper implementation of this component is essential, given that the user must be able
to instinctively recognize its mode of operation, as well as its limitations, without compromising quality
of service.

User Message Analysis Component

When a user transmits an utterance, he expresses an intent or an action that is to be performed by the
chatbot. The User Message Analysis Component is used to examine the input, capture the user’s intent,
and extract certain parameters, called entities, through pattern matching or machine learning techniques.
The input can be retained as plain text, or processed by Natural Language Processing (NLP), to obtain
the correct entities [9].
The goal of NLP is to take in the provided input, extract the semantic information, and create a gram-
matical data structure to be further processed by the Dialog Management Component [8].
Additionally, cognitive services may be added, such as a spell checker, translator, and sentiment analysis,
to achieve better accuracy. A spell checker, as the name suggests, checks for spelling errors to better
understand the user’s intent. Translators are used in chatbots that are capable of translating more than
one language at a time, converting all expressions to the bot’s Natural Language Understanding (NLU).
The latter, sentiment analysis, is used to observe the emotional state of the user through his input [9].

Dialog Management Component

This component conducts conversational context, by holding current intents and entities. If the chatbot
requires additional information to perform a requested user action, it will ask for further questions as a
mean to collect data, thus filling any missing entities. Dialog Management is usually comprised of three
modules: Ambiguity Handling, which aims to provide answers if neither intent nor input is recognized;
Data Handling, whose goal is saving and updating information as the dialogue progresses; and Error
Handling module, which introduces mechanisms that handle unanticipated errors [9].

Backend

When processing the user’s request, the chatbot relies on the back end to obtain the correct information
and formulate an accurate response. When the required data is extracted through external resources,
such as Application Programming Interfaces (API) or Databases, the information is forwarded to the
Dialog Management Module and the Response Generation Module. If there is a need to recall previous
conversations, a Relational Database may be used.

Response Generation Component

The Response Generation Component is essential when formulating understandable responses, conse-
quently forwarding its content to the User Interface Component. The methods for developing replies
consist of three approaches, which are further detailed in section 2.2.3.
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2.2.3 Response generation

When researching this type of software, one must take into account how the chatbot takes the input,
provided by a user, and outputs a response that fulfills a set of requirements that were previously in-
tended. The methods for constructing the chatbot’s dialogue system are essentially comprised of three
approaches: rule-based, retrieval-based, and generative models [8], [9], [10], holding a fundamental task
in NLP.

Rule-based Models

The first-most approach uses a set of hard-coded templates and rules that apply simple pattern matching
or keyword retrieval techniques that consequently generate responses. This output is based on a prede-
fined set of rules, when the lexical form of the input is recognized [10]. In a general case, rule-based
models do not create new answers, as the knowledge base is hand-crafted by developers, in the form of
conversational patterns [9].
The following example showcases a chatbot implemented with Artificial Intelligence Markup Language
(AIML), where its underlying principle is put into practice when a bot holds a list of hand-crafted cat-
egories. Each document contains a <pattern> and <template> tags [8]. The considered AIML code
shown in figure 3 illustrates the aforementioned principle:

Figure 3: Example of AIML code [11]

When the input matches the text stored inside <pattern>, the generated response corresponds to the
message inside <template>, granting a fast response time [9]. For rule-based models, the problem
relies on the fact that the programmer must issue all possible rules for a specified domain, and is prone
to failure when spelling and grammatical errors occur [10]. For this pattern matching approach, the
dialogue usually takes a single-turn communication, where responses are predefined and automated,
thereby deprived of originality and flexibility that resides in human-like dialogue [9], including the
ability to learn from conversations.

Retrieval-based Models

To overcome the hurdle of hand-coding all pattern matching pairs, the information retrieval-based model
analyzes external data sources using an algorithm [10]. Unlike rule-based approaches, neural network-
based models contain a machine learning algorithm [6], extracting content from the input using NLP,
learning from the dialogue and maintaining conversational context [9]. This model grants more flex-
ibility, as it queries external resources, recurring to a neural network to retrieve and assign a scoring
function to multiple response candidates, returning the highest graded reply [12].
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Yan et al. [12] proposes the following response ranking function:

Rank(S,Q) = ∑
k

λk ∗hk(S,Q)

Given Q as the user’s reply, and S as its response candidate, the overall rank is defined, for a given k, as
the summation of the multiplication between the scoring function hk(S,Q) and its corresponding scoring
weight λk [12].

Generative-based Models

The latter approach, the generative models, do not require a dialogue database when providing responses.
Instead, the replies are synthesized one word at a time, generating responses on the spur of the moment
[13]. According to Cahn J. [8], one of the most recent models that generate an effective response is
the Statistical Machine Translation, where key phrasal classifiers are identified based on real dialogues,
allowing for multiple language translation. This model was first introduced by Ritter et al. in 2011 in a
chatbot [14], and its benefit over human translation is mostly due to resource savings [8], [14]. A typical
generative-based model is Sequence to Sequence (Seq2Seq), firstly introduced by Cho et al. in 2014
[15] as a variation of Ritter’s [14] generative model that uses deep learning to achieve higher levels of
accuracy[8]. In this Encoder-Decoder model, two Recurrent Neural Networks (RNN) are implemented,
using a Long Short-Term Memory (LSTM) architecture. The first RNN performs the function of encod-
ing the input sequence, and the second RNN decodes the same input, generating a reply. Figure 4 shows
an example of an RNN introduced in Seq2Seq, where <EOL> is a symbol that delimits the end of the
sentence.

Figure 4: Example of Seq2Seq RNN model [8]

This model has proven to be effective and widely used, being considered as the industry’s best practice
for response generation [15]. However, it presents some drawbacks, as Cahn J. [8] refers that bots with
this implementation fail to simulate human-to-human interaction, frequently responding to inputs with
”I don’t know” since this response is used quite often. Secondly, in a conversation between two Seq2Seq
bots, the conversation also showed to get stuck in an infinite loop.
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2.2.4 Dialogue Strategies

When a response is selected, the Dialogue Management Component must choose a set of strategies to
create a response that, along with maintaining grammatical structure, must deliver a message that mimics
human behavior and at the same time is understandable to the user. An interaction strategy is comprised
of three approaches, which are determined by which party dominates the course of the conversation:
the user, the system, or both. In the first approach, the user leads the dialogue, but a problem arises: if
the user inputs an ambiguous response or an ill-defined input, the system will not know how to react.
On the other hand, a system-led approach reduces the occurrence of ill-defined inputs but compromises
dialogue flexibility. The latter method is defined by a mixed combination of both previous approaches.
A second strategy consists of error handling and query confirmation, showcased in figure 5, providing a
simple example that presents this strategy in motion, repeating important elements of the input [8]. By
doing so, the user is able to verify if the original intent matches the response given by the bot.

Figure 5: Example of error handling and confirmation [16]

Another set of strategies is Reinforcement Learning and Active Learning. These are quite different from
the previous strategies, as the bot is continuously trained to find the optimal interaction and generate ef-
fective responses. They work with a scoring function according to the system’s behavior. Additionally,
in the Active Learning approach, a set of ranked responses are shown to the user, where he selects the
preferred reply. In this case, the system learns in real-time. However, this breaks the natural flow of the
dialogue and, if the user selects an incorrect option, the strategy may not prove to be efficient [8].

To some of the previous strategies, a set of ranked responses is applied, where its scoring function indi-
cates the likelihood of the bot to consider that answer as appropriate. For responses with a lower score,
Yu et al. [17] suggests a set of strategies, such as asking open questions, in order to elicit more informa-
tion if the first input was not clear, providing an additional opportunity to continue the conversation.

In order to appear more human, some strategies can also be applied. Developing a personality and
directing the conversations are some examples that ELIZA implemented, where giving a name and
personality traits make the bot more human-like. Some other approaches are the ability to make small
talk when non-task-oriented conversations are active, and the ability to commit human mistakes, such as
replying with a disfluent message [18].
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2.3 Available Technologies

2.3.1 Artifical Intelligence Bot Frameworks

Rasa

Rasa is an intuitive framework for developing personalized conversational AI. This platform introduces,
similarly to other conversational systems, NLU (Rasa NLU), converting short user messages into dia-
logues that are comprised of intent and multiple entities, and Dialogue Management - Rasa Core [19].
Rasa’s text classification is based on fastText approach, a library for efficient baseline for text classifica-
tion [20]. There is no support for end-to-end learning, since some components such as NLU, Dialogue
Management, and Response Generation are learned from dialogue transcripts, where the last two are
fully decoupled, allowing for the same dialogue model to be reused across different languages [19].
Rasa’s architecture follows a modular approach, allowing for easier integration with external systems,
where Rasa Core can be used as a dialogue manager with multiple NLU services. This proves to be an
advantage when we wish to create a generalized solution that can be configured to work in a specific
domain. Figure 6 depicts the planned architecture, from the moment when the user inputs a message to
the generated response:

Figure 6: Rasa architecture [19]

In this architecture, a single dialogue state is saved in a tracker object per conversation, being the only
stateful component. This tracker object works as a log file, registering all previous events. From figure
6, only the first step is executed by Rasa NLU or another NLU module, where the following steps are
performed by Rasa Core. The Interpreter extracts the intent, entities, and structured information from
the message, where the Tracker will save the state. Then, the Policy will determine the best course of
action that will be replied to the user, where the Tracker will subsequently register the action. If the
action was not carried out, the system returns to step 3 [19].
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In the matter of training data formats, Rasa Core and NLU work with human-readable formats, pre-
sented in a JavaScript Object Notation (JSON) structure or a markdown format. Figure 7 presents two
examples that showcase each format.

(a) JSON format

(b) Markdown format

Figure 7: Training data formats [19]

Regarding dialogue stories, Rasa used the same markdown format when implementing each story, de-
noting a sequence of events where entities are key-value pairs separated by commas, which are presented
in figure 8:

Figure 8: Training dialogue - Stories [19]

Rasa Core also supports a machine teaching method, where the developers correct system-made actions.
This is presented as a practical approach, but somewhat exhausting for systems at a larger scale.

(a)
(b)

Figure 9: Rasa Core correction example, upon selecting the option labeled as number 2 in 9(a) [19]
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When correcting an action, Rasa Core trains the data policy. Once the dialogue ends, the set of policies is
updated, changing the probability values of the previous policies to determine the best course of action.
Rasa also offers the opportunity to gather analytics and observe the bot’s performance.

Microsoft Bot Framework

Microsoft Bot Framework is a developer environment for designing conversational AI experiences.
Along with Azure Bot Service, which is Microsoft’s AI chatbot, it allows developers to create enterprise-
grade bots that perform regular chatbot functions, such as the ability to communicate through speech and
understand natural language through inputs. It includes a modular and extensible Software Development
Kit (SDK) for building custom bots, templates and related AI services. Figure 10 showcases a clear view
of the components that constitutes the Bot Framework’s architecture, where a description of each each
component is presented shortly after.

Figure 10: Microsoft Bot Framework architecture [21]

• Input - Comprised by the various forms that the user can interact with the system.

• Channels - Connection between communication services and a bot. The Bot Framework allows
to create a bot in a channel-agnostic way, by normalizing messages that are sent to channels. It
converts the messages from the Bot Framework schema to the specified channel’s schema. If the
channel does not support the Bot Framework’s schema, the service tries to change the format in
a way that is supported by both parties. For most channels, channel configuration information is
required in order to run a bot. Additionally, a bot account is needed in most channels [22].

• Devices - Physical mediator between the user and the bot. The user may use it to introduce an
input, or the bot may perform an action on it.

• Cognitive Services - AI capabilities that enhance the bot’s overall performance, or give it addi-
tional features.

• 3P Assistant - As the name suggests, third party (3P) assistants are external assistants outside the
Bot Framework environment, but can interact with it.
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• Knowledge - Related to sources of information and external resources.

• Skills - A skill is a bot that can perform a set of tasks for another bot, where a bot can be both a
skill and a user-facing bot. A skill consumer is defined as a bot that can call one or more skills,
and a skill manifest is a JSON file that describes the skill’s actions, input and output parameters,
and endpoints [22].

Google Dialogflow

Dialogflow is Google’s product for creating chatbot solutions. This platform is available in multiple
editions, with some crucial attributes varying between them. It offers pre-built agents to cut down on
development time, with a framework that takes a simplistic approach, being beginner friendly. It also
contains multi-turn and multiple language support [23]. Figure 11 showcases the steps that take place in
a conversation using Dialogflow:

Figure 11: Dialogflow conversation example [23]

1. The user sends a message via the input, whether in text, speech, or any other means of communi-
cation.

2. The user interface then receives the information and forwards it to the Dialogflow API in a detect
intent request.

3. The Dialogflow API receives the request. If the input matches to an intent or form parameter,
session state is updated, as certain parameters are required. For a webhook-enabled parameter, it
sends a webhook request to its service, otherwise jump to step 6.

4. The webhook service calls for external APIs or other external resources in order to satisfy the
parameters.

5. The response is sent back to Dialogflow.

6. A detect intent message is created, sending the intent response to the user interface or integration
system.

7. The user interface receives the response and forwards it to the end-user.

8. The message is sent to an output device [23].

Other alternatives

Botpress is an open-source platform for developers to create digital assistants. It is cloud-agnostic,
meaning that the developer may run it on his cloud service of choice, and it supports more than 100
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languages. This platform includes NLP tasks, a visual conversation studio to design multi-turn con-
versations, and provides an SDK. Additionally, it also includes tools to gather and analyze data, and a
Human In The Loop feature that allows to delegate a chat session to a human [24].

Amazon Lex is Amazon’s take on AI solutions, considered as a service that allows developers to create
text or voice-based chatbots. It is powered by Amazon’s deep learning, NLU and speech recognition
that is used on other Amazon solutions, such as Alexa. However, Lex differs from Alexa since it can be
integrated into services and devices. It can be used through Amazon Web Services-SDK, which means
that developers can create a system that posts messages to an API and get a response from Lex [25].

2.4 Devised Solution

Upon reviewing the design and development of intelligent chatbots, a decision had to be made when
selecting the appropriate technologies. All different technologies shown in 2.3 aim to provide a platform
that allows for creating a bot, accessible through interfaces, where questions asked to the bot usually rely
on third-party systems or external resources in order to respond accurately. This results in a seamless and
good quality of service. In general terms, the expected project of this dissertation does not want to follow
a black-box approach, where most of the information is concealed to the client, but rather the opposite.
Therefore, the devised solution must be user and beginner-friendly, in order to accommodate the client’s
objectives when configuring the system, but at the same time, it must provide extended documentation
and freedom for developers to create the desired product without any restraints.
Despite offering an excellent framework, as it provides deep learning functionalities, Amazon Lex only
supports the English Language and United States Spanish. Another drawback is the fact that data prepa-
ration is somewhat complex. This is a major restriction, as the envisioned project aims to support
multiple languages. Botpress offers a modular approach for building chatbots, but it contains a limited
amount of features and has a hard time learning from user experience since it is mainly rule-based. Con-
trarily to Amazon Lex, Google’s Dialogflow supports a wide amount of languages and offers a set of
pre-built agents in order to facilitate the construction of a chatbot. However, it only supports one web-
hook per project, which hinders the solution if the consumer wishes to obtain data from various sources
in real-time. Additionally, it does not provide live customer service, which can be a useful feature, since
a human agent can intervene as a last-resort method, in case the user is not able to work with the soft-
ware. Microsoft Bot Framework presents thorough and extended documentation and already integrates
various systems that work within the Microsoft ecosystem. Despite this large integration, most of these
functionalities are valuable if the final product is intended to function inside the same ecosystem.
Finally, Rasa presents a framework for building a contextual chatbot. One of Rasa’s drawbacks is that
is not very beginner-friendly, as it requires prior knowledge of NLU. However, a contextual chatbot
approach makes the bot appear more sophisticated and intelligent, as it portrays human-like behavior.
The presented framework is also highly customizable, which gives freedom to developers when creating
chatbots with specific features.
Upon discussing these alternatives with IPBRICK, the chosen platform for the development of this
project was Rasa, since it portrays the technology to provide several virtual assistants that differ in their
autonomous levels, being aplicable to every use case.
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3 IPBRICK Group

3.1 History

IPBRICK is a Portuguese software company that provides Corporate Communications, On-Premises,
and Private Cloud solutions. Its genesis was in the year 2000, at a time when Linux OS was rising in
popularity, as an answer to multiple focus points that were settled on Open Source solutions. While
effective and customizable, the Linux experience can find itself to be somewhat daunting to non-tech-
savvy individuals and corporations. Bearing that in mind, IPBRICK carried out a mission to provide
simplified and accessible Information Technology experiences to both companies and public organiza-
tions. In 2002, IPBRICK’s first product, iPortalDoc, a Document and Process Management system, is
introduced to the market, and three years later, due to several requests from external markets, it began its
globalization process. Then, in 2008, IPBRICK developed its own telephony subsystem by launching
Unified Communications over Internet Protocol (UCoIP). Ahead of its time, the company predicted the
replacement of traditional telephony lines, adopting the usage of Internet-connected lines as part of their
telecommunication infrastructure, resulting in every communication to function over the Internet.
IPBRICK aims to be a key reference in Single-Tenant solutions, where companies with access to these
services have full control over data, such as processed phone calls, e-mails, and documents. Unlike a
Multi-Tenant solution, this approach grants more security, customization of services, and overall avail-
ability. This company also constructed a well-founded network with partners, capable of commercial-
izing and implementing IPBRICK solutions, along with specialized teams that dedicate their focus to
assisting and implementing these solutions on end clients.
Over the years, IPBRICK developed additional products, IPBRICK MAIL and IPBRICK CAFE, cen-
tering their activity into four major areas, known as the IPBRICK MAGIC WALL. These areas of de-
velopment are housed in one single service, the IPBRICK OS.

3.2 IPBRICK Operating System

The IPBRICK OS is a Communications Platform directly aimed at businesses, based on Linux Debian.
It is comprised of the four major solutions that make up the IPBRICK MAGIC WALL, featuring a
management interface, enabling the user to perform system configurations that best fit their use case
without manually running complex commands through the command-line interface. Moreover, they
are able to install additional software modules and security updates directly through public IPBRICK
repositories, granting additional security and stability throughout the whole system.

3.2.1 iPortalDoc

iPortalDoc is the only Document Management solution that natively integrates with a Unified Com-
munications Center. By operating on a Private Cloud and On-premises, it creates an enclosed system
where data is available throughout the network, allowing users to insert documents or trigger workflows
by sending e-mails and associating documents with other users they relate. Additionally, it is also pre-
pared to save Calls, E-mails, and Chat Conversations in the Document Management system, making
information available for consultation at any time [26].

3.2.2 IPBRICK MAIL

The IPBRICK MAIL - Email and Collaborative Tools solution - provides secure and effective manage-
ment of each user’s e-mail client, along with each user’s personal Calendar, Notes, Contacts, and other
features. It is designed to be easily accessible on all platforms, whether it is through a Web Browser,
Mobile Applications, or Desktop, ensuring a collaborative business environment. It is fully integrated
with the Document and Process Management solution, since it allows to archive, classify and associate
e-mails with documents and processes within the iPortalDoc environment [26].
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3.2.3 IPBRICK UCoIP

IPBRICK UCoIP is a Unified Communications over Internet Protocol center that operates as a telephony
subsystem, functioning as a private Internet Protocol Centrex solution. Running inside IPBRICK’s
ecosystem, it merges all forms of communication, whether it is through voice, video, e-mail, or pro-
fessional chat, onto a single point of reference, using an e-mail address as a common identifier through
all communication channels. Following a single-tenant architecture, each company is presented with its
own independent system, creating a personalized and secure network. Additionally, a dedicated UCoIP
web page for each user is provided, showcasing all forms of communication, for any individual outside
the organization that wishes to contact a user within the IPBRICK network [26].

3.2.4 IPBRICK CAFE

IPBRICK CAFE is a digital workspace that aims to create a dynamic environment between co-workers,
providing tools designed to simplify communication, as well as exchanging data with one another. This
application is comprised of two major areas, Applications, and Communications, allowing users to ac-
cess resources and applications in a centralized manner [26].
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4 Solution Planning and Structure

4.1 Background on IPBRICK solutions

4.1.1 Asterisk

Asterisk is a software framework, conceived in 1999 by Mark Spencer, that converts an ordinary com-
puter into a communication server. It is used to build real-time communications applications by provid-
ing a phone system that integrates multiple communication methods - Unified Communications - as a
key concept [27].
Running on several operating systems, such as Microsoft Windows, Linux, and OS X, its flexibility and
customization are complemented by Asterisk’s free and open-source nature, which assisted on its im-
plementation at a worldwide scale [28].

In the pretended context, Asterisk functions as the IPBRICK’s private phone system, allowing for users
within the network to connect with one another, as well as for users outside the network to dial sev-
eral external incoming telephone numbers, that are used for specific purposes. Some of its underlying
features, such as call queuing, music on hold, and the Asterisk Gateway Interface are already used in
the IPBRICK’s VoIP services, named UCoIP, which hold a fundamental role in the proposed voicebot
solution.

4.1.2 Google Cloud Platform

The Google Cloud Platform is a collection of cloud computing services, consisting of both physical
and virtual resources that are established inside Google’s infrastructure. These resources are distributed
through data centers dispersed across the world, providing some benefits such as redundancy in case of
failure and reduced latency, since the users can choose the resources that are located within their region
[29].
Alongside the previously mentioned benefits, additional advantages of using Cloud services are high
availability to the end-user, considering that data can be easily replicated along all regions; as well as
scalability and elasticity, since an application requires adaptable resources, from small to heavy loads,
by provisioning the number of necessary servers to fulfill the task in hand [30].

Google Cloud Platform showcases a plethora of modular cloud services, such as Serverless Computing
and Internet of Things where, in the context of this work, the product that emerges as being an essential
part of the voicebot is the AI and Machine Learning module, more specifically the Speech-to-Text (STT)
and Text-to-Speech (TTS) APIs. As the name suggests, Speech-to-Text tries to accurately transcribe any
input given by the user through voice, generally through a microphone, converting speech into text. On
the other hand, Text-to-Speech uses Google’s AI technologies to provide a natural-sounding response
by converting any given text into an audio output [29]. By combining these two APIs, a bot can actively
listen to the person’s intent and supply an audible response, delivering a lifelike experience.

4.1.3 ejabberd

The ejabberd software is a free and open-source messaging server, written in the Erlang programming
language. It runs on all three major platforms, Microsoft Windows, Linux, and OS X, where its system
architecture emphasizes being fault-tolerant and distributed, by allowing the user to deploy a cluster of
machines that serve the same domain, that can be easily added or replaced, where the information is
replicated throughout the network to ensure a proper working service whenever a node fails. It is able to
support multiple communication protocols, such as Messaging Queuing Telemetry Transport (MQTT),
Extensible Messaging and Presence Protocol (XMPP), and Session Initiation Protocol (SIP).
The first protocol, MQTT, primarily designed for the Internet of Things, relies on a publish/subscribe
method for communication, where a client would effectively publish messages to an MQTT broker,
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which is subscribed by other clients, following a one-to-one, one-to-many or many-to-one connec-
tion mechanisms. Secondly, XMPP finds its effectiveness on text messaging applications, using both
publish/subscribe and request/response methods, where XMPP clients and servers communicate by ex-
changing data in the form of Extensible Markup Language (XML) stanzas. In addition, one of the key
features of this protocol is security, excelling in creating secure messaging systems [31]. Whenever a
user sends or receives a message, a standard XMPP connection lifecycle begins by initiating a Transmis-
sion Control Protocol (TCP) connection to the server, where a stream header is sent and authentication
mechanisms are validated. Then, the client binds to a resource, sending its presence to the server, and
requesting its contact list, or roster, thus being able to send and receive messages [32]. Lastly, the
Session Initiation Protocol is an application-layer protocol designed to establish, modify, and terminate
multimedia sessions, such as Internet telephony calls [33].
The ejabberd is prized not only for its versatility, due to its multi-protocol support, but also for its
scalability and modularity, since its architecture allows the application to be deployed in both small
and big enterprises, and the fact that its server code can be extended through powerful APIs, connect-
ing to third-party extensions and web clients such as Hypertext Transfer Protocol (HTTP) Binding -
Bidirectional-streams Over Synchronous HTTP- services [34] [35].
In the context of this work, an ejabberd server is already implemented within the IPBRICK system,
enabling all users inside the IPBRICK network to communicate with one another, but will be enhanced to
jointly cooperate with the chatbot interface. In these circumstances, when a user intends to communicate
to a person instead of the bot, all messages will be forwarded to an IPBRICK account that serves the
purpose of an assistant.

4.1.4 KoolReport

KoolReport is an open-source reporting framework programmed in Hypertext Preprocessor (PHP) lan-
guage. It contains a large quantity of data visualization tools, all while giving the user full control
of its data. In addition, multiple data sources are supported, from Structured Query Language (SQL)
Databases to Microsoft Excel, and various features are available to extend the KoolReport’s functional-
ities [36].
In this work, this tool will be used when showcasing the results of the overall bot performance, working
in conjunction with a PostgreSQL database containing detailed information, describing the interaction
between users and the bots, differing from both voice and chat, displaying all data in a dashboard-like
concept that seeks to evaluate if the designed bots have proven to be successful. If the results show
otherwise, it should indicate how and when the bot is failing, along with the Rasa X platform, enabling
its further development.

18



4.2 Solution integration in IPBRICK OS 4 SOLUTION PLANNING AND STRUCTURE

4.2 Solution integration in IPBRICK OS

Upon reviewing the design of intelligent chatbots, a thorough analysis of IPBRICK’s architecture was
made, assessing how every system comes into play. When devising a solution to a fully-established en-
vironment, the understanding of its composition, as well as the comprehension of the assignment is key
to a successful implementation. During this development phase, an isolated IPBRICK environment was
provided, so that the OS could be analyzed and tested without compromising security and the workflow
of active systems.
Considering the evaluated communication flows in the context of this work, figure 12 showcases a sim-
plified version of how a standard bot interaction unfolds:

Figure 12: Simplified human-to-bot communication flow

In a regular interaction between two individuals, person A starts out by disclosing their preferred method
of communication, to which then will transmit their intention, in an understandable format, towards the
recipient, person B. Consequently, if the perceived information is in the right format, and the intent is
recognized, person B will formulate a response, communicating it back to its original sender, person A.
This ongoing, cyclical interaction between multiple individuals will occur until a goal has been reached.

In an analogous way to a standard interpersonal communication, one must first have the main intent, or
goal, to a conversation, before developing a ”story” with the target individual. In this case, the purpose
of this said story is to report faults that occurred in the client’s machines to the IPBRICK services. Then,
after the main objective of the conversation has been set, one must first develop the required interfaces
to transmit, for example, the information from person A, the client, to person B, the AI engine, and
vice-versa. The IPBRICK services provide an interface to communicate via voice, namely the CAFE.
Fully integrated with UCoIP, some advancements in this matter have been readjusted for bot interaction.
However, despite having an additional instant-messaging sub-system, there is no dedicated interface for
human-to-bot interaction. Moreover, just like in a regular conversation, every exchange of information
is prone to misunderstandings and interruptions, so it is up to the listener to perform additional enquiries
to better recognize the initial intent, in the first case, or be able to switch the original context in order to
satisfy sudden demands in the latter. In order to understand these behaviors and react accordingly, the
bot must be properly configured for this specific closed domain, as well as handle these interruptions
in a natural way. In these circumstances, one interruption that later comes as a feature is the ability to
transfer a conversation to a human employee, regardless of communication flow, if the bot results in
failure due to intent incomprehension, errors, or simply if the user wishes to speak to a human operator
instead. Given the unpredictability of the human mind, it is unfeasible to cover all possible scenarios
that result in failure. Therefore, the bot’s framework offers a solution to diminish these events, which
are further explored in 4.3. Once the response is processed, it must be forwarded to its original sender,
in the chosen platform, maintaining the dialogue.
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IPBRICK OS Setup

After describing how a basic human-to-bot communication unfolds, the following step is to prepare
the necessary arrangements in the IPBRICK OS web interface. Figure 13 depicts an example of the
interface of the IPBRICK system software that is distributed to all clients and partners. Considering
the opportunity to work alongside the IPBRICK team, all developments were carried out in the newest,
unreleased version of this OS.

Figure 13: IPBRICK OS Web Interface

Given the nature of this work, most of the required configurations for the designated components were
found under ”UCoIP”. In this tab, the procedures were as follows:

• For the voicebot component, two Text-to-Speech engines were configured, specified by language
and gender.

• In addition, two virtual assistants were defined, each having their own SIP address.

• In order to implement the requested multi-lingual support, two default Rasa projects were cre-
ated, for Portuguese and English languages.

• Given that the chat interface is yet to be implemented, two separate web pages were created for
hosting the chatbot text component, one per language.

• An additional web page is intended for the implementation of the bot dashboard, showcasing
measured bot performance and statistics.

Inside this closed environment, an extra user was defined, serving the purpose of an operational agent,
when a given hand-off action occurs. Afterwards, in a live ecosystem, this user is naturally replaced
with a real operator inside the IPBRICK services.
When reporting issues with the IPTicket reporting feature, entity validation is required prior to using this
service. Therefore, along with the configuration of the IPTicket service, which consists of a reporting
feature where users can issue faults that occurred in their systems, several fictional entities were created
in IPBRICK Contacts - a dedicated space to define all types of entities, including customers, partners,
and employees. This will be used in tandem with IPTickets, as it requires entity tax identification number
for authentication measures.
With all system configurations complete, the following step is dedicated to constructing the bot within
the Rasa Framework, that will interact with these external services, creating a functional and autonomous
reporting feature.
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4.3 Rasa Framework

4.3.1 Core purpose

When defining a virtual assistant in the IPBRICK OS, a new Rasa project is generated with default
configurations, ensuring that each project is readily available to be implemented in any environment,
where the automation of several tasks is requested. On the subject of this work, a commercial support
bot was developed, allowing users to report faults that occurred on their systems. These faults can be
differentiated into two types, depending on the associated services. For Document Management issues,
these fall under the category of iPortalDoc, and the remainder, whether CAFE, UCoIP, or MAIL related,
are listed as IPBRICK problems.
Apart from this reporting feature, IPBRICK also wants to provide additional alternatives to users, in-
cluding multiple language support. To explore this concept, the assistants must support both English and
the Portuguese language, in order to accommodate a larger user-base. Despite this bot solution being
fully autonomous, IPBRICK requires a safety measure to be implemented, where human action inter-
venes in active chats. Hence, a human hand-off feature is to be developed, granting the user the ability
to talk to a human operator when requested, regardless of communication type, or when this bot fails to
deliver accurate responses, throughout the course of the conversation.
After outlining all major features, an analysis of the Rasa Framework is made, uncovering its architec-
ture and procedures involved in constructing this bot. To best describe this system, the official Rasa
website presents well-built and structured documentation.

4.3.2 Architecture

The Rasa Open Source architecture is designed with scalability in mind, where its modular approach
allows for multiple technologies, fully integrated with this system, to replace the standard software in
existing modules, accommodating the target requirements. Although highly configurable, the default
Rasa configurations should suffice most services that desire a deployable and available on-the-go AI
product. Figure 14 carefully exposes each module, highlighting its core components.

Figure 14: Rasa Open Source architectural diagram
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From the previous diagram, there is a noticeable distinction from every module, where the most vital
components are the NLU and Dialogue Management. After an input is sent from the bot user, the NLU,
shown as the NLU Pipeline, is responsible for processing the user’s utterance, gathering the intent be-
hind the message, and extracting entities. Following a prior analogy of a regular conversation between
two individuals, the intent is defined as the objective that person A is trying to convey or accomplish to
person B, where entities are structural pieces of information that can be extracted in the user’s message.
This combination of entities and intents helps retrieve the context of the utterance accurately. Then,
based on the current context of the conversation, the Dialogue Management, displayed as Dialogue Poli-
cies in the diagram, decides the best course of action, selecting the most appropriate response to be sent
back to the bot user, continuing the conversation.

Although the rest of the modules are not considered as primary components, they certainly play an
essential role in the Agent, or bot, as a whole. In the same way that we keep track of past conversations
with other individuals, the Tracker Store is a modular component that focuses on mimicking that same
behavior, saving the assistant’s past conversations in the default InMemoryTrackerStore, storing the
conversation history in memory.
When dealing with circumstances that involve multiple people talking to one individual at the same time,
one may have trouble responding, depending on the number of people that initiated a conversation, the
complexity of the utterance, and the actual order of responses that one individual is going to answer.
Being just one individual, he is unable to respond to every single question simultaneously, finding him-
self physically limited to only provide one answer at a time. Rasa addressed this kind of parallelism
using the default Lock Store configuration, InMemoryLockStore. This synchronization mechanism uses
the concept of ticket lock, ensuring that each active conversation is given an identifier, so that these can
be processed in the right order, locking the remaining conversations until their turn arrives. For small
solutions where the demand is not high, this does not arise as an issue. In larger projects, server load
is expected to increase, as there are too many incoming messages, resulting in a slower response time
since these wait longer periods for their turn to be processed. With that in mind, multiple Rasa servers
can be run in parallel as a replicated service, effectively balancing the load across this network, ensuring
a faster service.
When developing an AI project, the bot is subject to multiple tests and implementations. As additional
requirements arise, its adaptability must be maintained, and consequently need to be trained under recent
circumstances, constantly updating the model to a newer version. Some of these tests are bound to
occasional errors and mistakes, forcing the user to roll back to a previous version, in order to mitigate
harsh consequences. Simply put, the FileSystem component is where all models, or versions, are placed,
after the virtual assistant is trained.
In addition to standard outputs provided by the bot, the Rasa SDK Action Server offers additional cus-
tomization when creating responses, called custom actions. Apart from the traditional responses, these
custom actions can be used to access external services, such as querying a database or calling an API.
When the bot predicts that a custom action will be called, an HTTP POST request with a JSON payload
is sent to the action server, containing key data that helps execute the requested action, as well as identi-
fying the user and the universe (or domain) that the bot is established. After running the custom action,
a JSON payload is sent back to the Rasa server with responses and events. Afterwards, the Rasa server
returns the same set of responses back to the user, adding the events to the conversation tracker [37].
By providing a modular approach, these components can be replaced with supporting technologies that
best adapt to the overall scalability of each project, maintaining the same architectural structure, without
configuring additional software for that sole purpose. In the context of this work, the default architec-
tural configurations were used, since this is meant to serve as an example of a service that is provided to
several clients, so simplicity and availability are key factors.
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Before developing the commercial support AI, some research was made in figuring out the best prac-
tices when implementing a bot. Rasa strongly suggests the Conversation-Driven Development (CDD)
approach. This is the process of analyzing interactions that occurred between users and the bot, ad-
justing the bot’s actions to its intended behavior, effectively training the bot with real user data. Given
the complexity and unpredictability of human language, every individual will approach each bot in a
unique way, being impossible for the developer to anticipate every interaction. Therefore, listening to
the user’s insights and subsequently orienting the assistant towards real user language and behavior is
a great approach to building a bot. For a proper virtual assistant design, CDD must be applied and
often reviewed in every step of the process, from early stages in development to its implementation in
production, consisting of the following actions:

• Share the assistant with users at the earliest oportunity;

• Review conversations frequently;

• Annotate user expressions and messages, using them as NLU training data;

• Test that the assistant always behaves accordingly;

• Track its failures and measure the bot’s performance over time;

• Fix unsuccessful behaviors during conversations.

To accompany the bot’s performance, Rasa developed its own CDD tool, Rasa X, allowing developers
to carefully review every conversation, successfully training the assistant over real user data [37].
Similar to every other approach, CDD is no silver bullet when perfecting an AI solution, also present-
ing its downsides. It relies heavily on manpower, since human intervention is required to assess every
existing conversation, resulting in a poor analysis when this resource is scarce, hindering performance
and the overall bot improvement over time when faced against a large quantity of conversations yet to be
reviewed. Additionally, for the circumstances where the developer wishes to observe specific edge cases
with real user data, many regular conversations are firstly reviewed, as these occur more frequently, be-
fore addressing this issue, circling back to the same actions repeatedly. However, implementing human
intervention in the process of correcting machine-made errors ensures a more lifelike assistant, guaran-
teeing constant instruction directly from the target audience.
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Project Structure

When creating a new Rasa assistant using version 2.8.7, its default project follows the structure presented
in figure 15.

Figure 15: Rasa project file structure

Rasa Open Source uses Yet Another Markup Language (YAML), a human-readable data serialization
language, across all files. This stands as a unified and extendable way of managing data, allowing devel-
opers to fully re-arrange the file structure, splitting training data over any number of YAML files. Some
comparisons can be immediately drawn with Rasa architecture in figure 14, where some components
can be identified.

• The actions.py file, written in the Python programming language, holds all custom actions written
by developers, consequently executed under the Rasa Action Server.

• The data folder contains nlu.yml, rules.yml and stories.yml files. NLU Training data is com-
prised of example utterances that are classified by intent, including a list of synonyms, regular
expressions, and lookup tables that facilitate intent and entity identification. Stories and rules
represent conversations between the bot and users, functioning in tandem to train the Dialogue
Management component. The foremost describes small conversations that should always follow
a rigid path, whereas the latter contains lengthier conversations, each one is described as a story,
listing the steps that the user and the assistant took during each interaction. Stories are used to
train a machine learning model, identifying conversational patterns, as well as generalizing and
predicting unseen conversational paths.

24



4.3 Rasa Framework 4 SOLUTION PLANNING AND STRUCTURE

(a) Rasa NLU example

(b) Rasa Story example

Figure 16: Default Rasa project NLU and Stories configuration

• Analogously to the Filesystem component, the models directory holds all trained versions of the
bot, specified by the date and time of when the assistant was trained. All versions are compiled
and stored in the same folder by default, switching to older versions when needed.

• Before implementing recent models into production, these versions should be properly tested, in
order to confidently cover all scenarios without exposing an untested bot to the public. Therefore,
test stories.yml follows a similar structure to stories.yml, written in a modified story format,
introducing entire conversations in order to test that, given certain user input, the model will
behave as expected.

• The configuration file, config.yml, specifies the components and policies that are used to make
predictions based on user input. The components are configured by the language and pipeline
keys, working sequentially in order to make NLU predictions, whereas policies key is used by
the model to determine the next course of action. These can be finely tuned or replaced with
different models and policies in order to efficiently portray accurate results without compromising
performance.

• The credentials.yml file is focused on configuring the credentials of dedicated communication
channels to where the assistant will send and receive messages. By default, a Representational
State Transfer (REST) channel is pre-configured, providing a REST endpoint where the user can
interact with the assistant via HTTP POST requests, where Rasa Open Source returns a JSON
body of bot responses.

• The domain.yml file describes the universe of the assistant, specifying all entities, intents, actions,
and a set of all possible responses that the assistant may apply during an interaction. In addition,
other means of extracting and processing user information are also defined, such as slots and
forms, along with conversation sessions configuration. Within the system, slots are considered as
the assistant’s memory, storing data provided from the user or external sources, whereas forms are
considered as a special way of extracting information, similarly to filling out a questionnaire.
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• The endpoints.yml configuration file contains, as the name suggests, the different endpoints that
the assistant is connected to. Rasa’s modular architecture allows for their default systems to be
used interchangeably with external services, as long as these are supported and properly identified
in this file. Rasa Open Source’s standard configuration utilizes system resources of the machine
that this solution is hosted in, so by default these configurations are only set to use internal re-
sources [37].

Standard Rasa interaction

After an analysis of Rasa’s architecture and file structure, the following process focuses on observing
standard human-to-bot interactions. This framework operates through the Command Line Interface
(CLI), where all tasks are performed by executing specific commands. Rasa’s default project comes
with a pre-trained model, containing default configurations, NLU data, and stories.
From early development to production, the process of building a bot first starts by building an initial
project using rasa init command, followed by modifying its core behavior, configuring its domain,
adding responses, rules, and NLU data. With every major iteration in the adjustment of this system, a
new model must be created, training the assistant under these new circumstances with rasa train. The
assistant is then tested through conversations, covering edge cases, and introducing new expressions,
before loading the updated model in a server with rasa run, placing the bot in production. Subsequently,
the bot is subject to continuous testing and development, always following CDD methodology.
Through the CLI, several commands are available, including creating a visual representation of stories,
running the action server, and testing Rasa models without requiring a separate graphical interface. One
particular example is rasa interactive, a command that, after loading a model, starts an interactive session
with the assistant, where the developer is able to accompany each step of the conversation, gathering new
training data and evaluating its performance throughout this process. A simple interaction using rasa
interactive is showcased in figure 17:

Figure 17: Rasa interactive

For every session initiated with the bot, action session start marks the beginning of a conversation
between the assistant and the user, followed by an action that awaits for user input, action listen. The
action action session start also reoccurs when the user fails to respond within a determined period of
time, restarting the whole conversation under a different identification number. This is presented as the
default behavior for all assistants. From this point forward, a regular interaction occurs, where sent
messages are processed, the intent of these messages is collected, and a response is given.
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Although the CLI is an effective way of testing the virtual assistant, some of its users may find it confus-
ing and difficult, especially if technical background is lacking. Therefore, Rasa also provides its users
with a CDD tool, Rasa X, containing a simple, browser-based Graphical User Interface. It performs the
same as if one were using the CLI, but with a clearer interface, including observing past conversations,
chatting with the bot, and correcting its mistakes. Executing the command rasa x in the CLI launches
the interface in the web-browser, presented in figure 18.

Figure 18: Rasa X interface

Rasa also provides an alternative way of interacting with its users, through endpoints. After initiating a
Rasa server, the virtual assistant is able to communicate via dedicated channels, thus requiring a separate
interface in order to communicate with these mechanisms. By default, a REST channel is configured,
where users can send messages via HTTP POST method to:

http://<host>:<port>/webhooks/rest/webhook

Using this Uniform Resource Locator (URL), users can post messages with a payload formatted in
JSON, receiving responses directly or asynchronously through webhooks, consequently receiving a
JSON body of responses.

Figure 19: Input and Output response from REST endpoint

Two key values are sent, sender and message, identifying the current user, through a procedurally gen-
erated identification number, and the content of his message. Communication through endpoints is
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presented as an essential feature for this work since there is a need to develop additional interfaces to in-
teract with the bot. Both communications must adopt this format, in order to send messages and receive
formulated responses. Once the assistant has interacted with multiple users, its behavior is reviewed
under the Rasa X platform, observing past conversations and carefully correcting its mistakes.

4.3.3 IPBRICK Commercial Support Bot

After outlining Rasa’s default project and analyzing a standard human-to-bot interaction, the process of
developing an AI solution was set in motion. Given the requested implementation in 4.3.1, a diagram is
presented in figure 20, indicating all major events in the proposed story that make up the submission of
an IPTicket, independently of communication flow.

Figure 20: Diagram of proposed AI solution

When comparing the indicated solution with the previous diagram, some additional remarks are imme-
diately recognized. Prior to filling out a form that makes up the IPTicket, a necessary authentication
measure is required, in order to properly identify the client that is reporting the issue, as well as prevent-
ing unwanted users to utilize these services.
Upon completing the IPTicket form, one must be prepared for occasional human errors, transmitting
incorrect data to the assistant, such as typographical errors or interruptions during speech, resulting
in an erroneously filled form. Therefore, an opportunity to perform adjustments to the ticket must be
given, before the said ticket is submitted, whether the user selected the wrong area type, failed to provide
a complete description of the problem, or supplied an incorrect description. Implementing these safety
measures reduces the amount of incorrect IPTickets in the system, as these would result in multiple
reports that failed to address the same issue, since additional attempts would be necessary to submit a
correct ticket, increasing system load.
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Despite not being present in the diagram, the requested hand-off feature must be available at any given
point during the conversation. This is presented as a last-resort method, when the bot fails to understand
the messages, redirecting the conversation to a human operator that intervenes in due course, preventing
an infinite loop of misguided responses. Additionally, this feature may also be requested by user prefer-
ence, providing multiple approaches to this reporting service, thereby improving quality of service.

Communication flow differentiation

Following the demonstration of the universe, or domain, that the assistant is settled upon, one key chal-
lenge that arose was the differentiation of communication flows. Regarding Rasa Open Source archi-
tecture, the assistant communicates through endpoints, where its default configurations provide a REST
channel, as shown in figure 19. Having a strict messaging format, only allowing sender and message
fields to be sent, it implies that the standard endpoint is not suited for the intended purpose. Thus, a
new channel connector is to be developed where, at the start of every conversation, the communication
flow must be identified, maintaining the same REST architectural style endpoint, distinguishing users
by their ID and their associated message. Regarding communication flow differentiation, the new con-
nector addresses this issue by having an additional metadata key field, where extra information can be
attached, sending through the Rasa server into the Rasa Action Server, for further processing. This cus-
tom channel connector, named myio, is implemented as a separate Python file, custom channel.py, in the
root directory of the project, and properly configured in credentials.yml, where it can be accessed from:

http://<host>:<port>/webhooks/myio/webhook

From the specified URL, HTTP methods are used, performing POST requests to send JSON-formatted
messages, specifying the communication flow type in the metadata key filed, as shown in figure 21:

Figure 21: Custom channel connector message example

Integration with external services

The main objective of this solution finds itself naturally dependent on external services, such as ac-
cessing IPBRICK databases to verify user authentication or performing API calls to submit IPTickets.
Therefore, connections to these web services were implemented in actions.py, where all custom actions
are set. All IPBRICK operations, related to user authentication and the submission of IPTickets, use
Simple Object Access Protocol (SOAP)-based web services. Moreover, a PostgreSQL database is used
to register events during the conversation, hence an additional PostgreSQL connection is required. A
supplementary connection to RESTful web services was developed but was not used in the context of
this work.

Regarding event registration, this separate PostgreSQL database aims to record all major events, in
hopes of determining if the assistant is functioning as intended, as well as gathering additional statistics,
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such as the average duration of each conversation and call distribution by the time of day. In this work,
three types of events that occur within the Rasa assistant are considered, indicating a specific occurrence
during the conversation.

• START - Announces the beginning of a new conversation;

• HANDOFF - Indicates the human hand-off event;

• SUCCESS - The bot successfully submitted an IPTicket, completing the intended story.

The first event, START, must be implemented every time a new conversation takes place. Upon review-
ing how a standard Rasa interaction unfolds, action session start always indicates a new session, before
processing user input, fitting for this specific instance. Therefore, this action is overwritten in actions.py,
inserting a new entry in the PostgreSQL database, specifying the date and time of said instant, along with
the communication type sent through the metadata field and additional parameters regarding the selected
interface. Figure 22 demonstrates this behavior.

Figure 22: Overwritten action that initiates the section

For the remaining events, HANDOFF and SUCCESS, two custom actions were implemented, regis-
tering such events in the database, whenever the assistant processed a hand-off intent or successfully
submitted an IPTicket.

As previously mentioned, the hand-off mechanism, in general terms, is used in two different states of
the conversation, whether by user intent or as a safety measure when the bot fails to comprehend user
utterances repeatedly. In this mechanism, not only the user needs to be informed of such event, but both
interfaces also need to be notified with a special message, in order to identify and transition from the bot
to a human-to-human conversation, redirecting all upcoming messages to this new recipient.
Rasa must send two different responses given a single intent, one to be understood by the user, and
another to be processed by the chosen interface, since the latter will handle the switching mechanism.
Given that the user communicates with the assistant using the interface, both messages are sent to the
same recipient, using the same JSON format. The first Rasa message consists of a standard message,
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whereas the second message must be invisible, per se, to the original sender, only being visible to the in-
terface, keeping the natural flow of the conversation. Therefore, the assistant sends an additional custom
nested JSON object back to the interface, {"bot handoff":"true"}, communicating the handover
intent, shown in figure 23 and 24.

Figure 23: Hand-off custom action

Figure 24: Hand-off request from a user perspective

From the interface’s perspective, it receives two messages from a Rasa assistant towards one single
recipient. Thereafter, it is possible to filter which responses are consequently heard by the user, or pro-
cessed by the interface:

[ {
"recipient id": "test user",

"text": "You will be transferred to an IPBRICK operator." },
{
"recipient id": "test user",

"custom": { "bot handoff": "true" }
} ]

This same concept of transmitting special messages to the interface is configured and later used in the
voicebot architecture, sending the following JSON message to the interface:

dispatcher.utter message(json message={"flag":"true"})

Some improvements regarding the overall voice-based bot performance are addressed and thoroughly
explained in 4.4.
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Additional Rasa implementations

When devising a virtual assistant, independently of the design decisions, it is undoubtedly impossible
to anticipate every possible action that a user will take. Without proper configuration, the assistant will
provide incoherent responses when faced with a topic outside its domain. Therefore, to alleviate sudden
halts due to incomprehension, a generic action that handles conversational fallbacks was implemented,
handling the various failures of the assistant without breaking the natural flow of the conversation. In
the same scope, the hand-off mechanism was integrated in this action, functioning as a last resort method.

In order to allow the virtual assistant to fail gracefully, one must first assess what is the supporting
mechanism that enables the bot to recognize an intent. Inside the configuration file, config.yml, a list
of policies and components defines the behavior of the bot when making predictions, given user input.
Default configurations are set for every new Rasa project, where a pipeline of components works se-
quentially to accurately extract user input and generate an output. These components can be finely tuned
to yield specific results, as tampering with these and their intricate configurations compromise intent
precision, as well as affecting the duration of the bot in the act of delivering responses. At the beginning
of the file, a two-letter code of the used language must be inserted. This specified language is set to
inform the components inside the pipeline of how intent extraction should perform. In the context of
this work, the standard Rasa pipeline supports both English and Portuguese language, as these follow
a similar format. For different languages, such as Arabic or Mandarin, some components should be
replaced in the pipeline in order to be supported.
Contrarily to user messages that the assistant is able to respond correctly, misinterpreted messages con-
tain lower NLU prediction values, where these range from 0, if the intent is unable to be captured, to
1, if an utterance conveys a clear intent. Failing to accurately identify the intents, the bot automatically
chooses from its domain the action with the highest prediction value, disregarding the state of the con-
versation. By default, the last component of the pipeline predicts nlu fallback intent for every input that
falls below a specified NLU confidence interval threshold. Given that the implemented goal-oriented bot
is comprised of a closed and short domain, the value of this threshold was raised to a higher value, since
a task-based assistant dictates the path that the user must follow, dismissing any enquiries that deviate
from this path. After introducing a generalized intent that gathers all misinterpreted inputs, a universal
fallback action must be performed for every nlu fallback intent. Therefore, a rule is set to execute a
custom action whenever this intent is predicted, shown in figure 25.

Figure 25: NLU fallback rule

In this action, the objective is to handle messages where the intent was captured incorrectly, by observing
previous actions between the bot and the user. In the first occurrence of a fallback, the assistant com-
municates that it was not able to completely understand the input, requesting further clarification. If this
situation persists in the following interaction, the bot utters what was understood from his perspective,
along with a brief description of the context that the user is supposed to follow. In a final failed attempt,
it is interpreted that the interaction between a user and the assistant has proven unsuccessful after three
consecutive intents have been identified. To overcome this indefinite cycle of fallback actions, the bot
transfers the client to an operator, activating the hand-off mechanism.
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After constructing all baseline mechanisms that handle the assistant’s main purpose, two versions of the
bot were built, one for each requested language. These versions hold the same model, as both assistants
follow the same structure, rules, and intents. For both Portuguese and English bots alike, its structural
behavior and content are identical, only differing in the selected language, regarding intent extraction,
in the NLU pipeline, and in the responses that are communicated back to the user.

4.4 Voice-based Bot

4.4.1 Overview

When conceptualizing a voice-based bot, one must unravel innovative ways to perfect this system. Con-
trarily to a text-based bot, not only must its discourse be clear, but it should also try to impersonate
human speech as closely as possible. Apart from its domain and the corresponding responses that carry
cognitive features, carefully handled by a response-generation mechanism, some key characteristics
should not be overlooked, such as clear comprehension of utterances from its conversational partner,
as well as human personification and mannerisms portrayed in the act of delivering responses. These
include selecting the appropriate region-based language, the presence of spoken punctuation, and mul-
tilingualism in the dialogue. These responses should be delivered in due course, maintaining the natural
flow of a conversation, so its performance and duration are crucial. These are just a few of the several
characteristics that make AI personification in spoken dialogue possible, and should not be neglected
when devising a virtual assistant.
In the context of this work, this chapter is set to improve the quality of service of this specific commu-
nication flow. A general overview of the voicebot architecture within the IPBRICK OS is introduced,
exploring the major components and key features that compose this system. After this analysis, some
contributions to this structure are presented, regarding the enhancement of the overall user experience, as
well as showcasing implemented solutions associated with the development of the IPBRICK commercial
support bot.

4.4.2 Voicebot Architecture

When structuring the architecture of a voice-based bot, one must first analyze how this system functions
in its entirety, observing how it unfolds into several major components, and how every component
interacts with its neighbouring modules. For this type of communication, an input is sent via speech,
generally through a microphone, where the assistant will subsequently process its request, providing an
audible response. With IPBRICK UCoIP, users engage in voice calls with one another through a private
telephony system, built under the Asterisk software, via an individual’s UCoIP web page, or by dialing
the corresponding SIP address in IPBRICK CAFE. Considering Asterisk’s extended customizability,
this concept of two-person interaction was modified, developing a specific dial plan script customized
for human-to-bot communication, using the Rasa bot Framework. Figure 26 showcases an interaction
between a user and the virtual assistant, using IPBRICK UCoIP, where this dial plan script is executed
right after a call request to the bot is made:
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Figure 26: Outline of the voicebot architecture

1. Asterisk begins by sending an audible message through an audio output. This creates the initial
environment conditions to be acknowledged by the user.

2. After hearing the contextual message, an audible notification is played, indicating that the user
can proceed with providing a response. The voiced reply is generally captured with a microphone,
which is subsequently handled by the Asterisk dial plan script.

3. Asterisk proceeds to run a custom program, forwarding the message to Rasa, which formulates
an adequate answer by conducting the corresponding response generation mechanism, given said
message as input.

4. After generating a response, Rasa sends the reply to Asterisk, which then prepares the message to
be played back to the user, ending the custom program, repeating step 1 with the latest message.
This cyclical process operates continuously, until the user decides to terminate the call.

To respond accordingly, the user must first be given a context at the beginning of the call, before pro-
viding a response. When configuring a virtual assistant in the IPBRICK OS, one of its parameters is the
Dialogue start message, which converts any inserted text into an audible file, playing it in the start of a
call. Every time a user calls the assistant, a new Rasa session is initiated, where it waits for user input.
Therefore, in order to resolve the ambiguity present in the initial user utterance, Asterisk plays the audio
file back to the user at the start of each call, providing the initial frame of reference, avoiding incoherent
messages.

However, given that the Rasa bot Framework can only process text as input, the challenge relies on
accurately converting speech into text, which can be consequently processed by the assistant, and con-
verting Rasa replies into an audible format that can be played back to the user, via an audio output. In
the aforementioned Asterisk custom program, system-bot.py, additional components are present to solve
this hindrance, namely Speech-to-Text and Text-to-Speech engines. With recourse to the Google Cloud
Platform, some of its cloud computing services are used, namely the Google Cloud TTS and Google
Cloud STT APIs, playing a key role in the conversion of both voice and text. To the overall voicebot
structure, these engines give the bot the ability to comprehend human speech, as well as portraying
human characteristics, such as giving a personified voice that ranges from language and gender.
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Following the same modus operandi of the voicebot in figure 26, the TTS engine is firstly used when
configuring the dialogue message of the virtual assistant in the IPBRICK OS web interface, converting
the inserted text into an audio file. In the beginning of Asterisk’s dial plan, the script starts by playing
this file through an audio output. Afterwards, the user provides an audible input, which is then saved
in a file and handled by the STT engine within Asterisk’s custom program, translating the audio file
into a text-based format. This text is inserted into a JSON type structure, following the same input
format as described in 19, which is then sent to Rasa for processing. After generating a response, the
content in these messages is sent to a TTS engine, transforming these into an audio file, storing it in
a specified directory, and ending the custom program. Asterisk’s dial plan script resumes, playing the
newly generated file back to the user. Thereafter, all audio files are removed and a new communication
cycle begins. A complete overview of the voicebot architecture is presented below, in figure 27.

Figure 27: In-depth overview of the voicebot architecture

For every virtual assistant created in the IPBRICK OS interface, a dedicated dial plan script is developed,
containing several parameters regarding their internal components and configurations. Some of these
parameters refer to the used STT and TTS engines, including language and gender of the assistant, as
well as indicating the Rasa server port to which messages are forwarded. Although this information is
stored as a set of Asterisk-defined variables at the beginning of each dial plan script, they are mostly
used in system-bot.py. The custom program follows a generalized structure, in order to be reused by
any existing virtual assistant, along with their unique configurations. To effectively select the right
parameters for a given assistant, Asterisk provides an interface between its dial plan script and external
programs, the Asterisk Gateway Interface, where these variables are called and modified, manipulating
the course of the communication channel as necessary.
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Standard Voicebot interaction

Whenever a call with a virtual assistant takes place, system-bot.py is executed for each detected input,
representing the time it takes for the assistant to comprehend given user utterance, and provide an au-
dible response. To better monitor the performance of this system, the duration of every component is
measured. Observing this not only represents the total period of the voicebot’s execution, but also helps
determine which modules are hindering the system. Drawing comparisons between each module is sub-
jective, as each component plays different roles, where some are expected to take longer periods of time
to perform the intended tasks, given their nature and complexity.

Some aspects of this dynamic are registered, in order to observe if these are subject to change, prior and
after any enhancement is applied in the system. To obtain some consistency in these values, a series
of calls were performed to a standard Rasa project, using a set of 5 English phrases, each varying in
length, resulting in a total of 50 interactions with the assistant. In the same manner, the responses of the
bot were changed, replying with extended sentences for longer utterances, and giving small responses
for shorter utterances. This example aims to perform a series of simple enquiries to the bot, obtaining
default performance values for the voicebot. After the implementations have been set, a new analysis to
the same values is performed, observing the difference between the two.

Table 1: Default performance of every component - 50 interactions

Component duration for all 5 phrases (seconds)
Phrase # STT Rasa TTS
1 1.833 0.037 0.466
2 1.389 0.041 0.377
3 1.322 0.059 0.348
4 1.172 0.046 0.325
5 1.025 0.046 0.312

Mean execution time (seconds)
- 1.348 0.046 0.366

Table 2: Default minimum and maximum values for every component

Mininmum and maximum component duration (seconds)
- STT Rasa TTS
Phrase # Min Max Min Max Min Max
1 1.712 1.984 0.033 0.041 0.351 0.754
2 1.292 1.593 0.038 0.046 0.306 0.568
3 1.249 1.372 0.056 0.063 0.301 0.381
4 1.114 1.249 0.043 0.051 0.282 0.487
5 0.966 1.100 0.042 0.050 0.271 0.376
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On a first analysis, there is a clear distinction on the execution time of the different components. Con-
sidering the total mean execution time in Table 1, 1.76 seconds, it represents the average time a user
waits to listen to a response, after giving an input. During this time interval, there is a constant silence
period, where users that engage in the conversation can interpret it as errors that occurred during the call,
such as sudden call drops or problems with the recording device, compromising quality of service, and
the natural flow of the dialogue. Therefore, reducing the overall execution time is a fundamental part of
improving this communication flow.

After Asterisk records user input and stores it, the STT component first starts by reading the resulting
audio file, sending its content to Google Cloud API, converting the introduced speech into text. When
observing the registered interactions in table 1 and 2, all 5 sentences are ordered by phrase length in
a descending manner, from long to short. Comparing variable-length phrases to their corresponding
duration in the STT component, one can observe that the time spent reading an audio file, together with
audio conversion, is directly correlated with file size, meaning that for longer user utterances, the STT
component will take longer to perform.
Before the audio file is sent for processing, some configurations are set for speech recognition. Choos-
ing the sample rate of the audio file, specifying the spoken language for transcription and adding multi-
channel recognition are some of the many settings that can be applied. However, optional parameters
can be configured in this system, such as recognizing and transcribing audio to multiple languages, as
well as introducing automatic text punctuation and profanity filters. These should only be inserted when
applicable, as extra requirements compromise execution time. Therefore, a balance between conversion
time and accuracy is ever-present. Preferring a faster service compromises the text that is forwarded to
Rasa, whereas the opposite configuration profile results in a slower but accurate service, so choosing
optimal parameters is key to good execution. Moreover, relying on external services to perform audio
conversion implies an additional latency to the system, considering the Round-Trip-Time values when
sending audio files to Google services and obtaining the according responses. Given its worldwide dis-
tribution, selecting the nearest available region minimizes the delay when performing requests to Google
Cloud services.

Using a modified version of the default Rasa project, its performance remains somewhat consistent
throughout every interaction, always assuming values within the range of the average execution time,
independently of phrase length. Having a reduced number of intents in the domain, the Rasa server is
faster to predict and extract an intent in the user input, providing quick and simple utterances back to the
user.
In this initial case, external services are not used, as custom actions are not set by default. When in-
troducing the commercial support bot, some of the interactions are expected to perform substantially
slower than the average responses, as these require access to IPBRICK services in order to perform
specific functions. Additionally, its domain is expected to become more complex, having a larger set of
intents, thus assumed to perform comparably slower, as intent prediction goes through a larger domain.
Contrarily to other components, the Rasa server runs inside the machine that hosts the IPBRICK OS,
relying heavily on processing power, therefore its performance may vary depending on the hardware
components that this solution is set on.

The TTS component is expected to follow a similar behavior to STT, as there is a latency associated
when requesting external services. Moreover, from the results presented in tables 1 and 2, one can
observe that lengthier sentences, that are subsequently synthesized, generally impose larger execution
times in the system. Given plain text as an input, some initial parameters are set to define the voice of
the synthesized audio, such as the preferred language and gender, as well as optional settings to further
configure audio data, including speaking rate, pitch, and volume gain.
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Although Google Cloud services play a fundamental role in the voicebot, there is a fee associated with
every request, for both STT and TTS APIs. This pricing is based on the amount of processed audio and
synthesized characters for every month, respectively. Given the voicebot architecture, for each human-
to-bot interaction, both of these services are requested once. From the Google Cloud Platform, one can
observe the number of requests, as well as the mean latency of each service exclusively, presented in
figure 28.

Figure 28: Requests from Google Cloud Platform

The voicebot solution is configured to be easily scalable and replicated across several machines that
host the IPBRICK OS. In result, when distributing the voicebot solution to several IPBRICK clients, the
usage of these external services is expected to grow exponentially, impacting economic resources in an
unprecedented manner.

4.4.3 Voicebot implementation

Upon performing an analysis on a standard voicebot interaction, their major components are identified,
carefully exposing their structural constraints. Regarding the implemented enhancements, the proposed
solution addresses some of these architectural limitations, as well as introducing additional behaviors
that complement the devised virtual assistant and its unique features.
The focus of these improvements are set to adapt this interface to multiple-language support, using
English and Portuguese as an example, as well as adding domain-specific word recognition and some
minor improvements. Additionally, some adjustments to the Asterisk dial plan script and its external
program are made, in order to increase performance in the TTS component, as well as reducing the
total amount of requests to Google services by introducing a system that re-purposes synthesized audio
responses. In conjunction with the context of this work, supplementary configurations are set to the dial
plan script and system-bot.py, the external program, taking the necessary actions whenever a hand-off
intent is recognized.

Voice recognition

The STT component is responsible for accurately converting spoken utterances into plain text. Depend-
ing on the environment that surrounds the user, voice recognition mechanisms must be able to capture
certain intents and entities that deviate from generalized vocabulary. Therefore, specific parameters
must be configured, prior to audio transcription, as these particular words can easily be mistaken with
expressions that portray a similar phonetic structure. Given the closed-domain characteristics of the
virtual assistant, as it is solely developed for issue reporting purposes, formal language that is unique to
a specific field must be prioritized over general expressions. To this end, Google Cloud STT uses the
model adaptation feature to recognize particular phrases more frequently. In this case, expressions such
as IPBRICK, IPTicket and iPortalDoc are added, expanding the vocabulary of words that are recognized
by this component.
When devising the commercial support assistant, it is crucial that transcription results hold some lexical
construction when forwarding text to the Rasa component. This allows for the assistant to better under-
stand the intent of the phrase, as well as provide an understandable format to the developer for further
comprehension when reviewing past conversations through the CDD approach. Therefore, automatic
punctuation was enabled to improve phrasal structure, reducing misinterpreted intents.
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Whenever a user calls a virtual assistant, their initial configurations are set in the Asterisk dial plan
script. These settings include the spoken language, as well as the gender of the synthesized voice,
for personification purposes, which are passed to the respective STT and TTS components through the
Asterisk Gateway Interface, loading system-bot.py. In this case, if a user were to call an English-based
bot speaking a different language, the STT component would try to transcribe the audio to a phrase in
the English language, thus failing to capture the intent.
In order to address the support of both English and Portuguese given a single call to an assistant, the TTS
component is configured to identify the spoken language within the audio file and, upon detection, loads
the corresponding parameters, redirecting the conversation to the appropriate bot. Given an example
where two virtual assistants are configured in the IPBRICK OS interface, their parameters are set to
interact with Rasa P and Rasa E, if the user desires to interact using Portuguese and English language,
respectively. In this instance, if a client calls the English-based voicebot using the Portuguese language,
the STT component identifies this language, loading the remaining parameters as if one was dialing the
Portuguese voicebot, forwarding the text to Rasa P, which will consequently use the TTS to generate an
audible output in Portuguese.
This language identification mechanism is only performed in a single instance when the first audio input
is introduced, and will not be performed again until a next conversation occurs. This prevents users from
engaging with different virtual assistants in the midst of a conversation, as the state of the conversation
is unique to each assistant. This implementation is showcased in figure 29:

Figure 29: Enhancements regarding voice recognition
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Synthesized audio re-purposing

After evaluating the default performance of a voice-based assistant, in tables 1, 2 and the corresponding
Google Cloud requests in figure 28, one could observe that both STT and TTS components are accessed
in every interaction. This imposes limitations concerning latency and economical resources, as the TTS
is always requested, even if it has synthesized the same exact text previously. Given that the voicebot
always produces a fixed amount of responses, exploring the concept of re-purposing synthesized audio
files that match the exact reply of the assistant reduces the amount of requests being made to the TTS
API.
Therefore, the challenge relies on the process of matching current Rasa responses with previously-
stored audio files, addressing how, when and which responses should be synthesized and differentiated.
Additionally, this new implementation should function interchangeably with Google TTS service, if
such file is non-existent, thus requiring new audio files to be processed.
However, given the unpredictability of the human mind, this solution proves unfeasible to the STT com-
ponent, as each individual possesses their own mannerisms and unique characteristics when producing
speech.
In the process of generating responses, the developer must be aware that outputs from the Rasa compo-
nent are differentiated into two types of replies: strict and dynamic. As the name suggests, the first type
of messages are pre-determined and set by the developer, always remaining static independently of the
state of the conversation. Given this example of a strict utterance:

utter greet:

- text: How can I help you?

- text: Hey, how can I be useful?

- text: How can I be useful?

- text: Hi, how can I help?

Despite offering several alternatives to the utter greet action, these serve the purpose of providing dif-
ferent responses and do not depend on the user that triggered the initial intent, thus being suitable for
audio file re-purposing.

On the other hand, dynamic responses are pre-determined messages, carrying variable elements that are
unique to every conversation. These are cases where the assistant requests data from the user, which are
then mentioned further in the conversation. In the following example, the bot asks for the name of the
user, providing a custom welcome message with the solicited information.

Virtual assistant: "Hey, what is your name?"

User: "My name is John Doe."

Virtual assistant: "Hello, John Doe!"

Portraying itself as a useful technique when giving context, this simple example quickly showcases
that these type of replies, when synthesized to an audio file, should not be re-purposed, as every user
transmits different data, compromising hardware storage resources.
Therefore, a mechanism that identifies specific messages must be set, preventing dynamic audible replies
to be saved locally. Following a similar concept to the hand-off intent, Rasa sends the following JSON
message:

dispatcher.utter message(json message={"flag":"true"})

In this case, similarly to a hand-off message in figure 23, this JSON message is imperceptible to the user
and is sent alongside a visible response, being processed by system-bot.py and the Asterisk dial plan
script, indicating that the resulting audio file from the visible message is to be removed afterwards.
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When delivering a message to a user, a Rasa response passes through a TTS component, converting plain
text into an audible file, storing it locally. In a default configuration, the recorded user input is identified
with a sequence of numbers, where its corresponding response uses the same identifier, followed by an
” answer” tag:

User audio input file: <UNIQUE-ID>.wav

Bot audio output file: <UNIQUE-ID> answer.wav

After this conversion, Asterisk plays the audio back to the user, discarding it after its usage. This
naming convention is practical, yet not built to be re-used, as each identification number is unique to
every interaction.
In order to introduce a file re-purposing mechanism, a new naming convention system is to be set, where
local file verification must be performed prior to any Google TTS request, playing a previously stored
file instead. If such file does not exist, it requests the audio from the TTS service, storing it locally under
a new name.
When developing a naming convention system, one must be aware of the criterion that affects audio files.
In this case, the language and gender of synthesized voices, deriving from TTS parameters, along with
utterances from the Rasa assistant are what define an audible response. Hence, the following naming
convention is proposed:

<SYSTEM LANGUAGE> <VOICE GENDER> <UTTER>.wav

The first parameter, SYSTEM LANGUAGE, is classified by the IETF BCP 47 tag, a standardized code
that is used to identify and distinguish languages according to their country, region, and writing system
[38]. This structure is adopted by Google services, being a mandatory parameter when synthesizing
audio, therefore no additional configurations are necessary. The second parameter is also required by
Google services, specified by a single-letter code, differentiating the gender of the spoken language (”m”
for male, and ”f” for female).
The last parameter is solely dependent on Rasa, varying with each message from the assistant. With
every reply being unique and directed to a user, each utterance is constructed towards human compre-
hension, containing key phrasal elements, such as punctuation and symbols that compromise file naming
scheme, thus an additional step is necessary, removing all non-viable characters beforehand. Given this
brief example for both languages:

Hey, how’s it going? → hey hows it going

Ótimo, muito obrigado. → otimo muito obrigado

This text normalization method converts every phrase into a single lowercase string of characters, replac-
ing letters that contain accent marks with their corresponding non-accented version, removing punctua-
tion, and substituting the space character with an underscore. This ensures that every utterance is prop-
erly formatted, as user-generated text often includes invalid characters that can incapacitate file path
mapping, while simultaneously being arranged in an understandable format for both man and machine.
Upon configuring all three parameters, two distinct files containing synthesized audio using a female a
male voice would be presented as:

en-US f hey hows it going.wav

pt-PT m otimo muito obrigado.wav
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When introducing the re-purposing mechanism, a final architectural overview of the voicebot is pre-
sented as the following:

Figure 30: Complete voicebot architecture

After all implementations regarding this interface have been set, the second part of the experiment was
conducted, using the same environmental factors, repeating the same 5 phrases up to a total of 50 inter-
actions, retrieving 5 different responses from Rasa, observing the performance of every component in
Table 3.

Table 3: Performance of every component, after implementations - 50 interactions

Component duration for all 5 phrases (seconds)
Phrase # STT Rasa TTS
1 2.034 0.039 0.071
2 1.404 0.042 0.055
3 1.341 0.060 0.048
4 1.227 0.047 0.039
5 1.030 0.049 0.041

Mean execution time (seconds)
- 1.407 0.047 0.051
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Table 4: Minimum and maximum values for every component, after implementations

Mininmum and maximum component duration (seconds)
- STT Rasa TTS
Phrase # Min Max Min Max Min Max
1 1.882 2.336 0.035 0.049 0.001 0.698
2 1.312 1.487 0.036 0.049 0.001 0.537
3 1.308 1.426 0.055 0.065 0.002 0.461
4 1.132 1.451 0.043 0.050 0.001 0.384
5 0.956 1.074 0.046 0.051 0.002 0.395

Figure 31: Requests from Google Cloud Platform - audio file reusage

When drawing a comparison between the initial configuration and the proposed implementations re-
garding the STT component, there is a slight increase in the overall average performance time. Not
only does the mean latency of the Google Cloud STT service increase, visible in figure 31, due to addi-
tional requirements such as alternate language recognition and automatic word punctuation, but changes
performed to the external program, system-bot.py, also affected the STT performance.
In each conducted experiment, the execution time regarding the Rasa component maintained constant
values, since no changes were performed between the two.
However, there was a significant improvement in the TTS component. Given that all responses were
classified as strict messages, the re-purposing audio file mechanism was put into motion. In the first
interactions with the virtual assistant, no audio files were stored locally. Due to the fact that the first 5
inputs consisted of the set of 5 unique English phrases, 5 different requests were performed to Google
Cloud, creating the necessary synthesized audio files, explaining the maximum values for the TTS com-
ponent in table 4. Afterwards, when repeating the same set of phrases, all audio files were re-used,
showcasing values close to the minimum performance levels. In result, for a total of 50 interactions
with the bot, only 5 requests were performed to the TTS API, drastically reducing monetary costs and
performance time, confirming its effectiveness in figure 31.

Additional Implementations

In order to communicate to a database that a specific call has terminated, the Asterisk dial plan script
was modified, inserting an entry to the database with HANGUP event, as well as identifying the user
through its identification number right after a call is terminated.
This ensures that a call was deliberately terminated by the user, and not due to possible errors that
occurred during this interaction. This same database is explored in section 4.6, when developing a
dashboard-like interface to showcase statistical data regarding the performance of both communication
flows.
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4.5 Chat-based Bot

4.5.1 Overview

Communication that revolved around distant message exchange has suffered a continuous evolutionary
process. From the early adoption of sending smoke signals to communicate an intent, to software ap-
plications that include instant-messaging capabilities for online interaction, humans have become ever
so acquainted with remote communication. Never being fully aware of the identity of the recipient be-
hind these messages, the introduction of AI to instant-messaging services became a fitting application
in circumstances where tasks can be performed autonomously and handled remotely.
When designing a chat-based bot, an interface with transparency attributes must be chosen, as its com-
munication method is rather simple, relying on exchanging plain text messages. There must be a clear
comprehension of all actors that take part in the conversation, where users can instinctively interact
with one another. A holistic approach to this system must be carefully addressed, as this chat-based
communication method interacts with multiple external systems.
In the context of this work, a Graphical User Interface fit for instant-messaging communication is
adapted for human-to-bot interaction, creating all back end functionalities that allow this interface to
communicate with a Rasa virtual assistant. Additional support for human-to-human communication is
developed, where a natural hand-off mechanism is to be implemented without breaking conversation
flow, interacting with users within the IPBRICK CAFE without resorting to additional interfaces. The
resulting solution is required to be fully customizable as a service, compressed into a bundle-like module
that can be deployed into any web page.

4.5.2 Chatbot Architecture

For this type of communication, every interaction is transmitted through a readable, text-based format.
Considering that the chat-based bot must be able to talk with two distinct recipients at different points in
time, its architecture is first decomposed into baseline elements, according to the imposed requirements.
A detailed analysis for both types of communication is performed, describing their modes of operation,
thus establishing a complete structure of the chatbot.
In order to grant deployability, the interface will consist of a non-intrusive pop-up icon that resides in the
bottom-right corner of a web page. When clicked, a chat box will appear, displaying an interface where
the user transmits and receives messages from both recipients. From figure 32, its intended behavior is
as follows:

Figure 32: Baseline chatbot architecture
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1. At first, the user is presented with a contextual message, stating the assistant’s main purpose. By
default, every input that is introduced to the interface is forwarded to a Rasa assistant, receiving
messages and replying accordingly to all extracted intents.

2. Given a specific instance where the hand-off intent is captured by the assistant, this information
is communicated to the interface, performing a protocol switching mechanism. Under these cir-
cumstances, all subsequent messages are then forwarded to a human-aided environment, where
an operator using IPBRICK CAFE can provide assistance.

Similar to the initial audio output, Dialogue start message, applied in the voicebot, an introductory
message is also presented, giving context in order to respond accordingly.
Having previously explored Rasa’s communication procedure, whenever a user finishes typing a mes-
sage, its content is displayed in the chat interface and simultaneously sent to the assistant, through an
HTTP POST method.

As an equally significant aspect of this solution, in order to interact with a human operator, one must first
analyze how users within the IPBRICK network interact with one another, specifically using IPBRICK
CAFE.
In this network, all business logic regarding interpersonal communication is handled by ejabberd, an
Extensible Messaging and Presence Protocol server application. In a similar approach to e-mail, every
entity has its own address, or Jabber ID, sending and receiving messages to or from others, respectively.
Whenever a client wishes to send a message, better known as stanzas, a connection to an XMPP server
must be present, before sending any stanzas through a bi-directional XMPP stream. Therefore, an
updated version of the architecture is presented in figure 33:

Figure 33: Complete overview of the chatbot architecture

Apart from implementing both communication protocols, as well as its inherent switching mechanism
that alternates from the different recipients, the challenge resides in devising a customizable, bundle-like
solution that is ultimately loaded onto any web page.
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4.5.3 Chatbot Implementation

Graphical User Interface

In order to deploy this component in any website, without compromising the structure of the web page,
a dedicated JavaScript library for building user interfaces was used, known as React, granting the ability
to adopt full-fledged React projects while keeping a small footprint in the source code of the target web
page.
For the Graphical User Interface component, the publicly available project react-chat-popup was used,
not only for its simplistic design, but due to its customizable features [39]. Given every message from its
two distinct entities, originating from the user or its recipient (a virtual assistant or a human operator),
this project handles the front end logic, ensuring that messages are correctly displayed in chronological
order while identifying its sender, as well as the button that portrays its pop-up feature. The baseline of
this project is carefully addressed, customizing its interface according to the context of this work, and
presenting a final design as shown in figure 34.

Figure 34: Customized user interface

In conjunction with this interface, the back end logic of this project is constructed from the ground-up,
implementing both types of communication protocols, regarding human-to-bot interactions with a Rasa
virtual assistant, and reciprocal human-to-human communication through ejabberd.

Back end

In the same manner that typed messages are displayed on the designated chat area, notifying the entity
that their message has been sent, it is imperative that a background, behind-the-scene process must
format the same content, according to each protocol standards, effectively forwarding the message to its
intended receiver.
Analogously, given a situation where a Postal Service contains two collection boxes for two distinct
zones, if an individual places a written letter in neither of these boxes, leaving the premises with all
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parameters left unspecified, a postal carrier does not know to whom, or where, the letter supposed to be
forwarded. From the individual’s perspective, he deliberately took the action to send a message, oblivi-
ous to the fact that the Post Office is unable to address his request.

This back end dynamic is best described as having a stateful behavior, reacting differently to the same
inputs, based on pre-determined events. In an initial state, the user first interacts with a Rasa assistant,
thus encapsulating the message under a JSON-formatted payload. Under the new REST channel con-
nector, myio, additional parameters are set, similarly to figure 21, indicating a different communication
flow, ”CHAT”, amongst other key values included in the metadata field, to be sent through an HTTP
POST method.
For every response that originated from the virtual assistant, the interface displays its plain-text content,
while being observant for a specific JSON object.

[ {
"recipient id": "test user",

"text": "You will be transferred to an IPBRICK operator." },
{
"recipient id": "test user",

"custom": { "bot handoff": "true" }
} ]

Upon recognizing the hand-off intent from a user utterance, the Rasa assistant transmits an additional
JSON object. Not being visible to the chat display area, the interface changes seamlessly to its second
and final state: interpersonal communication.

In order to interact with operators using the IPBRICK CAFE, this project must also support communi-
cation through the XMPP protocol, connecting to the same ejabberd server. StanzaJS presents itself as
the indicated solution, being a JavaScript/Typescript library dedicated to using XMPP in the browser,
exposing all content in a JSON format [40].
Every interaction through the XMPP communication protocol requires identification from both partici-
pants. Prior to sending chat messages, or stanzas of type chat, both parties are required to be connected
and properly identified to the same ejabberd server. Having specified the Jabber Identity (JID) address
that will serve the purpose of a human operator, the challenge of identifying the entity using the chatbot
interface arises. Given an instance where multiple individuals access the same web page, requesting
assistance from the designated operator at the same time, their JID addresses should ideally be different
from one another, so that the operator can provide undivided assistance in separate chat rooms. To over-
come this issue, unregistered users can still engage with a specific ejabberd member using the visitor
feature.

ejabberd user: <user>@<domain>

visitor for a given user: <visitor name> <user> <visitor>@<domain>

In order to guarantee separate chat-rooms for every unregistered client, the <visitor name> parameter
is given a unique identifier, being randomly generated every time the web page hosting the chatbot in-
terface is accessed, thus enabling communication between the interface and an IPBRICK operator using
IPBRICK CAFE.
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Additional implementations

Apart from communicating with a Rasa assistant in the first state, a JavaScript variable is stored in
browser memory, keeping track of all interactions that occurred between the user and the assistant. Upon
detecting a hand-off intent, the project switches to its second state, connecting the user to an ejabberd
server, so that all upcoming messages are received by an operator, where he can respond accordingly.
Prior to any interaction between the two, and once a bi-directional XMPP stream has been defined, the
content of this JavaScript variable, holding all chat history, is sent to the operator. When receiving all text
logs from the user and the bot, the operator is first given context as to why his assistance was requested.
By analyzing the chat history, he can better identify the problem, as well as provide faster support to his
client, showcasing this instance in figure 35.

Figure 35: Hand-off from an IPBRICK CAFE perspective

In order to indicate whether a user has stopped communicating with the chat interface, similar to the be-
havior when a user deliberately hangs up a call regarding the voicebot infrastructure, additional features
are implemented in this project. Having no ”Hangup” button, one must devise a solution to perform the
same mechanism in the chatbot interface. Therefore, Event Listeners are implemented in this module.
When triggered, an entry in the database is registered with the HANGUP event.
From the moment where a user types a message to an assistant, two time-based events are initiated.
These are present to detect motion, regarding mouse activity within the web page, along with keystroke
detection, indicating that the user is still interacting with the web page hosting the chatbot component.
If no activity is detected for a given amount of time, an event is triggered, registering a HANGUP event
in the database, confirming user inactivity. In these circumstances, the chatbot interface sends a timeout
message, declaring that the next sent message to the assistant will result in a new conversation, under a
new identification number.
In addition, another Event Listener detects for browser or tab closing events. Whenever this window is
closed, it is interpreted that the user no longer wishes to interact with the assistant, therefore the same
HANGUP event is registered.
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4.6 Dashboard

4.6.1 Overview

When implementing services that include virtual assistants, along with the proposed interfaces, it is
imperative that the service provider maintains a constant awareness of the performance of this solution.
For every interaction that occurs, its major events are registered in a dedicated database.
Having its core modus operandi revolved around AI, to accompany this evolutionary and continuous
process, a proper tool must be designed to process data in a given database, showcasing the effective-
ness of all virtual assistants, in order to assess if their implementation has proven to be successful. In
conjunction with Rasa X, a CDD tool that observes past conversations with Rasa bots, it is possible to
adjust an assistant’s behavior by correcting its previous mistakes, ensuring that it is constantly being
perfected towards the intended purpose.
In this section, the construction of a database is carefully addressed, detailing how its information is
perceived, along with the development of a dashboard interface using KoolReport, a PHP Reporting
Framework. It processes information from a data source, communicating valuable data insights regard-
ing bot performance using graphs, charts, and tables.

4.6.2 Implementations

Regarding the implementation of the database, one must be aware that information derives from distinct
environments. When devising a virtual assistant in the UCoIP section from the IPBRICK OS web
interface, its configurations are set in the Asterisk dial plan script, which are forwarded to system-
bot.py through the Asterisk Gateway Interface. Relevant parameters include the assistant’s name and
identification number, together with its dedicated Rasa port to which all spoken utterances are redirected,
as well as settings inherent to Google Cloud services. These define the core characteristics of a virtual
assistant and should not go overlooked.
When specifying a voice-based communication flow, all aforementioned parameters are included in the
payload of a message and sent at the beginning of a human-to-bot interaction, through the metadata
field. Subsequently, the first Rasa action, action session start, handles this information by inserting an
entry in the database, registering a new conversation with the START event.
In the same manner, for chat-based communication, UCoIP matching parameters are set as variables in
the chatbot React project, also being sent in the metadata field at the start of a conversation, along with
its specified communication type.
Besides both interfaces handling circumstances where a user terminates a conversation from either voice
or chat, the remaining events, such as successfully issuing an IPTicket or transferring current users to
a human operator, are handled by the Rasa assistant in the midst of a conversation. Every event, when
inserted into the database, is identified by date and time, ensuring a chronological order. The proposed
relational database is built under PostgreSQL, introduced in figure 36:
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Figure 36: Database for virtual assistants

Considering the range of events that occur in this domain, its sequential and chronological order, from
START to HANGUP, provides different interpretations. In circumstances where the virtual assistant
was able to follow through with the intended task, it will register the events START, SUCCESS, and
HANGUP in chronological order. Given the same example, in instances where there is a HANDOFF
event instead of SUCCESS, it represents that the user either requested an operator in the middle of the
conversation, or the bot failed to complete the task, thus recurring to human-mediated assistance. Only
having the START and HANGUP, however, it is interpreted that a conversation was initiated with an
assistant, but was abruptly terminated.

Upon developing a database solely for storing information regarding virtual assistants, the following
step is dedicated to data processing: gathering all collected data, manipulating it, and producing mean-
ingful information back to the user. In order to present valuable information, IPBRICK provided some
guidelines during the process of data treatment:

• Daily statistics

⇒ Today’s calls by bot - Daily requested assistants, presented the total number of interactions
and differentiated by preferred communication flow type;

⇒ Today’s call treatment - Daily number of successful calls, hand-off requests and abrupt exits
during conversations, separated by communication type, per bot;

⇒ Today’s call treatment distribution - Presenting daily call treatment data, independently of
communication type, percentage-wise.

• Statistics from the last 5 days

⇒ Received bot conversations - Requested interactions per assistant in the last 5 days, presented
the total number of interactions and differentiated by preferred communication flow type;

⇒ Bot distribution - Total number of requested assistants in a 5 day window, independently of
communication type;

⇒ Call treatment - Number of successful calls, hand-off requests and abrupt exits during con-
versations, separated by communication type, given a 5-day time interval, per bot;

⇒ Call treatment distribution - Call treatment data in the last 5 days, independently of commu-
nication type, percentage-wise.
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• All time statistics

⇒ Total calls by bot - Total number of interactions per assistant, presenting the total number of
interactions, differentiated by preferred communication flow type;

⇒ Total bot distribution - Total number of requested assistants, independently of communica-
tion type;

⇒ Call distribution by time of day - Presenting the number of performed interactions, per as-
sistant, in a 24 hour window;

⇒ Total Voice/Chat bot distribution - Percentage-wise representation of communications in-
volving virtual assistants, differentiated by communication flow type;

⇒ Total call treatment - Total number of successful calls, hand-off requests and abrupt exits
during conversations, separated by communication type, per bot;

⇒ Total call treatment distribution - Percentage-wise call treatment data, independently of com-
munication type.

Following these guidelines, a dedicated web page was implemented using KoolReport. Some extra
information was displayed, such as the average call duration for both chat and voicebots, in order to
best perceive if the duration of the implemented service is performing as expected. These statistics
are displayed by performing SQL queries to the database, showcasing the requested tables, charts, and
graphs, where some are presented in section 5.
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5 Validation and Evaluation

5.1 Evaluated Metrics

Having devised specific implementations regarding both interfaces, suggesting some enhancements to
the overall voicebot architecture, as well as constructing a chat-based component capable of functioning
with two distinct communication protocols, these were adapted to comply with the proposed solution.
Furthermore, apart from creating Rasa bots that report faults within the IPBRICK infrastructure, these
once isolated platforms were merged into a single, virtual assistant-oriented ecosystem.
Some advancements concerning the assessment of bot learning capabilities are indicated, through the
Rasa X interface, maintaining a constant CDD approach when reviewing past conversations, as well
as using Google Cloud Platform to consult the performance of vital components that make up voice-
based interactions, and analyze the number of performed service requests and their respective costs and
latency.
However, when introducing this service in an environment, there is no practical way of determining if
assistants are performing as expected. Despite being possible to review every single conversation, by
carrying out an extensive process of manually reviewing conversations that resulted in either failure or
success, using Rasa X alone does not account for possible errors that are interface-specific. Failing to
address this issue, it compromises the assistant’s learning process, as well as quality of service.
Thus, in order to practically determine the performance of any virtual assistant using both types of
communication, the introduction of event registration is included, together with a dashboard interface,
proposing a careful perspective when reviewing the performance of multiple assistants, in hopes to bet-
ter identify its underlying issues, either Rasa or interface related, exposing all major occurred events.

To evaluate the efficiency of this solution, this system is introduced in a closed environment, conducting
a simulated experiment that aims, not only to give a practical exhibition of its intended application but
to demonstrate the assistant’s gradual learning process, while being alert to information presented in the
dashboard, contributing to better results.
This experiment was conducted for 5 days, performing a total of 200 conversations, 102 through voice
and 98 using the chat interface, exploring an initial situation where the assistant consistently fails to
submit IPTickets, gradually evolving to a state where there are noticeable improvements, successfully
submitting IPTickets. Throughout this simulated experiment, the dashboard indicates areas of interest
to where this system should be improved.
Given larger failure rates for a single interface, when compared to the opposite communication type, it
suggests that the assistant is failing due to interface issues. However, if both interfaces indicate constant
failed interactions, it is presumably due to a problem imposed with the Rasa assistant, affecting both
interfaces in result, resorting to Rasa X for its correction.
The number of HANDOFF and SUCCESS events from each communication type are evaluated, ex-
pecting a gradual decrease in hand-off occurrences and an increase in the latter.
Additionally, a parallel analysis of the voicebot infrastructure is performed, examining results given by
voice-based interactions, and observing the duration of each major component, while being attentive to
the synthesized audio re-purposing mechanism.
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5.2 Validation & Results

In this controlled environment, an initial scenario details a situation where the devised commercial
support bots interact with a simulated target audience, IPBRICK clients and partners, in order to report
system faults using IPTickets.
In this scenario, however, both virtual assistants are assumed to be poorly optimized, only having a few
stories that follow the process of submitting a ticket. By not complying with a CDD approach, these
assistants were not subjected to user testing before being inserted in a simulated ”live” environment,
therefore lacking in vocabulary and common expressions that are unique to every language and individ-
ual. Without proper training, the virtual assistants fail to capture intents in a consistent manner, handing
over the majority of conversations to an operator, recurring to human assistance in order to fulfill the
original request.

Through the dashboard interface, IPBRICK users view the deployed virtual assistants, observing the
outcome of implemented bots when placed in the target environment. In these circumstances, the daily
performance of the English commercial support bot (EN - BOT) and the Portuguese commercial support
bot (PT - BOT) are reviewed on the Daily Statistics segment on the dashboard. In an initial perspective,
figure 37 denotes the number of calls that have occurred for each assistant, on the first day of this study,
where a total of 49 conversations were performed.

Figure 37: Number of calls for each assistant - day 1

Regarding the EN - BOT, 10 conversations were initiated for each communication flow type, whereas
the PT - BOT performed 19 calls to the voicebot, and 10 calls using the chat component. As a result,
40.82% of calls were performed to EN - BOT, and the remaining 59.18% to PT - BOT. Depending on
the demographic of the target audience, as well as the objective of each bot, this information is crucial
when determining which interfaces and assistants should be prioritized when improving these services.
The daily outcome of each bot is further detailed in their respective column charts, showcased in figures
38 and 39, observing if assistants were able to fulfill their intended purpose.
Differentiated by communication flow type, these charts display the number of conversations where vir-
tual assistants were able to comply through their objectives; the amount of events that resulted in abrupt
exits, if these failed midway through the conversation; the number of hand-off occurrences, detecting
when a human operator was requested, due to consecutive unsuccessful attempts when capturing user
intent, or if this feature was simply requested by the user. Additionally, it also showcases the number of
total calls performed to each bot, per communication flow.
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Figure 38: Call treatment for each communication flow, English assistant - day 1

Figure 39: Call treatment for each communication flow, Portuguese assistant - day 1

Following the same scenario where deployed assistants did not possess a large vocabulary, the majority
of captured utterances resulted in failure, thus being showcased a large quantity of hand-off occurrences,
independently of each interface.

Concerning the English assistant, given the 10 conversations performed through the text-based interface,
the browser window was closed a single time during a conversation, resulting in 1 abrupt exit event, and
9 interactions that resulted in hand-off requests.
For the same number of conversations, 2 calls were suddenly dropped in the voice-based English bot, 6
conversations were handed over to a designated operator, and 2 IPTickets were submitted with success.
In total, 75% of calls account for hand-off events, interpreted as failure rate, 10% for successful attempts
when submitting tickets, and 15% for the remaining occurrences.
As for the PT - BOT, using the chat component led to 7 failed attempts, and 3 user conversations that
were able to successfully perform the intended task.
With respect to the voicebot, 3 calls were disconnected in the midst of a conversation, 13 required a hu-
man mediator and 3 effectively issued IPTickets. Correspondingly, 68.97% of calls constituted in failed
attempts, 20.69% accounts for the assistant’s success rate, and the remaining 10.34% for external events.
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Having recognized the potential issue, the next phase involves performing a thorough analysis on past
interactions using Rasa X, a Conversation-Driven Development tool. When reviewing every step of the
conversation, developers are able to correct mistakes that were once performed by the assistant during
an interaction, as well as expand its vocabulary by including user-portrayed expressions.
When used in tandem with Rasa X, the dashboard is expected to accompany the gradual improvement
of deployed assistants, observing a reduction of conversations that resulted in hand-off events, while
simultaneously increasing the number of calls that successfully issued tickets for both communication
flow types.

The second, and final part of this scenario is set in a specific time frame, corresponding to the fifth day
of results, where both assistants were constantly under review with Rasa X. From the dashboard inter-
face, the viewer is presented with a column chart in figure 40 that describes a time-lapse, containing the
number of received conversations for each assistant, throughout all five days.

Figure 40: Number of calls to each assistant, per day

During this scenario, every bot was requested in all 5 days, performing a total of 200 conversations.
Regarding the EN - BOT, the number of conversations for each day was as follows: 20, 10, 15, 18, and
24. With concern to the PT - BOT, 29 calls were performed on the first day, 10 for the second, with
the remaining days having 18, 23, and 33, respectively. In total, 43.5% of calls were directed towards
the English assistant, where the remaining 56.5% account for the number of conversations with the Por-
tuguese assistant.
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Similarly to figures 38 and 39, the daily outcome of all performed calls for the fifth day are presented in
figures 41 and 42, noticing major improvements:

Figure 41: Call treatment for each communication flow, English assistant - day 5

Figure 42: Call treatment for each communication flow, Portuguese assistant - day 5

Comparably to the first scenario, it is perceptible a drastic increase in the number of successful calls,
regardless of interface. In the EN - BOT, 3 conversations resulted in sudden disconnections, 2 were
handed over to an operator, and 19 calls successfully issued IPTickets, 10 using the chat interface, and
the remainder with the voice interface. A total of 24 calls were performed to this assistant.
The same number of abrupt exits occurred in the PT - BOT, although the number of hand-off occurrences
was higher, 4 using voice and 1 through chat. Nevertheless, 13 IPTickes were submitted with success in
the chat component, and 12 used the voice interface. A total of 33 calls were performed to this assistant.
Regarding the total distribution for both bots, 77.2% accounted for successful calls, 12.3% for hand-off
occurrences, and the remaining 10.5% for calls that resulted in sudden disconnections.
Throughout this monitoring process, the duration associated with every conversation was registered.
Since the deployed virtual assistants were requested in two distinct communication flows, it becomes
necessary to display the average call duration per communication type, observing if the bots performed
as expected.
Regarding the EN - BOT, the average chatbot duration was 62.59 seconds, and 80.63 seconds for the
voicebot. For PT - BOT, the average length of each conversation resulted in 66.45 seconds and 89.60
seconds, respectively.
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Table 5 showcases the total call distribution by the time of day, identifying at what time each bot was
requested. From these results, one can observe specific time periods where call traffic was at its highest
and lowest. Instead of maintaining power and hardware usage to the maximum, developers can dynam-
ically allocate energy and processing power, depending on previously collected traffic data, predicting
instances where requests are supposed to be more frequent or scarce, thus running this system more
efficiently.

Table 5: Call distribution by time of day, case study

Hours Total requests PT - BOT EN - BOT
00 - 03h 1 1 0
09 - 12h 82 45 37
12 - 15h 23 12 11
15 - 18h 50 27 23
18 - 21h 27 15 12
21 - 00h 17 13 4

Ultimately, an analysis of the voicebot component was made for all 200 conversations, observing the
performance of every major module throughout this experiment, discussing the obtained results. Since
the voicebot was used along with the chat interface, only 102 conversations out of the total 200 went
through the voicebot module, resulting in 650 registered interactions that happened during the 102 con-
versations. These interactions will serve as a reference point to the study of voice-based bot performance
in Table 6 and figure 43.

Table 6: Voicebot component duration, case study

Average Component Duration (seconds)
Speech-to-Text Rasa Text-to-Speech

1.684 0.889 0.195
Minimum and Maximum Component Duration (seconds)
Speech-to-Text Rasa Text-to-Speech
Min Max Min Max Min Max

0.948 5.309 0.249 2.747 0.001 0.957

Figure 43: Google Cloud API requests, case study

Regarding the STT component, prior to this analysis, it is worth taking into consideration that, from
the conclusions gathered in 4.4.3, when comparing these voicebot components to the same 5 set of
phrases (before and after the suggested solutions were implemented and presented in Tables 1 and 3,
respectively), the duration of this component is directly correlated to the length of user utterances. When
capturing audio from the microphone, background noise may compromise and extend the length of the
recording file, which can be explained by having a maximum duration value of 5.31 seconds, which
deviates most from the average STT component duration. Overall, the mean performance of this specific
component stayed within a reasonable range of values.
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When observing the number of requests from the STT component in figure 43, there is a noticeable
discrepancy in values. In this study, for the reference amount of registered interactions n = 650, Google
STT API appoints to 774 requests, which remarks 124 requests left unaccounted. Given that this Google
account is not specific for this project, but shared across all IPBRICK projects that already use voice-
based virtual assistants, one possible explanation could be those separate projects that were requested
during the course of this study (5 days), resulting in this value being unexpectedly higher than the
registered interactions, that act as a point of reference. Another possible explanation is given from
Google Cloud documentation:

• ”If no speech from the supplied audio could be recognized, then the returned results list will
contain no items.” [41].

In circumstances where a user failed to supply recognizable audio, or if no audio was captured from
the microphone, the Google STT performs a request, increasing its value in the Google Cloud Platform,
while simultaneously returning an empty list of values. If no text is transcribed, the custom program
system-bot.py is unable to continue, exiting abruptly before forwarding any content to Rasa, and sub-
sequently to the TTS component. Since component duration values are only inserted at the end of this
program, it automatically fails to register these values, therefore not counting as a valid interaction.

Regarding the Rasa component, there was a noticeable increase in mean performance time, given that
its story is comparably more complex to the modified standard implementation in 4.4.3. Moreover, the
duration of this specific component is substantially higher, due to custom actions that involve external
web services and database access. The first is responsible for user authentication and IPTicket submis-
sion, which are performed using a SOAP-based web service, which generally is a big factor in causing
network traffic, high latency, and processing delay [42]. The latter involves inserting database entries,
using a PostgreSQL connection, for event registration purposes that are showcased in the dashboard,
naturally imposing an additional delay in the system. These types of custom actions are performed by
the assistant throughout the conversation, so it is expected that the average duration of this component is
relatively slower. A high discrepancy between the minimum and maximum component duration can be
further explained in circumstances where the Rasa component depends, or not, on these external services
to formulate a response.

As for the final voicebot constituent, the TTS component behaved accordingly, taking advantage of the
audio re-purposing mechanism to cut down on execution time. However, some of the included Rasa
responses were considered as dynamic, due to the fact that the virtual assistant would greet a user with
the according company name when it performed a successful authentication; or when an IPTicket was
submitted, it would convey its identification number to the user. As these responses were critical to an
assistant’s mode of operation and unique to every conversation, these corresponding audio responses
were not stored locally, therefore recurring to Google Cloud services to perform synthesized audio of
responses. However, given that there is a constant 1:1 ratio when using a voice-based bot without this
re-purposing mechanism (as shown in figure 28), for a total of 650 registered interactions, only 308 TTS
requests were performed, resulting in 52,62% of all Rasa responses selecting the appropriate audio file
stored in the system, shown in figure 43 (assuming that there was no external intervention from other
voice-based virtual assistants during this study).
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6 Conclusion and Future Work

6.1 Accomplished Goals

The purpose of this dissertation was to incorporate a solution, focusing primarily on the subject of com-
munication flow automation within the IPBRICK OS by enhancing its Artificial Intelligence subsystem.
In regards to all performed developments, in the course of the intended implementation phase at IP-
BRICK, these were comprised into four major categories, to which this chapter is dedicated, carefully
addressing the respective concluding remarks, specifying the extent up to which the goals of this disser-
tation were achieved.

In order to automate a task inherent to IPBRICK services, the first objective was dedicated to devising
a Rasa assistant, with the purpose of reporting IPTickets. This genuine problem served as the baseline
ambition for every aspect of this dissertation, where the architecture of a Rasa project is detailed, along
with the recommended approach for building virtual assistants using Coversation-Driven Development.
Given that Rasa bots are presented as a customizable service within the IPBRICK OS, it is expected that
every different implementation will target very distinct and specialized segments of each market, for
particular products that could be improved with automated services. Therefore, the devised assistants
are served as a generalized model when providing niche solutions that require building a Rasa bot with
access to external services, providing an opportunity for human-aided assistance in a last resort scenario.
However, being constrained to a closed environment, the developed Rasa assistants faced little to no
exposure to the intended target audience, IPBRICK clients and partners. Due to time and mobilization
constraints, this project was not migrated to a live environment for real-world results, recurring to sim-
ulated events.

The second major objective was set to enhance the communication flow of voice-based bots. Being
introduced to a preliminary implementation, an exposure of its underlying architecture was performed,
proposing a targeted solution concerning all major elements that improved this system. Regarding the
Text-to-Speech component, the focus was primarily directed towards voice and intent recognition, pre-
senting a language-detection mechanism. In spite of being an elementary task, it ensures that all nec-
essary information is extracted accurately, including the addition of domain-specific expressions, being
able to detect language provided as an input, redirecting the conversation to an adequate recipient for
response-generation.
Maintaining the same scope for voice-based assistants, the inclusion of an audio re-purposing mech-
anism in the Speech-to-Text component resulted in an approach that greatly affected performance by
reducing execution time, effectively yielding results in a short span of time. This stands as a highly
beneficial solution, reintroducing previously used elements back to the system under a new file-naming
convention, reducing the number of requests performed to external services and consequently improv-
ing company revenue by diminishing monetary fees associated with these requests, while simultaneously
promoting file organization and interpretation for both man and machine.

Enhancing IPBRICK’s AI subsystem by developing a chat-based communication interface was the third
major aim of this work. For this purpose, the concept of adaptability and modularity was set, arrang-
ing a solution that could be implemented on any website, without being too intrusive or disrupting the
source code of target web pages, thus deciding on a simple pop-up interface to display a chatbox. Given
the overall context of this solution, apart from communicating with virtual assistants, another essential
feature was the support for human-to-human communication, enabling users to communicate with two
distinct domains through an interface that transparently interchanges between recipients, naturally main-
taining the flow of the conversation and quality of service. In addition, apart from being implemented
as a major solution to this dissertation, all necessary arrangements were made to convert this specific
module into a bundle-like solution, being presented to IPBRICK clients as a proof of concept project,
demonstrating its feasibility and potential. This chatbot bundle was eventually implemented in Hospital
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das Forças Armadas, deploying the chatbot interface along with their virtual assistant.

Creating a dashboard interface, along with the respective database dedicated to event registration was
one of the goals required in this dissertation. This fourth major objective was demonstrated during the
simulated experiment, proving to be an effective tool when interpreting information retrieved from data
sources, playing an essential role in showcasing the obtained results through a clear and understandable
interface. Being extremely useful in determining the performance of deployed bots in the system, it al-
lows developers to identify possible focal points for future improvement, as well as granting the ability
to accompany the gradual evolution of deployed AI solutions by observing the end results for each con-
versation. Moreover, it is also possible to predict call traffic by observing previous time frames where
virtual assistants were more frequently requested, allowing to dynamically allocate energy and hardware
resources, promoting efficiency in this system.

On an ending note, every goal proposed at the beginning of this dissertation addressed multiple mod-
ules that were unique from one another, thus requiring undivided attention when exposing their intricate
structure, before figuring out the best course of action. Some existing solutions were refined, imple-
menting new strategies that positively contributed to one’s system, as well as developing interfaces that
provided practical solutions for text-based communication, and supplied a clear view regarding data
analysis. From initially being separate modules, all implementations ultimately converged into an inter-
connected subsystem that uses AI at its core, concluding that the main goal was accomplished to a very
great extent.

6.2 Future Work

This section suggests some improvements concerning every major aspect of this work, discussing future
approaches that could benefit every system that was addressed in this dissertation.

During the implementation phase, Rasa Open Source suffered a major upgrade by releasing its newest
version, Rasa 3.0. Comparably to Rasa 2.X, the version that was used throughout the dissertation,
this major upgrade adopted new syntax and semantics when creating virtual assistants. Drastically
changing the way bots are built, it implies that migrating existing projects to 3.0 would cause dependency
incompatibilities, as bigger systems that integrate several packages usually rely on tight specifications,
preventing older projects to be updated since these only work under strict conditions. Thus, this new
Rasa version should be explored in the future, since it provides new features that enrich virtual assistants.
Another suggested approach is concerned with Rasa’s method of entity extraction and intent recognition
through its modular pipeline. In this work, little to no changes were performed to the pipeline, as a
way to demonstrate a functional service with its default implementations, for the most part, as if one
was being implemented to an end client. However, these intricate components can be adjusted to one’s
liking, and could directly affect Rasa’s performance. Therefore, an additional study should be made,
observing how finely tuning every component in the pipeline would affect the performance of a given
assistant, finding the best approach for every use case.

Regarding voicebot improvements, one key structural hindrance detected was present in the Speech-to-
Text component. For every spoken input, the sound captured with the microphone was stored into an
audio file. Before being sent to Google Cloud Platform to perform text conversion, a big portion of
the execution time was dedicated solely to reading the audio file, saving this stream of content into a
variable, subsequently being sent to an external service for processing. Instead of relying on temporary
audio files, a proposal is to perform a massive overhaul to the voicebot structure, introducing a live
transcription mechanism that could perform audio-to-text conversion on the fly, instead of relying on
audio files that must be read in order to send user utterances. Google Cloud Platform currently supports
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a live transcription mechanism, and adopting this feature is certain to yield far better performance values
to voice-based services.
In the Text-to-Speech component, the re-purposing mechanism proved to be a massive contribution to
this system, effectively reducing execution time by re-using strict messages from the virtual assistant.
However, this is not a silver-bullet solution, also presenting some restrictions. Given that this mechanism
revolves around file nomenclature for file path mapping, it is worth mentioning that every operating
system imposes a limit to a file’s name, ranging from 255 to 260 characters. Despite being a reasonably
healthy number, if a virtual assistant is configured to provide an extended response, the operating system
is unable to save this file, therefore no audible response is presented to the user. In order to support longer
messages, the mechanism responsible for normalizing bot utterances should be improved in a way that
reduces the number of resulting characters, while still being identifiable by both man and machine.
Contrarily to the implemented chatbot solution, the current voicebot approach does not provide a con-
versational context in the act of performing hand-offs. Although this mechanism is done in the chat
interface, by storing all interactions in browser memory, sending all interactions upon the detection of a
hand-off intent, Rasa is able to track conversation history through its Tracker component. In a similar
fashion to the chatbot’s mode of operation during hand-offs, one suggestion could be sending a contex-
tual text message to the designated human operator, with recourse to Rasa Tracker. This would imply
providing ejabberd support within the voicebot solution, resulting in two communication streams work-
ing in parallel to improve quality of service to voice-based systems.

Regarding the chatbot component, this project could be further extended to support additional IPBRICK
features. In order to provide quality-of-life improvements, one suggestion could be the implementation
of avatar-switching. In the proposed solution, the chatbot component displays an avatar of IPBRICK’s
AI solution, Zuri. However, in the event of a possible hand-off, it could display the profile picture of the
designated operator instead, clarifying that the user is engaging in interpersonal communication.
Moreover, in the same way that all necessary arrangements to the voicebot component are configured
when devising a virtual assistant in the IPBRICK OS interface, a similar automatic procedure could
be performed in the chatbot bundle, automatically configuring all necessary parameters that make chat-
based conversations possible. For further customization, it is suggested that a separate web page within
the IPBRICK OS is dedicated to the chatbot component, in order to easily perform additional configu-
rations.

With respect to the dashboard interface, this implementation can also be improved, like any other sys-
tem. When accessing the dashboard web page, all interactive components are rendered by performing
strict SQL queries that are previously defined. A dynamic mechanism involving queries could be imple-
mented, where the client uses a filter to access data that was obtained for a given date, or for a certain
period of time, in order to better identify a gradual evolution of deployed virtual assistants. Similar to
the chatbot module, this could also be included in a dedicated web page inside IPBRICK OS, making all
necessary arrangements to automatically identify deployed virtual assistants and display their respective
statistics.

On a final note, when implementing the commercial support bot, all IPBRICK-related web services
were requested using SOAP. When requesting these web services in the Rasa custom actions, there was
some difficulty in accessing these using Python, as multiple attempts with several external dependencies
were required in order to make this possible. In the end, despite providing a functional service, the
performance was found to be considerably slower. Transitioning to a RESTful service seems to be the
best solution, as REST allows a greater variety of data formats, as well as using less bandwidth in general
terms, resulting in faster service.
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