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Resumo

O software tem crescido a nível de complexidade. Cada vez mais existem diferentes bibliotecas e
programas que se vão encaixando uns nos outros. Consequentemente, o software apresenta mais e
mais linhas de código e, cada linha de código pode causar algum tipo de erro, sendo mais suscetível
a acontecerem erros durante a execução dos mesmos. Por isso mesmo, os desenvolvedores têm
que criar testes manualmente para detetar a existência de algum tipo de erros e, dessa forma, evitar
elevados custos futuros.

Fuzzing, geração automática de dados de entrada, é uma técnica que permite os desenvolve-
dores encontrar vulnerabilidades que muitas vezes não são encontradas com apenas os testes que
são regularmente feitos pelos programadores.

Quando são encontrando erros no programa ou comportamentos estranhos do mesmo, os pro-
gramadores têm que fazer perceber, encontrar e corrigir o código correspondente a essa falha.
Para automatizar essa tarefa, técnicas de localização de falhas automáticas foram criadas, sendo
as técnicas de localização de falhas baseadas no espectro do programa as mais comuns.

Assim, com este trabalho, juntamos estas duas técnicas que bons resultados têm demonstrado
separadamente, e que até agora, nunca se tentou perceber se as mesmas funcinariam em sincronia.

Para atingir este objetivo, juntamos um programa de cada campo. Jazzer foi a ferramenta de
Fuzzing escolhida para exercitar os novos testes através de dados de entrada inválidos, e Gzoltar
como uma ferramenta de localização de falhas em software através do espectro do programa. Para
ligar ambas as ferramentas, desenvove-mos um pequeno programa que traduz os ficheiros gerados
pelo Jazzer para um formato que o Gzoltar fosse capaz de utilizar. De seguida, realizamos um
estudo sobre o sistema de forma a compreender o quão valioso e útil este poderia ser, percebendo
se esta abordagem pioneira devolveria uma excelente área de estudo que ajudaria o dia a dia dos
programadores.

Keywords: Testes, Fuzzing, Localização de falhas de Software
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Abstract

The software has grown in complexity. More and more different libraries and programs are used
to create other ones. Consequently, the software presents more and more lines of code, and each
line of code can cause some error, being more susceptible to errors during their execution. For this
reason, developers have to create tests manually to detect the existence of some errors and, in this
way, avoid high future costs.

Fuzzing, the automatic generation of input data, is a technique that allows developers to find
vulnerabilities that are often not found with just the tests that programmers regularly do.

When errors are found in the program or strange behaviour is detected, programmers have
to understand, find and correct the code corresponding to that flaw. Automatic troubleshooting
techniques have been created to automate this task, with program spectrum-based fault localization
techniques being the most common and presenting good results.

Thus, with this work, we put together these two techniques that have shown promising results
separately, and that until now, no one has ever tried to understand if they would work in sync.

We have put together a program from each field to achieve this goal. Jazzer was the Fuzzing
tool to exercise the new tests through invalid input data. Gzoltar was the spectrum-based fault
localization software tool. In order to connect both, we developed a small program parsing the
Jazzer output to a format that Gzoltar could use. Moreover, we performed a study about the
system itself to perceive how valuable it could be, understanding if this new path demonstrates an
excellent area of research that may help the programmers’ daily lives.

Keywords: Testing, Fuzzing, Software Fault Localization, Spectrum-Based Fault Localization
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Chapter 1

Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Context

Software testing is the primary source of finding defects and failures and ensuring that the software

matches all the features it is supposed to, with no unexpected behaviours. Although, software

engineers face growing challenges in building and maintaining increasingly complex systems. For

any typical development project, roughly 60% of software costs are development costs, and the

remaining 40% are testing costs. For custom software, testing costs often exceed development

costs [38]. However, even with all the effort in testing, software bugs may appear during the

development phase, or in the worst-case scenario, in the customer’s hands, causing lots of damage.

Testing, debugging, and verification are intense tasks during the development phase. Widely

used to accomplish those tasks are unit tests. They verify each small part of a program. The

developer has to understand all the faults raised by them, what is causing them and how to cor-

rect them. Nowadays, there are different domains where localization has been applied [3, 4] and

several tools and frameworks are helping on test creation and debugging like JUnit 1, Hamcrest 2,

JaCoCo 3, and the IDEs themselves. These tools provide a set of manual assist to find errors and

their location in the code. Nevertheless, in complex systems, manual findings become infeasible.

Several Software Fault Localization techniques automate this process, finding the code block most

1https://junit.org/
2http://hamcrest.org/
3https://github.com/jacoco/jacoco
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2 Introduction

likely to be faulty [40]. A tool created in the Faculty of Engineering of the University of Porto

(FEUP) is Gzoltar [8]. Gzoltar is a toolset for JAVA that implements the Spectrum-Based Fault

Localization technique. It can track the executed code and identify the blocks that do not behave

normally, providing information about the error localization, using all the passing and failing unit

tests created in the project.

As mentioned before, the test’s development seizes the major of the time of a project. The

automatic generation of invalid inputs to test software known as fuzz testing was proposed in

1988 [28], which can help to create several types of tests. Nowadays, fuzzing is an automatic

testing technique that covers numerous boundary cases using invalid data (from files, network

protocols, application programming interface (API) calls, and other targets) as application input

to better ensure the absence of exploitable vulnerabilities [25]. With fuzzing, a software engineer

can discover profound software errors not exposed by manual testing. Yet, the engineer has to

perceive what is causing the error.

1.2 Motivation

Software testing and debugging consume too much time in the lifetime development cycle. This

bug hunting is crucial to delivering a reliable product to the customer. Therefore, it is critical to

decreasing the chase time for an attested program.

Spectrum-Based Fault Localization and Fuzz Testing are two proven techniques in the fight to

reduce the time consumed in testing and debugging. Although, there is no way to connect both

processes. Suppose a developer could generate many valid and invalid inputs, detect when the

program behaves incorrectly, and get the why and where that behaviour happened. In that case,

the time for testing and debugging will instantaneously decrease.

1.3 Objectives

The main objective of this works is the design and integration of fuzz testing and spectrum-based

fault localization techniques. This tool, created for Java programs, must accept and/or generate all

the inputs necessary to feed the Gzoltar toolset, tests that might be already in the target project and

return all the feedback from the SFL technique. The program must be as automatized as possible.

Besides the tool creation, the integration of both techniques may not retrieve all goods from

both worlds. It is essential to assess the quality of the produced diagnostic reports before the

integration happens and after that. Both techniques may be excellent, but together may not.

In the end, the tool will be available for the daily testing and debugging phase of the develop-

ment cycle at a business level as well as for the academic and research level.
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1.4 Document Structure

The document presents five chapters where the Introduction is the first. Excluding this one, the

rest of the document is as follows:

• Chapter 2 describes state of the art in the topics about Fuzzing Test and Spectrum-Based

Fault Location techniques and tools

• Chapter 3 details the proposed solution and consequent implementation, discussing all the

choices and limitations.

• Chapter 4 presents all the results and the process behind their generation.

• Chapter 5 follows a final reflection about the work done, pointing out the work contributions

and future tasks.
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Chapter 2

State of the Art

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Black-Box Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 White-Box Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Grey-Box Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 Other Classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Software Fault Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Spectrum-Based Fault Localization . . . . . . . . . . . . . . . . . . . 12

2.3.2 Spectrum-Based Fault Localization Tools . . . . . . . . . . . . . . . . 13

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Introduction

In order to create a complete state of the art, we defined some keywords to guide the search for

articles that might present the intended content. Thus, we used the following statements:

• Software Fault Localization

• Spectrum-Based Fault Location

• Fuzzing

• Java Fuzzing

• Fuzz Testing

5



6 State of the Art

• Gzoltar

Farther, Google Scholar1 and Association for Computing Machinery Digital Library2 (ACM

DL) were the two search engines mainly used to discover new items. Therefore, we applied

the mentioned sentences to the search engines obtaining the basis results. Following, we adopt

a crossing of the snowball approach - findings through the article references chapter - and the

citation method - findings through the list of articles that reference the article. The snowball

approach was predominantly used in recent articles, whereas with older ones citation method was

applied. The majorioty of the articles came out from the ACM Digital Library3, Springer Link4

and IEEExplore5.

2.2 Fuzzing

At the University of Wisconsin-Madison in the 80’s decade, Miller et al. created a program that

generates a random characters stream and saves it into a standard output file [28]. The authors call

to this program fuzz. Then, they could use the file generated as input of a program and check the

program behaviour. This was the first concept introduced regarding the generation of the random

test.

Since its first application, the fuzz research field has improved a lot with different types

of fuzzers for every language and paradigm. According to Liang et al., this area has polyno-

mial growth of interest over the years, showing an increased number of publications regarding

fuzzing and fuzz testing. This made fuzzing and fuzzers evolve to different states but similar con-

cepts. Boehme et al. say that fuzzing is an automatic bug and vulnerability discovery technique

that continuously generates inputs and reports those that crash the program [5]. Notwithstand-

ing, Godefroid refers to fuzzing as an automatic test generation and execution to find security

vulnerabilities[13]. Li et al., says that the fuzzing test is the generation of massive normal and

abnormal inputs targeting applications and trying to detect exceptions by running them on target

applications and monitoring the execution states [23]. These definitions, although identical, have

some differences. The first two only mention the generation of invalid input, and the last one un-

derlines the creation of valid and invalid input. To avoid discrepancies and unify all the concepts,

Manes et al. created definitions based on several works from reputable conferences [26]. They

have the following definitions:

• Fuzzing - Execution of the program under test using inputs sampled from an input space

that protrudes the expected input space of the software being tested.

• Fuzz input - Input that the program under test may process incorrectly and trigger a not

intended behaviour.
1scholar.google.com
2dl.acm.org
3https://dl.acm.org/
4https://link.springer.com/
5https://ieeexplore.ieee.org/
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Figure 2.1: General fuzzing process. Figure source [25]

• Fuzz Testing - Use fuzzing to verify if a program violates its correctness policy.

• Fuzzer - Tool that runs a fuzz testing technique.

• Fuzz campaign - Executing a fuzzer on a program with a specific correctness policy.

• Bug Oracle - Program that verifies if the execution of a system violates a correctness policy.

• Fuzz Configuration - Parameters that control the fuzz algorithm execution.

From now on, we will keep using these definitions in this chapter whenever possible.

In the beginning, fuzzers generate random inputs with no criteria and without any knowledge

from the target. Today this is entirely different. Several fuzzers can collect in-depth information

about the target or just partial information. This level of enlightenment a fuzzer has about the

target divides the fuzzers into three huge categories: White-Box Fuzzer, Grey-Box Fuzzer and

Black-Box Fuzzer.

Figure 2.1 illustrates the generic fuzzing process. The monitor receives the initial input or an

input specification and the target, run the seed and gathers all the run-time information, such as

code coverage and taint data flow. The information is then used to generate more tests through
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mutational-based or grammar-based methods and then sent to the monitor. When a crash or an

error occurs during the Fuzz Campaign, it is analyzed to understand if it is a failure and a new bug

is detected.

2.2.1 Black-Box Fuzzing

Black-box Fuzzing was the first technique being implemented and created the first concept of

Fuzzing. This concept lies on generate inputs blindly and without any information about the

program under test. Besides, black-box fuzzers always needs a start input, known as seed input,

that they will change afterwards. Several articles [13, 23, 25, 26] mention the low effectiveness

of Black-Box fuzzing in finding deeper and complex bugs in the code. This type of fuzzing can

be very quick finding shallow bugs even in complex system, it is easy to implement and execute,

without any major pre-requirement to start.

Even not knowing anything about the program under test, Black-box fuzzers may use two

different ways to generate the tests: mutational generation or grammar-based generation. Muta-

tional generation picks the seed and randomly mutate them in randomly places creating new inputs

to the program. Example of mutations are bit flips, bit removals or bit copies. Grammar-based

Fuzzers[13] are also known as Model-Based Fuzzers[26] and Generational Fuzzers[5]. This type

of Fuzzers use a model that describes how the generated input must be. This way, it is possible

to fuzz an application that accepts a specific and/or complex data structures. For example, appli-

cations that parses XML documents. Black-Box Fuzzers with grammar-based generator shows

better performance, effectiveness and accuracy in bug finding than the totally blind approach.

2.2.2 White-Box Fuzzing

Black-Box random fuzzing is practically limited, and grammar-based fuzzing is labor intensive

[13]. In addition, with Black-Box fuzzing the user is never capable to tell when is secure to say

that a program does not need more fuzzing. There is no way to formally prove that every possible

path of a system was executed, i.e., that is not possible to prove mathematically that is no more

bugs in the code. To overcome this issue, in 2008 Godefroid et al. presented for the first time

a White-Box Fuzzing, a new approach using Dynamic Symbolic Execution also called Concolic

Execution [26]. It starts with well-formed inputs, performing a symbolic execution concurrently

with a dynamic execution [7, 14]. These executions gather constraints on inputs from conditional

branches. Then, the constraints are systematically solved with constraints solvers whose solutions

map new program executions path. Next, this process is repeated using search techniques to try

to go through all possible paths of a program. This approach is capable of analyse all the internal

characteristics of a program exploring every single possible program state. This line of action

gather some challenges that is mentioned in the Subsection 2.2.5.
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2.2.3 Grey-Box Fuzzing

The last main classification for Fuzzing is Grey-Box Fuzzing. As the name suggests, these fuzzer

types mix white and black Fuzzing. Instead of running blindly like the Black-Box approach or with

full knowledge like White-Box solutions, Grey-box Fuzzers utilizes lightweight static analysis

techniques to get some internal information about the program under test. This way is possible to

save some computational resources and retain some information. The principal techniques used

in Grey-Box Fuzzing are Code Instrumentation and Taint Analysis. With instrumentation, the

fuzzer can gather code coverage of the system in runtime, and with taint analyses, it can trace the

taint data flow. These techniques will allow different details to be analyzed, contributing to better

mutating or generating inputs to improve the fuzzing campaign results.

2.2.4 Other Classifications

There are other classifications regarding other steps in the fuzzing process. In Subsection 2.2.1 we

already mentioned two different classifications regarding the input generation, Mutational Fuzzing

and Grammar-based Fuzzing.

Li et al. refers to the definition of Code-Coverage Fuzzing and Directed Fuzzing. Code-

Coverage Fuzzing has one objective: to make the generated inputs return the maximum code

coverage value. It assumes that more bugs are probably found by running more and deeper source

code. Directed Fuzzing refers to fuzz to reach a particular target inside the code. They can be

defined at the beginning of the fuzz or during the target execution [23].

Godefroid introduced the Hybrid Fuzzing classification. This classification is given to those

fuzzers who try to get the best of White-Box Fuzzing and Grey-Box Fuzzing. Hybrid Fuzzers

try to find execution points where more straightforward techniques are more reliable than heavy

ones. On the contrary, the fuzzer must use more complex techniques where the simpler can not

give adequate information [13].

Another possible classification Feedback-Based Fuzzing. This nomenclature is widely used to

define fuzzers like Jazzer or LibFuzzer. Feedback-Based Fuzzing gathers any Fuzzer that consume

or analyze the program and its behaviour in runtime or through code pre-processing. All Code-

Coverage Based Fuzzer are Feedback-Based Fuzzers. One particular case is kAFL [36]. kAFL

uses feedback from Intel’s Processor Trace (PT) technology to guide the fuzzing process.

Besides all these concepts, the Fuzzing tends to improve not in a macro perspective, i.e., the

new fuzzers are using as much info as they can get from the binary code or source code without

unbalancing the performance. How this information is gotten and used to improve bug discovery

is the key to improving Fuzzing from any perspective.

2.2.5 Challenges

The Fuzzer research field growth has been focused on the improvement of the techniques already

implemented or the introduction of new methods of code analyses which will improve the gener-

ation of the tests and consequently the finding of vulnerabilities.
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Although, every step on a Fuzzer creation has its challenges. The key challenges identified are

the following:

1. How to get initial input

2. How to update or generate new input

3. How to select the best seed from the input pool

4. How to detect a bug

5. How to filter the bugs found

Regarding the initial seeds, some fuzzers do not even need them. Usually, Grammar-based

Fuzzers do not need seeds, but they do need a specification file about the input, like QuickFuzz

[17], and Dharma [10]. Mutational-Based Fuzzers need an initial seed input. Although Fuzzers

like AFL or AFL++ are not Grammar-Based Fuzzers but are capable of starting the fuzzing pro-

cess without any corpora. Herrera et al. discuss that in complex real-world problems, a good initial

corpus is essential. It does not mean that more bugs will be found, but the initial fuzzing process

will be faster because non-useful inputs were discarded. Massive corpora with no selection criteria

may also lead to skipping shallow bugs. So, state-of-the-art fuzzers have minimization techniques

- reducing the seeders size without changing the execution behaviour - allowing discarding unnec-

essary inputs with some pre-defined heuristics like the execution time and code coverage reached.

As mentioned by Herrera et al., Mutational-Based Grey-Box Fuzzers are the most widely

used technique in this research field [20]. There are very different types of mutations that can

be applied to the seed. AFL was an innovator in this area. It applies several different types of

mutations like bit flips, arithmetic mutation, re-combinations with varying lengths and stepovers,

sequential addition and subtraction of small integers and sequential insertion of known interesting

integers like 0, 1, INT_MAX [23]. If not controlled inside a seed, these mutations will lead to a

random mutation in structured files, which may lead them to fail the validation inside the program

under test. This validation problem is not an issue in Grammar-based fuzzer because they know

the inputs structures. However, mutational ones may not be capable of dealing efficiently with file

checksum, magic bytes, version number checks, or other possible validations [23]. Taint analyses

and deep neural networks may be used to predict the changes in the internal input location.

Understanding which seed will be first used with a big input pool is important. The good

choice will provoke an effective fuzzing process leading to a faster vulnerabilities exploitation or

to a better exploration returning more useful and accurate information. AFL assign to each seed

an energy value. These values will differ among all the fuzzers. AFL prioritizes small seeds that

show higher code coverage and branch coverage. Böhme et al. extend this AFL approach with

Markov Chains [6]. It initially prioritizes new paths explorations and then the exploitation . Other

techniques like taint analyses and static analyses that try to discover faulty parts of the code can

be used. They are usually used in directed fuzzing for obvious reasons. These techniques are

correlated to the input generation and can not be dissociated from them.
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Different seeds may lead to different program behaviours, expected or unexpected ones. Thus,

program languages leave certain unwanted behaviours being treated like usual runs instead of

crashes. So, beyond the typical crashes inside the programming language, there were created

sanitizers. Sanitizers are programs that detect unsafe or undesirable behaviours and treat them as

violations. For example, Jazzer [9] uses AddressSanitizer [18] and Undefined Behavior Sanitizer

[11].

Creating vast inputs will lead to similar ones or the same bug through different program paths.

This problem is called deduplication. According to Manes et al., there are three major answers:

stack backtrace hashing, coverage-based deduplication and semantics aware deduplication. Stack

backtrace hashing technique saves the backtrace of the crash and assigns it a hash value. This is

the most widely used and oldest technique. It may not save all the stack backtrace, and it can

select specific frames of the stack or even use all the information connected to it. Coverage-based

deduplication relies on the heuristics used by the fuzzer in the code coverage, which may not be

accurate to bug triage. Semantics-aware Deduplication uses the data-flow analyses of each crash

to mark different violations [26].

Besides the technicalities in the fuzzer tool construction, Boehme et al. addresses issues in [5].

Fuzzing has been a field of research without many specific measures to validate. As mentioned

before, mutational fuzzing is being studied empirically. There is a lack of specific measures to

stop fuzzing or classifying a fuzzing campaign has finished ensuring the program under test has

no more vulnerabilities or that the most important bugs were found. So, even with all advances in

fuzzing, we have no way to prove that software is secure.

2.3 Software Fault Localization

Software is more and more complex, with more lines of code and more likely to have failures.

A failure in a program is an event that makes the program not run as expected. The responsible

for these events are software failures, also known as bugs or faults. When these events occur, the

developers have to find them and fix them. Usually, this bug hunt is done through techniques like

program logging, assertions, breakpoints and profiling [40]. Program Logging is still a very used

technique; it saves the information into files or prints it in the monitor when abnormal behaviour

is detected. Assertions are program statements used during development that must be true. Oth-

erwise, they will match with unwanted behaviour. Breakpoints allow the programmer to stop the

program during execution, changing the program’s state and observing each step of execution.

Profiling is related to debugging unexpected memory issues and performance.

These traditional techniques are still used, but they are too tedious and consumes too much

time of the developing cycle. Over the years, there were created and researched several techniques

in order to detect the root cause of software faults. Spectrum-based Fault Location (SBFL) is

one of the most researched techniques in the last decades. According to Wong et al., 35% of the

articles analysed in "A Survey on Software Fault Localization" corresponds to SBFL researches.
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Mnemonic Name Description
BHS Branch Hit Spectra conditional branches that were executed
BCS Branch Count Spectra number of times each conditional branch was executed
CPS Complete Path Spectra complete path that was executed
PHS Path Hit Spectra complete path that was executed
PCS Path Count Spectra number of times each definition-use pair was executed
DHS Data-dependence Hit Spectra definition-use pairs that were executed
DCS Data-dependence Count Spectra number of times each definition-use pair was executed
OPS Output Spectra output that was produced
ETS Execution Trace Spectra execution trace that was produced

Table 2.1: Different types of program spectra [19]

2.3.1 Spectrum-Based Fault Localization

Spectrum-Based Fault Localization is a technique influenced by probabilistic and statistical mod-

els. As the name implies, the techniques use the program spectra, a collection of data that provides

a specific view on the dynamic behaviour of software [24]. It gathers information targeting a specif

test suite [16]. Therefore, information like statements, branches, paths and basic blocks are kept

and then some statics are calculated, such as binary coverage status, how many times a statement

was covered and many others, specifying for each piece of information if it was collected from a

failing or a passing test [34, 33]. Moreover, all this different code-coverage information will spec-

ify a different type of spectra [19]. Figure 2.1 shows do the different types of spectra identified

by Harrold et al.. Although every type of information can be generalized as block hit spectra [2].

Thus, for a single run, all the information aforementioned can be maintained in a block hit spectra

with a size equal to the number of blocks calculated, where every element is a flag representing if

that part of the code was covered for that specific execution. So, every single program execution

can be kept in a spectra matrix where each line is an execution and each column is a part of the

code. Then, each execution is gathered in a one-column matrix with the information if the execu-

tion failed or did not. Figure 2.2 represent the binary matrix for a generic program with M parts

and N executions.

With all the necessary info gathered, the suspicious values can be calculated. Suspicious

Value is a number associated with each block system analyzed on the spectrum, which quantifies

N spectra

M Components




a11 a12 . . . a1M

a21 a22 . . . a2M
...

...
. . .

...
aN1 aN2 . . . aNM

error
detection


e1
e2
...

eN

Figure 2.2: Activity Matrix containing all information about block hits and execution error [2]
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the possibility of the fault being in that block. To calculate the suspicious value, a good number

of formulas are proposed. Some articles mentions four as the best metrics [40, 41, 32, 30]: Ochiai

(equation 2.1)[1], D* (equation 2.2) [39], OP2 (equation 2.3) [29] and Tarantula (equation 2.4)

[21].

Ochiai =
e f√

(e f + ep)(e f +n f )
(2.1)

D∗ =
e2

f

n f + ep
(2.2)

OP2 = e f −
ep

ep +np +1
(2.3)

Tarantula =

e f
e f +n f

e f
e f +n f

+
ep

ep+np

(2.4)

The equations above correspond to popular techniques and are using the notation used by

Ghosh and Singh as follows:

• e f block executed in a failing execution

• ep block executed in a successful execution

• n f block not executed in a failing execution

• np block not executed in a successful execution

After calculating every suspicious value, the technique can compute a ranking ordered from

the highest to the lowest. Then, the developer goes through the ranking, checking block by block,

looking for the failure, and in a good result, the bug may be in the first lines decreasing the effort

needed to debug.

Meanwhile, there is no consensus about which metric is the best for all cases. It is unanimous

that any formula is the best. One may have a better performance than the other in a context but be

outperformed by the same technique in another one [32, 27]. However, we did not find any article

that specified under what circumstances each formula would be the most indicated. Nonetheless,

Pearson mentions in its evaluation of fault localization techniques article [31] that the choice of

spectrum-based technique does not matter. His results demonstrated that all techniques evaluated

perform almost identically with small insignificant differences.

2.3.2 Spectrum-Based Fault Localization Tools

There is some tools available Tarantula was one of the first tools applied in real projects using the

SFL technique with the same name. Although, Tarantula is a tool for C programs.
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Regarding Java programs, a well-known tool is Gzoltar [8]. It is available as an Eclipse plug-in,

an Visual Studio Code Extension and a command-line interface tool. This tool retrieves a ranking

with the suspicious values per line of code using the Ochiai formula. In addition, it provides a

graphic interface that helps the developer debug the software.

In 2018, Ribeiro et al. presented Jaguar[35]. Aiming Java programs, this tool differs from

other tools in spectrum collection. Jaguar gathers control-follow and data-flow spectrum infor-

mation without increasing the run-time overhead significantly. Although, the definition-use asso-

ciations (duas) connected to data-flow control can not be used in a whole program, leaving out

of the data spectrum local duas and non-handled exceptions that are thrown during execution. In

addition, Jaguar uses ten different metrics to calculate the suspicious values in duas and lines of

code.

The latest SBFL tool, as far as we know, is Flacoco [37]. This tool is similar to Gzoltar. Both

use the Ochiai formula to create the suspicious line ranking. Although, Flacoco offers an easy

way to introduce different suspicious metrics formulas. Besides the design decisions, these tools

differ mainly in the way they make the information available and the way they instrument the

programs: Gzoltar has its instrumentation, and Flacoco relies on JaCoCo6 framework. Gzoltar

offers a graphic data visualization and three different interfaces, while Flacoco is available only as

a command-line interface and a Java API.

2.4 Summary

In Section 2.2 we address an overview about the Fuzz Process, the current technologies regarding

Fuzz Testing in Java Programs and some challenges in this field. Next, Section 2.3 approaches the

Spectrum-Based Fault Localization, noting some of the current techniques and tools.

6https://www.jacoco.org/jacoco/
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This chapter aims to delineate the raised problem, how we address its issues, and the proposed

solution implemented.

In order to expose the problem and solution, we split up this chapter into three sections. First,

section 3.1 exposes what led us to develop this work and its outcome. Following, section 3.2

addresses the proposed and developed system to contest the problem, going deep in the environ-

ment established to the research, the small program that assists and connects the two independent

modules, and the system pipeline. Lastly, we finish with a summary of this chapter in the section

3.3.

3.1 Problem and Goals

Software testing and debugging occupy much time in the software development life cycle. In order

to ease this task, some valuable tools try to decrease the time and effort spent in this phase. Fuzz

testing helps the engineers find unpredictable errors and behaviours in the programs, generating

a huge set of inputs to test the software. Software Fault Location is a useful and informative

technique that reports which block of code are most likely to be faulty. Then, engineers are

capable of generating a significant amount of tests, and if they go wrong, they are also capable of

15
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understanding why and where that happens. However, there is nothing between these two steps,

and this absence is the problem that guides this dissertation. So, this work aims to allow and

connect two technologies, Fuzzing and SFL.

The two valuable tools presented are powerful separated, but they can not be so good together.

It is important to understand if they will cooperate without denying their good performances if

creating this connection. Besides, it is essential to perceive if the information created through this

process will be helpful for the test developers, helping all the software development.

3.2 System

The proposed solution follows the chart in the Figure 3.1. After the creation of the fuzz driver,

the user can run the Jazzer fuzzer. After that, the generated tests and the fuzz driver are passed

to the tests generator tool, that will create a test suite based on Junit framework. Following, the

Gzoltar will run the SFL technique with the generated tests outputting the sfl report with all the

information needed to help the user in the debugging. With the report, the user can see where the

error lies with a specific probability.

Figure 3.1: System Flowchart

This pipeline structure allows keeping each module independent. This independence grants

us to cover different sets of situations besides our main goal of connecting both technologies.

Software development testing is not only performed by a single person. It is known that a team

usually carries out this task, so the different moments of the pipeline process might be performed

in different timelines or even attached to different teammates. We are aware that this is not the

focus of this study, but we can consider different perspectives. So, if a user wants only to get some

inputs, it can use only the fuzzer. If there are already many unit tests created, the user can just

run them. If the user already has the fuzzer outputs, the process can start in the tests generator

phase, and so on. This flexibility will be important to compare results between different metrics

when testing our solution, allowing compare different variables even during real-world software

development.

3.2.1 Fuzzers

Regarding the fuzzers choice, we wanted to have as many fuzzers as possible. As evident, the

fuzzer has to be a fuzzer capable of fuzzing Java targets because the well-known fuzzers like AFL

or AFL++ are good, but they need the correct sanitisers to fuzz a java program. A Java program

runs inside a Java Virtual Machine, so if we try to run the program, what is going to be fuzzed is

the JVM itself. Following, the fuzzer has to retrieve random java primitives and not only bytes.

As we want to fuzz classes during the development software phase, if the only input is bytes,
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the user would have to spend more time converting this type of data into the primitives he needs.

Then, it would be nice for the fuzzer to accept custom generators, i.e., programs that retrieve

structured data like an XML string or its representation in a specific class. Finally, through the

previous research in the chapter 2 the fuzzer must be code-coverage based because they present

better results in the errors finding. With all the constraints, we came up with three fuzzers to make

part of this tool: Jazzer, JQF and Kelinci.

Kelinci generates file inputs, so it just retrieves arrays of bytes. Initially, we wanted to have

an AFL-based fuzzer like Kelinci, but its performance in early experimentations was inadequate,

rounding the 9.6 executions per second. Another metric that made us leave Kelinci as an increment

and not an essential feature was that it is no longer supported. The repository has had no changes

in the last four years.

JQF allows different input generators. It has capable of associating different guidances. This

property would be perfect to our work. However, it has a considerable disadvantage. The only

way to run the fuzzer and reproduce a crash is through its Maven plugin. There was no way to use

the different generated inputs because JQF saves the input in its own way. The suggestion given

by the creator of this fuzzer was to save the input in the fuzz driver as a readable human string.

Although, this would be mandatory for classes to have a toString method and parser to backwards

this action. So, if we are not capable of get the inputs to the test files we could not use this fuzzer.

Finally, Jazzer has checked all our constraints. It eases the input insertion in the new test files,

and it has got good results. This fuzzer is still under development, so it only checks crashes in the

program. Although it gets updated every week, and the developers pay attention to community

feedback. One drawback to using this fuzzer is that it is new and open to bugs that may confuse

the user of our system and the system itself. Besides, it is mandatory to use Jazzer API to get the

input to the driver, but it has very useful methods with different primitives to feed the program

under test, and it is the same API that let the user to retrieve the specific input generated for a

certain execution.

3.2.2 Tests Generation

The Tests Generation is a program written in java whose function is only to generate tests in JUnit

to feed the Gzoltar component.

This module is the only one that did not exist before this work. This component opens a

bridge between the SFL Module and the Fuzzing Module, translating, creating and adapting the

fuzz drivers to the testing framework utilized by Gzoltar. As the communication media between

the fuzzers and the SFL tool, this module receives as input the driver and the bad results got from

the fuzzer.

We are using JavaParser to get the driver code and create a new java file, the test file, with

the dependencies associated with the driver and the dependencies needed to the test run without

problems, or in this case, to fail without problems. So, all the imports declared in the driver are

replicated in the test file.
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The program reads the driver and figures out the driver’s file typology. Initially, the whole sys-

tem was planned to run three different fuzzers, where each one has a different syntax, so following

the driver’s content, we could understand what we had to add to the test suite. However, we found

some limitations on how the inputs were generated and kept by each fuzzer and how could we

get the actual input. This is explored in the subsection 3.2.1. Following, we set a test function

for each input generated, which matches the block code written in the original file. Next, in the

first line of the block statement, we add the input declared in the same variable as the fuzz driver

to do not conflict with any other variable. This method allows us to create each test quickly and

without flaws, without considering problems as flow control in loop statements, where the driver

can consume input multiple times. Finally, the file is saved in the directory specified by the user

or in the default one.

This simple and effective generation method permits generating the tests quickly, not occupy-

ing time that can be spent on more important matters like the first process or the last one.

3.2.2.1 Architecture

This subsection aims to explain in detail how exactly the JUnit tests are generated. The figure 3.2

presents the important classes created to achieve this goal.

• TestFile - Class that represents the new file that will be generated. TestFile holds all the

information about every piece of code to insert in the new file. After getting all the inputs

and information needed, the method save() it’s called to terminate save the file and terminate

the program.

• TestSource - Class representing the fuzz driver. It reads all the information regarding the

fuzz driver file and passes it to the TestFile class. This handles find by itself what fuzzer

driver is it reading.

• SourceType - Enumeration regarding the different types of fuzz drivers the program can

receive

• Input - Abstract class that handles the reading of all the inputs. Each fuzz driver has its own

subclass because the class has to find only the correct files to read.

• BlockType - Class responsible to build the lines of code corresponding to the actual input in

the tests. Different inputs need different processing so there is one subclass for each type of

input, i.e., for each fuzz driver type.

• TestMethod - Class holding information regarding the methods of the test class created. So,

for each input read is created a new instance of this class matching with the method in the

test class.

It is important to mention that there are three more classes that do not are mentioned in the list

above because they are not an active asset in the test cases generation. Although, they are useful
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Figure 3.2: Class diagram

for parse the parameters passed to the program, to hold the JavaParser configuration and to be the

program entry point.

3.2.2.2 Inputs

As mentioned in section 3.2, the Tests Generation gets as input the output of the fuzzer module.

But, the input tests are not the unique parameters that this component accepts. The program usage

is as follows:

"Usage: –inputDir=<> –outputDir=<> –fuzzFilePath=<> [–className=<>]"

There are three mandatory arguments to start the program:

• –inputDir - the path where the input created by the fuzzer is kept.

• –outputDir - the path where the user wants to save the test class file generated by the pro-

gram.

• –fuzzFilePath - the path for the fuzz driver.
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The only optional argument is –className. This argument if provided will match to the class

name of the class generated. If not, the class name will be inferred from the path given in the

argument –fuzzFilePath.

3.2.2.3 Outputs

Tests written with the JUnit framework are the output of this component. Every method added to

the test class has the pattern test(index), where index is given by the program and matches with the

order that the software reads the inputs directory starting at 0. The class name follows a pattern

as well, (Fuzzer Driver Class Name)Test. In Figure 3.3, we can see the fuzzer only found one bad

input for the driver JsouFuzzer, and it is represented in the method test0. For multiple flawed input

findings, the class will have one method for each one of them with the pattern mentioned.

The actual input generated, as mentioned before, is written in each method passed to the new

test file. The string that can not be completely seen in Figure 3.3 is the base 64 string that initiates

the input. The variable associated with this string is the variable data that has the same name as

the argument in the fuzzer driver method. This variable is an instance of the class CannedFuzzed-

DataProvider whose behaviour is the same that the one created inside the fuzz driver, providing

the test with the exact same instances.

Besides the information seen, everything in the fuzzer driver is passed to the output. So, if the

fuzz class target has any fields or methods, all is copied to the new test class keeping the content

in full, to avoid some undeclared variables, functions or fields.

3.2.3 Gzoltar

Regarding the existing tools to execute Spectrum-Based Fault Localization, we identified three:

Gzoltar, Jaguar and Flacoco. All of them showed good results in finding bug locations. Jaguar is

very different from the other two. It can perform ten different metrics to generate the suspicious

values, which could be used in our study. Although this tool is only focused on being used as

an Eclipse plugin, we needed a tool that could be used standalone. In addition, we did not find

any more articles where this tool had been used before; there was a lack of confirmation in its

effectiveness.

Flacoco and Gzoltar are two similar open-source tools. Both of them apply the Ochiai formula

to compute the suspicious ranking. The significant differences between these two tools were how

they instrumented the program under test and how they were available to the community. Flacoco

takes advantage of a Java code coverage library, JaCoCo, using their code coverage heuristics,

while Gzoltar uses its own instrumentation methodology. Gzoltar is available as a Maven plugin,

Ant task, Visual Studio Code Extension, Command-line interface. Flacoco is provided as a Java

API and as a Command Line Interface. What led us to use Gzoltar versus Flacoco was the lack of

articles supporting Flacoco. Gzoltar was the most reliable option supported by the use in several

articles.
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Figure 3.3: Example of a generated test
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The Gzoltar command-line interface was the interface used under this experiment. It pro-

vides different output files, and the one used was the one whose function was to save the ranking

generated by the application.

3.3 Summary

This chapter discusses the problem, a possible approach to solve this issue, and the implementation

followed.

In Section 3.1, we explain the lack between two good technologies that ease the testing and

debugging in real-world problems. To face this problem, we proposed a solution described in

Section 3.2. The three modules associated with our implementation are detailed in the following

subsections, with a focus on Subsection 3.2.2 that corresponds to the component created by us to

connect the other two.

The solution described will be evaluated in the next chapter to understand if we have reached

our goal.



Chapter 4

Results and Discussion

Contents
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Tests found . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 SFL Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

This chapter aims to present the results of the tests performed to achieve the goals described in

the previous chapter and test the effectiveness of the tool developed. In Section 4.1 we address

the metric used to evaluate the system and how the tests were performed. In Section 4.2, all

the outcome is analyzed and discussed if it is favourable for the work goals. Following, Section

4.3 approaches the threats that may appear due to some testing decision. The chapter ends with

Section 4.4 where we do a summary of the chapter.

4.1 Methodology

In order to understand the effectiveness and accuracy of the system created at 3, we decided to use

the Defects4J1 [22]. This bug database allows us to reproduce a bug behaviour and see the code

change that corrected the bug. This framework will help us have a basis for reproducible bugs that

can be found and located in the code. So, our testing procedure is performed as the following:

• Select a project version to fuzz

1https://github.com/rjust/defects4j
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• Create the fuzz driver to find the specific bug

• Run the system

• Inspect the sfl report generated and check if the code changed to eliminate the bug matches

the rank generated.

As mentioned in Section 3.2, the tests passed to Gzoltar can be unit tests already created by

the project developers or unit tests generated by our system. Those tests can be failing or passing

because a project may have failing tests unrelated to the bug belonging to that specific version. In

order to understand the impact of the tests generated by our system in the failure discovery and

localization we used two different input sets:

1. Developers unit tests, passing and failing

2. Not failing developer unit tests and tests generated by our system

Item number 1. allow us to have a comparable basis, i. e., how the SFL technique answer

without the fuzzing phase, obtaining a basis regarding the use of Gzoltar as an independent tool.

In number 2, we only use those generated by our system for the failing tests to understand the

system’s effectiveness with minimum outside interference. It is important to mention the need of

those tests that do not fail because the Fuzzer is not capable of save the valid input.

So, to Fuzz the Defects4j project versions we created a fuzz driver needed to Jazzer being

capable of starting the fuzzing campaign. This driver is inspired in the project failed tests cases

that triggers the bug. This way we will be capable of finding the bugs through fuzzing and check

the locations predicted for the bug. The bug localization is constructed from the file lines difference

between the bugged project and the fixed one, using a set of scripts already available in a gitlab

repository2.

4.1.1 Environment

All the experiments discussed in this chapter were carried out in a Lenovo YOGA 530-14IKB

with an instance of Ubuntu 20.04.3 LTS 64-bit, with a Intel® Core™ i7-8550U CPU @ 1.80GHz

× 8. The different system components are running under Java 11. For the tests, JUnit 4.12 is

used. The Jazzer and Gzoltar versions match the version available at the time of use of each

tool Github repository. Both tools are used as jars with all the dependencies needed to work

standalone. Gzoltar commit version is e2b581c516bf02d406f9fef2e51bdb612dfcd77f and Jazzer

commit version is 0a80fb8af1726d1e30b12cec7500af82941f10d9.

Regarding the system options, we decided to cap Jazzer running time and its maximum JVM

memory occupation. Then, each fuzz driver runs for ten minutes, or until the JVM reach the 8

gigabits of memory. Gzoltar only uses the online experimentation. These configurations let us to

keep every test under the same constraints.

2https://bitbucket.org/rjust/fault-localization-data/src/master/
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4.2 Results

4.2.1 Tests found

As comprehensible, the tests that feed Gzoltar will impact the outcome. The impact in the system

in an overall perspective can be in the quantity and the quality of a testing suite. To better under-

stand the results, we refer to the quantity of tests the actual number of tests that each test suite has.

The quality of the tests is connected to the number of tests that are actually connected to the bug

target. So, a good test suite may have many tests that find the bug target, improving the Gzoltar

statistics.

If the project has only one bug detected by the failing tests, the code lines performed most

likely will be connected to that bug. On the one hand, the more tests Gzoltar has on the same bug,

the more accurate and precise it will be in the SFL report because the lines that might have the bug

are performed more than the others. On the other hand, if the failing tests find multiple bugs in the

same suite, the SFL report decreases its efficiency in detecting precisely a specific bug, because

all the flaws not related to the bug target are being considered. So a test is as good as possible if it

has a good number of tests per bug.

In Table 4.1, are identified the number of bugs that every project has. The objective of de-

fects4j, as explained before, is to have a database with projects controlled versions where each

version has a specific real bug. The column "Unique bugs on the project" confirm the specified

bug’s existence. The column "Bugs found with fuzzing" tells us about the bugs found in the project

through the first step of our system. We can see that at least the bug target was found using fuzzing

in every project. Although, other bugs not specified in the database were found and may not even

be related to the bug target. This issue is addressed in the next subsection.

When we say that all bugs are found, the table may not agree with the statement. There is only

one project where Jazzer is not capable of finding the bug, Jsoup_91b. This is because the test

that fails in the developer test suite is not even running the actual code. This bug is related to the

Jsoup library trying to parse all the files that it receives, so when it tries to parse binary files, for

example, it throws a Null Pointer Exception (NPE). The test and the code correction to this bug is

a workaround: it simply checks if the file is binary and does not touch the content. So, the fuzzing

in this target finds the problem, and the SFL tool tries to answer it.

Another circumstance regarding the tests and the SFL report is the number of tests used to find

one bug. As mentioned in Chapter 2, the number of failing and passing tests is important will have

a direct impact on the report. In Table 4.2, we can see the number of failing tests and errors raised

per project. Each developer failing test suite (oc) has one or two failing tests, while the failing

suite found by Jazzer (op) often has multiples. These observations will be important in the SFL

report. Although, gathering this information together allows us to say that the first module works

good like expected and that its transition to Junit is done successfully. However, we can know

what we expect from the tests in this controlled environment and what we do not. In a real case,

we only know the expected behaviour of a system and expected unexpected behaviour could only

be created synthetically, not replicating the system’s actual condition.
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Project Unique bugs on project Bugs found with fuzzing Different Bugs Found
Codec_11b 1 1 0
Codec_13b 1 1 0
Codec_16b 1 1 0
Codec_18b 1 1 0
Csv_15b 1 1 0
Gson_11b 1 1 0
Gson_12b 1 1 0
Gson_15b 1 2 1
JacksonCore_16b 1 2 1
JacksonCore_17b 1 1 1
JacksonCore_19b 1 1 0
JacksonCore_8b 1 1 0
JacksonCore_9b 1 2 1
Jsoup_79b 1 4 3
Jsoup_80b 1 1 0
Jsoup_81b 1 2 1
Jsoup_84b 1 2 1
Jsoup_86b 1 1 0
Jsoup_89b 1 1 0
Jsoup_91b 1 1 1
Math_101b 1 1 0
Math_93b 1 1 0
Math_94b 1 1 0
Math_96b 1 1 0
Math_98b 1 1 0

Table 4.1: Different Bugs found in each project
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Project Tests Error Quantity

Codec_11b
oc org.apache.commons.codec.DecoderException 2

op org.apache.commons.codec.DecoderException 2

Codec_13b
oc java.lang.NullPointerException 2

op java.lang.NullPointerException 1

Codec_16b
oc java.lang.IllegalArgumentException 1

op java.lang.IllegalArgumentException 1

Codec_18b
oc java.lang.StringIndexOutOfBoundsException 2

op java.lang.StringIndexOutOfBoundsException 3

Csv_15b
oc org.junit.ComparisonFailure 1

op java.lang.AssertionError 1

Gson_11b
oc com.google.gson.JsonSyntaxException 1

op com.google.gson.JsonSyntaxException 1

Gson_12b
oc java.lang.ArrayIndexOutOfBoundsException 2

op java.lang.ArrayIndexOutOfBoundsException 1

Gson_15b

oc java.lang.IllegalArgumentException 1

op
java.lang.AssertionError 1

java.lang.IllegalArgumentException 1

JacksonCore_16b

oc junit.framework.AssertionFailedError 1

op
java.lang.ArrayIndexOutOfBoundsException 3

java.lang.AssertionError 2

JacksonCore_17b
oc com.fasterxml.jackson.core.JsonGenerationException 1

op java.lang.StringIndexOutOfBoundsException 1

JacksonCore_19b
oc java.lang.ArrayIndexOutOfBoundsException 1

op java.lang.ArrayIndexOutOfBoundsException 2

JacksonCore_8b
oc java.lang.NullPointerException 1

op java.lang.NullPointerException 1

JacksonCore_9b

oc junit.framework.ComparisonFailure 2

op
java.lang.ArrayIndexOutOfBoundsException 11

java.lang.AssertionError 3

Jsoup_79b

oc java.lang.UnsupportedOperationException 1

op

java.lang.IndexOutOfBoundsException 1

java.lang.NullPointerException 14

java.lang.StringIndexOutOfBoundsException 11

java.lang.UnsupportedOperationException 1

Jsoup_80b
oc java.lang.IndexOutOfBoundsException 1

op java.lang.IndexOutOfBoundsException 170

Jsoup_81b

oc org.junit.ComparisonFailure 1

Continued on next page
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Table 4.2: Number of test failled tests per project

Project Tests Error Quantity

op
java.lang.AssertionError 1

java.lang.NullPointerException 15

Jsoup_84b

oc org.w3c.dom.DOMException 1

op
java.lang.NullPointerException 11

org.w3c.dom.DOMException 3

Jsoup_86b
oc java.lang.IndexOutOfBoundsException 1

op java.lang.IndexOutOfBoundsException 146

Jsoup_89b
oc java.lang.NullPointerException 1

op java.lang.NullPointerException 1

Jsoup_91b
oc java.lang.AssertionError 1

op java.lang.NullPointerException 5

Math_101b
oc java.lang.StringIndexOutOfBoundsException 2

op java.lang.StringIndexOutOfBoundsException 1

Math_93b
oc junit.framework.AssertionFailedError 1

op java.lang.AssertionError 1

Math_94b
oc junit.framework.AssertionFailedError 1

op java.lang.AssertionError 1

Math_96b
oc junit.framework.AssertionFailedError 1

op java.lang.AssertionError 1

Math_98b
oc java.lang.ArrayIndexOutOfBoundsException 2

op java.lang.ArrayIndexOutOfBoundsException 2

Table 4.2: Number of test failled tests per project

4.2.2 SFL Reports

Regarding the SFL reports, as mentioned in Section 4.1, we compute two different reports. The

important data to consider in these reports is the ranking of the first lines. So, we will analyze the

first ten lines of each report. These are the lines at the top of the file and might be the first lines that

a developer might use to debug the program. Figure 4.1 compares the number of target lines that

there are in the first ten lines. The target lines are those there are added to fix the program bug. We

noted that the bug correction is an addition of code most of the time during the experiments. So,

many times the line target is in the report has the following line, or the previous one. We decided

to add a margin of error to the supposed correction to fill in this issue. The line targets are so

those that differ between versions with two lines of error from and to that line. For example, if the

original line is set to line 200, the lines considered in our calculation are the lines in the interval

[198-202].
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So, looking at Figure 4.1 we can see that the percentage of target lines that are in the top ten

of each report is not much higher in the most of the cases. Although, those that are at the top are

in a very good position which means that they have a relative good suspicious value (see Figures

4.3 and 4.2). Even with a good set of tests, we have to focus on two key aspects in integrating

fuzzing test and SFL: Multiple Bug Finding and Quantity of Tests found. We manually checked

every report and test generated to confirm the data generated.

The Multiple Bug Finding is connected to the number of bugs found by the Fuzzer module in

the fuzzing phase of the system. The Tables 4.1 and 4.2 scrutinize the number of bugs found and

each bug in each project. There are projects where the number of bugs found is superior to the

number of bugs expected, which is one due to the test environment. The finding of multiple bugs

is a good achievement to the system, but it confuses the SFL tool when it tries to localize the bug

target, spreading all the suspicious values through all the lines performed, which may not even be

correlated if the bugs are not related to each other. Our major case is the project Jsoup_79. As

expected, this project has lines at the top regarding only the developer tests with a high number of

Suspicious Value, Figures 4.3 and 4.2. However, when we switch to the tests generated, we see

that the project has much more bugs than they are not related. The paths exercised will be different

from the bug target.

The Quantity of Tests generated matches with the number of tests created for a specific bug. So

regarding the percentage of target lines in the top ten, we noticed that for the same bug, if the num-

ber of generated tests increases, the report will be directed to those bugged lines. For example, the

Fuzzing process founds in the project Jsoup_86b the bug specified in defects4j database. Further-

more, it finds 146 different tests raising the suspicious value of the lines almost to 1.0. However,

as mentioned in Chapter 2, the fuzzers have a bug triage system whose job is to understand if the

bug was already found, and for that specific code coverage, there are no more tests generated. We

perceived this action in the project Codec_13b, where the developers suite has two similar tests

allowing the suspicious values of the lines to be a little bit higher, but the rank remains the same.

Despite the small increase of tests in the developers’ suite, the suspicious value differences are not

much different from that found by the fuzzing campaign suite.

Looking at the figures provided, we find two projects where the target lines do not show in the

top thirty. As explained before, the developers’ tests in the Jsoup_91 do not run the actual code,

and the correction is a workaround. More important to analyze is the project Codec_16b. This

project correction is different. This correction is a change in a constant that is not covered by the

tool. This line does not appear in the SFL report. Although, the top rankings in this project are

similar, showing a good certainty in the piece of code that throws the error.

Finally, the project Jsoup_84b. This project do not show any target line in the top ten. In

addition, the number of tests and bugs found are different from the developers’ suite. Although, it

is important to mention that the developers’ suite SFL report retrieves a bad result where the target

line is in top twenty-two, but with the same suspicious value of each line in the top forty.

Looking at the data, we can say that the system works as expected from an overall perspective.

Even with a bit of initial effort to setup, joining these two different modules does not show a
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downgrade in the bug finding, showing equal or better results with the manual tests.

4.3 Limitations

Some variables may influence the results. As mentioned before, the fuzzers do not provide data

that do not behave as expected. They only save those tests that crash the program. Although, the

SFL tool can only work correctly if provided with passing and failing tests. In our experiences,

we used the passing tests from the developers’ test suite in both cases. Nevertheless, in real-

life projects, there are no tests initially. Even this system provides a way to find faster the bug

localization, it assumes and needs a set of passing tests.

Regarding the fuzzing process, Jazzer needs a driver to know which methods to call with

the data generated. Every driver in this experimentation was created manually and inspired by

the test that triggered the developers’ suite error. Even with this information, every driver took

much time to create because a driver has to be adapted to the library that he belongs, and we

have different libraries with different functions. In addition, the driver specification influences the

fuzzers outcome, and consequently, the tests passed to the SFL tool.

4.4 Summary

In this Chapter, we analyze the tests experimented with exposing the proposed system’s viability.

In Section 4.1, we start explaining how do we procedure every test. Following, we cover a discus-

sion and presentation of some statistics whose task relies on showing if the system is a feasible

solution. In Section 4.3 we address what can restrict the usage of the system in a real context, and

what can derail the results demonstrated.
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Figure 4.1: Percentage of lines in the first 10 lines of the SFL report
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Figure 4.2: Average Suspicious Values of the Target Lines located in the first 10 lines of the SFL
reports
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Figure 4.3: Average Ranking of the Target Lines located in the first 10 lines of the SFL reports
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Chapter 5

Conclusion
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This Chapter presents some considerations on the work developed during this document and im-

plemented system. Section 5.1 addresses the conclusions drawn from this work. Following, Sec-

tion 5.2 defines the main contributions retrieved from our work, and finally, Section 5.3 tackle the

research possibilities that this document kicked off.

5.1 Conclusion

The software systems are more and more complex, and consequently, the possibility of deep and

even shallow failures in the applications has been raised. Although, the failures are not caught

during the software development and only appears when the product is already with the end-

user, causing lots of losses and possibly human lives injuries. Testing is an essential phase of

development. If every flaw is caught, there are no losses to be mitigated. Fuzzing is a field that

raised from this necessity of testing intensively to avoid the maximum number of vulnerabilities,

and he has shown good results finding them.

The next step after finding the failures is to fix them. Debugging is a tedious and time-

consuming task for developers when the software does not show the expected behaviour. The

automation of the bug localization improved this process. If the developer can reach the bug lo-

cation faster in the code or has a path to start with, the time spent on failure and fixing might

decrease. Although, this assumes that somehow the failure was already found.

35
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In our work, we address this gap. We tried to connect two processes with demonstrated results

separately. Grabbing two state-of-the-art tools of each field, Jazzer from the Fuzzing area and

Gzoltar from the SFL field, we connected them through a parser written in Java that translated the

tests generated by Jazzer to tests that Gzoltar could use. In addition, we performed a study in order

to understand if the connection created may augment the tests creation and bug finding.

Despite the modest results, we could show that this connection is possible under some con-

straints. We demonstrated through the Defects4J framework that the system finds the bugs defined

by the framework and others unknown for that version of the software. Then, the system re-

vealed that with the automatic tests created and translated, the suspicious values and rankings

were reached and, in some cases, exceeded them. It is important to mention that were cases where

some tests did not reach the intended results due to the limitations of the different tools.

5.2 Main Contributions

This document and research present some contributions to improving the testing phase of software.

Even as an initial study about the topic, we did not find any research or tool that tried to connect

Fuzzing and SFL techniques to improve the software testing and, consequently, the improvement

of software quality. We believe this pioneering study may open some possibilities in both fields.

Following, although short, we assemble state-of-the-art tools and techniques, gathering to-

gether some of the latest tools in Fuzzing and SFL and the well-known and acknowledged ones

like that we utilize in the SFL module.

Finally, the small parser we created to connect the Fuzzing and SFL modules, although it

cannot be used on an industrial level for obvious reasons, can be used and adapted for new research

in these fields.

5.3 Future Work

Despite the humble results, our system has limitations. There are two main issues to be addressed

next. One of the steps that took most of the time was creating the Fuzz driver in the first module.

For every single test created, we had to create a driver containing the functions we wanted to

fuzz to find the specific bug. Further studies may create or use an automatic driver generation,

or experiment the auto fuzzing, recently added to Jazzer. In the case of Jazzer, the tool tries to

guide the fuzzing campaign targeting the class passed to auto fuzzing mode. The second main

issue regards the study’s premise, the existence of passing tests. As mentioned in Section 4.3, the

passing tests of the developers’ suite had to be used in order to Gzoltar retrieve better results. A

way to complement the study in a future perspective is to generate correct inputs and not just keep

those that crash the software under test.

Furthermore, our system can use Jazzer output failing tests and others if the fuzzer used gen-

erates the input and as binary files and if the program under test has a method that allows it to
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consume this type of files. Extending the parser to read different Fuzzers output would be inter-

esting. This extension would allow the system under test to be scrutinized by different methods

and applications, and in the end, pass the information to the SFL module for bug finding.

Different techniques could be added to the SFL module as well. As mentioned in Chapter

2, SFL techniques, and in this specific case, SBFL techniques, are not perfect. Each available

technique may perform better than another depending on the environment and variables. Thus, if

available in Java or created from scratch, more techniques like D*, for example, could be added to

the SFL module and more information regarding the bug locations.

Finally, our system maintains two independent modules, which means that double the com-

puting resources are being consumed. There are similar processes on both sides, such as in-

strumentation of the program under test, where each one does instrumentation. Thus, instead of

keeping both sides independent, the existing run-time overhead could be mitigated if they could

share resources. Although, unfolding the components would make the system lose its modules

independence, bringing new unpredictable issues.
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