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Abstract

3D content creation for virtual worlds is a difficult task, requiring specialized tools based on a
WIMP interface for modelling, composition and animation. Natural interaction systems for mod-
elling in augmented or virtual reality are currently being developed and studied, making use of
pens, handheld controllers, voice commands, tracked hand gestures like pinching, tapping and
dragging mid-air, etc.

We propose a content creation approach for virtual reality, placing a focus on making proce-
dural content generation (PCG) intuitive and generalizable. Our approach is to start with a library
of 3D assets, with which the user populates an initially empty world by placing and replicating
objects individually. The user can then construct procedural rules to automate this process on
the fly, creating abstract entities that behave like a block of objects while still being treated and
manipulated like other singleton objects.

To this end, we design a rule system for procedural content generation adequate for virtual
reality, including nested object replication, relative placement and spacing, and randomized selec-
tion. We then design and prototype a natural interaction model for virtual reality suited to this rule
system and based on natural interaction techniques with input from two virtual reality controllers.
A prototype of this interaction model is built, and finally, a formal user evaluation is conducted to
assess its viability and identify avenues for improvement and future work.

Keywords: 3D modelling, procedural generation, virtual reality
ACM Area: CCS → Human-centered computing → Interaction Design → Interaction design
process and methods → Interface design prototyping
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Resumo

Criação de conteúdo 3D para mundos virtuais é uma tarefa complexa envolvendo ferramentas de
software especializadas baseadas numa interface WIMP para modelação, composição e animação.
Sistemas de interação natural para modelação em realidade virtual ou aumentada estão neste mo-
mento a ser estudados e desenvolvidos, dando uso a canetas digitais, controladores de VR ou de
jogos, comandos de voz e gestos de mão como apertar, tocar, segurar e arrastar, etc.

Nós propomos uma abordagem para criação de conteúdo em realidade virtual que coloca um
foco em realizar geração procedimental de conteúdo de forma intuitiva e generalizável. Começando
com uma biblioteca de objetos 3D que o utilizador emprega para popular um mundo virtual ini-
cialmente vazio colocando os objetos um a um, um conjunto de regras procedimentais podem ser
definidas na hora, capazes de criar entidades abstratas que se comportam como um conjunto de
objetos e podem ser manipulados como objetos individuais.

Neste sentido desenvolvemos um sistema de regras para geração procedimental adequado a
realidade virtual e incluindo replicação automática de vários objetos, colocação e espaçamento
relativo de objetos, e seleção aleatória. Depois desenhamos um modelo de interação natural para
este sistema de regras baseado em manipulação bimanual com controladores de realidade virtual.
Um protótipo desta abordagem é construído e finalmente uma avaliação formal é realizada para
avaliar a sua viabilidade e identificar possíveis problemas e melhorias.

Palavras-chave: modelação 3D, geração procedimental, realidade virtual
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Chapter 1

Introduction

3D content creation is a complex and time-consuming task usually realized on a desktop envi-

ronment, in editors like Maya or Blender with WIMP-style interfaces (windows, icons, menus,

pointers). It is used to create digital content like virtual worlds for television and cinema, human

and animal models for biology and medicine, machine models for engineering and the manufac-

turing industry, digital characters and scenarios for video games, etc. Each domain has a different

purpose for 3D content creation and therefore requires a different set of tools or approaches.

1.1 Context and Motivation

Teams of artists require extensive knowledge in animation, modelling, composition, rendering and

other areas to create the complex 3D models and scenes often seen in video games, advertisements,

and film, and their software tools reflect this, being filled with functionality that is very valuable

to multi-disciplinary teams but might be overwhelming for single artists and hobbyists.

The most commonly used content creation tools are traditional desktop applications that use

WIMP interfaces and 2D displays (computer monitors). This approach has a few limitations. The

first is that the input space is limited to the two-dimensional movement allowed by the mouse,

making it difficult and awkward to realize certain kinds of 3D operations requiring 3 or 6 degrees

of freedom, restricting the potential set of interaction techniques for the user. For example, this

input mechanism does not allow the user to simultaneously and independently rotate and draw

on a 3D object, an operation requiring an input tool with at least 6 degrees of freedom. The

second limitation concerns the output space - the visualization of 3D scenes and models is made

limited on a 2D display, and the user’s perception of shape, depth and size would be improved if

stereoscopic visualization was employed instead. These limitations can be addressed separately,

e.g. it is possible to use a stereoscopic visualization tool like a head-mounted display (HMD) for

visualization while maintaining traditional mouse and keyboard input.
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2 Introduction

When creating new content, artists often find that certain 3D models and scenes are composed

of many repeated components with little to no variation. To decrease the burden of creating these

kinds of models new approaches based on procedural content generation (PCG) were introduced.

Instead of creating each such model directly, a system is designed that is capable of generating

multiple entities automatically following a set of rules implemented by the artist. These rules can

specify, for example, the scale and position of multiple generated objects, transformations applied

to them, and the number of repetitions, often with low-level mesh randomization or transform

randomization. However, the creation of these descriptive PCG rules is often more complex than

the creation of each entity itself and require experience in visual programming, meaning that even

experienced artists can have trouble using this approach at first.

Many users don’t have experience with the desktop modelling tools previously mentioned

nor programming skills for procedural content generation, yet they may wish to, say, create a

simple scene with premade assets from third parties. For example, a hobbyist may be interested

in assembling his home town using a city asset pack - with buildings, roads and vehicles - from

the web, without requiring months of expertise training. Creating such a scene is a big endeavour,

but conceptually it is simple enough to warrant research into more specialized and familiar tools.

This is our primary motivation for this work, and we will propose an approach to content creation

in virtual reality that can fill in this niche for novice users.

Creating such a modelling tool is made inherently difficult as we are in a virtual reality setting.

The main advantage of doing so in a virtual environment is that we can simultaneously address

both limitations we’ve spoken of earlier: it improves the perception of scale and shape through

stereoscopic visualization and it allows for natural interaction models to arise, like those based on

voice commands, manual gestures, controllers or other specialized tools with 3D tracking and an

input space with 6 degrees of freedom.

Another use case that is orthogonal to this novice user niche is that of a productivity tool for
game development. A particularly good example is the assembly of a city or town center from

buildings, roads, cars and other related assets. Another good example is the assembly of a desk-

centered building interior, like a classroom in a school or a general computer room in an office,

which will be the overview sample in the next section.

Let us describe this second use case in detail. Imagine a game development studio creating

a new game for desktop, console or virtual reality (or some other platform). It is an adventure

and exploration game, set in a large world and with many important sites for the player to visit,

and even more relatively unimportant and minor ones. These minor sites, assets, environments, or

generally models could be anything like clearings in a forest, bridges over rivers, gardens and foun-

tains and parks, office and residential buildings, various kinds building interiors (storage rooms,

office rooms, hallways, bathrooms, bedrooms...), and much more. We consider also minor ele-

ments within a major site or event in the game, which will not get the player’s attention often, but

are needed to set the context and populate the environment, such as pedestrians and shops around

roads in a car-driving game, trees and shrubs in a wild adventure game and so on.

Creating all these minor models by hand takes an amount of time from the creators that is
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disproportionate to their importance. The creators would like to focus on more important aspects

of their game that they and their players care more about. These minor models cannot simply be

disregarded or discarded: the game would look unrealistic, rushed and unpolished without them.

1.2 Objectives

Our goal was thus to design a modelling system for virtual reality with a focus on procedural

content generation capabilities and develop a prototype of this approach relying exclusively on

natural interaction techniques. The system should still be approachable to users with little to no

experience in modelling software, and as such, it is not a sole substitute for common feature-rich

desktop applications. Overall, we aimed to:

• Design a set of simple procedural content generation rules and key voice commands for

modelling in virtual reality.

• Design an interaction model, targeting a modelling tool in virtual reality with procedural

content generation capabilities, based on input from voice commands and two-handed con-

troller input.

• Prototype the designed approach and perform a formal evaluation with users.

Our final approach does not include voice commands. We envisioned these would be used for

textual search of assets and objects, but this idea was discontinued during development in favour

of other prototype features.

1.3 Document Structure

In chapter 2 we present related scientific work focused on the domains of 3D modelling in virtual

environments, and cover also some procedural content generation techniques. In chapter 3 we

present our proposed modelling approach and also a sample workflow. In chapter 4 we present the

prototype developed that realizes this approach using only natural interaction techniques, including

other various features and interesting modelling patterns. In chapter 5 we present the results of the

user evaluation performed, and finally in 6 we conclude with a brief summary of the results, some

limitations of our approach and potential future work.
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Chapter 2

Related Work

In order to adequately contextualize our work we will first present a review of the literature sur-

rounding the area of content creation and interaction in virtual or augmented environments, in-

cluding an overview of the challenges we face. Afterwards we present and analyse some of the

current VR modelling systems and research prototypes and compare them to our approach. Fi-

nally we will present a very brief overview of procedural content generation (PCG) methods and

techniques, with a focus on those suitable for interactive use in a virtual setting.

2.1 Modelling in virtual or augmented environments

Systems for content creation in virtual environments have a different set of requirements than on

desktop environments. Consider a scenario where a user wishes to model a building within a city

scene. In a desktop editor like Maya, navigation around the scene is performed with one mouse

button, and object selection with the other. Some CAD operations like translation, intersection

and extrusion of models are achieved with guide arrows and overlays around the selected model,

while more complex functions can be accessed through side or dropdown menus. These functions’

parameters can also be set exactly, by filling in a value in a text box - for example, typing 1.4 in

the scale field to scale an object by 40%. Furthermore, existing models can be added to the scene

after being searched by traditional lookup with a file manager or text-based search engine.

In a virtual or augmented environment these tasks cannot be realized in the same way. In

a virtual environment the input devices used usually include a handheld controller and a head-

mounted display (HMD) with tracking capabilities, instead of a mouse, keyboard and screen. As

such, modelling tools must use different techniques to achieve similar functionality. We now cover

previous work on this area, and see how several authors have tried to tackle these challenges in

an attempt to design more natural interaction systems for content creation in virtual environments.

We will start with a few examples of general interaction approaches and then cover the challenges

one by one.

5



6 Related Work

Figure 2.1: User selecting an object on the screen in Put That There [2] (left). User extruding an
object in Mockup Builder [5].

One possible approach is to allow the user to express his intent using voice commands. In Put-

That-There [2] a simple augmented environment with a room-sized screen allowed the creation of a

2D scene composed of simple shapes which could be moved, resized and colored using structured

voice commands like "Create a blue square there", while the user pointed at a specific point on the

screen. Object selection was performed by either naming the objects unambiguously or pointing

at them (Fig. 2.1) with the index finger, and several CAD operations can be performed through

specific voice commands.

Another possible approach is to track the user’s hand gestures in three dimensions. In Mockup

Builder [5] an augmented reality content creation setup is presented where the user can sketch pla-

nar figures freely on the surface of a stereoscopic screen using their dominant hand’s fingers, then

extrude them upwards with a pinch gesture to create 3-dimensional meshes (Fig. 2.1). Bimanual

gestures are used to move, scale and rotate meshes, and a contextual menu can be opened on the

screen to snap objects to the plane and perform other more complex operations.

2.1.1 3D Object selection and manipulation

The first milestone for modelling in VR is an interaction model for object selection and core

manipulation operations - translation, rotation and scaling. Naturally this problem has been exten-

sively studied and classification systems of interaction techniques have been developed by several

authors. Weise et al. [19] propose one such system based on 13 categories. Underlying selection

techniques is an interaction metaphor, usually one of grasping, pointing or surface selection.

For example, when grasping, the user places his hand - or selection device - on top of the

object, closes his hand to grab it, and releases the object by reopening their hand. While the object

is held, it can be directly translated by the grabbing hand, or with the help of the second hand also

rotated and scaled.

On the other hand, when pointing, the user directs the index finger of their dominant hand - or

selection device - towards the desired object like a cursor, and a ray is cast from the user’s hand or
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virtual viewpoint to intersect an object, highlighting it and prompting it for selection with similar

grabbing techniques [1].

Other defining characteristics of different techniques include degrees of freedom, reference

frames, input devices and disambiguation mechanisms [19] [1].

2.1.2 3D object searching

When creating a virtual scene an asset library is available, either locally or online, with 3D digital

objects. The number of such assets has been increasing lately, particularly online, such that there

is a need for adequate indexing and retrieval methods for 3D objects in large collections, as well

as proper search engine interfaces and results visualization. [15]

Funkhouser et al. [8] introduced a search engine for object retrieval where 3D models are

indexed based on their shape properties, queried interactively using text keywords, 2D and 3D

sketching and iterative refinement, and matched based on shape and similarity.

Pascoal et al. [15] proposed an interactive search-and-filter interface for retrieval in virtual

reality. Users of this spoken interface have a particular object in mind and begin by specifying

some of its features, usually color and dimension; the interface then presents a list of candidate

objects in a half-barrel layout, and users navigate through the list to find their object, or filter the

results again with more features - gradually discerning the candidates from the intended object. It

is also possible to search for similar objects. In this system the queries are spoken aloud from a

prebuilt vocabulary but still have natural syntax.

2.1.3 Approaches to content creation and interaction

Content creation can exist in many forms: one approach, and perhaps the simplest one, is to start

with a vast library of primitive shapes, like cubes and spheres, and premade assets - themselves

made with other content creation tools - and instantiate them to populate a virtual world (like a

city) or assemble a more complex model (like a car). This LEGO-like approach requires only

object selection, retrieval, and basic manipulation operations, and constitutes the baseline of all

professional 3D modelling software.

In a virtual reality setting the interaction model constitutes the various mechanisms and tech-

niques available to the user to interact with the tools provided by the application to manipulate and

create new content; it is dependent upon, at least, the input devices available, the desired degree

of precision, and the expected learning curve for new users.

A possible extension of the instantiation approach includes deformative CAD operations such

as boolean operations, and this is the approach taken by MakeVR [11] and Mendes et al. [12] in a

full virtual reality setting.

In MakeVR [11] the only input device is a VR controller, one for each hand, so the interactions

revolve around bimanual gestures for navigation and basic manipulation, plus the joysticks and

buttons on the controllers for other operations like boolean deformations, application of colors

and textures. There is also a floating menu in the virtual world with even more operations.
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In Mendes et al. [12] objects are grabbed by closing a hand while on top of it, dragged while

maintaining the hand closed, and released by opening the same hand later, an implementation of

the virtual-hand metaphor [1]. The core constructive solid geometry (CSG) modeling workflow

employs an assembly metaphor where users perform the basic CSG operations - union, inter-

section and difference - by grabbing and dragging two objects with both hands simultaneously,

overlapping them in the air, and after a short pause - to lock the objects in place - then releasing

or moving the hands away from the intersection (Fig. 2.2). Alternatively the user can release the

dominant hand object only, and a WIMP-style menu appears with all four operations, from which

one is selected by a grab gesture. Instantiation begins with a spread fingers gesture with the non-

dominant hand facing up, evoking a palette metaphor, to spawn a WIMP-style floating menu from

which objects may be selected.

Most modelling systems that we studied, and which target natural interaction in a virtual en-

vironment, approach content creation in a different manner [12], preferring a sketching-based

approach where the primary tool is a real or virtual pen, or the user’s fingers, and content is made

with drawing gestures on a 2D surface or in mid-air.

Teddy [10] introduced a familiar sketching interface for freeform models on a traditional

mouse or tablet setup, where 2D sketches are turned into 3D polygonal surfaces naturally. Model-

ing begins with a 3D primitive or closed silhouette being drawn on an empty canvas. This sketch

is then inflated in such a way that wide areas expand more and narrow areas expand less, so that

an ellipse becomes bread-shaped, a circle becomes a sphere, and a rectangle becomes cylindrical.

The 3D model can be rotated and freely painted with open strokes, extrusions are initiated with

a closed stroke inside the model (Fig. 2.3), and scribbling chaotically on a region of the model

erases all painted strokes, and scribbling in extrusion mode smooths a region, eliminating bumps

and cavities.

Closely related is the work of Cochard et al. [3] in which the interaction model centers around

the use of a tracked glove on the dominant hand and a tracked rotating ball on the non-dominant

hand (Fig. 2.4). 3D meshes are generated using one of two shape builders (extrusion or Teddy-like

[10]) after the user draws a freeform shape using their dominant hand’s fingers. The rotating ball

is used for scaling objects but also coloring and texturing, by laying out the different menu options

Figure 2.2: CSG operations in Mendes et al. [12].
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Figure 2.3: Extruding operations in Teddy [10].

and colors around the ball’s surface.

In DesignAR [16] the core modelling loop is very similar, but the setup is an augmented

reality workstation with a stereoscopic screen so users can work in three dimensions. In this

approach, after a closed silhouette is drawn on the screen (Fig. 2.5), it can be extruded "out

of the screen" along the z-axis or rotated into a solid; then users can refine the 3D model by

creating new vertices and edges, slicing the model in two, and extruding faces along their normal

vectors. The interaction model is centered around the use of a design pen on the dominant hand

to create content like splines, new vertices, edges and faces on the screen, and supportive actions

are performed through the second hand. The main goal of this interaction model is to cement the

intuition that the pen is the primary content creation tool, and to use touch interaction techniques

for most modelling features due to their high fidelity. In this case, mid-air interaction is lacking,

and mostly limited to selection tasks with the second hand.

Multiple sketches can also be combined to form a more elaborate model. Nishida et al. [13]

proposed a modelling approach where urban buildings are automatically generated from a series

of manual sketches that represent various aspects of the building, such as the roof, facade and

windows (Fig. 2.6). A convolutional neural network is used to identify which of several standard

snippets best fits the drawn sketch and with which parameters, and that snippet is then chosen to

Figure 2.4: Glove and ball modelling setup in Worlds with Strokes [3].
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form a part of the building’s grammar. Various building blocks can be generated this way and

assembled into a more complex model.

In a fully immersive virtual reality setting applications should make use of available 3D track-

ing tools and develop an interaction model with a 3D input space, either gesture-based (like Mid-

air modelling [12]) or controller-based (like MakeVR [11]). It is also possible to combine this

input model with speech commands, pen-based input, etc.

In ErgoDesk [7], the interaction model combines 2D pen-based input with 3D tracker input

and simple spoken speech commands. An interactive tabletop is used for visualization and for 2D-

input, and a sketching pen is the primary means of content creation. It has three buttons, each one

used for a different task: drawing gestures, object manipulation and camera movement. Another

tool is a 6DOF 3D tracker used to help rotate and scale the field of view to visualize objects from

different angles; a second 3D tracker can be used to annotate the object at the same time. The

visualization mode is stereoscopic while this prop is in use and monoscopic (2D) otherwise, while

the pen is being used. Speech input is limited and is used to issue simple commands like copying,

instantiating, and changing the color of objects.

In DIY World Builder [18] we see a mix of several interaction and modelling paradigms. Users

build virtual worlds using both a virtual wand and a real tablet attached to their non-dominant wrist.

Object selection and basic manipulation is performed using the wand; various tools are available

and can be selected on the tablet, including a brush to fill terrain and a height brush to relevel the

terrain surface. To create objects or apply textures and other properties to existing objects, the user

selects from a palette in the tablet and places the object with the wand. Navigation is accomplished

with real walking and augmented with wand-pointing for longer-distance movement.

In Low-cost 3DUI [9] a simple modelling workflow in virtual reality is presented where a

pair of Wii controllers are used to instantiate primitive objects and manipulate them with all basic

operations. Object selection is performed with a raycasting metaphor with the ray emanating from

the user’s shoulders through the user’s dominant hand; object scale is adjusted according to the

distance between the user’s hands; finally, objects are rotated by moving both hands while they

simultaneously hold an object mid-air.

Figure 2.5: Creating new models in DesignAR [16]: Creating a contour and then generating a
rotational solid (left), and drawing the contour of a real world object (right).
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Figure 2.6: Creating a new building from multiple sketches [13].

2.2 Procedural content generation

In simple terms, procedural generation refers to a methodology of creating new content or data

through the application of a function instead of by hand. The generated content can be adapted

from other content, for example, by applying random variations through computer-generated

noise, solving constraint problems algorithmically so the new content satisfies specific properties,

or just exercising a set of transformation rules defined by the creator in an appropriate procedural

generation language. This practice can be applied to create various different types of data, from

textures and random meshes to terrain, trees, road networks, cities and buildings [17]. We nar-

row down our overview of existing methodologies to those for generating buildings (interiors and

exteriors), cities and city layouts.

2.2.1 Procedural grammars for cityscapes

Coelho et al. [4] present a survey of techniques for procedural modelling of terrain, cityscapes

and building facades based primarily on L-systems and split grammars. A basic L-system is com-

posed of a formal grammar and a collection of production rules; starting with an initiator string,

each atom in the string may be expanded into a string of symbols according to a generator rule,

recursively. They are usually accompanied with a mechanism for generating a figure or geometric

object (Fig. 2.7).

Procedural generation of cities began with the work of Parish and Muller [14]. Their system,

called CityEngine, takes as input various geographical and sociodemographic maps with informa-

tion such as terrain elevation, water bodies and population density, and extended L-systems are

used to derive the road network of the city (highways and roads) and the distributions of buildings;

a simple L-system is used to generate the buildings themselves after being extruded from the shape

of each allotment.

Split grammars are a type of formal grammar that incorporate the notion of geometrical shape

into the production rules, making them a better fit for automatic modelling of architecture [4].

In this grammar, the alphabet’s symbols are (usually 2D) shapes that can be split according to

the production rules and annotated with additional information like size. They were introduced
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Figure 2.7: A basic L-system producing a self-similar polygonal fractal [4].

by Wonka et al. [20]. In this work, the symbols of the grammar are augmented with parametric

attributes representing additional information like physical dimensions of shapes, depth and tex-

ture data. A control grammar is further used to help refine the attributes of the shapes created

by the split grammar. The resulting buildings exhibit non-planar doors, windows, balconies, etc.

constrained by the designed rules.

Figure 2.8: Example split grammar rules for generating a building facade [13].

2.3 Discussion

In the previous section we have covered several different works in the literature and analyzed their

approaches to content creation, their interaction models, input and output devices. All works are

substantially diverse, but several common patterns arise amongst these categories.

When it comes to input and output devices, a primary distinction can be made between those

works utilizing 2D and 3D input and output spaces. A modelling solution with a 2D input space

usually has either a WIMP interface on a computer with mouse and keyboard input, or touch input

on a tabletop or tablet. A 3D input space requires tracking of the user’s hands with armbands,
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Figure 2.9: Taxonomy of interaction models and content creation approaches.

gloves, motion sensors or cameras. Most drawing and sketch based approaches require a con-

siderable degree of accuracy for their input, and so prefer 2D input spaces given the low fidelity

and tracking precision of current 3D tracking devices. When it comes to user’s perceived output

space, a 2D output space includes tablets, non-stereoscopic tabletops, and computer screens, while

a 3D perceived space provides stereoscopic visualization of the 3D world, with example devices

including stereoscopic tabletops/screens and head-mounted displays (HMDs).

Interaction models are the ways in which the user interacts with the modelling system and is

closely coupled with the input/tracking devices used (Fig. 2.9). Some of the approaches revolve

around using hand gestures or 3D-tracked controllers either in a fully immersed virtual reality

environment ([11], [18], [12], [3]) or in an augmented environment ([16], [5], [7], [2], [9]). Others

rely on stroking and drawing in either two or three dimensions with a pen or just the user’s fingers

([16], [13], [7], [5], [10], [3]). Voice commands can be a primary or secondary input mechanism

depending on the modelling approach, with uses ranging from tool selection to object manipulation

and instantiation ([7], [2]). Finally some works studied rely on more traditional WIMP-based input

from mouse and keyboard ([13]) or tablet ([18]), particularly those works of procedural modelling

of urban buildings which do not put of focus on the interaction model at all ([20], [14]).

Approaches to content creation we can group in the four categories of sketching, instantiation,

CSG and PCG (Fig. 2.9). Most works are sketch and drawing based, where the user must draw

the contours of objects they wish to create, or draw on already existing ones to cut or extrude them

([11], [16], [16], [7], [5], [10], [3], [9]). The instantiation approach is the simplest one – the user

selects an asset from a collection and places it in the scene, performs basic manipulation operations

– translations, rotations and scaling - and adjusts other properties such as textures and lighting

([11], [18], [7], [12], [2]). In the CSG approach the user creates new objects using constructive
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solid geometry operations like intersection and union of two or more objects ([16], [5], [12]).

Finally with the PCG approach the user does not directly create every object instance but instead

specifies rules, patterns and properties that are used to generate the object(s) ([13], [20], [14]).

Many of the works we studied combine 3D input and perceived spaces ([11], [16], [18], [5],

[12]) while combining two different content creation approaches: sketching ([11], [16], [5]), in-

stantiation ([11], [18], [5], [12]) and CSG ([16], [5], [12]). However, we have not found a mod-

elling approach that combines 3D input and perceived space in a fully-immersive virtual environ-

ment with procedural generation techniques and a natural interaction model, and the goal of this

dissertation is to fill in this niche approach to content creation.
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Chapter 3

Procedural VR

The system we propose allows a user to assemble one or more models in a modeling sandbox and

is intended for a virtual reality environment. A model in this system is just a layout of various

static assets, with some extra hierarchical relationships between these objects – such as groups

– and procedural rules to change their visibility status, placement and orientation randomly in

a controlled fashion. The system allows the user to build this model by providing them core

modeling operations, such as cloning and moving objects, essential entities such as groups and

uniformly spaced tilings, and an assortment of randomization operations and objects. We shall

describe all of these in detail in this chapter.

We start with a global vision of the system and a brief summary of the difficulties our mod-

elling approach was designed to overcome. Then we go through a short, high-level overview of

how a user would use the system to create a simple computer room model, introducing some of

the concepts and entities within the context they are meant to be used. Then we describe in more

detail the various modeling operations supported, the concepts and objects in the system, and the

relationships between these, primarily from a user’s high-level point of view.

This chapter is best understood as an abstract introduction to a modeling approach, namely a

set of operations and objects. We do not discuss here the realization of this approach, particularly

the interaction protocols used to perform any of the modeling operations in the sandbox – these

concern the prototype we developed, and we explore those aspects in the next chapter.

3.1 Vision and usability goals

Recall the game development example from chapter 1. The following is a summary characteriza-

tion of the problem:

• It is repetitive: if performed naively, the amount of the work required to polish and create

all these minor models of the game scales proportionally to the amount and size of such

models, even though many such sites look very similar to each other.

17
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• These models are static within the game - or at least not interactive - in a significant number

of cases. Static here means the objects do not move in the world, at least not as a response

to what the player is doing or to what is happening around them.

• Imperfections and minor issues are inconsequential: it is acceptable for some models to

look misplaced, like a box overlapping another on top of a table, as long as it is uncommon

and not gross enough to be distracting.

• Collectively the previous three issues make it a burden to work on these models.

We believe the approach we will describe and have developed addresses these issues especially

for situations and models similar to the examples we gave at the beginning of this section.

• It addresses repetitiveness by supporting the creating of randomized models. Whenever

such a model is instantiated some of its elements may appear, disappear or change lay-
out. The randomization is in a certain sense predictable and completely controlled by the

designer. This allows a model to be designed so as to be used for many contexts.

• The scenarios/models created are completely static, though they can obviously still be inte-

grated with an engine that supports live collisions, gravity, etc.

• Even in the presence of large amounts of layout randomization, our approach offers many

ways for users to prevent or reduce the likelihood an instantiated model is inadequate be-

cause it has issues such as:

– contains overlapping objects;

– has too much self-similarity or symmetry;

– contains elements that are disproportionate (in size or shape);

– contains elements that do not go well with each other.

• The set of procedural rules available is quite small, and it allows many different models to

be created from the same set of assets. The learning curve can range between being steep

for users with no prior modeling experience, to being very flat to users with both modeling

and programming experience.

3.2 High-level example overview

In this section we will place ourselves in the shoes of a game designer. Suppose we wish to

assemble a computer room for a game. Not a room the player will interact with meaningfully,

just a room the player may pass through on his journey. Assets in this room are really just "lying

around" in the game.

We may have several such rooms in our game, so we will develop a randomized model of the

room, one we can essentially copy-paste from place to place – manually in an adventure game, or

programmatically in a procedurally generated game.
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We will also assume that we have the assets for the room already. Preferably we have several

variants of each canonical kind of asset: tables, monitors, books, laptops, chairs, keyboards, trash

bins, carpets...

The computer room could of course be designed in many different ways. We will follow these

design guidelines, that any instantiated version of the randomized model must follow:

• The model of the room will not include the doors, the walls or anything on them, only tables

with computers and other office props.

• The room has a fixed rectangular size.

• The "basic unit" in the room is a table of modest size with exactly one computer on it and

one chair next to it, plus some more items like a book, a notepad and a photo.

• The tables are laid out in an open office style, with no barriers between them. Non-uniform

layouts – tables not lined up like in many school classrooms – are allowed.

• The tables themselves must never overlap each other, and it must be very unlikely or impos-

sible for elements on top of the tables to overlap each other.

• The position of tables on the room and of items on the tables should vary per room instance

and per table instance, respectively.

• The tables themselves, the computers, chairs, and other items on top of the tables should

be a different variant per table instance, and different for each instance of the entire room

model.

The variants mentioned above are simply different assets - different colors, shapes and styles

of chairs, for example. Our proposed approach does not take into consideration any sort of low-

level mesh editing (like boolean operations or deformations), texturing, and in fact does not even

support object scaling.

The modeling process to create this room model can be roughly broken down into the steps

listed below. We will clarify some of the entities and operations in the next section.

• Prepare a scene (out of the application) with all of the relevant assets, laid out in some

reasonably organized way. One instance of each asset will suffice. Then start the application

and enter the modeling sandbox.

• Create a Random object that aggregates each canonical kind of asset. We’ll have one such

entity for tables, one for chairs, one for monitors, one for keyboards, one for books, and so

on. Each time one of these Random objects is cloned, one of the aggregated assets is chosen

and displayed, uniformly at random.

• Assemble the main elements of one table together: the tabletop, the chair and the computer

objects. For example, position the computer on the center of the table facing the longer side,

and the chair right in front of it.
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• Add more objects around the computer such as books, notepads, coffee cups, mousepads,

photos, lamps, etc. Here by objects we mean the ones created in the second step.

• Add a slight amount of positional and rotational randomization to the objects on top of the

table with the Mover and Rotator modifiers, respectively. This way the objects’ position and

orientation relative to the table varies in each instance. This serves to generate tables with

visually different layouts.

• Create a Group object containing all the objects on top of the table. Objects which are part

of this group have a fixed layout within the group. If having varied layouts for the objects

on top of the table is desirable, then more groups can be created with similar compositions

but with different layouts of the computer and table assets, and then aggregated with one

Random.

• Create another Group object containing the tabletop, other elements beside of it, like the

chair and trash bin, and the group object from the previous step. This is the table model,
our basic unit.

• Clone this group several times, creating a new instance of the table model each time. Drag

each instance to a different place within the area delimited for the room in such a way that

the tables don’t overlap. Lay them out in some organized fashion: rows by rows like a

matrix for example, or all next to each other and facing outwards.

• Group all the tables together. This is the room model, our final design. This model can now

be exported and embedded in some part of the game.

The result is a room model which, whenever cloned, produces a different room whose tables

have different compositions and whose items have different arrangements on top of the tables. If

this model is now used in a game each instance of it will be distinct.

3.3 Objects and Operations

We have informally introduced some object types and operations. Now we explain these in more

detail.

When a user enters the modeling sandbox they have access to the primitive assets loaded into

the active scene. Our approach does not specify a mechanism to spawn these primitive assets,

neither prior to entering the sandbox nor on-demand during the modeling process. Our prototype

sets up the scenes at compilation time. We proceed by assuming these assets are already available

in the sandbox.

We call these initial assets Primitive objects because they can only be moved around and

copied, they cannot be edited or partitioned into smaller blocks, unlike the procedural and com-

posite objects we shall describe next.
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The first composite object is the Group, which is the union of one or more objects with a fixed

relative layout. A Group is created by switching to the Create Group tool, selecting one or more

objects in the sandbox, and then joining the selection into one aggregate object. The incorporated

objects are called the elements of the group. Once formed the Group can be moved and rotated as

a single object and the elements keep their relative distances and orientations.

The first procedural (also called randomized) object is the Random, which can be constructed

with the Create Random tool in exactly the same way as a Group, but instead of showing the

union of all incorporated objects with a fixed layout, it shows exactly one of these objects, chosen

uniformly at random and independently of all other procedural objects. The incorporated objects

are called the variants of the Random, and exactly one of these variants is visible or active at any

moment. Upon creation of the Random, all variants snap to the position of the first one selected

at creation time, but retain their world-space orientation. Intuitively all the variants appear, by

default, in the same place, though this can be adjusted later.

Another composite object is the Tiling. A Tiling wraps a single object, the tile or child, and

lays out a fixed number of clones of this tile along a straight line with uniform spacing. The

number of tile clones, the spacing between tiles and the orientation of the tiles can be adjusted,

and the tiling direction can be changed by rotating the Tiling object itself.

The last two procedural objects in the system are the Mover and Rotator objects. Similar to

a Tiling, these wrap a single other object – the child. The Mover adjusts the child’s location by

applying a random offset chosen uniformly at random from within a box-shaped offset range, and

the Rotator adjusts the child’s orientation instead, around a primary axis, by a random angle also

chosen uniformly at random from within a permissible angle range. Both these offset and angle

ranges are specified when the object is created. Given that these two objects simply modify an

aspect of their child element we also call them modifiers.

Finally there is the Empty object, which behaves identically to a Primitive object but is actu-

ally invisible, and there is mechanism within the sandbox to toggle their visibility to the designer.

This object can be used to represent nothing among the variants of a Random, and if the model

exported from the application is imported to some other application it is intended that they be

deleted or ignored along with hidden Random variants.

All objects can be naturally composed: the elements of a Group can be other composite or

procedural objects, and so can the variants of a Random and the child element in a Tiling, Mover

or Rotator. Let us see a few examples:

Computer Prop Suppose we have three primitive assets for keyboards and four primitive assets

for desktop monitors. To create a randomized desktop computer prop from these primitives, create

a Random A from the three keyboard primitives, another Random B from the four monitor primi-

tives, position A just in front of B, and then create a Group G with A and B as its elements. This

creates a model G that shows exactly one monitor and exactly one keyboard, which ones though

are chosen randomly.
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Chair Prop Suppose we want to place a rolling chair in front of a table and want to have it look

"natural" by not having it centered nor perfectly aligned with the table. If we have multiple rolling

chair models we can start by aggregating them in one Random like in the previous example. Now

place the chair exactly in the perfectly centered location in front of the table, wrap it with a Rotator

R with an angle range of ±30° around the vertical axis, then wrap it with a Mover M with a box

offset that’s close to a straight line parallel to the main axis of the table. The modifiers should be

applied in this order. This yields a model M in which the chair is always at a fixed distance from

the table, but can appear positioned further left or further right of the center and be facing slightly

leftwards or rightwards.

Chessboard Prop Suppose we have primitives for chess pieces and a chessboard, and we want

to create a randomized chessboard prop with pieces on it (in a random chess position, not neces-

sarily legal). Create a Random C holding all the chess pieces. To add some imperfection to the

pieces’ placements, wrap C in a Rotator with an angle range around the vertical axis, then wrap it

in a Mover with a very small offset range, say 5% of the width of a board square. Wrap this in a

Tiling T1 with 8 tiles, spaced out like the chessboard’s squares, and align it vertically along a file.

Wrap T1 in another Tiling T2, again with 8 tiles properly spaced out, and align it horizontally along

a rank of the chessboard. This creates a matrix tiling with 64 unit tiles in total. If in the Random

C we include one or more Empty objects as variants then some of these tiles will be invisible, i.e.

empty squares. This schema does not guarantee the board is in a legal position, nor that the count

of pieces is legal.

The composition of objects essentially forms object trees. The children of a group node are

the Group’s elements, the children of a random node are the Random’s variants (including those

not shown), and the other three object types have only one child. The leaves of an object tree are

all Primitive or Empty entities.

The roots of the object trees in the examples are G, M and T2, respectively. A visualization of

these trees is shown in fig. 3.1. Once the models are built, these three objects are the only objects

that the designer can interact with in normal mode. But now suppose we have decided to change

some object that is not at the root of an object tree, for example we may want to add a new chess

piece to the Random C. We can do this by editing objects.

3.3.1 Editing objects

All composite/procedural objects may be edited after creation – to adjust children positions and

orientations, add and delete elements or variants, or adjust parameters like spacing. When editing

an object X this object is called the edit subject and only the children of X can be modified or

moved. The operations available while editing are only those that pertain to adjusting the subject.

When editing a Group the designer can modify the relative positions of the elements, delete

elements, and add new elements, either by cloning elements within the group or from outside into

the group. Similarly, when editing a Random the designer can change the relative positions of the
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Figure 3.1: Object trees for the three examples. The chessboard tree is shown in compressed form
with four piece primitives. Square nodes represent primitive objects.

variants and also add and remove variants. In either case, objects outside the Group/Random being

edited cannot be moved around, deleted or modified in another way. In the case of the Random,

this introduces the ability to have the variants appear with different relative positions.

Tilings, Movers and Rotators actually require being edited as the designer should set their pa-

rameters upon creation, so the system should immediately switch to edit mode when these objects

are created. For the Tiling, the number of tiles and the spacing between the tiles can be adjusted.

For the Mover, the permissible offset box appears while editing and it can be resized. For the

Rotator the permissible angle range can be adjusted around one of the three rotation axes.

Editing may be performed recursively in the object tree: while editing a Group the editing

process can move to one of its children; while editing a Random the active variant may be edited

instead; and while editing a Tiling, Mover or Rotator the child entity can be edited. Let us see a

few editing examples:

• Computer prop. Suppose we just created Group G, but we are not satisfied with the relative
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positions of A (the keyboard) and B (the monitor) and we would also like to add a mousepad

to the model. If there are multiple mousepad primitives we can create a Random P to switch

between them. Now enter edit mode of G; the elements A and B can be moved independently

of each other, and so we can reposition them. The Random P, which is not an element of G,

can be cloned into the group as the third element and placed beside the keyboard.

• Chair prop. Suppose we want the chair to rotate freely not just 30° but 180° all around. We

can enter edit mode on the Mover M, and then recursively edit the Rotator R (child of M),

and there modify the angle range to our liking. When done we return from editing twice,

first to conclude editing R and then M.

• Chessboard prop. Suppose we did not include any Empty object in the deeply nested

Random C, then the chessboard shows 64 chess pieces which is clearly excessive. We can

recursively enter edit mode of T2, T1, the Mover, the Rotator and then C. Here we can clone

an Empty object into the Random as a variant, perhaps several times. When done we must

conclude editing 5 times to return to normal mode.

In the first and third examples we mentioned cloning, which is one of several operations avail-

able in normal mode and some edit modes, but there are several others that are important to develop

models.

3.3.2 Operations

There are a few more operations available beyond moving around entities, creating and editing

them. The following operations are available in normal mode, when not editing entities.

A Clone operation can be applied to any object, and it creates another instance of the same

object, with its children cloned recursively. The object tree of the clone is identical to the original.

Cloning a Primitive simply creates another Primitive with the same asset. This is the normal mode

operation; when editing Groups and Randoms a similar operation is available that introduces new

elements and variants into the Group and Random respectively, as discussed previously.

A Reroll operation can be applied to any object, and it requests the object to make a different

set of random choices, recursively down the object tree. When applied to a Primitive object the

operation does nothing. When applied to a Random object it requests that another variant be

shown, and that the shown variant itself be rerolled. When applied to a Group the elements are

themselves rerolled, and similarly for a Tiling. When applied to a Mover the random offset is

rerolled, and when applied to a Rotator the random angle is rerolled, and then the child object

itself is rerolled as well.

A Disband operation can be applied to any object and it serves to "break apart" a composite

object into its constituents, by deleting the root node of the object tree but not its children. When

applied to a Primitive object this operation does nothing. When applied to a Group or Tiling with

n elements or tiles, the Group/Tiling node disappears while the n entities remain as object roots.

When applied to a Random a similar thing happens, but only one root remains, the visible variant,
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with the hidden variants being deleted. When applied to a Mover or Rotator the position/orienta-

tion offset are bound to the child object, as if the designer had put the offset by hand, and then the

modifier node is removed, leaving the child element as a new object root. Intuitively, this operation

does not perform any visual modification to the model, it only modifies the object tree structure.

Finally the Delete operation simply deletes the whole object tree rooted at the object it is

applied to. This is also available while editing Groups and Random to remove elements and

variants, respectively.

3.3.3 Clone by reference

In the previous sections we overlooked an important aspect of the Clone operation, perhaps the

most important aspect of our approach: composite and procedural objects are cloned by reference.

When a Group G1 is cloned in normal mode into another group G2, the two groups are linked.

If another clone G3 is made of either G1 or G2, then the three groups will be linked to each other.

The same link-on-clone logic applies to the other composite and procedural objects, and to clone

operations performed while editing. We call two objects that are linked to each other siblings.

Linking is recursive: if G1 has another linked object A1 as its element, then the corresponding

clones A2 and A3, in G2 and G2 respectively, are also linked to each other and to A1. We say that

A2 and A3 are cousins of A1.

Linking propagates edit operations. When a linked object is modified in edit mode, the edit

operation automatically propagates to all of its siblings. For example, if the designer edits group

G1 by cloning an object X and adding it as a new element X1, then two clones X2 and X3 of X – the

cousins – are automatically created and added to G2 and G3, respectively, in the same position and

orientation. If the designer then moves X1 inside G1, the same movement is applied to X2 and X3

in their own local space, and so on for the remaining operations available to edit G1. The designer

has live feedback of these mirror operations on the sibling objects, so he can visualize the effect

of his changes simultaneously on all siblings that fit in his field of view.

Linking is reciprocal. Edits to G2 also propagate to G1 and G3; there is no "master" object.

Linked objects are not necessarily identical. If two Randoms R1 and R2 are siblings they have

the same object tree structure and also the same set of variants, but they do not necessarily choose

to show the same variant. Similarly, two Mover objects M1 and M2 have identically sized offset

ranges, but their random offsets are different. Two siblings still make different and independent

random choices.

Using the Unlink operation on a linked object, the designer can break the link that object has

to all of its siblings. In our example, applying the Unlink operation to G3 allows edits to G3 to not

propagate to G1 or G2 and vice-versa. Edits to G1 will still propagate to G2 and edits to G2 will

still propagate to G1. If G3 is then cloned to G4 then G3 and G4 will be siblings, but still separate

from G1 and G2.

Because of the way the group G1 was built, any linked entity X that is an element of G1 is

linked to its cousins in groups G2 and G3. There is no mechanism in the system to unlink X in
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these entities. This is what ensures that G1, G2 and G3 retain identical object trees in the face of

recursive edits to their children.

The ability to add elements and variants to a Group and Random, respectively, introduces the

possibility of creating inclusion cycles in the object tree. The simplest example would be trying to

add G2 as an element of G1. Clearly these cycles are not well-defined, so an attempt to create one

is detected and the requested operation rejected. How this is done is explained in the next chapter.

We conclude this chapter with a summary of the mechanics and functionality of each object in

table 3.1.
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Chapter 4

Prototype Development

In this chapter we describe the architectural aspects of our system and the interaction protocols

designed and implemented in the prototype to realize the modeling operations explained in the

previous chapter. Our goal was a realization of our modeling approach that employs only natu-

ral interaction techniques in the virtual reality environment, in particular no numerical inputs to

specify parameters such as random offsets.

Beyond the natural interaction protocols designed to move, create, edit and operate on objects,

we also explain the feedback system that helps the user keep track of the current system state and

the undo system that records and can revert any operation.

We also elaborate on implementation details of the prototype, including the representation of

the object tree model and hierarchy, the command-based undo system, the reactive feedback sys-

tems, the dynamic floating menus and interaction modes, controller input mechanics, validation

of operations, the challenges associated with editing objects recursively, and other minor features

such as movement constraints, edit augmentations and global scaling. An overview of the imple-

mentation’s internal architecture is found at the end of the chapter.

4.1 User Interface and interaction

The prototype was developed in Unity as a virtual reality game application with the SteamVR tool.

All scenes and primitive assets available were packaged at compile time – we did not include a

mechanism to create new scenes on-the-fly in this prototype. On start the application immediately

recognizes the virtual reality headset and controller devices and loads into the modeling sandbox

the first scene. The modeling process can begin immediately in this scene. The ability to load a

new scene at any moment is available through a keyboard command.

For development we used an Oculus Rift virtual reality headset, but the application should

support other SteamVR-compatible headsets, with at least two buttons on each of two controllers,

29
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with only modifications to the input bindings. The virtual reality controllers are the only form of

modeling input available, there are no voice commands or gestural input.

4.1.1 Basic interaction

The user holds two controllers, one on each hand – one of the hands is taken to be the dominant

hand, usually the hand the user writes with on paper. The other hand is the non-dominant hand.

The dominant hand’s controller shoots a laser outwards that collides with the first object or in-

terface entity in its path (fig. 4.1). The object or entity the laser collides with is highlighted with

a yellow outline. The primary way to interact with objects in the sandbox is to point the laser at

them, see the yellow outline, and then press the trigger button to perform the desired operation on

the outlined object. The operation performed is dictated by the current interaction mode. The

default interaction mode is grab mode, in which holding the trigger attaches the object to the laser

and moves it around. The object can be moved while the trigger is held, as it will remain fixed at

its current position and orientation relative to the laser (with some exceptions). When the trigger

is released it is unattached from the laser, remaining in its current position. We call this a laser

grab.

Figure 4.1: Hovering over a tree object. In the middle panel the user is in grab mode and moves
the tree. In the right panel the user is in clone mode instead, and the cloned tree is immediately
grabbed.

The laser is also used to interact with an interface menu floating over the user’s non-dominant

hand (fig. 4.2). This menu is hidden unless the user’s palm is facing upwards (like holding a color

palette). Unlike the objects in the scene, these buttons are simply clicked instead of being grabbed,

by pointing the laser at them and pressing the trigger. The function of most of these buttons is to

switch between different interaction modes, and each interaction mode changes the operation that

is performed when the user presses the trigger over an object. Interaction modes are listed and

discussed in section 4.1.3.

The interaction loop essentially boils down to: switch interaction mode in the floating menu,

perform desired operations on objects using the laser, and repeat. There is, in fact, only one

multi-step interaction protocol, the one used to create Group and Random objects.

The user can also grab objects directly by moving the controller over them and pressing the

hand grab button in the back of the controller. This can appear more natural at first, but it turned

out to be much more cumbersome than just using the laser grab, so it should be avoided and will

not be discussed further.
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Figure 4.2: Top-level floating menu over the user’s non-dominant hand. Interaction mode buttons
are shown in blue and the remainder in red.

Locomotion in the sandbox is of course possible by simply moving around in the real-world

playing area, and it can be aided by standard arc teleportation (fig. 4.3). The arc does not collide

with objects in the scene and there is no mechanism to "fly around", so the user is always grounded,

making the modeling sandbox predominantly two-dimensional. This can be either a useful or

missing feature, depending on what the user is trying to model. To teleport to another point X in

the sandbox’s plane, the user points the controller joystick forward in the direction of X , adjusts

the teleportation distance by rotating the controller up and down to change the slope of the arc,

and then releases the joystick. Moving the joystick left and right allows him to rotate his field of

view in-place. Both of these mechanics are built into the SteamVR library.

The prototype requires two buttons in each of the two handheld controllers. The dominant

hand’s controller has two buttons Accept and Cancel whose functionality depends on the context

Figure 4.3: Teleportation arc, which does not collide with scene objects.



32 Prototype Development

Figure 4.4: Controller button assignments for right-handed users.

(fig. 4.4). While grabbing an object the Cancel button aborts the grab and returns the object to its

initial position, and in the other contexts it serves to switch interaction mode. The Accept button

is used to create Groups and Randoms and conclude grab operations gracefully. The other hand’s

controller has buttons for the Undo and Redo operations which feed into the undo system. These

are explained in section 4.3.

Finally there is a whole color-coded feedback system to help with keeping track of the ap-

plication’s state, current interaction mode, edit depth, recent operations and the composition of

objects in the scene. This is explained in detail in section 4.4.

4.1.2 Scene composition

A scene initially contains only Primitive objects. In the modeling sandbox a user operates and

composes these objects with procedural and composite entities to create their model. All objects

in the scene are static – they do not respond to gravity and do not collide with each other or with

the user. The lack of gravity and collisions makes the sandbox more akin to a desktop modeling

application and less natural at first sight, as it requires the users to handle floor alignment and

collisions themselves. This is necessary however: the undo system does not cope well with gravity

messing around with object transforms, and complex procedural and composite objects such as

large Groups whose elements have random positional and rotational offsets do not interact well

with neither gravity nor collisions.

The scene model consists of the object tree and the undo history. The former is just the set

of all objects currently in the scene. This can be visualized as a tree where at the root we have

a symbolic scene root node, internal nodes are procedural and composite objects, and the leaves

are primitive objects (fig. 4.5). The nodes in this tree that are children of the symbolic root node

are the top-level objects that the user can interact with in normal mode, and the remainder are

embedded as children of other objects. All the operations a user performs in the sandbox that

change the object tree model are recorded in the undo history, even basic operations such as object

movement and rerolls.
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Figure 4.5: Example object tree of a whole scene. The grey node is the symbolic root node, blue
nodes are top-level objects, circle nodes are composite or procedural objects, and square nodes are
primitive objects. The dashed cyan line shows a sibling link, and the dashed magenta line shows
an example of an implicit cousin link between C and D, corresponding children of siblings A and
B.

4.1.3 Interaction modes

The current interaction mode (or state) dictates primarily what happens when the trigger is pressed

while the laser hovers over an object (fig. 4.2). These correspond roughly to some of the modeling

operations available and are all listed in table 4.1. The remaining buttons in the menu serve

to modify grab constraints (section 4.5), scene scale (section 4.4) or in edit mode to apply an

operation directly to the current edit subject (table 4.2).

To switch interaction mode the user simply clicks on the appropriate button in the menu. The

grab mode is the primary interaction mode used to move objects around. Pressing the Cancel

button on the dominant hand controller switches to this mode automatically, and while in grab

mode editing an object, the Cancel button serves to conclude editing that object. A hint appears

above the controller button in this case. This aims to speed up the workflow since most mode

transitions are just returning to grab mode to reposition objects in the scene.

Most of the operations available were already introduced and properly discussed in chapter 3.

Groups and Randoms must be created with several children, so naturally the user must perform

a selection of elements/variants to form the object. The multi-step protocol we use is to switch

to the desired interaction mode, then select the objects upfront by simply clicking on them. They

will appear selected by receiving a persistent dark blue outline. Clicking again on them deselects

them. When the selection is good the Group or Random are formed by pressing the Accept button.
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Icon Mode Context Trigger event

Grab mode Normal mode Attach the object to the laser, and keep it attached
until the trigger is released.

Grab mode Edit mode Also attach the object or utility handle to the
laser. This also moves all cousins of the grabbed
target or utility handle, and modifies all siblings
of the edit subject.

Edit mode Any mode Enter edit mode on the object.

Create Group Normal mode Add or remove the target object from the selec-
tion of elements for the Group. The Group can
be formed through a controller button when 1 or
more elements are selected.

Create Random Normal mode Add or remove the target object from the selec-
tion of variants for the Random. The Random
can be formed through a controller button when
1 or more variants are selected.

Create Tiling Normal mode Wrap the target object with a Tiling and immedi-
ately enter edit mode.

Create Mover Normal mode Wrap the target object with a Mover and imme-
diately enter edit mode.

Create Rotator Normal mode Wrap the target object with a Rotator and imme-
diately enter edit mode.

Clone Normal mode Clone the target object and immediately grab it.

Reroll Normal mode Reroll the target object recursively.

Disband Normal mode Disband the target object once (not recursive).

Unlink Normal mode Unlink the target object from its siblings.

Delete Normal mode Delete the target object recursively.

Clone element Group Clone the target object, which may be either an
element of the Group or an outside object, into
the Group and immediately grab it. Attempts to
create cycles are rejected.

Delete element Group Delete the target element. Attempts to delete the
last element are rejected.

Clone variant Random Clone the target object, which may be either the
visible variant of the Random or an outside ob-
ject, into the Random and immediately grab it
and make it the main variant. Attempts to cre-
ate cycles are rejected.

Delete variant Random Delete the target visible variant. Attempts to
delete the last variant are rejected. The next vari-
ant in cyclic order is made visible.

Table 4.1: Interaction modes
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Icon Operation Context On click event

Reroll Group Reroll only the elements recursively.

Cycle Random Make visible the next variant in cyclic order.

Add Tile Tiling Add one tile clone and adjust the spacing.

Remove Tile Tiling Remove one tile clone and adjust the spacing.
Cannot remove the last tile clone.

Refresh Mover Reroll only the random offset of the child.

Refresh Rotator Reroll only the random rotation of the child.

Table 4.2: Edit operations through edit mode menu buttons

Pressing the Cancel button dismisses the selection and returns to grab mode. Creating the other

objects is straightforward, and as discussed in chapter 3, edit mode is entered immediately.

4.2 Editing objects

In this section we explore the interaction mechanisms that allow the user to edit objects while

resorting only to natural interaction techniques and no need for numerical input, menu sliders or

other complex input mechanisms generally found in a desktop modeling application.

We start by recalling that the object tree has out-of-tree links connecting objects to their sib-

lings. These were created on Clone operations and ensure cloned objects remain in sync with their

original objects and vice-versa. Edit operations performed on an object X must be understood as

applying to X and all of its siblings in the tree, simultaneously.

In edit mode only the children of the edit subject can be moved or modified. Any attempt to

move or modify an object outside the subject’s object tree is rejected with an info message through

the feedback system.

When editing an object, a set of auxiliary objects we call utility handles appear. These handles

were introduced in chapter 3 and are used to set the parameters of the objects. A set of three non-

interactive RGB orthogonal axes also appear crossing on the edit subject’s center of mass. These

are classic modeling axes, and serve to show what the local space is while editing the object.

Formally, what we call the "center of mass" of the edit subject is just the origin of its local space.

When a Movers, Rotators or Tilings are created they still their center of mass is set to be the same

as their child. When a Group or Random is created the center of mass is set to the first element or

variant selected.

The Group and Random objects have no utility handles, only spawning the axes in edit mode.

When editing a Group (and similar for a Random) the user can change the relative position of

that Group’s elements by simply grabbing one of them in grab mode. If the Group subject has n

siblings, then the element grabbed has n cousins, and these cousins are applied the same movement
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in their own reference frame. For example, if the user grabs an element and moves it from location

(position and orientation) X to location Y in the edit subject’s local space, then the element’s

cousins also move from X to Y in their respective local spaces, and this movement can be seen

without any delay. The cousins in this context are grab slaves, which have a pink outline in the

scene, see fig. 4.6.

Figure 4.6: Slave grab example. There are three groups of three trees each, all siblings. The user is
editing the closest group. Grabbing the element in the middle (outlined red) causes the two slaves
(outlined pink) to move in sync.

The Mover object has the simplest set of handles (fig. 4.7). There is a transparent paral-

lelepiped that is aligned with the local axes and surrounds the center of mass. The center of mass

of the Mover’s child is chosen uniformly at random from within this box. A circular handle is

attached to the corner of this box and it can be grabbed like any other object, in such a way that

moving the handle adjusts the dimensions of the box. When the handle is released, a new random

offset for the child object is chosen from within the box. The translation applied to the handle is

being replicated across all siblings of the edit subject, but this is not visible to the user since the

siblings’ handles are not made visible. A new random offset is also picked for the child object’s

cousins when the handle is released, and this change the user can indeed see.

The Rotator object allows the user to set the axis of random rotation and the permissible angle

by moving one of three circular handles around three RGB tori surrounding the orthogonal axes

(fig. 4.8). The orthogonal axes are hidden for this class of object. The circular handles are attached

to their respective torus, the user can only move the handles along the curve defined by the torus

circle. Initially every handle rests at the ±0° angle position in their torus, indicating no random

rotation around this axis. When a handle is grabbed a transparent circular sector appears that is

centered on the edit subject’s center of mass and has an angle defined by the handle’s position on

the torus. The random rotation of the object is then picked from the set of angles defined by this

circular sector. The child object can only rotate randomly around one of the axes, so whenever a

handle is grabbed, the other two are set back to their rest positions at ±0°. Just like the Mover,

when a handle is released the modification is propagated to the edit subject’s siblings, resulting in

a new orientation being visibly applied to all of them.

The Tiling object has two handles (fig. 4.9). The first is yet another circular handle that behaves

like the Mover handle and sets one of the ends of the tiling range, the other end being the symmetric

position about the center of mass. The handle is locked to the x-axis, so the tiles are always aligned

along the x-axis and centered in the subject’s center of mass. While a handle is moved, the spacing
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Figure 4.7: Mover editing example. The handle is constrained to move only horizontally. In the
fourth panel the user released the handle, causing a new random offset to be chosen for the tree.

Figure 4.8: Rotator editing example. The handles are constrained to move along their torus. In the
third panel the user released the handle, causing a new random rotation to be chosen for the tree.
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is adjusted immediately, for the current subject and its siblings. A rotating capsule is fixed in

place above the tiles but can be grabbed and rotated, and the tiles rotate along with the capsule;

this grants the ability to reorient the tiles a different way. Once again the orientation is adjusted

for the current subjects and its siblings without delay.

Figure 4.9: Tiling editing example. The handle is constrained to move only along the red x-axis.
In the last panel the capsule is being grabbed (note the red outline), and it rotates in-place.

Early in development the Tiling object had two handles to set the tiling direction, but this

quickly proved to be unnecessarily complicated while not actually offering any new capabilities

to the system. We switched to the simpler system of using just one handle on one of the ends, and

require the Tiling itself to be rotated to change the tiling direction. This made the interaction less

cumbersome, and also made it straightforward to compute offsets for the circular handle and the

capsule to make sure they don’t overlap the tiles.

All the above utility handles have prioritized collision (fig. 4.10). If an object stands between

the controller and the handle along the laser’s path, the laser collision algorithm skips the object

to collide with the handle. The utility handles are also always outlined, which reveals them even

if they are occluded by some object between them and the user camera. This is necessary to

accommodate situations where the handle is surrounded by a large object, for example just after a

Mover is created and the handle placed at the Mover’s center of mass, right in the middle of the

large object.
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Figure 4.10: The laser skips the tree to collide with the Mover’s handle.

4.3 Undo system

As we have seen the undo history is part of the model of the scene – it is kept coupled to the object

tree model itself. The undo history maintains a stack of modifications applied to the object tree

model including creation of new objects, object translations, clones, rerolls, disbands, unlinks,

deletes and so on. User operations map directly to one or more modifications. Every operation

performed by the user can be undone and redone, but the history is linear and there is no support

for time-travel such as copying past objects into the present or vice-versa. The history being

linear means that, if the user performs an Undo operation from the present n times, and then

performs some new operation, then all n operations currently undone are permanently forgotten

and cannot be recovered, and then the new operation is appended to the undo history. This contrasts

with a branching model where a new branch of operations would be created, and the old one

somehow preserved and still accessible. Conversely, if the history becomes very large, then the

oldest operations could be committed and removed from the front of the history, but we did not

need this optimization when testing the prototype.

A modification in this context does not map directly to a user action; instead, a single user

action can generate several modifications in a well-defined order. For example, cloning an object

recursively rerolls all of its descendants, potentially causing several procedural objects to make

new random choices. These random choices are of different kinds – a Random object rolls a dice

and picks a new visible variant, while a Mover object picks a new 3d vector offset. Each random

choice is separate, and these modifications are packaged into a single transaction and appended to

the undo history.

The simple act of moving an object from position X to position Y is itself a user operation that

is recorded by this system. This is implemented by recording, when the grab begins, the initial

positions of the target and all other move subjects, which in edit mode can include cousins of

the target. Once the user releases the target, the final position Y is computed and an operation of

moving the object from X to Y is recorded into the history for each moved object and packaged

into a single transaction.
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There are two obvious undo and cancel modeling patterns that let us deal with potentially

messy situations. Suppose we intend to clone or grab an object A, but this object is either very

small or quite far away, so we might accidentally grab some other object B nearby. We can

immediately abort the clone or grab by pressing the Cancel button and try grabbing X again, or we

can drop Y and press the Undo button. The users who tested the application appeared to converge

on the later. Now suppose we apply some operation to an object, but we were distracted and it was

not the operation we intended. We can immediately cancel the operation with the Undo button,

and the operation actually performed is still described in the live feed for about three seconds after

the undo. The operation intended was probably a grab, so we can press the Cancel button to switch

to grab mode.

Because performing undo and redo operations is so accessible, it should also be safe, so that

users may perform them without actually remembering what they will do. Users cannot perform

undo or redo operations while grabbing objects. Performing undo and redo operations in edit

mode poses a considerable complication: the undo or redo operation, if unchecked, can cause the

current edit subject to disappear or change position. We definitely want to allow a user to use the

undo system while editing objects, so this must be addressed.

To handle this issue without having to resort to introspecting the undo/redo operation itself,

we introduce a hidden undo window when the user enters edit mode. There is one window for

each node on the edit path. Initially the window is empty and anchored on the current history

pointer. Undo and redo commands are not allowed to move the history pointer outside of this

window. When the user performs a new operation in this edit mode, the end of the undo window

is extended forward to the new history pointer. When the user exits from a recursive edit the end

of the undo window is adjusted to match. This ensures that the operations performed by the undo

or redo command do not modify or delete the edit subject itself, only its children in the object tree,

which is what we wanted.

4.4 Feedback system

The user feedback and help system consists primarily of color coding, controller hints, the live

feed and mode descriptions.

Each type of event and operation in the sandbox is associated with a color, and these are

listed in table 4.3. The laser color is reactive and maintains the color best matching the current

interaction mode. Events logged as text to the live feed appear in the associated color (fig. 4.11).

After certain modeling operations an outline in the associated color persists on the object for about

two seconds, to provide the response that the operation was indeed performed.

Controller hints appear above the four buttons in the two handheld controllers when the user

looks at the controllers, and provide a hint of what action they will perform when pressed, such as

creating a group or canceling a grab.

The live feed (fig. 4.12) is a very simple text log that appears fixed and over other objects just

below the center of the user’s field of view. It shows three pieces of information:
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Figure 4.11: Feedback for various operations. In the first panel the user is editing a group and
attempted to grab an object outside of the group. In the second panel the user just deleted the
middle tree. In the third panel a Group with the three trees was disbanded.

• A short description of the currently hovered object, button or handle, in gray. If this is a

button it shows its name or a short description. If this is a handle it gives the handle’s name.

If it is a Primitive object it shows the asset name. Otherwise it is a composite object, and it

shows introspective information about that object.

• The name of the current edit subject, in cyan, and similar introspective information.

• A log of the latest modeling event (or error) in the scene, such as "Deleted Group 73" or

"Created Random 37".

The introspective information mentioned includes the number of elements and variants in a

Group or Random, the offset range in a Mover, the angle range and axis of rotation in a Rotator,

and the number of tiles in a Tiling, plus in all cases the number of siblings the object has.

Figure 4.12: Live feed. In the first panel the feed shows all three components, just after a user
wrapped a Rotator object (hovered) with a Mover object and entered edit mode.

New objects made through create operations (not clones) are given increasing numeric labels,

which persist when cloned. So the first Group the user creates is "Group 1", then "Group 2", then

"Group 3" and so on. Finally, a short description of the current interaction mode is shown on top

of the dominant hand controller if the user looks over the controller.
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Color Context, events, operations
Yellow Hovered objects. Outline color given to objects, handles and buttons

being hovered by the laser (or hands). Also the color of the text in the
live feed that describes the hovered object, button or utility handle.

Red Moving objects. The grab target is outlined red.
Blue Creating objects. Outline color used for the selection of elements

and variants when creating Groups and Randoms.
Cyan Editing objects. Also the color of the text in the live feed that de-

scribes the current edit subject.
Green Cloning and rerolling objects.
White Unlink and Disband operations.
Black Deleting objects.

Magenta Movement slaves. Outline color given to the cousins of a Group
element or Random variant while grabbed in edit mode.

Orange Warnings, errors and rejected operations. Outline color used to iden-
tify the node that causes a cyclic inclusion, to remember the user he
can only operate on children of the edit subject while in edit mode,
among other things.

Table 4.3: Feedback system color codes

4.5 Miscellaneous

In this section we delve into some features of the prototype which are generic modeling tools not

directly imposed or expected to exist by our modeling approach, but are necessary for a complete

modeling experience nonetheless.

4.5.1 Grab constraints

Utility handles have various types of movement constraints: the Tiling handle can only move along

a straight line, the Rotator handle can only move along a curve, and the Tiling capsule is literally

fixed in place. Coupling this with the fact that our prototype is mostly two-dimensional, we took

the opportunity to allow the user to apply movement constraints on their own, similar to the way a

desktop modeling application can restrict movement of models along lines and planes, or rotations

around an axis, through various transformation tools available.

The grab constraints available are listed in table 4.4. The constraints compose naturally and

are applied to any objects grabbed and also to the Mover’s box handle. The constraints can be

toggled through buttons in the floating menu, even in edit mode, but cannot be toggled mid-grab.

For user testing we used a different set of menus without all of these constraints to not over-

whelm the volunteers, to keep focus on the high-level interaction and modeling processes without

putting an emphasis on rigor and detail. Each test scenario has only one of these constraints

available in the menu, and the rest are set to values appropriate for that scenario.
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Icon Constraint States Functionality

Grid Snap
Off

Gridpoint
Gridline

In Gridpoint state, have objects grabbed snap to the
closest point on an invisible three-dimensional lattice

that overlays the entire modeling sandbox. In the
Gridline state, have the objects snap to the closest

axis-aligned line connecting these points instead. For
example, if the lattice aligns with the squares of a

chessboard exactly, this can aid in placing the chess
pieces exactly in the center of a square.

Plane Lock On or Off

Have the object move only along the horizontal plane
(in local space) and prevent it from moving vertically.
The horizontal plane is determined as the one passing
through the object when it is initially grabbed. This
changes the way the object remains attached to the
laser: instead of remaining at a fixed distance to the

controller, the attached object is projected to the
horizontal plane along the laser, allowing far away

objects to be moved right next to the user and
vice-versa. This is a rather important mechanic,

without it object movement can be imprecise and
cumbersome over large distances. It is enabled in

both test scenarios.

Rotation Lock On or Off or
X , Y or Z

In the On state prevent the object from rotating. In
the X , Y , Z states (axis lock), allow the object to

rotate only around this axis (in local space). In our
chessboard example we may wish to allow chess

pieces to rotate only around the Y axis, or not at all.
A rotation lock around Y is enabled in both test

scenarios. Unfortunately the conjunction of an axis
lock with the previous lock proved to be very difficult

to use during testing due to an incorrect
implementation.

Rotation Snap On or Off
If the rotation is locked around an axis, have the

object’s orientation snap to multiples of 90° around
that axis.

Vertical Lock On or Off

Have the object move only vertically (in local space)
and prevent it from moving horizontally. The vertical

line is determined as the one passing through the
object when it is initially grabbed. Similar to the
Plane Lock grab this changes the way the object

remains attached to the laser, as it gets projected to
this vertical line.

Table 4.4: User controllable grab constraints.
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4.5.2 Edit augmentations

As mentioned in section 4.2, all entities but the Rotator show the three orthogonal axis in local

space while they are being edited, and the Rotator shows three orthogonal tori instead. These

augmentations are static and non-interactive, their only purpose is to be a visual aid for the user.

The circular utility handles have a fixed scale that is independent of the dimensions of the

edit subjects and their child objects; the scale is proportional to the "size" of the player within the

sandbox. The circular handles are about the size of a closed fist. The tori have a dynamic outer

radius that is dependent on the dimension of the Rotator’s child and is computed when edit mode

is entered, and a fixed inner radius of about half the radius of a circular handle.

4.5.3 Global scaling

Finally, the floating menu contains two buttons (see fig. 4.2) to scale up and scale down the en-

tire scene relative to the size of the user character in the sandbox (or equivalently, to scale the

user character itself). The scene is scaled around the current position of the user. When scaled

while editing, the utility handles and the Rotator’s tori automatically rescale themselves since their

world-space scale is fixed.

4.6 Implementation architecture

In this section we give a small overview of the actual implementation of the system in Unity.

The architecture of the prototype, roughly Model-View-Controller (MVC) based, is sketched

in diagram 4.13. In summary, a central controller, the Interactor, receives user input commands

from the virtual reality controllers and processes them according to the current interaction mode,

relaying them to the other controllers. The two View modules react to changes in the model and

to new events in the events log queue.

Core object creation and operations are relayed to an Interaction Controller. This controller

performs all user operations described in chapter 3 with proper validation. These include creat-

ing new procedural and composite objects from templates and a selection of children, handling

recursive object cloning and linking, detecting attempts to create cyclic inclusions, searching for

siblings and cousins to relay edit operations to, and setting up on-grab-release and on-grab-cancel

events. This controller generates commands for validated updates, which are applied to the current

object tree model and pushed as commands to the current history transaction in the undo history.

The object tree model is implemented directly using Unity’s GameObject tree hierarchy. Each

type of object is represented by its own class, and an abstract Procedural class is the base class

of all objects. Each of these classes knows how to reroll itself and what to do when entering or

exiting edit mode. The utility handles that are visible in edit mode are persistent and made visible

when the object is being edited.

The composite and procedural objects themselves have no associated mesh, so highlight events

applied to these objects must be propagated down their tree. A more general abstract Interactive
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class serves to identify collidable entities, handles hand/laser collision with menu buttons and

highlight propagation from composite objects down to the primitive objects. If the collision al-

gorithm initially detects a hit with a primitive object (otherwise a button), it then propagates the

collision to the parent objects for as long as the current object is not present in the current edit
path, which comprises all objects on the root path of the current edit subject. For example, when

pointing the laser at one of the elements of a top-level group with three primitive elements, the

laser is considered to collide with the group, but if the group is being edited then the laser is con-

sidered to collide with the primitive object itself. In the former case the yellow outline is applied

to the group and propagated down to its three children; in the later case the outline is applied to

the primitive object, not to the group.

The undo history is part of the model as well. Each scene has its own history, so this module is

hot-loadable along with the scene itself. Here we use the classic command design pattern for undo

systems based on encapsulating modifications as an interface or abstract class with four functions

called Undo, Redo, Commit and Forget. This pattern has drawbacks, namely a very large amount

of boilerplate and the unnatural requirement to frame every modification as an object instance, but

it was well suited for our prototype.

Standard object movement is handled through the Grabber controller. Movement is not a trivial

task due to several self-imposed requirements such as local space movement while editing objects,

undoable movement operations, live feedback while moving objects with cousins in edit mode,

constrained movement along grids, rotations locked to one axis and utility handles moving along

arbitrary but fixed 3d surfaces and curves (tori, planes and lines) in edit mode. A more reactive

alternative to this design makes these constraints much harder to conjugate.

The input controller is a simple wrapper around SteamVR’s own input controllers that relays

all input from the virtual reality controllers as commands to the Interactor. This module also tracks

the laser and hand collisions frame-by-frame and relays changes as events.

The user interface module consists mainly of a button-only menu that hovers over the user’s

non-dominant hand and responds to input from the dominant hand’s laser. There are several menu

templates available since a different, more restricted set of operations is available while in edit

mode. Which menu is shown is determined reactively based on the current interaction mode in the

Interactor. As such there are several instances of each type of button, spread out through the menu

templates.

Finally, the feedback system, explained in section 4.4, is completely reactive; it was imple-

mented near the end of development with the goal of alleviating the learning curve for users. It

helps keep track of the current application state, provides higher fidelity for operations and in-

trospection of objects in the scene. On each frame, the view fetches the current edit subject, the

current hovered object, and the most recent action, and provides a short description of each of

these in the hover log just below the center of the user’s field of view. This system also adjusts

laser color as a function of the current interaction mode and adds action hints to the controllers

when appropriate – such as "Create Group" or "Cancel Grab".
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Figure 4.13: Overview of the control flow in the implementation.

4.7 Modeling patterns

To conclude this chapter we list some usage patterns involving one or more of the tools available

which help achieve higher modeling efficiency, precision, correctness and expressiveness. Some

of these patterns were already introduced in chapter 3.

Discrete random offset A very important feature of the Random object is the ability to lay out

the variants in different positions and orientations. Suppose we have a lamp object L which we

wish to place either on the left or on the right of a desk, independently of the other objects on the

top of the desk. We can do the following:

• Clone L to get two lamp objects L1 and L2

• Position L1 in the center of the table facing forward

• Create a Random R with L1 and L2. R gets centered on L1’s position

• Edit R and move the lamp L1 to the left corner of the desk

• Cycle to the next variant L2

• Move L2 to the right corner of the desk.

The result is a random object R which shows the lamp L on the left or right of the desk with 1/2

probability each.
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Layout variants A more elaborate version of the previous pattern, suppose we have several

models M1, . . . ,Mk we intend to place on the top of our desk, but we want them to be laid out in

one of several layout variants, chosen randomly. For example, one with the computer monitor on

the left and keyboard on the center of the desk, another with both on center, another with both on

the right of the desk, etc. We can do the following:

• Create a Group G1 with all the models M1, . . . ,Mk

• Clone it to Groups G2, . . . ,Gn for n layout variants

• Unlink the groups from each other

• For each group Gi:

– Move Gi to the center of the table. The center of the group is the center of M1.

– Edit Gi and lay out the elements as desired for the i-th layout.

• Position G1 on the center of the table, then create a Random R with groups G1, . . . ,Gn.

The result is a random object R which shows each layout with 1/n probability.

Biased random choices There is nothing preventing a Random object R from having several

instances of the same variant (in other words, having sibling variants). In particular there is nothing

preventing it from holding several Empty objects. So by adjusting the ratio between the number

of variants we can create biases towards certain shapes. For example, instead of showing a laptop

or a desktop monitor with 1/2 probability each, we can introduce a bias to show the laptop with 4/5

probability by including four copies in the random R.

Random circular offset Imagine we have a circular desk whose orientation is fixed, but we have

a chair C we would like placed at a random position around this desk. Do the following:

• Create a Group G with only C

• Edit G and move the chair C away from the center of G by the radius r of the desk

• Wrap G with a Rotator A (enters edit mode)

• Give A an angle range of ±180° around the y-axis

• Place A at the center of the desk.

This works because the rotation offset is applied to G instead of the chair. Note that this pattern

can result in unusual interaction: grabbing G snaps the center of G to the laser, not the center

of C, so when G is moved the chair is not on the laser. It is possible to get other random offset

topologies like side of squares and cubes with similar, although more elaborate, techniques.
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Matrix tiling Recall the chessboard example from chapter 3. An n×m matrix tiling pattern of

a tile M can be easily created by composing two Tilings together (fig. 4.14), as follows:

• Wrap the object M with a Tiling T1 (enters edit mode)

• Set the desired tile spacing and Increment the tile count of T1 up to m.

• Conclude editing T1, then wrap it again with another tiling T2 (enters edit mode)

• Use the capsule to rotate the tiles 90° so they form an orthogonal matrix

• Increment the tile count of T2 to n and set the desired tile spacing.

There are many other patterns here: we can form oblique layouts if we rotate the tiles less than

90°, we can have the tiles M imperfectly aligned by wrapping them with a Mover or Rotator, and

we can have some of the tiles disappear by using a Random with M and many Empty variants in

place of M. Composing all of these with yet another wrapper T3 lets us make three-dimensional

matrix tilings to represent things like balloons. The dimensions n and m can be adjusted by editing

T1 and T2. The tiles are all cousins, so the tiling remains rectangular if a tile of T2 is edited to

modify m.

4.7.1 Sample workflows
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Figure 4.14: Realization of the matrix tiling pattern to create a grid of tree primitives.
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Figure 4.15: Realization of the workflow proposed in chapter 3 to create the imperfectly aligned,
randomized chair prop.



Chapter 5

User Evaluation

In this chapter we present the user evaluation conducted to both assess the prototype’s viability

and usability and compare our modelling approach with a simple baseline consisting only of the

core subset of objects and operations. We present the evaluation methodology used, the results we

obtained and what conclusions follow from them.

5.1 Testing methodology

Once the development of the prototype was concluded and the evaluation scenarios prepared, we

reached out openly for volunteers from within the University of Porto. No prior experience with

virtual reality devices and applications, modelling applications or programming was required. We

held test sessions at times chosen by the volunteers themselves.

5.1.1 Testing environment

All volunteers used an Oculus Rift headset during testing. Sessions were expected to last be-

tween 60 and 70 minutes. Participants without any prior virtual reality experience were given an

informal and gentle introduction in the Google Earth VR demo for about 15 minutes before the

session proper. This included an introduction to laser mechanics, the virtual reality controllers,

and quite simply gave inexperienced volunteers an opportunity to adjust and settle in this new

virtual environment. All participants agreed to continue with the session after this introduction.

Before the session began, participants were given a standard consent form, informing them

they could interrupt or abort the session at any moment, and that their execution of the tasks

within the modeling sandbox would be recorded anonymously for later analysis.

51
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5.1.2 Tasks and scenarios

We evaluated two modelling approaches: our procedural approach, with all modeling operations

and objects available, and a baseline approach that restricts the set of objects and operations avail-

able to only grouping, cloning, deleting and disbanding objects. The baseline approach is imple-

mented simply through a floating menu with fewer interaction modes, shown in fig. 5.1. With this

menu it is not possible to edit objects and there are no randomization tools available. It is still

possible to use the undo system and there is still feedback for all operations performed.

Figure 5.1: Restricted baseline menu.

Our primary goal in this study is to identify whether the procedural approach grants a signifi-

cant speedup in the development of models with moderate complexity. Hence, each session is split

into two segments. In one segment the participant performs two tasks using the baseline menu,

and in the other segment uses the full procedural menu. Approximately half of the participants

began the session with the baseline approach and half with the full procedural approach to prevent

bias in either direction.

In each segment the participant has to assemble two scenarios, for a total of four tasks for

the whole session. In the first scenario the volunteer is asked to assemble a computer room, and

in the second scenario to a town center.

In the first scenario the user is given a library of assets (primitive objects) consisting of objects

that can often be found in an office or classroom, including tables, chairs, computer monitors,

keyboards and a laptop, mousepads, notebooks, pencils, paper stashes, desk lamps and a few

more. The user must assemble the room over a designated area right next to the library (fig. 5.2).

The room must meet the following specification:
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• There must be exactly 6 desks in the room, no particular layout required.

• Each desk must have one chair in front of it, one computer set and at least three other assets

on top of it.

• The computer set must be either a laptop with no keyboard, or a monitor with a keyboard.

• Objects should not overlap each other.

• The desks should have different sets of items and the layout of these items should vary. This

requires varying the chair, tabletop and computer set assets per desk.

Figure 5.2: Computer room test scenario: the initial scene and asset library, a complete table
model, and the final room.

In the second scenario the user is given a similar setup with assets to create a two-dimensional

town center including grass, pavement, parks and residential, commercial and office buildings of

various shapes and sizes. The user must assemble the town inside a road skeleton provided right

next to the library (fig. 5.3). The skeleton has 6 empty square blocks, and several buildings fit in

each block. The town must meet the following specification:

• All 6 square blocks must be filled with buildings, no particular design enforced. A block is

considered filled if the basic grass tile cannot be placed into it without overlapping some-

thing else.

• All types and shapes of buildings must be used across all blocks.
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• Buildings and parks must not overlap each other.

• The square blocks should have different sets of buildings on them, but the layout of the

buildings does not have to vary.

Figure 5.3: Town center test scenario: the initial scene and asset library, complete block models,
and the corresponding final town.

The last bullet point in both specifications is the composition/layout variation constraint. Par-

ticipants were informed of both tasks, their specifications, the structure of the entire session, and

the nature of both approaches upfront – there were no "surprises". Before beginning each task the

participants went through the specifications again.

With the baseline menu a user can assemble the scenarios however he wishes, and he is in-

formed that the goal is to produce the design as quickly as possible. One possible way of doing

so is to build each of the six desks/square blocks in parallel. For example, in the first scenario the

user can clone six tables into the delimited area, then six chairs, then six computer sets and so on,

varying his choices to ensure all the desks are different.
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With the procedural menu the user is required to assemble the unit model first. In the first

scenario this is a desk group that meets the desk specifications, and in the second scenario it is a

square block group that meets the block specification, both using procedural objects. The whole

scene must then be assembled only by cloning this unit model six times, and it must meet the

specifications for the whole scenario.

This requires the participant to work backwards, to figure out what structure the unit model

needs to have that ensures the clones meet the global variation constraint. With this added restric-

tion the task is considerably more difficult, and the user spends more time thinking and almost all

of their time building the desk/block model, but once this model is formed the task is promptly

completed.

The final models were not required to look aesthetically pleasing, and most design decisions

were left open to the participants. In practice, almost all participants designed the computer room

in roughly the same way in both runs, placing the computer in the center of the table, the chair

facing the table, and the remaining items either left or right of the computer. In the city task, how-

ever, many participants specialized the square blocks with the baseline approach, such as making

two residential blocks, two commercial blocks, and two office blocks. This was explicitly allowed,

but with the procedural approach (before or after) this specialization required far more effort and

complexity, so they instead created a block with a fixed layout and practically no specialization.

Finally, we note that there is a peculiar difficulty in the room task using the procedural ap-

proach. It is quite easy to create the computer set model incorrectly by aggregating the monitors

and the laptop together into one Random entity, which would allow the laptop to appear with a

keyboard in front of it. There are two correct realizations of this model. One of them is to clone

the keyboard in front of each monitor, create three desktop groups, and finally create a Random

with these three desktop groups and the laptop. The other involves aggregating just the monitors

first.

Since our primary goal was assessing the difference between task completion times, we deemed

it proper to inform the users whenever they broke the specification, in particular whenever the com-

puter model they built was incorrect and when they were about to conclude the unit model group

but still had some of the requirements missing, such as not having enough items on the table in

the first task or not having all types of buildings in the second task. We also reminded them, in the

first scenario, that at least some of the items need to have variable placement and orientation; one

Rotator and one Mover sufficed on any items except the computer and the table.

5.1.3 Tutorial

The users were introduced to the system with a guided tutorial in a very simple sandbox with five

different trees and a square grass tile (fig. 5.4).

The tutorial has two parts. The first part is a very quick introduction to the basic elements

of the system like locomotion, teleportation, grabbing objects, the undo system, and the baseline

menu’s operations. The user is guided to perform the following steps in order:
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Figure 5.4: Tutorial scenario set. On the right a possible output after the tutorial’s first part.

• Use the joystick to teleport somewhere and rotate in-place.

• Use the controller’s Trigger to grab and move each of the five trees over the grass patch.

• Use the Undo button to move the trees back to their original place, then the Redo button to

move them back to the grass patch.

• Check the menu by turning the palm of their hand upwards.

• Switch to Clone mode and make a line of 10 trees.

• Switch to Group mode and group all these 10 trees.

• Grab this group; see how it feels and where its center is.

• Disband the group.

• Zoom in and out of the scene with the global scaling buttons in the menu.

• Form a 2x2 garden with 10 trees.

The last step is a mini-task that users performed to ensure they had a good understanding of

the tools available.

The second part of the tutorial introduces the procedural operations and objects. The Random,

Mover and Rotator objects are introduced outside of the virtual reality environment with real-

world examples and analogies, alongside the Reroll operation. The user then goes back to the

tutorial sandbox and is guided to perform the following steps in order:

• Check the new menu and locate all new relevant buttons.

• Create a Random holding 4 of the 5 trees.

• Switch to Reroll mode, then reroll this Random object.

• Switch to Edit mode and edit this Random object.

• Move the variants around, change variant with the Cycle button.

• Clone the 5th tree into the Random as the 5th variant, then conclude editing.

• Switch to Rotator mode and wrap the Random in a Rotator.
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• Move the handles around the tori. Then conclude editing.

• Switch to Mover mode and wrap the Rotator in a Mover.

• Move the handle around. Then conclude editing.

• Clone this Mover object a few times, then edit one of them.

• Move the handle around and see what happens to the clones.

If the participant started with the procedural approach, then the whole tutorial was performed

in a single run, in order. Otherwise the second part was performed only after the participant

completed the tasks with the baseline approach.

5.1.4 Questionnaire

Before beginning the session participants were asked to fill in a form with their profile informa-

tion, including age, education and experience with virtual reality or modelling applications. After

concluding the first two tasks participants were asked to answer a short questionnaire about their

experience in those two tasks, and then again after the last two tasks when the session was fin-

ished.

5.2 Results

Now we analyze some of the metrics we collected from the evaluation sessions and the feedback

we received from questionnaire answers. The primary goal of the study was to determine, for each

of the tasks, whether the procedural approach offered an advantage in terms of modelling time and

complexity versus the baseline, and if so to which degree. We were also interested in evaluating

the cognitive load associated with both approaches and the learning curve between the two groups

of participants.

Figure 5.5: Demographics of volunteers.

5.2.1 Participants

In the questionnaire’s profile section we inquire about the participant’s age, gender, education,

virtual reality experience and modelling experience. The demographics are summarized in fig. 5.5.

Considering the informal introduction to virtual reality we offered to inexperienced volunteers and

the extensive tutorial, we will not distinguish between experienced and inexperienced users in the

analysis below.
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5.2.2 Task performance

We collected several performance metrics per task. For all tasks we tracked the total time to

completion, the number of grabs and the number of groups created. For the procedural approach’s

tasks we also tracked the time to model (how long the user took to form the group model of the

desk or square block), the time to populate (the remaining time), and the number of procedural

objects created (Randoms, Rotators and Movers). These metrics are shown in fig. 5.6.

Almost all participants, including those with no prior modelling experience, were able to com-

plete all four tasks successfully, including handling issues related to objects overlapping grossly

on certain random choices and the unit models not meeting the specifications of the task. Two of

the fifteen participants required help to design the computer model for the computer room task,

and were significant outliers for this task.

The distributions of task completion time are approximately normally distributed (Shapiro-

Wilk significance of 0.581 and 0.111 for baseline and 0.754 and 0.030 for procedural approach).

In the room scenario volunteers consistently took longer with the procedural approach to com-

plete the task as a whole (t(14) = 5.33, p< .001) and to finish the model (t(14) = 3.845, p= .002),

in fact every participant took strictly more time, on average 70% longer for the whole task. A sig-

nificant contributor was the monitor/laptop "puzzle" we’ve already mentioned, but this alone does

not account for a 70% relative delay.

In the town scenario the difference is modest for the whole task (t(10) = 2.717, p = .022)

and not significant considering only the time to finish the model (t(10) = .876, p = .402). One

contributor to this fact was that aligning the large square block model clones into the road skeleton

was quite difficult if the user did not zoom out in this task, and very few actually did. Another

contributor is the fact that users were allowed to create a very simple square block model and still

meet all the specifications.

On average the participants took 95 seconds to conclude the computer room task after finish-

ing the model. Increasing the number of required desks clearly favours the procedural approach.

Extrapolating the mean time to model of all participants suggests the break even point is at approx-

imately 12.3 desks, assuming the time to complete the baseline version of this task is proportional

to the number of desks. For the town scenario the break even point was 9.8 square blocks.

An observation from the grab count and box-plot graphs is that the procedural approach re-

quires significantly fewer grabs and clones, and the participant also appear to have used more

procedural objects than groups. Finally, we note that very few participants actually created groups

for either task with the baseline menu, and those that did created them to move several objects

around quicker, not for the model itself.

5.2.3 Usability and Task Load

After each session segment we inquired about general usability, and for this we employed the

System Usability Scale (SUS) questionnaire with a 5-point Likert scale. For each task we inquired

about task load, employing NASA-TLX. The results are shown in fig. 5.7. These self-reported
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Figure 5.6: Performance metrics across tasks. A and B correspond to baseline and procedural
approaches. In the last panel the number of grabs does not include cancelled grabs, but does
include clones and undone grab/clone operations.
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Figure 5.7: Usability results from the System Usability Scale questionnaire, for each approach,
with the Likert scale of 1 for Strongly Agree and 5 for Strongly disagree.

Figure 5.8: Usability results from the System Usability Scale questionnaire, for each approach,
with the Likert scale of 1 for Strongly Agree and 5 for Strongly disagree.



5.2 Results 61

usability assessments were clearly mixed for nearly all the questions, even though none of the

volunteers stated experiencing any significant physical discomfort.

The usability assessments did not vary substantially between the two approaches. The most

noticeable difference appears to be users identifying the procedural approach to be slightly more

difficult to use or learn on some points, which is obviously justified, but this is not immediate from

the answers. In terms of task load participants clearly identified the procedural approach to be

slightly less physically demanding.

5.2.4 Conclusions

Even despite the small sample size of our study we were able to determine that our approach is

not faster than the "brute force" straightforward approach for these test scenarios of moderate size.

We were also able to determine that the procedural approach reduces physical load in creating the

models in exchange for increasing mental load and modelling time.
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Chapter 6

Conclusions

We presented an overview of the difficulties associated with content creation, particularly in a vir-

tual reality setting, namely the inherent complexity of modelling new objects, composing complex

scenes, and maintaining precision and expressiveness with a natural interaction model.

Then we detailed our proposed approach for modelling in virtual reality with procedural con-

tent generation tools, centered around a system with primitive, procedural and composite objects

supporting basic operations such as replication, relative and randomized placement, orientation

and spacing along different axes, and random selection. We designed and prototyped a natural

interaction model for our approach

6.1 Future work and limitations

Our modeling system is of course not bulletproof, and there are many limitations in our approach

and the prototype we developed. These are some of the issues we’ve identified; a few can be

addressed or resolved directly, but some require more systematic changes.

Brute force constraint solving There are no complex constrained layout solving tools, like lay-

ing out objects in a way that automatically avoids any collisions/overlaps or guarantees a group of

procedural objects make sufficiently diversified random choices. But we can always get something

that is reasonably good by simply rerolling the object many times, until we get a set of random

choices that meets or is close enough to our specifications. Unfortunately the system lacks a mech-

anism to lock the random choices of an object or disband all the procedural object nodes from an

object tree recursively, so this dumb fix currently has to be applied as a last step.

Disjoint randomization Many modelling constraints are of the form "do not show X and Y

simultaneously" but our modelling system does not support this concept. This type of constraint

can be modelled with a new kind of procedural object that aggregates Random elements and

ensures that two of its elements do not show the same variant (same being, for example, sibling

objects).
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Top down modeling As described in chapter 3 our modeling system is predominantly bottom-

up, in the sense that the object trees are built from the leaves upwards. This can be counteruntuitive

for a user depending on his background, modeling experience and general problem solving and

modeling style. The system lacks the mechanism to create composite and procedural objects

inside Groups and Randoms, to wrap the child of a Rotator in a Mover while editing it, and so on.

We have not identified any conceptual limitations here, so these can definitely be supported with

some more work, and would allow top-down modeling which might be the preference of many

designers.

Object scaling For our test scenarios the ability to scale objects was not important, the primitive

assets were already properly scaled outside the modeling sandbox. But once again this is not a

conceptual limitation, and scaling can be supported in the system as well. Perhaps even a Scaler

object can be introduced that scales an object uniformly at random by some parameter and can be

controlled with a utility handle similar to Mover objects.

On-demand asset loading Primitive assets (and new Empty objects) cannot be loaded on-the-

fly as mentioned at the beginning of this chapter, and our prototype does not specify any particular

output or input format. On-the-fly object loading can be supported by including an extensible asset

library within the application itself and support asset search by textual or contextual voice search

through a menu catalog (see for example [6]). Conversely the asset library can also be used to save

the models created through the system and so on.
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