
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Solving Poisson’s Equation through
Deep Learning for CFD applications

Paulo Araújo da Cunha Sousa

Mestrado em Engenharia Mecânica

Supervisor: Dr. Alexandre Miguel Prior Afonso

Second Supervisor: Dr. Carlos Alberto Veiga Rodrigues

March 17, 2022

Solving Poisson’s Equation through Deep Learning for
CFD applications

Paulo Araújo da Cunha Sousa

Mestrado em Engenharia Mecânica

March 17, 2022

Abstract

Machine learning techniques were developed to model the pressure field computed by standard
fluid flow solvers. Conventionally the pressure-velocity coupling is enforced by Poisson’s equa-
tion, attained by merging the Navier-Stokes and continuity equations. The larger goal was to build
a surrogate model to assist or replace the conventional pressure solver. This was achieved by
training the machine learning models with the fields generated by a Computational Fluid Dynam-
ics solver applied to the confined flow over multiple geometries, namely wall-bounded circular,
rectangular, and triangular cylinders.

A method general enough for application to any geometry was achieved by estimating the
pressure field in blocks sampled from the domain and posterior assemblage. Multilayer perceptron
neural networks were used in combination with Principal Component Analysis transformations to
accomplish the proposed task with a maximum root mean squared error of approximately 3% in
the training Reynolds number flows. Principal Component Analysis transformation proved to be
capable of replacing the encoder and decoder layers of the neural networks. The possibility of ex-
trapolation was also accessed and solutions were proposed to mitigate the difficulties encountered.

The numerical simulation of fluid flow problems is computationally expensive due to the com-
putational grids required to capture the time and length scales involved in such processes. The
pressure solver is a significant component of the flow model and any improvement in its execution
or accuracy leads to overall improvements to the flow model or the reduction of its computational
requirements. The developed surrogate model coupled with pisoFoam produced the new solver,
DLpisoFoam, which was able to reduce the number of iterations needed to be performed by the
pressure solver, leading to simulations yielding equivalent drag coefficients with faster execution
by a factor of 3. An alternative was the use of DLpisoFoam as a precursor solver to generate initial
solutions for the pisoFoam solver. This successfully reduced the needed computation effort by a
factor of 3.3 reaching the same results as the pisoFoam solver. These improvements in calcula-
tion time were accomplished by reducing each time iteration, but also by forcing the dynamical
behavior in the simulation at an earlier stage.

Keywords: Deep Learning, Computational Fluid Dynamics, OpenFOAM, Incompressible Flows

i

ii

Resumo

Técnicas de aprendizagem máquina foram desenvolvidas para modelar o campo de pressão calcu-
lado por "solver" de escoamentos de fluidos. Convencionalmente o acoplamento pressão-velocidade
é aplicado pela equação de Poisson, obtida pelo acoplamento das equações de Navier-Stokes e
da continuidade. O objectivo principal foi construir um modelo de aprendizagem profunda para
coadjuvar ou substituir o "solver" de pressão convencional. Isto foi alcançado através do treino
de modelos de aprendizagem máquina com os campos gerados por um "solver" de Dinâmica
dos Fluidos Computacional aplicado a escoamentos confinados através de múltiplas geometrias,
nomeadamente cilindros circulares, rectangulares e triangulares.

Um método geral o suficiente para ser aplicado a qualquer geometria foi alcançado estimando
o campo de pressão em blocos retirados do domínio e posterior montagem. Foram utilizadas re-
des neuronais do tipo perceptron multicamada em combinação com transformações de Análise de
Componentes Principais para realizar a tarefa proposta com um erro médio quadrático médio máx-
imo de aproximadamente 3% nos escoamentos de número de Reynolds de treino. A transformação
da Análise de Componentes Principais provou ser capaz de substituir as camadas codificadoras e
descodificadoras das redes neuronais. A possibilidade de extrapolação foi também avaliada e
foram propostas soluções para mitigar as dificuldades encontradas.

A simulação numérica de problemas de escoamento de fluidos é computacionalmente dis-
pendiosa devido às malhas computacionais necessárias para capturar as escalas de dimensão e
tempo envolvidas em tais processos. O "solver" de pressão é uma componente significativa do
modelo de escoamento e qualquer melhoria na sua execução ou exatidão conduz a melhorias
globais deste ou à redução dos seus requisitos computacionais. O modelo de aprendizagem pro-
funda desenvolvido foi utilizado para desenvolver o novo "solver", DLpisoFoam, o qual foi capaz
de reduzir o número de iterações necessárias a ser realizadas pelo "solver" de pressão, calculando
o coeficiente de arrasto 3 vezes mais rápido com resultados equivalentes. Uma alternativa foi a
utilização do DLpisoFoam como "solver" precursor para gerar soluções iniciais para o pisoFoam.
Reduzindo assim com sucesso o esforço de cálculo num factor de 3,3, atingindo os mesmos resul-
tados que o pisoFoam. Esta melhora no tempo de cálculo foram conseguidas através da redução
do tempo em cada iteração, mas também forçando o comportamento dinâmico na simulação mais
cedo na simulação.

Keywords: Aprendizagem profunda, Dinâmica dos Fluidos Computacional, OpenFOAM, Escoa-
mentos Incompressíveis

iii

iv

Acknowledgements

First and foremost, I would like to express my deep gratitude to Professor Alexandre Afonso
and Professor Carlos Rodrigues, my supervisors, for their enthusiastic encouragement, guidance
throughout this project, and their constant support.

Besides, I would like to thank Dinora for always being by my side every step of the way.

Finally, I wish to thank my family, especially my parents, for their support and encouragement
through all these years.

Paulo Sousa

v

vi

“We can only see a short distance ahead,
but we can see plenty there that needs to be done.”

Alan Turing

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Outline . 2

2 State of the art 3
2.1 Introduction . 3
2.2 Fundamentals of Computational Fluid dynamics 3

2.2.1 High Re flows - Turbulence Modeling 4
2.2.2 Discretization . 5
2.2.3 PISO algorithm . 6
2.2.4 Deriving the analytical pressure Poisson equation 7

2.3 Fundamentals of Deep Learning . 9
2.3.1 Artificial Neural Networks . 9
2.3.2 Training process . 10
2.3.3 Convolutional Neural Network (CNN) 11

2.4 CFD and Deep Learning - Literature review . 12
2.5 Summary . 12

3 Exploration section - Preliminary works 15
3.1 Data-driven Models Framework . 15

3.1.1 Problem statement . 15
3.1.2 Data generation . 15
3.1.3 Data pipeline . 16
3.1.4 Training the model . 16
3.1.5 Model predictions . 18
3.1.6 Point data . 18
3.1.7 Point data with coordinates information 18
3.1.8 Results . 19

3.2 PINN - Physics informed neural networks . 21
3.2.1 Training the model . 21
3.2.2 Approach 1 . 22
3.2.3 Approach 2 . 23
3.2.4 Approaches 3 and 4 - Predicting the velocity field 23
3.2.5 Results . 24
3.2.6 Analysis . 26

3.3 Conclusions . 26

ix

x CONTENTS

4 Surrogate pressure model 27
4.1 Methodology . 27
4.2 Dataset description . 29
4.3 Methodologies and architectures . 30

4.3.1 Assembling algorithm . 32
4.3.2 Neural network selection . 34
4.3.3 Hyper-parameters value selection . 35

4.4 Training and evaluation method . 39
4.5 Results . 40

4.5.1 Tests in laminar regime . 40
4.5.2 Predictions to different Reynolds numbers: laminar regime 43
4.5.3 Predictions to different Reynolds numbers: turbulent regime 45
4.5.4 Model M f (u) . 46

4.6 Analysis . 50
4.6.1 Optimization problem - Proposed solution 52

5 Developing the Deep Learning CFD solver 55
5.1 Introduction . 55
5.2 Data pipeline between OpenFOAM and Python 55
5.3 DLPoissonFoam . 55

5.3.1 Pressure solver Surrogate model . 55
5.4 Results . 58
5.5 Analysis . 59

6 Conclusions and Future Work 61
6.1 Further Work . 63

A Tables and Results 65

B Models and Prediction Examples 71

References 77

List of Figures

2.1 Illustration of the resolved scales from different turbulence models. Figure from [16]. 5
2.2 Example of a mesh representation for a 2D case from [17]. 5
2.3 PISO algorithm flowchart. 7
2.4 Schematic representation of a single neuron. Figure from [24]. 10
2.5 Schematic representation of a simple Multilayer perceptron (MLP). Illustration

from [25]. 11
2.6 Convolution with a 3×3 kernel over a 4×4 input layer. Illustration from [25]. . . 11
2.7 Most important areas where ML can enhance CFD as claimed in [36]. Ilustration

from [36]. 12

3.1 Point-NET architecture from [44]. 19
3.2 Example of the CNN + PointNet predictions with the absolute normalized error

for each predicted field. 20
3.3 Example of the CNN + PointNet predictions with the absolute normalized error

for each predicted field. 20
3.4 PINN architectures 1 and 2 adapted from [48]. 23
3.5 Domain representation with inner and boundary points. 24
3.6 Pressure prediction along the cylinder surface from every PINN model. 25

4.1 Input and output representation of the model. 28
4.2 Problem representation - flow past a generic obstacle with boundary conditions for

velocity. Adapted from [50]. 28
4.3 Representation of the sampling method from the original domain. 30
4.4 U-net-based architectures modified architectures. 31
4.5 Schematic representation of assembling algorithm. 33
4.6 Domain and outlet boundary representation. 33
4.7 MLP with truncated PCA and reconstruction layers. Adapted from [55]. 34
4.8 Error chart for performance comparison. Mx&By represents the error for model x

predictions with a block size of y. 35
4.9 Batch size and loss function selection study. 37
4.10 The number of truncated principal components from pressure principal component

analysis (PCA). 37
4.11 Learning rate (lr) tuning. 38
4.12 Learning rate (lr) and moving average parameter (β1) study. 38
4.13 The performance of the model for multiple depths is defined by the number of

hidden layers. 39
4.14 Mu prediction examples for each geometry. 42
4.15 Mu prediction for Re = 10 flow prediction result example. 44

xi

xii LIST OF FIGURES

4.16 Mu prediction for Re = 3×105 flow - result example. 46
4.17 Models M f (u) input and output fields. 47
4.18 Mf(u) prediction for Re = 3×105 flow - result example. 49

5.1 Possible algorithms for PISO algorithm enhancement with the DL surrogate model. 56
5.2 Drag coefficient, Cd , vs adimentional time, t∗ = t

tcaract
, with tcaract =

φ

Umax
where φ

is the characteristic length, and Umax the centerline velocity at the inlet. 59

A.1 Model 2 results error chart where x&y represents the error for a block size of x
and overlap ratio y. 66

A.2 Model 3 results error chart where x&y represents the error for a block size of x
and overlap ratio y. 67

A.3 Model 4 results error chart where x&y represents the error for a block size of x
and overlap ratio y. 68

B.1 U-net architecture modified architecture - with PCA post-Process on the inputs
and outputs. f represents the number of filters used and is an adjustable parameter.
Adapted from [53]. 71

B.2 U-net architecture modified architecture - with PCA post-Process on the inputs. f
represents the number of filters used and is an adjustable parameter. Adapted from
[53]. 71

B.3 U-net architecture used. f represents the number of filters used and is an adjustable
parameter. Adapted from [53]. 72

B.4 Prediction examples in a ◦ case at Re = 100. 72
B.5 Prediction examples in a □ case at Re = 100. 73
B.6 Prediction examples in a ◁ case at Re = 100. 74
B.7 Prediction examples in a / case at Re = 100. 75

List of Tables

3.1 CONV+PointNet prediction error for every flow field 21
3.2 PINN 1 and PINN 4 RMSEnorm for every field prediction 25
3.3 PINN2 and PINN3 RMSEnorm for every field prediction 25

4.1 Dataset symbology . 40
4.2 Models’ description and symbology based in the training datasets 40
4.3 Mu results from training with multiple datasets and tested in Re = 100 flows . . . 41
4.4 Mu results trained with each dataset and tested in Re = 100 flows 42
4.5 Mu extrapolation test in the laminar regime. Prediction case: ◦ dataset in laminar

regime . 43
4.6 Mu extrapolation tests. Prediction case: ◦ dataset in turbulent regime at Re =

3×105 and 4×105 . 45
4.7 M f (u) results trained with each dataset and tested in Re = 100 flows 48
4.8 M f (u) extrapolation test. Prediction case: ◦ dataset in laminar regime 48
4.9 M f (u) extrapolation test. Prediction case: ◦ dataset in turbulent regime at Re =

3×105 and 4×105 . 49
4.10 Possibilities for the inputs and outputs of a neural network trained to solve the

Poisson pressure equation . 52

5.1 Filter kernel and superposition size influence on accuracy and computational time 57
5.2 Solvers comparison based on computational time and accuracy. Reference value

from [62] . 58
5.3 Acceleration factor relative to the use of pisoFoam 58

A.1 Model 2 results . 65
A.2 Model 3 results . 69
A.3 Model 4 results . 69

B.1 Description of the number of PC used in each M f (U) model 76

xiii

xiv LIST OF TABLES

Abbreviations

ANN Artificial Neural Networks
CAD Computer-Aided Design
CFD Computational Fluid dynamics
CNN Convolutional Neural Networks
DL Deep Learning
FDM Finite Difference Method
FEM Finite Element Method
FVM Finite Volume Method
LHS Latin-hypercube sampling
LSTM Long short term memory
MLP Multi Layer Perceptron
NN Neural Network
N-S Navier-Stokes
PC Principal components
PCA Principal component analysis
PDE Partial Differential Equations
RMSE Root-Mean-Squared Error
RNN Recurrent Neural Networks
STDE Standard-Deviation error

xv

Chapter 1

Introduction

Artificial Intelligence (AI) algorithms have been expanding towards scientific computation [1],

namely for enhancing Computational Fluid Dynamics (CFD) solvers [2].

Broadly, there are three groups of models: (i) purely data-driven models working blindly to

physical laws and require large amounts of data; (ii) physics-informed models that respect gov-

erning equations and boundary conditions [3]; and (iii) hybrid approaches of those two groups.

Commonly the application of AI to physical problems aims to create an ambitious model that

outputs a solution to the problem. Alternatively, the aim may focus on a surrogate model replac-

ing a component of the physical solver to accelerating computations (e.g. turbulence closures in

CFD models [4]). Poisson’s equation describes the distribution of key variables in several physi-

cal systems, ranging from electromagnetism and astronomy to heat transfer and fluid mechanics.

Focusing on CFD solvers, this equation governs the flow pressure field, and its solution com-

prehends a significant percentage of the computational cost, being required for both explicit and

implicit solvers.

Fluid flow is a highly complex phenomenon with well-established importance in many en-

gineering applications. Numerical simulation alongside experimental studies plays an essential

role in modeling many physical phenomena. Fluid flows are well described by the Navier-Stokes

(N-S) equations, but solving these to the smallest scales is not realistic for most applications. A

conscious trade-off between accuracy and cost is always present. As depicted by Moore’s law1,

better resolution is possible over time, but still far from ideal.

This work aims to leverage Deep Learning (DL) techniques to improve state-of-the-art CFD

algorithms. A specific step from CFD solvers, identified as the more computationally expensive

one will be accelerated using DL methods.

1Moore’s law is an empirical observation made by Gordon Moore in 1965 in the original article [5] that the number
of transistors in a microchip doubled every year, which translates to the exponential increase in computational power
over the years.

1

2 Introduction

1.1 Motivation

Recently, Machine Learning (ML) advances have been conquering some applications in scientific

computing, since the improvement of hardware is leading to an ever-increasing pace at which new

applications have been growing.

Similar to DL, CFD has also been improving for a long time now. Its methods are now well

established in both industry and academy, although they are still far from close to exact solutions

in the most complex phenomena. At present times, the lack of computation power still limits the

spatial-temporal scales which can be solved. As one of the most demanding steps of the typical

algorithms in incompressible flows is comprehended to be pressure solving, a surrogate model for

this step has the potential to seriously accelerate solutions.

1.2 Outline

In Chapter 2, an overview of CFD is developed followed by a brief introduction to DL.

An exploratory part is presented in Chapter 3, consisting of the development work done before

entering the main objective of this thesis.

Chapter 4 offers a data-driven approach and implementation to create a surrogate model for

solving the pressure Poisson equation.

In Chapter 5, the implementation of the trained surrogate model in a CFD solver is finally

done.

Finally, in Chapter 6 the results are summarized, and possible future works are discussed.

Chapter 2

State of the art

This work comprises two very branched fields, namely Computational Fluid Dynamics and Deep

Learning, hence a brief but well-rounded introduction will be presented for each one, allowing all

readers to fully understand this work’s purpose by accommodating the readers familiarized with

only one of these fields. Hereupon, a bibliographic review of recent works applying DL to CFD

will be presented to finish this Chapter.

2.1 Introduction

Computational Fluid Dynamics is the process of mathematically modeling complex physical phe-

nomena of fluid flow and then solving it by using numerical methods. It is a well-established

framework allowing practitioners and researchers to analyze complex physical systems. As ana-

lytical solutions are yet to be found for most flow fields, CFD is of precious importance to engi-

neering and research.

The Artificial Intelligence (AI) field can be defined as “the effort to automate intellectual

tasks normally performed by humans” [6]. AI comprises the Machine Learning field which uses

statistical learning algorithms. Finally, Deep Learning arrives as a subset of Machine Learning

consisting of the use of neural networks, typically claimed to mimic the human brain allowing it

to learn from a large dataset. It is inspired by information processing of biological systems and

has been successfully applied to problems such as computer vision [7], speech recognition, [8],

natural language processing, machine translation, bioinformatics, drug design [9], medical image

analysis [10], material inspection [11], and board and video game [12] and in some of these even

surpassing the human expert performance [13].

2.2 Fundamentals of Computational Fluid dynamics

The motion of fluids can be modeled by Cauchy’s momentum equation.

3

4 State of the art

Du
Dt

=
1
ρ

∇ ·σ+ fb, (2.1)

which describes the momentum transport of any continuum. Further, using a given constitutive

law like the constitutive law for newtonian fluids and Stokes’ hypothesis [14] one reaches the

Navier-Stokes equations for newtonian isotropic fluid

ρ
Du
Dt

=−∇p+µ∇
2u+

1
3

µ∇(∇ ·u)+ fb, (2.2)

where Du
Dt = ∂u

∂ t +u ·∇u represents the material derivative of velocity and fb all body forces such

as gravity. The continuity equation

∂ρ

∂ t
+∇ · (ρu) = 0, (2.3)

models the conservation of mass. Equations (2.2) and (2.3) are sufficient to describe incompress-

ible flow under isothermal conditions, otherwise, the flow model must be extended to account for

the conservation of energy and an equation of state to include compressibility effects.

In addition to the governing equations, temporal and spatial boundary conditions are essential

to fully define the problem.

2.2.1 High Re flows - Turbulence Modeling

In many engineering applications, the flows have a high Re number where Re = UL/ν with U ,

L and ν representing the velocity and length scales, and the kinetic viscosity, respectively, which

become characterized by chaotic fluctuations designated as turbulence. When modeling flows in

the turbulent regime, fully resolving the necessary spatial-temporal scales is not reasonable for

some applications. Directly solving the governing equations, known as Direct Numerical Simu-

lation (DNS), fully resolves these smallest scales (to the smallest eddies), which would lead to a

prohibitively large mesh, therefore turbulence models are considered instead.

A method to solve the three-dimensional unsteady turbulent flow is Large Eddy Simulation

(LES) consisting in modeling the small scales while resolving the larger features of the flow.

From DNS to LES there is a considerable reduction in computational effort, yet it is also too

computationally expensive for a wide range of flows in large domains.

By averaging the flow fields for all turbulent scales a set of equations are obtained known as

Reynolds-Averaged Navier-Stokes equations (RANS) which is the industry standard. The RANS

has the compromise of yielding statistical quantities of the flow, i.e. averages, variances, and

covariances; generally having inferior accuracy to LES.

RANS equations are still highly non-linear and introduce a closure problem usually solved by

modeling the Reynolds stresses using eddy-viscosity models known to be based on the gradient-

diffusion hypothesis [15]. This assumption represents an increase in numerical simulation uncer-

tainty because these models cannot be accurate to all flows.

2.2 Fundamentals of Computational Fluid dynamics 5

Figure 2.1: Illustration of the resolved scales from different turbulence models. Figure from [16].

2.2.2 Discretization

Due to the incapacity to solve equations (2.2) and (2.3) analytically for most flows, numerical

methods are employed where the flow fields are discretized over a mesh of spatial and temporal

values, instead of being modeled as a continuum. Discretization consists of discretizing the ge-

ometry followed by the discretization of the differential equation. Spatial discretization consists

in subdividing the original domain into separate discrete elements. Figure 2.2 illustrates a simple

mesh for a 2D case.

The main methods to discretize the governing equations (2.2) and (2.3) are the Finite Differ-

ence Methods (FDM), Finite Volume Methods (FVM), and Finite Element Methods (FEM) [18].

The gradients in the equations are generally approximated by difference schemes over the elements

and their faces that compose the spatial grid.

It is possible to employ any one of the enumerated methods to reach an approximate solution,

but FVM is well suited for numerical simulation of conservation laws as these may be integrated

over volumes through the Gauss-Ostrogradsky theorem [19]. These can be applied to arbitrary

geometries using structured or unstructured meshes and its dominance on fluid dynamics appli-

cation comes from being formulated on a "balance" approach, ie., a local balance is written in

every control volume corresponding to each discretized cell. The reader can refer to [20], [21]

for a thorough description and an advanced overview focusing on the OpenFOAM framework.

The discretized equations can be re-arranged into a set of linear equations, and a solution can be

attained through a numerical solver [22].

With the above techniques, simple convective-diffusive transport equations can be solved,

however, due to the challenging mathematical properties of the N-S equations namely the non-

Figure 2.2: Example of a mesh representation for a 2D case from [17].

6 State of the art

linearity of the advection term, coupling between the mass and momentum equations, and the lack

of an explicit equation for pressure evolution in applications where the energy distribution and

compressibility can be neglected, constitute some difficulties which lead many developments to

generate algorithms capable of dealing with these properties.

Being widely used within mechanical engineering applications, PISO was proposed to solve

the coupling between pressure and velocity by ensuring the satisfaction of both the N-S equations

and the continuity equation from the derivation of a pressure equation. It has been implemented

in many solvers such as pisoFoam - a solver for incompressible isothermal flows which is part of

the open-source CFD simulation software OpenFOAM [17].

2.2.3 PISO algorithm

Pressure Implicit with Split Operator (PISO) (Issa [23]) rather than solving all the coupled equa-

tions iteratively, splits the operator into an implicit momentum predictor and multiple explicit

correction steps. This is considered a method "for handling the coupling implicitly discretized

time-dependent fluid flow equation" [23] is been shown that generally few corrector steps are

needed to reach good accuracy.

After discretizing the momentum equation (N-S), it is possible to take a solution of this equa-

tion, corresponding to the momentum prediction step, or velocity predictor as in Figure 2.3 how-

ever, the continuity equation restricts this solution since the velocity field resulting from N-S must

satisfy simultaneously the continuity.

The momentum equation in general matrix form is represented as

MU =−∇p+ fb, (2.4)

where M is a matrix of coefficients resulting from the FVM N-S equations discretization and fb

the vector with the body forces. At the start of a new iteration of the solver, equation (2.4) can be

solved for the U field using the pressure field, p, obtained at the previous iteration. The velocity

field, U, predicted at this stage is not mass conservative.

Given A to be the matrix with the diagonal components of M, equation (2.4) can be rearranged

as

MU− fb = AU−H, (2.5)

from which H can be defined.

Combining equations (2.4) and (2.5), multiplying by A−1, taking the divergence of both terms

and considering the continuity equation, an equation for pressure is obtained,

∇ · (A−1
∇p) = ∇ · (A−1H+A−1fb). (2.6)

2.2 Fundamentals of Computational Fluid dynamics 7

The solution of this equation yields a pressure field that can be used to correct the velocity field

for it to satisfy the continuity equation, resulting in the velocity corrector as shown in Figure 2.3,

where

U = A−1H−A−1
∇p+A−1fb. (2.7)

Corrected the velocity, the pressure equation is no longer satisfied since H depends on U which

has been updated and that is why it is necessary to perform a loop as illustrated in the Figure 2.3.

This resumes the algorithm schematically summarized in the previously mentioned Figure.

Figure 2.3: PISO algorithm flowchart.

Typically using the PISO algorithm, provided that the time-step is small enough it is not nec-

essary to do multiple pressure-velocity loops (or outer-loops in the OpenFOAM terminology) as

illustrated in the Figure 2.3, instead it is only necessary to perform a few inner-loops to obtain

partial convergence. The reader may refer to [23] for further details.

2.2.4 Deriving the analytical pressure Poisson equation

After looking at the PISO algorithm to solve the flow pressure field in a numerical way using the

discretized matrix form, a closer look into the mathematics is followed next.

8 State of the art

The Poisson equation is a non-homogeneous Laplace’s equation, and the second can be defined

as

∇
2
φ = 0, (2.8)

the general theory to get solutions is known as potential theory, and the solutions are the so-called

harmonic functions. The Poisson equation is a generalization of the Laplace’s and is defined as

∇
2
φ = f , (2.9)

where f is the potential field. Knowing the potential field it is necessary to calculate φ since Pois-

son’s equations do not profit from the harmonic solutions. Poisson’s equation describes multiple

physical phenomena, namely electrostatics, gravitation, thermal diffusion, taking always the same

form.

In the PISO algorithm, the equation to be solved is the discretized pressure Poisson equation

(2.6). This equation arises from forcing the continuity equation into the momentum equations and

a similar procedure may be used to derive an analytical form by taking the divergence of equation

(2.2), yielding

∇ · (ρ Du
Dt

) = ∇ · (−∇p+µ∇
2u+ fb), (2.10)

which after manipulation and neglecting the body forces, fb, results in

∂

∂ t

(
∂u
∂x

+
∂v
∂y

)
+

(
∂u
∂x

)2

+2
∂u
∂y

∂v
∂x

+u
∂

∂x

(
∂u
∂x

+
∂v
∂y

)
+

(
∂v
∂y

)2

+ v
∂

∂y

(
∂u
∂x

+
∂v
∂y

)
=

− 1
ρ

(
∂ 2 p
∂x2 +

∂ 2 p
∂y2

)
+ν

(
∂ 2

∂x2

(
∂u
∂x

+
∂v
∂y

)
+

∂ 2

∂y2

(
∂u
∂x

+
∂v
∂y

))
,

(2.11)

and considering the continuity equation for incompressible fluids, ∇ ·u = 0, one reaches the Pois-

son pressure equation for 2D flows

− 1
ρ

(
∂ 2 p
∂x2 +

∂ 2 p
∂y2

)
=

(
∂u
∂x

)2

+2
∂u
∂y

∂v
∂x

+

(
∂v
∂y

)2

. (2.12)

The iterative methods to solve this differential equation are general and well-known but consist

in a considerable computational cost within the CFD simulation, hence using a surrogate model

to compute the approximated solution directly may potentially save a considerable amount of

computational cost from a CFD simulation. As mentioned, other physical phenomenons have

governing equations of the same family, hence such a model that has φ as the output and f as the

input has the potential to solve any of these cases.

2.3 Fundamentals of Deep Learning 9

2.3 Fundamentals of Deep Learning

Deep learning, historically, has already some time, dating back to the 1940s. The recent increased

popularity results from the exponential increase of computational power, but also the world digi-

tization, providing huge datasets of every kind. In the initial brief introduction, the simplest kind

of model was described, however, deep learning algorithms and networks can be of immense

complexity to tackle a specific problem. Some examples of supervised learning algorithms are

generally distinguished as:

• Multilayer perceptrons (MLP) — Consisting in a collection of connected units (neurons)

which act together as a network to map an input to output;

• Convolutional neural networks (CNNs) — Commonly used to analyze visual imagery. This

is a regularized version of MLP, as MLP is prone to overfitting data due to their fully-

connected nodes. CNNs take advantage of hierarchical patterns in data, and are a specialized

type of neural networks that uses the convolution mathematical operation instead of matrix

multiplication;

• Recurrent neural networks (RNNs) — Typically used for sequential data or time series anal-

ysis. Commonly known to be used in natural language processing (NLP) and speech recog-

nition;

The above types belong to supervised learning because they are trained with labeled data, ie,

the input and labeled outputs are known. Generally, these algorithms have the task of mapping a

function f between the input X and output Y as in

Y = f (X). (2.13)

The objective of this algorithm comes from, after the training step is finished, being possible

to use this same f function to new data and obtain a prediction of the output.

2.3.1 Artificial Neural Networks

The basic unit of the ANN is an artificial neuron represented in Figure 2.4, and the output of each

of those neurons follows the equation

y = f

(
N

∑
i=1

xiwi +bi

)
(2.14)

where f represents the activation function, wi the weight of the neuron i and bi the bias of the

present neuron. A neural network consists of multiple connected layers which consist of multiple

neurons. A general representation of these layers is shown in Figure 2.5. The output of a node i

from layer l can be calculated by equation

10 State of the art

al
i = f

(
zl

i

)
= f

(
N

∑
j=1

xl
jw

l
ji +bl

i

)
(2.15)

where f can be any chosen activation function, and wl
ji the weight of the neuron j, where j

represents nodes at layer l −1, in neuron i from layer l. The bl
i represents a zero order coefficient

associated to node i from layer l.

Figure 2.4: Schematic representation of a single neuron. Figure from [24].

2.3.2 Training process

The training process consists of sequentially computing each node output ai
l from the input layer

through all the hidden layers until the last layer as in equation (2.15). This process is called

forward propagation which ends in a computed prediction. After this step, the predicted output

Ypred can finally be compared to the known label Y , and the discrepancy between these values is

evaluated through a chosen loss function as in

J = f (Ypred ,Y). (2.16)

The derivatives of the loss in relation to the weights w ji and bias bl
i at every node i and layer l are

also computed and used to update the weights in a process called backward propagation such that:

wl
ji = wl

ji −
∂J

∂wl
ji

(2.17)

and

bl
i = bl

i −α − ∂J
∂bl

i
. (2.18)

2.3 Fundamentals of Deep Learning 11

Figure 2.5: Schematic representation of a simple Multilayer perceptron (MLP). Illustration from
[25].

2.3.3 Convolutional Neural Network (CNN)

This algorithm was originally developed for computer vision tasks with an architecture specif-

ically suited for analyzing temporal and spatial structured data. The ability to correlate spatial

information provides to CNNs an exceptional performance on images, in such a way that every

pixel in an image is relevant in respect to its surrounding pixels and those who are far away, this

allows for pattern detection making CNNs so useful.

Convolutional layers give the name to the algorithm and are inspired in the well-known con-

volution operation in mathematics and replace the standard weights by convolutional kernels or

filters. A simple convolutional operation with a 3×3 kernel into a 4×4 input is shown in Figure 2.6.

Figure 2.6: Convolution with a 3×3 kernel over a 4×4 input layer. Illustration from [25].

12 State of the art

2.4 CFD and Deep Learning - Literature review

Over the years, fluid mechanics research has been looking at deep learning methods for increased

computational efficiency but also increased accuracy. Some applications include surrogate models

to substitute the whole CFD approach for a given application.

To a good overview, refer to [25] where a Table with the most recent applications is presented

with an intensive description of the families of DL algorithms used in 1 turbulence modeling:

i) tuning coefficients [26], [27] and ii) enhancing the models themselves [28], [29], 2 surrogate

modeling: i) simple surrogate model [30], ii) POD [31] and iii) super-resolution [32]. The DL

models used for those applications vary from MLPs, CNNs, RNN/LSTM, and others using purely

data-driven [33] but also physics informed models [34], [35].

Recently published, [36] highlights some of the areas of highest potential impact in agreement

with the areas more invested as can be noticed from the review mentioned above, including ac-

celerate DNS, improving turbulence closure modeling, and developing reduced-order models as

represented in Figure 2.7.

Figure 2.7: Most important areas where ML can enhance CFD as claimed in [36]. Ilustration
from [36].

2.5 Summary

Computational fluid dynamics is a field of study with a now long history and very refined tech-

niques, and DL, or more broadly ML, is a field with lots of recent progress keeping up with the

evolution of Moore’s law. Very recently the mentioned fields have been coupled in some works:

2.5 Summary 13

sometimes Deep Learning techniques are used to replace the whole CFD approach in very spe-

cific problems always lacking generalization, and others just aim to accelerate CFD simulations

typically with surrogate models.

14 State of the art

Chapter 3

Exploration section - Preliminary works

The development work was comprised of an initial exploratory part to test multiple approaches

of DL methods: data-driven or physics-informed methods in CFD. As DL has been reaching

scientific computing with growing prominence, recently some works regarding this application

have been published allowing to set realistic expectations from the starting point. The applications,

as in typical Deep Learning approaches, can be defined as data-driven, physically-driven, or even

a mix of both. The developments did not escape these classifications and will be further presented.

3.1 Data-driven Models Framework

3.1.1 Problem statement

The objective of the work was to develop a surrogate model as suitable as possible for a given

application. Generically, its purpose in CFD applications is to estimate a flow field, Y , or just a

quantity of interest given the relevant quantities, X , as

Y = f (X) (3.1)

where f represents the surrogate model. The relevant input quantities depend on the objective but

can generically be flow fields or temporal and spatial coordinates information.

3.1.2 Data generation

One of the most expensive and important steps in regards to data-driven approaches is data gen-

eration. For the aims of the present work, CFD simulations were performed focusing on the

bi-dimensional flow past a cylinder. The simulations were performed with the OpenFOAM CFD

software, from which version v6 was used [17]. OpenFOAM is a toolbox with multiple CFD

solvers and related applications, being extensively used in both academic and industrial applica-

tions. Multiple different simulations have been computed to generate the training data. Since for

15

16 Exploration section - Preliminary works

data-driven methods large amounts of data are necessary, a large number of distinct simulations

were performed. As the case setup was time demanding, it was important to automatize the pro-

cess of setting the simulations. As meshing operations took considerable effort, a python code

was developed to generate simple geometries of a certain family, allowing to afterward generate

a large number of different simulations of confined 2D cylinders, ellipses, rectangles, triangles,

and even rectangles not aligned with the flow. The machine learning techniques described in Sec-

tion 2.3 were implemented using the TensorFlow API v2 [37]. TensorFlow is a software platform

for machine learning that can be used with the Python programming language.

The simulation domains are visually illustrated ahead in Figure 3.2 and defined by x ∈ [15×
ydim,35× ydim] and y ∈ [−15× ydim,15× ydim], where ydim is the height of the rectangle, ie., the

dimension perpendicular to the flow.

3.1.3 Data pipeline

The first part of the project consisted of successfully extracting data from a CFD simulation. As the

final goal was to be able to pass the simulation data to Python [38], to be used with the TensorFlow

API [37], the simulation results computed on a computational mesh should be exported into a

python array.

This simple data pipeline consisted of

• Getting the relevant data from the simulations. This includes the relevant quantities com-

puted in the grid cell centers and converting them to a VTK type file;

• Reading the data. Reading the relevant data from the VTK file and pre-process it if neces-

sary. The pyVista interface was used [39];

• Storing the data in a hierarchical binary format, where the data is converted to an array and

padded to have a consistent size. To achieve this the HDF5 file format was used.

By the end of the above steps, an HDF5 file containing the full mesh information was avail-

able. The arrays with the relevant training data, which could be from the entire domain or just

from the region of interest, were stacked in a higher dimensional array for later use to train the

DL models. The codes capable of doing the above-mentioned process are available in this work

GitHub repository [40].

3.1.4 Training the model

Pre-processing the data is the first step, a good practice is to nondimensionalize the flow fields in

relation to the maximum velocity found in the domain obtained by

umax = max
(√

u2
x +u2

y

)
(3.2)

3.1 Data-driven Models Framework 17

with the intent of abstracting as much as possible to prevent the model to be fixed for particular

flow cases, obtaining the nondimensional velocity vector, u∗, and the nondimensional pressure

field, p∗ was achieved following

u∗ =
u

umax
(3.3)

and

p∗ =
p/ρ

u2
max

(3.4)

with ρ as the fluid density, respectively. To remove offsets from the pressure field, as suggested in

[41], the mean of each pressure field was removed according to

p̂ = p
′ −mean(p

′
). (3.5)

It’s well established that neural networks work better for normalized data, ie. data contained

within the [−1,1] or [0,1] ranges. To apply the mentioned normalization, a field quantity φ , is

normalized according to

φ
′
=

φ −min(φ)
max(φ)−min(φ)

(3.6)

which bounds φ
′
to [0,1].

To correctly access the training, the available data was split into training and test sets, with

90% of the available data in the training set and the remaining in the test set. The previous split

was selected to harness a high percentage of the data into training. Previous experiments revealed

10 % to be sufficiently representative to evaluate the training. The cost function used consists of

the mean squared error (MSE) defined as

MSE =
1

Ncells

Ncells

∑
i=1

(
θ̂ −θ

)2
(3.7)

where Ncells is the number of cells where an estimation is computed, θ the reference values, and

θ̂ the predicted values.

To access convergence and prevent overfitting, an early stopping criterion was applied. The

convergence was considered when there was no improvement of 5% in the test set loss within 25

epochs.

First of all, the architecture of the model must be defined, and for dealing with image data,

commonly Convolutional type models are preferred. These are used for classification or segmen-

tation when the data is presented as an image. Dealing with the data as a point cloud format, 1D

convolutions can be used allowing to use a similar model to those proposed for images. In this

specific application, Convolution NNs were chosen to the detriment of MLP NNs to lower the

number of trainable parameters.

18 Exploration section - Preliminary works

3.1.5 Model predictions

Having the framework defined, it can be used in the practical examples explored in this Section.

Evaluating the estimates provided by the NN consisted in computing the BIAS

BIAS =
1

Ncells

Ncells

∑
i=1

(
θ̂ −θ

)
, (3.8)

standard-deviation error (STDE),

ST DE =

√√√√ 1
Ncells−1

Ncells

∑
i=1

(
θ̂ −θ

)2
, (3.9)

and root mean squared error (RMSE)

RMSE =

√√√√ 1
Ncells

Ncells

∑
i=1

(
θ̂ −θ

)2
, (3.10)

and afterward normalizing each of those with the range of values from the reference results with

norm = max(φ)−min(φ). BIASnorm, ST DEnorm and RMSEnorm come from dividing BIAS, STDE

and RMSE by norm, respectively.

The data-driven models are a common approach where a neural network is trained as a surro-

gate model capable of predicting all the flow quantities in a given flow type. In [42] an example is

presented for a backward-step simulation of compressible flow which served as an initial method

to the presented work.

3.1.6 Point data

To overcome the limitations of the Image-data approach, allowing the use of generic meshes,

point-cloud recent works have been replicated here to solve the problem by valuing its strengths:

i Needs fewer points since it has refined and coarser zones, reassembling the aspect of a

typical mesh, leading to a relatively small number of points. Using image-data, the computational

demand increases rapidly, since the number of points in 3D examples grows cubically, and that is

the reason Point Clouds’ principal application is 3D computer vision [43],

ii Needs no interpolation since the points can easily be defined either from the points or cell

centers of a mesh, making the importation from a CFD solver fast and simple.

3.1.7 Point data with coordinates information

Using a point cloud and not dealing with the data as an image the geometrical information is

lost, therefore alongside the flow fields, spatial information must be given through the coordinates

of each point. The use of a convolutional model in a series of points can be done using 1D-

convolutional layers. The framework for this application was defined by having a CNN model with

the purpose of predicting a flow field when receiving the field from the previous time. Even giving

3.1 Data-driven Models Framework 19

the coordinates information, it was expected for this model to have troubles in generalization, since

it is dependent on the order in which the points are given. In typical two-dimensional convolutions,

the capability of perceiving spatial information comes the result of one pixel being related to the

neighbor ones, similar information can be accessed here but the lack of permutation invariance of

points in the input condemns the model to fail generalization.

Due to point cloud irregular format and to overcome the mentioned difficulties, the concept of

neural network proposed in [44] and schematically presented in Figure 3.1 is leveraged allowing

to work directly with these points respecting the permutation invariance.

Figure 3.1: Point-NET architecture from [44].

This neural network has been successfully applied to fluid dynamic steady-state cases in [41].

However, here it is proposed to archive transient flow predictions. To be capable of unsteady flow

predictions the proposed model is a combination of a CNN model coupled with the Point-Net

architecture, therefore the spatial information is given as input to the Point-Net part exactly as in

[41], and the flow fields are given to the convolution layers.

In most applications, the surrogate model is used to predict the flow quantities in the region of

interest, which, in this case, could be the obstacle, to compute the lift and drag coefficients, or only

the wake. This is the most efficient path in most cases, but here, since the objective is to apply the

surrogate model to provide the pressure field in every mesh cell, the prediction is done over the

whole domain.

The dataset consisted of 120 simulations of a 2D external flow past a rectangle, with 125 time

frames separated by a ∆t = 1s, the gross flow characteristic can be visualised in Figures 3.2 and

3.3 such as the predictions and the normalized error in every point of the domain.

3.1.8 Results

The results are evaluated by the prediction of all time frames of a simulation not previously seen

by the NN, ie. from the training set, as mentioned back in Section 3.1.4. Every time frame differs

by a constant time step, ∆t, defined in training. This surrogate model predicts every flow field

quantity, thus the chosen metrics, BIASnorm, ST DEnorm and RMSEnorm as defined in Section 3.1.5

are used to evaluate every field variable prediction in Table 3.1.

20 Exploration section - Preliminary works

Figure 3.2: Example of the CNN + PointNet predictions with the absolute normalized error for
each predicted field.

Figure 3.3: Example of the CNN + PointNet predictions with the absolute normalized error for
each predicted field.

3.2 PINN - Physics informed neural networks 21

Table 3.1: CONV+PointNet prediction error for every flow field

Model Error metric u v p

BIASnorm(%) 0.02 0.40 -0.40
CNN + PointNet STDEnorm(%) 1.39 1.32 1.06

RMSEnorm(%) 1.39 1.38 1.14

From Figures 3.2 and 3.3 the results are illustrated for two different time frames of the same

flow. The surrogate model predicted the three relevant flow quantities with similar error as shown

in Table 3.1. Although the surrogate model reached good results, its training was not done until

satisfying the convergence criteria due to the lack of computational resources needed to train a

CNN with approximately 106 trainable parameters with a big amount of data, leaving space to

further improvements. The examples were of two-dimensional flows but the ability to easily scale

it to 3D using point data is one of the principal reasons to explore it.

In conclusion, using a data-driven learning approach, a surrogate model for the unsteady exter-

nal flow past rectangle obstacles was successfully established. The developed model and training

scripts are available in this work’s GitHub [40] and could be directly applied to different types of

flows with distinct flow fields to be predicted.

3.2 PINN - Physics informed neural networks

As data acquisition can be expensive, the concept of Physics informed neural networks (PINN)

has been studied allowing the construction of networks that need low to zero data. The process

of training becomes much more expensive but it has been shown to be able to get good results

in simple cases [45]. Some works have been showing the viability of this framework [3] mainly

for identification problems and even closure of RANS models. For more detailed information, a

recent review of multiple PINN applications can be consulted in [45].

3.2.1 Training the model

In steady-state simulations, the temporal boundaries are not needed. To achieve the intended

results, the process starts with the generation of a set of points with a sampling method to produce

the points where the loss will be evaluated. To improve efficiency the Latin Hypercube Sampling

(LHS) [46] is used to select Nin inner points and Nb boundary points1. The number of points

sampled has implications in the computation cost, as the residuals are evaluated at those. Having

a mesh of the domain already constructed, it is possible to simply export the cell center and do not

generate the set of points from the previous method.

1LHS is a statistical method for generating a near-random sample of parameters from a multidimensional distribution
and is often used for Monte Carlo Integration to reduce computational cost [46].

22 Exploration section - Preliminary works

In the present work, a steady-state simulation was resolved by only knowing the governing

equations and boundary conditions, ie. no information about the flow field. In every of the pre-

sented examples, the loss function, L, is evaluated with the residual of the governing equations

and the temporal and spatial boundary conditions as in

L = LGE +β (LB +LIC) (3.11)

where LGE represents the portion of the loss coming from the residual of the governing equations in

the Nin internal points, LB the loss resulting from the non-compliance with spatial boundary condi-

tions in the Nb boundary points, and LIC the loss resulting from deviation from the temporal bound-

ary condition, typically, the initial boundary condition. β is an important parameter to weigh the

loss coming from the boundary conditions, and it can help to make the optimization problem easier

by improving the stability increasing the boundary conditions loss’ weight, thus, in Section 3.2.5

its influence is tested. It is noteworthy to underline that having measurement data also allows the

use of data-driven learning helping the PINN to learn, but here the models are purely physically in-

formed. The input quantities for the PINN models are only the spatial coordinates (x,y) normalized

following equation (3.6). The optimization algorithms consisted of the Adam optimization [47] in

the 10000 first epochs and Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-

BFGS) in the remaining. In Figure 3.4 the models’ architecture will be presented for the general

case of unsteady flow, using it for steady flow only requires to dispense the temporal input, t, tem-

poral boundary conditions, LIC, and temporal derivatives, ∂φ

∂ t from the governing equations. For

all the models presented, an implementation in Tensorflow v2 is provided in the GitHub reposi-

tory [40].

3.2.2 Approach 1

The first method, presented in Figure 3.4 as 1 was proposed in [3]. Its implementation needs

third-order derivations in each epoch which bring a lot of computational/storage cost, however, as

the stream function, ψ , ensures continuity, in agreement with previously published works it was

found to improve convergence since the learning direction can be clearer. Although the model

does not output the velocities directly, each velocity component can be derived from ψ as in

ux =
∂ψ

∂y
(3.12)

and

uy =−∂ψ

∂x
. (3.13)

Derived the vector u, the loss can be evaluated. The PINN model is represented in Figure 3.4

as well as the governing equations considered.

3.2 PINN - Physics informed neural networks 23

3.2.3 Approach 2

Inspired in [48], the PINN 2 is also presented in Figure 3.4. Its main purpose was to reduce the

order of derivations needed, this concept allows to get the convergence benefit of using ψ instead

of the velocities, but only needing second-order derivations. Here the governing equations are the

Cauchy momentum equations
∂u
∂ t

+(u ·∇) ·u = ∇σ
∗, (3.14)

and the constitutive equation

σ
∗ =

σ

ρ
=− p

ρ
I +ν

(
∇u+∇uT) (3.15)

as also presented in Figure 3.4.

Figure 3.4: PINN architectures 1 and 2 adapted from [48].

3.2.4 Approaches 3 and 4 - Predicting the velocity field

Since predicting ψ is only viable in 2D flows, to be capable of generalization to real 3D cases, the

following model aims to predict the velocity fields directly.

PINNs 3 and 4 are proposed as a modification to PINN 1 and 2 , respectively, con-

sisting of the removal of the stream function, ψ , and adding the continuity equation to the set of

24 Exploration section - Preliminary works

governing equations from which the loss is computed, thus allowing to reduce the order of the

derivations and have the capability of generalizing to 3D flow. Preliminary work allowed to con-

clude that a simulation with PINN models takes orders of magnitude more time than conventional

CFD solvers, therefore, as a proof of concept experiments were done for a simple 2D unsteady

case.

3.2.5 Results

To summarize, the following approaches were followed, varying on the outputs and the way the

loss is evaluated. Based on the outputs they can be distinguished as follows.

• PINN 1 – Stream function Ψ, stress tensor σ and pressure p - Figure 3.4;

• PINN 2 – Stream function Ψ and pressure p - Figure 3.4;

• PINN 3 – Velocity, u, and pressure, p, fields;

• PINN 4 – Velocity, u, stress tensor, σ , and pressure, p;

For a 2D laminar flow between parallel plates over a cylinder in steady-state, a total of Nin =

50000 inner collocated points were used to compute the governing equations loss, LGE , with re-

finement near all the wall-type boundaries, and Nb = 10000 points were placed at the bound-

aries to compute the boundary loss, LB, as illustrated in Figure 3.5. The domain was defined by

x ∈ [−3D,9.5D] and y ∈ [−5
4 D, 5

4 D] where D is diameter of the circle. This very easily generalizes

to transient phenomenon using the 3rd coordinate corresponding as time, however, since this is a

steady-state case, every point has the same time coordinate.

The results obtained with every one of these models are presented in Tables 3.2 and 3.3 by the

means of the RMSEnorm as defined in Section 3.1.5, and compared based on the pressure along the

cylinder in Figure 3.6.

Figure 3.5: Domain representation with inner and boundary points.

To first evaluate each model, the RMSE normalized of each model prediction, for multiple β

values, is presented for PINN 1 and 4 and PINN 2 and 3 in Tables 3.2 and 3.3, respec-

tively. The pressure distribution on the cylinder surface is of utmost importance since it is used to

compute the pressure drag and lift on the object, thus this quantity’s prediction from every PINN

was also compared in Figure 3.6.

3.2 PINN - Physics informed neural networks 25

Table 3.2: PINN 1 and PINN 4 RMSEnorm for every field prediction

PINN1 RMSEnorm(%) PINN4 RMSEnorm(%)
β u v p u v p

1 8.52 1.71 10.20 53.73 31.12 33.87
2 2.99 0.61 3.64 52.11 33.59 33.72
5 0.84 0.19 1.07 57.15 36.72 23.78
10 1.70 0.26 1.38 49.84 39.56 33.52

Table 3.3: PINN2 and PINN3 RMSEnorm for every field prediction

PINN2 RMSEnorm(%) PINN3 RMSEnorm(%)
β u v p u v p

1 5.79 1,78 8,36 - - -
2 2.35 1.02 3.53 - - -
5 2.95 1.26 4.36 217.35 69.01 33.21
10 1.34 0.77 1.98 202.03 345.21 33.71
20 1.69 1.05 2.41 - - -
50 1.93 1.20 2.83 526.36 265.54 33.30

Figure 3.6: Pressure prediction along the cylinder surface from every PINN model.

An overall good agreement for the velocities prediction in PINNs 1 and 2 is clear, but

bigger discrepancies have been found in the pressure predictions with PINN 2 . PINNs 3 and

26 Exploration section - Preliminary works

4 did not work in this case, since their predictions do not give any useful information about the

flow.

3.2.6 Analysis

PINN 1 showed to be able to predict with a low error every flow quantity in concordance with

the examples shown in the literature. Conversely, PINN 2 [48] although claimed to be an im-

provement over the previous architecture, revealed, in this case, inferior accuracy but with useful

results for velocity prediction. PINN 2 performance could be further investigated by changing

the collocation points or even using measured data to aid the training. Proposed PINNs 3 and

4 failed to accomplish useful results.

In conclusion, although proven useful for some specific applications, PINNs represent big

computational costs when compared with conventional CFD solvers.

3.3 Conclusions

Along with this Chapter, some of the exploratory work was documented, useful tools were de-

veloped to be used in the next Chapter, and different surrogate models to completely replace the

CFD approach were explored using, in Section 3.1, purely a data-driven approach, and ahead in

Section 3.2 a sole physics informed method. Both of these were useful as proof of concept and

allowed to discard the hypothesis of using PINNs for a surrogate model because of high compu-

tation expenses. The next Chapter aims at the main objective with the use of a purely data-driven

approach.

Chapter 4

Surrogate pressure model

Supported by the previous Chapter, the direction to pursue the main objective was layed out. The

goal of the surrogate model is to be able to map the non-conservative velocity field, U∗, from

the momentum predictor step illustrated in Figure 2.3 to a pressure field, p∗, that ensures mass

conservation, ie., to get p∗ from U∗. Typically more than one PISO loop must be performed

until the pressure and velocity fields ensure both the conservation of momentum and mass. The

aim is to replace the pressure equation leaving only the velocity corrector step which is low in

computational expenses. Alternatively, if the surrogate model simply enhances the PISO algorithm

by providing a good first guess for the conservative pressure field it would also bring improvements

as it potentially decreases the iterations needed in the PISO loop.

4.1 Methodology

The work aims to map a set of input fields constituted by the x and y components of the velocity

field labeled as inputs 1 and 2 , respectively, and an extra parameter to represent the geometry

as illustrated in Figure 4.1. The geometry parameter could be a boolean informing if a particular

cell is inside the flow domain, referenced in Figure 4.1 as input labeled 4 . To harness more

information, the alternative consists of a signed distance function (SDF) multiplied by the boolean

giving rise to the modified signed-distance function (SDFmod) as in

SDFmod(x) =

d(x,∂Ω) if x ∈ Ω

0 if x ∈ Ωc
(4.1)

where d(x,∂Ω) gives the minimal distance between a point x and the boundary of Ω, ∂Ω, and Ωc

represents the domain inside the obstacle. This function gives, for each cell, the distance to the

closest wall. This is represented in Figure 4.1 as input labeled 3 .

In most DL applications that predict fluid flow the output encompasses the full domain or the

region of interest (e.g. [49]). This can hinder generalization to different grids or domains.

27

28 Surrogate pressure model

Figure 4.1: Input and output representation of the model.

In order to have a generic model that could be applied to any geometry, in this work an al-

ternative is proposed that consists in dividing the domains into fixed shape squared blocks and

training with those. Afterward, given the right assemble of these, it is possible to represent any

geometry inside a rectangle by having the information of which cells belong to the flow domain

as illustrated in Figure 4.2 where the darker blue region is outside the flow domain. The selected

study case was a confined flow past an obstacle as schematically represented in Figure 4.2 with the

boundary conditions for velocity. U(y) is a parabolic velocity profile applied as the inlet boundary

condition coming from the analytical solution to fully developed laminar flow between parallel

plates. U(y) = 3
2 u
(

1−
(y

h

)2
)

where y is the distance from the centerline, h half of the distance

between plates and u the mean velocity.

To facilitate the manipulation of blocks the domain will be treated as an image. A useful gen-

eralization implies the necessity of applying the above method to a generic mesh. An interpolation

Figure 4.2: Problem representation - flow past a generic obstacle with boundary conditions for
velocity. Adapted from [50].

4.2 Dataset description 29

between the original mesh and a uniform grid can solve the problem. After obtaining the uniform

grid, it is straightforward to map the grid into a 2D array, ie., to an image. The quantities to be

mapped from the original mesh are extracted from the mesh cell centroids.

As the final goal is to couple the CFD solver with the developed DL model, all these algo-

rithms must be considered from a high-performance perspective, therefore the operations must

be vectorized as much as possible and the cost of the interpolation must be minimized. As the

interpolation between grids needs to be done in every prediction (ie. each time-step), paying the

full cost every time would consist of a huge bottleneck. Thus the interpolation weights only need

to be computed once and saved for the next interpolation to be a simple matrix operation.

Having the method briefly described, the first relevant parameter emerging is the resolution

of the uniform interpolation grid. Since, in this application, the distance between walls was fixed

to 2 m, it was possible to choose a distance between grid points, ∆, that allows having Ny cells

in the y-direction. Multiple distances between points were investigated, where smaller ∆ meant

better resolution in the higher gradient zones but be a waste of resources in zones where the CFD

mesh is even coarser than the interpolation grid. Bigger ∆ can mean a reduction in computational

cost by resuming the information, and could still reach a low overall error in the full domain but

inadequate estimations near the obstacle. With the information collected from preliminary work,

a distance between points of 5 × 10−3 m, corresponding to Ny = 400, was considered a good

compromise.

4.2 Dataset description

In a data-driven application, the data and data treatment occupy an outstanding position since it

has arguably the biggest influence, therefore it was methodically chosen.

Regarding the data generation, it was consistently extracted according to a characteristic time-

scale defined as t∗ = φ/Umax, where φ is the characteristic length, and Umax the centerline velocity

at the inlet. The CFD simulations were done for a total time of 300t∗ to fully capture the dynamic

behavior of the flow, and 100 time frames are extracted from each simulation with a ∆t = 3t∗. The

domain was characterized by x ∈ [0,15− 20] and y ∈ [−1,1] for all simulations. As well as in

applications from Section 3.1, a good practice is to nondimensionalize the flow fields in relation

to the maximum velocity as in equations (3.3) and (3.4).

Having pre-processed the data in the real domain, it is necessary to extract it to the mentioned

blocks which will be used by the DL model. To these first studies, a random sampling approach

was implemented, collecting Nblocks from the hundreds of thousands possible in each simulation’s

time frame. These blocks are extracted as schematically illustrated in Figure 4.3.

Training with the real values of pressure after the above pre-processing and extraction would

consist of an ill-posed optimization problem since the random pressure offsets in the solutions are

not correlated with the inputs, ie., for the same input values the outputs can be different depending

on the boundary conditions. MSE can be written as the sum of the variance, VAR, and the squared

bias, BIAS2 as in

30 Surrogate pressure model

Figure 4.3: Representation of the sampling method from the original domain.

MSE =VAR+BIAS2, (4.2)

with MSE defined as in equation (3.7), and VAR = ST DE2 with STDE defined in equation (3.9),

and BIAS represented in equation (3.8).

Hence, correctly posing the problem can be done with one of the following approaches: i)

use the variance as loss metrics since it represents the MSE without the BIAS2 term; or ii) simply

remove the mean from each output block as in equation (3.5) and use MSE as the loss function.

After preliminary experimentations, option ii) was selected after revealing far better performance.

Finally, the normalization method here applied is

φ
′
=

φ

max(abs(φ))
(4.3)

to a quantity field φ , bounding φ
′
to [−1,1].

The set of simulations consists of only simulations in the laminar regime with Re = 100.

4.3 Methodologies and architectures

The straightforward approach is to train a NN to be capable of mapping the N ×N size blocks

containing the input fields to the output field, ie., working directly in the physical domain, thus

it constitutes the first model from Figure 4.4 - Model 1 . The model chosen for this task is the

U-Net (proposed in [51]), since it has been applied to fluid dynamics in multiple works in the form

of standard U-Net’s [52], [53] or even a combination of those [54].

By computing Principal Component Analysis (PCA) it is possible to further pre-process the

data and eliminate the encoder part of the network, Model 2 , consisting in passing the informa-

tion relative to nPC principal components as input and mapping the result directly to the original

domain of N×N blocks as represented in Figure 4.4, or to eliminate both the encoder and decoder

4.3 Methodologies and architectures 31

Figure 4.4: U-net-based architectures modified architectures.

layers, resulting in Model 3 which takes as input the PC, but also predicts in the domain of

the principal components (PC) followed by an inverse transformation back to the original N ×N

blocks - corresponding to Model 3 represented in Figure 4.4.

The application of PCA and its subsequent truncation to a few PC that explain most of the

variance found in the input data saves large amounts of computational resources since it helps

the model training by reducing the dimensionality of the input/output data and only yield the

most relevant information. It could also be seen as a replacement of the encoder and decoder

layers of the NN, which otherwise needed to be learned. Some literature defends the relevance of

standardization before the application of the PCA algorithm, but it depends on the application. In

the current work, such pre-processing to the PCA input was not employed.

32 Surrogate pressure model

In Figure 4.4 is presented a high-level schematic of the models, omitting further detail for the

sake of simplicity. Please refer to Appendix B for details on each architecture.

4.3.1 Assembling algorithm

After each block is predicted by one of the proposed models, the information still needs to be

correctly assembled to form the whole domain, therefore an assembling algorithm was developed

allowing to consistently reconstruct the complete pressure field in agreement to the boundary

condition at the outlet as shown in Figure 4.5.

The pressure value at location (0) will be used as a reference pressure and is an input to the

correction model. Generally its value will be set to 0, but it can be any other value if pressure

difference in respect to other locations is maintained. The first correction happens at (0) allowing

the first block to fulfill the outlet boundary condition. Note that, since we are dealing with cell

centroids and the boundary conditions are applied at the boundary, ie., cell faces, an error is being

committed and must be later corrected in the whole domain. Following the assemble algorithm,

the second block in the same row has an intersection zone (1) with the first one. This intersection

zone will be used to apply a correction to the new block making it consistent with the existing one,

and similar corrections are done incrementally up to the left end of the domain. Finished the first

row, in the next blocks, the correction is done in the upper end of the new block in the intersection

zone represented as (n+1) and the process follows up to defining the whole domain.

Regarding the mentioned required correcting, in Figure 4.6 that the pressure at (1,0) is not 0

in reality, since the p = 0 boundary condition is applied at (0,0), therefore a simple correction is

now presented.

To estimate the real value of p0 and quantify the error committed in assuming it to be 0, it

is reasonable to assume the gradient upstream to be equal to the gradient at the outlet boundary.

For cells upstream ∂ p
∂x can be approximated by P2−P1

δx and defining, for simplicity sake, p1 = p(1,0),

p2 = p(2,0) and poutlet = p(0,0),

p1 − poutlet

∆x/2
=

p2 − p1

∆x
, (4.4)

which results in

p1 =
1
3
(p2 +2poutlet). (4.5)

Having previously considered p1 = 0 for simplicity, the corrected pressure at point 1, p1,corr,

must be as defined in equation (4.5), therefore the corrected pressure field, pcorr can be computed

from

pcorr = p+
1
3

p2. (4.6)

The previous correction would work if the assumption of p1 = 0 was applied at every row

of the array, but since the assemble algorithm only applies it to the first row, a better correction

4.3 Methodologies and architectures 33

Figure 4.5: Schematic representation of assembling algorithm.

Figure 4.6: Domain and outlet boundary representation.

34 Surrogate pressure model

consists in considering again equation (4.5) and considering the deviation in the whole domain to

be defined as in

pdeviation = mean(p(1,:)−
1
3

p(2,:)), (4.7)

where p(j,:) represents a vector with the pressure in all cells of column j as represented in Fig-

ure 4.6. The corrected pressure field, pcorr, is only obtained by subtracting the deviation as in

pcorr = p− pdeviation. (4.8)

After the last step, the prediction is constructed consistently with the reference result coming

from the CFD solver and the prediction accuracy can now be properly evaluated.

4.3.2 Neural network selection

Inspired in [55], Model 4 , a simple MLP, similar to CNN Model 3 was proposed since this

model is estimating principal components (PC) instead of image data as represented in Figure 4.7.

Figure 4.7: MLP with truncated PCA and reconstruction layers. Adapted from [55].

In Tables from Appendix A the results for a case with all the above models are presented.

Besides the model architecture, the influence of block size and correction overlap region were

studied resulting in adequately fixing these parameters. Every training process was employed

for 1000 epochs, here without the use of early stopping, to allow that performance comparison.

The metrics used consisted in RMSEnorm, BIASnorm, and ST DEnorm of multiple time frames from

several CFD simulations as defined in Section 3.1.5. To resume information, in the error chart

from Figure 4.8 only the best performances of each architecture and block size combination are

presented. Tables with full results are available in Appendix A. The results from Model 1 were

4.3 Methodologies and architectures 35

not shown in Figure 4.8 due to its inferior performance it would deteriorate the plot. Considering

the low computational effort required by Model 4 and its accuracy represented in Figure 4.8, it

was the selected model to continue the study.

Figure 4.8: Error chart for performance comparison. Mx&By represents the error for model x
predictions with a block size of y.

As mentioned, to pick the best model’s architecture, the blocks were sampled randomly from

the domain. However, Latin Hyper-cube Sampling (LHS) [56] was used to sample these blocks in

the remaining studies for higher efficiency.

4.3.3 Hyper-parameters value selection

For the selected model architecture, the hyper-parameters were tuned to access adequate parame-

ters for training. The mentioned parameters consist in:

• Loss formulation, allowing to direct the model to a more successfully train path in predicting

the principal components.

• Number of principal components in either the input or output parameters, defining the level

of information filtering.

36 Surrogate pressure model

• Batch size can have an important influence on the model’s accuracy, particularly too large

batch sizes can have significant degradation in the quality of the model on its ability to

generalize "since large-batch methods tend to converge to sharp minimizers of the training

function" [57].

• Learning rate, α , and moving average parameter, β . These are parameters required by the

Adam optimization algorithm [58].

• Model depth, defined by the number of hidden layers with a constant width of 512 neurons

as represented in Figure 4.7.

• Dropout which was set to zero in agreement with [53] where it is shown that increasing

dropout does not improve the test data accuracy and can deteriorate it. Since the model used

here is similar, that consideration will be taken to reduce the number of variables to adjust.

Preliminary numerical experiments were performed but did not lead to improved results.

The most elementary loss function would be the MSE of the model’s prediction as defined in

equation (3.7), therefore it constitutes L1. To force the NN to better predict the most important

parameters, a modification was applied to the loss function to weight each component’s importance

in the loss computation, being the weight defined by each PC contribution to the total variance, L2

and L3, respectively represented in equations

L2 =
1

Ncells

Ncells

∑
i=1

(
θ̂ −θ

)2
Explainedvar (4.9)

and

L3 =
1

Ncells

Ncells

∑
i=1

(
θ̂ −θ

)2
Explained2

var, (4.10)

where Explainedvar is a vector with the total variance explained by each PC. The influence of this

parameter is analyzed in conjunction with the batch size as shown in Figure 4.9, having chosen

L1.

The influence of the number of PC used or the total variance explained by these was also

studied resulting in the results presented in Figure 4.10. A total of 32 principal components were

selected representing 95% of the total variance.

To pick the best learning rate range the evolution of the loss is plotted for a range of learning

rates as in Figure 4.11 allowing to first pick an optimal learning rate range to further study multiple

values as in Figure 4.12.

From Figure 4.11 the range from 10−5 to 10−4 seemed optimal, and values in that range were

tested resulting in fixing the learning rate to lr = 10−4 and β = 0.99 accordingly to results from

Figure 4.12.

Since increased model complexity allows to better fit the data, namely in the BIAS of each

block field prediction (note that after assembling this effect can no longer be analyzed), increasing

4.3 Methodologies and architectures 37

Figure 4.9: Batch size and loss function selection study.

Figure 4.10: The number of truncated principal components from pressure principal component
analysis (PCA).

38 Surrogate pressure model

Figure 4.11: Learning rate (lr) tuning.

Figure 4.12: Learning rate (lr) and moving average parameter (β1) study.

4.4 Training and evaluation method 39

it can be beneficial only up to a point, thus the optimal point is looked for now in the results

presented at Figure 4.13.

Figure 4.13: The performance of the model for multiple depths is defined by the number of hidden
layers.

In most applications, a given data-set is generated and the model is trained with it, but in

this specific application, a single temporal frame of a simulation can be decomposed in hun-

dreds of thousands of different blocks depending on the dimensions of the domain as illustrated

in Figure 4.3, thus it may be necessary to choose a value which represents a good compromise

between accuracy and training time. During the following studies, two dataset levels were tested:

N1 = 5×105 ×n being n the number of different families of geometries and N2 = 2.5×106 ×n,

for example, N1◦,□ = 1×106 and N2◦,□ = 5×106.

4.4 Training and evaluation method

With the model fully defined, the training will be done for different families of geometries listed

ahead in Table 4.1 and the same flow conditions (represented by the Re number), but its perfor-

mance will be also accessed for different flow conditions to study the generalization’s capability.

The training convergence criteria consisted of stopping whenever the decrease in the loss evalu-

ated in the test dataset was lower than 0.1% over 250 epochs. The evaluation of the models will

consist in testing the performance of neural networks trained with different datasets individually

and in groups.

Checking the model’s aptitude to laminar flow predictions was the first objective, but its ability

to extrapolate to the turbulent regime was also tested: using the present model trained with only

laminar flow data (without the computational expenses of creating a dataset with simulations of

turbulent flows) to predict the pressure field in turbulent flows simulations since such capability

would be an indicator of the model’s utility. Having the main ideas presented, the results Section

40 Surrogate pressure model

will be divided into two different models’ families: Mu: the models with u as the input field and a

new model, M f (u), will be presented taking f (u) as the input field. Within each of these, the tests

will be divided based on the flow regime of the test simulations - laminar or turbulent regime.

• In the laminar regime tests the models are evaluated for multiple flows ranging from differ-

ent obstacle geometries to different Reynolds numbers.

• In the turbulent regime tests Section the performance of models trained with results from

one laminar Reynolds number flow was estimated in their ability to predict the pressure field

from a turbulent simulation with turbulence modeled by the k-omega SST RANS turbulence

model;

Every evaluation was performed based on 200 time frames from 4 different simulations with

different obstacles (from the same family of geometries) providing a representative evaluation of

the model’s performance over the whole family of geometries as well as in predicting the dy-

namical behavior of each one. The dataset symbology is defined in Table 4.1 and the notation to

identify the models is defined for convenience in Table 4.2.

Table 4.1: Dataset symbology

Dataset Symbol

Circles ◦
Rectangles □
Triangles ◁
Inclined rectangles /

Table 4.2: Models’ description and symbology based in the training datasets

Training datasets Model symbol

◦ M◦
◦, □ M◦, □
◦, □, ◁ M◦, □, ◁
◦, □, ◁, / M◦, □, ◁, /

These subscripts indicate the geometries used in training. The training took place for only

Re = 100 flows its competence of extrapolation for other Reynolds numbers will be explored.

4.5 Results

4.5.1 Tests in laminar regime

The first results obtained consisted in the testing of M◦, M◦, □, M◦, □, ◁, and M◦, □, ◁, / to predict

within all the families of geometries in flows characterized by the training Re number, Re = 100,

4.5 Results 41

as presented in Table 4.3.

Table 4.3: Mu results from training with multiple datasets and tested in Re = 100 flows

Model Error metric ◦ dataset □ dataset ◁ dataset / dataset
(%) N1 N2 N1 N2 N1 N2 N1 N2

BIASnorm 0.42 -0.04 0.61 0.30 -6.90 -9.06 -0.11 -2.49
M◦ ST DEnorm 1.13 1.03 2.08 2.45 10.01 12.3 12.87 13.84

RMSEnorm 1.20 1.04 2.17 2.46 12.16 15.27 12.87 14.07

BIASnorm -0.83 -0.28 -0.33 -0.17 -8.86 -8.71 -4.51 -2,76
M◦, □ ST DEnorm 1.32 1.19 0.91 0.87 10.76 10.09 15.37 12.66

RMSEnorm 1.56 1.22 0.97 0.89 13.94 13.33 16.02 13.93

BIASnorm -0.17 −0.62 -0.13 -0.36 -0.18 0.86 3.25 3.53
M◦, □, ◁ ST DEnorm 1.70 1.58 1.00 0.98 1.89 1.81 5.51 5.60

RMSEnorm 1.71 1.70 1.01 1.04 1.90 2.00 6.39 6.62

BIASnorm -0.48 −1.11 -0.45 -0.45 -0.54 -0.51 0.20 -0.64
M◦, □, ◁, / ST DEnorm 1.90 2.07 1.34 1.49 1.85 2.14 3.01 3.06

RMSEnorm 1.96 2.35 1.41 1.56 1.93 2.20 3.02 3.13

After the analysis of Table 4.3 it is clear that an increase in training data diversity allows the

model to better generalize. Incrementation in training sets results in overall better performance, but

can also impair results for a particular dataset, for example, M◦ is by far the best model to predict

cylinder flows at least in the training conditions, although, incrementing training datasets showed

to consistently increase the error evaluated in the mentioned dataset up to M◦, □, ◁, /. Although

M◦, □, ◁, / is still trained with the ◦ dataset, its predictions are not as accurate because the model

can no longer overfit to the cylinder flow cases. From Table 4.3 it is already possible to see that the

□ dataset has no good contribution to the training once the results degenerate from M◦ to M◦, □.

It is already possible to conclude the inadequacy of using the N2 number of samples since the lack

of results’ improvement does not overcome the increase in computational cost from the training

step and it is also prone to overfitting.

To visually illustrate the quality of some predictions from Table 4.3, in Figure 4.14 a single

prediction example is presented for each family of geometries. The images collectively show the

predictions and the error committed in every zone of the flow domain.

To better inspect the influence of each training set in the predictions, the results of Table 4.4

are presented.

From Table 4.4 the contribution of each dataset to the training can be compared. Following

the previous results, the information learned from the □ dataset is not useful to different predic-

tions. Conversely, the results from M◁ showed to be promising since, by learning with only the

◁ dataset, the model can make accurate predictions across all the other flows. Alongside M◁, M/

had good prediction abilities. The overall good and consistent accuracy for different datasets are

accompanied by the difficulty in predicting the training datasets. This happens because of the

higher complexity of these flows’ dynamical structures, which allows the model to learn different

42 Surrogate pressure model

Figure 4.14: Mu prediction examples for each geometry.

Table 4.4: Mu results trained with each dataset and tested in Re = 100 flows

Model Error metric ◦ dataset □ dataset ◁ dataset / dataset
(%) N1 N2 N1 N2 N1 N2 N1 N2

BIASnorm 0.42 -0.04 0.61 0.30 -6.90 -9.06 -0.11 -2.49
M◦ ST DEnorm 1.13 1.03 2.08 2.45 10.01 12.30 12.87 13.84

RMSEnorm 1.20 1.04 2.17 2.46 12.16 15.27 12.87 14.07

BIASnorm -1.96 −3.17 0.04 -0.27 -11.50 -9.05 -2.32 -3.78
M□ ST DEnorm 4.05 6.48 0.77 0.75 13.53 11.16 12.02 12.79

RMSEnorm 4.50 7.22 0.77 0.80 17.75 14.37 12.24 13.37

BIASnorm -0.99 −2.52 -1.04 -1.58 -0.03 -0.39 3.03 2.98
M◁ ST DEnorm 3.89 4.28 2.56 3.35 1.83 1.42 5.81 6.23

RMSEnorm 4.01 4.97 2.77 3.70 1.83 1.47 6.55 5.47

BIASnorm -2.17 −2.78 -0.66 -1.55 -6.16 0.70 -1.34 -1.16
M/ ST DEnorm 4.88 5.84 3.60 4.42 9.04 9.25 3.15 2.53

RMSEnorm 5.34 6.47 3,96 4.68 10.94 9.28 3.42 2.78

flow patterns with only one family of geometries, indicating an increase of simulations in the ◁

and / datasets could be very beneficial to the training. In the limit, training with a large number of

simulations with these geometries could result in a much better performance which could poten-

tially map to different flows. Even though these datasets provide useful information to the model’s

training, it is still possible to obtain larger flow diversity by producing additional simulations with

the same obstacles tilted.

4.5 Results 43

4.5.2 Predictions to different Reynolds numbers: laminar regime

Tested each model at Re = 100, its extrapolation capabilities will be further inspected to flow

conditions corresponding to Re = 10, 50, 500 and 1000 in Table 4.5 only within simulations in the

◦ dataset.

Table 4.5: Mu extrapolation test in the laminar regime. Prediction case: ◦ dataset in laminar
regime

Model Error metric Re = 10 Re = 50 Re = 500 Re = 1000
(%) N1 N2 N1 N2 N1 N2 N1 N2

BIASnorm -28.36 -29.03 -4.62 -7.35 -3.58 -5.39 -4.92 -9.65
M◦ ST DEnorm 28.43 29.06 13.05 1.69 14.42 12.89 18.59 17.62

RMSEnorm 40.16 41.08 13.84 12.98 14.86 13.98 19.23 20.09

BIASnorm -29.9 -30.77 -13.41 -13.64 -16.44 -10.63 -20.52 -13.74
M□ ST DEnorm 30.10 31.35 15.20 14.51 14.99 17.22 22.89 17.59

RMSEnorm 42.43 43.93 20.27 19.91 22.25 13.55 30.74 22.32

BIASnorm -29.07 -30.20 -2.75 -5.71 7.53 7.00 6.60 7.00
M◁ ST DEnorm 29.07 29.94 15.7 15.88 14.21 13.52 16.25 16.66

RMSEnorm 41.11 42.52 15.94 16.88 16.08 15.23 17.54 18.07

BIASnorm -28.43 -28.32 -3.11 -1.31 1.43 11.33 -1.79 9.07
M/ ST DEnorm 27.58 26.69 14.13 15.69 13.54 14.70 15.97 19.51

RMSEnorm 39.61 38.92 14.47 15.74 13.62 18.56 16.07 21.52

BIASnorm -28.86 -29.76 -9.62 -10.97 -5.93 -7.97 -10.14 -15.35
M◦, □ ST DEnorm 28.64 30.10 12.92 14.35 13.83 16.17 16.95 19.65

RMSEnorm 40.66 42.32 16.32 18.06 15.05 18.02 19.75 24.94

BIASnorm -29.12 -29.07 -5.62 -7.13 3.95 0.13 0.60 -2.67
M◦, □, ◁ ST DEnorm 29.35 29.01 13.26 11.92 13.16 11.95 15.58 14.38

RMSEnorm 41.34 41.07 14.4 13.89 13.74 11.95 15.59 14.63

BIASnorm -28.37 -28,88 -5.10 -5,68 1.85 3.47 2.35 3.68
M◦, □, ◁, / ST DEnorm 28.36 28,81 11.2 12.71 10.08 11.41 11.68 12.52

RMSEnorm 40.11 40.79 12.31 13.92 10.24 11.93 11.91 13.05

Table 4.5 results show the difficulty of generalization to other flow conditions, particularly

at low Re numbers where the flow becomes stationary with no dynamical structures. As the test

simulations are in different regimes, the NN fails in predicting the pressure upstream the obstacle

and the overall pressure gradient, as illustrated in Figure 4.15, which results in large errors.

Friction losses introduced by the obstacle result in the pressure upstream, as the pressure is set

at the outlet boundary, and different pressure gradients from the line pressure drop are noticeable

in the downstream region. Both these pressure losses come from walls viscous stresses, and in

laminar regime, are known to increase with the viscosity or decrease with the Re number, therefore

it is clear that in different Re number flows these quantities must be predicted differently.

44 Surrogate pressure model

The models lack information to correctly find the relation between velocity and pressure fields

consistently for different Re without the explicit inclusion of the viscosity, or implicitly from the

Re number, thus, using only u as the input field, and with the proposed nondimensionalization,

presented results allowed to notice that the problem may be ill-posed for training with different Re

numbers. A possible solution to the problem may be a different normalization to the pressure field

in such a way that in the process of denormalization the pressure gradient is corrected based on a

viscosity-related factor to better re-scale the solution to different Re. A solution could be to nor-

malize the pressure field according to (P/ρ)′ = (P/ρ)/(νUmax/L) with L being the longitudinal

distance of the domain (or the block longitudinal size) since it is the length scale directly related

to the inline pressure losses.

Figure 4.15: Mu prediction for Re = 10 flow prediction result example.

Even with the previously mentioned limitation present, it is still possible to see an improve-

ment trend within the tests at Re = 50,500,1000, as long as the flow conditions are not completely

different and the model is trained with more datasets, since M◦, □, ◁ and M◦, □, ◁, /, show relatively

good capacity. Although there is an improvement trend, which could steadily go into lower errors,

the ill-posed optimization problem may eventually set a lower limit to the errors impossible of

being surpassed with this lower limit following the increase in the Re test range. Looking closer

to M◦, M□, M◁ and M/ the results show the same pattern as the results from Table 4.4. Here M/

seems to be the model more capable of extrapolation to different Re.

For practical application, the model should be trained with other Re-number flows to be able

to successfully predict in a large range of Re numbers and obstacle shapes.

On the other side, when the model is trained with other geometries it consistently improves

the extrapolation predictions as long as the obstacles have zones with different flow characteristics

(excluding the □ cases as seen before), considering that more complicated geometries, in this case,

◁ dataset and the / dataset, bring different flow characteristics that could be similar to higher-Re

4.5 Results 45

number characteristics in the cylinder cases. This serves to reinforce the previous conclusions

from the analysis of Table 4.3 but also to supplement the idea of properly training with a wider

range of flows (by varying the Re number and geometries) can improve the range on which the

model can successfully operate. As mentioned, with the present formulation, the range of Re

numbers can be limited, but in terms of predicting flows past different obstacles at Re near the

training Re, the surrogate model’s aptness is clear.

4.5.3 Predictions to different Reynolds numbers: turbulent regime

To evaluate the turbulent regime, simulations were produced using the kω−SST RANS turbulence

model with resolved laminar sub-layer (to better cope with adverse gradients). Although the mod-

els were trained in the laminar regime only with simulations at Re = 100, several tests were em-

ployed to evaluate the model’s performance in predicting the mean pressure field at Re = 3×105

and 4×105.

Table 4.6: Mu extrapolation tests. Prediction case: ◦ dataset in turbulent regime at Re =
3×105 and 4×105

Model Error metric
(%) N1 N2

BIASnorm 54.82 34.29
M◦ ST DEnorm 33.38 21.53

RMSEnorm 64.19 40.48

BIASnorm 48.68 50.12
M□ ST DEnorm 31.12 33.01

RMSEnorm 57.78 60.01

BIASnorm 54.74 69.04
M◁ ST DEnorm 28.09 36.76

RMSEnorm 51.66 64.24

BIASnorm 43.36 52.68
M◁ ST DEnorm 33.38 21.53

RMSEnorm 64.19 40.48

BIASnorm 46.99 50.70
M◦, □ ST DEnorm 31.51 31.42

RMSEnorm 56.58 59.65

BIASnorm 52.78 66.90
M◦, □, ◁ ST DEnorm 34.09 42.66

RMSEnorm 34.57 79.35

BIASnorm 51.92 49.65
M◦, □, ◁, / ST DEnorm 35.49 76.26

RMSEnorm 62.90 91.00

46 Surrogate pressure model

Figure 4.16: Mu prediction for Re = 3×105 flow - result example.

This last extrapolation test revealed a hard task for the models Mu resulting in high error pre-

dictions. Though the simulations are for high Re, i.e. in the turbulent regime, the flow fields refer

to the mean flow and not the fluctuations, which for RANS turbulence models are mainly char-

acterized by the turbulence kinetic energy and the eddy-viscosity hypothesis. Hence the complex

structures typical of turbulent flows were not evidenced by the simulation flow fields and only

other turbulence modeling techniques could portray these (c.f. Section 2.2.1). Hence the mean

fields were similar to low Re cases and results showed high-error, analogous to Section 4.5.2.

The majority of the error is due to BIAS as evident from Figure 4.16. The pressure upstream

is well above the correct value and the pressure gradient along the x direction is excessive, which

is the opposite situation to the results illustrated in Figure 4.15. It is consistent with the fact that

the DL surrogate model needs more information to be able to predict this quantity in every flow

condition. The predictions give an incorrect force balance since the force due to predicted pressure

gradients is higher than the force produced by the shear stress at the walls.

4.5.4 Model M f (u)

Further studying the influence of the NN’s input field, the velocity input field, u used up until

now is replaced by the potential field of Poisson’s equation. This model is schematically shown

in Figure 4.17. Recovering equation (2.9) from Chapter 2, presented exactly for this purpose, the

right-hand side is the f (u) defined as

f (u) =
(

∂u
∂x

)2

+2
∂u
∂y

∂v
∂x

+

(
∂v
∂y

)2

. (4.11)

A DL surrogate model could potentially map the input field, f (u), into φ which here corre-

sponds to the pressure field, p.

4.5 Results 47

Figure 4.17: Models M f (u) input and output fields.

Here it is important to refer that the total variance captured by the truncated PC in the input

data, corresponding to the f (u) field concatenated with the sd f field, is not defined as in the

previous example. Here, since a lot of PCs were necessary to represent a sufficient amount of

variance, an upper limit was defined, ie., the metric to define the number of PC was for them

to jointly represent 95% of the total variance and do not surpass the upper limit defined by the

hidden layer’s width (512). One case where the 95% of variance was not achieved was in the

training of M□ and it can have a negative influence on its ability to learn. To clearly illustrate the

number of PC used in each model, as well as the amount of variance represented, that information

is described in Table B.1.

The relevance of this approach comes from leveraging the knowledge of the differential equa-

tion governing the phenomenon. Results from M f (u) are presented for each family of geometries in

Table 4.7 so that they can be compared with the previous results from Mu presented in Table 4.4.

Similar to the previous extrapolation tests, M f (u) models were also tested at other Re-number

flows.

This approach proved challenging as the immense amount of variance present in the field

severely crippled the model learning process. However, with the proper pre-processing, given by

the PCA transformation, it could potentially be used to generalize to any problem represented by

the Poisson’s differential equation as in equation (2.9) provided the potential field here represented

by f (u) since it is applied in its general form.

Based in Table 4.7, the M f (u) family of models revealed to work, and although not reaching the

levels of accuracy from the Mu, it should be stated that with the appropriate hyperparameter tuning

this method has the potential to reach comparable performance. From the present results it had

far lower performance when compared to previous results from models Mu. Further analyzing

the results from Table 4.7, some information is in agreement with the results from 4.4. From

48 Surrogate pressure model

Table 4.7: M f (u) results trained with each dataset and tested in Re = 100 flows

Model Error metric (%) ◦ dataset □ dataset ◁ dataset / dataset

BIASnorm 0.59 −0.68 -4.25 2.52
M◦ ST DEnorm 2.52 9.03 14.01 11.06

RMSEnorm 2.59 9.06 14.64 11.35

BIASnorm 3.03 5.14 -8.42 7.92
M□ ST DEnorm 18.26 12.80 14.30 13.24

RMSEnorm 18.51 13.80 16.60 15.43

BIASnorm -8.88 −6.40 1.08 -5.76
M◁ ST DEnorm 8.60 9.41 5.98 8.09

RMSEnorm 12.37 11.38 6.08 9.93

BIASnorm -3.15 -2.22 -3.43 -5.82
M/ ST DEnorm 28.81 5.60 11.19 6.35

RMSEnorm 8.33 6.02 11.70 8.61

M□ - f (u) results, □ dataset to not have sufficiently complex flow structures to allow the model

to successfully establish the pressure field for flows with other geometries. This result could

come from the previously stated problem in the PC truncation process which results in training

with fewer information. In agreement with the results from Mu, with more consistent quality of

predictions for all families continue to be M◁ - f (u) and M/ - f (u) due to the more complex nature

of those training datasets.

Table 4.8: M f (u) extrapolation test. Prediction case: ◦ dataset in laminar regime

Model Error metric (%) Re = 10 Re = 50 Re = 500 Re = 1000

BIASnorm -28.44 -2.40 6.82 3.14
M◦ ST DEnorm 27.92 14.07 12.74 17.58

RMSEnorm 39.85 14.27 14.45 17.86

BIASnorm -26.68 −12.57 -6.65 -19.39
M□ ST DEnorm 21.97 26.72 30.77 33.10

RMSEnorm 34.56 29.52 31.48 38.36

BIASnorm -33.38 −15.77 -10.73 -16.30
M◁ ST DEnorm 30.16 14.78 13.37 17.33

RMSEnorm 44.99 21.62 17.15 23.79

BIASnorm -30.40 −9.59 2.39 -1.11
M/ ST DEnorm 28.81 10.55 12.29 12.22

RMSEnorm 41.95 14.26 12.52 12.27

Similarly to Mu, M f (u) was also tested in extrapolation to other Re numbers both in laminar

and turbulent regime in Tables 4.8 and 4.9, respectively. Every model fails in predicting cases of

low Re number exactly as the Mu models in the previous Section. However, in medium to high

4.5 Results 49

Table 4.9: M f (u) extrapolation test. Prediction case: ◦ dataset in turbulent regime at Re =

3×105 and 4×105

Model Error metric
(%)

BIASnorm 11.82
M◦ ST DEnorm 13.58

RMSEnorm 18.01

BIASnorm 5.95
M□ ST DEnorm 14.37

RMSEnorm 15.55

BIASnorm -24.52
M◁ ST DEnorm 12.36

RMSEnorm 27.45

BIASnorm 3.56
M/ ST DEnorm 8.50

RMSEnorm 9.22

Figure 4.18: Mf(u) prediction for Re = 3×105 flow - result example.

Re numbers, models M◦ - f (u) and M/ - f (u) achieve better results than M◦ - u and M/ - u. Contrarily

to the models of the family Mu, training with the ◁ dataset did not yield the best results. M f (u)

in moderate Re numbers was able to achieve relatively good predictions when compared to its

prediction at the training Re number, which suggests that the f (u) input field could be more

sensible to changes in Re number by heavily weighting variations in the velocity field. At Re = 10

even M f (u) continued to provide not acceptable predictions.

Inspected the example of a prediction at Re = 3×105 in Figure 4.18, the previous claim seems

50 Surrogate pressure model

to be partially right. The f (u) field seems, in fact, more sensible to the Re number but only

upstream and downstream near the obstacle, thus correctly predicting the pressure loss introduced

by the obstacle. However, in the pressure gradient’s prediction downstream the problems persists,

therefore training M f (u) for different Re also should not be done without further modification.

The non-smoothness of the predicted pressure field is also the result of the low trained efficacy in

comparison to Mu seen in the moderate errors from Table 4.7.

4.6 Analysis

Multiple models were trained and categorized into families Mu and M f (u), ie. trained with u and

f (u) as input, respectively. Firstly, in results concerning Table 4.3 the neural network was trained

with incrementally more families of obstacle’s geometries while their prediction capabilities were

continuously tested. The generalization ability of each one can be measured by its ability to predict

unseen families of geometries. As expected, the mean quality of all the predictions increased as

more geometries are included in the training, coupled with a low decrease in the accuracy for

the already trained geometries since the model is forced to generalize and has a harder task in

overfitting to particular characteristics from the types of geometries seen. The training stopping

criteria was found to have too much tolerance, which probably lead the NNs to overfit since the

training should ideally be stopped sooner.

The effect of a fivefold increase in the dataset, from N1 to N2, is also depicted by Tables

regarding Mu models, where it can be consistently seen that the effect is not beneficial, since it

can overfit the training examples and have lower extrapolation capability when compared to modes

trained with the N1 data size. It is noteworthy to mention that whether the number of samples is

N1 or N2, the original number of CFD simulations available is constant, and the only change is

the number of samples extracted from each simulation. The N2 dataset shown to deteriorate the

generalization performance in Table 4.3, although from the next set of Tables 4.5 and 4.6 this

effect is not clear. Results showed the increase in computational cost to train models with the N2

datasets to be unjustified.

The performance from Mu illustrates good learning and prediction abilities, particularly from

Table 4.3 where the model’s ability increases with the increment of new families of geometries

into the training set. In this first Table, the results from M◦, □ - U already indicate the inadequate

contribute of the □ dataset from the decrease of training efficacy from M◦ to M◦, □ - u. From

Table 4.4, M◁ - u and M/ - u exhibit very good extrapolation aptness since this flows are more

complex, thus contributing with more information for the model to learn from. The fact that an

obstacle as the ones from ◁’s family have dynamically complex flow structures in different regions

of the obstacle, enables the model to learn different flow conditions which translate into the ability

of successfully predict flows with other objects. The harder extrapolation tests in the laminar and

turbulent regimes allowed to understand, as expected, the inadequacy of using a model trained

with only one Re number to general usage, however, an improving trend was visible as long

as new training examples are presented, hereby represented by the increment of new families of

4.6 Analysis 51

geometries to the training dataset, showing an increase in performance up until M◦, □, ◁, / - u getting

to a maximum amount of RMSE of 3% while remaining lower than 2% in the rest of the datasets.

Finally, tests in the turbulent regime from Table 4.6 showed a complete inadequacy of Mu

trained with only Re = 100 flows to predict time-averaged high Re flows. In Figure 4.16 the

illustration allows to conclude the model’s difficulty in predicting the stagnation pressure zone,

directly related to an inadequate prediction of the localized pressure loss from the obstacle, and

pressure gradient downstream of the object. This results in an overall offset over the domain and

shows high BIAS.

Although there was an improving trend, the current framework is expected to only be feasi-

ble in a limited range of Re around the training Re number on account of the problem pointed in

predictions at Re of 10 and 3×105 / 4×105. To further improve this model and allow extrapola-

tion to different Re numbers, it is necessary to either pre-process the data differently, allowing to

disconnect the pressure values from the viscous effects or change the inputs and outputs given in

training. In this specific problem, certainly well-posed to train with only one Re number, but with

problems in extrapolation, it is possible to improve the extrapolation results by correcting the pres-

sure gradients. This correction can be employed by an empiric correlation with the Re number as

a post-processing step, for example, since there is an analytical solution for laminar flow between

parallel plates, and it could be used to correct the pressure gradient downstream. The previous is

limited to laminar flow, hence the correction could come from forcing the pressure gradient in a

selected control volume to balance the wall’s shear stress yielding an approximated solution.

Multiple M f (u) models were also trained and used to predict multiple flow scenarios. Since it

was not the primary orientation for the NN, hyperparameter tuning was not performed to optimize

this model, but all parameters optimized for the Mu models were used. Similar testing was em-

ployed to these models, from which the learning and generalization abilities were both tested in

the training Re number flows in Table 4.7 revealing worse performance when compared to every

model of the family Mu, however, the prediction’s quality seemed to be consistent. By advancing

to the extrapolation’s tests, in the laminar flow regime, from Table 4.8, the consistency of this

model was obvious once more, but also with the incapability of predicting more viscous flows at

Re = 10. From the tests into the turbulent regime, M◦ - f (u), M□ - f (u), and M/ - f (u) got adequate

predictions.

Both Mu and M f (u) showed good indication of being suited to work as a surrogate model

for the pressure field, showing a trend of increasing prediction’s capacity following the increase

of training information. Mu proved to be an excellent interpolator within the different obstacles

within simulations in the training Re number, being extremely reliable to be used in the training

data flow conditions. M f (u) should be further optimized and trained to better learn how to solve

Poisson’s equation, and could potentially generalize to a large range of applications with accept-

able performance, as this model directly maps Poisson’s equations for pressure as represented in

equation (2.12).

The presented methodologies could be further trained to better fit a wider range of flow condi-

tions, however, as already mentioned, to train with different flow conditions, namely more viscous-

52 Surrogate pressure model

dominated flows or turbulent flows, it is ideal to change the framework to allow better results to

be reached.

4.6.1 Optimization problem - Proposed solution

Finally, it is of high importance to properly pose the optimization problem for multiple flow con-

ditions training. The pressure Poisson equation in discrete form, without the volumetric forces, is

defined as

∇ · (A−1
∇p) = ∇ · (A−1H), (4.12)

or

∇
2(A−1 p) = ∇ · (A−1H), (4.13)

which indicates some possibilities of input-output combinations as shown in Table 4.10.

Table 4.10: Possibilities for the inputs and outputs of a neural network trained to solve the
Poisson pressure equation

Approach Input Output

1 A−1H A−1
∇p

2 A−1H A−1 p
3 ∇ · (A−1H) A−1

∇p
4 ∇ · (A−1H) A−1 p

From the tests employed to M f (u), where the input corresponds to ∇ ·(A−1H), opting from the

input from 1 and 2 would result in an easier learning task. Preliminary works demonstrated the

M f (u) model to be an inadequate choice without the proper pre-processing, and even after applying

PCA this model’s training continued to be a complex task, ie., fitting the training examples was

not easily done. Hence, for a future application A−1H as input should be tested. The output A−1 p

is similar to the developments here reported and A−1
∇p constitutes the alternative.

The reported problems came from the non-unique mapping between inputs and outputs poten-

tially caused by the non-appropriate pressure nondimensionalization and consequent re-scaling.

This causes the optimization problem to be ill-posed for training with different Re numbers which

is similar to the problem faced at the beginning of this Chapter. To enable correct correspondence

between input and output fields in blocks sampled from any part of the domain, the mean from the

output, p, of each block is removed to ensure the correspondence uniqueness between every input

field and its label. By removing the mean, the pressure values in a given block did not depend

on the neighbor pressure values as boundary conditions. Thus allowing each block to be treated

individually and later reintroducing an offset in concordance with the boundary conditions. Only

after this step, the problem became well-posed for simulations of a single Re number.

4.6 Analysis 53

By expanding to other Re numbers a new problem of correspondence uniqueness appears.

Even using blocks with zero mean, for different Re numbers it was possible to find blocks with

the same velocity field but with correspondent pressure fields with different gradients. Drawing

an analogy with the above example, it could be possible to solve the problem similarly. The mean

removal would have to be done directly in ∇p, thus it has to be the output of the NN, ie., it is

necessary to opt from approaches 1 or 3 , or simply use ∇p as the output. After obtaining the

sampled blocks with the ∇p = (∂ p
∂x ,

∂ p
∂y) vector field, as a pre-processing step, the mean should be

removed as

(∇p)′ = ∇p−mean(∇p), (4.14)

making the correspondence problem disappear and the training to different flows conditions may

now be possible. After obtaining the output (∇p)′ from the NN output, it would be necessary to

assemble the entire field using the assembling algorithm from Section 4.3.1. Obtained ∇p over

the whole domain it is necessary to numerically integrate and correct with a boundary condition

to finally obtain the pressure field, p.

A second solution hypothesis (using p as the output field) comes from carefully choosing the

normalization to the pressure field to make it independent of the viscous effects. This can be done

by nondimensionalizing in respect to the viscous effects as p∗ = (p/ρ)b
νUmax

where b should be the

block longitudinal dimension since it is the characteristic length related to the friction pressure

losses caused. To remove the effect of the overall gradient, an alternative would also be to subtract
∆p
L b where L is the domain longitudinal dimension and ∆p the pressure drop between the inlet and

outlet from each block. This method could be capable of drastically reducing the errors.

54 Surrogate pressure model

Chapter 5

Developing the Deep Learning CFD
solver

5.1 Introduction

This Chapter follows the development of a new CFD solver using one of the trained surrogate

models in Chapter 4.

A new solver was created based on OpenFOAM’s pisoFoam solver [23]. For a practical de-

scription, the reader may refer to the OpenFOAM’s user guide [17], accompanied by a guided look

to PISO algorithm directed to the pisoFoam implementation from [59].

5.2 Data pipeline between OpenFOAM and Python

To implement the solver it is essential to establish communication between Python and C++ as

directly as possible to not slow down the calculations. Both PyFoam [60] and PythonFOAM [61]

were followed to reach this implementation. To a more complete overview, it is advised to dive

into the code available in GitHub [40].

5.3 DLPoissonFoam

Having the data exchange possible, a trained NN from Chapter 4 can now be used as a surrogate

model to either entirely substitute or support the pressure solver from pisoFoam to reduce the

computation time.

5.3.1 Pressure solver Surrogate model

One could discard the pressure solver from OpenFOAM to entirely remove its computational

costs and replace it by the surrogate model, however, it is not a good idea to eliminate the extreme

55

56 Developing the Deep Learning CFD solver

Figure 5.1: Possible algorithms for PISO algorithm enhancement with the DL surrogate model.

reliability provided by the conventional solver. The more efficient approach is instead to leverage

the pressure solver from OpenFOAM to correct "non-physical" behavior, natural of a model not

aware of the physics, in the DL surrogate model estimations. Using the pressure solver from

pisoFoam with a limited number of iterations, makes the cost of this pressure correction to be

negligible in relation to its cost in the classical usage of the PISO method.

It is noteworthy to mention that the tested implementation is not in agreement with the first

proposed solution, where the surrogate model was placed after the momentum predictor step to

substitute/enhance the pressure equation solving as in 2 from Figure 5.1. Multiple tests were

employed, but implementation 2 remained unuseful, ie., not being able to replace the pressure

equation solving nor giving a sufficiently good first prediction despite the fact of the good accuracy

demonstrated in Chapter 4. The final implementation, which showed promising results in the

testing phase, relied on using the DL surrogate model in a different phase of the algorithm, using it

to compute the pressure field to be used in the momentum predictor step, thus taking the corrected

velocity field of the previous time-step, U∗∗
t−1, instead of the non-conservative velocity field, U∗

t ,

computed in the velocity predictor step exactly as depicted in the flowchart 1 from Figure 5.1.

Although the approach changed, and ideally the model should be trained with U∗∗ instead of

U∗, the training was not repeated, and the NNs from Chapter 4 were used exactly as trained.

From the examples shown in Figure 4.14, boundary artifacts can be seen with ease from the

error field. These artifacts can increase the residual computed by introducing this field into the

discretized N-S equations2.4, once they deteriorate local balances in cells located in zones with

these artifacts. To solve the problem, the possibility of applying a Gaussian filter to smooth the

predicted pressure field is investigated in Table 5.1 in conjunction with the size of the overlap

region from the assembling algorithm. The effect of these parameters was investigated to access

5.3 DLPoissonFoam 57

the best balance of computational expense and accuracy.

Table 5.1: Filter kernel and superposition size influence on accuracy and computational time

Filter’s kernel size
Superposition ratio

0.05 0.10 0.25 0.50 0.75

(0,0) RMSEnorm(%) 1,361 1,315 1,094 0,951 0,958
Time (ms) 211 217 226 303 588

(3,3) RMSEnorm(%) 1,355 1,312 1,092 0,948 0,955
Time (ms) 248 250 262 332 606

(5,5) RMSEnorm(%) 1,362 1,32 1,01 0,962 0,975
Time (ms) 266 276 291 344 627

(10,10) RMSEnorm(%) 1,423 1,385 1,173 1,063 1,099
Time (ms) 324 338 327 400 708

Table 5.1 illustrates the influence in the accuracy of using the smoothing filter, however, as in

OpenFOAM the residuals are computed differently, coming from a local balance of each cell, the

smoothing operation has a better effect than here illustrated, however, the computational cost goes

up accordingly.

Finally, to access the utility of the newly formulated solver, two uses of the solver are sys-

tematically compared with pisoFoam in Table 5.2. DLPoissonFoam consists of using only the

developed solver during the entire simulation (with an increase of pressure correctors in the sam-

pling region) and DLPoissonFoam+ pisoFoam consists of using the solver to generate a precursor

simulation which serves as the initial condition to the pisoFoam solver. The comparison is based

on the computational effort measured by the means of the clock time, and the accuracy evaluated

by the calculation of Cd , where Cd is defined as

Cd =
FD

1
2 ρUmaxAre f

(5.1)

where FD is the drag force induced in the obstacle, Umax the centerline velocity at the inlet, and

Are f the reference area. Cd corresponds to the mean Cd in the quasi-stationary region where the

vortex shedding is periodical.

In using the developed solver, there are several variables to tune regarding the surrogate model,

but for simplicity, some are kept as in the last Chapter, the overlap region and usage of a Gaussian

filter are decided according to each case. The comparative study is presented in Table 5.2 for

different levels of refinement meshes and the results compared to the reference found in [62] for a

blockage ratio, β = D/H = 0.4 where D is the 2D cylinder diameter and H the distance between

the parallel plates, and Re = UmaxD
ν

= 150 where ν is the kinematic viscosity.

The clock times regard the use of one core of the Intel® Core™ i7-6700HQ CPU @2.60GHz.

The DL solver also makes use of the NVIDIA GeForce GTX 960M/PCIe/SSE2 GPU.

58 Developing the Deep Learning CFD solver

Table 5.2: Solvers comparison based on computational time and accuracy. Reference value
from [62]

Refinement level
N1 N2 N3

Clock time (s)
pisoFoam 4663 90242 242170

DLPoissonFoam 9859 38668 80875
DLPoissonFoam + pisoFoam 3566 52921 73384

Cd

pisoFoam 1.8256 1.8294 1.8302
DLPoissonFoam 1.8259 1.8300 1.8298

DLPoissonFoam + pisoFoam 1.8255 1.8294 1.8301

Reference Cd 1.83

N1, N2, and N3 correspond to nearly 3.1× 104, 1.3× 105, and 2.9× 105 mesh cells, respec-

tively. The Gaussian filter is advantageous for bigger meshes since the increase in the python

function execution time is overwhelmed by the cost of the pressure solver iterations. In Table 5.3

the increased speed of Cd computation with values reaching 3 times faster than the reference.

Table 5.3: Acceleration factor relative to the use of pisoFoam

Refinement level
N1 N2 N3

DLPoissonFoam 1.31 2.33 2.99
DLPoissonFoam + pisoFoam 0.47 1.70 3.30

5.4 Results

Using only the DLpisoFoam solver, the computational cost was decreased in larger meshes by a

factor of 3, and Cd results have high accuracy, however, it may not be as reliable as using conven-

tional solvers since the predicted Cd temporal evolution has non-physical oscillations as illustrated

in Figure 5.2. The fast transitions region at t∗ ≈ 30 consists of increasing the number of iterations

in the pressure solver, which rapidly approximates the result from the usage of pisoFoam. The

usage of DLpisoFoam as a simulation precursor to generate initial conditions to pisoFoam solver

allowed to decrease the clock time by a factor of 3.3 in the tested refinement levels with zero loss

in accuracy and reliability. Note that the clock time from the DLpisoFoam solver computations is

highly dependent on the number of iterations done with the CFD pressure solver, therefore it was

possible to reduce the computation effort much further at the expense of increasing the already

mentioned oscillations.

The simulation precursor beyond allowing to faster reach the quasi-stationary regime (char-

acterized by the periodic vortex shedding) by the means of faster time-iterations, also forced the

5.5 Analysis 59

Figure 5.2: Drag coefficient, Cd , vs adimentional time, t∗ = t
tcaract

, with tcaract =
φ

Umax
where φ is

the characteristic length, and Umax the centerline velocity at the inlet.

flow dynamic behavior sooner in the simulation. Together, these allowed the solver to reach the

desired solution with increased velocity. The number of iterations from the PISO loop in the

DLPoissonFoam had a large influence on this model’s results, by increasing the iterations from the

PISO algorithm, the oscillations diminished and the result tended to the final results of pisoFoam,

but this is accompanied by increased computation effort as shown in Table 5.1. As already men-

tioned, within very low refinement meshes, using a filter and bigger intersection zones from the

assembling algorithm increase the accuracy, potentially lowering the need for the pressure solver,

but rapidly slows down calculations. For large meshes this negative effect becomes negligible.

5.5 Analysis

Using the attained surrogate model as originally intended, ie. as illustrated in algorithm 2 from

Figure 5.1 did not yield sufficiently good results, even slowing down the conventional pressure

solver. Recurring to algorithm 1 promising results were obtained reducing the computation

times necessary to compute the drag coefficient, Cd , of a bi-dimensional cylinder confined flow by

a factor of 3 using only the newly formulated solver. Using DLPoissonFoam to perform precursor

simulations accelerated the results by 3.3 times as shown in Table 5.3. A tendency of improve-

ment is noticeable for larger meshes since the cost by using the surrogate model is approximately

constant as the mesh is refined. The surrogate model employed in this solver was not used as

intended in training, but the corrected velocity field from the last time step, U∗∗
t−1, showed to be

similar enough to the non-conservative velocity field, U∗
t , to allow the surrogate model to output

useful estimations.

60 Developing the Deep Learning CFD solver

Chapter 6

Conclusions and Future Work

The aim of the work was set to study multiple ML procedures to assist the pressure solver of

CFD solvers. First, multiple ML methodologies were tested, namely data-driven and physics-

informed learning to take the decision of diving into purely data-driven techniques in the following

chapters. Data-driven approaches ranging from CNN to MLP were systemically tested. PCA took

an important role in relieving the NNs from learning the encoder and decoder layers, replacing

those with PCA transformations. Surrogate models were successfully built to estimate the pressure

for confined flow over multiple geometries achieving a maximum RMSEnorm of 3% in the training

datasets. Lastly, the surrogate model was used to develop an OpenFOAM solver.

• Provided the adequate data generation and pre-processing, data-driven methods have re-

vealed themselves feasible to most applications, serving at least as good interpolators, ie.,

giving reasonable results which were similar to the training data. Data-driven methods seem,

at the present times, to be in general more adequate than physics-informed approaches, ex-

cept for some particular applications. In Chapter 3 a surrogate model capable of outputting

every flow quantity for unsteady external flows past rectangles was successfully built.

• CNN-type models can consist of a useful tool to reduce the total number of parameters to be

trained alongside whilst not being prone to overfit. However, being applied directly to the

simulation data can represent huge training computational costs since a lot of redundant data

is being passed in huge data arrays and a lot of convolution operations must be performed

in deep CNNs. It was found a combination of PCA and a simple MLP to be more efficient

and trained with lower computational resources such that computations can be performed

without recurring to GPUs.

• Using PCA to replace whether the encoding or decoding layers provided a boost in training

efficiency while not losing accuracy. When comparing the performance of different model

architectures all yielded RMSEnorm between 2 and 3 %, as was shown in Figure 4.8. The

61

62 Conclusions and Future Work

number of principal components to be used was also shown relevant since it controlled the

filtering of information presented to the NN.

• The proposed model MU revealed to be a good interpolator, managing to predict with very

low error in every test case from in training flow conditions (c.f. Tables s 4.3 and 4.4).

Model M◦, □, ◁, \ trained with every dataset had the maximum amount of RMSEnorm to be

3% and performed with RMSEnorm lower than 2% in the remaining datasets. Increased

diversity in the training dataset improved the overall performance of each model and even

the extrapolations as noticed from Table 4.5. The surrogate model failed at extrapolating

into very different flow conditions, however, the improvement trend indicated the adequacy

for this model to have practical application given that it was trained with larger diversified

datasets. However, further training was not recommended advised because training with

different Re flows would consist of an ill-posed optimization problem with the current for-

mulation. Model M f (U) showed to be able to learn how to solve this particular Poisson

equation with medium errors and had a consistent capacity to generalize. This consistent

accuracy in extrapolation tests accompanied by medium errors in the training tests also in-

dicated that the NN is not being able to fit the training examples which may come from not

optimizing this NN’s hyperparameters.

• Although further training without modifications is not advised, the employed training was

successful. Reaching, for some obstacles, predictions visually indistinguishable from the

CFD results (Figures B.5 and B.4) and even yielded RMSEnorm inferior to 1% (in Table 4.3).

Continuing to train this NN with more simulations at Re = 100 could also be done to obtain

a model capable of solving the flow over any obstacle at Re = 100.

• Completely replacing or even giving a better first guess in every time-step as in algorithm

2 from Figure 5.1 was not accomplished, however, the algorithm 1 was sufficient to

perform precursor simulations to generate initial solutions capable of seriously hasten-

ing the quasi-steady state and to work independently. A precursor solver was developed,

DLPoissonFoam, that allowed a decrease of 3.3 times in the execution time necessary to

calculate the drag coefficient, Cd . DLPoissonFoam was capable of generating accurate so-

lutions with decreases in computation times of 3 times, though with less reliability because

of the introduction of non-physical oscillations. Results showed a tendency of increased

acceleration factor for larger meshes since the cost of using the surrogate model remained

approximately constant. Therefore, in using very large meshes the advantages of the new

solver are expected to be increasingly noticeable.

The application of the models from Chapter 4 to flows at different Reynolds numbers yielded

pressure fields that lacked the expected pressure drop due to head losses. The following hypotheses

were proposed to improve the models:

• It was hypothesized that its use to predict flows at very different conditions could also be

achieved by employing some type of correction, such as i) correcting the pressure field by

6.1 Further Work 63

some empiric correlation or balancing the walls’ shear stress with the pressure gradients;

ii) Employ a different normalization and re-scaling to the pressure values to improve the

dependency on viscous effects iii) computing ∇p from the predicted pressure field, correct-

ing it and finally integrate over the whole domain to obtain a pressure field with higher

consistency regarding gradients.

• Every one of these models must be trained with different flow conditions to be used in

any practical application within an extensive range of flow conditions. To accomplish an

appropriate model, the hypothesis from Section 4.6.1 could be followed either by i) changing

the output from the pressure field, p, to the pressure gradient, ∇p and afterward applying all

the necessary corrections to get the dimensionalized prediction or ii) removing the influence

of the viscosity by the means of an adequate nondimensionalization to make the predictions

Re independent and allow posterior re-scale.

6.1 Further Work

Although the surrogate models were successful in the intended conditions and the implemented

solver brought improvements, it is worth pointing out that there is still a vast amount to explore.

Therefore some suggestions for further works are provided:

• The natural sequence would be implementing the proposed solution to training the NN with

different flow conditions and further accessing the possibility of creating a surrogate model

capable of being used in a defined range of flow conditions. With enough computational

means, a far bigger dataset of CFD simulations could be generated to fully test the approach

capacities.

• Following the solver implementation, there is interest in proceeding into further investiga-

tions on the possibility of coupling the surrogate model with the OpenFOAM solver to get

an even more reliable tool. Not only improving the surrogate model but investigating pos-

sible post-processing to its output to better satisfy the local balances. Thereby minimizing

the residual computed by OpenFOAM and reducing the need for PISO corrector loops. If

further improvements are accomplished with the surrogate model, it could be possible to

remove the pressure solver entirely and obtain a solver for fast solving unsteady problems

or achieving really good precursor simulations.

• Having every aspect of this surrogate model refined, extending it to 3D could provide a

useful tool for accelerating the solving of more complex problems.

64 Conclusions and Future Work

Appendix A

Tables and Results

In this Appendix the results for each model are presented, except for model 1 which was not

trained properly due to its training computational costs resultant from using high dimensional

arrays.

Table A.1: Model 2 results

Overlap region
block size Error (%) Block size Block size Block size

64 128 256

BIASnorm -3.02 −5.61 0.47
0.25 ST DEnorm 6.09 5.83 3.59

RMSEnorm 5.29 8.09 3.62

BIASnorm -2.82 −5.06 1.17
0.5 ST DEnorm 5.18 5.24 2.58

RMSEnorm 5.9 7.29 2.83

BIASnorm -3.01 −4.88 0.57
0.75 ST DEnorm 5.21 7.19 2.64

RMSEnorm 6.02 8.69 2.70

65

66 Tables and Results

Figure A.1: Model 2 results error chart where x&y represents the error for a block size of x and
overlap ratio y.

Tables and Results 67

Figure A.2: Model 3 results error chart where x&y represents the error for a block size of x and
overlap ratio y.

68 Tables and Results

Figure A.3: Model 4 results error chart where x&y represents the error for a block size of x and
overlap ratio y.

Tables and Results 69

Table A.2: Model 3 results

Overlap region
block size Error (%) Block size Block size Block size

64 128 256

BIASnorm 10.80 −1.96 0.45
0.25 ST DEnorm 15.66 4.15 2.66

RMSEnorm 19.02 4.59 2.70

BIASnorm 10.44 −1.86 0.39
0.5 ST DEnorm 15.49 4.16 2.37

RMSEnorm 18.68 4.56 2.40

BIASnorm 11.03 −1.85 0.51
0.75 ST DEnorm 15.71 4.09 2.29

RMSEnorm 19.19 4.49 2.34

Table A.3: Model 4 results

Overlap region
block size Error (%) Block size Block size Block size

64 128 256

BIASnorm -8.00 −1.58 -1.22
0.25 ST DEnorm 7.88 2.21 2.87

RMSEnorm 11.23 2.97 3.11

BIASnorm -8.50 −1.18 -1.04
0.5 ST DEnorm 8.33 2.54 2.39

RMSEnorm 11.90 2.80 2.61

BIASnorm -7.98 −1.29 -1.03
0.75 ST DEnorm 7.92 2.12 2.29

RMSEnorm 11.25 2.48 2.51

70 Tables and Results

Appendix B

Models and Prediction Examples

In this Appendix, each model’s architecture is individually presented and example results from

model 4 are shown.

Figure B.1: U-net architecture modified architecture - with PCA post-Process on the inputs and
outputs. f represents the number of filters used and is an adjustable parameter. Adapted from
[53].

Figure B.2: U-net architecture modified architecture - with PCA post-Process on the inputs. f
represents the number of filters used and is an adjustable parameter. Adapted from [53].

Table B.1 is presented to better describe M f (U).

71

72 Models and Prediction Examples

Figure B.3: U-net architecture used. f represents the number of filters used and is an adjustable
parameter. Adapted from [53].

Figure B.4: Prediction examples in a ◦ case at Re = 100.

t = 45s t = 50s

t = 60s t = 65s

Models and Prediction Examples 73

Figure B.5: Prediction examples in a □ case at Re = 100.

t = 45s t = 50s

t = 60s t = 65s

74 Models and Prediction Examples

Figure B.6: Prediction examples in a ◁ case at Re = 100.

t = 2s t = 5s

t = 10s t = 15s

Models and Prediction Examples 75

Figure B.7: Prediction examples in a / case at Re = 100.

t = 2s t = 5s

t = 10s t = 15s

76 Models and Prediction Examples

Table B.1: Description of the number of PC used in each M f (U) model

Model No. of PC (input/output) Explained variance (%)

M◦ 116/39 95/95

M□ 512/61 87.9/95

M◁ 512/12 94.8/95

M\ 512/11 91.7/95

References

[1] Michael Frank, Dimitris Drikakis, and Vassilis Charissis. Machine-learning methods for
computational science and engineering. Computation, 8(1), 2020.

[2] Steven L. Brunton, Bernd R. Noack, and Petros Koumoutsakos. Machine learning for fluid
mechanics. Annual Review of Fluid Mechanics, 52(1):477–508, 2020.

[3] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[4] Andrea Beck and Marius Kurz. A perspective on machine learning methods in turbulence
modeling. GAMM-Mitteilungen, 44(1):e202100002, 2021.

[5] Gordon E. Moore. Cramming more components onto integrated circuits. 38(8):114–117,
1965.

[6] Francois Chollet. Deep Learning with Python. Manning Publications Co., USA, 1st edition,
2017.

[7] Kuniaki Noda, Yuki Yamaguchi, Kazuhiro Nakadai, Hiroshi Okuno, and Tetsuya Ogata.
Audio-visual speech recognition using deep learning. Applied Intelligence, 42, 12 2014.

[8] L Ashok Kumar, D Karthika Renuka, S Lovelyn Rose, M C Shunmuga priya, and I Made
Wartana. Deep learning based assistive technology on audio visual speech recognition for
hearing impaired. International Journal of Cognitive Computing in Engineering, 3:24–30,
2022.

[9] Paula Carracedo-Reboredo, Jose Liñares-Blanco, Nereida Rodríguez-Fernández, Francisco
Cedrón, Francisco J. Novoa, Adrian Carballal, Victor Maojo, Alejandro Pazos, and Carlos
Fernandez-Lozano. A review on machine learning approaches and trends in drug discovery.
Computational and Structural Biotechnology Journal, 19:4538–4558, 2021.

[10] Lu Wang, Hairui Wang, Yingna Huang, Baihui Yan, Zhihui Chang, Zhaoyu Liu, Mingfang
Zhao, Lei Cui, Jiangdian Song, and Fan Li. Trends in the application of deep learning
networks in medical image analysis: Evolution between 2012 and 2020. European Journal
of Radiology, 146:110069, 2022.

[11] Jing Yang, Shaobo Li, Zheng Wang, Hao Dong, Jun Wang, and Shihao Tang. Using deep
learning to detect defects in manufacturing: A comprehensive survey and current challenges.
Materials, 13(24), 2020.

[12] Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. Deep learning for video
game playing. CoRR, abs/1708.07902, 2017.

77

78 REFERENCES

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1026–1034, 2015.

[14] Guido Buresti. A note on stokes’ hypothesis. Acta Mechanica, 226, 10 2015.

[15] Daniel P. Combest, Palghat A. Ramachandran, and Milorad P. Dudukovic. On the gradient
diffusion hypothesis and passive scalar transport in turbulent flows. Industrial & Engineering
Chemistry Research, 50(15):8817–8823, 2011.

[16] John Hart. Comparison of turbulence modeling approaches to the simulation of a dimpled
sphere. Procedia Engineering, 147:68–73, 12 2016.

[17] The OpenFOAM Foundation. OpenFOAM v6 User Guide. The OpenFOAM Foundation.

[18] Vishal Jagota, Aman Preet Singh Sethi, and Khushmeet Kumar. Finite element method: an
overview. Walailak Journal of Science and Technology (WJST), 10(1):1–8, 2013.

[19] Robert Eymard, Gallouet Thierry, and Raphaèle Herbin. Finite volume methods. 7, 12 2000.

[20] Fadl Moukalled, Luca Mangani, and Marwan Darwish. The Finite Volume Method in Com-
putational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab®,
volume 113. 10 2015.

[21] H.K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics: The
Finite Volume Method. Pearson Education Limited, 2007.

[22] Essentials of Numerical-Methods for CFD, chapter 4, pages 73–117. John Wiley Sons, Ltd,
2016.

[23] R.I Issa. Solution of the implicitly discretised fluid flow equations by operator-splitting.
Journal of Computational Physics, 62(1):40–65, 1986.

[24] Fouzia Altaf, Syed Islam, Naveed Akhtar, and Naeem Janjua. Going deep in medical image
analysis: Concepts, methods, challenges and future directions. IEEE Access, PP:1–1, 07
2019.

[25] Giovanni Calzolari and Wei Liu. Deep learning to replace, improve, or aid cfd analysis in
built environment applications: A review. Building and Environment, 206:108315, 2021.

[26] S. Yarlanki, B. Rajendran, and H. Hamann. Estimation of turbulence closure coefficients for
data centers using machine learning algorithms. In 13th InterSociety Conference on Thermal
and Thermomechanical Phenomena in Electronic Systems, pages 38–42, 2012.

[27] Shirui Luo, Madhu Vellakal, Seid Koric, Volodymyr Kindratenko, and Jiahuan Cui. Pa-
rameter identification of rans turbulence model using physics-embedded neural network. In
Heike Jagode, Hartwig Anzt, Guido Juckeland, and Hatem Ltaief, editors, High Performance
Computing, pages 137–149, Cham, 2020. Springer International Publishing.

[28] Brendan D. Tracey, Karthikeyan Duraisamy, and Juan J. Alonso. A Machine Learning Strat-
egy to Assist Turbulence Model Development.

[29] Anand Pratap Singh, Shivaji Medida, and Karthik Duraisamy. Machine-learning-augmented
predictive modeling of turbulent separated flows over airfoils. AIAA Journal, 55(7):2215–
2227, 2017.

REFERENCES 79

[30] Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow
approximation. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, page 481–490, New York, NY, USA,
2016. Association for Computing Machinery.

[31] Z. Wang, D. Xiao, F. Fang, R. Govindan, C. C. Pain, and Y. Guo. Model identification
of reduced order fluid dynamics systems using deep learning. International Journal for
Numerical Methods in Fluids, 86(4):255–268, 2018.

[32] N. Benjamin Erichson, Lionel Mathelin, Zhewei Yao, Steven L. Brunton, Michael W. Ma-
honey, and J. Nathan Kutz. Shallow neural networks for fluid flow reconstruction with lim-
ited sensors. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 476(2238):20200097, 2020.

[33] K. Fukami, K. Fukagata, and K. Taira. Assessment of supervised machine learning methods
for fluid flows. Theoretical and Computational Fluid Dynamics, 34(4):497–519, 2020. cited
By 35.

[34] Han Gao, Luning Sun, and Jian-Xun Wang. Super-resolution and denoising of fluid flow us-
ing physics-informed convolutional neural networks without high-resolution labels. Physics
of Fluids, 33(7):073603, Jul 2021.

[35] Jian-Xun Wang, Jin-Long Wu, and Heng Xiao. Physics-informed machine learning approach
for reconstructing reynolds stress modeling discrepancies based on dns data. Phys. Rev.
Fluids, 2:034603, Mar 2017.

[36] Ricardo Vinuesa and Steven Brunton. The potential of machine learning to enhance compu-
tational fluid dynamics. 10 2021.

[37] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software avail-
able from tensorflow.org.

[38] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA, 2009.

[39] C. Bane Sullivan and Alexander Kaszynski. PyVista: 3D plotting and mesh analysis through
a streamlined interface for the Visualization Toolkit (VTK). Journal of Open Source Soft-
ware, 4(37):1450, May 2019.

[40] P.A.C. Sousa. Solving poisson’s equation through deep learn-
ing for cfd applications. https://github.com/pauloacs/
Solving-Poisson-s-Equation-through-DL-for-CFD-apllications, 2022.

[41] Ali Kashefi, Davis Rempe, and Leonidas J. Guibas. A point-cloud deep learning framework
for prediction of fluid flow fields on irregular geometries. CoRR, abs/2010.09469, 2020.

https://github.com/pauloacs/Solving-Poisson-s-Equation-through-DL-for-CFD-apllications
https://github.com/pauloacs/Solving-Poisson-s-Equation-through-DL-for-CFD-apllications

80 REFERENCES

[42] A. Hussain. Image based cfd using deep learning. https://github.com/
IllusoryTime/Image-Based-CFD-Using-Deep-Learning, 2018.

[43] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun.
Deep learning for 3d point clouds: A survey, 2020.

[44] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation. CoRR, abs/1612.00593, 2016.

[45] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis.
Physics-informed neural networks (pinns) for fluid mechanics: A review, 2021.

[46] Michael Shields and Jiaxin Zhang. The generalization of latin hypercube sampling. Relia-
bility Engineering [?] System Safety, 148, 12 2015.

[47] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[48] Chengping Rao, Hao Sun, and Yang Liu. Physics-informed deep learning for incompressible
laminar flows. Theoretical and Applied Mechanics Letters, 10(3):207–212, Mar 2020.

[49] Zilong Ti, Xiao Wei Deng, and Hongxing Yang. Wake modeling of wind turbines using
machine learning. Applied Energy, 257:114025, 2020.

[50] Mateus Dias Ribeiro, Abdul Rehman, Sheraz Ahmed, and Andreas Dengel. Deepcfd: Ef-
ficient steady-state laminar flow approximation with deep convolutional neural networks,
2021.

[51] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. CoRR, abs/1505.04597, 2015.

[52] Quang Tuyen Le and Chinchun Ooi. Surrogate modeling of fluid dynamics with a multigrid
inspired neural network architecture. Machine Learning with Applications, 6:100176, 2021.

[53] Nils Thuerey, Konstantin Weißenow, Lukas Prantl, and Xiangyu Hu. Deep learning methods
for reynolds-averaged navier–stokes simulations of airfoil flows. AIAA Journal, 58(1):25–36,
2020.

[54] Junfeng Chen, Jonathan Viquerat, and Elie Hachem. U-net architectures for fast prediction
in fluid mechanics. working paper or preprint, December 2019.

[55] Liang Liang, Minliang Liu, Caitlin Martin, and Wei Sun. A deep learning approach to
estimate stress distribution: a fast and accurate surrogate of finite-element analysis. Journal
of The Royal Society Interface, 15(138):20170844, 2018.

[56] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for select-
ing values of input variables in the analysis of output from a computer code. Technometrics,
21(2):239–245, 1979.

[57] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. CoRR, abs/1609.04836, 2016.

[58] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
CoRR, abs/1904.09237, 2019.

https://github.com/IllusoryTime/Image-Based-CFD-Using-Deep-Learning
https://github.com/IllusoryTime/Image-Based-CFD-Using-Deep-Learning

REFERENCES 81

[59] Hakan Nilssno. A look inside icofoam (and pisofoam). http://www.tfd.chalmers.
se/~hani/kurser/OS_CFD_2015/aLookInsideIcoFoam.pdf, 2015.

[60] pyfoam. https://openfoamwiki.net/index.php/Contrib/PyFoam.

[61] Romit Maulik, Dimitrios Fytanidis, Bethany Lusch, Venkatram Vishwanath, and Saumil Pa-
tel. Pythonfoam: In-situ data analyses with openfoam and python, 2021.

[62] Sintu Singha and K.P. Sinhamahapatra. Flow past a circular cylinder between parallel walls
at low reynolds numbers. Ocean Engineering, 37(8):757–769, 2010.

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2015/aLookInsideIcoFoam.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2015/aLookInsideIcoFoam.pdf
https://openfoamwiki.net/index.php/Contrib/PyFoam

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Outline

	2 State of the art
	2.1 Introduction
	2.2 Fundamentals of Computational Fluid dynamics
	2.2.1 High Re flows - Turbulence Modeling
	2.2.2 Discretization
	2.2.3 PISO algorithm
	2.2.4 Deriving the analytical pressure Poisson equation

	2.3 Fundamentals of Deep Learning
	2.3.1 Artificial Neural Networks
	2.3.2 Training process
	2.3.3 Convolutional Neural Network (CNN)

	2.4 CFD and Deep Learning - Literature review
	2.5 Summary

	3 Exploration section - Preliminary works
	3.1 Data-driven Models Framework
	3.1.1 Problem statement
	3.1.2 Data generation
	3.1.3 Data pipeline
	3.1.4 Training the model
	3.1.5 Model predictions
	3.1.6 Point data
	3.1.7 Point data with coordinates information
	3.1.8 Results

	3.2 PINN - Physics informed neural networks
	3.2.1 Training the model
	3.2.2 Approach 1
	3.2.3 Approach 2
	3.2.4 Approaches 3 and 4 - Predicting the velocity field
	3.2.5 Results
	3.2.6 Analysis

	3.3 Conclusions

	4 Surrogate pressure model
	4.1 Methodology
	4.2 Dataset description
	4.3 Methodologies and architectures
	4.3.1 Assembling algorithm
	4.3.2 Neural network selection
	4.3.3 Hyper-parameters value selection

	4.4 Training and evaluation method
	4.5 Results
	4.5.1 Tests in laminar regime
	4.5.2 Predictions to different Reynolds numbers: laminar regime
	4.5.3 Predictions to different Reynolds numbers: turbulent regime
	4.5.4 Model Mf(u)

	4.6 Analysis
	4.6.1 Optimization problem - Proposed solution

	5 Developing the Deep Learning CFD solver
	5.1 Introduction
	5.2 Data pipeline between OpenFOAM and Python
	5.3 DLPoissonFoam
	5.3.1 Pressure solver Surrogate model

	5.4 Results
	5.5 Analysis

	6 Conclusions and Future Work
	6.1 Further Work

	A Tables and Results
	B Models and Prediction Examples
	References

