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Abstract

From the last fifty years, like Intel co-founder, Gordon Moore appraised, the density of
transistor on integrated circuits has been doubling every eighteen months. Nowadays, is
possible to find out in the modern smartphones and PCs, integrated circuits built with 5
nm technology, and each one can be composed of more than four billion transistors.

As the technology continues to scale down, it becomes harder to handle all the steps of
the manufacturing process precisely. As a consequence, the variation in the manufacturing
increases, leading to a need for an improvement in the integrated circuits design flow.
Designers must deal with variation accurately and efficiently during the development of
the integrated circuits to achieve the product specifications.

The rise of variation, complexity of the device models, circuits size and specifications,
are pushing the designers to the resource limits (IT – information technology – and time).

In this thesis, a study of the standard IC design flow, the different types of variation
and the current methods of simulation are presented. The primary focus is on Monte Carlo
simulations and the benchmarking of their sampling methods, namely the Random, Latin
Hypercube and Low Discrepancy sampling.

The Monte Carlo method was tested by resorting to multiple methods to generate the
variation space of parameters (and their distributions) that can vary during the genesis of
the integrated circuits. The description of the sampling methods is also included. In this
same analysis, the possible points to be optimized are presented.

In this thesis, an optimized method for Monte Carlo simulations is proposed for large
netlists. This method consists in using a pre-MC simulation and a Response Surface
Model (RSM) to determine and filter the most important contributor for the measurement.
It has been demonstrated that the proposed method archives more accuracy with fewer
resources.

Keywords: Monte Carlo, Low Discrepancy Sampling, Latin Hypercube Sampling,
Random Sampling, IC variation, global variation, mismatch variation, IC simulation, PVT
variation, RF design, Analog design, FinFET, MOSFET, Screening.
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Resumo

Nos últimos cinquenta anos, tal como o cofundador da Intel, Gordon Moore, estimou,
a densidade de transístores em circuitos integrados tem duplicado a cada dezoito meses.
Atualmente é possível encontrar nos smartphones e PCs mais recentes circuitos integrados
com tecnologia de 5 nm. Cada circuito integrado pode ser composto por mais de quatro
milhares de milhão de transístores.

À medida que a tecnologia encolhe, lidar com precisão em todas as etapas do processo
de fabricação dos circuitos integrados torna-se difícil. Como consequência, o aumento da
variação no processo de fabricação, leva a uma necessidade de uma melhoria no design
flow dos circuitos integrados. Os designers devem lidar com a variação de maneira pre-
cisa e eficaz durante o desenvolvimento dos circuitos integrados, de modo alcançarem as
especificações do produto.

O aumento da variação, da complexidade dos modelos dos componentes, o tamanho
dos circuitos e das especificações, levam os designers aos limites dos recursos (IT – in-
formation technology – e tempo).

Nesta tese é exposto um estudo do design flow atual dos circuitos integrados, os difer-
entes tipos de variação e os métodos atuais de simulações. O foco deste relatório é em
simulações de Monte Carlo.

Para estudar e testar o método de Monte Carlo foram utilizados múltiplos métodos
para gerar o espaço amostral referente aos parâmetros (e as suas distribuições) que podem
variar durante a génese dos circuitos integrados. A descrição dos métodos de amostragem
do espaço de variação, a amostragem de baixa discrepância, o método Latin Hypercube
e amostragem aleatória está também incluída. Nesta mesma análise são apresentados os
possíveis pontos a serem otimizados.

Nesta tese é proposto um método otimizado de simulação de Monte Carlo para grandes
netlists. Este método consiste em usar uma simulação pré-MC e um Modelo de Super-
fície de Resposta (RSM) para determinar e filtrar o contribuinte mais importante para a
medição. Foi tambem demonstrado que o método proposto consegue mais precisão com
menos recursos.

Palavras-chave: Monte Carlo, amostragem de baixa discrepância, Latin Hypercube,
amostragem aleatória, variação em ICs, variação global, variação de disparidade, sim-
ulação em IC design, variação PVT, RF design, design analógico, FinFET, MOSFET,
Screening.
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Chapter 1

Introduction

The resources required for circuit simulations are increasing significantly due to the com-
plexity rise of device models and circuit specifications. The scope of verifications that
is required (by the product specifications) to be simulated nowadays is so high that it is
impacting the time to market of products. New solutions need to be identified in order to
reduce the products design cost (human resources, IT (information technology) needs and
number of software licenses) while maintaining the required quality of results. The goal
of this thesis was to study the current methods of simulations and look for new solutions
that provide a reduction of resources, particularly simulations involving process, voltage,
and temperature (PVT) variations. The tools required to test the current methodology, as
well as the circuits and IT were provided by Intel Germany GmbH, which was where this
thesis was developed.

1.1 Context and motivation

1.1.1 Transistor evolution and its limits

Intel co-founder Gordon Moore appraised that the transistors density on integrated circuits
had doubled every year since their invention, in 1965. In 1975, the pace was adjusted to
a doubling every two years. Figure 1.1 shows the rise of the transistor number in the
Intel processors over time. Moore’s law predicted that this trend would continue into the
foreseeable future. The pace was revised again and, over roughly 50 years from 1961, the
number of transistors density has since doubled approximately every 18 months. In 2016,
Intel has suggested silicon transistors can only keep shrinking for another five years.

Shrinking transistors have powered 50 years of technological advances, translating
on an exponential growth in the ICs (Integrated Circuits) capability. There are various

1



2 Introduction

Figure 1.1: Density of transistor with the time evolution.

types of transistors, such as Field-effect transistors (FET) or Bipolar junction transistors
(BJT). In this thesis, only the FETs, particularly the Metal-Oxide-Semiconductor Field-
Effect Transistor (MOSFET) and the Fin-Field-effect Transistor (FinFET) are used. The
difference between both structures is shown in figure 1.2.

(a) MOSFET structure. (b) FinFET structure.

Figure 1.2: Differences between MOSFET and FinFET transistors.
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MOSFET transistors have nowadays approximately 10nm of channel length and ap-
proximately 1nm of gate oxide thickness, as shown in figure 1.3.

Figure 1.3: High resolution trans-
mission electron micro-graph of a
35nm gate length with gate oxide
thickness of approximately 1.2 ±
0.3nm" - Source: [1].

10nm of length means that according to the lat-
tice constant of silicon of 0.5431nm [2] and, that
the number of atoms is equal to:

#Natoms =
length

lattice constant
(1.1)

The given cross section has:

10nm
0.5431nm

= 18.413 atoms (1.2)

As the technology is going towards to the atomic
size, one question arises: is it possible to stop the
electrons effectively enough when source and drain

are too close? This is a question addressed to quantum mechanics, and the answer is: even
if there is a potential barrier between two electrodes, electrons can still flow because they
have a "pesky ability to penetrate barriers, a quantum mechanical phenomenon known as
quantum tunneling" [3], as shown in figure 1.4 and figure 1.5a.

Figure 1.4: "Electrons have a probability of passing through the energy barrier. The
thinner the barrier, the higher the probability that such a tunneling event might occur" -
Source: [3].

Tunneling can cause large power dissipation, low drive current, and strong sensitivities
to process variation, which greatly limit CMOS scaling [4]. As shown in figure 1.5b,
assuming the limit caused by the Quantum Channel phenomenon, it is possible to illustrate
the boundaries of the gate length, namely:

L3: Length of the gate;
L2: Length affect by Quantum Channel if L1 = 0;

L1: Length of "safety";
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(a) Barrier illustration. (b) MOSFET length limits.

Figure 1.5: MOSFET illustrations.

In this particular example, the limit is imposed by L1 length due to the need of having
the minimum distance to avoid the quantum channel.

The oxide gate insulator also reached its limit of thickness. Is it not possible to induce
more charge in the channel and make the transistor faster, due to this limitation. Quantum
tunneling is one of the causes, mainly because it drives too much leakage current across
the channel when the transistor is “off”, whereas, ideally, no current should flow at all.

Figure 1.6: Paradigm shift.

To overcome these issues it happened a so-called paradigm shift. Other FET technolo-
gies were developed, such as FinFET transistors. This transistor type could be pointed as
the successor of MOSFET due to the good scalability properties, represented in figure 1.6.

1.1.2 Integrated circuit variations

As the technology is going forward to the sub-nanoworld, the demand of performance
increases and supply voltages decrease, all make variation effects are more pronounced.
Even those variations such as electron mobility have now a higher impact on the design
of the circuits and to maintain product quality, they must be taken into account, especially
in RF and analog designs. One solution is to oversize the circuits, however, this leads to a
waste of resources (like die area or power consumption).
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Every time the technology scales down, the relative variation between technologies
gets bigger. Mainly because it becomes harder to control and manage the precision of all
steps in the manufacturing process. That is the major reason why statistical variation (and
its impact) is essential. Handling accurately and efficiently with the variation is becoming
more and more important and harder with advanced nodes [5].

A parcel of the device electrical performance depends on global variation (between
die, wafers, and lots), local variation (i.e., mismatch, an uncorrelated atomistic variation
of each device instance), and it could also include the layout dependent effects (LDE) [6],
as shown in figure 1.7a. Since the greater technology nodes (130 nm), local variation
took the lead role considering that the global variation is too wide to cover. In order
to include the majority of variation space of both variations, the current methodology is
based on choosing three different points for each type of transistor (slow, typical and fast)
and apply a local variation around this points, as shown in figure 1.7b.

(a) Performance dependencies. (b) Manufacturing processes variations.

(c) Source of variations - Adaptation from: [7].

Figure 1.7: Transistor variations.

There is also another sort of variations that must be included in order to take into
account all sources of variations, namely the temperature and the voltage variations. The
proportion of all variation sources is shown in figure 1.7c. Voltage and process variation,
are the major sources of variation followed by LDE and temperature.
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1.1.2.1 Evaluation of variations: Methods

The device variation can be simulated using:

• Sweep Corners: It is a PVT variation technique (explored in section 2.3.1) that
uses a simulation with a stipulated single set of points within the variation space of
the circuit components. Within this methodology, it is possible to define multiple
corners for each specific environment conditions and process variation and run a
simulation for each case.

• Monte-Carlo simulation: Multiple simulations with single random sets of points
within the variation space of the circuit components. The focus is on the global and
mismatch (explored in sub-section 2.3.2).

This current simulation paradigm might be not valid anymore due to the increase of
variation in the manufacturing process of the FinFET caused by:

• Line/fin-edge roughness;

• Distribution of dopant atoms;

• Chemical mechanical polishing/planarization (CMP) variations;

This will be explored with more detail in sub-section 2.2.
New technologies require new and more complex component models. This requires

more IT resources such as memory and simulation time to process the equations. Bringing
this together with the rise of functionality required by the circuit specifications, the com-
putational power needed to simulate those circuits is now on a feasible edge. Since the
simulation methods did not completely follow the evolution, in some cases the resources
needed are now out of the development capability boundaries.
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1.2 Complexity increase

1.2.1 Circuit complexity increase example: From GSM to 4G

The first mobile phone digital technology, GSM (Global System for Mobile Communi-
cations), became to replace the original full-analog mobile phone system, named AMPS
(Advanced Mobile Phone System). In the beginning, GSM cell phones were phones
with simple functionalities. They provided the required voice calls, SMS, and phonebook
features. Some improvements were made like the ability to use them as a clock alarm,
currency exchange, and other basic functionalities.

The PDA (personal digital assistant) was a pioneer handling additional features. It
introduced the touch screen user interfaces and a wide range of application programs.
Smartphone came when the PDA functionalities were added to the common cell-phone.

Mobile phones have the GSM modem interfacing with the GSM network, as shown
in figure 1.8. This GSM modem consists of several parts [8]:

Figure 1.8: GSM-MODEM Integrated Circuit Model.

• RF Frontend, responsible for receiving and transmitting on GSM frequencies. It
minimally consists of an antenna switch, GSM band filters, low-noise amplifier
(LNA) for the receive path, a power amplifier (PA) for the transmit path, a local
oscillator (LO) and a mixer.

• Analog Baseband, responsible for modulation and demodulation. It is a bridge be-
tween the digital domain and the analog domain. The receiver has a filter followed
by an Analog to Digital Converter (ADC), passed to the Digital Signal Processor
(DSP) in the Digital Baseband (DBB). The transmitter block has an inverse of the
receive operation, using instead a Digital-to-Analog converter (DAC). Modulation
ROM tables are necessary to modulation and demodulation processes.

• Digital Baseband is responsible for digital signal processing and the GSM protocol
stack. The most common sets use a DSP plus a general-purpose processor (MCU).
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Figure 1.9: GSM MODEM product diagram.

Those three different blocks can be found at two different products plus the RF-
Frontend, as shown in fig 1.9.

Figure 1.10: The evolution of SMARTi IC.

In order to represent the complex-
ity of the evolution, the picture 1.10
shows an analysis regarding the evolu-
tion of SMARTi IC’s. From the begin-
ning of SMARTi history, back to 1999,
the first single-chip GSM needed an area
of 770mm2, 150 components and it had a
cost around 14 euros. The technology used
was BiCMOS (a mix between BJT and
CMOS) because MOSFET could handle
high current circuits efficiently, and por-
tions of specialized very high-performance
circuits use bipolar transistors. It is pos-
sible to deduce that optimizing both tran-
sistor types in the process is barely im-
possible without adding extra fabrication
steps and as a consequence, increasing the
process cost. To conclude, in the area
of high-performance logic, BiCMOS may
never offer the low power consumption of
the CMOS alone, due to the potential for

higher standby leakage current. The SMARTi PM+, released eight years later, with
0.13um CMOS technology, needed for an entire transmission board almost half the space,
7.5 times fewer components needed and for a fifth of the price, compared with the original
SMARTi.
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1.2.2 The need for new tools: SPICE

During the 1960’s, a need has arisen regarding the development process of circuit simu-
lation techniques. The increase of the size and complexity of an electronic circuit made
simulating a circuit on a computer a more attractive method.

To change the development flow, simulators had to provide reasonably accurate results
in a reasonable amount of time. Simulation Program with Integrated-Circuit Emphasis or
SPICE was a result of this new approach to circuit design. Within SPICE vision, the
circuit can be visualized as a collection of various elements connected together at nodes.
Thus, the entire circuit can be seen by the number of nodes, elements and the orientation
of these nodes. Following this logic, with n nodes in a circuit, SPICE creates an n× n

matrix. The values defined in the matrix are the values of voltages and/or currents at the
external nodes, the values of the internal voltages and currents, or state variables, can be
solved for each node using matrix manipulation techniques. To calculate those values,
SPICE uses physical values that describe behavior, presented in the component model.

1.2.3 Transistor complexity: model evolution

Transistors are quite simple devices but it is arduous to describe their behavior. FET
modeling had to follow the technology evolution in order to allow the use of simulators to
observe the correct circuit behavior. Models were built to describe how the components
work, and there is a large variety of purpose-dependent models. As described by [9],
the earlier models had very simple and basic equations for C-V and I-V characteristics
and also very few parameters to describe the equations. Those model parameters are rep-
resenting particular and quantifiable physical values obtained from process information,
electrical data and parameter extraction.

As the technology evolved, FET models became more complex. Equations and pa-
rameters needed to include various effects, brought, for example, from shorter channels
and higher field strengths. This growth in the number of parameters and equation in-
creased the resources needed to extract the model parameters and also to process those
models within the simulations.

Since 1996, Compact Model Coalition (CMC) is a working collaborative group fo-
cused on the standardization of SPICE device models. The goal of this collaborative
group is to promote the international, nonexclusive standardization of compact model
formulations and the model interfaces.

The Department of Electrical Engineering and Computer Sciences of the University of
California, Berkeley, is the major responsible for the release of the models. The following
analysis was based on data provided by [10] and [11].
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Figure 1.11: Number of parameters in models.

The first SPICE MOSFET model MOS1 or ’Shichman-Hodges’, was developed in
1968 and had just 41 parameters. In order to compare complexity over time, after 35
years was released the BSIM4.3.0 (Berkeley Short-Channel IGFET Model), addressed for
physical effects into the sub-100nm regime, with 289 parameters. Thus, this is translated
into 248 more elements in 35 years. In 2015, 12 years after the released of BSIM4.3.0, it
was released the BSIM-CMG 110.0.0, reference for vertical transistors (FinFET). Then,
the number of parameters raised more 265 elements, for the total of 554, as shown in
chart 1.11.

The conclusion of this analysis is that in the last 12 years, the number of parameters
of the models and the resources needed to process them, raised more than in 35 years.

1.3 Thesis objectives

The objectives outlined for this dissertation are:

1. Study and application of Monte Carlo (MC) simulation, analysis of performance
when different techniques are applied on circuits with different design spaces (dif-
ferent number of varying parameters). The goal here is to identify the main MC
limitations in this context.

2. Several techniques need to be studied for the problem of multidimensionality op-
timization approach. For this purpose, an appropriated solution needs to be found
for the current circuit context.
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1.4 Thesis structure

The present dissertation is organized in six chapters. In chapter two, it is shown the main
contents of the current paradigm of simulations and their flow and structure. Additionally,
it is reviewed the primary key concepts needed to understand the following topics, includ-
ing the simulations structure and flow, the types of variations and the methodologies to
deal with them.

Chapter three introduces the key-core concepts of this thesis, the sampling methods.
It is presented the Random, the Latin Hypercube and the Low Discrepancy sampling
methods, their flow, pros and cons.

Chapter four contains the study cases used to do the comparison of the methods in-
troduced in chapter three. It is also presented the results obtained and a discussion of
them.

In chapter five, a new optimized method is proposed and presented. It was based on
the conclusion taken in the previous chapter four (overload of instances number).

The last chapter, six, includes the analysis conclusion and a list of improvement that is
still possible to do in order to increase the performance of the Monte Carlo Simulations.
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Chapter 2

An overview on IC simulation

Electronics is divided into two different worlds: analog and digital. On the one hand, digi-
tal circuits commonly require very fast switching mode functionality, thus benefiting from
smaller transistors which have smaller parasitic capacitances. On the other hand, analog
circuits, especially in small-signal applications, call for low-noise transistors. These need
special modeling methods and use different fabrication processes.

In the analog world, to handle signals we need more complex methods and accurate
transistors. Speed comes with shrinking, while accuracy comes with better processes and
modeling.

The technology push is mainly done by the digital side because people seek more
processing capability. This push made by the digital side enhances the difference between
sizes of digital and analog technologies. For example, in digital design, it is currently used
7 nm and 5 nm technology and analog is still on 28 nm, in the most cases.

In this chapter, the current methods for IC simulation, what is and how the technology
variations are handled as well as the different design flows are presented. The boundaries
of the tools will be explored and it will be provided the key concept terms needed for the
upcoming chapters.

2.1 Standard simulation structure

Simulations can promote the understanding of the behavior of a system without actu-
ally prototyping and testing the system in the "real world". Support experimentation that
occurs entirely in software can save huge amounts of time, especially during the develop-
ment time.

Several parts are needed to perform simulations. The focus will be on four main parts,
as shown in figure 2.1. By using models as a logical representation of the real component,

13
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and simulators that contain the circuit’s behavior in the form of equations, it is possible to
use SPICE (previously exposed in the introduction chapter 1) to test a schematic/layout.

First, netlist (SPICE code that describes the circuit) is built together with the models.
The simulator can now run the algebraic calculations of the correspondent matrices also
using the representative equations of the components.

Figure 2.1: Simulation structure.

2.2 Technology and Environment variations

Variation is a hard issue to solve. Design fails lead to delays and yield loss. In this section,
the types of variables will be discussed as well as the types of variations and terminology
and the current approaches to deal with it.

Variations have always been around, but each time a technology shrinks, the effect of
variation increases. For example, variance in electrical device performance doubled when
went from CMOS 40nm to 28nm, as shown in figure 2.2.
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Figure 2.2: 40nm vs 28nm MOSFET Variation - 2x overall increase in Idsat variation (for
global process variations) - Adaptation from: [12].

Currently, there are many different approaches to analyze variations. The most com-
mon are based on Corners and Monte-Carlo, explained in sections 2.3.1 and 2.3.2. In
chapters 3 and 6, new and more effective methods to reach results with less time and IT
resources, will be introduced.

2.2.1 Characterization of variables

Essentially, there are mainly two types of variables that could affect a circuit’s behav-
ior [13] :

-Controllable variables: Those that can be defined by designers. For example, topol-
ogy, device sizes and placement.

-Uncontrollable variables: Those that cannot be set by the designer; its existence is
due to various mechanisms such as variations on the fabrication process.

2.2.2 Types of uncontrollable variables

For further analysis, it will be considered the environmental variation, process variation,
and layout parasitics.



16 An overview on IC simulation

2.2.2.1 Environmental variation

Environmental variables can affect the performance of the circuit components once the
circuit is operating in the user environment. In order to ensure full-functionality, design-
ers must be aware of target performance values across all environmental conditions and
specifically, for the user environment, the worst-case must be known and pre-set. These
conditions are different for different circuits/environments, for example, military devices
typically must handle intense temperatures compared with normal automotive devices.
This class of variables includes, for example, temperature and power supply voltage.

2.2.2.2 Layout parasitics

These parasitics crop up when two conductors at different potentials are close together.
Their electric field interferes with each other and store opposite electric charges, form-
ing a capacitor. There are three main categories in the 2.5D modeling1, as shown in
figure 2.3 [14]:

• Area Capacitance (CA) - Conductors in different layers overlap

• Fringe Capacitance (CF) - Lines that curve around the conductors (the hardest to
estimate)

• Coupling Capacitance (CC) - Conductors in the same layer

Figure 2.3: 2.5-D modeling capacitances - Source: [14].

Layout resistances and capacitances are not included in the schematic design, but they
will be distributed throw the IC. They should be taken into account especially in circuits
operating at higher frequencies, such as RF designs (RC filters will change the signal).

1This model does not cover all the FinFET capacitances, it is only possible with 3-D modeling.
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The challenge with this variation is that they must be handled during front-end design, the
step before layout design (for example, by over-margin the constraints).

2.2.2.3 Layout-dependent effects (LDEs)

The device layout structure can have strong effects in electrical performance for advanced
technology nodes. They must be taken into account during the design cycle otherwise they
will have an unfavorable impact into the circuit functionality. For technologies nodes of
90nm and older, this was not a big issue since the device characteristics were considered
pretty much immune from layout. In other words, the electrical characteristics of the
device were independent of the layout shape. However, it is no longer true for advanced
technologies of 90nm and below [15].

A few examples of effects that could cause circuit performance or behavior deviations
will be presented below:

• LOD (Length of Diffusion):

It changes the stress effect on the active gate.

• WPE (Well Proximity Effect):

It changes the doping concentration near the well edge and impacts the Threshold
Voltage of the device.

• OSE (OD Spacing Effect):

The Diffusion (OD) spacing to the neighbor which is called as OD-OD Spacing
Effect impacts the behavior of the device.

• MBE (Metal Boundary Effect):

With the sharing poly between PMOS and NMOS, Poly metal boundary effect
(MBE) arises with two different doped regions.
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2.2.2.4 Fabrication process variation

Integrated circuits are build in small blocks of semiconducting material, called dies. Each
die is a small piece of a wafer that contains various copies of the circuit. Fluctuations dur-
ing manufacturing means no die is exactly like any other. Fabrication process variation
is related to these variations on die-to-die or wafer-to-wafer, introduced during manufac-
turing process. Process variations can be classified as global variations (on-die as well
as inter-die, including die from different wafers and different wafer lots) and local varia-
tions2 (within-die or intra-die), in other words, "the local variation occurs within a single
die, while global variation occurs across wafers" [13], as shown in figure 2.4.

Figure 2.4: Types of process variations - Source: [16].

Inter circuit variation (global variation) is identical for all transistors of one circuit.
For instance, can be represented as the variation on the oxide thickness (∆Tox), substrate
doping (∆Nsub) or electron mobility (∆µ0).

Intra circuit variation (local variation) means that each transistor varies individually.
Usually, it is possible to find parameters like the variation of the threshold voltage (∆Vth)
or electron mobility (∆µ0) and, the variance is dependable on the circuits area (inversely
proportional). The easiest way to deal with this type of variation is to oversize the design
but might have some impact in other points of interest.

Analog circuits are based on symmetries and mismatch can be understood as an asym-
metry caused by local variation. For example, the output current (i2) of the current mirror
on figure 2.5 is dependable of the Vth of both transistors (eq. 2.1), and a mismatch of these
parameters (eq. 2.2) can cause a different output current (eq. 2.3).

i2 = k2

(√ i1
k1

+Vth1−Vth2

)2
(2.1)

∆Vth =Vth1−Vth2 (2.2)
2Also called as mismatch variation
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Mismatch = ∆Vth 6= 0⇔ i2 6=
k2

k1
i1 (2.3)

Figure 2.5: Current Mirror

Nowadays statistical models are supplied by the foundry as part of the Process Design
Kit (PDK). These models, specify the local and global random variables, the distribution
of those random variables (usually, normally distributed) and also the model-sets (cor-
ners). Each MOSFET model has three corners: fast (F), typical (T), and slow (S).

Monte Carlo (MC) sampling is used to determine those model parameters. To do that,
mean (µ) and standard deviation (σ ) of delay measurements are taken. The three models
are represented by the sample closest to:

• Fast: µ−3σ

• Typical: µ

• Slow: µ +3σ

It is also possible to apply local variation, using Monte Carlo simulation, on top of
each corner, as shown in figure 2.6 (it was used a single transistor scheme and the current
flow from drain to source was measured).

The "corners" method is valid and it has been used for digital design as the Fast and
Slow models can be used to bound speed limits and because speed is "inversely propor-
tional to power, F and S indirectly bracketed power" [13].

However, for analog and RF circuits, these models usually do not support any perfor-
mances bounds such as slew rate and power supply rejection ratio.
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Figure 2.6: Typical S-T-F Variation.

Figure 2.7: Shrinking of transistor’s gate length [17].

As shown in figure 2.7, the gate lengths continue to shrink over time and as previously
mentioned, a single atom out of place can have a significant impact on the device perfor-
mance. The job for statistical models is to measure and capture these small variations. As
the technology is going forward to small sizes, the global variation and local variations
(or mismatch) are merging, as shown in figure 2.8, and are no longer valid to just sim-
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ulate with corners [18]. In order to analyze the local variations, it will be needed many
simulations to cover all the variation space.

Figure 2.8: Effects on global and local parameters as the technology shrinks [18].

Looking at the variance of two random variables in these smaller technologies, a cor-
relation among the parameters is possible to see [18]. Equation 2.4 shows the variance
of two generic parameters X and Y . If the expected value is computed for the variance
of these two parameters that are correlated, the result shows that a co-variance exists and
cannot be ignored for high-performance analog circuits.

var(X +Y ) = var(X)+ var(Y )+2 · cov(X ,Y ) (2.4)
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2.3 Methodologies to analyze variation

The focus of this section is to explore with detail the techniques and main concepts that
are used to analyze the variation introduced in the previous sections.

2.3.1 PVT variation

PVT variation is a technique used to combine model-sets based global process variation
(P)3, and environmental variation, such as power supply voltage (V) and temperature
(T) variations. Different loads and power state settings are also used, like standby-state
or active-state. This is the standard method used to analyze variations. These sets of
variables that define a scenario in which the design performance is measured are called
corners. Each corner is a representation of a single state, for example:

• Temperature = 25;

• Modelset = SS4;

• Vdd = 2 V;

To evaluate PVT variation impact is also common to use swept variables as corners.
Combining a swept of temperature from 0 to 200 degrees, with the three global process
model-sets (S, T, F) is possible. In order to exemplify, the impact of the current flow from
source to drain is shown in figure 2.9. With 20 measurements for each model-set and
three model-sets, there are 60 corners in total.

Figure 2.9: PVT variation example.

3Fast (F), Typical (T) or Slow (S).
4The first letter refers to the N-channel, and the second letter refers to the P channel.
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2.3.2 Monte Carlo Simulation

Monte Carlo Simulations are a stochastic approach used in different areas such as finance,
project management, energy, manufacturing, engineering, research and development, in-
surance, oil and gas, transportation, and environment.

The principle of this algorithm is to find out an approximation probability distribution
of a certain variable(s) within the circuit by taking a large number of samples. With a
large number of samples and, following the Strong Law of Large Numbers, the average
of a certain variable must be close to the real value.

The Strong Law of Large Numbers is a key result in Probability Theory. It states that,
with certainty, the sample mean of a sequence of independent and identically distributed
random variables will converge to their common mean. More precisely, if X1,X2, . . . ,Xn is
a sequence of independent and identically distributed random variables with finite mean
µ , then it holds that

lim
n→+∞

1
n

n

∑
i=1

Xi = µ (2.5)

with probability 1.

In what concerns the present work, the Strong Law of Large Numbers is of great
relevance to the implementation of Monte Carlo methods to estimate certain values of
interest by simulation. To be more concrete, let λ be some parameter or quantity of rel-
evance which we would like to approximate numerically. Suppose that X1,X2, . . . ,XN are
independent and identically distributed random variables which are easy to simulate in
the sense that there exists a (reasonably) low complexity algorithm yielding their val-
ues (either from their common probability distribution function or from another suitable
process). Moreover, let F be a function such that

E
[

f (Xi)
]
= λ , i = 1,2, . . . ,N .

Then the Monte Carlo approximation to λ is obtained as

λ ≈ λ̂N =
1
N

N

∑
i=1

f (Xi) ,

that is, we estimate λ by computing the sample mean of the random variables

f (X1), f (X2), . . . , f (XN). The Strong Law of Large Numbers, by ensuring that λ̂N con-
verges to λ as N→∞ (with probability 1), indicates that, except in an event of probability
zero, λ̂N may be taken as a good approximation to λ provided the sample size N is large
enough.
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It is a robust method to analyze the variations properties of a circuit.

The manner to apply Monte Carlo Simulations in the integrated circuit design can be
described in the following steps:

1. Generate values by inputting random5 values in the probability functions of the
circuit components.

2. For each sample, a netlist is created.

3. Simulates all the generated netlists using SPICE. From each sample and simulation,
one or more output values are measured.

4. Generate a probability distribution function of an output.

Depending on the confidence and accuracy needed for the specific problem, a Monte
Carlo simulation could involve thousands or tens of thousands or millions of recalcula-
tions before it is complete.

Therefore, this method is suitable to use in any circuit with any number of varying
parameters whenever the statistical distributions are available. It has become the standard
technique for statistical analysis and modeling of integrated circuits [19–21].

By using a random algorithm to get the values from the probability functions of the
circuit component, some issues show up. As shown in figure 2.10, some clusters 6 appear
(inside the blue circle) and regions with no points (red circle). That poor spread leads to
an unnecessary higher estimation error. Furthermore, to correct this error, it is necessary
to have more MC samples to represent all regions in the same way otherwise the yield 7

estimation will be poorly determined. This means that the confidence interval for the
yield will shrink fairly slowly, and therefore yield verification will take more simulations.
To conclude, there is no need for randomness in MC sampling, what is needed is a fair
full-coverage of all regions in the variation space [13].

5It is also possible to low-discrepancy algorithms.
6Regions with points nearly overlap.
7Yield is the amount(%) of pre-set circuits specifications reached.
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Figure 2.10: Spread Issue.

2.4 Standard design flows

In this section, two types of designs will be explored. First, the fastest and the most
vulnerable, the design that does not take into account variations. As a consequence, the
performance of this design flow is highly susceptible to any type of those variations re-
ferred before in section 2.2.2. This flow is shown in figure 2.11.

Figure 2.11: Variation unaware design flow - Adaptation from: [13].

In furtherance of getting a better design, accuracy, and fault-tolerance, the design
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shown in figure 2.12 involves an improvement by approaching variations. Thus, the first
step is followed by setting the corners that represent the user environment, for example,
the worst case of temperature and power supply voltage. This step is followed by a Monte
Carlo simulation to verify the global and local variation of the manufacturing process.
If the results are within the performance constraints, this step is followed by the layout
genesis, extract parasitics8 and verification, that also includes a Monte Carlo verification.
This way, it is possible to explore all cases which means the design is way more prepared
to avoid fails in the user-final environment.

Figure 2.12: Variation aware design flow - Adaptation from: [13].

This approach also has some drawbacks, such as:

• To cover all the variation spectrum, it will need all the PVT corners which means a
lot of simulations and time.

• For high-sigma designs, it is necessary to have billions of MC samples. The amount
of necessary samples raises as the probability distribution functions get larger.

• Leads to either slow or less-accurate designs.

8If available, a parasitic reduction process should be included in order to save resources during the
simulation.
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2.5 Differences between 3Sigma and High-Sigma verifi-
cation designs

In RF and analog designs, the standard methodology sets boundaries of three standard
deviations9 (µ ± 3σ ) to measure the impact of variances on the circuit performance.
Within this interval, it is possible to cover 99.73% of the variation space, assuming that
the stochastic process is normally distributed10, as shown in figure 2.13.

Figure 2.13: Difference between sigma designs.

High-yield estimation/verification is a mandatory request on devices that have high
volume (i.e., memory devices), or in a critical system that one fails can lead to catas-
trophic consequences. In memory designs, one failed memory cell out of millions of cells
will cause the whole memory circuit to fail without ECC (error checking and correction)
techniques. That is why memory designers have high parametric yield requirements for

9Standard deviation can be defined as sigma, σ , stddv or s.
10Gaussian or Normal distribution.
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the SRAM core cell. It is required no fails in hundreds of millions or billions of Monte
Carlo simulations, if foundry statistical models are accurate up to the high sigma region.
Memory circuit designers also have high yield requirements for other circuit block and
memory partitions, such as sense amplifier for critical-path partitions.

For very high critical systems, 6-sigma designs are also used which include tests to
determine circuit failures that are less than two parts-per-billion11. Using the traditional
Monte Carlo analysis is completely impractical [22, 23].

2.6 Sensitivity Analysis

Sensitivity Analysis allows the designer to identify which components are critical, regard-
ing the measurement goals of the circuit design. In other words, the sensitivity analysis
tool examines how much each component affects the circuit behavior by itself, for each
output.

The most known method to run a sensitivity analysis works by applying a variation
on each component (or each parameter of a certain component if this has more than one
parameter)12. This step is followed by a simulation where is measured the impact of this
variation in the circuit response (for each output).

For instance, if a circuit has a capacitor C1 and a response R, a variation C′1 = C1(1+x)

will generate a response R′, as shown in figure 2.14.

Figure 2.14: Sensitivity Analysis example

1199.9999998% of coverage of the variation space.
12This method is named as "One Factor At a Time" (OFAT).
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Where the sensitivity is equal to:

Sensitivity =
∆R
∆C

(2.6)

In case of AC-Sensitivity analysis, in the frequency domain, lets for instance H(s) be
the transfer function of a circuit network. In this case, the ac-sensitivity is defined to be
the relative variation of H(s) regarding the variation of a circuit parameter, defined as p,
which was written in [24] in the normalized form:

Sens(H,s) =
∂H(s)
∂ lnp

=
p

H(s)
∂H(s)

∂p
(2.7)

In this way, it is possible to distinguish which components (or their parameters) have
more impact, and if needed, redesign the circuit against high dependencies.

It also allows the designer to vary automatically all tolerances to create worst-case
(minimum and maximum) measurement values.

Sensitivity Analysis can be used for optimization. After making this analysis, in order
to evaluate yield versus cost trade-offs, it is possible to tighten tolerances of the sensitivity
of the components and loosen tolerances on non-sensitive components. The typical flow
to do this analysis is shown in figure 2.15.

Figure 2.15: Sensitivity flows.
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2.7 Verification and Validation

Nowadays, circuits can be composed of several billions of transistors size and ensuring
that they work correctly is becoming increasingly difficult. Designers must use verifica-
tion (testing the design before the chip is built) and validation (testing the fabricated chip)
intensively [25].

Placing effective testing is crucial but pre-implementation verification boundaries are
imposed by:

• Simulation coverage.

• Complexity.

• Design-Time.

The lack of control and observability places validation limits once devices are im-
plemented in silicon. As the performance and complexity of these devices increase, the
challenge to ensure that they work correctly also increases. However, even with all this
effort, it is virtually impossible to eliminate all bugs in the design before it tapes-out. In
fact, statistics show that close to 50% of chips require additional unplanned tape-outs be-
cause of functional bugs [26]. This factor creates an increasing need to connect these two
domains by sharing methodologies and technologies. The IC development flow could be
defined in several major steps, as shown in figure 2.16.

The following key concept terms are used regarding the IC development:

• Signoff: Series of verification steps that the design must pass before it can be tape-
out.

• Tapeout (official tapeout): the final result of the design process for integrated cir-
cuits or printed circuit boards before they are sent for manufacturing. In other
words, is the point at which the graphic for the photomask of the circuit is sent to
the foundry.

• Tape in: could be interpreted as an internal tapeout.
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Figure 2.16: IC development flows - Adaptation from [27].
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Chapter 3

Sampling Methods

Due to the necessity of fast and accurate design and verification, different methods and
tools were developed during the last century, such as:

• Resorting to better pseudo-random generators such as Latin Hypercube Sampling
(LHS) [19, 20, 28–32].

• Apply deterministic sampling method, so-called Low Discrepancy Sequences (LDS),
such as Sobol or Halton [29, 30, 33, 34].

• Extract the worst case scenario as a statistical corner [35].

• Fast verification in high dimensional variation space [36].

In this chapter, techniques that enhance the efficiency but maintain the general Monte
Carlo process (LHS and LDS) are presented. LHS and LDS allow the simulation process
to get more well-spread variation spaces and stable estimations, as shown in the next
sections.

A new method that combines the best characteristics of the Latin Hypercube and the
Low Discrepancy is also presented. This new technique is described as an Optimized
Latin Hypercube Sampling method.

The current circuit designs can have thousands of components and each component
can have multiple varying parameters. The variation space of such circuits is consequently
huge.

In this section, the current methods to generate the varying parameters’ values are de-
scribed. The pros and cons of the three methods, Random Monte Carlo, Latin Hypercube
and Low Discrepancy and their functional mode will be described.

33
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3.1 Random Monte Carlo Sampling

Monte Carlo1 Sampling is a method that resorts to random or pseudo-random generators
like the Mersenne Twister (MT) (Matsumoto and Nishimura 1998) to select values from
the components’ probability functions.

High requirements are imposed on these generators, for example [37]:

• Large period of the generated sequence (to avoid the sequence repeating during
generation).

• Quick generation of values.

• Unpredictability of the generated sequence.

• Low correlation among subsequent values in the sequence of numbers.

As mentioned before in section 2.3.2, the Monte Carlo method has some weaknesses
related to the coverage of the variation space (generation of clusters and empty spaces).

One of these weaknesses is that the generated sequence of numbers is highly depen-
dant on the seed. In other words, some seeds lead to gaps in the variation space. Figure 3.1
shows an example of the seed’s impact in the generation of empty spaces using the MT
random generator.

It becomes clear that even with an increased number of samples the variation space is
not necessarily better covered by those samples. The area of the largest empty space has
a tendency to be reduced, but it is still large enough to be relevant.

Another weakness is the unfavorable rate of convergence of this method. The estima-
tion error has the following dependency with the number of samples [30]:

ε ∝
1√
n

(3.1)

with n equal to the number of samples/simulations and ε equal to the estimation error.
This is quite slow and provides diminishing returns with the increase of n.

1Also called "Monte Carlo" or "Brute Force Monte Carlo."
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Figure 3.1: Mersenne Twister sampling issues. Left column shows relatively good spread-
ing examples, whereas the right column shows poor spreading examples with big empty
spaces. This image was generated by resorting to Matlab



36 Sampling Methods

3.2 Latin Hyper Cube Sampling

3.2.1 One dimensional spreading

For one dimensional spreading, the Latin Hypercube Sampling algorithm (LHS) is re-
garded as one of the best [30]. With this method, it is possible to achieve excellent repre-
sentations of a one-dimensional variation space.

The Latin Hypercube method divides the variation space into sub-spaces (called bins)
and then uses a random generator to create a sample within each sub-space. The number
of sub-spaces is equal to the number of samples. For example, with a variation space
between one and ten units, with ten simulations, each bin will have one unit, as shown in
figure 3.2.

Figure 3.2: Latin Hypercube Sampling.

The mathematical formulation of this method can be described as:

Ai =
i
n
+

Ui

n
(3.2)

With n LH samples, defined as Ai, i ∈ {0,1, ...,n− 1}, from a uniform distribution
(U(0,n)) defined as Ui, and:

• The term i
n is used to define n equal bins.

• The term Ui
n is used to spread the points randomly through these bins.

This method has the advantage of enhancing the representation of the variation space
while still resulting in a uniform random distribution. When compared with the random
Monte Carlo, the improvement is clear, as shown in figures 3.3 and 3.4: LHS results in
less empty spaces and clusters of points.

The global and local variations of the circuit components are normally distributed.
The inverse cumulative distribution function (CDF) is used to transform samples from
a uniform distribution into a normal distribution [30]. A detailed explanation about this
method is shown in section 3.5.
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Figure 3.3: Random sampling

Figure 3.4: Latin Hypercube Sampling
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Figure 3.5: Latin Hypercube uniformly distributed.

Figure 3.6: Latin Hypercube normally distributed.

To redefine the uniform set sample generated by LH, (3.3) is used:

Ai =
√

2× er f−1(2Ui−1) (3.3)

where Ui is the uniform set, and er f is the inverse error function given by [38]:

er f (x) =
2√
π

∫ x

0
e−t2

dt (3.4)

For non-negative values of x, the error function has the following interpretation: for a
random variable Y which has a normal distribution, er f (x) describes the probability of Y
being in the interval [ -x, x].

As shown in figures 3.5 and 3.6, after the transformation, the concentration of the
points is clearly centered in the middle and now follows a normal distribution, as required.
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3.2.2 Multi-Dimensional spreading

For multi-dimensional variation spaces, the same methodology for each dimension plus
a “position” permutation of each point from one of the dimensions is applied. For exam-
ple, with a two-dimensional variation space without permutations, the result is shown in
figure 3.7. The first twenty samples are sorted as shown in figure 3.7, where the numbers
on the figure represent the index of the vector that contains the values. Even with permu-
tations, there is a chance of getting this order, but for this case specifically, the odds are 1
in 2.43290201×1018.

Figure 3.7: Latin Hypercube without permutations.

Performing a combination of the variables, with i representing the ith index of the
point from the variable x1 and j representing the jth index of the point from variable x2,
if i is permutated resorting to random generator like MT, the spreading of the points in
these two dimensions will be like the figure 3.8. An illustration of a vector with twenty
positions permutated is shown in figure 3.8.

However, for multiple dimensions, the performance of this method is highly depend-
able on the exact permutation. In section 3.4 a new method that optimizes these permuta-
tions is shown.
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Figure 3.8: Latin Hypercube with permutations.

3.3 Low Discrepancy Sampling

Low Discrepancy Sampling2 methods are, unlike Monte Carlo or Latin Hypercube, de-
terministic. The generation of points follows a complex algorithm in order to get uniform
coverage of the variation space.

These methods were first tested in the finance field by IBM [29, 31] to solve high-
dimensional (over 1400 dimensions) stochastic integration problems. The result was a
speedup of 150 times with differences of 10−4 when compared with MC.

3.3.1 Low discrepancy concept

To understand these LDS methods, the notion of discrepancy must first be presented.

First, the problem is cast as a multidimensional integral, as follows:

I( f ) =
∫

CS
f (x)dx (3.5)

2Also termed quasi-Monte Carlo.
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where f (x) is some function to integrate. Then, the sample mean is calculated:

Q( f ) =
1
N ∑

z∈P
f (z) (3.6)

where:

• CS is the s-dimensional unit cube.

• P is some random or deterministic sample of N points in CS.

It is possible to evaluate the error of the sampling process by applying the concept of
discrepancy. The discrepancy can be described as a “quantity used to reflect this geometric
non-uniformity of points in a set” [29] or a “measure of non-uniformity for the set of
samples” [32]. Discrepancy bounds are derived from the Koksma-Hlawka inequality [32]
as seen in 3.7: ∣∣I( f )−Q( f )

∣∣≤ D∗(P)×V ( f ) (3.7)

The discrepancy bound thus depends on two terms:

• The first term, V ( f ), depends only on f (x) and is called the generalized variation
of f (x). Most importantly, this term is independent of the spreading method.

• The second term depends only on the discrepancy D∗(P) and is highly dependant
on the spreading method.

The discrepancy D∗(P) is defined as:

D∗(P) = sup
J∈CS

∣∣∣∣nJ

n
−Vol(J)

∣∣∣∣ J = [0,a] : a ∈CS (3.8)

where any s-dimensional hyper-rectangle ∈CS is represented by J and nJ is the number
of points within J.

For two-dimensional variation space, the discrepancy can be illustrated as shown in
figure 3.9, where the star discrepancy can be defined as follows [28]:

D∗ = max
a,b∈[0,1]

∣∣∣∣n[0,a]×[0,b]n
− a×b

1×1

∣∣∣∣ (3.9)

The discrepancy for standard Monte Carlo is given by [29]:

D∗(P) = O

(
(log(log(n))S

√
n

)
(3.10)
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Figure 3.9: Star Discrepancy - axis-aligned anchored rectangles.

where O denotes the use of the standard Big-O notation.

The discrepancy for Low-Discrepancy sequences as Sobol is conjectured to be repre-
sented by [29]:

D∗(P) = O

(
(log(n))S

n

)
(3.11)

By analyzing the 3.10 and 3.11, comparing denominators, it becomes clear that MC
(
√

n) will converge slowly compared with LDS (n) methods. For high dimensional vari-
ation spaces, as the numerator of the LDS expression is exponentially proportional to the
dimension number, this method will be used only with a large number of simulations.

In order to solve high dimensional problems, tools such as Analysis of Variance

(ANOVA) can be applied. These run a sensitivity analysis to identify and separate the
dimensions that have a more significant impact on the output [29].

3.3.2 Low discrepancy algorithms

There is a large list of Quasi-Random Generators [39], and the focus will be on imple-
mentations that employ the following sequences:
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• Sobol’s 3703 and 163844 sequences [29, 39].

• Halton sequence [40].

In [29] it is possible to see an implementation of Sobol’s sequence, with an optimiza-
tion by resorting to the Grey Code, simplifying the XOR operation and thus turning the
algorithm faster. Since Sobol’s sequence is a complex and lengthy algorithm, it will be
only explored the Halton sequence, as an example.

The Halton sequence is constructed according to a deterministic method that uses co-
prime5 numbers as its bases. For example, to generate a base two sequence, we start by
dividing the interval (0,1) by 1

2n terms, with n ≥ number of samples. Then, a sum of the
terms to fill the positions on the sequence is made, as shown in figure 3.10.

Figure 3.10: Halton Sequence.

The Halton sequence can be coded in Matlab using the code presented in A.1 (adapted
from [41]).

Comparing the star discrepancy between Halton’s and Sobol’s sequence, using the se-
quence of 500 samples from both sequences, shown in figures 3.12 and 3.11, it is possible
to find out that the discrepancy of Halton is two times superior to Sobol.

D∗(HaltonSequenceSample) = 0.004 (3.12)

D∗(SobolSequenceSample) = 0.002 (3.13)
3Maximum of 370 dimensions.
4Maximum of 16384 dimensions.
5Two integers a and b are said to be co-prime if the only positive integer (factor) that divides both of

them is 1.
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Figure 3.11: Halton Sequence – 500 samples.

Figure 3.12: Sobol Sequence – 500 samples.
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3.4 The optimized Latin Hypercube sampling scheme

Explored by [30], this method links the best characteristics of Low Discrepancy with Latin
Hypercube method. It uses Latin Hypercube to generate points over one-dimension, due
to the excellent spreading and projection properties that this method offers. The optimized
step is the combination of all one-dimensional LH samples. To optimize this, the random
manner to combine the one-dimensions samples’ set, explained in 3.2.2, was changed
to a deterministic procedure obtained by using the ordering characteristic from the Low
Discrepancy method. To exemplify, two one-dimensional sets of ten points using Latin
Hypercube were generated, as shown in figure 3.13.

Figure 3.13: Two one-dimensional LH sets.

This step is followed by the generation of two one-dimensional sets of ten points with
the Low Discrepancy method, as shown in figure 3.14.

Figure 3.14: Two one-dimensional LD sets.

The two one-dimensional LH sets have the order shown in figure 3.15.

Figure 3.15: Order of the two one-dimensional LD sets.

By sorting the two one-dimensional LD sets, it is possible to obtain the set shown in
figure 3.16.
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Figure 3.16: Two one-dimensional LD sets sorted.

This method, evaluated in [30], shows a speedup of 2 times6 for the Yield error (3.14)
below 1% when compared with the standard sampling methods.

By using the CPK method based on the process capability index to estimate yield, is
possible to express the error of the yield as:

Err(Yield) = |YCPK−Y |, (3.14)

where Y is the true yield and YCPK is defined as:

YCPK = 0.5+0.5×Er f [
3√
2
×CPK], (3.15)

where CPK is defined as:

CPK = min
[USL−µ

3σ
,

µ−LSL
3σ

]
(3.16)

where USL stands for upper statistical limit, LSL for lower statistical limit, µ and σ are
the estimated mean and standard deviation of the output, respectively.

6It takes two times less simulations.
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3.5 Transformation from uniform to normal distribution

3.5.1 Theoretical review

The process variation distributions, global and mismatch, are usually normally distributed
and their probability density function (pdf) is given by [42]:

f (x) =
1√

2πσ
e−(x−µ)2/(2σ)2

,−∞ < x < ∞ (3.17)

where f (x) is the probability of the number x being chosen at random from the distribu-
tion.

Figure 3.17: PDF with different µ and σ .

For a random variable X with mean µ and variance σ2, and for any constant k and y,
aX + y is also normally distributed with:

mean = ku+ y (3.18)

variance = k2
σ

2 (3.19)
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Figure 3.18: CDF with different µ and σ .

If X is normal with mean µ and variance σ2, for a normal with mean 0 and variance
1, the random variable can be expressed as7:

Z =
X−µ

σ
(3.20)

For such distribution, the cumulative distribution function (CDF) can be obtained by
integration the pdf and is given by F(X) which can be expressed as follows [42]:

F(x) =
1√
2π

∫ x

−∞

e−x2/2dx,−∞ < x < ∞ (3.21)

where F(x) is the probability of the number x, or any lower number, being chosen ran-
domly from that distribution.

For different µ and σ , the shape of a normal pdf and cdf is shown in figures 3.17
and 3.18.

7This distribution is named as standard normal distribution.
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3.5.2 Transformation methods

There are various known methods to proceed this operation, for example:

• Box-Muller transform

• Ziggurat algorithm

• Ratio-of-uniforms

• Inverting the CDF

In this section, the Inverting the CDF is explored.

3.5.2.1 Inverting the CDF

In order to get a random number from a specific distribution, the opposite operation of
what is shown in 3.5.1 is needed. Briefly explained, after generating a random number,
from a uniform distribution U(0,1), the same number will be "plugged" in a probability
distribution, returning the number corresponding to that probability.

This method can be described as follows:

1. Generate a random number from a uniform distribution U(0,1) -> U

2. Numerically invert the cdf function8 (costly step) -> F(X) =U

3. Obtain Z from the previous step.

4. Obtain X from the 3.20

The shape of a normal pdf and cdf with different µ and σ is shown in figure 3.19
Is not possible to invert the PDF function because if we flip x and y’s in a PDF, there

would be multiple y values corresponding to the same x.

8Invert the cdf function is also known as the quantile function of a normal
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Figure 3.19: Inverse of CDF with different µ and σ .



Chapter 4

Study Cases

In the beginning of this chapter, the cases used to compare the techniques introduced
in the previous chapters are presented. The result analysis of the variation test in both
technologies and also the evaluation of the sampling methods are followed.

The first two circuits tested were composed of one single transistor, as shown in fig-
ure 4.1. Each circuit had a different transistor. The first had a MOSFET transistor with
only four varying parameters, and the second had a FinFET transistor with seven varying
parameters. The third circuit used was a modern large IC design, explored in section 4.2,
with more than seventy thousand varying parameters.

Multiple Monte Carlo simulations following a mismatch variation (explained in sec-
tion 2.2.2.4) were used. Each Monte Carlo simulation had different numbers of samples
and three different sampling methods: Random, Latin Hypercube and Low Discrepancy.

Figure 4.1: Single transistor

51
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The comparison between each sampling method was based on the following charac-
teristics:

• The number of clusters and empty spaces in the variation space, resorting to a two-
dimensional projection.

• The spreading of the points along the variation space of each parameter, using a
histogram.

• The speed of convergence of the mean by comparing to the "golden" mean refer-
ence.

• The speed of convergence of the mean confidence interval (shrink speed of the
confidence interval size).

Note that all the absolute values, designs and descriptions are omitted in order to
comply with Intel Corporation Confidential Policy.

4.1 Single transistor – Variation analysis in small IC de-
signs

4.1.1 MOSFET transistor

For the first case, the MOSFET transistor had only four varying parameters, correspond-
ing to a small variation space. By running a sensitivity analysis, it was possible to find
out the impact of each parameter in the current flow of the transistor, as follows:

• Parameter 1: 0% of impact.

• Parameter 2: 0% of impact.

• Parameter 3: 68% of impact.

• Parameter 4: 32% of impact.

The varying parameters’ distributions were defined in the models as normal distri-
butions. In order to see the point spreading of each method, all the distributions were
transformed into uniform distribution, as follows:

1. Normalize the data to N(0,1) by subtracting the mean and dividing by the standard
deviation.

y =
x− µ̂

σ̂
(4.1)
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2. Transform the values using the cumulative distribution function (CDF) properties.

z =
1
2
erfc(− y√

2
), (4.2)

where erfc is the complementary error function.

With a uniform distribution, the performance of the sampling methods is clear.

4.1.1.1 Comparison between different spreading methods

The data used to analyze the spreading quality comes from nine different Monte Carlo
simulations. A combination of three runs1 for each method and three different number
of runs, two hundred and fifty, five hundred and a thousand were used. The Monte Carlo
simulations with a different number of runs were used to compare the number of runs
needed to cover all the empty spaces generated by Random and LH sampling.

First, for the Monte Carlo simulation with two hundred and fifty points, the case which
is possible to see the greatest payback of LDS is shown in figure 4.2 (best LD spreading
and worst Random spreading).

The projection on the bottom shows a large empty space generated by the Random
Sampling and also a vast number of clusters. This large empty space areas and a vast
number of clusters lead to a slow convergence of the mean. As a consequence, a higher
number of runs are needed to maintain the necessary accuracy.

In the same figure 4.2, is shown the spreading quality rising from Random to Latin
Hypercube Sampling, with the empty spaces getting smaller when compared to the Ran-
dom MC. The best method, from far, is the Low Discrepancy Sampling with all the points
well spread in the variation space, without one single cluster. The LDS method provides
a good representation of the variation space with only two hundred and fifty samples.

In figure 4.3 is shown the distributions of all sampling methods over the variation
space of each varying parameter. The LHS and LDS had a good performance as a result
of the proper spreading, almost evenly over the variation space. This factor was not clear
by looking only to the projections in figure 4.2. Although, by looking at the Random
sampling histogram, the lack of performance is clear, especially because of the empty
bins.

1The SPICE simulation used to measure some output.
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Figure 4.2: Spreading comparison
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Figure 4.3: MOSFET histograms
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With the rise of simulations going to five hundred and a thousand points, as shown in
figure 4.4, it becomes even clearer the performance superiority of the Low Discrepancy
Sampling. It is possible to see a large number of clusters with the LH and Random
sampling and even some empty spaces with a thousand points. Although, with a thousand
points, the LDS still with the low number of clusters and this reflects on the low number
and area of the empty spaces.

Figure 4.4: Comparison of all methods with the rise of the simulations number. Parame-
ters 1 on the vertical axis and parameters 3 on the horizontal axis.

This spreading factor will have a major impact on the convergence of the mean, as
shown in the next section.
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4.1.1.2 Mean convergence for different spreading methods

In figure 4.5 is shown the mean absolute value calculated for the three methods. With
LDS, after a hundred simulations, the mean value has a good approximation of the final
value. For Random Sampling, with a hundred simulations, the mean value is far from
the final value due to the large oscillation that is appearing during the firsts three hundred
simulations. The same is occurring with LHS, with lower oscillations, but the mean
can be only calculated with good accuracy (δx < 1%) only after two hundred and fifty
simulations. It is possible to conclude that for the same circuit, the LDS offers a speedup
of three times. A similar result can be visualized in figure 4.6, where the mean relative
error is presented and calculated as follows:

δx =
∆x

x
=

actual mean value - reference
reference

, (4.3)

Where ∆x is the absolute error and the reference is the last LDS mean value (golden
reference).

In figure 4.7 the confidence intervals for all three methods are presented. A higher
stability of the LDS confidence interval in comparison with the other methods, is clear.

Figure 4.5: IDrain Mean absolute value
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Figure 4.6: IDrain mean relative error

Figure 4.7: IDrain mean confidence interval
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4.1.2 FinFET transistor

The FinFET transistor used in this test had three more varying parameters when compared
with the MOSFET, making a total of seven. By running a sensitivity analysis, it was
possible to determine the mismatch contribution of each varying parameter, described as
follows:

• Parameter 1 – 47% of impact

• Parameter 2 – 11% of impact

• Parameter 3 – 7% of impact

• Parameter 4 – 4% of impact

• Parameter 5 – 0% of impact

• Parameter 6 – 0% of impact

• Parameter 7 – 0% of impact

The process flow to analyze the variation was the same as the first case. This case
is similar to the first one but the conclusions are slightly different, as shown in the next
section.

4.1.2.1 Comparison between different spreading methods

As in the first case, the quality of the points spreading increased from Random to LHS,
and from LHS to LDS, as shown in figure 4.8. However, with more three varying pa-
rameters, it is possible to see some clusters appearing in the variation space with the Low
Discrepancy generator, and as a consequence, empty spaces.

By looking to the histograms shown in figure 4.9, it is possible to see that there is
no big difference on the one-dimensional points spreading when compared with the first
case. Furthermore, one can conclude that even with the well points spreading for each
varying parameter, the variation space with multiple varying parameters can be not well
represented.

The worst two dimensional projections with LDS are represented in figure 4.10. With
a strange spreading pattern occurring in the projection of Parameter 5 and Parameter 4,
the quality of the spreading falls really quickly. The most important varying parameters,
Parameter 1 and Parameter 2, are shown in figure 4.11, where is possible to see clusters
and empty spaces. The case that did not happen in four dimensions. Furthermore, this
affair will lead to slowness in the convergence of the mean.
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Figure 4.8: Spreading comparison
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Figure 4.9: FinFET histograms



62 Study Cases

Figure 4.10: LDS point spreading - worst case

Figure 4.11: LDS Spreading - most important varying parameters

With the increase of the simulations number, shown in figure 4.12, in some projec-
tions, is possible to see that the issue is solved with a one thousand samples but not in all
the cases. For example, the right column of figure 4.12 represents a case where even with
a large number of samples (thousand), instead of spreading the points over the variation
space, the LDS method is creating more clusters.
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Figure 4.12: LDS Spreading comparison between different varying parameters

4.1.2.2 Mean convergence for different spreading methods

To evaluate the converge of the mean, the same procedure as in the MOSFET case was
applied. Both Monte Carlo simulations with the Latin Hypercube Sampling and Random
Sampling had an irregular behaviour, with multiple overshooting periods. The results of
relative error comparison of all sampling methods, shown in figure 4.14, are present in
the table below.



64 Study Cases

Mean relative error comparison table

Sampling Method Number of samples
to converge above
|0.5|%

Number of samples
to converge above
|0.1|%

MAX LDS
speed up

Random Monte Carlo 325 920 3.28
Latin Hypercube 62 900 3.21
Low Discrepancy 65 280 —–

Table 4.1: Mean relative error comparison table

Even with the spreading issue shown in the previous section, the Monte Carlo simulations
with the Low Discrepancy Sampling had a maximum speedup of more than three times
for a relative error below 0.1%, in comparison with both sampling methods.

Figure 4.13: IDrain Mean absolute value
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Figure 4.14: IDrain mean relative error

The size of the confidence interval shrank faster with the Random Sampling compared
with the LDS until approximated two hundred samples. After that period, the speed of
convergence slowed down, as shown in figure 4.16. The large deviation of the Random
Sampling confidence interval, when compared with the other two methods, makes the fast
speed of convergence ineffective.

4.2 Micro-Receiver – Variation impact in large IC de-
signs

In this sections, the variation impact with a modern large IC design is evaluated. The
focus of this test is to appraise the method’s performance with a very large variation
space. Following the conjure presented in chapter 3, section 3.3, equation 3.11, a drop
down on the LDS performance is expected due to the rise of dimensionality. This section
is focused on testing the Low Discrepancy Sampling as well as expose the expected lack
of performance during the generation of points in high dimensional variation spaces.
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Figure 4.15: IDrain mean confidence interval

4.2.1 Circuit description

The circuit had forty-six different outputs, each one with different mismatch sensitivity.
To evaluate the performance of the sampling methods, two outputs with the most signifi-
cant relative error and variation space were chosen, since the convergence of the mean is
slower. They are identified as "Output 35" and "Output 36".
The list of varying parameters in this design is composed of more than seventy thousand
varying parameters, a huge and complex variation space. To run Monte Carlo simula-
tions, specifically for the LDS and LHS, the EDA tool needs to generate all the varying
parameters’ values for all the runs, taking into account the number of samples, since the
set of points generated by LDS and LHS is dependent on the number of samples.
As shown in the previous sections, with only seven varying parameters composing the
variation space, it is possible to see some irregular patterns as well as clusters and empty
spaces. In this case, the variation space is composed of more than ten thousand more
values than the single FinFET case, a factor that will have a major impact on the speed
mean convergence.
As each sample takes more than five hours to be completed, the need for time and IT
reduction is crucial. As a consequence, is not feasible to run more simulations to cover
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Figure 4.16: IDrain mean confidence interval size convergence

this expected lack of performance of the Low Discrepancy Sampling method with high
dimensional problems.

4.2.2 Mean error convergence for different spreading methods

The first step to evaluate the convergence of the mean was a generation of the golden refer-
ences. The standard number of samples recommended is to run a Monte Carlo simulation
with at least two thousand samples for three sigma designs. Considering the size of the
circuit and the resources needed to run such a large simulation and the issues presented
in the previous sections, the golden references were produced with two thousand and five
hundred simulations using Latin Hypercube Sampling method. The reference to calcu-
late the relative error is the last value of the mean since in both cases, after two thousand
samples the mean value is well established. The mean values are shown in figure 4.17.
It was used a similar analysis flow to determine the performance of the methods. In
this case, different seeds were also used to generate samples in order to have a fairer
comparison.
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Figure 4.17: Golden references
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In figure 4.18 is shown the relative error of both outputs. The relative error is substantially
high, with values between 3% and 50%. The table below shows a comparison between
all methods:

Mean relative error comparison table for "output 35"

Sampling Method Seed Number of samples
to converge above
|10|%

Number of samples
to converge above
|5|%

Final
error
(%)

Random 12345 410 —– 5.48
Random 98765 600 —– 4.97
Low Discrepancy ——- 20 120 2.08
Latin Hypercube 12345 80 160 3.51
Latin Hypercube 98765 110 170 3.16

Mean relative error comparison table for "output 36"

Sampling Method Seed Number of samples
to converge above
|10|%

Number of samples
to converge above
|5|%

Final
error
(%)

Random 12345 80 870 3.50
Random 98765 110 130 2.60
Low Discrepancy ——- 200 830 1.70
Latin Hypercube 12345 170 220 4.18
Latin Hypercube 98765 80 980 4.98

In both cases, with the Low Discrepancy Sampling, the error at the 1000th run is lower
than the rest of the methods. However, looking at the speed of convergence of the output
36, it is possible to see that for a convergence lower than 10%, the LDS takes 17% more
samples compared with the worst case (LHS with seed 12345). In one hand, comparing
the number of samples needed to have a relative error lower than 5% with the best case
of Random and LHS, it is possible to speed up to more than six times using Random
sampling and 3.5 times using LHS. On the other hand, if the comparison is made using
the worst case of Random and LHS, it is needed 4% and 18% more samples to achieve
that accuracy.
The size of the confidence interval (with an inference error of 2.5%), for the LHS with
seed 98765 is lower than the LDS for the output 35, as shown in figure 4.19, indicating
that the estimation of the mean is better. For the "Output 36", the difference between LDS
and LHS with seed 98765 is not significant.
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Figure 4.18: Output Comparison
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Figure 4.19: Output mean confidence interval size convergence
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4.2.3 Low Discrepancy Sampling Performance

As shown in the previous section, the performance of the LDS method went down com-
pared with the first two study cases. In some projections, the number of samples increased
and the number of clusters also increased. As a consequence, the LDS is providing an aw-
ful representation of the variation space, as shown in figure 4.20.

Figure 4.20: Low Discrepancy Sampling - Worst cases
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By seeing the worst case scenario, shown in figure 4.21, it is possible to see a miserable
spreading. If this method is used in verification, the worst case scenario2 could be within
this variation space holes. If that happens, the IC can fail and if applied to a critical
system, could lead to a catastrophe.

Figure 4.21: Low Discrepancy Sampling - Worst case

2The combination of all varying parameters that lead to a fail or a deviation of the circuit specifications.
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Chapter 5

Efficient Monte Carlo simulation flow
for large designs – Screening with RSM

5.1 Introduction

In this chapter, an improved methodology for Monte Carlo simulations on large and com-
plex netlists like a complete receiver is described. In this chapter, it will be shown the
importance of providing circuit insight to the MC Simulation before starting it in order to
achieve results in a more efficient way.
As shown in the previous chapter, the increased complexity of circuits and devices leads
to an increase in the number of process parameters that can vary within the circuit. An
accurate variability analysis of a large circuit, like a complete receiver should not be
simulated by simply turning on an MC simulation. To reach an accurate result, many
simulations are required due to the increase of the geometric non-uniformity of points in
a set (discrepancy) of the LDS method. An insight into the main contributors that affect
the output must be known before performing an MC simulation.
Our proposed work will help the users to automatically select the most important instances
to run a MC Simulation for a certain output or a group of them reducing substantially the
number of MC runs required.
In the following sections of this chapter, the methodology is explained in detail as well as
the improvement results, in comparison with the original methods.
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5.2 Methodology proposed

Within this methodology we first propose to run a sensitivity analysis in order to know
the most important contributors (instances) for each output and split the list of instances
by groups, as shown in figure 5.1.
As the traditional sensitivity analysis required two simulations per parameter (One Factor
At Time – OFAT), it is impractical to use it with RF designs. By applying another method
named as "Sensitivity Accuracy", available on Cadence Virtuoso Variation Option [43], it
is possible to run the required sensitivity analysis using a low number of MC runs. This
method relies on a Response Surface Model (RSM) to evaluate the Sensitivity of certain
output regarding a specific mismatch parameter.

Figure 5.1: Screening technique

The sensitivity analysis is made by running MC simulations until an acceptable level of
accuracy (R2 – Squared Metric) to build a (RSM) is reached, as shown in figure 5.2.
R2 value shows how much of the total variance can be explained by the computed model.
In other words, the R2 is the ratio of the variation in K that is explained by the systematic
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Figure 5.2: Sensitivity Analysis

proportion of the model (Z) and it can be expressed by:

R2 =
Var(K)

Var(Z)
,0≤ R2 ≤ 1 (5.1)

Where:

• R2 = 0 : The model does not explain anything.

• R2 = 1 : The model explains everything.

After importing the mismatch contribution results to a python dataframe, the file that
contains all the instances of the circuit is also imported in order to identify parallel arrays.
With both dataframes available, it is now possible to generate a list of instances with
contribution greater than 0. It is now possible to select all desired outputs and compile the
list of instances. In figure 5.3, the flow of the tool is shown.
The list is now imported to the simulator and a MC simulation is started, by applying
variation only on those instances1.

1This technique is named as Screening.
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A faster convergence of the mean and standard deviation values and the detection of the
worst case with a reduced number of MC runs can be obtained by applying these Screen-
ing techniques.

Figure 5.3: Algorithm Script

5.3 Algorithm Testbench

In order to test this method, it was used a similar testcase compared with the one shown in
section 4.2. Due to a limit imposed by the simulator and to the hierarchical complexity of
the circuit, it is only possible to select a certain number of instances (the limit comes from
the string size of instances list), unabling us to test the same output refereed in section 4.2
(described as "output 36" and "output 35").
From the same circuit a set of 24 outputs was chosen, representing a list of instances with
a total of 225 parameters (1064 parallel arrays included). An output from the set of 24
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outputs was chosen based on the greatest mean and standard deviation. This output will be
further described as "Output 1". The list of mismatch contributors for that specific "output
1" was also generated and it was determined that it was composed of 166 parameters (664
parallel arrays included).
A Monte Carlo simulation with 2500 runs sampled by the Latin Hypercube Sampling was
used as a reference.
A comparison between the standard MC flow and the improved one was based in the
following parameters:

• Output mean (µ) relative error

• Output standard deviation (σ ) relative error

• Convergence of the mean confidence interval

• Convergence of the variance (S2) confidence interval

• Output measure value distribution

• Discrepancy of 2D and 3D projections
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5.4 Results

5.4.1 Discrepancy on 2D projections

In figure 5.4, a well spread 2 dimensional variation space (sampled by LDS) is shown.
The sub-figure 5.4a shows the variation space after being transformed to a uniform distri-
bution and sub-figure 5.4b shows the original normal distribution (given by the simulator).
The same can not be stated in figure 5.5 where a not so good spreading example is shown.
The 3 clustered zones shown in sub-figure 5.5a exposes the ineffectiveness of the Low
Discrepancy Sampling method even with a low number of instances. This condition leads
to a slowness of the process and also to an redundant optimistic/pessimistic yield pre-
dictability. The worst case condition will be faulty in case these 2 two parameters have an
high contribution to the sensitivity of a certain output2. Sub-figures 5.6a and 5.6b shows
that even if we raise the number of simulations from 1000 to 5000 runs (an increase of
5x), the problem might not be solved. In some cases, like the one shown in figure 5.6c,
the cluster issue is solved when the same increase of runs is made. A possible conclusion
of these results is these even with a small number of instances selected (166), the LDS
does not have a good performance and can compromise the Yield Analysis of the circuit.

5.4.2 Mean and std convergence – relative error and confidence in-
terval

Since the LDS and the Random Sampling3 show lack of performance that cannot be
solved even if we rise the number of runs, the following analysis will only cover the
results when the algorithm is applied to the LHS.
In figures 5.7 and 5.8 the convergence of the relative error and standard deviation variation
is presented. It is possible to see that after 150 runs both simulations are converging to
the true value of the mean (0% relative error). In the case of the standard deviation, after
150 runs, the relative standard deviation error starts to increase up to 8%, finishing with
an error 4% greater when compared with the Latin Hypercube filtered simulation. The
results of the comparison between both simulation are shown in the table below.

2The good spreading examples are typically the first parameters distributions picked to sample and the
order of sampling is based on the order of the netlist. This means that the first instances of the netlist will
have a better spreading when compared with the last. If the output is sensible to the last netlist instance, the
chances of finding the best/worst case are low.

3In chapter 4, the Random sampling appears as the slowest method to estimate the standard deviation
and mean.
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(a) 2D uniform distribution (b) Normal 2D Distribution

Figure 5.4: Good spreading example

By analysing the variance and mean confidence interval convergence shown in figures 5.9
and 5.10, it is possible to conclude that the convergence is faster when only a subset is
simulated (when the filter is applied).
In figure A.1 shown in appendix, the output measurement values are shown. By analysing
the scatter, it is possible to see that the worst case point (for this specific output, it is the
largest measured value) located near to the point 480, was sampled by the LHS with the
subset selected.
The table below shows the reduction of the mean and standard variation relative error,
with special focus on the standard variation error decrease at the run 500. The error
peak of the LHS filtered is also lower, 2.5 times less than the normal LHS. The proposed
method is the Latin Hypercube Filtered.

Mean relative error comparison table

Sampling Method Number of samples to
converge above |0.5|%

Relative error at run 500

Latin Hypercube Filtered 33 -0.0001077
Latin Hypercube 52 -0.00002158

Table 5.1: Mean relative error comparison table

Standard deviation relative error comparison table

Sampling Method Number of samples to
converge above |5|%

Relative error
at run 500

Max error
after run 50

Latin Hypercube Filtered 79 0.8% 3.2%
Latin Hypercube 64 4.8 8%

Table 5.2: Standard deviation relative error comparison table



82 Efficient Monte Carlo simulation flow for large designs – Screening with RSM

(a) 2D uniform distribution (b) Normal 2D Distribution

Figure 5.5: Bad spreading example – uniform and normal distribution

(a) 2D uniform distribution
(b) 2D uniform distribution – case where the in-
crease has no improvement

(c) 2D uniform distribution – case where the in-
crease covers the empty spaces

Figure 5.6: Bad spreading with different number runs
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Figure 5.7: Output mean relative error convergence

Figure 5.8: Standard deviation (σ ) relative error convergence
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Figure 5.9: Variance confidence interval convergence

Figure 5.10: Mean confidence interval convergence



Chapter 6

Conclusions and Future Work

6.1 Conclusion

At the beginning of the verification process, the adoption of the Monte Carlo method
using pseudo-random generators was appropriated for small circuits that were developed
at that time. Small circuits are translated into variation space with a small number of
dimensions, and it was why the random generator had good performance. With the rise
of complexity and variation space dimensionality, the Latin Hypercube method and Low
Discrepancy generator emerge as an update of the Random generator.
In this thesis, it is shown that for small dimensions, the usage of Low Discrepancy gener-
ators can speed up the Monte Carlo simulations more than three times. It was also shown
that for large dimensions, the Low Discrepancy generator could not guarantee better per-
formance than the Latin Hypercube method. As a consequence, it is possible to state that
the feasibility of the Low Discrepancy generator is questionable for a problem with a large
number of dimensions. Since the complexity and size of real-world circuits are increas-
ing, and consequently the number of dimensions of their variation space, this method will
cease to be feasible in the near future. The superiority of the Latin Hypercube compared
with the Random generator was also shown.
The sampling method exposed in section 3.4 may handle these problems with better ef-
ficiency, but it was never tested for very high dimensionality problems. This thesis pre-
sented in chapter 5, a new optimized method that handles the high dimensionally prob-
lems. This method consists in using a pre-MC simulation and a RSM to determine and
filter the most important contributor for the measurement in order to reduce the number of
runs required. It has been demonstrated that the proposed method achieves more accuracy
with fewer resources (see table 5.1 and 5.2).
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6.2 Future work

There is a few more possible enhancements to do on the MC simulation flow as possible
future work:

• Implementation of the optimized Latin Hypercube exposed in chapter 3, section 3.4.

• Benchmark of the optimized Latin Hypercube method with all methods reviewed
in chapter 3.

• Use of the sensitivity analysis results to choose the best polynomials to the most
important instances, during the generation of numbers with the Sobol’s algorithm.
This idea is pointed in [39], but it is purely theoretical and was never tested.



Appendix A

Appendix

A.1 Halton Matlab Code

% I n p u t s : nSamples − t h e l e n g t h o f t h e v e c t o r t o g e n e r a t e

% base − t h e base o f t h e s e q u e n c e

f u n c t i o n Ge ne ra t e d Se qu en ce = Ha l tonSequence ( nSamples , ba se )
G en e r a t ed Se qu en ce = z e r o s ( nSamples , 1 ) ; % P r e a l l o c a t e t h e o u t p u t

f o r n = 1 : nSamples
Ge ne r a t ed Se qu en ce ( n ) = HaltonNumber ( n , ba se ) ;

end

% Genera te n samples w i t h Hal ton ’ s s e q u e n c e

f u n c t i o n GeneratedNumber = HaltonNumber ( nSamples , ba se )
n0 = nSamples ;
GeneratedNumber = 0 ;
f = 1 / base ;
whi le ( n0 >0)

n1 = f l o o r ( n0 / base ) ;
r = n0−n1∗ base ;
GeneratedNumber = GeneratedNumber + f ∗ r ;
f = f / ba se ;
n0 = n1 ;

end
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Figure A.1: Output measurement distribution
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