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Resumo

Reconhecimento de Texto é uma área da visão por computador que foca na extração de texto
numa imagem. Com o aparecimento de dispositivos inteligentes, houve a necessidade dos com-
putadores reconhecerem e transmitirem com precisão a informação para o utilizador. Com recon-
hecimento de texto conseguimos, por exemplo, fazer com que carros inteligentes detetem sinal-
ização rodoviária ou traduzir documentos físicos para o mundo digital. No mundo do desenvolvi-
mento de software, existem ferramentas que auxiliam os desenvolvedores na implementação de
reconhecimento de texto. Contudo, maior parte destas ferramentas são pagas ou necessitam de
um pré-processamento de imagem mais trabalhado (ABBY e Tesseract). Escolhemos então, uma
ferramenta nativa do Android para implementar este reconhecimento nos dispositivos móveis.
MLKit é um kit de desenvolvimento de software (SDK), desenvolvido pela Google, que fornece
soluções de aprendizagem por máquina a dispositivos móveis. Desenvolvemos uma livraria An-
droid capaz de traduzir imagens de faturas para texto. Além disso, adaptamos a livraria para supor-
tar múltiplos casos de leitura, facilitando o trabalho do desenvolvedor quando implementa novas
funcionalidades. Apesar de não haver muita pesquisa sobre o MLKit, testamos o algoritmo de
reconhecimento com um dataset desafiador: Total-Text. Os resultados provam que o MLKit está
longe da precisão atingida por algoritmos do estado da arte, com apenas 33.73% de precisão para
palavras completas. Contudo, MLKit é adaptado para fornecer um execelente tempo de execução
nos dispositivos móveis. Além disso, provou ser melhor para reconhecer text frontal e horizontal,
enquanto teve problemas em reconhecer texto curvo e multi orientado. É uma ferramenta grátis,
compatível com múltiplas plataformas e fácil de implementar, sendo a solução perfeita para efeitos
comerciais e escaneamento de simples documentos.
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Abstract

Text Recognition is a computer vision field that focuses on extracting text present in images.
With the appearance of intelligent devices, there was this need for computers to interpret the
physical world accurately and to transmit information to the user. Text recognition enabled, for
example, intelligent cars to detect road signs or computers to translate entire printed documents to
a company’s database. In the software development world, there are many tools that developers
can use to implement text recognition. However, most of these are paid services or require sig-
nificant effort in image pre-processing (ABBY and Tesseract). We chose an Android native tool
to implement on-device recognition. MLKit is a Software Development Kit (SDK) developed by
Google that brings machine learning solutions to mobile devices. We develop an Android library
capable of translating invoice images to text. Furthermore, we adapt the library to embrace multi
use-cases, facilitating the developer work when implementing new futures. Although there is little
research on MLKit, we tested it against a challenging dataset: Total-Text. The results proved to
be far from benchmark algorithms, with a precision of about 33.73% for full words. However,
MLKit is adapted to provide mobile devices with excellent execution time. Not only that, MLKit
best recognizes horizontal and frontal text while it struggles with multi-oriented and curved in-
stances. It is free, multi-platform compatible and easy to implement, making it the perfect tool for
commercial purposes and simple document scans.
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Chapter 1

Introduction

In the information era we live in, smartphones have become one of the most used systems

worldwide. They enable users to quickly produce and share any information across a network.

Consequently, a large amount of information populated the world-wide web, or as we commonly

know, the internet. One of the challenges this era face resides in the ability of a computer to

interpret physical data. Thus many enterprises want to build bridges between the real and digital

world for accessibility. One of these bridges is called Text Recognition.

1.1 Context and Motivation

ITSector is an enterprise that builds financial solutions for the information market. Most of their

clients prioritize the development of mobile banking solutions. Essential services such as money

movement or invoice payment are a must in these applications. However, modern applications

prioritize user experience. Inserting information manually from a printed invoice can become

time-consuming. With modern technology, we can agile the process of extracting data from the

physical world by using the smartphone camera. Therefore, one can point the camera at a financial

document, and the application would read and filter the information that needs to continue with

the financial operation.

Making mobile applications are always a challenge since we are not always assuming a user’s

role when implementing features. Providing ways for a user to navigate with ease and feel com-

fortable with the product can improve satisfaction and eventually increase the company’s revenue.

It was initially proposed to implement a simple application capable of using the device’s camera

to read an invoice payment method. However, the enterprise needs this feature to apply to other use

cases. In order to apply the solution to multiple use cases, it requires us to isolate the development

of such feature and implement it to be dynamically used to read different data. Although this

document is more developer-focused, one individual with little user experience on mobile apps

can simply understand the developed components.
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Introduction 2

1.2 Objectives

This work aims to develop an Android Library capable of enabling developers to quickly im-

plement text recognition features in their applications. Nevertheless, the developed solution must

be tested in order to find any bottlenecks that would compromise user satisfaction. Later on 3 we

specify the requirements for our product, as well as the technology adopted.

1.3 Methodology

We start by investigating solutions in the text recognition scene. These can be applied to our im-

plementation, so it is better to contextualize the challenges and replicate them with our resources.

Furthermore, an ITSector engineer will transmit the specific requirements for the product to-be

and the associated restraints we have to overcome.

With all the requirements aligned, we can choose the tools we need to build the solution. Con-

sequently, an architecture sketch can be drawn to represent the items we need to develop and their

interactions.

To test the final product, we will use standard metrics with state-of-the-art systems for text

recognition. These can transmit the capabilities and constraints of the developed solution. Thus

one can understand its limits and applicability when implementing new projects.

1.4 Document Structure

Apart from this one, we present an additional 6 chapters:

• Chapter 2: Text Recognition: In this chapter, we present the state-of-the-art solutions for

the text detection and recognition problem.

• Chapter 3: Library Requirements: The requirements of our library are specified in this

chapter.

• Chapter 4: MLKit Evaluation: Quick introduction to MLKit, followed by how we will

test it.

• Chapter 5: Implementation: The final product environment, tools and architecture are

described here.

• Chapter 6: Results: In the results chapter, we will show the final product in action as well

as the testing results.

• Chapter 7: Conclusion and Future Work: In this self-explanatory chapter we resume all

the document contents and deduce the conclusions.



Chapter 2

Text Recognition

This chapter presents the research done on the fields that embody text recognition technology

by the scientific community. First, we will look at the significant area in which it is inserted

(Computer vision) followed by its methods and applications.

2.1 Computer vision

As the name suggests, computer vision is the scientific field that deals with how computers

perceive and interpret visual content such as images or video. For us humans, it is pretty simple to

retrieve information about the environment around us using our vision capability and process that

given information in our brain and come up with a label for each object we see. However, for a

computer to classify an image or even a frame from video, it must go through a set of processes

that incorporate and consider many different research fields, as shown in figure 2.1.

Many STEM fields are present and each one of them contributes in many stages of computer

vision, the main ones are the following [15]

• Low-level vision: Image processing for feature extraction. Feature extraction removes re-

dundancy from an input image by dividing it into segments, only retrieving the important

big portions to be analysed.

• Intermediate-level vision: Concerned with getting abstract information about an image. A

low-level recognition includes image segmentation (partitioning it into different segments/-

parts).

• High-level vision: Deals with pattern recognition and is capable of assigning a label to an

image, known as Image Classification

3
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Figure 2.1: STEM fields for computer vision

2.2 Text Detection

The previous 2 low levels are part of the problem that Text Detection approaches. Detecting text

in an image can influence the following text recognition step. So, it is imperative to detect text

instances present in an image accurately.

There are two types of text detection algorithms: Regression-based and instance segmentation

based. Furthermore, regression algorithms can also be divided into: proposal-based and part-

based [45, 8, 25]. These deep learning techniques take the input image as a chain of pixels that

are then passed into the network nodes where processing occurs. The final layer of the network

should provide us with pixels that contain text.

2.2.1 Proposal-based

This type of algorithm is characterised by outputting a region (usually a rectangle) where it

thinks an instance of an object is. An example is the RCNN (Regional Convolutional Neural

Network). Many adaptations of this algorithm have appeared in the research community. The

famous Fast R-CNN [48] is part of this group and is widely used since its execution time is pretty

low. When it comes to text, some researchers understood the rotational behaviour of text as a

challenge and created the R2CNN [20].
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2.2.2 Part-based

Part-based algorithms extract regions from images and try to create links between them. These

links are what is called a context. CTPN (Connectionist Text Proposal Network) [41] is one of

these cases. It uses recurrent neural networks allied with short-term memory networks (LSTM),

which are used for linking text based on proximity. CTPN successfully detected vertically dis-

posed words in an image.

2.2.3 Instance Segmentation

Previous algorithms retrieve boxes of detected text. This variation only differs by post-processing

the output box. Once the region is retrieved, the algorithm segments the output into words, text

lines, or characters. We can achieve this by using Fully Convolutional Neural Networks (FCN).

One good example was the text detection algorithm submitted by Yao et al. [47] which outper-

formed state-of-the-art detection algorithms for multi-oriented and curved text instances.

2.3 Text Recognition

Once the text has been detected and the interest regions have been determined, we can start feed-

ing these cropped instances to a text recognition algorithm. Solutions in the past performed indi-

vidual character level recognition by using HOG (Histogram Oriented Gradients) descriptors [43].

These count occurrences of the gradient in a character image. The gradient is then used to calcu-

late the difference between a set of characters in a database. The character that shows the least

difference is chosen. This solution performed well on documents with no character variations.

However, it struggled for scene text recognition on natural imagery.

Most recently, researchers are implementing attention-based encoder-decoder frameworks [9].

These require a large amount of data to train and time to learn. However, it proved to be accurate in

recognising scene text imagery. As the name suggests, the framework is separated by an encoder

and decoder stage that the image goes through. The regions of interest are gathered by an CNN/L-

STM network (basically a part-based detection algorithm) in the encoding phase. Then it passes

through an AN (Attention Network), which aligns the output results with the training data. This

allows for the algorithm to fit features of the output with the data that we provide. Furthermore,

the output string can even pass through a Natural Language Processing module to verify and fix

any lexicon errors.

2.4 On-Device Recognition

Deep learning algorithms use a model to store the progress of feature learning. These trained

models can be transferred to other devices to recognise without re-training the entire network

again. Allowing for development and intensive training with desktop systems, which perform
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better than smartphones in typical situations, and the subsequent migration of these to mobile

environments. Thus, the previously mentioned solutions can then be used in a mobile device.

2.5 Datasets

To properly evaluate MLKit Text Recognition, we first need to gather some images to feed the

algorithm and evaluate the output based on some ground of truth1. The popularity of supervised

learning tasks, which are heavily data-driven, triggered an immense search for labelled data and

solutions that are not entirely dependent on big data [50, 5, 1]. Not only that, but a set of AI

competitions worldwide needed some standard on how to compare the contestant’s solutions. Thus

datasets were created. In these competitions, the dataset is the starting point for competitors, which

need to produce a solution that can ultimately get a higher success rate. Chen et al. surveyed the

text recognition benchmark datasets [8] as well as the methodologies that contestants found,

adapted or created to improve the text recognition on those datasets. Some of these datasets are

shown in table 2.1. Typically a dataset is divided into two parts: the train set and test set. The

train set is used to, as the name suggests, to train deep learning approaches. In our case, we use

the train set and the ground of truth it provides to evaluate MLKit’s implementation.

Table 2.1: Dataset Benchmarks

Datasets Language Images Type
Total Train Test

Synth90k English ~9000000 - - Regular
IC13 English 561 420 141 Regular

COCO-Text English 63686 43686 10000 Irregular
Total-Text English 1555 1255 300 Irregular

There are two types of recognition datasets, regular and irregular. Regular datasets contain

frontal and horizontal text images. Irregular datasets contain curved, multi oriented and perspec-

tively distorted text, which represent a challenge for recognition among researchers [10, 46, 39].

First, we show a couple of datasets that proved crucial in improving the recognition success rate

over the years. Then we give a more detailed description of the adopted dataset for MLKit evalu-

ation 2.5.4.

2.5.1 Synth90k

Synth90k [19] is a synthetic dataset with over 9 million 32x100 images. Each image contains a

word out of a 90k dictionary. The generated images contain mostly front and horizontal text with

1Ground of truth is information that is known to be accurate or trustworthy, provided by direct observation and
measurement
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little to no distortion. Instead of the typical approach of character recognition, this dataset focus on

providing enough data to perform word-based recognition. Since deep learning approaches require

a large amount of data to be accurate, Synth90k came to fill the void of the standard realistic/small

datasets.

2.5.2 IC13

The IC13 is a dataset submitted by the ICDAR2013 robust reading competition [22]. This

dataset contains images selected from a variety of web and email pages, with a total of 561 images,

100x100 resolution each and 5003 whole words. It has pixel-level ground of truth, i.e. each

character was manually "painted" with pixels [13], making it the ideal dataset for a segmentation-

based solution.

2.5.3 COCO-Text

The COCO-Text is a dataset containing over 63k scene images, and it is based on MS-COCO [42].

These images were gathered without having text in mind. Thus, almost 50% of the dataset images

contain no text, the other part being mainly irregular text. Furthermore, the ground of truth of these

images embed not only the label text and word bounding boxes (that are common in text datasets),

but also the category of text (handwritten or machine printed), a binary classifier for legible and

illegible text and the type of script language (English, French, etc). It was one of the benchmark

datasets for multi-oriented text recognition.

2.5.4 Total-Text

Total-Text is another scene text recognition focused dataset [12]. It was created to fill the need

for total curved text scene images that were missing in other benchmark datasets such as ICDARs

and COCO-Text. Researchers found solutions on how to properly detect oriented text, one of these

being the famous Fast Region-based Convolutional Network [16, 48, 20] which prove to be faster

and more accurate than previous R-CNN, SPPnet detection algorithms. Consequently, many Fast-

RCNN variations appeared for proper text detection, even for curved instances [49]. Total-text and

other curved, multi-oriented datasets establish a challenge for researchers to detect curved text and

properly recognize it.

The dataset contains 1555 total images, of which 1255 correspond to the annotated train set that

we will use to evaluate MLKit implementation. Each image can contain one or more instances

of text with the proper ground of truth, as shown in figure 2.2. In this dataset, we have the text

instances annotated with:

• x and y coordinates for the 10 polygon vertices (standard across all instances).

• Text label.
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Figure 2.2: Ground truth annotation for an image in Total-Text

• Orientation type: "c" for curved, "h" for horizontal and "m" for multi-oriented text.

Compared to the other datasets, this one enables evaluation in three different orientation domains,

i.e., we can test the algorithm and get different results for either horizontal, multi-oriented or curve

text. Furthermore, we can analyze the results and pinpoint any features or bottlenecks (if the case)

based on the data segmentation.



Chapter 3

Library Requirements

In this chapter, we specify the requirements for the developed library. These were transmitted

by an ITSector representative along the 3 months of planned development. We first show the core

functionalities that our library must provide, followed by some quality requirements. Finally, we

align the requirements with tools on the market that we can use to implement recognition.

3.1 Functional Requirements

According to Ruth, Malan et al. [27], functional requirements “capture the intended behavior of

the system. This behavior may be expressed as services, tasks or functions the system is required

to perform”. Hence we can list the following features:

• FRQ1: The library must have a global Android component capable of doing recognition

when passed an image.

• FRQ2: Adapt the first component to filter information.

• FRQ3: Develop an Android component that uses the camera hardware functionality to read

imagery in real-time.

• FRQ4: Create an entry point for user interface customization for the camera view.

3.2 Quality Requirements

Quality or non-functional requirements are a subset of requirements that deal with usability, main-

tainability, reliability, portability, and efficiency of the final product. These can be somewhat

ambiguous or difficult to detect and significantly impact the final product’s success rate [6, 32].

From the banking perspective, we can name a few quality requirements regarding our library:

• QRQ1: The library must be secure

• QRQ2: Implementation scalability over new camera functionalities

9



Library Requirements 10

• QRQ3: Appealing UI/UX

When we talk about security and privacy in software, we are worried about sensitive data that

might be leaked to third parties, and from the banking standpoint, that cannot happen. So, how

can we minimize or even prevent that leak from happening? One way to look at it is to keep

the computation on-device, i.e., the mobile phone does the fundamental computation and recog-

nition offline. This way, we can mitigate man-in-the-middle attacks utilizing the more advanced

hardware specifications out of the mobile device.

In terms of scalability, our library must provide a simple way of feeding an image to an algo-

rithm. Our implementation will use the image for text recognition, but we must build the ground

block for other algorithms such as face recognition or even a barcode reader.

Finally, our solution must be enjoyable for the user. Since different applications can have

different use cases for the camera, we provide an entry point for the developer to create a custom

user interface. Therefore we implement the core functionality of the screen with the camera view,

a default user interface, and we teach the developer how to add a customizable new UI. As for user

experience, expect the product to be fast, easy to use and non-blocking. We go further on details

later on chapter 5.

3.3 Text Recognition Tools

With all the requirements aligned, we can choose technologies that best fit our goals. These can

be cloud or on-device solutions. Since cloud services require an image to be transmitted over a

network, it compromises QRQ1. All that is left is finding a technology that works offline. ABBY

Fine Reader and Tesseract are popular OCR (Optical Character Recognition) engines designed

to read and identify data on printed documents [40, 35]. However, ABBY is a paid service and

will not be used for this solution. Furthermore, Tesseract, which Google owns, proved to be

challenging when implementing for Android devices. Not only that, it requires a lot of image

pre-processing and training to be accurate.

The Android developer community is focused on using a complete solution for detecting and

recognizing text. It is called MLKit1 and Google developed it to respond to the demand of vision

features in Android and IOS applications. Since it is targeted to the Android environment, it is

undoubtedly the chosen technology. In the following chapter, we overview the technology on their

official website.

1MLKit official website: https://developers.google.com/ml-kit



Chapter 4

MLKit Evaluation

4.1 MLKit

MLKit is a mobile SDK developed by Google that encapsulates the on-device machine learning

expertise in a more friendly, developer-oriented way. It provides many solutions, namely face

detection, pose estimation, object detection, and text recognition for Android and IOS devices.

This technology allows developers to quickly and effectively implement machine learning features

in their applications. In this case, developers can use the Text Recognition API to recognize text in

any Latin-based character set1. Under the hood, this API stays a black box to the community, i.e.,

there is no academic work published by the Google team on the adopted implementation strategy.

Below is the overview of the API (Application Programming Interface) on the MLKit web-

site 4.1. An API is a service that the programmer can use to request and receive a response. In

this case, the TextRecognitionAPI provided by MLKit, will take an image as input and output the

recognized text. As shown, the library supposedly has great execution time and small application

size; hence one can implement recognition without worrying too much about the final applica-

tion size. Upon installing the application on the device, all the necessary components of the API

are downloaded via Google Play Services, an android application that handles many background

tasks. Although we do not get much a priori information from the website, we take a deeper look

at how we communicate with the API in chapter 5.

4.2 Metrics

Metrics are the essential part of evaluating MLKit’s implementation. It is the way to extract

meaning from the result data. Thus we can analyze results and make conclusions. The metrics

used in previous studies [25, 8, 22, 48, 30, 21, 29] are divided into two parts. One set of metrics

focuses on evaluating text detection solutions, while the other evaluates the output string from

1Source: https://developers.google.com/ml-kit/vision/text-recognition

11
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Figure 4.1: Text Recognition API Overview. Source: https://developers.google.com/ml-
kit/vision/text-recognition/android

the recognition. The outputs are evaluated based on the ground of truth annotation provided by

datasets.

4.2.1 Text Detection

To evaluate text detection/localization, researchers compare the bounding box from the ground of

truth with the bounding box of the algorithm output with two simple measures:

Recall(Gi,Di) =
Area(Gi∩Di)

Area(Gi)
,∈ [0,1]

Precision(Gi,Di) =
Area(Gi∩Di)

Area(Di)
,∈ [0,1]

Gi = Ground of truth object list rectangles

Di = Detected object list rectangles

According to Wolf et al. [44], "recall illustrates the proportion of the ground truth rectangle

which has been correctly detected, and precision decreases if the amount of additional incorrectly

detected area increases."

Furthermore, these two metrics are combined to give us a generic final score:

f − score = 2× Precision×Recall
Precision+Recall

,∈ [0,1]

Although we are not evaluating the text detection model from MLKit, we will possibly en-

counter some inconsistency between the GT and MLKit detection bounding boxes. These are

summarized in figure 4.3. As a solution, we will standardize all these mismatches into one match
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Figure 4.2: Recall and precision summarized [23]

by using the position of the MLKit’s bounding box and Total-Text polygon to check if there are

multiple objects of either type inside one another. From there, we merge or split based on the

output of the geometric function.

Figure 4.3: Different match types between bounding boxes [17]

4.2.2 Text Recognition

The recognition phase gives us an output string of the algorithm’s content for a given bounding

box. Researchers use a traditional formula to compare the GT and output string to evaluate this

step. In the ICDAR competition [22, 21] the standard metric is the edit distance, also called Lev-

enshtein Distance [17]. This comparison can be at character and word level, for example:
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Character edit distance:

EDc(cat,cop) = 2

For the above two strings to be equal, we will need to replace two characters. This formula also

counts character insertions and deletions with an equal cost for the three operations. In listing 4.1

we have the pseudo code on how to calculate this distance, which we applied in 5.
1 i n t Levenshte inDistance ( char s [ 1 . . .m] , char t [ 1 . . . n ] )
2 //d is a table with m+1 rows and n+1 columns

3 dec lare i n t d [ 0 . . . m, 0 . . . n ]
4 for i from 0 to m
5 d [ i , 0 ] := i
6 for j from 0 to n
7 d [0 , j ] := j
8 for i from 1 to m
9 for j from 1 to n

10 i f s [ i ] = t [ j ] then cost := 0
11 else cost := 1
12 d [ I , j ] := minimum (
13 d [ i −1 , j ] +1 , //deletion

14 d [ i , j −1] +1 , //insertion

15 d [ i −1 , j −1] +cost //substitution

16 return d [m, n ]

Listing 4.1: Levenshtein Distance pseudo code [37].

Word edit distance:

EDw(cat,cop) = 1

EDw( job, job) = 0

The word edit distance is a binary measure (only evaluates to 0 or 1) per instance and is used

to evaluate how many complete words the algorithm fails. If the two strings are equal, it measures

0, otherwise 1.

The previous measures represent the number of errors per instance when evaluating with Total-

Text. Thus, to get a global view of the results in all instances of the dataset, we have to normalize

these metrics:

NormEDc =
totalEDc

numCharacters
∈ [0,1]

NormEDw =
totalEDw

numWords
∈ [0,1]

As previously stated in 2.5.4, the different orientation text instances in the dataset enable a

separated evaluation; hence we calculate three normalized edit distances each for a different ori-

entation.



Chapter 5

Implementation

The android library implementation is specified in this chapter. We will start by looking at the

planning stage to have a higher picture of the environment, architecture and tools adopted. An

android contextualization is necessary to justify the choices made for structure and technology.

That said, we will give an insight into android development.

5.1 Android Development

Android is an operating system available in a worldwide variety of mobile devices. Based on Unix

type systems, it provides an environment for application development. Development in android

is made possible thanks to a software development kit (SDK) provided by Google itself [14, 24].

Thanks to this SDK, we can use many of the stack components 5.1 available through the operating

system. In our case, the camera is an essential part of our project. Therefore the application

must communicate with the Linux kernel to provide the requested feature. Although we mention

applications as the higher stack level for android components, we must not forget that an android

library is also at the higher level of the stack. It provides code/feature reusability across multiple

applications and does not differ too much from a basic application.

Android apps are developed using four basic components [36]:

• Activity

• Service

• Content Provider

• Broadcast Receiver

Activities represent a single screen where we define the logic and interface for that given in-

stance. Application’s architecture is mainly formed by interconnected activities i.e, one activity

can launch another to form a back stack (the back button will pop the current activity returning to

15
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Figure 5.1: Android stack components

the one who started it). Activities are the only application component we will be using to build

our library; hence one can launch one activity to recognize text in an image.

Services are background processes without a user interface. They are ideal for long term pro-

cesses like fetching streaming data. Although they lack UI, they can communicate with activities

to notify events through notifications and toast messages (alerts that appear in the current active

activity).

Content providers allow data sharing between different applications. One can implement a

content provider to enable other apps to add, remove or query data. This data sharing is made

possible due to the Universal Resource Identifier (URI) 1, which is defined by the content provider

we want to access.
1"A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical

resource" [4]
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Finally, a broadcast receiver is a mechanism that allows applications to handle broadcasts.

The broadcast receiver is registered by an application that specifies which type of data it must

receive. If the broadcast message matches the data type of the registered receiver, it will be invoked

regardless of whether the application is running or not.

In older years of android development, a content provider could be used to launch the system

camera app, capturing the image we need for analysis outside of our application. Using content

providers was the standard approach until a set of libraries and tools provided by Jetpack2 were

developed. This innovation brought camera features to be developed totally inside one’s applica-

tion.

5.1.1 CameraX by Jetpack

As already mentioned above, CameraX is a support library that makes implementing camera

views on android easier, compatible across multiple devices and with less boilerplate code [18].

However, one significant functionality of this library stands out, the image analysis functionality.

This feature enables the application to take the information directly from the camera buffer and

feed that same information onto an image processing algorithm like MLKit. Thus we improve

the overall user experience by taking away the responsibility of capturing an image. Instead, we

charge the developer to filter information from the set of overtime images.

5.1.2 Fragments

Another important aspect of our library focuses on the use of fragments. Fragments are modular

pieces with their user interface and logic that are embedded within an activity [36]. It was devel-

oped to further satisfy the necessity of reusing components across one or multiple applications or

activities. These fragments are nothing more than pieces that can be glued (or destroyed) to form

a responsive activity. In this case, we use the capability of fragments to build a custom overlay

on top of our camera view. Therefore developers can customize the user interface of the pre-built

recognition activity as we will see in 5.2.

5.1.3 Android User Interface

A user interface comprises all the visual aspects and interaction endpoints available in a system.

Therefore, a key part of android application development relies on designing and creating these

interfaces. As previous stated, activities and fragments hold this visual capability. Interfaces are

declared in the format of an XML 3 file. The XML file that holds their visual information is

inflated when activities or fragments are created. The listing 5.1 shows a simple example of a

UI declaration. The figure 5.2 reflects the XML declaration after being inflated onto an activity.

2Jetpack website: https://developer.android.com/jetpack
3XML (Extensible Markup Language) is a textual markup language disposed in a tree structure that holds various

types of data [34]
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The top-level tag LinearLayout is a ViewGroup. While the nested ones (TextView and Button) are

referred as Views [36].

Views (also known as widgets or components) are the basic unit of an interface. Everything

that is displayed on the screen is built by sub-classing the Android View class. The SDK provides

some pre-built components like the Button or the TextView that we saw in 5.2.

ViewGroups are containers that manage the disposition of its children views in the inter-

face. The most common one is the LinearLayout that organizes the child views in single rows

or columns based on the declared orientation (vertical or horizontal). The view group we will be

using to dispose items in the camera screen is the FrameLayout. A FrameLayout allow for de-

velopers to allocate views in some regions of the screen based on declared gravity’s (top, bottom,

center, right and left), which is all we want for a simple and effective user interface.

1 <?xml vers ion ="1 .0 " encoding =" u t f −8"?>
2 <LinearLayout xmlns : andro id=" h t t p : / / schemas . andro id . com/ apk / res / andro id "
3 android : layou t_w id th=" match_parent "
4 android : l ayou t_he igh t = " match_parent "
5 android : o r i e n t a t i o n =" v e r t i c a l " >
6 <TextView android : i d = "@+ i d / t e x t "
7 android : layou t_w id th=" wrap_content "
8 android : l ayou t_he igh t = " wrap_content "
9 android : t e x t = " Hel lo , I am a TextView " / >

10 <Button android : i d = "@+ i d / but ton "
11 android : layou t_w id th=" wrap_content "
12 android : l ayou t_he igh t = " wrap_content "
13 android : t e x t = " Hel lo , I am a Button " / >
14 < / L inearLayout>

Listing 5.1: Simple UI declared in XML

5.1.4 Kotlin

Kotlin is a statically-typed programming language that runs on the java virtual machine (JVM).

Developed by the Google team back in 2011, Kotlin’s main features allow developers to write less,

more readable and error prune code. Before Kotlin appeared in the scene, android applications

used Java. Thus was the necessity for a modern language that could embrace object-oriented

programming, functional programming, and other features of modern languages. As of 2017,

Google announced Kotlin as their official programming language for android development. Due

to the interoperability with Java, Kotlin can be introduced progressively alongside the existing

Java blocks of an application, avoiding the cost of a brute force migration. It also provides null

safety, less verbosity, lambdas and higher-order functions [28, 36, 2, 7, 31]. Even though Java

and Kotlin can be used simultaneously, it is best practice to build new android features mainly on

Kotlin. Hence the current implementation of the recognition library is built using Kotlin solely.



5.1 Android Development 19

Figure 5.2: Simple UI example

5.1.5 Text Recognition API

The TextRecognition API is called passing an image as input. The CameraX image buffer

provides us with an instance of an Image object that contains all the information transmitted by

the camera’s device. Afterwards, we feed the image instance to the API, returning an object of

type Text. As shown by figure 5.3, the Text object is divided into hierarchies. Thus one Block

contains one or more Line elements and one Line element is composed by one or more Element

objects. These hold the same type of information. For example, in a Block object, we have the

following properties:

• Text: The recognized text in the whole block in string format.

• Frame: Characterized by a Rect object, it holds 4 values that compose the limits of the

rectangle (left, top, right, bottom).
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• Corner Points: More detailed information regarding the vertices of the detected text box.

Instead of 4 values per box, it holds the complete 4 coordinates of the rectangle.

• Recognized Language Code: Code of the detected language, for English it would output

"en".

• Lines: Child elements of a Block. In the case of a Line object, this property would contain

Elem objects.

Figure 5.3: Text Recognition API output. Source: https://developers.google.com/ml-
kit/vision/text-recognition

5.2 Library Architecture

In this section, we discuss library architecture. First, we will look at a prevalent design pat-

tern for android applications called MVVM. Then we establish a global structure for our library,

pinpointing each element’s responsibility. Finally, we discuss the data filtering approach adopted.

5.2.1 MVVM

Model view view model or simply MVVM is a design pattern applicable to android develop-

ment. As the name suggests, it comprises three elements: model, view and view model. The

model holds the data and can be stored in a database or created at runtime. The view model is

the model of a given view, i.e. manages its state and can call background processes like retrieving

data from a website or database. The view manages the user interface and can issue commands to

the view model that require some computation effort. This design pattern helps enterprise devel-

opment in many ways but, most importantly, makes it easier to test software due to the separation

of concerns. Furthermore, it enables code reusability (the same view model can be used across

many views) [26, 38].
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Figure 5.4: Android MVVM pattern

As illustrated by figure 5.4, the view model works as the glue between the presentation and the

data that exists on the application. This pattern is the most critical element since it holds all the

logic to retrieve data from the model and link it to the view.

5.2.2 Library Scheme

With all the requirements aligned and chosen our design pattern, we present the adopted archi-

tecture for the library 5.5.

• CameraActivity: Activity that handles camera permissions, launches the CameraX image

analysis buffer and is responsible for inflating the user interface. This top-level activity is

created for many camera use cases, not only text recognition, avoiding repeated code.

• activity_camera.xml: The activity XML file that describes the interface for camera use

cases. It is composed by a top level FrameLayout that contains two childs:

– PreviewView: View that is used by the CameraX library to inflate the camera view.

– FragmentContainerView: Fragment container that is used for different UI use cases.

• TextRecognitionActivity: Child activity of CameraActivity. It manages the overlay frag-

ment and is the entry point for the text recognition operation.

• TextRecognitionViewModel: The view model will handle the background operation for

the actual text recognition. It calls the function for translating an image into text from the

TextRecognitionLogic object and communicates the translated text to the activity.

• TextRecognitionLogic: Singleton Kotlin object that stores all the recognition logic. Thus

enabling accessibility from any point in the application. It is responsible for initializing

the recognizer instance from MLKit and handling recognition requests through function

calls. The most generic function takes an image, calls the MLKit Text Recognition API, and

returns an instance of a class called Text which is a segmentation of the text in the image

organized by blocks, lines or elements. Each block, line or element have an associated



Implementation 22

Figure 5.5: Library architecture

rectangle formed by four coordinates, which the text detection model computes. Hence one

can use the coordinates to filter information based on proximity and geometric logic.

• TextRecognitionOverlayFragment: This fragment is responsible for UI customization on

top of the camera preview. It has it’s own interface (declared in fragment_fr_overlay.xml)

and can be inflated on the activity_camera.xml through the FragmentContainerView. The

fragment interface has a top level FrameLayout with two components:

– top_level_action_bar.xml: The action bar sits on top of the layout and has it’s own

separate declaration file. Contains two buttons:

* Close Button: Closes the current activity.

* Flash Button: Ideal for low light conditions. If a device does not have a lantern,

this button is not enabled.
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– ImageView: The image view is an image located at the center of the screen. It is used

purely for visual aesthetics. Since the image preview occupies the whole screen, it is

nice to have the center of the device as a reference for pointing to data.

5.3 Data filtering

A critical aspect of the implementation focuses on filtering the information present in an image.

The MLKit algorithm takes an image and outputs all the detected text in the form of a string, a

sequence of characters. Our approach is to take the output string and extract information through

regular expressions (RegEx) 4.

The TextRecognitionActivity allows developers to filter information using regex. Before launch-

ing this activity, we can define two arguments for this purpose:

• HashMap<String,String>: An Hashmap is a <key, value> data structure. It is used to tell

the algorithm which information we want to search. For example, in the invoice payment

method, we need an HashMap with three entries:

– <"reference","\\d{3}\\s*\\d{3}\\s*\\d{3}">

– <"entity","\\d{5}">

– <"value", "\\d+,\\d+">

The first entry filters the reference field. Its regex translates to 3 blocks of 3 digits (\\d{3})

separated by zero or more blank spaces (\\s*). Entity is defined by 5 sequenced digits

(\\d{5}). Finally, the value of the invoice is characterized by having one or more digits

(\\d+) on the right and left side of the comma ",".

• (Optional) Array<String>: An array is a data structure used to store multiple values of one

type. Here we define our regex strings for labels that we want to detect in a single frame

before filtering with the HashMap. Using the invoice recognition example, we can define 3

regex strings that detect the reference, entity and value labels. Once these placeholders are

detected, we proceed to filter the HashMap entries. If this array argument is not included, it

goes straight to HashMap filtering.

Although this is the easiest way to deploy text recognition in an application, it has one major

drawback. Let us assume that our Regex matches multiple entity values as illustrated by 5.6.

In the face of this situation, the way the activity is implemented will retrieve the last detected

occurrence of the regex pattern. Hence, in chapter 6 we analyze a detailed custom implementation

of recognition with the relative position in mind.

4Regex is a form of identifying characters or a chain of characters in text through pattern matching [33]
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Figure 5.6: Regex matching inconsistency



Chapter 6

Results

In order to test our implementation, we exported the library to an AAR (Android Archive) [11]

which encapsulates and compresses all the developed components into a single file. Furthermore,

we create a demo application and imported the aar library file onto our new project. The figure 6.1

shows the main activity once we launch the demo application, which contains three buttons:

Figure 6.1: Demo application MainActivity

• MB Text Recognition: Launches the invoice payment recognition use case.

25
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• Custom Use Case: The custom use case button launches an activity that demonstrates how

to use camera features, UI customization and customized data filtering for countless use

cases.

• Performance Eval: Runs an activity that begins the task of evaluating the MLKit’s algo-

rithm on Total-Text dataset 2.5.4.

6.1 Invoice Payment Recognition

When clicking the MB Text Recognition button, we are presented with a new activity that con-

tains three fields. Our goal is to fill these fields with the correct data through the recognition

library. In order to do that that we launch the default TextRecognitionActivity of our library. As

explained in 5.3 previously, this is the easiest way of implementing recognition.

After launching the TextRecognitionActivity, a background process calls the Text Recognition

API and our regex filters its output. Furthermore, the activity returns the filtered data so we can

use it to fill the blank spaces in our ScanDocumentActivity as shown by 6.2. It takes up to 1 to 2

seconds on average to recognise the data in the document.

Figure 6.2: Activity Recognition steps. Left and Right: ScanDocumentActivity, in the middle:
TextRecognitionActivity with default overlay fragment.

The overlay fragment that lives inside the TextRecognitionActivity is composed by 3 components

as shown by 6.3. This UI provides the user with a close button to terminate the current activity.

Furthermore, the flash button enables recognition in low light environments but is only visible if
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the device has an embedded lantern. The image view is purely used for aesthetics and gives a

central reference of the device when pointing to data.

Figure 6.3: TextRecognitionActivity with default overlay fragment

The only effort the developer has, in this case, is to specify the arguments that define the data

to return, i.e, the HashMap and the optional Array described in 5.3. The algorithm that filters

the content based on regex pattern matching has a temporal complexity of O(B), with B being the

number of output blocks of MLKit. This implementation makes the response time as fast as we

can. However, we can encounter some inconsistency if multiple regex matches occur inside the

same block. In this case, the regex returns only the first encountered match for the same block. If

multiple values are detected across multiple blocks, it is returned the first occurrence of the last

block detected. Nevertheless, it is a good and fast solution for parsing documents with little to

no noise. However, our library is an entry point for customisation and a vehicle for implementing

multiple use cases. These, of course, are more time consuming and require a little more effort.

However, it is best to isolate each case and take full advantage of the support functions we built.
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6.2 Custom Use Case

In order to demonstrate the customisation that our library provides, we decided to construct a

new activity. This new activity extends the CameraActivity of our library. Hence, it reduces the

boilerplate code and time to initialise the camera and its view. Listing 6.1 shows the initialisation

of our custom use case activity.

1 class CustomUseCase : CameraAct iv i ty ( ) {
2

3 /**

4 * Custom View Model

5 */

6 private val mViewModel : CustomViewModel by viewModels ( )
7

8 override fun onCreate ( savedInstanceState : Bundle ?) {
9 super . onCreate ( savedInstanceState )

10

11 l a t e i n i t var over lay : CustomOverlayFragment
12

13 super . setupCamera ( { imageProxy −>
14 //You can set whatever function for image analysis

15 mViewModel . analyzeImage ( imageProxy )
16 imageProxy . c lose ( )
17 } , { cameraInstance −>
18 //OPTIONAL: Use the Camera instance for more features like enabling flash.

19

20 /**

21 * Here you can use whatever fragment you want for UI/UX inside the

22 * camera activity, just make sure to call [setupOverlay] so the fragment

23 * can bind to the container

24 */

25 over lay = CustomOverlayFragment . newInstance ( )
26 super . setupOver lay ( over lay )
27 over lay . i n i t F l a s h F e a t u r e ( cameraInstance )
28 } )
29 }
30 }

Listing 6.1: CustomUseCase activity

As we can see, implementing an activity with camera features has become much more accessible

and concise. Our parent activity (CameraActivity) handles the layout and camera initialisation.

In the setupCamera method, we have a callback that allows passing an instance of imageProxy,

which is an image object, to any function we would like for analysis. Furthermore, we can use a

cameraInstance to enable many features of our camera through CameraX. Here we declare a new

overlay fragment, passing it to the parent activity to be inflated in the container.

The analysis function is declared in our CustomViewModel. It starts by wrapping all the com-

putation inside a coroutine, which is a lightweight thread that can run in the background without

affecting the UI. We decided to implement a more robust solution for the invoice payment method
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in this function. To do that we first call the text recognition function that returns the Text object

as described in 6.2. Then we loop through the blocks and lines of our Text variable giving us a

time complexity of O(L ∗B), with L and B being the number of lines and blocks, respectively.

We do not parse on Element level due to matching inconsistencies. Taking the reference string

"001 002 003" as an example, we would have 3 different Elements representing 3 characters each.

Therefore our regex matching would not work. Not only that, the algorithm would have a different

time complexity and, therefore, a longer execution time.

1 /* Call recognition function and filter results by line */

2 TextRecogni t ionLogic . getImageText ( image ) . a lso { t e x t −>
3 //Loop through block and lines

4 t e x t . t ex tB locks . forEach { b lock −>
5 block . l i n e s . forEach { l i n e −>
6

7 /**

8 * 1. Check for labels in frame

9 */

10 refLabelRegex . f i n d ( l i n e . tex t , 0 )? . l e t {
11 l abe lRe f = l i n e
12 }
13

14 entLabelRegex . f i n d ( l i n e . tex t , 0 )? . l e t {
15 l abe lEn t = l i n e
16 }
17

18 valLabelRegex . f i n d ( l i n e . tex t , 0 )? . l e t {
19 l abe lVa l = l i n e
20 }
21

22 /*

23 * 2. Check hits for actual regex values

24 */

25 refRegex . f i n d ( l i n e . tex t , 0 )? . l e t {
26 re fe renceL ineH i t s . add ( l i n e )
27 referenceRegexHits . add ( i t . value )
28 }
29

30 entRegex . f i n d ( l i n e . tex t , 0 )? . l e t {
31 e n t i t y L i n e H i t s . add ( l i n e )
32 ent i t yRegexHi ts . add ( i t . value )
33 }
34

35 valueRegex . f i n d ( l i n e . tex t , 0 )? . l e t {
36 va lueL ineH i t s . add ( l i n e )
37 valueRegexHits . add ( i t . value )
38 }
39 }
40 }
41

42 }

Listing 6.2: Text Recognition API call
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Inside the loops, we have two major blocks of code, adequately identified with numbers 1 and 2

in 6.2. The first one checks for the label occurrences like "Entidade" or "Referência" and saves the

line where each label is located. Furthermore, we register any hits for regex matching for the three

fields in the next block. In each field, we will save the line and the value of the regex matching.

With all the data gathered, we can start filtering results.

Listing 6.3 shows how we filter the many reference hits. Here we start by checking if the label

has been successfully detected by performing a null check on variable labelRef. Then we verify

if we have occurrences of reference values on our referenceLineHits. If so, we immediately call

an auxiliary function inside our library called getClosestLine which will take the line where the

reference label was detected and the lines where we detected possible reference values. The func-

tion will return the closest line to the label. Hence one can get the value of the closest reference.

Although we are only showing the filtering of the reference value, the other fields hold the same

logic.

1 /* Filter reference hits to return the closest one to the label */

2 l abe lRe f ? . l e t { re fLabe l −>
3 i f ( re fe renceL ineH i t s . s i ze > 0) {
4 val c l o s e s t H i t = Geomet r i cUt i l s . ge tC loses tL ine (
5 re fLabe l . boundingBox ,
6 re fe renceL ineH i t s )
7 c l o s e s t H i t ? . l e t {
8 val index = re fe renceL ineH i t s . indexOf ( c l o s e s t H i t )
9 re ference . postValue ( referenceRegexHits [ index ] )

10 }
11 }
12 }

Listing 6.3: Get the closest reference hit to label

With all the background logic done, the activity is notified and shows the correct values for

our fields, even if the image has noise. Let us take figure 5.6 and do a scan, this time with our

customised solution. Figure 6.4 illustrates the result once we point the mobile device to the invoice.

Although it detects the 5 digit number "99929" as a possible entity value, it is discarded since it is

far from the label.

Although this solution is more time consuming and more complex to implement than the first

one presented here, it reflects perfectly the support our library provides. The extension capabil-

ity of our CameraActivity allied with the initialisation of the TextRecognition API through the

TextRecognitionLogic and the custom user interface entry as a fragment allows for developers to

implement less and concise code. Furthermore, we encourage implementing each use case sepa-

rately, with particular attention to the relative position of data across many document layouts.
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Figure 6.4: Custom Use Case activity with custom overlay fragment

6.3 Performance Evaluation

This section will present the results of MLKit’s API on the Total-Text dataset. Once we click

on the Performance Eval button, it starts a background process that transverses all images in the

dataset, parsing different match types between the GT and the algorithm detection 4.2.1. After

standardising the GT and MLKit output, we calculate the recognition metrics 4.2.2. Figure 6.5

shows the activity once all the computation is done. Here we can navigate through all images

using the next and previous buttons. In each image, the global variables displayed will not change.

However, the list we see in 6.5b will show, for the selected image, all GT instances alongside the

parsed Elements from MLKit.
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(a) (b)

Figure 6.5: (a) On top the image view, followed by the image name and a button used for navi-
gation between image instances. Furthermore at the bottom, we print some global variables from
computation results. (b) Scrollable list with GT words compared to MLKit Elements

.

6.3.1 Data Results

From the 1255 images, we were able to analyse 9202 words and 41120 characters. The resulting

distribution among the different classes of GT instances (Horizontal, Multi-Oriented and Curved)

is represented by 6.6. Although Total-Text is a curved focus scene detection dataset, it has a good

distribution for other types of text instances. As we can see, the character and word distribution

do not deviate much from each other. Meaning we have a good character composition across word

instances.
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6.3.1.1 Word Recognition

In the word dimension of our data, we verified that out of 9202 complete words, MLKit failed

to identify:

• 1238 out of 2832 Horizontal words

• 1686 out of 2618 Multi-Oriented words.

• 3174 out of 3752 Curved words.

Furthermore, we can calculate the normalised edit distance:

GlobalEDW =
1238+1686+3174

9202
≈ 66.27%

HorizontalEDW =
1238
2832

≈ 43.71%

MultiOrientedEDW =
1686
2618

≈ 64.40%

CurvedEDW =
3174
3752

≈ 84.59%

We can observe inferior results for curved and multi-oriented instances compared with horizon-

tal ones from the normalised distance. Thus, it leads to a high global normalised word distance of

about 66%. However, we can analyse each class separately. Figure 6.7 puts the word edit-distance

in perspective. There is a good result for horizontal recognition since the error rate is approxi-

mately 44%. Note that the word distance is calculated comparing GT and MLKit strings. If they

are different just by one character, the distance increases. Therefore, it reflects the accuracy of

MLKit on recognising whole words in a scene detection context. However, to better analyse the

pros and cons of MLKit, we need to go down a level and evaluate the character recognition.

6.3.1.2 Character Recognition

The character distance is calculated using the Levenshtein formula 4.1. After computation, our

algorithm prints the distance to characters:

• 3923 out of 13109, for Horizontal characters.

• 6861 out of 11130, for Multi-Oriented characters.

• 13497 out of 16881, for Curve characters
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Now we can calculate the normalised character edit distance:

GlobalEDC =
3923+6861+13497

41120
≈ 59.05%

HorizontalEDC =
3923
13109

≈ 29.93%

MultiOrientedEDC =
6861

11130
≈ 61.64%

CurvedEDC =
13497
16881

≈ 79.95%

The distance for characters shows, as expected, slightly better results across all the classes.

Putting it in perspective 6.8 we can visualise a decreased error rate for horizontal characters com-

pared to full recognised horizontal words. While multi-oriented and curved instances have a dif-

ference between EDW and EDC of 2.76% and 4.64%, respectively, the horizontal class has an

impressive 13.78%, which means that it recognised more characters than other classes for incor-

rect words.
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(a)

(b)

Figure 6.6: (a) Word distribution (b) Character distribution
.
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Figure 6.7: EDW distribution
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Figure 6.8: EDC distribution



Chapter 7

Conclusions and Future work

Text Recognition is a computer vision field that focuses on text extraction present in the imagery.

Over the years, researchers have found ways of building systems capable of accurately detecting

and recognising text. Detection and recognition can be treated as separate problems. However,

they share the same final objective and depend on one another. Robust reading competitions such

as ICDAR [22, 21, 29] saw competitors breaking state-of-the-art solutions with their submissions.

Although these technologies target desktop environments, they can be migrated to mobile devices

for real-time execution. However, we went with a native Android solution to implement on-device

recognition, MLKit. By choosing this technology, it saved much time implementing the proposed

requirements for the library 3.

MLKit is an excellent SDK for machine learning solution implementation. We built a library

capable of recognising invoice payment methods, easing the developer’s work when implement-

ing applications requiring camera functionalities. Furthermore, we tested the accuracy of MLKit

TextRecognition API with a challenging scene text dataset: Total-Text. The benchmark recogni-

tion framework for this dataset, submitted by Youngming et al [3] reports an impressive 78.7%

of accuracy. Compared to our 33.73% of hit-rate for complete words, MLKit stays behind the

state-of-the-art solutions. However, MLKit is not adapted for distorted or curved text instances. It

proved efficient for frontal and horizontal text in natural images with a surprising 56.29% of hit

rate for word instances.

Finally, we met all the requirements that ITSector proposed for this project. In future itera-

tions of our library, we will continue to provide support functions and implement other camera

use cases such as a barcode reader. Hopefully, Google will also improve their text recognition

accuracy without sacrificing the excellent execution time, and together, we can continue to make

applications enjoyable for users.

Even though this on-device accuracy is not as precise as other systems reported by the state-

of-the-art, MLKit’s results demonstrate other possible advantages, such as the ability to identify

38
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an image within an average of 2 seconds correctly. Compared to other systems, it consumes less

computational resources, taking less time to process information, which could also improve user

experience and be a better fit for its commercial purposes and simple document scans.
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