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Abstract. A corneal ulcer is one of the most frequently appearing dis-
eases that may affect eye health. The proper measurement of corneal
ulcer lesions enables the physician to evaluate the treatment effective-
ness and assist in decision-making. This article presents the solution for
ulcer segmentation as a pixel-wise classification task, and proposes a
novel coarse-to-fine method to extract corneal ulcers from ocular stain-
ing images. This study combines two classical convolutional neural net-
works (CNNs), known as U-net and DexiNed, following Morphological
Geodesic Active Contour as a post-processing operation. We trained the
CNNs using 358 point-flaky corneal ulcer images and evaluated its per-
formance in 91 flaky corneal ulcer images. Our approach achieved 70.50%
of Dice Coefficient on average, 87.4% of Recall, and 99.0% of Specificity,
and True Dice Coefficient of 63.7%. These results corroborate our app-
roach’s efficacy and efficiency.

Keywords: Computer-aided diagnosis · Image segmentation · Deep
learning · Eye health

1 Introduction

Many corneal diseases may affect eye health, such as Pytherigium, Infection,
Conjunctival nevus and Corneal Ulcer. The corneal ulcer is one of the most
frequently appearing of these, and it is defined as an inflammatory or even
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more severe condition. It may lead in some cases to epithelial layer disruption or
corneal stroma disruption. There are some potential causes of corneal ulcers, such
as topical steroid usage, contact lens usage, trauma and ocular disorders, leading
to perforation, scarring and vision loss [3]. Corneal ulcers can be classified into
three general types, considering their shape and distribution: point-like, point-
flaky mixed and flaky. Figure 1 shows samples of these three types.

Point Like

Point-Flaky
Mixed

Flaky

Fig. 1. Image samples from the SYSUTech-SYSU dataset, with the top row depicting
point like corneal ulcers, the middle row depicting point-flaky mixed, and the bottom
row depicting flaky corneal ulcers.

Usually, the point-like type appears at an early stage, when there are most
chances of success in its treatment. This type of corneal ulcer has numerous ulcer
dot distribution patterns that can appear anywhere within the corneal tissue.
Therefore, it is not reasonably possible to segment it manually. A flaky corneal
ulcer usually indicates a much more severe corneal disease. It has a uniform
shape with clear boundaries, and may lead to scars and even vision loss. A
point-flaky mixed corneal ulcer is a combination of point-like and flaky corneal
ulcers. It indicates corneal disease with a severity degree, which lies between the
aforementioned types. Measuring corneal ulcer lesion extension plays a crucial
role in the treatment, as such a measurement may assist the specialist in the
treatment follow-up.

The present study consisted of developing a computational method for
corneal ulcer segmentation in ocular staining images. Hence, we evaluated and
compared different CNN architectures and post-processing techniques found in
the state-of-the-art. During the research process, we defined the following spe-
cific objectives: evaluate the U-net, DexiNed and LinkNet CNN architectures
applied to this problem of image segmentation; estimate different pre- and post-
processing image operations; and train the method using only point-flaky mixed
corneal ulcer images, and validate it using flaky corneal ulcer images.

The remainder of this article has the following structure. Section 2 presents
related works as to corneal lesion image segmentation; Sect. 3 details the evalu-
ated CNN architectures, used image dataset, applied data preparing operations,
and the adopted evaluation metrics. Section 4 presents the proposed approach.
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Section 5 presents the results and discussion. Finally, Sect. 6 concludes the article
and indicates future directions for research.

2 Related Works

We carried out a literature review looking for state-of-the-art articles related
to computer-aided diagnosis solutions to segment corneal lesions. The survey
aimed to identify and classify the works available in the literature based on the
techniques employed, image dataset, year of publication and application domain.
In this context, we can highlight the articles of Sun et al. [15], Deng et al. [5],
Patel et al. [12], Deng et al. [4], Lima et al. [10], and Liu et al. [11].

We noticed that only the work of Sun et al. [15] uses a CNN-based approach
to segment corneal ulcer images. In contrast, the other methods are based either
on classical clustering or classification algorithms. In this context, our work con-
tributes to exploring the limits of applying CNNs to segment corneal lesions,
specifically corneal ulcer lesions.

Table 1 summarises the works found in the reviewed literature in terms of the
year of publication, used technique(s), number of used images, and the applica-
tion domain. In all of these works, the images used for training and test purposes
were from the same dataset, and none of them used publicly available datasets,
except for the CLID dataset used in Lima et al. [10].

Table 1. Summary of the works found in the reviewed literature in terms of the year
of publication, used technique(s), number of used images and application domain.

Work Year Technique(s) N. of images Domain

Sun et al. [15] 2017 Path-based CNN 48 Corneal Ulcer

Deng et al. [5] 2018 SVM with Superpixel 150 Corneal Ulcer

Patel et al. [12] 2018 Random Forest and
Active Contour

50 Corneal Ulcer

Deng et al. [4] 2018 Iterative k-means,
Morphological Operations
Region growing

48 Corneal Ulcer

Liu et al. [11] 2019 Gaussian mixture model-
ing and
Otsu method

150 Corneal Ulcer

Lima et al. [10] 2020 Random Forest Classifier 30 Infection, Pterygium
and Conjunctival nevus

3 Materials and Methods

This study aimed to propose an automatic method for corneal ulcer segmen-
tation. We performed experiments using different combinations of the U-net,
LinkNet and DexiNed CNNs architectures applied to the SUSTech-SYSU [6]
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dataset. Combined with that, we used other post-processing techniques such
as Binary Threshold, Otsu Threshold, Geodesic Active Contour, Fill holes and
Morphological Operations. We evaluated the models’ performance using four
different metrics to identify the proposed method’s best settings.

3.1 Evaluated CNN Architectures

U-net [14] is a convolutional neural network proposed for biomedical image
segmentation. The general U-net architecture consists of two paths: a contracting
path capable of capturing the image’s context, and an expansive path capable
of building the segmented image. The primary strategy that differentiates the
U-net architecture from the other fully connected ones is combining the feature
maps from the contraction layers with their symmetric correlated feature maps
from the expansion layers. This characteristic allows the propagation of context
information to high-resolution feature maps.

Chaurasia et al. [2] proposed LinkNet aiming to provide a semantic seg-
mentation approach using less computational complexity comparing to other
CNN architectures. LinkNet is based on encoders and decoders concepts, and is
designed to perform a convolutional operation followed by a max-pooling oper-
ation on its output data; after that, there are four encoders blocks, followed by
four decoders blocks. Finally, the architecture applies a sequence of full convo-
lution, followed by a simple convolution and another full convolution as output.

DexiNed (Dense Extreme Inception Network for Edge Detection) [13] is a con-
volutional neural network for edge detection. It is built using a stack of filters
that predict an edge map based on an input image. DexiNed comprises two
sub-network architectures: Dense Extreme Inception Network (Dexi) and an up-
sampling block (UB). Whereas the Dexi architecture has an image as input, the
up-sampling block gets a feature map from the Dexi architecture block. The
resulting architecture generates thin edge maps avoiding edge losses in the deep
layers. DexiNed provides two outputs: Pred-a and Pred-f. The upsampling block
returns six edge map outputs; by calculating the average from these six edge
maps, one gets the Pred-a output, and by fusing these six edge maps, one gets
the Pred-f output. In this work, we use DN-a and DexiNed-a to refer to the Dex-
iNed model using the Pred-a output, and DN-f to refer to the DexiNed model
using the Pred-f output.

3.2 Image Dataset

SUSTech-SYSU [6] is a dataset for automatically segmenting and classifying
corneal ulcers from ocular fluorescein staining images. It was prepared to supply
the lack of high-quality datasets to develop segmentation and classification algo-
rithms for corneal diseases. The dataset contains 712 ocular staining images, and
the segmentation ground truth of flaky corneal ulcers: 263, 358 and 91 images
for point-like, point-flaky and flaky general types, respectively. The dataset also
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provides the three-fold class labels for each image: 1) labels in terms of gen-
eral ulcer pattern, 2) labels in terms of its specific ulcer pattern, and 3) the
corresponding ulcer severity degree.

The work of Gross et al. [8] is the only official article published using the
SUSTech-SYSU dataset. It describes a CNN based image classification approach
to identify different types of Corneal Ulcers from fluorescein staining images.

3.3 Evaluation Metrics

In this work, we use the term ‘positive’ to designate ulcer areas and ‘negative’
to define non-ulcer areas. We calculated the confusion matrix to obtain the
segmentation Recall (R), Specificity (S) and Dice Coefficient (DC).

In order to evaluate the segmentation quality, we calculated two more metrics:
Average Dice Coefficient (ADC) and TDC (True Dice Coefficient). We can define
the Average Dice Coefficient (ADC) as the mean value of all DCi divided by the
number of the images in a given dataset (n), i.e.:

ADC =
∑n

i=1 DCi

n
. (1)

We consider that a “good” image segmentation result should have a DC value
over a threshold (t). The True Dice Coefficient (TDC) metric for a dataset d is
the number of automatic segmentation executions that achieved DCi > t divided
by the total number of images. To compute the TDC metric, a score for each
image (i) is calculated based on the Dice Coefficient as:

{
scorei = 0, if DC < 0.7, scorei = 1, otherwise. (2)

Given a dataset with n images, the final TDC value is defined as the mean
of all per-image scores:

TDC =
∑n

i=1 scorei
n

. (3)

According to Genctav et al. [7], Dice scores greater than 0.7 indicate a
remarkable similarity between the segmented and ground truth regions. So, we
considered the threshold t = 0.7, to calculate the TDC.

4 Proposed Method

This work proposes an automatic segmentation method that combines two CNNs
Architectures: U-net for image segmentation and DexiNed, which was initially
proposed for edge detection, but it is here combined with the U-net output
for image segmentation. We then apply 300 operations of the Morphological
Geodesic Active Contour (MorphGAC) algorithm [1]. Figure 2 illustrates the
proposed method’s process.
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Fig. 2. Flowchart of the proposed method.

One should note that we do not propose any corneal segmentation method
in this study. Instead, we focus exclusively on the corneal ulcer lesion segmen-
tation, assuming that an automatic [4,9] or even manual [15] process had pre-
viously segmented the cornea. Therefore, the first performed preprocessing step
is the corneal area segmentation using the corneal ground truth provided by the
SUSTech-SYSU.

Once the training sets were prepared, we submitted the 358 point-flaky
images and their corneal ulcer labels to the U-net. The U-net model was trained
during 70 epochs using its classical architecture [14]. The number of 70 epochs
was empirically defined, varying the number of epochs in increments of 10 until
the model converges. The U-net output is a grayscale image that may contain
undesirable segmented areas. Besides, a grayscale image is not the ideal final
result for an image segmentation method. Thus, we then use the DexiNed to
refine it.

To train the DexiNed model, we generated an edge map for each of the ulcer
cornea labels. We did this by applying two iterations of erosion in the original
ulcer label using a 3× 3 structuring element. Then, we subtracted the resulting
image from the erosion operation to the original ulcer label resulting in the ulcer
edge map.

We submitted the 91 corneal flaky images (Fig. 3(a) to the trained U-net
model. The U-net model (Fig. 3(b)) was then connected to the DexiNed input.
Finally, on the DexiNed-a output (Fig. 3(c)), 300 iterations of the MorphGAC
were executed to get the final result (Fig. 3(d)) using the Otsu threshold method
to find the threshold value for the MorphGAC parameter. After that, we calcu-
lated the quality metrics using the final segmentation achieved by the proposed
method (Fig. 3(d)) against the corresponding ground truth (Fig. 3(e)).
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Fig. 3. Input image (a), U-net output (b), DexiNed-a output (c), Final result after sub-
mitted to MorphGAC (d), and corresponding ground truth provided by the SUSTech-
SYSU dataset (e).

5 Results and Discussion

To find the best possible approach, we tested the combination of the U-net,
DexiNed and LinkNet models, and each of these CNN models separately with
different post-processing methods.

In the experiments, we used the following settings. Dataset: 358 Point-flaky
images as training data and 91 Flaky images as testing data. Architectures: U-
net, LinkNet, and DexiNed arranged according to the following settings: LinkNet
connected to U-net, LinkNet itself, U-net connected to LinkNet, DexiNed con-
nected to U-net, DexiNed itself, U-net connected to DexiNed and U-net itself.
LinkNet and U-net were set with 1e-5 of learning rate and executed for 70 epochs,
and DexiNed with a learning rate of 1e-4 and 1000 iterations at most.

Post-processing: For each of the architectures previously mentioned, we tested
several combinations of Otsu threshold, MorphGAC and morphological opera-
tions.

Table 2 indicates the best results found for each combination. It is essential
to point out that we did not use the point-like images for testing, because the
used dataset does not provide the point-like corneal ulcer ground truth.

Table 2. Results obtained using combinations of the DexiNed (DN), LinkNet (LN)
and U-net (UN) architectures, and MorphGAC, Otsu thresholding, Binary thresholding
and Morphological operations. (Best values found in bold.)

Experimental settings ADC (%) R (%) S (%) TDC (%)

LN → UN 06.50± 0.069 00.00± 00.00 00.00± 00.00 00.00

LN → Otsu → fill holes 15.70± 17.00 40.50± 37.00 84.30± 30.10 00.00

UN → LN → Otsu 23.00± 20.10 38.10± 21.50 91.70± 19.90 00.00

DN-a → UN 26.90± 25.50 23.60± 29.10 95.50± 26.80 08.70

DN-a → Otsu → fill holes → DN-f 66.70± 25.50 91.20± 18.30 98.80± 01.10 49.40

DN-a → MorphGAC → Otsu value 68.30± 25.20 89.20± 19.30 99.00 ± 01.00 53.80

UN → binary threshold 70.30± 28.40 96.40 ± 11.80 98.30± 02.10 60.40

UN → Otsu → morph. op. 74.10 ± 27.10 92.10± 31.90 98.70± 01.90 62.60

UN → DN-a + MorphGAC 70.50± 25.10 87.40± 21.50 99.00 ± 01.10 63.70
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As to the ADC metric, we obtained the best result (74.10%) with the U-net
model trained for 70 epochs, with its output submitted to the Otsu threshold, fill
holes operation and erosion, in this specific sequence and using a 3× 3 structuring
element for the erosion operation.

The results of each experiment for the Recall (R) metric are indicated in
Table 2. The Recall is a critical metric as it represents the method’s capability to
identify pixels that correspond to the lesion area correctly. We achieved the best
result (96.40%) using the U-net model combined with a classical binary threshold
operation to get an utterly binary image from the U-net output directly.

The S column of Table 2 indicates the specificity metric results. This metric
represents the method’s capability to identify pixels that correspond to non-
lesion areas correctly. We achieved a value of 99.00% for this metric as the best
result by using the U-net model with its output connected to the DexiNed model.
Using the DexiNed-a output, we applied MorphGAC using the Otsu threshold
function to set its threshold value.

The same settings previously mentioned also achieved the TDC metric’s best
results with a value of 63.70%. This metric indicates the percentage of the testing
data that the method could correctly segment, considering the criteria defined
in Sect. 3.1.

As one can notice from the third row of Table 2, the results using the
DexiNed-a output combined with the MorphGAC using the Otsu threshold
parameter are promising. These results suggest that the DexiNed CNN archi-
tecture may be a reasonable option for image segmentation problems, although
it was primarily designed for edge detection.

Figure 4 depicts the results of the proposed segmentation method (in red)
overlapped with the correspondent ground truths (in white). The figure shows
the worst (Figs. 4(a)), median (Figs. 4(b)) and best (Fig. 4(c)) cases obtained as
to the Dice Coefficient.

(a) DC = 0.0% (b) DC = 75.47% (c) DC = 96.91%

Fig. 4. Examples of corneal ulcer images from the test dataset of 91 flaky corneal
ulcers: The results of the proposed segmentation method (in red) are overlapped with
the correspondent ground truths (in white). (Color figure online)

Although there are several approaches for corneal lesion segmentation, there
was no benchmark image dataset in the literature. For a long time, this fact pre-
vented a direct comparison between the existing methods over the years. Only
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in 2020, two corneal lesion image datasets were publicly released: SUSTech-
SYSU [6] (used in this work) and the CLID dataset [10]. Therefore, to the best
of our knowledge, this is the first method applied to corneal ulcer segmentation
using the SUSTech-SYSU dataset.

From Table 3, one can verify that the number of images used in this work
is higher than the number of images included in the datasets used by Sun et
al. [15], Deng et al. [4] and Lima et al. [10], and only lower than the number
used in the works of Deng et al. [5] and Liu et al. [11]. It is essential to point
out that our method uses different corneal ulcer lesions for training and testing
stages using 449 images. Additionally, we evaluated it with all 91 flaky images
available on the dataset, which are the only ones that have clear ground truth
for validation.

Table 3. Comparison of the results obtained by the proposed method with the ones
of the state-of-the-art.

Work Dataset size ADC (%) R (%) S (%) TDC (%)

Sun et al. [15] 48 86.00± 07.30 82.00± 11.20 – –

Deng et al. [5] 150 – – – –

Deng et al. [4] 48 87.90 – – –

Lima et al. [10] 30 87.82 98.05 98.20 82.00

Liu et al. [11] 150 88.05 ± 06.11 – – –

Proposed Method 449 70.50± 25.10 87.40± 21.50 99.00± ± 01.10 63.70

Although the methods presented in the state-of-the-art had achieved better
results, we believe that our method is relevant because it could generalize the
features from the point-flaky images to segment the flaky corneal images. Based
on that, we can train our method to segment point-like corneal ulcers, bringing
up the possibility of using it to assist physicians in measuring point-flaky corneal
ulcers. Not to mention that some of those methods are not entirely automatic
as the one proposed by Lima et al. [10].

6 Conclusion

We proposed an automatic segmentation method for corneal lesion images that
was applied to the SUSTech-SYSU image dataset. The new method uses two
different CNNs: U-net, originally proposed for image segmentation, and Dex-
iNed, initially designed for edge detection. We also tested various combined
post-processing techniques (Binary Threshold, Otsu threshold, Fill holes and
Geodesic Active Contour) to improve the CNN model outputs.

We found that the combination of the U-net output connected to the Dex-
iNed model achieved better overall results when using the DexiNed-a prediction
output with MorphGAC using the Otsu threshold value as parameter.
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It is essential to point out that we only used point-flaky corneal images
with not accurate ground truth to train our model. Considering that the used
dataset does not provide the point-like ulcer ground truth, we used only the
flaky corneal ulcer images to test the proposed models. However, we achieved
encouraging results. Thus, we think that our model could generalize the training
data (358 point-flaky corneal images) to segment the test data (91 flaky corneal
ulcer images).

In the future, we intend to apply the proposed method on point-like corneal
ulcer images and perform a manual validation by ophthalmologists. We believe
that our method would be able to successfully segment point-like corneal ulcer
images.
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