
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Self-Adjusting Mechanisms For
Edge-Based IIoT In Variable Demands

Environments

Guilherme Fernandes Machado Rocha de Sousa

Mestrado em Engenharia Informática e Computação

Supervisor: Prof. Gil Manuel Gonçalves

Co-Supervisor: Eliseu Moura Pereira

April 2, 2022

Self-Adjusting Mechanisms For Edge-Based IIoT In
Variable Demands Environments

Guilherme Fernandes Machado Rocha de Sousa

Mestrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

President: Prof. Hugo José Sereno Lopes Ferreira

Referee: Prof. Pedro Miguel Baptista Torres

April 2, 2022

Abstract

The evolution of technology directly correlates to the growth of the industrial world. From the
industrial revolution to the present day, electronic device usage has increased, making not just
industries grow but also bringing society closer. This evolution was especially marked in the com-
puting area, where in thirty years, personal computers have gone from being a costly machine,
mainly operated by computer scientists, to becoming one of the world’s hottest and "cheapest"
commodities, practically turning into the every day, indispensable utensil.
One of the concepts resulting from the combination of many fields of Computer Science is the
concept of the Internet of Things. The Internet of Things (IoT) describes the network of physical
objects-"things" that have the purpose of connecting and exchanging data with other devices and
systems over the Internet, which allows for a modernization, centralization, and automation of
whole processes, while adding overhead in terms of data storage and processing, that is usually
done by using the resources available in Edge/Cloud Servers. Given its ever-increasing popular-
ity, industries started adapting IoT techniques into businesses, creating the Industrial Internet of
Things (IIoT). Considering how much data is processed in an industry, careful task offloading to
the Edge/Cloud is necessary for IIoT.
But if many of the already attempted task offloading solutions managed to save resources by pri-
marily applying Artificial Intelligence concepts, they often followed a single line of pre-determined
thought. Another lacking point in research was the general absence of simultaneous integration
of the Edge and Cloud levels, though this could be justified, since the cost of acquiring Cloud
solutions can be prohibitive.
Therefore, a mechanism capable of performing this type of task offloading efficiently was devel-
oped, as an attempt to improve upon previous research’s lacking points, that would communicate
with an existing distributed system, named DINASORE. DINASORE allows for code execution
of Function Block based pipelines, within a Cyber Physical Production System. In the end, three
algorithms capable of showing task offloading optimization results were tested, and it was found
that although they displayed acceptable levels of efficacy, they also displayed critical flaws in
terms of accuracy. However, accuracy flaws were influenced by DINASORE’s way of storing
the monitored resources and monitored Function Block execution in text files and by the mech-
anism’s attempt at establishing an association between this data. It was not possible to obtain a
concrete and absolute understanding on the benefits of including a Cloud level with task offloading
mechanisms, when compared to the negatives.

Keywords: Internet of Things, Industrial Internet of Things, Task Offloading, Edge Servers, Cloud
Servers

i

Resumo

A evolução da tecnologia está umbilicalmente ligada à evolução do mundo industrial. Desde
a revolução industrial até à atualidade, que se verifica um aumento na presença de dispositivos
eletrónicos, não só em termos industriais, como em termos sociais, pois aparelhos eletrónicos são
utilizados nas mais comuns atividades do quotidiano. Esta evolução foi especialmente acentuada
na área da computação, onde num espaço de trinta anos, os computadores pessoais, deixaram de
ser uma máquina bastante dispendiosa e utilizada apenas por ciêntistas, ou informáticos, para se
tornarem numa das mais baratas e mais utilizadas comodidades, praticamente indispensáveis no
dia-a-dia.
Um dos conceitos, resultantes da combinação das várias áreas das Ciências da Computação, é a
Internet of Things (Internet das Coisas). A Internet of Things (IoT) descreve a rede de objetos
físicos que têm o propósito de conectar e trocar dados com outros aparelhos e sistemas através da
Internet, o que permite uma modernização, centralização e automação de processos. Ao mesmo
tempo, é gerada uma sobrecarga, no que respeita ao armazenamento e processamento de dados,
realizado muitas vezes, ao utilizar os recursos disponibilizados em Servidores Edge/Cloud asso-
ciados a soluções IoT. Dada a sua popularidade, as industrias começaram a adaptar técnicas IoT
aos seus negócios, o que originou na Industrial Internet of Things (IIoT) (Internet das Coisas In-
dustriais). Considerando a quantidade de dados que são necessários de processar e operar numa
indústria, é necessário fazer um balanceamento cuidadoso de tarefas para a Edge/Cloud no decor-
rer das operações diárias executadas em ambiente industrial.
Mas se muitas das soluções de balanceamento de tarefas, apresentadas em investigações científi-
cas realizadas pela comunidade científica, conseguem encontrar sucesso a poupar recursos, muitas
das vezes seguem uma linha de pensamento já pre-determinada. Outro aspeto imporante que
raramente foi estudado foi a integração conjunta dos níveis Edge e Cloud, o que pode ter sido
influenciado pelo elevado custo de adquirir soluções Cloud.
Foi desenvolvido um mecanismo capaz de fazer este balanceamento de forma eficiente, como uma
tentativa de melhorar os pontos fracos encontrados em investigações prévias, adequando-se a um
sistema distribuído já existente, o DINASORE. Este sistema permite a execução de código de
pipelines de Function Blocks em Sistemas de Produção Cyber-Físicos. No final, foram testados
três algoritmos capazes de realizar balanceamento de tarefas, e os resultados demonstraram que
embora houvesse algum sucesso do ponto de vista da eficiência, verificaram-se também falhas
graves no que respeita à precisão, sendo que algumas dessas falhas foram influenciadas pelo modo
como o mecanismo tenta estabelecer uma ligação entre os dados de consumo originados pelo
DINASORE, tanto para dispositivos como Function Blocks. Não foi possível concluir de forma
inequívoca, que a inclusão de uma solução Cloud com mecanismos de balanceamento de tarefas

ii

iii

traga mais benefícios do que prejuízos.

Keywords: Internet das Coisas, Internet das Coisas Industriais, Balanceamento de Tarefas, Servi-
dores Edge, Servidores Cloud

Acknowledgements

I would like to thank Professor Gil Gonçalves for the opportunity presented, and Professor João
Reis and Eliseu Pereira for all the feedback and guidance provided throughout the dissertation.

To all of the people that I have shared a classroom, field or locker room, I would thank for
the many timeless memories created, that fueled the fire that aided in accomplishing all the goals
I had set for myself at the beginning of my academic career. Namely, to my friends that came
from Instituto Superior de Engenharia do Porto, with whom I shared many struggles, conquers
and defeats, especially to my "brother in arms", Joel Coelho for his friendship and work ethic,
which inspired and helped me completing my Masters Degree.

To all my friends and loved ones, whose undying and unwavering support and love was a
critical foundation in this short life that I have lived so far.

To my family for all the understanding and opportunities created, especially to my sister,
mother and father, who provided nothing but love, affection and care since the day I was born, and
who have given me all the necessary conditions to succeed in life as well as the weapons needed
to face all of its adversities.

You have all inspired me to become a better person and to never give up. To all of you my
eternal gratitude and my undying love.

Guilherme Sousa

iv

“Ten decisions shape your life,
You’ll be aware of five about.”

Julian Casablancas

v

Contents

1 Introduction 1
1.1 Context . 1
1.2 Research Focus . 2
1.3 Research Relevance . 3
1.4 Research Objectives . 3
1.5 Research Questions . 4
1.6 Thesis Structure . 4

2 Literary Review 6
2.1 Internet of Things/Industrial Internet of Things 6
2.2 Concepts . 9

2.2.1 Reinforcement Learning . 9
2.3 IoT Based Task Offloading . 13
2.4 IIoT Based Task Offloading . 21
2.5 Summary . 32

3 Problem Formulation 37
3.1 Problem Formulation . 37

3.1.1 Greedy Algorithm . 37
3.1.2 Improved Greedy Algorithm . 38
3.1.3 Q-Learning Algorithm . 39

4 Implementation 42
4.1 Mechanism Architecture . 42

4.1.1 Mechanism Design . 42
4.2 Algorithms and File Operations . 47

4.2.1 File Operations . 47
4.2.2 Algorithms . 48
4.2.3 Utility . 52

5 Experiments and Results 55
5.1 Pipeline Description . 55
5.2 Experiment Design . 61
5.3 Results . 62

5.3.1 Local Scenario A . 62
5.3.2 Local Scenario B . 64
5.3.3 Local Scenario C . 66
5.3.4 Local Scenario D . 68

vi

CONTENTS vii

5.3.5 Distributed Scenario E . 70
5.3.6 Distributed Scenario F . 74
5.3.7 Distributed Scenario G . 79

6 Limitations and Future Work 84
6.1 Limitations . 84
6.2 Future Work . 85

7 Conclusions 87

References 89

8 Appendix 92
8.1 Spreadsheet Link . 92
8.2 Code Related Figures . 92

List of Figures

2.1 Reinforcement Learning Model (taken from [24]) 10
2.2 Interaction Architecture Between the Fog, Cloud and Edge (Taken from [7]) . . . 14
2.3 Bargaining based scheme for task offloading (Taken from [25]) 18
2.4 Results obtained by comparing the optimized scheme to the conventional scheme

(Taken from [28]) . 19
2.5 Types of offloading models (Taken from [15]) 20
2.6 System Architecture (Taken from [15]) . 21
2.7 Self-Organizing Map (Taken from [12]) . 23
2.8 Free Bound Mechanism (Taken from [19]) . 27
2.9 Flow Chart Messages in the Distributed Algorithm(Taken from [19]) 28
2.10 IIoT System Model for [20] (Taken from [20]) 30
2.11 Results of simulations, showing relation between sum cost and number of user

devices in the system and the relation between sum cost and Edge resource us-
age(Taken from [20]) . 32

4.1 OPC-UA Model . 43
4.2 Prosys OPC-UA Data Display . 44
4.3 Task Offloading Mechanism Design . 45
4.4 Task Offloading Class Diagram . 46

5.1 First Pipeline Part in Training Pipeline . 58
5.2 Second Pipeline Part in Training Pipeline . 58
5.3 First Pipeline Part in Testing Pipeline . 59
5.4 Second Pipeline Part in Testing Pipeline . 59
5.5 Third Pipeline Part in Testing Pipeline . 59
5.6 Network Topology of the Mechanism . 60

8.1 Devices Class . 93
8.2 Function Blocks Class . 93
8.3 File Reader Class . 94
8.4 Function Block Reader Class . 95
8.5 Monitor Reader Class . 96
8.6 Device Availability Reader Class . 97
8.7 Data Connector Class . 98
8.8 Greedy Algorithm Class . 99
8.9 Show Result Class . 100
8.10 Improved Greedy Algorithm Class . 101
8.11 Methods utilized in the Greedy and Improved Greedy algorithms to calculate re-

source consumption . 102

viii

LIST OF FIGURES ix

8.12 Method utilized in the Greedy algorithm to obtain device comparison 102
8.13 Method utilized in the Improved Greedy algorithm to obtain device comparison

for memory resources . 103
8.14 Method utilized in the Improved Greedy algorithm to obtain device comparison

for CPU resources . 104
8.15 Methods utilized in the Greedy and Improved Greedy algorithms to aid in the

process of initializing dictionaries and obtaining an objects parameter 105
8.16 Methods utilized in the Greedy and Improved Greedy algorithms to aid in the

process of manipulating dictionary data . 105
8.17 Methods utilized in the Q-Learning algorithm’s environment to obtain reward, to

calculate step, to render render and reset the algorithm’s state 106
8.18 Environment class initialization and reward associated methods 107
8.19 Environment class reward associated methods 108
8.20 Environment class reward associated methods 109
8.21 Q-Learning algorithm initialization and beginning of algorithm 110
8.22 Q-Learning algorithm update of Q-table and showing results 111
8.23 Methods utilized in the mechanism to aid in file operations 112
8.24 Main Class . 113
8.25 Client Connector Class . 114
8.26 Client Connector Class Thread . 114

List of Tables

2.1 Literature Review Summary . 33
2.1 Literature Review Summary . 34
2.1 Literature Review Summary . 35
2.1 Literature Review Summary . 36

5.1 Greedy and Improved Greedy results for Local Scenario A executions 63
5.2 Q-Learning results for Local Scenario A executions 63
5.2 Q-Learning results for Local Scenario A executions 64
5.3 Greedy and Improved Greedy results for Local Scenario B executions 65
5.4 Q-Learning results for Local Scenario B executions 65
5.4 Q-Learning results for Local Scenario B executions 66
5.5 Greedy and Improved Greedy results for Local Scenario C executions 67
5.6 Q-Learning results for Local Scenario C executions 67
5.6 Q-Learning results for Local Scenario C executions 68
5.7 Greedy and Improved Greedy results for for Local Scenario D executions 68
5.7 Greedy and Improved Greedy results for for Local Scenario D executions 69
5.8 Q-Learning results for for Local Scenario D executions 69
5.8 Q-Learning results for for Local Scenario D executions 70
5.9 Greedy and Improved Greedy results for Distributed Scenario E executions . . . 71
5.9 Greedy and Improved Greedy results for Distributed Scenario E executions . . . 72
5.10 Q-Learning results for Distributed Scenario E executions 72
5.10 Q-Learning results for Distributed Scenario E executions 73
5.10 Q-Learning results for Distributed Scenario E executions 74
5.11 Greedy and Improved Greedy results for Distributed Scenario F executions . . . 75
5.11 Greedy and Improved Greedy results for Distributed Scenario F executions . . . 76
5.12 Q-Learning results for Distributed Scenario F executions 76
5.12 Q-Learning results for Distributed Scenario F executions 77
5.12 Q-Learning results for Distributed Scenario F executions 78
5.13 Greedy and Improved Greedy results for Distributed Scenario G executions . . . 79
5.13 Greedy and Improved Greedy results for Distributed Scenario G executions . . . 80
5.14 Q-Learning results for Distributed Scenario G executions 81
5.14 Q-Learning results for Distributed Scenario G executions 82

x

Abbreviations

4DIAC 4 Distributed Industrial Automation and Control
ACO Ant Colony Optimization
AI Artificial Intelligence
CS Computer Science
CPS Cyber Physical Systems
CSV Comma-Separated Values
CVR Conditional Value at Risk
CPPS Cyber Physical Production Systems
DIGI2 Digital and Intelligent Industry Lab
DINASORE Dynamic INtelligent Architecture for Software and MOdular REconfiguration
FEUP Faculty of Engineering of the University of Porto
FB Function Block
GB Gigabytes
GLBS Gupta-Livne Bargaining Solution
ICS Industrial Control Systems
IEC International Eletrotechnical Commission
IoT Internet of Things
IIoT Industrial Internet of Things
ISO International Organization for Standardization
MDP Markov Decision Process
MEC Mobile Edge Computing
MQTT Message Queuing Telemetry Transport
OASIS Organization for the Advancement of Structured Information Standards
OPC-UA Open Platform Communications-Unified Architecture
PSO Particle Swarm Optimization
QoS Quality of Service
RAM Random Access Memory
SCADA Supervisory Control and Data Acquisition
SOM Self-Organizing Map
SYSTEC Research Center for Systems and Technologies
TABS Tempered Aspirations Bargaining Solution
XML Extensible Markup Language

xi

Chapter 1

Introduction

In this chapter, the research is presented and briefly discussed to understand its context, objectives,

questions, and planning. The document’s structure is also presented.

1.1 Context

The relationship between technology and the industrial world may not be umbilical since the

production of goods has been done since Men populate our Planet, who used nothing but their

hands to produce items and equipment for activities vital to the prosperity of the human species.

But the invention and continuous advancement of technology provided the industrial world with

a perfect partner for symbiosis, as technology was ultimately an essential spark that would justify

and shape the industrial revolution of the 19th Century. And if at first, the revolution began with

simple machinery and materials, such as coal and iron, which, at the time, were enough to change

the world, the truth is, the tremendous changes verified in the technological world, namely in the

computing area, have expanded industries in ways beyond imaginable.

The rapid and exponential change in technology benefited not only industries but also society

as a whole since some electronic devices are considered an essential good. From mobile phones

to computers, the ubiquitous presence of these technological marvels shape the everyday life of

a vast majority of the world’s population and change the way it is possible to communicate, con-

sume, collaborate and behave. Specifically, the area of Computer Science (CS) has experienced an

immense amount of evolution since the invention of the first digital computer. Concepts such as

Artificial Intelligence (AI), Concurrent, Parallel and Distributed Computing, Databases and Data

Mining, Security and Cryptography, Computer Architecture and Organization, have been defined

and studied by some of the brightest minds in CS, and from being interesting theoretical ideas,

became understood and regularly used concepts, not only by other scientists but also Software

Engineers and developers.

1

Introduction 2

One of the most recent and exciting concepts, is the concept of Internet of Things (IoT). The

IoT represents the network of physical objects embedded with electronic frequency identification,

software, sensors, actuators, and smart objects that converge with the Internet to accumulate and

share data with other systems and devices [5]. Fields like wireless sensor networks, control and

embedded systems, and others enable the Internet of Things. Still, in terms of the consumer mar-

ket, IoT technology is synonymous with products relating to the concept of the "smart home" like

devices and appliances that support one or multiple common ecosystems, which are controllable

via devices, such as smartphones and smart speakers [27].

Despite its original market target, other sectors of society have found value in applying and

integrating IoT into organizations to modernize, centralize, and automate whole processes and

businesses. By applying IoT techniques to industries, the Industrial Internet of Things was then

created.

Industrial Internet of Things or IIoT corresponds to interconnected sensors, instruments, and

other devices networked together with computers’ industrial applications, which allows for data

collection, exchange, and analysis, which facilitates efficiency and productivity improvements, as

well as other economic benefits [8]. Concepts such as Cloud Computing, Edge Computing, Big

Data, Artificial Intelligence, Machine Learning, and, of course, Internet of Things come together

to allow process controls’ refinement and optimization, in IIoT [33]. But even if IIoT has plenty

of value for industries, it is necessary to accommodate resources and plan solutions individually

depending on needs, often defined by how demanding the environment in which each industry is

inserted.

Therefore, this research aims to provide and document steps necessary to develop a load-

balancing mechanism for Edge-based networks that will allow to optimize its performance and

guarantee the system can fulfill the requirements imposed by variable demand.

1.2 Research Focus

The research was done under a proposition by the Digital and Intelligent Industry (DIGI2) Lab,

which is part of the Research Center for Systems and Technologies (SYSTEC), Faculty of Engi-

neering of the University of Porto (FEUP). DIGI2 develops Research and Development activities

in advanced control concepts and systems, tools, and technologies for a broad area of industrial

applications. Their mission is scientific and technical research, development, advanced education

and training, dissemination, and sustainable technology transfer. [1]

To understand the focus of this research, an example is provided. One of the main concepts

in the industrial world, is a production line. Cambridge Dictionary defines a production line as

a line of machines and workers in a factory that a product moves along while it is being built or

produced [2]. As an example, a shoe production line can be used. In a production line, there could

be separate lanes for products. Supposing, in the context of a shoe factory, that the first lane would

responsible for the feet of the shoes, the second, for the body of the shoes, and the last one for the

laces. By using IIoT techniques and technologies, it should be possible to perform actions such as

1.3 Research Relevance 3

product identification, product picking, product sorting, and others, that generate data that often

needs to be collected, processed, and analyzed. But to store data, Edge and Cloud solutions are

preferred since they provide a lot of value to companies by mainly allowing to reduce costs and

maintenance efforts, provide agility in terms of existing or new infrastructure and versatility. If

the production line only processed about one-hundred shoes, it wouldn’t offer much problem in

terms of managing the Edge and Cloud’s resources, therefore it would be necessary to choose only

one of them to always keep storing data resulting from said processing. But if the production line

had to process one-hundred thousand shoes, the resources needed to process all the data would

increase, and in this case, only using one of the solutions would not suffice. Therefore, it would

be necessary to balance how and in which solution data would be processed for optimizing the

resources that are spent, which can be done using an offloading mechanism.

Offloading, in computing, corresponds to the task of sending computation-intensive applica-

tion components to a remote server [4]. Offloading to an external platform over a network can aid

in breaking through hardware limitations, such as limited computational power, storage, and en-

ergy, and consequently, make resources more available for computation operations. The research’s

focus was then to design and implement a mechanism capable of accurately and efficiently per-

form task allocation suggestions, according to resources available, in an environment where large

amounts of data need to be processed in real-time and stored in Edge or Cloud solutions accord-

ingly.

1.3 Research Relevance

Though previous researches were done about task offloading in Edge and Cloud solutions, many

of these types of papers usually targeted the consumer market definition of IoT, so they were

applied to the concept of smart-home instead of industry, though research was found that provided

a solution, specifically for IIoT task offloading by, for example, using Reinforcement Learning

techniques. While many of the findings will be presented and further discussed in the next chapter

of the thesis, it is possible to say that this research would provide inspiration for an attempted

solution for task offloading optimization suggestions. The solution would consist of an overview

architecture and at least one algorithm that defined how the offloading itself should be performed.

1.4 Research Objectives

As said in section 1.1, the research aimed to provide and document steps necessary, to come up

with a mechanism for Edge-based networks that would provide suggestions on how to optimize the

performance and to guarantee a system could fulfil the requirements imposed by variable demand.

To achieve this, the architecture was designed, and algorithms would be defined to understand

and measure what type of strategy was the most efficient at giving suggestions of task offloading.

More specifically, the research’s objectives were:

Introduction 4

• To define the most important variables in the environment when designing a task offloading

mechanism.

• To design an abstract architecture for said mechanism, capable of fitting a vast majority of

solutions without having to modify the existing infrastructure too much.

• To implement at least one algorithm capable of accurately and efficiently understanding how

the tasks should be balanced.

• To analyze how efficient and accurate the architecture and resulting algorithm(s) were in the

suggestion of load-balancing of tasks’ solutions.

1.5 Research Questions

To guarantee the objectives defined were accomplished, research questions were also defined.

These questions would set the guidelines to focus on and define the means necessary for achieving

the objectives:

• What parameters defined how important a variable in the environment was ?

• How abstract can a load-balancing mechanism’s architecture be to achieve a satisfactory

portability parameter and efficient task execution ?

• How should the algorithms be defined to achieve efficient task execution ?

• How to measure the efficiency and accuracy of the proposed solutions ?

Therefore the main research question was:

“How to define an abstract architecture and develop, at least, an algorithm capable

of efficiently and accurately offloading tasks associated with demanding industrial

environments embedded within the Industrial IoT?”

1.6 Thesis Structure

The thesis is structured as follows:

• Chapter 1 introduces the research by presenting its context, motivation, objectives, focus

and relevance.

• Chapter 2 presents the state of the art of existing task offloading solutions for Edge/Cloud

solutions in IoT/IIoT and some concepts related to Reinforcement Learning.

• Chapter 3 describes the work problem formulation.

• Chapter 4 presents the mechanism’s architecture, the implementation phase and all the

steps taken towards the development of the offloading algorithms.

1.6 Thesis Structure 5

• Chapter 5 describes the process of testing the mechanism developed and discusses the

results obtained during the testing phase.

• Chapter 6 presents the mechanisms’ limitations as well as mentions future work that could

be performed to overcome them.

• Chapter 7 presents the conclusions obtained from the research.

Chapter 2

Literary Review

In this chapter, the State of the Art of task offloading solutions will be presented, and further con-

text will be given regarding the Internet of Things and the Industrial Internet of Things. To better

understand how this chapter’s structure was defined, it is necessary to know how the research was

structured, planned, and executed. Given that task offloading is a concept associated with the Inter-

net of Things as a whole, it was necessary to plan the research to accommodate this factor. Though

the research didn’t follow a traditional systematic review process, it was still possible to follow

a plan that didn’t differ much from it. To make things easier, the researches performed always

included a set of keywords, which included task offloading, Internet of Things, Industrial Internet

of Things, offloading mechanism. To filter out the relevant information from the irrelevant one,

papers were read to understand their quality/relevance, which were parameterized accordingly to

methodology, technologies used, experiments/simulations executed for testing mechanisms, and

results presented. Given the differences in environment between IoT/IIoT systems, different sec-

tions will present the existing work for two different versions of IoT, the consumer-oriented one

and the industrial version. A section related to the theory and concepts behind Reinforcement

Learning will be presented to provide more clearance to some of the terms and definitions that

impacted developmental choices.

2.1 Internet of Things/Industrial Internet of Things

This section presents more context about the Internet of Things and the Industrial Internet of

Things. Starting with the Internet of Things, as stated in chapter 1, section 1.1, it describes the

network of physical objects that converge with the Internet to accumulate and share data with

other devices and systems, and according to Kumar et Al., is an emerging paradigm that is capable

of facilitating lives [9]. Specifically, IoT offers developments in technology capable of merg-

ing in people’s everyday lives, such as the concept of Smart Home Systems. These systems are

composed of appliances consisting of Internet-based devices, automation systems for homes, and

6

2.1 Internet of Things/Industrial Internet of Things 7

reliable energy management systems that communicate with each other to make the management

of homes much easier by automating processes such as house cleaning and managing home se-

curity and in-home media entertainment systems. Another area of society where the IoT has an

enormous number of benefits is the healthcare area with Smart Health Sensing Systems. These

health systems incorporate indoor and outdoor equipment and devices to monitor/check health is-

sues, fitness levels, or burned calories by a patient. More importantly, they can be used to monitor

critical health conditions. IoT also has relevance in transportation since, when integrated with

vehicles, IoT systems can improve traffic awareness and efficiency. The main advantage of IoT

systems is that devices and equipment are cost-effective when it comes to development and prod-

uct purchase, managing to find their way into many people’s hands. But all through the explosion

of the technology, research is still done on the many facets of IoT, making it more and more

relevant and utilized in the global market. Hardware such as sensors, RFID chips, and barcode

readers mix with networking concepts such as 3G/4G, Wi-Fi, Bluetooth to create the basis for IoT

architecture, composed of 5 layers, perception layer, network layer, middleware layer, application

layer, business layer. However, it is necessary to account for scalability, modularity, interoper-

ability, and openness to fulfil multi-system integration requirements with functionalities related

to management, storage and big data analytics/studies and storage, user-friendly applications, and

cross-domain interactions. But even if IoT has a lot of advantages, it also presents several risks

and issues such as:

• Security/privacy issues can arise when authentication and authorization flows are miss-

ing or incomplete, the software is insecure, or there is inefficient/missing transport layer

encryption.

• Interoperability/standard issues can be found due to the heterogeneity of technologies

and solutions used to develop IoT systems.

• Ethics, law, and regulatory rights should be attended to since data security, privacy pro-

tection, trust, and safety data usability can represent a challenge in the development of IoT

systems.

• Scalability, availability, and reliability given that IoT systems need to account for a large

number of devices, which display different parameters and attributes while understanding

that availability and reliability are, more often than not, crucial in the good functioning of

these systems.

• Quality of Service (QoS) that serves as a measure to understand not only how efficient IoT

devices, architectures, and systems are but also how they perform and how they evaluate in

terms of quality.

Some of the main fields where the Internet of Things has relevance and brings benefits include:

• Emerging economy, environmental and health-care, where IoT systems have importance

in accomplishing social, health, economic and environmental goals.

Literary Review 8

• Smart city, transport, and vehicles as discussed, some of the main areas where IoT first

showed its capabilities, allow for more efficient household and traffic tasks to be performed.

• Agriculture and industry automation when IoT can improve processes through automa-

tion and can work to resolve environmental concerns. It is precisely in the industrial variant

of IoT that the research focuses on.

In [26] Boyes et Al. presented an analysis framework on the Industrial Internet of Things.

IIoT, or as it is also known, Industry 4.0, is considered a collective term for concepts and tech-

nologies of value chain organization. The Industrial Internet of Things is related to concepts

like Cyber Physical Systems (CPS), Supervisory Control and Data Acquisition (SCADA), Indus-

trial Control Systems (ICS), and Industrial Internet, which are a part of IIoT ecosystems. Cyber

Physical Systems comprise a set of digital and physical components capable of interacting with

each other through centralized or distributed architectures that provide functions that influence the

real world through physical processes. Namely, they are used to aid in controlling the physical

processes while displaying large degrees of autonomy. Industrial Control Systems are different

control systems with associated instruments such as systems, devices, networks, and controls used

in industrial processes. Supervisory Control and Data Acquisition systems allow for an operator

in a strategic physical location to perform tasks such as monitoring alarms, managing valves, set

point changes on distant process controllers, and gather measurement information. Finally, Indus-

trial Internet is concept-oriented to the industrial world, as it combines two components, the first is

the connection of industrial machine sensors and actuators to local processing and to the Internet,

and the second is the forward connection to other important industrial networks, each capable of

generating value. These systems allow for the collection and treatment of data so that it can be

analyzed and possibly used to influence new value-generating services. The Industrial Internet

is also known as a short-hand for the industrial applications of IoT, or simply, as the Industrial

Internet of Things. The IIoT uses smart objects within CPS’s, in order to achieve industrial goals

and to connect industrial components such as power grids, engines, and sensors to cloud over

networks. But IIoT systems rely on more than just CPS’s, they are also associated with generic

information technologies and optional Cloud or Edge computing platforms, capable of enabling

collection and analysis of data, autonomous and intelligent access, exchange of process within the

industrial environment, to optimize overall production value, making it possible to reduce energy

consumption, reduce labor costs, or even improve the delivery of services and products. Boyes et

Al. also provided "compartmentalization" of IIoT devices depending on the following criteria:

• Industry sector since all different sectors in the industrial world require different devices

to function properly.

• Device location is considered from many perspectives since a device location can cause it

to be more exposed to risks from a security perspective.

• Device connectivity given that it is necessary to identify essential features of connectivity

between an IIoT system and devices that are constituents of that system.

2.2 Concepts 9

• Device characteristics to understand how devices function, namely, what type of impor-

tance they have on the system, and what kind of functions they perform, or how they should

be managed.

• Device technology needs to be attended to because, usually, technological features con-

straint device design or the capacity to address vulnerabilities when devices have been de-

ployed.

• User type is essential to define since it tracks the identification of who is using the device

and what the device is interacting with.

Finally, the authors identified some of the issues/needs in terms of research within the IIoT

theme that need to be taken into consideration in the future:

• Limited research on safety and security of IIoT devices which could potentially be a

point of harm in industrial systems. Therefore additional work needs to be performed to

prevent and minimize the threat to personnel, assets, and the environment.

• Mapping the IIoT ecosystem and threat landscape to understand which security threats

can expose and harm IIoT ecosystems and associated threat landscape mapping to those

ecosystems.

• Limited research on Operational Technology and Information and Communication
Technologies convergence given that merging these two areas requires well-defined, scal-

able standards while also guaranteeing that these standards are secure and don’t expose any

possible vulnerability.

• Providing solutions to legacy system issues given that many industries still have legacy

systems in place to perform every day it is necessary to account for the processes and secu-

rity definitions in place when installing IIoT devices on top of an operational architecture.

2.2 Concepts

Following the guidance of the many papers presented in the following sections, one of the algo-

rithms developed for the mechanism was a Q-Learning algorithm. It is then necessary to further

clarify theoretical concepts and definitions associated with Reinforcement Learning. Concepts

such as Markov Decision Process, state, action, environment will be presented, since their under-

standing is critical to better comprehend how that particular algorithm was built.

2.2.1 Reinforcement Learning

Reinforcement Learning teaches an agent a specific behavior by interacting in a trial and error

manner with a dynamic environment. Considered to be a class of problems, Reinforcement Learn-

ing solutions may follow two different strategies. The first one entails that a behavior space must

Literary Review 10

be queried until one appropriate behavior for the environment is found. In contrast, the second

strategy uses statistics and dynamic programming techniques to estimate a utility value obtained

from performing given actions in all the worlds’ states. The Q-Learning algorithm was developed

based on the second strategy, which justifies presenting the concept of the Reinforcement Learn-

ing model. As shown in Figure 2.1 a model is constituted by many different parts. One of those

parts is the agent who interacts with an environment, defined as the agent’s world. This interaction

is done via perceptions and actions, occurring after receiving data. Data as input (i) and states

(s) will be the main influence in the action (a) chosen by the agent to be its output. The action

chosen affects the state of the environment. This effect is quantified via a reinforcement signal,

also referred to as reward (r, while R represents the reward function), and will influence the agent’s

long-run behavior (B) via a trial and error execution. The agent can perceive the different envi-

ronment states due to an input function (I). Simultaneously, by mapping states to actions capable

of maximizing the reinforcement signal, the agent can accomplish its true goal, which is to find a

policy that manages to do that maximization efficiently. [24]

Figure 2.1: Reinforcement Learning Model (taken from [24])

All of the concepts presented above are related to the concept of Markov Decision Process

(MDP), which defines a sequential behavior decision problem, describing the agent. As explained,

this agent has a value function associated with it that returns the sum of all the expected rewards.

In turn, this value function is associated with the Bellman equation. The environment defined for

an MDP is probabilistic, meaning that the state transition and reward obtained will be randomized

after an action is performed. [23]

2.2 Concepts 11

More concisely, the following concepts are fundamental in MDPs.

2.2.1.1 State

Can be defined as a set of situational observations performed by the agent.

2.2.1.2 Action

Can be defined as a set of actions an agent can perform at a given state, which are the same for

every other state.

2.2.1.3 State Transition Probability Matrix

Corresponds to the representation of agent movement in the sense that after taking a certain action,

an agent goes from one state to a new state with a defined probability. The following function

represents it:

Pa
ss′ = P(St+1 = s′|St = s,At = a) (2.1)

2.2.1.4 Reward

The reward is given to the agent by the environment, so the agent can learn the different compen-

sation expected values obtained from performing different actions. The following equation can be

used to represent the reward:

Ra
ss′ = E[Rt+1|St = s,At = a] (2.2)

2.2.1.5 Discount Factor

Is considered to be a depreciation of the reward so that as time passes, the value of the reward the

agent obtains diminishes. This way, it provides a solution to possible overcompensation problems.

2.2.1.6 Policy

The policy is used to aid the agent in selecting the action to take at a certain state. The objective of

Reinforcement Learning is to keep on learning the best possible policy to obtain an optimal policy.

The policy can be formulated as follows:

π(s|a) = P(At = a|St = s) (2.3)

2.2.1.7 Value function

The value function is considered to be the sum of the rewards expected to be received in a state

after following a defined policy. It is the value function that indicates which policy is the optimal

Literary Review 12

policy. The following equation represents the value function:

Vπ(s) = Eπ [Rt+1 + γ ∗Vπ(St+1|St = s)]. (2.4)

Where Eπ corresponds to expected value, γ represents the discount factor and Rt+1 is the

reward value to be awarded afterwards.

2.2.1.8 Action Value function

If the previous formula represented the state value function, in the sense that it returns the reward

sum value for when a state is given, the action-value function takes not only the state into consider-

ation but also accounts for the selected action. Therefore the agent uses the action-value function,

or Q-function, to choose the action appropriately, and the Q-function can be represented as:

Qπ(s,a) = Eπ [Rt+1 + γ ∗qπ(St+1,At+1|St = s,At+1 = a)] (2.5)

The relationship between the value function and the function in equation 2.5 can also be math-

ematically detailed in an expression where the policy is added to the value of the Q-Function for

every action:

Vπ(s) = ∑
a∈A

π(a|s)Qπ(s,a) (2.6)

2.2.1.9 Bellman Equations

The Bellman equations are the mathematical representation of the relationship between the value

functions of two states, the one the agent is currently situated in and the state the agent will be

situated in after performing an action. There are two different equations, the Bellman Expectation

Equation and the Bellman Optimality Equation. If the former is responsible for finding the optimal

policy after receiving the greatest expectation for all the policies, the latter is the one that obtains all

of those expectations. The Bellman Expectation Equation can be defined as described in equation

2.7, while the Bellman Optimality Equation is presented in equation 2.8.

vπ ′(s) = ∑
a∈A

π(a|s)(Rt+1 + γ ∑
s′∈S

Pa
ss′vπ ′(s)) (2.7)

v∗(s) = max
a

Eπ [Rt +1+ γv∗(St+1|St = s)] (2.8)

2.2.1.10 Q-Learning

Considered to be single agent, the basic Q-Learning algorithm is an off-policy method that sep-

arates the learning policy from the acting policy. Not suited for multi-agent environments, this

algorithm uses many of the concepts presented in the previous subsections to develop a Q-function

named the Q-value. The Q-value equation is presented in 2.9 where α is a value between 0 and

2.3 IoT Based Task Offloading 13

1, and it is considered to be a learning rate, while R is the reward and γ the discount factor. Q-

Learning is an iterative process, where at each step, the Q-value is updated for every state by using

the Q-value equation. Before this process starts, a Q-table is instantiated, and in it, all of the re-

wards are stored. An agent can select actions based on policies, and the transition itself is made

possible using the state transition probability matrix. Q-Learning is a repetitive process because

the overall Q-value needs to converge to a specific value to where the Q-table can then be used

to solve the problem at hand. By combining Monte Carlo and dynamic programming methods,

one of Q-Learning’s main advantages is the simplicity and effectiveness with which it provides

results, although its once per action update and its memory requirements limit its effectiveness for

multi-agent environments.

Q(s,a)← Q(s,a)+α[R+ γ maxQ(s′,a′)−Q(s,a)] (2.9)

With the information obtained from [24] and [23], it was possible to present many theoret-

ical concepts that will enable a better understanding of one of the algorithms developed for the

research.

2.3 IoT Based Task Offloading

Though the scope of the thesis was related to the Industrial Internet of Things, the majority of

previously performed work is mainly related to the consumer version of the Internet of Things.

Even when understanding the significant differences verified in the demand of an industrial en-

vironment, it is still possible to affirm when compared to the need of the home setting, that the

type of investigation performed in previous experiences and corresponding findings could still be

used as inspiration and guideline for the research due to the similarity of the problem they were

trying to solve. Namely, the papers proposed new ways of performing task offloading while being

cautious and aware of spent resources. Resources such as energy, time, storage, availability were

studied and defined as basis for many of the proposed solutions that attempted to minimize said

resources while maximizing performance.

To understand the terminology used in the papers, the concepts of Fog, Cloud, and Edge

computing are presented. In a very simplistic explanation, Cloud computing aims at empowering

service providers by facilitating efficient resource management in data centers, which allows for

reducing costs and increasing scalability, though latency can be problematic. Edge computing

corresponds to a distributed computing model that collects data at the edge of the network in

order to process it in real-time. The benefits of Edge computing are reduced bandwidth use,

which saves money and avoids bottlenecks, increased security by encrypting at the source while

addressing the drawbacks of the Cloud by reducing latency. Finally, Fog computing provides

“closer” computation, data storage, and application services when compared to Cloud computing

while essentially being the bridging element between the Cloud with the Edge [32]. Figure 2.2

shows an architecture of interaction between the three concepts.

Literary Review 14

Figure 2.2: Interaction Architecture Between the Fog, Cloud and Edge (Taken from [7])

In [3] Aazam et al. grouped the different task offloading mechanisms proposed up to late 2018

in research where one of its main contributions was the presentation of various criteria used for

task offloading in IoT. The criteria for offloading in the majority of the existing literature are:

• Excessive computation where offloading occurs when computational resources needed far

exceed the capability of the native device by executing tasks in resource-rich device(s).

• Latency requirements dictate that offloading is needed since distance can affect delay-

sensitive applications. In this case, a node close to the user’s proximity will offload the task

and provide the required services with minimum delays, often sending parts or the entire

content to be cached at Edge devices or Fog servers.

• Load balancing happens when one server has reached its capacity of executing tasks, pro-

voking that additional tasks are distributed among other servers to balance their processing.

• Permanent or long-term storage since offloading is often performed to manage storage

better. For example, it is not feasible to perform services that require long-term storage on

small devices, which justifies the usage of Cloud servers for heavy data processing.

• Data management and organization serves to show the findings resulting from the activi-

ties performed in the research.

• Privacy and security where depending on how important the data or tasks are, offloading

can occur to guarantee privacy and security.

2.3 IoT Based Task Offloading 15

• Accessibility can influence offloading to a Cloud-like node when the native device from

where the task or data was created is not accessible from everywhere.

• Affordability, feasibility, and maintenance is the final criteria for offloading, as the cost

and feasibility of maintaining high-end servers are incredibly high, which can be reduced by

"outsourcing" data storage and processing to other services such as Clouds, whose providers

take responsibility for the maintenance of said services.

As for algorithms and models for solving the task offloading problem, it was possible to iden-

tify different experiments and results in various researches. In [14] Fang et Al. proposed an

efficient strategy for computational offload with Mobile Edge Computing (MEC) by using fine-

grained tasks that had dependencies and modeling user-generated mobile applications as a directed

acyclic graph. This was done to make the parallel processing of tasks possible while combining

it with a Multi-population Co-evolutionary Elite Genetic Algorithm (MCE-GA) to solve resource

allocation and task scheduling problems, therefore reducing the overhead of the generated appli-

cations. In this model, computation offloading was performed either locally or in Edge servers,

and since tasks were dependant on one another, they needed to be executed orderly and had to wait

for their turn at being executed. The time that a task had to wait before executing was defined as

ready time, which tied with the problem’s formulation, and considered as a fundamental concept

in determining the total delay and energy consumption for executing tasks locally or in a given

Edge server node. The total delay of applications generated by a user corresponded to the sum of

the total delay of a given task when executed locally plus the total delay of the same task when

executed at an Edge server node. The total energy consumption was calculated similarly, the only

difference being the sum of the power consumption between the local and Edge node environ-

ments. The MCE-Genetic Algorithm would use these concepts in its fitness equation as it was

possible to observe in equation 2.10, where the Beta variable, a value between zero and one, rep-

resented the trade-off parameter of delay and energy since some tasks required low latency while

others required low energy consumption. After the initialization and selection of the population,

two intersection points were randomly set in the individual. Then, partial gene exchange was car-

ried out to preserve its diversity and better solve offloading decisions. The MCE-GA was executed

alongside a Random Selection algorithm and a Greedy algorithm to verify its effectiveness, and

it was proven via simulation results that the proposed algorithm found reasonable allocation of

resources and reduced the overhead of the whole system. It also proved itself superior to the other

algorithms in terms of reducing overhead in user equipment.

Fitness = β ∗TotalConsumptionPower+(1−β)∗TotalDelayTime (2.10)

Similarly, in [22] two meta-heuristic algorithms, inspired by nature, named Ant Colony Opti-

mization (ACO) and Particle Swarm Optimization (PSO), were proposed as two different schedul-

ing algorithms to balance the load of IoT tasks over Fog nodes under response time and com-

munication costs considerations. Here the total communication cost when a task was offloaded

consisted of the sum of the cost needed to offload the same task from the device to the Fog node

Literary Review 16

and the cost of offloading it from the Fog node to the Cloud node. The service response time was

defined as the sum of the average service time on the Fog nodes, the Fog-Cloud communication

cost, and the IoT-Fog communication cost. Both algorithms tried to implement task offloading

that complied with Quality of Service constraints, such as the response time, the service time, and

the amount of load on the Fog nodes. A Round-Robin algorithm was also used to measure how

effective the proposed mechanisms were. The evaluations showed that the ACO algorithms bet-

tered IoT applications’ response times compared to the PSO and Round-Robin algorithms while

being more effective in load balancing the Fog nodes.

Perhaps one of the most fascinating and complex task offloading mechanisms was proposed

in [16] by Gao et Al., consisting of a Predictive offloading method for resource allocation in

multi-layered Fog computing systems, where within each layer one Edge node (Edge Fog node)

and a Central Fog node resided. The distinguishing aspect of this proposal was that in addition

to the local processing and offloading queues, there existed two other queues, the prediction and

arrival ones, wherein the former, untreated workload predicted to arrive within a specific time-

slot was stored, and the latter stored workload that arrived at a given Edge-Fog node, ready to

be processed either in the local queue or the offload queue. The predicted queue was updated

at the end of pre-service, and the look-ahead window pushed one slot ahead when each time

slot terminated. Finally, the integrate queue had an input consisting of the predicted workload,

while the output consisted of workloads moved to the offloading queue and the local processing

queue. The Central Fog Node also had queues for arrival, offloading and local processing of tasks

though they functioned similarly to queues in the Edge Fog node. The problem was formed as a

minimization problem, where there was an attempt to minimize CPU frequency of the Edge Fog

nodes, the overall power consumption, and the amount of workload to be either locally processed

or offloaded. To solve it, Lyapunov optimization techniques were used to simplify the problem

into a subset of problems over time slots. The predictive algorithm allowed for each Fog node to

decide the amount of workload to go into the local processing and offloading queues respectively.

To achieve optimal results, each Edge Fog node’s integrate queue size was compared with its

local processing queue size and offloading queue size. Concretely if there were significantly more

workload in the integrate queue when compared to the local queue, tasks would be offloaded as

much as possible to be processed locally. Similarly, if there were significantly more workload in

the offloading queue, when compared to the integrate queue, the tasks would be offloaded as much

as possible to be processed in the corresponding queue. Notably, if the backlog size of a given

Edge Fog node integrate queue was larger than both its local and offloading queue, the workload

would be transmitted one by one, being sent either to the local queue or the offloading queue.

Nevertheless, the amount of workload never surpassed each of the queue’s sizes respectively. For

simulations, the paper’s authors verified if a given Edge Fog node’s integrate queue backlog size

was greater than the size of the backlog of the local and offloading queues. If this condition

were true, the tasks would be transmitted to the local queue for processing until the local queue’s

capacity was filled. The remaining tasks would be transmitted to the offloading queue until its

capacity was also filled. The process ended when the integrate queue was empty. With such

2.3 IoT Based Task Offloading 17

definitions, the Predictive algorithm could achieve a tunable power-latency tradeoff while at the

same time effectively reducing this latency, even when only mild values were used in the prediction

window for future information and, more interestingly, the effectiveness of the solution wasn’t very

much affected even when there were prediction errors.

Even more outstanding from a technical standpoint was described in [25], where Sungwook

Kim proposed the TABS (Tempered Aspirations Bargaining Solution) and GLBS (Gupta-Livne

Bargaining Solution) algorithms. These algorithms consisted of mobile device/Cloud cooperative

bargaining games where all the components in a multi-layered system interacted with each other

through negotiations of their respective conflicts, resulting in freeing resources through a fair and

efficient process. In this experiment, devices offloaded their requests to either Fog nodes or one

Cloud node. In the offloading process, the device would send its applications’ tasks while at the

same time partitioning the computation amount into three different parts to be executed in the local

device, the Fog node, and the Cloud node, respectively. Both algorithms had resulted from previ-

ous works, done on bargaining methods for negotiation, where TABS could be characterized by

following axioms such as Symmetry, Scale Invariance, r-Restricted S-Monotonicity, Irrelevance

of Trivial Reference Points, S-Continuity and Weak Pareto-Optimality, while GLBS, though still

following the Weak Pareto-Optimality, Symmetry, and Scale Invariance axioms, also followed the

Relevant Domain, dS-Monotonicity, and Limitedd-Sensitivity axioms. TABS and GLBS were

used to implement a time-sensitive and computation-oriented application offloading algorithm,

respectively. The selection of which algorithm to execute was made dynamically depending on

the type of application generated by the device. If an application task was computation-intensive

but delay-tolerant, the bargaining solution would be measured by taking as a reference point the

starting point, since the task could be executed without offloading services, justifying the use of

the GLBS algorithm. On the other hand, in cases where tasks had restrictive time limits, the

bargaining solution was measured by taking as a reference point the disagreement point between

constituents of the system, which justified using the TABS algorithm. In the end, simulations were

used to test the scheme proposed, which consisted of six steps, the first was the determination via

said simulations of the control parameters and system factors, followed by the equal generation

of different types of application tasks. The next step was conditional, if the application task gen-

erated in a given period was computationally intensive, GLBS would be selected to process the

offloaded task, guaranteeing an effective distribution of the application tasks between the device,

Fog node, and Cloud node, but if the application generated was time-sensitive TABS was used in

the processing of the offloading service guaranteeing a dynamic distribution of application tasks

between the device, the Fog node and the Cloud node. The computational resources, namely the

load of these system constituents, were then monitored online and in real-time. Finally, the system

itself checked for changes in the network and re-triggered the process if a new application task

was generated, as seen in figure 2.3. It was possible to conclude that the proposed mechanism

successfully managed and distributed resources in a system to improve task execution while guar-

anteeing the adapted bargaining methods were effectively fair in offloading the tasks to devices,

Fog nodes, and Cloud nodes.

Literary Review 18

Figure 2.3: Bargaining based scheme for task offloading (Taken from [25])

But even if Artificial Intelligence concepts heavily influenced the majority of these proposed

mechanisms, other possibilities were related to more functional approaches for developing task

offloading mechanisms, though not as automated as those presented before. One such case, re-

sulting from the research by Li et Al., in [28], was proposed in the form of an energy-aware task

offloading framework. But even if its title only referred to energetic resources, the requirements of

the framework focused on other resources, namely, transmission delay, by deploying several Edge

servers at the Edge of IoT, to improve network capacity, offer real-time response for IoT devices,

and computing resource allocation, wherewith the aid of the Edge server, IoT devices offloaded

their tasks to the Edge server to reduce the load on the IoT devices. To achieve an optimal task

offloading strategy, it was necessary to minimize the transmission delay and energy consumption,

as reducing energy consumption resulted in improving the number of completed tasks during their

Time To Live. According to the authors, the optimal task offloading strategy could be found by

comparing the completion time between the IoT device and the Edge server. If the time to finalize

task m were less than the task’s completion time at the Edge server, task m would be considered

invalid. If the remaining time of task m were less than the completion time at the IoT device but

higher than the completion time at the Edge server, task m would be executed by the Edge server.

If task m had a higher remaining time than the completion time of the IoT device, the costs of

2.3 IoT Based Task Offloading 19

performing task m for the IoT device and Edge server would be compared. If the transmission

power consumption cost, and the overall power consumption cost, of performing task m at the IoT

device were higher than power costs for performing task m at the Edge server, the task would be

performed by the Edge server. Otherwise, task m would be performed by the IoT device. When it

came to results, a scenario where there was one Edge server and 100 IoT devices was considered

to compare the proposed solution to the conventional ones. It was possible to verify that the op-

timal scheme obtained a higher task completion ratio than that of the conventional ones and also

improved on the number of completed tasks and lowered energy consumption as it is possible to

observe in figure 2.4. One of the most interesting aspects of the research was the fact that the

authors brought up concepts that should be very important in the future of task offloading solu-

tions, like Content Caching-Enabled Edge computing, an important way to improve the efficiency

of content distribution in IoT, Mobility-Aware Cooperative Edge Caching, which will provide

flexible resource utilization while facilitating content caching and delivery over Edge-based solu-

tions and finally, Privacy-Aware Applications for Edge computing, since security and privacy are

considered to be one of the fatal flaws of IoT infrastructures.

Figure 2.4: Results obtained by comparing the optimized scheme to the conventional scheme
(Taken from [28])

In [15] Flores et Al. proposed AutoScaler as an attempt to provide offloading as a service. The

main advantage of the work was that AutoScaler was designed and implemented, motivated by

Service-oriented architectures, such as Amazon AWS AutoScale that, essentially, served as an in-

terface between tasks that needed to be offloaded and the available resources within Cloud nodes

by scheduling tasks among those nodes, allowing for a study of the capacity of this offloading

architecture to handle different levels of workload. The authors also defined models for imple-

mentations of offloading, the first, Homogeneous model where the device’s and server’s Runtime

Environment were the same, and the code of the task was present in both of them, which could

be helpful when there was no Internet connection. The Heterogeneous model, where the Runtime

Environment was different for both the device and server, which meant they also had different

implementations of tasks, therefore in this case, only input parameters were transferred in the

Literary Review 20

offloading communication. Finally, the Neutral model where the Runtime Environment did not

influence task offloading since the code was exclusively stored in the server, ready to be called by

a device, though this could only happen in the presence of Internet connectivity. AutoScaler was

categorized as Homogeneous, and to better understand the models, figure 2.5 is presented.

Figure 2.5: Types of offloading models (Taken from [15])

The system consisted of three parts, the first, the back-end, where every node was a cus-

tomized Dalvik Virtual Machine of Android to execute Dalvik bytecode, whose main benefit was

the ability to activate multiple instances of the same applications or running multiple applications

concurrently. Secondly, the front-end, or better yet, AutoScaler itself, distributed the load between

the servers available through a round-robin scheduler. It also contained a file that kept the in-

formation about APK file localization and the available ports of servers for offloading, and this

file was updated when a server was either removed or added. The allocation of servers happened

when the response time of the workload being offloaded passed a predefined threshold. Finally,

the simulator was used to generate different loads of device offloading to the Cloud. The overall

system architecture is presented in figure 2.6.

The experiences done to test AutoScaler had in consideration performance and scalability

metrics. In terms of metrics, it was possible to verify that even as the load increased, the time to

distribute requests between servers for AutoScaler was approximately one-hundred and fifty mil-

2.4 IIoT Based Task Offloading 21

Figure 2.6: System Architecture (Taken from [15])

liseconds. Furthermore, it was verifiable that back-end nodes would start consuming more CPU

resources to process the tasks, limiting the number of tasks they could handle simultaneously.

However, this consumption could be reduced, by executing code in a parallel manner, since re-

quests in the system were processed all at once to achieve shorter response times, and therefore,

scheduled by AutoScaler. As for performance, AutoScaler introduced extra-time to the time nec-

essary to respond to an offloading request in about one-hundred and fifty milliseconds, but this

value is possible to be reduced by processing tasks in the Cloud and by meticulously managing

the tradeoff between the price for utilization and computational resources of the server selected

for offloading.

2.4 IIoT Based Task Offloading

Though there weren’t as many studies and papers specifically done for IIoT systems in relation to

those that exist for IoT systems, the existing literature for IIoT thematics was very interesting and

diverse in what they propose and achieve. In [17], Hao et Al. used concepts from the financial

area to propose an optimal offloading policy. The basis of the work was risk management theory,

using the Conditional Value at Risk (CVR) concept to understand how the delay could be captured,

and the upper bound of CVR was obtained from analyzing the states of the local queue and the

queue of the Edge servers. To solve the problem itself, the authors considered the average delay

performance and the risk and treated task offloading as a weighted sum of both these parameters.

Therefore the proposed mechanism aimed to minimize the maximum value of the mean sum of the

risk among all devices that would be involved in the offloading. It was considered an NP-hard non-

convex mixed integer nonlinear problem, where tasks generated by devices could only be offloaded

to one Edge server. For an Edge server, the number of devices that it served couldn’t exceed its

number of CPU cores. At the same time, the sum of the computation frequency allocated to the

devices couldn’t exceed its overall computation frequency. The most interesting part was that the

proposed mechanism was formulated and solved more in a mathematical way than via software,

using mathematical proof and linear programming, so while it didn’t generate a lot of interest,

Literary Review 22

from a technical standpoint, it was still a good possible solution, since the strategy was able to

control the risk of delay jittering existing and at the same time making sure the performance delay

stayed at average levels.

Moving on to more technical propositions, Chen et Al. used an accelerated gradient algorithm

to try and achieve energy minimization and delay guaranteed offloading solution in [11]. To ac-

complish this, a model for minimizing energy was developed, considering the energy consumption

of Fog nodes, including the local computation devices. The model was supposed to help lower the

energy consumption as much as possible when the tasks’ completion time was kept at an expected

level. The authors defined the total energy consumption of a node, but to understand the formula,

it is necessary to understand a variable they named as ai, that corresponded to the ratio between

the size of the tasks that were offloaded and the total tasks’ size. As it is possible to observe in

equation 2.11 the total energy consumption consisted of the sum of the energy consumption of

executing a computation task locally, times one minus the ai variable, with the value of total en-

ergy consumption of transmitting a task to a Cloud server times the ai variable, with the energy

consumption of a Fog node when it was at idle state.

ei = el
i ∗ (1−ai)+(ec

i ∗ai)+△∗ ei (2.11)

tall = t l
i ∗ (1−ai)+(tc

i ∗ai) (2.12)

To calculate the total time needed for a task to complete, the formula, presented in equation

2.12 is more straightforward, it consisted of the sum of the time of task completion in local nodes

with the time it took to transmit a task to be offloaded, and the time it took to execute an offloaded

task at the Cloud node. Besides energetic concerns, the authors also considered channel band-

width and computation resources in their proposed optimization offloading solution. It should

be noted that while the objective was to minimize the consumption of energy in all Fog nodes

when processing tasks, the total energy consumption had to be less than a defined desired en-

ergy consumption, and the completion time of tasks could not exceed a chosen desired delay. To

understand the optimal values the mechanism should display to guarantee these restrictions, the

authors used an accelerated gradient algorithm to solve the problem. When it came to results, the

algorithm improved the energetic consumption on local computing nodes. However, it made the

energetic cost of transmitting the task to the Cloud worst while improving completion time and

guaranteeing the delay constraint was complied with. The value of ai converged to the optimal

value as more iterations of the algorithm were executed, and it was possible to achieve minimum

energy consumption after running one hundred iterations.

In [12], Dao et Al. proposed an online pattern task identifier mechanism to perform task

offloading by identifying the most used task patterns in IIoT and trained a Self-Organizing Map

(SOM) that, within defined dimension boundaries, represented the tasks’ features themselves. This

approach was thought out since no existing work could improve the performance of Edge com-

puting systems when tasks needed to be executed online, or in simpler terms, when, on arrival,

2.4 IIoT Based Task Offloading 23

the tasks at Edge nodes needed to go to the queue before any scheduling decision, was made. Yet

again, experiments made by the authors were done on top of a multi-layer Edge computing system,

where its devices would generate tasks that needed to be offloaded, but the main differentiation

factor was the use of a Self-Organizing Map. A Self-Organization Map is essentially an artificial

Neural Network that utilizes Unsupervised Learning to obtain, as the name says, a map. A SOM

has a set number of neurons that reflect the map’s dimension, and it functions in two modes, train-

ing mode, where a map based on a set of tasks was created, and mapping mode, where created

tasks that arrived were classified. Figure 2.7 shows how a SOM is represented.

Figure 2.7: Self-Organizing Map (Taken from [12])

To facilitate the identification of typical task execution in IIoT, a given task was considered by

the authors as being a four-dimensional feature vector given by:

x⃗i = [ui,ci,ri,τi] (2.13)

The parameters were relative average processing complexity (ci), relative response size (ri),

relative execution deadline (τi), and relative task size (ui). With these settings, the SOM was

trained by gathering all offloaded IIoT tasks in a distinctive period, considered as a cycle counting

from the moment the task arrived after being offloaded. It was after the training that the neurons in

the SOM would have a weighted value, a reflection of the historical occurrences of tasks, or better

yet, a reflection of the values present in the vector defined in equation 2.13. To understand the

optimal task assignment that should take place at each time slot, it is necessary to understand total

Literary Review 24

latency was calculated. This parameter consisted of the sum of the value of uploading latency, with

the value of queuing latency, task processing latency, and response latency. To solve the problem,

it was necessary to minimize the values of latency while guaranteeing that a neuron in the SOM

could only be assigned to one Edge computing node, in the system, by resorting to the Hungarian

method and applying it to the latency matrix of all possible task assignment from a set of neurons

to an Edge computing node set. To work in the online mode, as soon as a task arrived at the Edge

computing system, a match to the SOM was performed to seek the optimal task assignment. To

test the mechanism proposed, twenty Edge computing equipment with different and multiple CPU

frequencies were used in a system with three-hundred IIoT devices in total, and three types of

tasks were defined according to the type of data traffic involved in them:

• Environmental sensor data where during each fixed period, the environmental conditions

data were sent to applications in the IIoT central system.

• Video surveillance data that consisted of data resulting from monitoring cameras’ live feed

sent to surveillance applications, stored and analyzed in the Edge framework.

• Production control data corresponded to data generated during specific production pro-

cesses and was generated by the machine.

Alongside the proposed solution, the evaluation was done by running iterations of the same

tasks using the Hungarian method, but for the offline mode and also for an online Greedy task

assignment algorithm. When it came to results, it was possible to conclude that the latency of

task processing was reduced when the proposed mechanism was used for offloading compared

to the other methods evaluated. For time-consumption and average time decision making, the

mechanism proposed performed better than the offline Hungarian method but scored worst time

than the online greedy task assignment algorithm, given this method performs fewer calculations

than the online mode Hungarian method, even though the difference between the two methods

didn’t affect task processing latency proving the capability for the stability of the method. The

solution also reduced the number of execution errors present in short deadline tasks, meaning

tasks that had to be executed in a minimal amount of time, while also reducing the buffering

during the transmission phase.

Similar to the literature previously presented, Hong et Al., proposed a computation offloading

mechanism for an IIoT system, based on a concept taken from the domain of Economics/Game

Theory, which is Nash Equilibrium, in [19]. The primary differentiation in this work was that

the solution tried an approach to achieve a multi-hop and cross-layer task offloading mechanism

capable of cooperation and of assuring Quality of Service. The majority of existing offloading

approaches assumed that all IIoT devices had a wireless Internet connection, enabling them to

communicate with Cloud and Edge servers. Still, often in the real world, the Internet connection

could be faulty, making it difficult to connect to the Cloud/Edge nodes. Therefore in such cases,

devices collaborated to transmit and bring data closer to the nodes where the offloading should be

performed, resulting in a multi-hop computation offloading mechanism. To make this mechanism

2.4 IIoT Based Task Offloading 25

cooperative across the different layers of the system, the IIoT devices, the Cloud, and the Edge, two

algorithms that would try to achieve a Nash Equilibrium were implemented. The model defined

by the authors considered that all tasks that were intensive for computational resources were of the

same type and utilized the same CPU frequency. To allow for the mechanism to function under

the game concept, every device needed to set a strategy, or every device needed to choose the path

for data to follow. As it is possible to see in both equations 2.14 and 2.15, a strategy consisted

of a tuple with the variable ai and the variable pi. The first variable represented an integer that

would indicate the choice for computation of the task. In contrast, the second would store the

sequence that the task would follow from the device where it generated to the target, which could

be a Cloud or Edge node. For local computing, the cost of executing tasks on a local device

took into consideration the time it took to compute the task itself, plus the energy spent on the

processing, combining it with a weighted factor given to time and energetic parameters involved

in the strategy chosen by the device. As for Edge computation, the fact that devices might have

needed to transmit tasks between each other before reaching the target influenced the total cost of

executing tasks at this level, while the weight factors that existed in local computing still affected

Edge costs. Finally, for the Cloud costs, the calculations included the step where tasks would be

offloaded from the Edge server to the Cloud server since Cloud servers usually provide much more

resources than their Edge counterparts. Therefore the cost of executing a task at a Cloud node was

influenced by the time it took for it to compute, by the time it took for a device to offload the task

to the Cloud and also by the time it took for a task to be offloaded from the Edge node to the Cloud

node. The weight settings were once again the same. An important parameter that influenced the

solution was the relay cost, given that devices needed to act as relays to guarantee that tasks could

arrive at their processing destination in case of Internet failures.

si = (ai, pi) (2.14)

ai =


0, if i computed locally

1, if i computed by offloading at the edge

2, if i computed by offloading to the cloud

(2.15)

For the purpose of game formulation, devices needed to display a certain degree of indepen-

dence, to choose the offloading strategy considered to be the best, which meant that each device

would choose the strategy that would allow them to reduce the cost of operations. The game was

formulated by considering devices as players who had a set of valid strategies and associated costs.

Though devices chose a strategy that would better suit their desires, they could switch strategies

when confronted with one that could prove more efficient, in what was called an improvement

step, that could be categorized in the following ways:

• Local / Cloud if the cost of executing a task at a local device was less than the cost of

executing it at the Cloud node and ai was two, it could improve from Cloud to the local

Literary Review 26

environment. Otherwise, if ai was zero and the cost situation was inverse, it could improve

from local to the Cloud.

• Local / Edge if the cost of executing a task at a local device was less than the cost of

executing it at the Edge node and ai was one, it could improve from Edge to the local

environment. Otherwise, if ai was zero and the cost situation was inverse, it could improve

from local to Edge.

• Cloud / Edge if the cost of executing a task at a Cloud node was less than the cost of

executing it at the Edge node and ai was one, it could improve from Edge to the Cloud

computing. Otherwise, if ai was two and the cost situation was inverse, it could improve

from Cloud to Edge.

• Path Change if ai was either one or two, the device could improve by changing its parent

and using a different offloading path.

With this information at hand, the first algorithm was thought out, named free–bound improve

algorithm, that as the name says, used to its advantage the fact that devices could act as relays

to introduce the concept of being bound. Simply, if a device was acting as a relay, it would be

considered to be bound, otherwise, it would be considered free, and this state for a device could

change during the execution of the game. The multi-hop cooperative offloading mechanism was

designed for allowing that a set of free devices could reach a Nash Equilibrium by improving

their path choice through the usage of the free-bound algorithm, as can be seen in figure 2.8. The

strategy changes that could occur in the cases presented in the referred figure were done when:

• Case 1 the cost of executing a task at an Edge node was less than the cost of executing

the same task at the local device, causing the free device to change the strategy from local

computing to Edge computing. The strategy could also follow the opposite way, meaning it

could change from Edge computing to local computing.

• Case 2 the cost of executing a task at a Cloud node was less than the cost of executing

the same task at the local device, causing the free device to change the strategy from local

computing to Cloud computing. The strategy could also follow the opposite way, meaning

it could change from Cloud computing to local computing.

• Case 3 the cost of executing a task at a Cloud node was less than the cost of executing

the same task at an Edge node, causing the free device to change the strategy from Edge

computing to Cloud computing. The strategy could also follow the opposite way, meaning

it could change from Cloud computing to Edge computing.

• Case 4 in either Edge or Cloud computing, a free device could choose to offload via a

different path by changing its parent to a different device to keep transmitting data to be

offloaded.

2.4 IIoT Based Task Offloading 27

Figure 2.8: Free Bound Mechanism (Taken from [19])

Unfortunately, this algorithm alone wasn’t enough to achieve an efficient Nash Equilibrium,

and to help on this, a distributed algorithm that was QoS-aware was designed. Though a good

theoretical approach, the free-bound algorithm, didn’t account for three factors:

1. The fact that a device needed to understand how each path was filled, to know how congested

it was, before making a decision.

2. The fact that, due to privacy and security concerns, devices might have held some informa-

tion when communication with other pieces of hardware was required.

3. The fact that in the free-bound algorithm, to find a Nash Equilibrium, it needed to be guar-

anteed that when improvement steps occurred, they occurred only once and only for one

device.

So, to guarantee the multi-hop cooperative method functioned properly, messages were sent

alongside the data on device communication, which simplified understanding of what kind of task

occurs during communication. The types of message data are:

• Information Message (IM) for each device that transmitted data, it would only transmit

information about its number of relays and its transmission rate.

• Strategy Message (SM) when a device had received many Information Messages, this type

of message was sent to base stations in the IIoT system and informed them of their intention

to change strategy.

• Allow Message (AM) when a base station received a Strategy Message, a negotiation would

allow the improvement to be made. A message of this type was sent to one device and only

one time.

Literary Review 28

• Begin Message (BM) was a type of message that kept being sent to devices until a Nash

Equilibrium was achieved.

• Update Message (UM) was a type of message sent to confirm a successful change of strat-

egy. Sent by an IIoT device to all other devices present in the offloading path (pi).

The distributed algorithm, named QoS-aware distributed algorithm, was divided into six phases.

In the first phase, BM messages were broadcasted to devices in the network, a process repeated

until all devices understood a game had to continue. After transmitting IM messages, phase two

started to provide help to devices trying to choose a strategy. Phase three would be where devices

effectively chose their strategy and transmitted that information to the base station devices. Phase

4 was the heart of the algorithm because, in phase 4, two different possibilities entered the table,

either the game was terminated, meaning a Nash Equilibrium had been achieved since base sta-

tions received no SM messages. Nonetheless, if an SM message was sent to just one base station,

then an AM message would be sent to a device to be chosen. This device selection was made,

by introducing algorithmic variants to the QoS-aware algorithm, the first, named FCFI, in which

a base station that received an SM message would authorize the device that sent the message to

improve its strategy, and the second, named ACTI where the base station would only decide when

after a certain time it had received every SM message and had evaluated them allowing the best

improvement step to be chosen. Finally, phase 5 served for devices to update or retain its strategy,

which set the stage for phase 6, where devices that weren’t being used as relays were set as free

devices, and those that needed to help others by relaying their messages would be set as bound

devices. Figure 2.9 shows a high-grained flow-chart of how the mechanism used the messages to

accomplish its objectives effectively.

Figure 2.9: Flow Chart Messages in the Distributed Algorithm(Taken from [19])

In experiments, the proposed mechanism was tested alongside a Greedy algorithm and Simu-

lated Annealing algorithms in a system where one-hundred and eighty devices IIoT and ten base

2.4 IIoT Based Task Offloading 29

stations were connected via the Internet. The results were varied, and many different parameters

were evaluated, for example, for performance, the proposed mechanism proved far more efficient

than the Greedy and Simulated Annealing ones, but it was slightly better for the ACTI variant than

for the FCFI one, therefore being incredibly well suited and stable, when dealing with computa-

tionally intensive tasks. One interesting conclusion was that the more IIoT devices present in the

process, the more effective the proposed multi-hop algorithm was, and while the process didnt’t

offer the absolute best strategy, it provided a result that was very near that value.

In [20] Hossain et Al. proposed a reinforcement learning task offloading scheme in one of

the most relevant paper related to Industrial Internet of Things offloading solutions. The end de-

vices were considered agents that decided whether the tasks were to be computationally offloaded

to Edge devices belonging to an IIoT system. Specifically, the authors used a Q-Learning ap-

proach instead of the traditionally used Markov Decision Process approach to achieve optimal

time-constraint values and evade one of the problems in the MDP approach, which is the fact

that it is used for single-user task scheduling. With the Q-Learning method, it was possible to

perform multi-user task scheduling while trying to better end-to-end delay and availability in the

system when faced with an increase in the number of devices present and the correspondingly

increasing number of actions that each device could perform. When it came to the system model,

seen in figure 2.10 the authors considered an IIoT network equipped with end devices and edge

nodes, similar to other models, with the exception that the Edge nodes had gateways from which

it was possible to access them, to, once again, improve on metrics such as energy, time, compu-

tational capacity and latency. It was also defined that tasks, whether executed locally or on an

Edge node, would spend the same amount of computing resources needed for execution, that for

all end devices the offloading delay should not pass a defined value, which consisted a constraint

for optimizing the scheme, while in this case tasks could only be offloaded directly. The novelty

in this work was that for the decision-making process, a heuristic was defined based on parameters

such as bandwidth, data size, energy consumption, trust, input/output data size, delay sensitivity.

The problem was treated as a cost minimization problem to reduce the system’s latency and power

consumption.

For local computing, the delay of end devices included only the delay of offloading a certain

task to the CPU and could be calculated as dividing the time required for the task to execute in

the respective devices by the devices’ total computational capacity, since individually, computa-

tional capacity was different between devices. The local energy consumption was obtained by

multiplying energy consumption for every Cloud cycle to complete a task by the computational

resources spent in executing it. Therefore the total cost of local computation could be resumed

in the formula available in 2.16 consisted of adding the results of multiplying the delay of local

task execution by the weight of time consumption, with the multiplication of the energetic cost of

executing a task by the weight of those energetic costs. Both weights had to sum up to a value of

one, and each could never be less than zero.

(TC)lc
n =W t

n ∗ (T)lc
n +W e

n ∗ (E)lc
n (2.16)

Literary Review 30

Figure 2.10: IIoT System Model for [20] (Taken from [20])

(T)ec
n = (T)ntec +(T)nbec (2.17)

(E)ec
n = (E)ntec +(E)nbec (2.18)

(TC)ec
n =W t

n ∗ (T)ec
n +W e

n ∗ (E)ec
n (2.19)

Therefore the sum cost of all devices in the edge offloading network could be derived as:

(SC)all =
N

∑
n=1

(1−αn(TC)lc
n)+αn(TC)ec

n) (2.20)

Where αn represented the offloading decision for a device to whether execute a task locally,

representing a value of αn of zero, or whether to offload it to an Edge node for it to be executed

there, representing a value of αn of one.

To solve the problem at hand, it needed to be decomposed and solved to minimize the cost to

achieve the optimal result, resulting in the following objective function and constraints:

2.4 IIoT Based Task Offloading 31

min(Γ, f)
N

∑
n=1

(1−αn(TC)lc
n)+αn(TC)ec

n)

subject to

C1:αn ∈ (0,1),∀n ∈ N

C2:(1−αn)(TC)lc
n +αn(TC)ec

n ≤ τn,∀n ∈ N

C3:0≤ Ln ≤ F,∀n ∈ N

(2.21)

Γ represented the vector that contained the decision whether to offload a task or not, and f

represented the vector that contained the allocation of computational resources. When it came to

constraints in the problem definition, C1 defined that end devices could choose to either execute

the tasks locally or offload them to be executed on an Edge node, as previously stated, C2 defined

that task execution delay should be kept within a constant and tolerable value, independently of

the type of node, local or Edge, where it was executed, and C3 defined that the available resources

at the Edge server were always higher than the ones assigned for a number of Edge devices. This

formulation required thinking of an adequate Reinforcement Learning strategy, concretely a Q-

Learning strategy. With this strategy, a policy informed an agent what actions happened and the

circumstances that made those actions occur by assigning rewards to the state transitions depend-

ing on how much they benefited the system, finding the optimal action-state selection policy. For

this purpose, a matrix, named Q-Table, was used to store, for each activity at each state, the most

extreme anticipated future rewards. For each column, an action was recorded in the Q-Table, while

for each row, the states would be represented. The process was divided into iterations, where in

each of the rewards associated with the actions leading to the states would be improved, which

effectively meant that the more iterations that occurred, the better results the mechanism would

obtain. Given that IoT devices select data for offloading based upon the state of the system, the

energy level consumption of the system, and data transmission rate, the authors decided to monitor

these factors for the IIoT system devices, and since system state was seen as a combination of two

components, it was possible to derive a Q-Learning policy that would allow achieving the optimal

solution. Concretely the two components which constituted the system’s state, tc which was the

total sum cost (SCall) and ac, which was the result of subtracting all of the Edge servers’ resources,

with the sum of all allocated Edge servers’ resources for the execution of each task. In terms of

actions, they were stored so that all the information regarding offloading decisions and resource

allocation for each task was easy to access and, therefore, easier to obtain the optimal policy.

state = (tc,ac)

ac = F−
N

∑
n=0

fn
(2.22)

To run simulations, it was defined that an Edge server would be set at the center, the User

Literary Review 32

Equipment devices randomly distributed across the network at less than 200 meters of the central

server node, while tasks had a size, in Kilobytes, between 300 and 500, and the assigned weights

to time and energy consumption, were 0.5, for each. Edge servers’ computation resources were

equally distributed among the user devices to run and to understand the results better, the proposed

mechanism was tested against a simpler one, where tasks were either fully offloaded or completely

executed locally. As visible in Figure 2.11, the Q-Learning method displayed better sum cost, and

in the initial stages where not many user devices were in the system, the full offloading curve was

higher than the Q-Learning curve, since Edge nodes’ could not offer computational resources for

all devices that offload their tasks, while the local offloading sum cost curve increased immensely

as the number of devices in the system increased. The figure also shows the sum cost for the

Q-Learning, full offloading and local offloading, in relation to the capacity of the Edge servers,

in GHz/s, and once again, the Q-Learning mechanism displayed the best result, while the local

offloading curve never changed, given that executing tasks locally does not impact resources in

Edge nodes. The other curves verified a decrease when the computational resources of Edge

servers decreased, given a decrease in time of execution as more resources were allocated to user

devices. As expected, the results showed that in terms of reward calculation, the Q-Learning

performed greatly as the reward increased, when the number of time steps increased.

It was possible to conclude that the Q-Learning mechanism proposed greatly improved re-

source spending in task offloading when compared to simpler, more direct approaches. However,

the network used for simulations was relatively simple, and understanding was still lacking, re-

garding how this approach would perform under a more complex network structure.

Figure 2.11: Results of simulations, showing relation between sum cost and number of user de-
vices in the system and the relation between sum cost and Edge resource usage(Taken from [20])

2.5 Summary

This section presented the State of the Art of proposed IoT/IIoT task offloading mechanisms. Even

if some papers available had to be filtered due to time constraints, paper quality, and primarily due

to the infeasibility of having every single paper written presented, it was still possible to come up

2.5 Summary 33

with a key set of findings. Though the papers presented differed in terms of techniques and con-

cepts that motivate and justify the methodologies used, it was clear that all these papers resulted

from the need to understand if one can improve resources needed to perform offloading tasks. In

all the presented cases, this was confirmed as resources spent for energy, time, storage, availability

were successfully diminished, in the process, while guaranteeing that the mechanism itself per-

formed accordingly. It is important to mention that the difference in number between papers that

proposed IoT oriented solutions and those that presented IIoT oriented solutions justified dividing

the second chapter in the manner presented since it is possible to adapt or to even emulate many of

the solutions found for the IoT and bring them into IIoT environments. Below a table is presented

that summarizes some of the papers presented and the results obtained and categorizes them re-

garding types of technologies used, type of environment where it was tested, offloading criteria

defined, and issues or future work.

Table 2.1: Literature Review Summary

Reference Area Proposed Sys-
tem

Offloading Cri-
teria

Research Area Results Testing Environ-
ment

Issues/Future
Work

[14] IoT Multi-
population
cooperative
elite algorithm,
based on Genetic
Algorithms.

Execution delay
and energy con-
sumption of ap-
plications.

Artificial Intelli-
gence

Reasonable
allocation of
resources and
overhead reduc-
tion. Superior to
the tested Ran-
dom, Greedy,
and Standard
Generic algo-
rithms.

Laboratorial Ex-
perimentation

Take Cloud into
consideration,
consider an
Edge-Cloud
collaboration
architecture.
Research should
also focus on
user mobility
and dynamic
computation
offloading.

[22] IoT Nature-inspired
meta-heuristic
schedulers
(ACO and PSO)
used to propose
two different
scheduling
algorithms.

Communication
cost and re-
sponse time.

Artificial Intelli-
gence

ACO and PSO
task offloading
algorithm im-
proved response
time signifi-
cantly, though
the ACO per-
forms better and
could balance
node load more
efficiently.

Laboratorial Ex-
perimentation

Include power
consumption,
communication
cost, and com-
putation cost in
the offloading
criteria of the
mechanisms
and account
for collabora-
tion between
IoT sensors.
Dynamic scenar-
ios, where the
produced data
rate and sensor
nodes change
dynamically.

[16] IoT Distributed
predictive of-
floading scheme
for multi-tiered
fog computing
systems.

Time-average
power consump-
tions, stability
of each queue in
the system.

Artificial Intelli-
gence

Scheme achieves
a tunable power-
latency tradeoff,
and could
shorten latency
even when fu-
ture information
is only mildly
present, even
when there
exist prediction
errors.

Laboratorial
Experimentation
(though there
is a possibility
of applying
the scheme in
real-world use
cases).

Model can
extend to ac-
commodate
general settings
so that wireless
channel states
can be known
instantaneously.

Literary Review 34

Table 2.1: Literature Review Summary

Reference Area Proposed Sys-
tem

Offloading Cri-
teria

Research Area Results Testing Environ-
ment

Issues/Future
Work

[25] IoT Two coopera-
tive bargaining
game algorithms
- Tempered
Aspirations Bar-
gaining Solution
(TABS) and
Gupta-Livne
Bargaining So-
lution (GLBS).

TABS is used for
time-sensitive
offloading
services,
GLBS used
for computation-
oriented offload-
ing.

Artificial Intelli-
gence

Algorithms
could fairly
distribute sys-
tem resources
through all
devices while
satisfying their
fair-oriented
axioms and
maintained
appropriate
performance
balance. Under
dynamic net-
work system it
could provide
flexibility, re-
sponsiveness to
network system
conditions and
adaptability.

Laboratorial
Experimentation
(though the
algorithms can
be considered
appropriate to
work in the real
world).

Work on pos-
sible privacy
issues during the
offloading pro-
cess, understand
if mobile de-
vices can adapt
to the dynamic
network environ-
ments. Careful
and additional
investigation
regarding infor-
mation exchange
and overhead
in communica-
tions is needed.
Extension of
scenario from a
singular cloudlet
Fog node to
multiple. Take
into considera-
tion interference
management,
control over-
head, and load
balancing.

[28] IoT Framework
for optimal
Task Offloading
(system’s IoT
devices have
Edge server and
Cloud server
coverage).

Transmission
delay, energy
consumption,
and resource
allocation.

Functional Pro-
gramming given
that the "opti-
mal" offloading
strategy defined
was obtained by
comparing com-
pletion times
of tasks in IoT
devices and the
Edge server.

Number of
completed tasks
was improved,
and there was
a reduction
of energy
consumption
observed with
the proposed
solution.

Laboratorial Ex-
perimentation.

Enable content
caching in Edge
nodes, mobility-
aware allow
for cooperative
and mobility
aware Edge
node caching
and address
possible security
and privacy
concerns.

2.5 Summary 35

Table 2.1: Literature Review Summary

Reference Area Proposed Sys-
tem

Offloading Cri-
teria

Research Area Results Testing Environ-
ment

Issues/Future
Work

[15] IoT AutoScaler
(functions as
a front-end for
the offloading
architecture
proposed,
that besides
the front-end,
consists of a
back-end and an
offloading sim-
ulator capable
of generating
dynamic offload-
ing workload
of multiple
devices).

Response time
(offloading
request), han-
dling capacity
regarding mul-
tiple offloading
requests, and
capacity to
distribute said
requests to dif-
ferent instance
types.

Cloud compu-
tation (usage of
Amazon EC2)
and Functional
Programming
(components in
Java language).

For metrics,
the time to dis-
tribute requests
between servers
improved, even
as load in-
creased, though
this phenomenon
provoked a CPU
resource us-
age, limiting
the number of
tasks that were
possible to exe-
cute parallel to
each other. For
performance,
AutoScaler
introduced
extra-time to the
time necessary
to respond to
an offloading
request, in about
one-hundred and
fifty millisec-
onds, though
it is possible
to improve on
this value (pro-
cessing tasks in
Cloud/managing
tradeoff between
the price for
utilization and
computational
resources of the
server chosen
for offloading).

Laboratorial
Experimenta-
tion (though
it is possible
to extrapolate
the solution to
real-world use
cases).

Study cost of
building such
a system in
a real-world
scenario.

[17] IIoT Two-stage
heuristic mecha-
nism.

Average and
worst-case delay
performance
of the system
(delay jitter).

Mathematical
and Economics
based solution

Proposed mech-
anism was suc-
cessful in con-
trolling the risk
of intense delay
jitter.

Laboratorial
Experimen-
tation (more
mathematical
resolution than
programming
one).

-

[11] IIoT Energy-efficient,
gradient
algorithm-based,
computation of-
floading scheme.

Energy con-
sumption(tasks
had to be exe-
cuted within a
desired delay
and energy
overhead).

Artificial Intelli-
gence.

Energetic con-
sumption was
improved on
local comput-
ing nodes, and
overall, the com-
pletion time was
improved, and
delay constraint
was guaranteed.
Nonetheless, the
energetic cost of
task transmis-
sion to the Cloud
increased. The
more iterations
of the algorithm
executed, the
more likely it
was to find the
optimal value
to achieve min-
imum energy
consumption.

Laboratorial Ex-
perimentation.

Integrate Deep-
Learning and
green framework
concepts to
make decisions
"greener" and
smarter.

Literary Review 36

Table 2.1: Literature Review Summary

Reference Area Proposed Sys-
tem

Offloading Cri-
teria

Research Area Results Testing Environ-
ment

Issues/Future
Work

[12] IIoT Pattern-
identified online
task scheduling
mechanism for
the networking
infrastructure in
a multi-layered
Edge system.

Computation
performance
and energy
consumption.

Artificial Intelli-
gence/Optimiza-
tion.

When compared
to a greedy
algorithm and
an offline Hun-
garian method
algorithm, the
proposed mech-
anism reduced
latency in the
processing of
tasks and per-
formed better in
terms of time
consumption
and average
decision-making
time while
reducing the
number of
execution er-
rors present in
shorter deadlines
tasks.

Laboratorial Ex-
perimentation.

Consider indi-
vidual require-
ments of IIoT
applications,
and verify them
through the us-
age of datasets to
achieve optimal
performance
for task han-
dling. A new
approach, based
on game-theory
should be stud-
ied to develop
a distributed
computational
framework for
Edge computing.

[19] IIoT Distributed
game-theoretic
Quality of
Service-aware
computation
offloading
mechanism.

Computation
time and energy
consumption.

Artificial Intelli-
gence.

Mechanism
proposed was
more efficient
than the other
tested algo-
rithms (greedy
and simulated
annealing) while
being stable
when dealing
with tasks that
were intensive
computationally.
The more IIoT
devices present
in the pro-
cess, the more
effective the pro-
posed multi-hop
algorithm was.

Laboratorial Ex-
perimentation.

Consider indi-
vidual require-
ments of IIoT
applications,
and verify them
through the us-
age of datasets to
achieve optimal
performance for
task handling.
Perform studies
on a nonelastic
Cloud environ-
ment and adopt
a bandwidth-
sharing model to
enable through-
put allocation
according to data
size or urgency
of tasks.

[20] IIoT Edge com-
putation, re-
inforcement
learning-based,
task offloading
mechanism.

Latency and
power consump-
tion.

Artificial Intelli-
gence.

Mechanism dis-
played more ef-
ficient resource
consumption for
user devices and
Edge servers
when compared
to just executing
tasks locally or
just offloading
them to the Edge
nodes to be
executed there.

Laboratorial Ex-
perimentation.

Attend to more
complex systems
and offload-
ing criteria.
Utilize deep
Q-Learning,
to improve
resource usage.

In the next chapter, the problem formulation will be extensively detailed.

Chapter 3

Problem Formulation

In the current chapter, the formulation of the problem at hand is described to understand the math-

ematical logic behind the development of the algorithms.

3.1 Problem Formulation

This section will explain the mathematical theory behind the algorithms developed according to

the parameters and metrics on which the task offloading mechanism was based, such as CPU

resources, memory resources, and associated cost. The section itself will be divided into three

subsections, one for each algorithm created.

3.1.1 Greedy Algorithm

The Greedy algorithm, which focused solely on a device’s available resources, made use of a file

in which information regarding a device’s measured parameters was stored. Namely, its CPU’s

frequency, CPU usage, memory available for usage, percentage of memory usage, and associated

cost of offloading a task to said device were stored. This file was generated by connecting the task

offloading mechanism to a distributed platform, named DINASORE (Dynamic INtelligent Archi-

tecture for Software and MOdular REconfiguration) and performing a single measure of these

metrics before any Function Block (FB) was associated to a device. This decision was made since

the optimizer would use the data to perform calculations under the assumption that devices were

running at optimal conditions, when executing all algorithms. This assumption held for all the

other algorithms since they utilized the same devices’ input files for calculations. Mathematically

speaking, the Greedy algorithm utilized a sum obtained as presented in equations 3.1 and 3.2. In

the first of both equations presented, the device’s CPU frequency value was added to multiply-

ing 1000 to the device’s available CPU percentage. In the second, the operations are similar, but

the parameters were different. Namely, they reflected a device’s memory parameters, such as its

available memory and its available memory percentage. Both percentage values were multiplied

37

Problem Formulation 38

by 1000, so that they were "converted" to an order of magnitude adequate to the device’s CPU fre-

quency and available memory, respectively. It should be noted that both the Greedy and Improved

Greedy algorithms prioritized only one metric at a time, which could chosen by the user, either the

CPU parameters, or the memory parameters, but never both simultaneously.

tdCPUCap = dCPUFreq+((100−dCPUPerc)∗1000) (3.1)

Equation 3.1 Abbreviations

Abbreviation Meaning
tdCPUCap Total Device CPU Capacity

dCPUFreq Device CPU Frequency

dCPUPerc Device CPU Percentage

tdMEMCap = daMEM+((100−dMEMPerc)∗1000) (3.2)

Equation 3.2 Abbreviations

Abbreviation Meaning
tdMEMCap Total Device Memory Capacity

daMEM Device Available Memory

dMEMPerc Device Memory Percentage

3.1.2 Improved Greedy Algorithm

The Improved Greedy algorithm is, as the name suggests, an improvement to its Greedy coun-

terpart, as it takes into consideration not only a device’s available resources but also the toll a

Function Block’s execution takes on its attributed device. Therefore, in Mathematical notation,

the Improved Greedy algorithm utilized a subtraction of two different sums. As specified in equa-

tion 3.3, the total device capacity for the CPU parameter was subtracted to the measured CPU

percentage consumption value, verified when a device executed the Function Block. In contrast,

for the memory parameters, the device’s total memory capacity was subtracted to the sum of the

available memory after the Function Block had been executed, with the measured memory per-

centage consumption value, as seen in 3.4. Both of the percentages were multiplied by 1000 to

make the order of magnitude adequate for the whole equation.

f bCPUNe = tdCPUCap− ((aFbCPUPerc)∗1000)) (3.3)

Equation 3.3 Abbreviations

Abbreviation Meaning
fbCPUNe Function Block CPU Necessities

tdCPUCap Total Device CPU Capacity

aFbCPUPerc Average Function Block CPU Percentage

3.1 Problem Formulation 39

f bMEMNe = tdMEMCap − (aFbAvaMEM + (aFbMEMPerc ∗ 1000)) (3.4)

Equation 3.4 Abbreviations

Abbreviation Meaning
fbMEMNe Function Block Memory Necessities

tdMEMCap Total Device Memory Capacity

aFbAvaMEM Average Function Block Available Memory

aFbMEMPerc Average Function Block Memory Percentage

3.1.3 Q-Learning Algorithm

In mathematical terms, the Q-Learning algorithm followed the equation presented in 2.9. For the

experiment, the adopted values for the discount and learning rates were 0.99 and 0.1, respectively.

The Q-table corresponds to a matrix where the number of rows represented the number of devices

present in the system. The number of columns represented the Function Blocks executed in the

system. At the end of the algorithm’s execution, a display would allow the user to understand the

level of adequacy of running a specific Function Block for each device. The reward obtained at

each step was considered a sum of the evaluation of different metrics, such as CPU frequency,

CPU and memory percentage, available memory, and offloading cost. As it is possible to observe

from equations 3.5 to 3.9 the process of obtaining a reward value at each step is very complex and

involved an individual evaluation of those different metrics, namely for the CPU frequency, its

value was obtained by attributing a higher reward to devices that displayed higher frequency, for

the CPU and memory percentages the evaluation was done by subtracting the device’s available

metric percentage to the monitored metric percentage the Function Block in average needed to

perform correctly. The result of this subtraction could either be a negative number, indicating

that the device would not be an ideal place to execute that Function Block. In contrast, a positive

number would show precisely the opposite. The result itself was evaluated by giving a bigger

reward the more significant the positive difference obtained. For example, if the result of the

subtraction was 50, the reward was 50 as well, while if the result was -50, the reward would be

-25. The maximum difference allowed was 100, both for a negative and positive result. Similarly,

the available memory parameter evaluation tested if the device had enough available memory to

make up for the necessary Function Block’s memory requirements. This was achieved by dividing

the device’s available memory with the Function Block’s execution’s average memory usage. If the

value was less than 1.00, there was no memory available to execute the Function Block. Therefore

the reward given in that scenario was -25, while if the division’s result was precisely one, the

reward was 0. For results between 1.00 and 2.00, the reward was increased by ten as the result

increased by .10, for example, for a 1.10 result, the reward was 10, for 1.20, the reward was 20, for

1.30, the reward would be 30, and so forth until the maximum reward of 100 for a result of 2.00.

For the final step, the reward value obtained in the previous calculations was subtracted, the same

Problem Formulation 40

reward value times the device’s offloading cost. This acted as a sort of "tax" for having to offload

the task to the device itself and would only reflect alterations on the reward value if the offloading

cost was greater than zero, for example, in the case of a Cloud device.

Reward = CPU f reqeval + MEMavaeval + percEval − cO f f Eval (3.5)

CPU f reqeval = eval(CPU f req)

where

eval(x) =



0, if x <= 0

10, if x <= 5000

20, if x <= 10000

30, if x <= 15000

40, if x <= 20000

50, if x <= 25000

60, if x <= 30000

70, otherwise

(3.6)

MEMavaEval = eval

(avaDevMEM, f bAvaMEMres,desFact),

where

desFact > 1.00

and

desFact < 2.00

eval(x,y,z) =


0, if x/y <= 1.00

1, if x/y >= z

2, otherwise

(3.7)

3.1 Problem Formulation 41

PercentageEvalution = eval

(devCPUPerc, f bCPUPerc, targValue)

or

eval(devMEMPerc, f bMEMPerc, targValue)

where

targValue >−100

and

targValue < 100

eval(x,y,z) =


0, if x− y <=−100

1, if x− y <= z

2, otherwise

(3.8)

cO f f Eval = reward− (reward ∗devCO f f) (3.9)

Equations 3.5, 3.6, 3.7, 3.8, 3.9 Abbreviations

Abbreviation Meaning
CPUfreqEval CPU Frequency Evaluation

MEMavaEval Memory Available Evaluation

percEval Percentage Evaluation

cOffEval Cost of Offloading Evaluation

CPUfreq CPU Frequency

avaDevMEM Average Device Memory

fbAvaMEMres Function Block Average Memory Resources

desFact Desired Factor

devCPUPerc Device CPU Percentage

fbCPUPerc Function Block CPU Percentage

targValue Target Value

devMEMPerc Device Memory Percentage

fbMEMPerc Device Memory Percentage

devCOff Device Cost of Offloading

In this chapter the problem formulation was explained, and in the following chapter the process

of implementation will be detailed.

Chapter 4

Implementation

In this chapter, the task offloading mechanism implementation is further detailed. The chapter

itself will be divided into different sections. The first section explains the mechanism architec-

ture, the second section explains file operation-related code, and the third section presents the

algorithms in detail.

4.1 Mechanism Architecture

This section describes how the task offloading mechanism was designed, and the system that was

thought out for the experiment is explained. The algorithms’ initial conception will be presented.

There will be a brief discussion about the technology used.

4.1.1 Mechanism Design

To understand how the mechanism was designed, it is necessary to add more details behind DINA-

SORE’s functioning. DINASORE allows for code execution within the CPSs through Function

Blocks that abstract software and hardware modules suitable for manufacturing requirements. [31]

To configure and deploy these Function Blocks, the 4DIAC-IDE should be utilized since it proves

capable of communicating with OPC-UA (Open Platform Communications-Unified Architecture)

servers, which is the main gateway to devices running DINASORE. Every instance of DINASORE

has exactly one instance of an OPC-UA server running associated with it. 4DIAC-IDE is an inte-

grated development environment designed to allow for the creation and deployment of Function

Blocks, and compliant with the ldquoFramework developed for distributed industrial automation

and control (4DIAC), and that was based on the IEC(International Electrotechnical Commission)-

61499 standard, which was developed for distributed, modular, and flexible control systems. [35]

OPC-UA is also a standard for industrial automation that allows for data exchange and inter-

operability from lower levels, such as sensors and actuators, to higher levels, such as control and

communication systems, for example, central servers and Clouds. [13]

42

4.1 Mechanism Architecture 43

In DINASORE’s specific case, Function Blocks are programmed in the Python language and

XML (Extensible Markup Language) since XML tags encode the metadata related to the Function

Block itself. This fact justified the choice of the usage of the Python language in the development

of the task offloading mechanism, alongside other factors, such as the language’s popularity and

how flexible it is in developing Artificial Intelligence solutions.

Figure 4.1: OPC-UA Model

But if in the scope of the research, the implementations of the Function Blocks were unim-

portant, when compared to the task they were performing, it is more important to describe the

OPC-UA model since it would be required to understand the levels of resource consumption dur-

ing the execution of Function Blocks, and the OPC-UA server associated with the DINASORE

instance allows for this information to be easily obtainable. The OPC-UA model is presented in

figure 4.1 and is structured in three main folders, the Function Blocks folder, where information

regarding the Function Blocks and their execution parameters are stored, the Hardware monitoring

folder, which holds a set of variables that are used to monitor specific device resources while run-

ning the respective DINASORE instance and the OPC-UA method folder, that is only populated if

the user wrapped a portion or the whole pipeline within a method wrapper. This information can

Implementation 44

be seen by using an OPC-UA client such as Prosys, which is capable of reproducing it as presented

in figure 4.2.

Figure 4.2: Prosys OPC-UA Data Display

Considering these points, it was clear that for the mechanism to perform adequately, it was nec-

essary to decide how it would communicate with devices running DINASORE instances. Namely,

two options were available, either the mechanism would perform its tasks by monitoring the ex-

ecution of the Function Blocks and by monitoring the different devices’ resources and use that

data to provide a possible optimization solution to the user as a means of suggestion, given that it

wouldn’t be possible to dynamically reconfigure the DINASORE configurations, instead leaving

that option to the user. The other option would be to allow for dynamic reconfiguration of the

DINASORE instances by using the mechanism as an interface between the 4DIAC-IDE and the

different DINASORE instances. But even if this option would be better from the users’ standpoint,

to make that approach work, it would be necessary to alter DINASORE’s code. Therefore, due

to time constraints and because changing DINASORE’s source code was outside of the scope of

the research, the mechanism was designed as presented in figure 4.3. It comprised of three ma-

jor parts, the 4DIAC-IDE, the DINASORE instance, and the optimizer, which by itself needed to

have interfaces implemented, capable of communicating with both the 4DIAC-IDE and the DI-

NASORE instances to have full access to all the data being monitored along with the execution

of a pipeline and to present the user the proposed optimization solution. Specifically, both the

DINASORE instance and the mechanism measured the different parameters and metrics chosen

to influence the mechanism and stored the readings in text files, which would function as inputs to

the mechanism.

4.1 Mechanism Architecture 45

Figure 4.3: Task Offloading Mechanism Design

4.1.1.1 Class Diagram

Before explaining the code and algorithms, it is necessary to present the class diagram, which

describes the whole mechanism’s two main entities. As seen in figure 4.4, those two entities are

devices and Function Blocks. The devices were characterized by having a name, a CPU frequency,

a CPU usage percentage, available memory, memory usage percentage, and associated cost. In

contrast, Function Blocks had as parameters a name, the calculated average CPU usage percentage,

the calculated average memory usage percentage, and the calculated average memory resources

spent. Other optional parameters included the event and argument list. Although they weren’t

utilized in the scope of the experiment, their presence allowed for some code future-proofing. The

code developed for the models can be seen in figures 8.1 and 8.2.

4.1.1.2 Algorithm Conception

Though they will be further expanded in the next chapter, the thought process that originated the

algorithms needs to be referred to. In the conception of the algorithms, it was necessary to define

the system metrics in which the offloading mechanism had to focus the most. The metrics selected

Implementation 46

Figure 4.4: Task Offloading Class Diagram

were CPU resources, memory resources, and offloading cost. Time metrics weren’t reflected in

the offloading parameters, since the pipelines executed on a loop until the user killed the processes

associated with these executions, manually.

The first algorithm, named the Greedy algorithm, performed calculations based exclusively

on a device’s available resources without considering Function Block consumption or toll on a

given device to present to the user a possible optimization solution. The second algorithm, named

Improved Greedy algorithm, was, as the name suggests, similar to the Greedy algorithm. Still, in

this case, it did consider Function Block needs for devices, though in a simplistic manner. The

final algorithm, a Q-Learning algorithm, performed calculations by taking the three metrics into

consideration. It would better understand Function Block consumption or toll on a given device

but also understand, for example, if tasks should be performed on a local or Edge level or to be

executed at the Cloud level, guaranteeing that a Cloud execution had an associated cost which

could play an important part in the selection of devices on which tasks were to be executed.

One important note to refer to is that Cloud solutions, considered to be "professional" such as

Amazon AWS, Digital Ocean, or Google Cloud, offer very expensive solutions for systems with

very high CPU, RAM, and storage specifications. Since a device with some capacity was required

to come to a conclusion about the importance, or lack thereof, of including a Cloud level in a task

offloading mechanism, and given the costs of acquiring a solution like the ones aforementioned

are prohibitive, a decision was made in conjunction with the DIGI2 lab, that one physical device

would be utilized as a representative of the Cloud level device needed for the research.

4.1.1.3 Technologies

To develop the mechanism, the Python language was chosen. It is a high-level and general-purpose

language, and it is one of the most popular and utilized languages by developers. Its advantages

include improved code readability, support for multiple programming paradigms, an open-source

community that provides many useful libraries, and beginner and user-friendliness. [34]

4.2 Algorithms and File Operations 47

Specifically, the version that was chosen to develop the solution was version 3.7.9, as it was

necessary to utilize a version compatible with the OpenAI-Gym library. Other libraries, including

NumPy and opcua, were used. NumPy is the main array programming library for the Python

language and is utilized to advance research in fields such as physics, chemistry, engineering,

finance, and economics [18]. The opcua library is the Python implementation of the OPC-UA

stack and its tools, while the OpenAI-Gym library is a toolkit for Reinforcement Learning research

[10].

An MQTT (Message Queuing Telemetry Transport) broker was used, named Mosquitto, and

the paho-mqtt library was used to establish communication between MQTT servers and clients.

MQTT will be further detailed in the following chapter.

4.2 Algorithms and File Operations

This section will present the implementation details of both the algorithms developed and the

classes that were developed for file manipulating reasons.

4.2.1 File Operations

The classes developed for file operations were coded to centralize the process of reading the

data provided by DINASORE’s monitoring module and storing it for algorithmic manipulation.

Namely, six classes were defined. The first, FileReader, functioned as an auxiliary class, respon-

sible for simply reading the lines of a specified file and storing them in a list. The second class,

FunctionBlockReader, read the contents of the Function Block history file generated by DINA-

SORE for each machine it executed on, which contained the name of the Function Blocks that

were executed and initial and ending timestamps in which that Function Block executed. In this

class, two dictionaries, the Python version of key and value collections, were instantiated. To

group the information regarding all of a Function Block’s initial and final timestamp in the FB

history dictionary and start storing information regarding Function Blocks that executed instan-

taneously, in the monitor info dictionary. In the cases where the initial timestamp was equal to

the final timestamp, consumption was considered 0, as no resources were assumed to be spent for

executing that Function Block at that particular time. The monitor info dictionary was also used

in another class, MonitorReader, where the file that stored the result of the monitored resources

was read. Its contents were utilized to establish a match between the consumption verified in a

Function Block execution, and the monitoring’s measured timestamp. This was done by verifying

if the monitored timestamp was between the interval in which a certain Function Block executed.

If this assumption held, then the information regarding resource consumption for that Function

Block was stored in the monitor info dictionary. The DeviceAvailabilityReader would read the file

generated by the task offloading mechanism after connecting to the correct DINASORE OPC-UA

server instance and performing a single reading of the resources available. The information was

maintained in a list so that it was easier to separate between the different devices running DINA-

SORE. Finally, the DataConnector class was the class that centralized all the information loaded

Implementation 48

into the monitor info and FB history dictionaries and took the data available in the monitor dictio-

nary to calculate the average resources spent in each Function Blocks’ execution. To achieve this,

the measured values list associated with each Function Block was iterated, and a sum of the ob-

tained CPU usage percentage, memory usage percentage, and memory consumed was calculated

and divided by the total amount of readings verified and traced back to the Function Block itself.

Figures 8.3 to 8.7 present the code of the classes, by the same order in which they were mentioned.

4.2.2 Algorithms

The algorithms will be explained in the next sub-subsections. The first algorithm discussed will

be the Greedy, followed by the Improved Greedy and the final algorithm will be the Q-Learning

algorithm.

4.2.2.1 Greedy Algorithm

For executing the Greedy algorithm, a dictionary was instantiated. This dictionary would store the

points attributed to each device to understand how they stood regarding the chosen parameter to be

prioritized when compared with each other. Depending on the parameter chosen to be prioritized,

either CPU or memory resources, the mechanism would compare the device parameters by iter-

ating through the list of all devices connected to the DINASORE and, consequently performing

this comparison between all of the devices present. Considering a scenery where a device X was

compared to a device Y, if device X scored better when evaluated accordingly to either equation

3.1 or 3.2, for the metrics each equation represents, then device X would be attributed 1 point. In

contrast, device Y would have a point subtracted. If the opposite occurred, device Y would score a

point, while device X would lose it. In case of a tie, both devices would be awarded a point. After

all the comparisons were made, a list was displayed to inform how each device fared for the metric

chosen by the user to be optimized. For that, an auxiliary class named ShowResult was utilized,

allowing for reuse with the Improved Greedy algorithm.

Algorithm 1 Greedy Algorithm
procedure RUNGREEDYALGORITHM(deviceList, optionToPrioritize)

if optionToPrioritize = 1 then
prioritizeResources(deviceList, "cpuFrequency", "cpuPercentage")

else if optionToPrioritize = 2 then
prioritizeResources(deviceList, "memoryAvailable", "memoryPercentage")

end if

4.2 Algorithms and File Operations 49

Algorithm 2 Prioritize Resources Method
procedure PRIORITIZERESOURCES(deviceList, parameterToOptimize1, parameterToOptimize2)

scoreMap← newMap < deviceName,deviceScore >
for <X, Y in combinations(deviceList, 2)> do

if getParametersSum(X , parameterToOptimize1, parameterToOptimize2) >
getParametersSum(Y, parameterToOptimize1, parameterToOptimize2) then

scoreMap(X, deviceScore++)
scoreMap(Y, deviceScore--)

else if getParametersSum(X , parameterToOptimize1, parameterToOptimize2) <
getParametersSum(Y, parameterToOptimize1, parameterToOptimize2) then

scoreMap(Y, deviceScore++)
scoreMap(X, deviceScore--)

else
scoreMap(X, deviceScore++)
scoreMap(Y, deviceScore++)

end if
end for

4.2.2.2 Improved Greedy Algorithm

Coded similarly to its Greedy counterpart, the main difference of the Improved Greedy ver-

sion is that when it came to the comparison of all the devices connected to DINASORE, re-

lated to the desired metric to be optimized, is that the parameters were evaluated accordingly

to equations 3.3 or 3.4 respectively. The point attribution worked the same in both Greedy al-

gorithms. To achieve this difference in calculations between the two algorithms, it was neces-

sary to utilize different auxiliary classes. Namely, in the Utils class, which will be expanded

upon in another section, two functions were utilized for each algorithm as a sort of central pro-

cessing. As seen in Figures 8.12, 8.13 and 8.14, the methods compare_device_parameters and

the improved_compare_device_parameters variant for the Improved Greedy algorithm are sim-

ilar in the sense that they utilized almost all the same functions, namely some similarities in-

clude calling methods such as get_attribute_from_object, that returned the value of an attribute

from an object, passed as an argument, for example, it could be utilized to get the value of

the device’s CPU frequency. Other functions were utilized, such as, add_point_to_device, and

remove_point_from_device, which are self-explanatory. The difference between the compari-

son methods existed in the functions that were called to perform the evaluation of the metrics,

namely, the get_parameters_sum, that represented the code version of equations 3.1 and 3.2. In

contrast, get_improved_parameters_sum_memory method, represented the equation 3.4, and the

get_improved_parameters_sum_cpu methods, that represented the equation 3.3.

Algorithm 3 Improved Greedy Algorithm
procedure RUNIMPROVEDGREEDYALGORITHM(deviceList, optionToPrioritize)

if optionToPrioritize = 1 then
prioritizeResourcesImproved(deviceList, "cpuFrequency", "cpuPercentage")

else if optionToPrioritize = 2 then
prioritizeResourcesImproved(deviceList, "memoryAvailable", "memoryPercentage", "avgMemoryResources", "avgMemo-

ryPercentage")
end if

Implementation 50

Algorithm 4 Prioritize Resources Improved Method
procedure PRIORITIZERESOURCESIMPROVED(deviceList, parameterToOptimize1, parameterToOptimize2, parameterToOptimize3, parameterToOptimize4)

scoreMap← newMap < deviceName,deviceScore >
for <X, Y in combinations(deviceList, 2)> do

if getImprovedParametersSum(X , parameterToOptimize1, parameterToOptimize2, parameterToOptimize3, parameterToOptimize4) >
getImprovedParametersSum(Y, parameterToOptimize1, parameterToOptimize2, parameterToOptimize3, parameterToOptimize4) then

scoreMap(X, deviceScore++)
scoreMap(Y, deviceScore--)

else if getImprovedParametersSum(X , parameterToOptimize1, parameterToOptimize2, parameterToOptimize3, parameterToOptimize4) <
getImprovedParametersSum(Y, parameterToOptimize1, parameterToOptimize2, parameterToOptimize3, parameterToOptimize4) then

scoreMap(Y, deviceScore++)
scoreMap(X, deviceScore--)

else
scoreMap(X, deviceScore++)
scoreMap(Y, deviceScore++)

end if
end for

4.2.2.3 Q-Learning Algorithm

The Q-Learning algorithm’s code was divided into the QLearningAlgorithm class and the Envi-

ronment class. The first class was where the algorithm itself was coded, while the second class

represented the environment in which the algorithm was embedded. The Environment class was

where the action space and the observation space were defined, namely the action space corre-

sponded to a discrete space with the same length as the list of Function Blocks present system,

while the observation space corresponded to a discrete space with the same length as the list of

devices present in the system. It is in this class that the step function was coded, and it consisted of

obtaining the current state of the Q-Learning algorithm, or the index of the device to be subject to

evaluation, and passing it to the reward function alongside the action to be evaluated, correspond-

ing to the Function Block to be analyzed. The reward function was composed of many other func-

tions, that were the code reflection of what was explained from equations 3.5 to 3.9, and as seen in

figure 8.17, it called the functions evaluate_percentage, to evaluate CPU and memory percentage

usage, evaluate_available_memory, to evaluate available device memory with necessary memory

to execute a Function Block, evaluate_cpu_frequency and measure_cost_of_offloading which are

self-explanatory. The functions compare_resource_parameters and compare_memory_resources

were utilized in the evaluate_percentage and evaluate_available_memory functions respectively

and were the exact code representation of equations 3.8 and 3.7. The evaluate_percentage and

evaluate_available_memory methods utilized them in the attribution of the value of the reward ob-

tained, as exemplified in figures 8.19 and 8.20. The last methods written in the class included the

render and the reset function, but if the first was a simple command-line print, given there was no

complex GUI involved in presenting the results to the users, the second could be considered more

relevant. The reset method was responsible for updating the state of the Q-Learning algorithm,

which in specific terms meant that the function would increment the state value to assess other

devices in the device list or reset the process by pointing again to the first device in the device list,

as seen in figure 8.17.

4.2 Algorithms and File Operations 51

The Q-Learning class, was responsible for executing the algorithm and initializing the En-

vironment class since it needed to be aware of the environment to function correctly. The train

model function would be where most of the code was developed. In it, the Q-Table was initialized

alongside the learning rate, discount rate, exploration rate, and exploration rate decay parameters.

One important thing to refer to is that the chosen number for episodes, or iterations, was 1000.

The initial part of the method included obtaining the action to perform and passing it to the step

function available to the environment to obtain the reward for it, while the following steps included

the update of the Q-Table with the calculated value according to equation 2.9. After the calcula-

tion of the new exploration rate as displayed in figure 8.22, a new iteration would start. After all

iterations were complete, a message with the results was shown to the user. The train method was

called within another function, called exec, which was the one that would be called for executing

the Q-Learning algorithm.

Algorithm 5 Q-Learning Algorithm
procedure TRAIN(deviceList, f unctionBlockList, environment)

stateSpaceSize := environment.getObservationSpace()
actionSpaceSize := environment.getActionSpace()
qTable := newMatrix[stateSpaceSize,actionSpaceSize]
numE pisodes := 1000
maxStepsPerE pisode := 10
learningRate := 0.1
discountRate := 0.99
explorationRate := 1
maxExplorationRate := 1
minExplorationRate := 0.01
explorationDecayRate := 0.01
for doepisodeinrange(numE pisodes)

state := environment.getState()
done := False
rewardsCurrentE pisode := 0
for dostepinrange(maxStepsPerE pisode)

explorationRateT hreshold = random.uni f orm(0,1)
if thenexplorationRateT hreshold > explorationRate

action;= maxIndexValue(qTable[state][])
else

action := environment.getActionSpaceSample()
end if
done = environment.step(action)
qTable[state,action] = (1 − learningRate) ∗ qTable[state,action] + learningRate ∗ (reward + discountRate ∗

np.max(qTable[newState, :]))
state = newstate
rewardsCurrentE pisode+= reward
if thendone == True :

break
end if
explorationRate = minExplorationRate + (maxExplorationRate − minExplorationRate) ∗

exp(−explorationDecayRate∗ episode)
end for

end for
end procedure=0

Algorithm 6 Reward Function
procedure GETREWARD(deviceList, f unctionBlockList, state, action)

reward := 0
reward := evaluatePercentage(deviceList[state], f unctionBlockList[action],”cpuPercentage”,”avgCpuPercentage”)+ reward
reward := evaluatePercentage(deviceList[state], f unctionBlockList[action],”memoryPercentage”,””avgMemoryPercentage)+ reward
reward := evaluateAvailableMemory(deviceList[state], f unctionBlockList[action],”memoryAvailable”,””avgMemoryResources)+ reward
reward := evaluateCpuFrequency(state)+ reward
reward := measureCostO f O f f loading(state,deviceList,reward)+ reward

Implementation 52

Algorithm 7 Cost of Offloading Method
procedure MEASURECOSTOFOFFLOADING(state, deviceList, reward)

deviceAssociatedCost := getDeviceAssociatedCost(deviceList[state])
if deviceAssociatedCost <= 0 then

return reward
end if
return (reward - (reward * deviceAssociatedCost))

4.2.3 Utility

The classes that formed part of the utility category include the Main class, the ClientConnector

class, the ShowResult class, and the Utils class. The ShowResult class was utilized exclusively

for displaying the results of the Greedy and Improved Greedy, and it consisted of simple prints to

the console, as pictured in figure 8.9. While many methods of the Utils class have been presented,

there are functions yet to be explained. While mostly related to file auxiliary methods, there was a

method named reverse_percentage, which obtained the device’s available CPU and memory per-

centages. This method was coded since what DINASORE measured. was the usage level of those

respective parameters in the device. The methods that served as aides of file operations were,

get_project_root, append_line_to_file, clear_file_contents and extract_file_info. While the first

three are self-explanatory, the last one separated the values in the file from its parameter, which

helped store data. The only method left to explain is initialize_dictionary_of_points, which was

utilized for initializing the points dictionary for the Greedy and Improved Greedy algorithm. The

other relevant class in this category is the ClientConnector, which, utilizing the python-opcua li-

brary, would be responsible for connecting to a DINASORE’s OPC-UA server instance to perform

a single read of a device’s parameters to be stored in memory, that would serve as input for the

mechanism. In this case, after the reading was executed, the data would be stored in a file to

persist. This made it easier to draw some conclusion about the efficacy and accuracy of the mech-

anism. Finally, the Main served only to begin the whole process of data collection and algorithm

execution as seen in figure 8.24.

In the next chapter the results will be presented and discussed.

4.2 Algorithms and File Operations 53

Algorithm 8 Evaluate Percentage Method
procedure EVALUATEPERCENTAGE(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2)

if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,0) = 0 then
return -50

end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,−90.0) = 0 then

return -45
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,−80.0) = 0 then

return -40
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,−70.0) = 0 then

return -35
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,−60.0) = 0 then

return -30
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,−50.0) = 0 then

return -25
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,−40.0) = 0 then

return -20
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,−30.0) = 0 then

return -15
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,−20.0) = 0 then

return -10
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,−10.0) = 0 then

return -5
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,0.00) = 0 then

return 0
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,10.0) = 1 then

return 10
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,20.0) = 1 then

return 20
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,30.0) = 1 then

return 30
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,40.0) = 1 then

return 40
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,50.0) = 1 then

return 50
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,60.0) = 1 then

return 60
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,70.0) = 1 then

return 70
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,80.0) = 1 then

return 80
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,90.0) = 1 then

return 90
end if
if compareResourceParameters(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,100.0) = 1 then

return 100
end if

Implementation 54

Algorithm 9 Evaluate Memory Method
procedure EVALUATEMEMORY(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2)

if compareMemoryResources(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,0) =−1 then
return 100

end if
if compareMemoryResources(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,0) = 0 then

return -25
end if
if compareMemoryResources(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,1.00) = 1 then

return 0
end if
if compareMemoryResources(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,1.10) = 1 then

return 10
end if
if compareMemoryResources(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,1.20) = 1 then

return 20
end if
if compareMemoryResources(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,1.30) = 1 then

return 30
end if
if compareMemoryResources(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,1.40) = 1 then

return 40
end if
if compareMemoryResources(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,1.50) = 1 then

return 50
end if
if compareMemoryResources(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,1.60) = 1 then

return 60
end if
if compareMemoryResources(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,1.70) = 1 then

return 70
end if
if compareMemoryResources(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,1.80) = 1 then

return 80
end if
if compareMemoryResources(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,1.90) = 1 then

return 90
end if
if compareMemoryResources(deviceIn f ormation, f unctionBlockIn f ormation, parameter1, parameter2,2.00) = 1 then

return 100
end if

Chapter 5

Experiments and Results

In this chapter, the experiment’s tests and results are presented and discussed, including the de-

scription of the pipeline utilized during the tests.

5.1 Pipeline Description

One crucial aspect to consider before the initial development and testing steps was how the system,

namely the pipeline used for testing the efficacy and accuracy of the offloading mechanism, was

defined and configured. The term pipeline, in this case, was considered to be the chaining of

Function Blocks in a sequential manner, in such a way that Function Blocks, triggered either by

external events or inputs, were stored in a queue list in a First-In-First-Out approach, and were

therefore executed according to that list’s order. Pipelines could be categorized into two groups:

• Series pipelines when Function Blocks execute one at a time, meaning that even if there are

resources available, there is only progress when a Function Blocks finishes its execution.

• Parallel pipelines when Function Blocks execute concurrently, meaning that if there are

resources available, it is possible to progress in the pipeline’s execution by having devices

run their Function Blocks at the same time.

Function Blocks needed to be mapped to devices independently of how the pipelines were con-

figured. Devices could be considered homogeneous or heterogeneous, depending on how similar

they were to one another in terms of specifications. Still, there are different advantages and disad-

vantages in choosing a system with either homogeneous or heterogeneous devices, depending on

how the pipeline is categorized.

For series pipelines:

• With Homogeneous Devices: it is not possible to optimize bottlenecks, but at the same

time, it is possible to minimize networking time by aggregating multiple blocks in a single

device.

55

Experiments and Results 56

• With Heterogeneous Devices: it is also possible to minimize networking time by aggregat-

ing multiple blocks in a single device, and additionally, it is possible to optimize bottlenecks.

For parallel pipelines:

• With Homogeneous Devices: it is not possible to optimize bottlenecks, but at the same

time, it is possible to minimize networking time but only to the point where the number of

devices doesn’t exceed the total parallel fluxes.

• With Heterogeneous Devices: it is possible to optimize bottlenecks.

Other restrictions to the pipeline included the possibility of specific Function Blocks being

allocated to fixed and specific devices. Certain groups of Function Blocks needed to be assigned

to the same device so that the pipeline didn’t break.

With these constraints in mind, the pipeline was thought out, and it was planned as being in

series with heterogeneous devices.

Presented from figures 5.1 to 5.5, the pipeline in which the algorithms would be tested was

divided into two parts, the training pipeline, and the testing pipeline. Both pipeline lines began by

loading a spreadsheet with data, training data for the first line of execution, and testing data for the

second execution line. The steps of the training pipeline’s execution, presented in figures 5.1 and

5.2 were:

1. Loading of spreadsheet: The test dataset was loaded onto the pipeline so that operations

could be performed on it.

2. Data grouping: The data was grouped for analysis.

3. Feature extraction: Corresponds to the process of erasing irrelevant and redundant features

from the dataset, improving accuracy when assigning text into one or more categories [36].

4. Normalization: Is the process of casting the dataset to a specific range. [30].

5. Pickle normalization: Similar to the previous step, but only explicitly done to pickles.

Pickles are serialized or de-serialized Python object structures.

6. PCA transformation: Principal Component Analysis, or PCA, is the process of linear

transformation applied from correlated variables to pairwise uncorrelated variables. [6]

7. Labelling: The data returned from the previous step was labeled.

8. Save on spreadsheet: The data was saved on a spreadsheet.

In this training pipeline, there were also other steps occurring concurrently after the PCA

transformation step, as presented in figure 5.3, namely:

1. Saving the PCA transformation result as a pickle.

5.1 Pipeline Description 57

2. Elliptic envelope: This algorithm models the data as a high dimensional Gaussian distribu-

tion with possible co-variances between feature dimensions. In simpler terms, it attempts to

find a boundary ellipse containing most of the data. [21]

3. Saving the result of the elliptic envelope as a pickle.

The testing pipeline, presented in figures 5.4 and 5.5 was very similar to the training pipeline,

so only the steps that differed from the ones in the latter will be explained. Its execution order was

as follows:

1. Loading of spreadsheet: The testing dataset was loaded onto the pipeline so that operations

could be performed on it.

2. Saving of spreadsheet: The testing data set was initially saved on a separate spreadsheet

before any operation was done on it.

3. Event accumulator: The event accumulator served as a composer to the pipeline in the

sense that it waited until both previous steps were done before continuing execution.

4. Data grouping.

5. Feature extraction.

6. Loading normalized pickle: The pickle that was normalized on the training pipeline’s

execution was loaded.

7. Normalization.

8. Pickle normalization: similar to the previous step, but only explicitly done to pickles.

9. Loading PCA transformed pickle: The PCA transformation’s result pickle, created in the

training pipeline, was loaded.

10. PCA transformation.

11. Loading pickle: The pickle resulting from the final step of the training pipeline was loaded

so that data could be used for the rest of the testing pipeline’s execution.

12. Labelling.

13. Elliptic envelope.

14. Save on spreadsheet: The data resulting from the previous step was saved on a spreadsheet.

Since devices were spread through the network, the pipelines also included MQTT commu-

nication Function Blocks to pass data between them, necessary for the pipeline’s good function-

ing. MQTT is an open Organization for the Advancement of Structured Information Standards

Experiments and Results 58

(OASIS) and an International Organization for Standardization (ISO) standard for the client-

server messaging transport protocol. Based on a publish/subscribe communication pattern, the

MQTT protocol presents characteristics such as its openness, simpleness, ease of deployment.

Lightweight, the protocol is capable of transmitting data over low-bandwidth or unreliable net-

works with very low power consumption. It is constituted by a publisher, a subscriber, and a

broker, also known as the MQTT server. The publisher is responsible for sending messages to a

messaging service on a topic, while the subscriber receives all the messages sent to the channel

whose topic it subscribed to. [29]

Figure 5.1: First Pipeline Part in Training Pipeline

Figure 5.2: Second Pipeline Part in Training Pipeline

5.1 Pipeline Description 59

Figure 5.3: First Pipeline Part in Testing Pipeline

Figure 5.4: Second Pipeline Part in Testing Pipeline

Figure 5.5: Third Pipeline Part in Testing Pipeline

Experiments and Results 60

Figure 5.6: Network Topology of the Mechanism

5.2 Experiment Design 61

5.2 Experiment Design

A couple of important points need to be presented regarding the testing process used to deter-

mine how effective and accurate the proposed algorithms were. Given the choice to make the

mechanism interact with DINASORE more statically, not allowing for dynamic reconfiguration of

Function Block to device mapping, to execute the tests, it was necessary to execute the pipeline

before running the algorithms. But before the Function Blocks that composed the pipeline were

allocated to their respective devices, the mechanism was executed to communicate with each de-

vice’s DINASORE OPC-UA server instance and to perform the single parameter reading men-

tioned in subsection 4.2.1. To provide further input to the algorithm, the pipeline was executed

for approximately 2 minutes per execution, after device to Function Block mapping was done.

The configuration of the tests and results were described in a spreadsheet to provide a suggested

optimization solution as an output. A critical consideration in testing was that different devices

were used. Two of them were personal laptops, and the rest were owned by the DIGI-2 lab, which

configured the devices for the experiment. The devices were listed and categorized as follows:

1. Device 1: 64-bit Windows 10 ASUS brand computer named DESKTOP-T6OSSL0. Fea-

tured an Intel(R) Core(TM) i7-4510U CPU with a core clock of 2.00 Ghz and featured 4

Gigabytes (GBs) of Random Access Memory (RAM).

2. Device 2: 64-bit Windows 10 Lenovo brand computer named LAPTOP-6DPA64B0. Fea-

tured an AMD Ryzen 7 5800H CPU with a core clock of 3.20 GHz and 16 GBs of RAM.

3. Device 3: 64-bit Intel brand mini-computer named DESKTOP-E2G2PKE. Featured an In-

tel(R) Core(TM) i3-7100U CPU with a core clock of 2.40 GHz and 4 GBs of RAM.

4. Device 4: 64-bit Windows 10 computer named DESKTOP-B005INA. Featured an Intel(R)

Core(TM) i7 CPU with a core clock of 3.60 GHz and 8 GBs of RAM.

The manner in which the devices communicated between themselves, to constitute the mech-

anism’s’ network topology, is displayed in figure 5.6.

For Function Block distribution was considered as local, all the executions that were done

on only one device, meaning that one device could handle all of the pipeline without utilizing

the MQTT protocol. Nonetheless, the most important experiments were achieved by distributing

different Function Blocks between other devices across the network, to understand the importance

of having systems with various devices functioning simultaneously, and especially to understand

if there were advantages in utilizing a Cloud solution in the mechanism. For some executions, the

chosen device to be considered as the Cloud solution was device 2 since it was the device that

possessed the best metrics among all the available devices.

Many executions were done to test all the algorithms with different input data values, and the

results were all recorded in the previously mentioned spreadsheet. This spreadsheet had many sub-

sheets, and a scenario of execution was represented for each. The different scenarios of execution

scenarios were:

Experiments and Results 62

• Local Scenario A: local executions done on device 1.

• Local Scenario B: local executions done on device 2.

• Local Scenario C: local executions done on device 3.

• Local Scenario D: local executions done on device 4.

• Distributed Scenario E: distributed executions done on devices 1 and 2 (not considered

Cloud level).

• Distributed Scenario F: distributed executions done on devices 2 (considered as Cloud

level) and 3.

• Distributed Scenario G: distributed executions done on devices 2 (considered as Cloud

level) and 4.

The spreadsheet’s sub-sheets were divided, column-wise, by the test number, an identifier

consisting of the scenario of execution scenario and the number of execution, for example, A -

1.3, which meant that the results were obtained from the third test performed on data that was

generated at the first execution of the pipeline on device 1. The devices involved column is self-

explanatory, while the pipeline column provided information on how the pipeline was attributed to

the devices. The algorithm selected column presented the algorithm executed on that specific test,

while the parameters column explained the input given to the mechanism so that the algorithm

could perform. Finally, the metrics evaluated column explained which metrics the test was based

on, and the results column presented a picture of the output obtained. The spreadsheet is available

on a public link available in section 8.1, and the results will be presented in subsections by their

respective scenario.

5.3 Results

5.3.1 Local Scenario A

For scenario A executions, the Greedy and Improved Greedy algorithms, obtained null results,

since those two algorithms performed comparisons between devices to get a possible optimiza-

tion solution. As displayed in table 5.2, the output would always return 0. Nonetheless, for the

Q-Learning algorithm, different results were obtained to show the other Function Blocks’ load

provoked on the first device. Analyzing the results obtained, it was possible to observe that Func-

tion Blocks such as the grouping FBs and the elliptic envelope FBs, were the most computationally

demanding to the first device. In contrast, some of the Function Blocks, such as the pickle and

spreadsheet operations FBs displayed a consistent evaluation throughout the battery of tests. There

were also a few Function Blocks that could be categorized as being in-between consistency and

provoking a heavy load on the device. Namely, the event accumulator FB, which managed to

improve its first score obtained in the second and third executions, but if on the fourth try the

5.3 Results 63

evaluation came close to the first one obtained, the final execution displayed a significantly worse

score than previously detected. The labeling and normalization FBs could also be included in this

category since their scores showed significant deviation between executions.

Table 5.1: Greedy and Improved Greedy results for Local Scenario A executions

Execution Number Test Number Pipeline Algorithm Se-
lected

Parameters Tested Metrics Evaluated Results

1 1 All FBs on Device 1 Greedy Algorithm List Of Devices CPU resources Device Score = 0
1 2 All FBs on Device 1 Greedy Algorithm List Of Devices Memory resources Device Score = 0
1 3 All FBs on Device 1 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

1 4 All FBs on Device 1 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

2 1 All FBs on Device 1 Greedy Algorithm List Of Devices CPU resources Device Score = 0
2 2 All FBs on Device 1 Greedy Algorithm List Of Devices Memory resources Device Score = 0
2 3 All FBs on Device 1 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

2 4 All FBs on Device 1 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

3 1 All FBs on Device 1 Greedy Algorithm List Of Devices CPU resources Device Score = 0
3 2 All FBs on Device 1 Greedy Algorithm List Of Devices Memory resources Device Score = 0
3 3 All FBs on Device 1 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

3 4 All FBs on Device 1 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

4 1 All FBs on Device 1 Greedy Algorithm List Of Devices CPU resources Device Score = 0
4 2 All FBs on Device 1 Greedy Algorithm List Of Devices Memory resources Device Score = 0
4 3 All FBs on Device 1 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

4 4 All FBs on Device 1 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

5 1 All FBs on Device 1 Greedy Algorithm List Of Devices CPU resources Device Score = 0
5 2 All FBs on Device 1 Greedy Algorithm List Of Devices Memory resources Device Score = 0
5 3 All FBs on Device 1 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

5 4 All FBs on Device 1 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

Table 5.2: Q-Learning results for Local Scenario A executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

1 5 All FBs on
Device 1

Q-Learning List Of De-
vices

CPU and
memory
resources

Feature Extraction Score = 10515.22 Loading Normalized Pickle Score
= 10671.17 Elliptic Envelope (Testing) Score = 10169.48 Write CSV
(2nd Testing) Score = 11216.26 Event Accumulator Score = 10105.38
Loading Pickle Score = 11807.72 Normalize Score = 12026.64 Group-
ing Score = 9587.94 Second Normalize Score = 10889.96 Load CSV
Score = 10066.68 Loading PCA Pickle = 10388.600 Saving Pickle
Score = 13988.21 Write CSV 1 Score= 10091.98 Load CSV Sim Score
= 10057.64 Elliptic Envelope 1(Training) Score = 9307.11 Grouping
Score = 10256.34 Feature Extraction 1 Score = 11837.22 Labelling
(Testing) Score = 10872.66

Experiments and Results 64

Table 5.2: Q-Learning results for Local Scenario A executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

2 5 All FBs on
Device 1

Q-Learning List Of De-
vices

CPU and
memory
resources

Pickle PCA Score = 11438.23 Feature Extraction 1 (Testing) Score =
10639.55 Loading Normalized Pickle Score = 10131.58 Elliptic En-
velope (Testing) Score = 10719.38 Write CSV (2nd Testing) Score
= 11796.26 Event Accumulator Score = 11739.45 Grouping (Train-
ing) Score = 9365.63 Grouping 1 (Testing) Score = 11905.35 TIRAR
Normalize 1 (Testing) Score = 10889.96 Load (Training) CSV Score
= 10066.68 PCA Pickle = 11438.27 Saving Pickle Score = 13998.15
Write CSV 1 (1st Testing) Score= 11965.43 Write CSV 2 (Training)
Score= 8966.94 Load CSV Sim Score = 10222.59 Elliptic Envelope 1
(Training) Score = 11519.42 Grouping Score = 9365.63 PCA Trans-
fer 1 (Testing) = 11163.66 Labelling (Testing) Score = 10872.66 Pickle
Norm Score = 10243.01

3 5 All FBs on
Device 1

Q-Learning List Of De-
vices

CPU and
memory
resources

Normalize (Training) Score = 11068.25 Pickle PCA Score = 12024.94
Feature Extraction 1 (Testing) Score = 10639.55 Elliptic Envelope
(Testing) Score = 10465.97 Write CSV (2nd Testing) Score = 10945.57
Grouping 1 (Testing) Score = 11291.34 Normalize 1 (Testing) Score =
9589.89 Write CSV 1 (1st Testing) Score= 11942.11 Load CSV Sim
Score = 10835.35 Elliptic Envelope 1 (Training) Score = 11021.11
Grouping Score = 9365.63 PCA Transfer 1 (Testing) = 11163.66 Fea-
ture Extraction 1 (Testing) Score = 11348.33 Labelling (Testing) Score
= 12188.34 Labelling 1 (Training) Score = 13998.25 Pickle Norm Score
= 10243.01

4 5 All FBs on
Device 1

Q-Learning List Of De-
vices

CPU and
memory
resources

Write CSV 2 Score = 12622.85 Normalize 1 Score = 10237.46 La-
belling Score = 10167.79 Grouping 1 Score = 10269.41 Loading
Normalized Pickle Score = 10401.83 Pickle Normalization Score =
11295.15 Feature Extraction Score = 11888.86 PCA Transformation
= 11383.10 Normalize Score = 11670.27 Feature Extraction 1 Score
= 13998.17 Event Accumulator Score = 10452.88 Elliptic Envelope 1
Score = 10522.41 Load CSV Sim Score = 9847.70 Write CSV 1 Score
= 11536.67 Write CSV Score = 10650.51 Elliptic Envelope Score =
11976.31 Loading Pickle Socre = 10583.36

5 5 All FBs on
Device 1

Q-Learning List Of De-
vices

CPU and
memory
resources

Event Accumulator Score = 9810.95 Loading Normalized Pickle =
11194.66 Pickle Normalization Score = 12366.79 Pickle PCA Score
= 13998.26 PCA Transformation Score = 11750.82 Write CSV 2
Score = 11605.01 Grouping 1 Score = 11596.29 Normalize Score =
11040.84 Feature Extraction Score = 10725.97 Feature Extraction 1
Score = 10194.97 Load CSV Sim Score = 11123.85 Write CSV Score
= 10303.57 Labelling Score = 10126.54 Elliptic Envelope 1 Score =
10798.35 Normalize 1 Score = 11257.90 Write CSV Score = 10772.10
Elliptic Envelope Score = 10167.74

5.3.2 Local Scenario B

For type B executions, the Greedy and Improved Greedy algorithms displayed null results as

well, while for the Q-Learning algorithm, different results demonstrated the different Function

Blocks’ load provoked on the second device. Analyzing the results obtained in table 5.4, it was

possible to observe that for different executions some Function Blocks revealed to be heavier

independently of execution. Function Blocks such as the elliptic envelope FBs, particularly the

one from the training pipeline, the normalize FBs, the labelling FBs, the write to spreadsheet file

FBs, and the feature extraction FBs were amongst the most demanding Function Blocks for the

second device. Other Function Blocks showed, on average, more consistent results, and could

be considered easier to execute, resource wise. In this case, the PCA transfer FBs, the grouping

FBs, both the load spreadsheet FBs, the pickle operations FBs displayed similar results between

executions, and albeit not being the best, these results showed that they were less taxing to the

second device. The least taxing Function Block for device 2 was the event accumulator Function

Block, since on average it was the Function Block that scored the best result in all optimization

5.3 Results 65

solution suggestions. Overall, the second device was more capable of executing all of the Function

Blocks than the first one, which was to be expected given that it is computationally more powerful.

Table 5.3: Greedy and Improved Greedy results for Local Scenario B executions

Execution Number Test Number Pipeline Algorithm Se-
lected

Parameters Tested Metrics Evaluated Results

1 1 All FBs on Device 2 Greedy Algorithm List Of Devices CPU resources Device Score = 0
1 2 All FBs on Device 2 Greedy Algorithm List Of Devices Memory resources Device Score = 0
1 3 All FBs on Device 2 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

1 4 All FBs on Device 2 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

2 1 All FBs on Device 2 Greedy Algorithm List Of Devices CPU resources Device Score = 0
2 2 All FBs on Device 2 Greedy Algorithm List Of Devices Memory resources Device Score = 0
2 3 All FBs on Device 2 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

2 4 All FBs on Device 2 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

3 1 All FBs on Device 2 Greedy Algorithm List Of Devices CPU resources Device Score = 0
3 2 All FBs on Device 2 Greedy Algorithm List Of Devices Memory resources Device Score = 0
3 3 All FBs on Device 2 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

3 4 All FBs on Device 2 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

4 1 All FBs on Device 2 Greedy Algorithm List Of Devices CPU resources Device Score = 0
4 2 All FBs on Device 2 Greedy Algorithm List Of Devices Memory resources Device Score = 0
4 3 All FBs on Device 2 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

4 4 All FBs on Device 2 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

5 1 All FBs on Device 2 Greedy Algorithm List Of Devices CPU resources Device Score = 0
5 2 All FBs on Device 2 Greedy Algorithm List Of Devices Memory resources Device Score = 0
5 3 All FBs on Device 2 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

5 4 All FBs on Device 2 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

Table 5.4: Q-Learning results for Local Scenario B executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

1 5 All FBs on
Device 2

Q-Learning List Of De-
vices

CPU and
memory
resources

Write CSV Score = 18764.81 Saving Pickle Score = 17516.66 PCA
Transformation 1 Score = 18844.35 Elliptic Envelope 1 Score =
14931.17 Labelling 1 Score = 15395.67 Feature Extraction 1 Score
= 199784.48 Write CSV 1 Score = 19717.88 Normalize Score =
16924.79 Event Accumulator Score = 20083.95 Feature Extraction
Score = 19817.56 Labelling Score = 17338.49 Write CSV 2 Score
= 16235.48 Elliptic Envelope Score = 23996.95 Pickle PCA Score =
19053.07 Loading PCA Pickle Score = 18720.15

2 5 All FBs on
Device 2

Q-Learning List Of De-
vices

CPU and
memory
resources

Loading Pickle Score = 15838.96 Pickle PCA Score = 19893.95 Load
CSV Score = 15109.66 Feature Extraction Score = 17048.57 Write CSV
Score = 20846.90 Pickle Normalization = 17001.52 Grouping Score
= 18111.42 Write CSV 2 Score = 18642.55 PCA Trasnformation 1
Score = 19332.16 Grouping 1 Score = 17967.24 Saving Pickle Score
= 17926.72 Write CSV 1 Score = 19043.13 Elliptic Envelope Score =
18465.80 Normalize 1 Score = 15484.90 Normalize Score = 18306.51
Labelling Score = 16614.37

Experiments and Results 66

Table 5.4: Q-Learning results for Local Scenario B executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

3 5 All FBs on
Device 2

Q-Learning List Of De-
vices

CPU and
memory
resources

Loading PCA Pickle Score = 18971.04 Loading Normalized Pickle
Score = 18323.69 PCA Transformation Score = 18906.51 Elliptic En-
velope 1 Score = 17244.98 Write CSV Score = 19344.81 Labelling
1 Score = 19385.38 Feature Extraction 1 Score = 16648.42 Write
CSV 2 Score = 16665.47 Elliptic Envelope Score = 18488.02 Saving
Pickle Score = 16552.88 Feature Extraction Score = 16061.02 Group-
ing 1 Score = 17185.86 Grouping Score = 18549.34 Event Accumulator
Score = 17273.07 Normalize 1 Score = 18701.80 Load CSV Score =
16837.02 Labelling Score = 23995.84 Write CSV 1 Score = 16694.04
PCA Transformation 1 Score = 16839.34 Normalize Score = 16567.78
Load CSV Sim Score = 19875.67

4 5 All FBs on
Device 2

Q-Learning List Of De-
vices

CPU and
memory
resources

Saving Pickle Score = 18343.22 Normalize Score = 16595.48 Group-
ing Score = 18264.11 Loading Normalized Pickle Score = 15846.76
Write CSV 1 Score = 19322.83 Grouping 1 Score = 15728.94 Normal-
ized Pickle Score = 20218.62 Elliptic Envelope 1 Score = 21585.62
Feature Extraction 1 Score = 17763.86 Write CSV Score = 16177.64
Pickle PCA Score = 15398.38 PCA Transformation Score = 17905.78
Labelling Score = 14471.56 PCA Transformation 1 Score = 23996.85
Normalize 1 Score = 17128.09 Load CSV Score = 17212.08 Event Ac-
cumulator Score = 18097.01 Loading PCA Pickle Score = 19616.98
Load CSV Sim Score = 17797.82

5 5 All FBs on
Device 2

Q-Learning List Of De-
vices

CPU and
memory
resources

Event Accumlator Score = 14662.55 Grouping Score = 17684.79 La-
belling 1 Score = 17434.03 Feature Extraction Score = 16906.44
Write CSV 2 Score = 16627.09 Loading Normalized Pickle Score =
19090.78 Loading Pickle Score = 19562.76 Loading Pickle PCA Score
= 17436.56 Normalize 1 Score = 18155.07 Feature Extraction Score =
15512.10 Pickle PCA Score = 18963.46 Grouping 1 Score = 23996.91
PCA Transformation 1 Score = 17040.40 Load CSV Score = 17053.48
Elliptic Envelope Score = 18575.41 Normalize Score = 18908.28

5.3.3 Local Scenario C

The Greedy and Improved Greedy algorithms still displayed null results for scenario C executions.

In contrast, the Q-Learning algorithm again demonstrated the different Function Blocks’ load

provoked on the third device. Analyzing the results obtained in table 5.6, interesting results were

obtained, considering that on average, the algorithm’s evaluation of Function Block needs was as

positive, and in some cases, even better, than the one obtained for the second device. This could be

explained by the fact that device 2 was utilized in the deployment and control of the pipelines with

the 4DIAC-IDE and therefore needed to allocate some resources to perform those functions. But if

the differences between the second and third devices weren’t too extreme, the differences between

the first and third devices were worthy of mention. By observing the results obtained in both

cases, it was easily verified that the Q-Learning evaluation results were almost double for most of

the Function Blocks that were executed. The fact that device 1 was older and had little available

space in its memory could have influenced this. The second device’s readings showed that it had

more memory and CPU available for Function Block execution compared to those same metrics

on the first device. In terms of the Q-Learning’s Function Block evaluation, the results obtained

indicated that for the third device, the Function Block toll was very inconsistent, given that many

Function Blocks had results almost opposite from one execution to the next. Examples of this

behavior were the PCA transformation FBs, the PCA pickle FB loading, the normalized pickle

FB, the normalized FB, the grouping FBs, and the write to CSV (Comma-Separated Values) files

FBs. Other Function Blocks displayed consistent results, such as the loading of the CSV files FBs,

5.3 Results 67

the feature extraction FBs, and the saving pickle FB. They could be considered as the ones that,

on average, weighted less to the device’s resources.

Table 5.5: Greedy and Improved Greedy results for Local Scenario C executions

Execution Number Test Number Pipeline Algorithm Se-
lected

Parameters Tested Metrics Evaluated Results

1 1 All FBs on Device 3 Greedy Algorithm List Of Devices CPU resources Device Score = 0
1 2 All FBs on Device 3 Greedy Algorithm List Of Devices Memory resources Device Score = 0
1 3 All FBs on Device 3 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

1 4 All FBs on Device 3 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

2 1 All FBs on Device 3 Greedy Algorithm List Of Devices CPU resources Device Score = 0
2 2 All FBs on Device 3 Greedy Algorithm List Of Devices Memory resources Device Score = 0
2 3 All FBs on Device 3 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

2 4 All FBs on Device 3 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

3 1 All FBs on Device 3 Greedy Algorithm List Of Devices CPU resources Device Score = 0
3 2 All FBs on Device 3 Greedy Algorithm List Of Devices Memory resources Device Score = 0
3 3 All FBs on Device 3 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

3 4 All FBs on Device 3 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

4 1 All FBs on Device 3 Greedy Algorithm List Of Devices CPU resources Device Score = 0
4 2 All FBs on Device 3 Greedy Algorithm List Of Devices Memory resources Device Score = 0
4 3 All FBs on Device 3 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

4 4 All FBs on Device 3 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

5 1 All FBs on Device 3 Greedy Algorithm List Of Devices CPU resources Device Score = 0
5 2 All FBs on Device 3 Greedy Algorithm List Of Devices Memory resources Device Score = 0
5 3 All FBs on Device 3 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

5 4 All FBs on Device 3 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

Table 5.6: Q-Learning results for Local Scenario C executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

1 5 All FBs on
Device 3

Q-Learning List Of De-
vices

CPU and
memory
resources

Loading Pickle PCA Score = 19340.47 Loading Normalized Pickle
= 17760.29 PCA Transformation 1 Score = 19894.91 Normalize 1
Score = 16308.94 Write CSV 1 Score = 18262.15 Event Accumulator
Score = 17441.66 Loading Pickle Score = 20032.18 Groupin 1 Score
= 19095.19 Normalized Pickle Score = 17721.37 Feature Extraction
1 Score = 19753.60 Labelling 1 Score = 22997.16 Write CSV Score
= 17697.45 Grouping Score = 18669.40 Elliptic Envelope 1 Score =
19493.41 Load CSV Sim Score = 15655.74 Elliptic Envelope Score =
17940.00

2 5 All FBs on
Device 3

Q-Learning List Of De-
vices

CPU and
memory
resources

Loading Pickle Score = 15838.96 Pickle PCA Score = 19893.95 Load
CSV Score = 15109.66 Feature Extraction Score = 17048.57 Write CSV
Score = 20846.90 Pickle Normalization = 17001.52 Grouping Score
= 18111.42 Write CSV 2 Score = 18642.55 PCA Trasnformation 1
Score = 19332.16 Grouping 1 Score = 17967.24 Saving Pickle Score
= 17926.72 Write CSV 1 Score = 19043.13 Elliptic Envelope Score =
18465.80 Normalize 1 Score = 15484.90 Normalize Score = 18306.51
Labelling Score = 16614.37

Experiments and Results 68

Table 5.6: Q-Learning results for Local Scenario C executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

3 5 All FBs on
Device 3

Q-Learning List Of De-
vices

CPU and
memory
resources

PCA Transformation 1 Score = 14623.11 Loading Normalized Pickle
Score = 15394.25 Load CSV Score = 16623.14 Grouping Score =
14848.59 Elliptic Envelope Score = 16987.08 Pickle PCA Score =
15996.64 Write CSV Score = 164141.81 Elliptic Envelope 1 Score
= 15352.93 Write CSV 2 Score = 17218.57 Saving Pickle Score =
17222.38 Grouping 1 Score = 16771.04 Loading Pickle PCA Score
= 17595.41 Normalize Score = 21997.22 Labelling Score = 14305.63
Labelling 1 Score = 16407.91 PCA Transformation Score = 14164.21
Load CSV Sim Score = 16262.93 Event Accumulator Score = 11858.75
Write CSV 1 Score = 15350.02 Feature Extraction 1 Score = 18769.82
Loading Pickle Score = 16466.90

4 5 All FBs on
Device 3

Q-Learning List Of De-
vices

CPU and
memory
resources

Loading Pickle Score = 18636.15 Elliptic Envelope 1 Score = 19389.15
Normalize 1 Score = 19812.04 PCA Transformation 1 Score = 18426.55
Normalize Score = 14949.44 Write CSV 2 Score = 19614.41 Labelling
1 Score = 16615.44 Write CSV 1 Score = 20012.07 Grouping Score
= 23996.98 Feature Extraction 1 Score = 18458.00 Loading Normal-
ized Pickle Score = 19409.912 Load CSV Sim Score = 18048.00 Event
Accumulator Score = 17923.27 Grouping 1 Score = 17343.90 Loading
Pickle PCA Score = 17455.35 Write CSV Score = 16961.35 Elliptic
Envelope Score = 18845.37

5 5 All FBs on
Device 3

Q-Learning List Of De-
vices

CPU and
memory
resources

Saving Pickle Score = 18843.91 Normalize Score = 17950.07 Feature
Extraction Score = 18588.04 Loading Pickle PCA Score = 18862.77
Pickle PCA Score = 17700.83 Write CSV 1 Score = 17958.02 Fea-
ture Extraction 1 Score = 19234.01 Pickle Normalization Score =
23997.03 PCA Transformation 1 Score = 18130.47 Write CSV Score
= 19139.50 Grouping 1 Score = 20271.99 Loading Normalized Pickle
Score = 18283.03 Load CSV Sim Score = 19754.00 Event Accumula-
tor Score = 16337.94 Grouping Score = 19408.81 Elliptic Envelope 1
Score = 16899.25 Loading Pickle Score = 17880.47 Normalize 1 Score
= 16026.25 Elliptic Envelope Score = 17065.42

5.3.4 Local Scenario D

For the final individual testing, scenario D executions’ Greedy and Improved Greedy algorithms

results didn’t change from the previous executions. As for the Q-Learning algorithm results, as

seen in table 5.8, displayed a consistent behavior in the sense that it wasn’t possible to identify

a definite and clear group of best and worst-performing Function Blocks. On many executions,

Function Blocks obtained sequential evaluations of their best and worst scores while obtaining on

other executions evaluation values that oscillated between these peaks of scores.

Table 5.7: Greedy and Improved Greedy results for for Local Scenario D executions

Execution Number Test Number Pipeline Algorithm Se-
lected

Parameters Tested Metrics Evaluated Results

1 1 All FBs on Device 4 Greedy Algorithm List Of Devices CPU resources Device Score = 0
1 2 All FBs on Device 4 Greedy Algorithm List Of Devices Memory resources Device Score = 0
1 3 All FBs on Device 4 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

1 4 All FBs on Device 4 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

2 1 All FBs on Device 4 Greedy Algorithm List Of Devices CPU resources Device Score = 0
2 2 All FBs on Device 4 Greedy Algorithm List Of Devices Memory resources Device Score = 0
2 3 All FBs on Device 4 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

2 4 All FBs on Device 4 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

3 1 All FBs on Device 4 Greedy Algorithm List Of Devices CPU resources Device Score = 0
3 2 All FBs on Device 4 Greedy Algorithm List Of Devices Memory resources Device Score = 0

5.3 Results 69

Table 5.7: Greedy and Improved Greedy results for for Local Scenario D executions

Execution Number Test Number Pipeline Algorithm Se-
lected

Parameters Tested Metrics Evaluated Results

3 3 All FBs on Device 4 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

3 4 All FBs on Device 4 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

4 1 All FBs on Device 4 Greedy Algorithm List Of Devices CPU resources Device Score = 0
4 2 All FBs on Device 4 Greedy Algorithm List Of Devices Memory resources Device Score = 0
4 3 All FBs on Device 4 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

4 4 All FBs on Device 4 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

5 1 All FBs on Device 4 Greedy Algorithm List Of Devices CPU resources Device Score = 0
5 2 All FBs on Device 4 Greedy Algorithm List Of Devices Memory resources Device Score = 0
5 3 All FBs on Device 4 Improved Greedy

Algorithm
List Of Devices and
List Of Function
Blocks

CPU resources Device Score = 0

5 4 All FBs on Device 4 Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources Device Score = 0

Table 5.8: Q-Learning results for for Local Scenario D executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

1 5 All FBs on
Device 4

Q-Learning List Of De-
vices

CPU and
memory
resources

Loading Normalized Pickle Socre = 20249.35 Grouping Score =
17231.00 Write CSV Score = 21569.28 Event Accumulator Score =
19659.62 Saving Pickle Score = 26996.45 Labelling 1 Score = 21325.94
Labelling Score = 19329.78 Load CSV Score = 18844.62 Normalize
Score = 18273.80 Feature Extraction 1 Score = 17660.58 PCA Trans-
formation 1 Score = 16406.90 Write CSV 1 Score = 18458.77 Elliptic
Envelope 1 Score = 22089.46 Pickle PCA Score = 17503.57 Write CSV
2 Score = 19917.57 Loading Pickle Score = 19559.83 Load CSV Sim
Score = 20944.91 Normalize 1 Score = 20482.39 Loading Pickle PCA
Score = 15610.08

2 5 All FBs on
Device 4

Q-Learning List Of De-
vices

CPU and
memory
resources

Labelling Score = 22444.01 Loading Pickle Score = 20472.70 Write
CSV 2 Score = 18709.24 PCA Transformation 1 Score = 17370.46
Pickle Norm Score = 22124.74 Pickle PCA Score = 19228,97 Ellip-
tic Envelope 1 Score = 20410.71 Loading Normalized Pickle Score
= 18704.91 Saving Pickle Score = 21748.20 Feature Extraction 1
Score = 18540.80 Grouping Score = 20925.59 Write CSV 1 Score
= 15157.50 PCA Transformation Score = 20359.38 Elliptic Envelope
Score = 19009.92 Labelling 1 Score = 20998.97 Feature Extraction
Score = 19275.21 Event Accumulator Score = 21460.10 Load CSV Sim
Score = 19357.42 Load CSV Score = 22180.95 Grouping 1 Score =
19746.18 Loading Pickle PCA Score = 26996.55 Write CSV Score =
19484.36

3 5 All FBs on
Device 4

Q-Learning List Of De-
vices

CPU and
memory
resources

Loading Pickle Score = 15594.07 Elliptic Envelope Score = 20317.66
Loading Normalized Pickle Score = 19880.31 Grouping Score =
16619.10 Write CSV 1 Score = 21345.84 Labelling Score = 17066.30
Pickle Normalization Score = 20748.07 Feature Extraction Score =
19585.26 PCA Transformation 1 Score = 22322.87 Saving Pickle Score
= 21234.09 Labelling 1 Score = 18837.82 Load CSV Score = 21086.00
Loading Pickle PCA Score = 21491.05 Event Accumulator Score =
26996.56 Load CSV Sim Score = 19059.36 Grouping Score = 20789.66
Elliptic Envelope Score = 21078 Normalize 1 Score = 20374.51

4 5 All FBs on
Device 4

Q-Learning List Of De-
vices

CPU and
memory
resources

Event Accumulator Score = 20592.98 Loading Pickle PCA Score =
20762.83 Feature Extraction Score = 17601.90 Normalize Score =
18599.02 Loading Pickle Score = 20750.94 Elliptic Envelope 1 Score
= 19968.49 Load CSV Score = 19298.52 Labelling Score = 19329.44
Write CSV 1 Score = 21528.17 PCA Transformation Score = 21034.93
Grouping 1 Score = 19719.01 Normalize 1 Score = 21427.70 Saving
Pickle Score = 16829.47 Labelling 1 Score = 20746.67

Experiments and Results 70

Table 5.8: Q-Learning results for for Local Scenario D executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

5 5 All FBs on
Device 4

Q-Learning List Of De-
vices

CPU and
memory
resources

Load CSV Score = 19662.21 Loading Normalizeds Pickle Score =
16118,96 Write CSV 2 Score = 18191.25 Grouping Score = 18643.33
Saving Pickle Score = 26996.66 PCA Transformation Score = 21272.18
Labelling 1 Score = 17458.69 Feature Extraction 1 Score = 18159.30
Grouping 1 Score = 19809.71 Elliptic Envelope Score = 18508.42 Event
Accumulator Score = 18060.19 Write CSV Score = 18743.28 Pickle
Normalization Score = 17511.89 Loading Pickle PCA Score = 22080.74
Feature Extraction Score = 20834.40 Labelling Score = 21789.00 Write
CSV 1 Score = 22139.97 Load CSV Sim Score = 20858.20 PCA Trans-
formation 1 Score = 18934.97 Normalize 1 Score = 13273.53 Loading
Pickle Score = 21727.76

5.3.5 Distributed Scenario E

For scenario E to scenario G executions, the Greedy and Improved Greedy offered actual results,

given that these executions included two devices to run the whole pipeline. As previously stated,

an MQTT protocol broker was utilized in these distributed cases to pass data from one device to

another. In these cases, the Q-Learning algorithm demonstrated for each device all of the Function

Block load evaluation, meaning that even if a device hadn’t executed a specific Function Block,

it would still assume the resources necessary to execute those Function Blocks in the device.

Analyzing the results obtained, that visible in table 5.10, and considering only the Greedy and

Improved Greedy algorithms first, it was unsurprisingly verified that for all executions, the second

device fared better when compared to the first device, on both memory and CPU metrics. For the

Q-Learning algorithm, the second device presented, once again, for the majority of the Function

Blocks, better scores when compared to the first device. Curiously, the results obtained individu-

ally for each device showed somewhat identical conclusions to the ones observed in subsections

5.3.1 and 5.3.2, respectively. For the first device, the elliptic envelope, and grouping FBs, more

often than not, needed more resources than the other FBs. For the second device, the previously

mentioned grouping FB needed plenty of resources, in addition to the elliptic envelope FB, which

was very taxing on the it. At the same time, it was also possible to verify that the labeling FBs,

the pickle operation FBs, and the feature extraction FBs, once again revealed to need many re-

sources for their execution. An interesting behavior was verified in the grouping FB, given that

for each execution, the results for these devices were opposite. For example, the grouping FB ob-

tained an incredibly high evaluation on the first device in the first execution while obtaining a very

low score for the second one. Still, on the second execution, the roles were inverted, where the

scores were almost perfectly opposite of what had been obtained on the first execution, meaning

the first device with a low score and the second device with a high score. This behavior happened

on three of the five executions, while on one those five executions the results obtained between

both devices were closer to one another. The event accumulator FB was a Function Block whose

performance on both devices consistently displayed the smallest difference. At the same time, the

rest of the pickle operations and spreadsheet operations also verified minor differences between

device evaluations. Finally, the MQTT publisher FB had a surprisingly higher score on the first

device, but this could be explained by the fact that the MQTT broker was hosted on the second

5.3 Results 71

device and therefore helped in spending more resources outside of the scope of the Function Block

execution. The MQTT subscriber FB displayed higher results on the first device. Still, it couldn’t

be reallocated to that device, given that device 1 had no conditions to host the MQTT broker.

Table 5.9: Greedy and Improved Greedy results for Distributed Scenario E executions

Execution Number Test Number Pipeline Algorithm Se-
lected

Parameters Tested Metrics Evaluated Results

1 1 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
T6OSSL0 Score =
-1

1 2 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
T6OSSL0 Score =
-1

1 3 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= 22 DESKTOP-
T6OSSL0 Score =
-22

1 4 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 22 DESKTOP-
T6OSSL0 Score =
-22

2 1 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
T6OSSL0 Score =
-1

2 2 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
T6OSSL0 Score =
-1

2 3 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= 22 DESKTOP-
T6OSSL0 Score =
-22

2 4 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 22 DESKTOP-
T6OSSL0 Score =
-22

3 1 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
T6OSSL0 Score =
-1

3 2 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
T6OSSL0 Score =
-1

3 3 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= 20 DESKTOP-
T6OSSL0 Score =
-20

3 4 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 20 DESKTOP-
T6OSSL0 Score =
-20

4 1 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
T6OSSL0 Score =
-1

Experiments and Results 72

Table 5.9: Greedy and Improved Greedy results for Distributed Scenario E executions

Execution Number Test Number Pipeline Algorithm Se-
lected

Parameters Tested Metrics Evaluated Results

4 2 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
T6OSSL0 Score =
-1

4 3 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= 21 DESKTOP-
T6OSSL0 Score =
-21

4 4 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 21 DESKTOP-
T6OSSL0 Score =
-21

5 1 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
T6OSSL0 Score =
-1

5 2 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
T6OSSL0 Score =
-1

5 3 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= 22 DESKTOP-
T6OSSL0 Score =
-22

5 4 Device 1 - Half of
FBs and Device 2 -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 22 DESKTOP-
T6OSSL0 Score =
-22

Table 5.10: Q-Learning results for Distributed Scenario E executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

1 5 Device 1 -
Half of FBs
and Device
2

Q-Learning List Of De-
vices

CPU and
memory
resources

Feature Extraction Device 1 Score = 7420.43 Normalize 1 Device
1 Score = 10157.44 Loading Normalized Pickle Device 1 Score =
11617.78 Write CSV Device 1 Score = 7194.09 Normalize Device 1
Score = 22738.20 Pickle Norm Device 1 Score = 12540.48 Event Accu-
mulator Device 1 Score = 8037.15 Feature Extraction 1 Device 1 Score
= 12788.85 Grouping 1 Device 1 Score = 9972.73oad CSV Sim Device
1 Score = 5497.80 MQTT Publisher Device 1 Score = 5490.23 MQTT
Publisher 1 Device 1 Score = 12729.26 Pickle PCA Device 1 Score
= 5134.40 Loading Pickle Device 1 Score = 7570.38 Loading Pickle
PCA Device 1 Score = 7397.31 MQTT Subscriber Device 1 Score =
9810.16 MQTT Subscriber 1 Device 1 Score = 10135.32 Elliptic Enve-
lope 1 Device 1 Score = 13226.92 Labelling Device 1 Score = 10047.74
PCA Transform 1 Device 1 Score = 7316.96 Elliptic Envelope Device
1 Score = 6877.81 Write CSV Device 1 Score = 8181.73

1 5 Device 1 -
Half of FBs
and Device
2

Q-Learning List Of De-
vices

CPU and
memory
resources

Feature Extraction Device 2 Score = 9396.63 Normalize 1 Device
2 Score = 13638.16 Loading Normalized Pickle Device 2 Score =
11105.84 Write CSV Device 2 Score = 7974.76 Normalize Device 2
Score = 12310.59 Pickle Norm Device 2 Score = 8644.25 Event Ac-
cumulator Device 2 Score = 10970.00 Feature Extraction 1 Device 2
Score = 12506.65 Grouping 1 Device 2 Score = 26692.97 Load CSV
Sim Device 2 Score = 9015.45 MQTT Publisher Device 2 Score =
9861.09 MQTT Publisher 1 Device 2 Score = 11327.33 Pickle PCA
Device 2 Score = 6149.15 Loading Pickle Device 2 Score = 6452.54
Loading Pickle PCA Device 2 Score = 10729.24 MQTT Subsriber De-
vice 2 Score = 8359.91 MQTT Subscriber 1 Device 2 Score = 11343.70
Elliptic Envelope 1 Device 2 Score = 6000.85 Labelling Device 2 Score
= 11655.97 PCA Transform 1 Device 2 Score = 12807.58 Elliptic En-
velope Device 2 Score = 9918.21 Write CSV Device 2 Score = 9340.08

5.3 Results 73

Table 5.10: Q-Learning results for Distributed Scenario E executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

2 5 Device 1 -
Half of FBs
and Device
2

Q-Learning List Of De-
vices

CPU and
memory
resources

Feature Extraction Device 1 Score = 10263.13 Normalize 1 Device 1
Score = 7926.96 Loading Normalized Pickle Device 1 Score = 8415.65
Write CSV 1 Device 1 Score = 6522.07 Normalize Device 1 Score =
13342.77 Pickle Norm Device 1 Score = 10768.97 Event Accumula-
tor Device 1 Score = 12219.34 Feature Extraction 1 Device 1 Score =
7990.06 Grouping 1 Device 1 Score = 22727.45 Load CSV Sim Device
1 Score = 8826.46 MQTT Publisher Device 1 Score = 8642.47 MQTT
Publisher 1 Device 1 Score = 7397.12 Pickle PCA Device 1 Score =
13981.65 Loading Pickle Device 1 Score = 11824.76 Loading Pickle
PCA Device 1 Score = 9351.70 MQTT Subscriber Device 1 Score =
9650.58 MQTT Subscriber 1 Device 1 Score = 11919.09 Elliptic Enve-
lope 1 Device 1 Score = 6004.56 Labelling Device 1 Score = 6140.01
PCA Transform 1 Device 1 Score = 9940.75 Elliptic Envelope Device
1 Score = 7316.66 Write CSV Device 1 Score = 8675.63

2 5 Device 1 -
Half of FBs
and Device
2

Q-Learning List Of De-
vices

CPU and
memory
resources

Feature Extraction Device 2 Score = 13358.38 Normalize 1 Device 2
Score = 12097.38 Loading Normalized Pickle Device 2 Score = 7214.97
Write CSV 1 Device 2 Score = 8542.04 Normalize Device 2 Score =
26691.34 Pickle Norm Device 2 Score = 9680.04 Event Accumula-
tor Device 2 Score = 12356.23 Feature Extraction 1 Device 2 Score
= 10506.11 Grouping 1 Device 2 Score = 5649.83 Load CSV Sim De-
vice 2 Score = 13560.69 MQTT Publisher Device 2 Score = 7007.76
MQTT Publisher 1 Device 2 Score = 8754.60 Pickle PCA Device 2
Score = 10611.30 Loading Pickle Device 2 Score = 11687.11 Loading
Pickle Device 2 Score = 11824.76 MQTT Subscriber Device 2 Score =
10474.76 MQTT Subscriber 1 Device 2 Score = 6497.24 Elliptic Enve-
lope 1 Device 2 Score = 11432.44 Labelling Device 2 Score = 6862.80
PCA Transform 1 Device 2 Score = 10924.28 Elliptic Envelope Device
2 Score = 12053.95 Write CSV Device 2 Score = 10044.352

3 5 Device 1 -
Half of FBs
and Device
2

Q-Learning List Of De-
vices

CPU and
memory
resources

Feature Extraction 1 Device 1 Score = 5766.05 Load CSV Device 1
Score = 9459.01 Feature Extraction Device 1 Score = 7126.21 Group-
ing Device 1 Score = 18788.58 Pickle Normalization Device 1 Score =
5965.90 Event Accumulator Device 1 Score = 4503.08 Loading Nor-
malized Pickle Device 1 Score = 6473.22 Normalize Device 1 Score =
11042.07 Write CSV Device 1 Score = 3814.92 Load CSV Sim Device
1 Score = 6481.23 Loading Pickle Device 1 Score = 15346.28 Pickle
PCA Device 1 Score = 5770.32 Labelling Device 1 Score = 9201.10
MQTT Subscriber Device 1 Score = 7123.39 MQTT Subscriber Device
1 Score = 7180.20 Write CSV Device 1 Score = 6026.70 Elliptic Enve-
lope Device 1 Score = 8590.82 PCA Transformation 1 Device 1 Score
= 9656.54 Loading Pickle PCA Device 1 Score = 4865.60

3 5 Device 1 -
Half of FBs
and Device
2

Q-Learning List Of De-
vices

CPU and
memory
resources

Feature Extraction 1 Device 2 Score = 10230.57 Load CSV Device 2
Score = 7831.64 Feature Extraction Device 2 Score = 10393.13 Group-
ing Device 2 Score = 6426.32 Grouping 1 Device 2 Score = 8670.94
Pickle Normalization Device 2 Score = 11899.08 Event Accumulator
Device 2 Score = 26692.57 Loading Normalized Pickle Device 2 Score
= 12810.14 Normalize Device 2 Score = 12634.01 Write CSV Device
2 Score = 5499.36 Load CSV Sim Device 2 Score = 16188.16 Load-
ing Pickle Device 2 Score = 10215.56 Pickle PCA Device 2 Score =
6132.39 Labelling Device 2 Score = 6983.48 MQTT Subscriber Device
2 Score = 13108.00 MQTT Subscriber 1 Device 2 Score = 12122.58
Write CSV Device 2 Score = 10647.67 Elliptic Envelope Device 2
Score = 10569.29 PCA Transformation 1 Device 2 Score = 17137.84
Loading Pickle PCA Device 2 Score = 10928.62

4 5 Device 1 -
Half of FBs
and Device
2

Q-Learning List Of De-
vices

CPU and
memory
resources

Load CSV Device 1 Score = 6370.57 Feature Extraction Device 1 Score
= 5298.82 Loading Normalized Pickle Device 1 Score = 4960.36 Nor-
malize 1 Device 1 Score = 7831.65 Write CSV 1 Device 1 Score =
7756.46 Grouping Device 1 Score = 10488.30 Pickle Normalization
Device 1 Score = 10181.85 Normalize Device 1 Score = 10143.10 Load
CSV Sim Device 1 Score = 7407.57 Event Accumulator Device 1 Score
= 6952.77 Feature Extraction 1 Device 1 Score = 6663.45 Labelling
1 Device 1 Score = 10233.19 Loading Pickle PCA Device 1 Score =
8650.55 Loading Pickle Device 1 Score = 18782.89 Labelling Device 1
Score = 9384.36 MQTT Subscriber Device 1 Score = 5456.38 MQTT
Subscriber 1 Device 1 Score = 7689.92 Elliptic Envelope 1 Device 1
Score = 9496.28 Write CSV Device 1 Score = 7798.32 Elliptic Enve-
lope Device 1 Score = 6743.80 PCA Transformation 1 Device 1 Score
= 6936.63

Experiments and Results 74

Table 5.10: Q-Learning results for Distributed Scenario E executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

4 5 Device 1 -
Half of FBs
and Device
2

Q-Learning List Of De-
vices

CPU and
memory
resources

Load CSV Device 2 Score = 10539.91 Feature Extraction Device
2 Score = 148441.22 Loading Normalized Pickle Device 2 Score =
12177.62 Normalize 1 Device 2 Score = 9897.88 Write CSV 1 De-
vice 2 Score = 11804.02 Grouping Device 2 Score = 26691.65 Pickle
Normalization Device 2 Score = 10622.91 Normalize Device 2 Score
= 12423.49 Load CSV Sim Device 2 Score = 7322.38 Event Accumu-
lator Device 2 Score = 8085.62 Feature Extraction 1 Device 2 Score
= 7122.95 Labelling 1 Device 2 Score = 7682.22 Loading Pickle PCA
Device 2 Score = 12559.91 Loading Pickle Device 2 Score = 9817.36
Labelling Device 2 Score = 8187.54 MQTT Subscriber Device 2 Score
= 15661.73 MQTT Subscriber 1 Device 2 Score = 11547.37 Elliptic
Envelope 1 Device 2 Score = 5575.86 Write CSV Device 2 Score =
6736.40 Elliptic Envelope Device 2 Score = 13167.76 PCA Transfor-
mation 1 Device 2 Score = 16579.15

5 5 Device 1 -
Half of FBs
and Device
2

Q-Learning List Of De-
vices

CPU and
memory
resources

Feature Extraction 1 Device 1 Score = 7385.42 Write CSV 1 Device 1
Score = 7042.70 Grouping 1 Device 1 Score = 5878.39 Grouping De-
vice 1 Score = 7952.64 Normalize Device 1 Score = 9806.67 Pickle
Normalization Device 1 Score = 5094.00 Loading Normalized Pickle
Device 1 Score = 17789.43 Load CSV Device 1 Score = 6024.77 Load
CSV Sim Device 1 Score = 9553.02 Event Accumulator Device 1 Score
= 9188.79 MQTT Publisher 1 Device 1 Score = 5442.91 Labelling 1 De-
vice 1 Score = 5930.00 Saving Pickle Device 1 Score = 4795.09 Pickle
PCA Device 1 Score = 9422.57 Labelling Device 1 Score = 7831.11
MQTT Subscriber 1 Device 1 Score = 2644.13 MQTT Subscriber De-
vice 1 Score = 6829.71 Elliptic Envelope 1 Device 1 Score = 8218.61
Loading Pickle PCA Device 1 Score = 8794.33 Write CSV Device 1
Score = 7689.92 Elliptic Envelope Device 1 Score = 6916.97 Loading
Pickle Device 1 Score = 7510.91

5 5 Device 1 -
Half of FBs
and Device
2

Q-Learning List Of De-
vices

CPU and
memory
resources

Feature Extraction 1 Device 2 Score = 6677.92 Write CSV 1 Device 2
Score = 6258.20 Grouping 1 Device 2 Score = 15918.84 Grouping De-
vice 2 Score = 26692.69 Normalize Device 2 Score = 111067.46 Pickle
Normalization Device 2 Score = 11678.01 Loading Normalized Pickle
Device 2 Score = 13582.61 Load CSV Device 2 Score = 9033.56 Load
CSV Sim Device 2 Score = 8161.94 Event Accumulator Device 2 Score
= 6848.10 MQTT Publisher 1 Device 2 Score = 5293.87 Labelling 1 De-
vice 2 Score = 6254.37 Saving Pickle Device 2 Score = 7309.80 Pickle
PCA Device 2 Score = 13096.62 Labelling Device 2 Score = 5822.55
MQTT Subscriber 1 Device 2 Score = 11501.63 MQTT Subscriber De-
vice 2 Score = 11498.54 Elliptic Envelope 1 Device 2 Score = 16165.12
Loading Pickle PCA Device 2 Score = 12195.94 Write CSV Device 2
Score = 6567.59 Elliptic Envelope Device 2 Score = 12028.02 Loading
Pickle Device 2 Score = 6071.50

5.3.6 Distributed Scenario F

For scenario F, the Greedy and Improved Greedy algorithm showed curious results, as for all

the executions, the second device scored better in terms of memory metrics, but the third device

consistently scored better in terms of CPU metrics. As stated previously, the fact that device 2

was utilized as the machine where the 4DIAC-IDE was executed and controlled and where the

MQTT broker was functioning could have influenced the level of CPU usage on it, therefore

making it worse when compared to the device 3. As for the Q-Learning algorithm, this battery

of tests considered an associated cost of using the second device of 0.5. That meant that the

value obtained would be reduced in half for every reward calculated after evaluating the CPU and

memory resources. Given this information and analyzing table 5.12, it was possible to understand

just how much cost could be a decisive factor in evaluating the adequacy of executing a Function

Block on a given device, since, for all executions, the third device found that for a majority of

Function Blocks much higher evaluation had been obtained, when compared to the second device.

These results were only possible due to the associated cost since individual executions of scenarios

5.3 Results 75

A and C demonstrated that the values should have been much closer to those obtained in scenario F.

Interestingly, on F scenario executions, the evaluation values for the third device were, on average,

much smaller than when compared to the executions of scenario C. In this case, the time device 3

spent waiting for MQTT messages in the channel it subscribed to could explain this discrepancy.

Table 5.11: Greedy and Improved Greedy results for Distributed Scenario F executions

Execution Number Test Number Pipeline Algorithm Se-
lected

Parameters Tested Metrics Evaluated Results

1 1 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LAPTOP-
6DPA64B0 Score
= -1 DESKTOP-
E2G2PKE Score =
1

1 2 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
E2G2PKE Score =
-1

1 3 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= -22 DESKTOP-
E2G2PKE Score =
22

1 4 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 22 DESKTOP-
E2G2PKE Score =
-22

2 1 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LAPTOP-
6DPA64B0 Score
= -1 DESKTOP-
E2G2PKE Score =
1

2 2 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
E2G2PKE Score =
-1

2 3 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= -24 DESKTOP-
E2G2PKE Score =
24

2 4 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 24 DESKTOP-
E2G2PKE Score =
-24

3 1 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LLAPTOP-
6DPA64B0 Score
= -1 DESKTOP-
E2G2PKE Score =
1

3 2 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
E2G2PKE Score =
-1

3 3 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= -24 DESKTOP-
E2G2PKE Score =
24

3 4 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 24 DESKTOP-
E2G2PKE Score =
-24

Experiments and Results 76

Table 5.11: Greedy and Improved Greedy results for Distributed Scenario F executions

Execution Number Test Number Pipeline Algorithm Se-
lected

Parameters Tested Metrics Evaluated Results

4 1 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LAPTOP-
6DPA64B0 Score
= -1 DESKTOP-
E2G2PKE Score =
1

4 2 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
E2G2PKE Score =
-1

4 3 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= -24 DESKTOP-
E2G2PKE Score =
24

4 4 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 24 DESKTOP-
E2G2PKE Score =
-24

5 1 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LAPTOP-
6DPA64B0 Score
= -1 DESKTOP-
E2G2PKE Score =
1

5 2 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
E2G2PKE Score =
-1

5 3 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= -18 DESKTOP-
E2G2PKE Score =
18

5 4 Device 2 - Half of
FBs and Device 3 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 18 DESKTOP-
E2G2PKE Score =
-18

Table 5.12: Q-Learning results for Distributed Scenario F executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

1 5 Device 2 -
Half of FBs
and Device
3

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.5 cost)

PCA Transformation Device 2 Score = 5552.44 Labelling 1 Device 2
Score = 6829.26 Write CSV 2 Device 2 Score = 4012.59 Elliptic Enve-
lope Device 2 Score = 4741.79 Write CSV Device 2 Score = 6042.72
Labelling Device 2 Score = 4979.86 MQTT Subscriber Device 2 Score
= 4130.65 MQTT Subscriber 1 Device 2 Score = 4231.56 Elliptic En-
velope 1 Device 2 Score = 2663.96 PCA Transformation 1 Device 2
Score = 4833.05 Loading Pickle PCA Device 2 Score = 3206.99 PCA
Transformation Device 2 Score = 12854.82 Labelling 1 Device 2 Score
= 5363.14 Write CSV 2 Device 2 Score = 4100.01 Elliptic Envelope
Device 2 Score = 6498.20 Write CSV Device 2 Score = 3663.28 La-
belling Device 2 Score = 4131.46 MQTT Subscriber Device 2 Score =
3545.64 MQTT Subscriber 1 Device 2 Score = 5071.87 Elliptic Enve-
lope Device 2 Score = 5009.58 PCA Transformation 1 Device 2 Score
= 4478.02 Loading Pickle PCA Device 2 Score = 5788.20

5.3 Results 77

Table 5.12: Q-Learning results for Distributed Scenario F executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

1 5 Device 2 -
Half of FBs
and Device
3

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.5 cost)

PCA Transformation Device 3 Score = 9992.80 Labelling 1 Device 3
Score = 9563.84 Write CSV 2 Device 3 Score = 4327.25 Elliptic Enve-
lope Device 3 Score = 7792.98 Write CSV Device 3 Score = 9614.76
Labelling Device 3 Score = 11327.04 MQTT Subscriber Device 3 Score
= 12260.05 MQTT Subscriber 1 Device 3 Score = 11939.52 Elliptic
Envelope 1 Device 3 Score = 5017.12 PCA Transformation 1 Device 3
Score = 5059.99 Loading Pickle PCA Device 3 Score = 7300.80 PCA
Transformation Device 3 Score = 23730.00 Labelling 1 Device 3 Score
= 9193.16 Write CSV 2 Device 3 Score = 10697.68 Elliptic Envelope
Device 3 Score = 11232.67 Write CSV Device 3 Score = 6535.36 La-
belling Device 3 Score = 12564.38 MQTT Subscriber Device 3 Score
= 10892.38 MQTT Subscriber 1 Device 3 Score = 10985.12 Elliptic
Envelope Device 3 Score = 12456.25 PCA Transformation 1 Device 3
Score = 5875.23 Loading Pickle PCA Device 3 Score = 1007.43

2 5 Device 2 -
Half of FBs
and Device
3

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.5 cost)

PCA Transformation 1 Device 2 Score = 5215.87 PCA Transforma-
tion 1 Device 3 Score = 5314.04 Write CSV Device 2 Score = 3131.04
Write CSV Device 3 Score = 3951.55 Write CSV 2 Device 2 Score =
4326.61 Write CSV 2 Device 3 Score = 10743.11 Labelling 1 Device
2 Score = 5410.14 Labelling 1 Device 3 Score = 9552.97 Pickle PCA
Device 2 Score = 12854.08 Pickle PCA Device 3 Score = 22734.42
MQTT Subscriber 1 Device 2 Score = 3560.32 MQTT Subscriber 1
Device 3 Score = 8267.80 MQTT Subscriber Device 2 Score = 3553.64
MQTT Subscriber Device 3 Score = 9315.13 Elliptic Envelope 1 De-
vice 2 Score = 4392.05 Elliptic Envelope 1 Device 3 Score = 8268.81
Elliptic Envelope Device 2 Score = 6899.70 Elliptic Envelope Device
3 Score = 8880.34 Loading Pickle Device 2 Score = 4330.54 Loading
Pickle Device 3 Score = 7789.38 Loading Pickle PCA Device 2 Score
= 4254.66 Loading Pickle PCA Device 3 Score = 7443.39 Labelling
Device 2 Score = 2936.16 Labelling Device 3 Score = 10354.35 PCA
Transformation 1 Device 2 Score = 2224.55 PCA Transformation 1 De-
vice 3 Score = 11413.18 Write CSV Device 2 Score = 3776.90 Write
CSV Device 3 Score = 7518.63 Write CSV 2 Device 2 Score = 5490.97
Write CSV 2 Device 3 Score = 6713.92 Labelling 1 Device 2 Score =
5025.39 Labelling 1 Device 3 Score = 8310.47 Pickle PCA Device 2
Score = 6565.94 Pickle PCA Device 3 Score = 9876.92 MQTT Sub-
scriber 1 Device 2 Score = 4741.81 MQTT Subscriber 1 Device 3 Score
= 7764.64 MQTT Subscriber Device 2 Score = 3305.61 MQTT Sub-
scriber Device 3 Score = 6389.86 Elliptic Envelope 1 Device 2 Score =
6328.61 Elliptic Envelope 1 Device 3 Score = 120903.90 Elliptic En-
velope Device 2 Score = 3927.54 Elliptic Envelope Device 3 Score =
8431.96 Loading Pickle Device 2 Score = 3019.32 Loading Pickle De-
vice 3 Score = 8396.80 Loading Pickle PCA Device 2 Score = 4944.66
Loading Pickle PCA Device 3 Score = 11404.00 Labelling Device 2
Score = 3225.06 Labelling Device 3 Score = 10409.40

2 5 Device 2 -
Half of FBs
and Device
3

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.5 cost)

PCA Transformation 1 Device 2 Score = 5215.87 Write CSV Device
2 Score = 3131.04 Write CSV 2 Device 2 Score = 4326.61 Labelling
1 Device 2 Score = 5410.14 Pickle PCA Device 2 Score = 12854.08
MQTT Subscriber 1 Device 2 Score = 3560.32 MQTT Subscriber De-
vice 2 Score = 3553.64 Elliptic Envelope 1 Device 2 Score = 4392.05
Elliptic Envelope Device 2 Score = 6899.70 Loading Pickle Device 2
Score = 4330.54 Loading Pickle PCA Device 2 Score = 4254.66 La-
belling Device 2 Score = 2936.16 PCA Transformation 1 Device 2
Score = 2224.55 Write CSV Device 2 Score = 3776.90 Write CSV 2
Device 2 Score = 5490.97 Labelling 1 Device 2 Score = 5025.39 Pickle
PCA Device 2 Score = 6565.94 MQTT Subscriber 1 Device 2 Score =
4741.81 MQTT Subscriber Device 2 Score = 3305.61 Elliptic Envelope
1 Device 2 Score = 6328.61 Elliptic Envelope Device 2 Score = 3927.54
Loading Pickle Device 2 Score = 3019.32 Loading Pickle PCA Device
2 Score = 4944.66 Labelling Device 2 Score = 3225.06

Experiments and Results 78

Table 5.12: Q-Learning results for Distributed Scenario F executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

3 5 Device 2 -
Half of FBs
and Device
3

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.5 cost)

PCA Transformation 1 Device 3 Score = 7439.65 Write CSV Device
3 Score = 3840.06 Write CSV 2 Device 3 Score = 5932.23 Labelling
1 Device 3 Score = 9336.40 Pickle PCA Device 3 Score = 6610.69
MQTT Subscriber 1 Device 3 Score = 9450.11 MQTT Subscriber De-
vice 3 Score = 7709.53 Elliptic Envelope 1 Device 3 Score = 6238.09
Elliptic Envelope Device 3 Score = 7222.85 Loading Pickle Device 3
Score = 8277.69 Loading Pickle PCA Device 3 Score = 7353.85 La-
belling Device 3 Score = 7652.31 PCA Transformation 1 Device 3
Score = 8827.02 Write CSV Device 3 Score = 12161.51 Write CSV
2 Device 3 Score = 9269.36 Labelling 1 Device 3 Score = 23730.78
Pickle PCA Device 3 Score = 10182.36 MQTT Subscriber 1 Device 3
Score = 8336.52 MQTT Subscriber Device 3 Score = 9883.77 Elliptic
Envelope 1 Device 3 Score = 6883.44 Elliptic Envelope Device 3 Score
= 9652.81 Loading Pickle Device 3 Score = 10227.34 Loading Pickle
PCA Device 3 Score = 7093.34 Labelling Device 3 Score = 11596.78

4 5 Device 2 -
Half of FBs
and Device
3

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.5 cost)

PCA Transformation 1 Device 2 Score = 5281.03 Write CSV Device
2 Score = 2717.64 Write CSV 2 Device 2 Score = 4027.44 Labelling
1 Device 2 Score = 12854.49 Pickle PCA Device 2 Score = 3108.15
MQTT Subscriber 1 Device 2 Score = 2831.52 MQTT Subscriber De-
vice 2 Score = 5730.78 Elliptic Envelope 1 Device 2 Score = 5880.24
Elliptic Envelope Device 2 Score = 3734.45 Loading Pickle Device 2
Score = 3936.07 Loading Pickle PCA Device 2 Score = 2523.58 La-
belling Device 2 Score = 4843.84 PCA Transformation 1 Device 2
Score = 3888.37 Write CSV Device 2 Score = 4721.02 Write CSV 2
Device 2 Score = 7916.83 Labelling 1 Device 2 Score = 4832.22 Pickle
PCA Device 2 Score = 5504.82 MQTT Subscriber 1 Device 2 Score =
6383.88 MQTT Subscriber Device 2 Score = 5726.77 Elliptic Envelope
1 Device 2 Score = 6166.70 Elliptic Envelope Device 2 Score = 4171.84
Loading Pickle Device 2 Score = 1737.93 Loading Pickle PCA Device
2 Score = 5438.02 Labelling Device 2 Score = 4401.09

4 5 Device 2 -
Half of FBs
and Device
3

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.5 cost)

PCA Transformation 1 Device 3 Score = 9232.86 Write CSV Device 3
Score = 7968.59 Write CSV 2 Device 3 Score = 23726.87 Labelling 1
Device 3 Score = 6966.62 Pickle PCA Device 3 Score = 7423.60 MQTT
Subscriber 1 Device 3 Score = 6845.85 MQTT Subscriber Device 3
Score = 6081.12 Elliptic Envelope 1 Device 3 Score = 6408.70 Ellip-
tic Envelope Device 3 Score = 3186.57 Loading Pickle Device 3 Score
= 6642.63 Loading Pickle PCA Device 3 Score = 12454.59 Labelling
Device 3 Score = 6955.08 PCA Transformation 1 Device 3 Score =
11698.06 Write CSV Device 3 Score = 8673.28 Write CSV 2 Device 3
Score = 9756.91 Labelling 1 Device 3 Score = 8341.11 Pickle PCA De-
vice 3 Score = 9858.15 MQTT Subscriber 1 Device 3 Score = 9543.05
MQTT Subscriber Device 3 Score = 10439.72 Elliptic Envelope 1 De-
vice 3 Score = 6214.54 Elliptic Envelope Device 3 Score = 7738.00
Loading Pickle Device 3 Score = 8264.28 Loading Pickle PCA Device
3 Score = 6113.81 Labelling Device 3 Score = 9159.76

5 5 Device 2 -
Half of FBs
and Device
3

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.5 cost)

Labelling 1 Device 2 Score = 3283.30 Saving Pickle Device 2 Score =
5781.99 Write CSV 2 Device 2 Score = 12850.22 Write CSV Device
2 Score = 4784.11 Labelling Device 2 Score = 7344.29 MQTT Sub-
scriber Device 2 Score = 5165.78 MQTT Subscriber 1 Device 2 Score
= 5998.42 Elliptic Envelope 1 Device 2 Score = 5703.42 Elliptic Enve-
lope Device 2 Score = 5424.27 Labelling 1 Device 2 Score = 7029.68
Saving Pickle Device 2 Score = 6458.62 Write CSV 2 Device 2 Score
= 5379.03 Write CSV Device 2 Score = 4503.42 Labelling Device 2
Score = 5228.99 MQTT Subscriber Device 2 Score = 6478.61 MQTT
Subscriber 1 Device 2 Score = 6501.49 Elliptic Envelope 1 Device 2
Score = 6598.40 Elliptic Envelope Device 2 Score = 4491.82

5 5 Device 2 -
Half of FBs
and Device
3

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.5 cost)

Labelling 1 Device 3 Score = 12332.44 Saving Pickle Device 3 Score =
11204.09 Write CSV 2 Device 3 Score = 10205.88 Write CSV Device
3 Score = 12828,58 Labelling Device 3 Score = 8536.07 MQTT Sub-
scriber Device 3 Score = 8748.06 MQTT Subscriber 1 Device 3 Score =
11513.70 Elliptic Envelope 1 Device 3 Score = 10625.71 Elliptic Enve-
lope Device 3 Score = 95517.45 Labelling 1 Device 3 Score = 13560.81
Saving Pickle Device 3 Score = 11816.95 Write CSV 2 Device 3 Score
= 23735.47 Write CSV Device 3 Score = 8964.68 Labelling Device 3
Score = 8780.34 MQTT Subscriber Device 3 Score = 9047.34 MQTT
Subscriber 1 Device 3 Score = 12160.91 Elliptic Envelope 1 Device 3
Score = 10360.01 Elliptic Envelope Device 3 Score = 10282.81

+

5.3 Results 79

5.3.7 Distributed Scenario G

For the last scenario of experiments, G scenario executions’ results regarding both Greedy and

Improved Greedy showed that for 4 out of 5 total executions, device 2 had better evaluations on

memory resources. In comparison, device 4 had better evaluations on CPU resources. In all the

tests, the one outlier was the final execution, where the second device scored better than the fourth

one for both metrics. When it came to Q-Learning results, present in table 5.14, it was indeed

verified that by decreasing the second device’s associated offloading cost to 0.25, a generalized in-

crease of evaluation scores, for device 2 was obtained since, individually, it displayed better results

when compared to what was verified in F scenario executions. Nonetheless, and generally speak-

ing, device 2 evaluation scores for all tests that were made still scored significantly worse when

compared to device 4 evaluation scores. Few of the exceptions were related to pickle operations,

especially the loading of the normalized pickle FB and occasionally the loading of the training

pipeline’s spreadsheet and the final write to the spreadsheet in the testing pipeline. Once again,

taking the fourth device’s scores, it was impossible to categorize FBs by their performance since

evaluation values oscillated substantially between different executions. In terms of MQTT-related

FBs, the findings present in subsection 5.3.6 still held throughout G scenario executions.

Table 5.13: Greedy and Improved Greedy results for Distributed Scenario G executions

Execution Number Test Number Pipeline Algorithm Se-
lected

Parameters Tested Metrics Evaluated Results

1 1 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
B005INA Score =
-1

1 2 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
B005INA Score =
-1

1 3 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= 22 DESKTOP-
B005INA Score =
-22

1 4 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 22 DESKTOP-
B005INA Score =
-22

2 1 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LAPTOP-
6DPA64B0 Score
= -1 DESKTOP-
B005INA Score =
1

2 2 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
B005INA Score =
-1

2 3 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= -22 DESKTOP-
B005INA Score =
22

2 4 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 22 DESKTOP-
B005INA Score =
-22

Experiments and Results 80

Table 5.13: Greedy and Improved Greedy results for Distributed Scenario G executions

Execution Number Test Number Pipeline Algorithm Se-
lected

Parameters Tested Metrics Evaluated Results

3 1 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LLAPTOP-
6DPA64B0 Score
= -1 DESKTOP-
B005INA Score =
1

3 2 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
B005INA Score =
-1

3 3 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= -21 DESKTOP-
B005INA Score =
21

3 4 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 21 DESKTOP-
B005INA Score =
-21

4 1 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LAPTOP-
6DPA64B0 Score
= -1 DESKTOP-
B005INA Score =
1

4 2 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
B005INA Score =
-1

4 3 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= -22 DESKTOP-
B005INA Score =
22

4 4 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 22 DESKTOP-
B005INA Score =
-22

5 1 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices CPU resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
B005INA Score =
-1

5 2 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Greedy Algorithm List Of Devices Memory resources LAPTOP-
6DPA64B0 Score
= 1 DESKTOP-
B005INA Score =
-1

5 3 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

CPU resources LAPTOP-
6DPA64B0 Score
= 23 DESKTOP-
B005INA Score =
-23

5 4 Device 2 - Half of
FBs and Device 4 -
Other Half of FBs -
Other Half of FBs

Improved Greedy
Algorithm

List Of Devices and
List Of Function
Blocks

Memory resources LAPTOP-
6DPA64B0 Score
= 23 DESKTOP-
B005INA Score =
-23

5.3 Results 81

Table 5.14: Q-Learning results for Distributed Scenario G executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

1 5 Device 2 -
Half of FBs
and Device
4

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.25 cost)

Grouping Device 2 Score = 6111.14 Normalize Device 2 Score =
7272.28 Grouping 1 Device 2 Score = 7547.66 Load CSV Device
2 Score = 20020.82 Write CSV 1 Device 2 Score = 6969.55 Pickle
Normalization Device 2 Score = 9532.04 Feature Extraction 1 De-
vice 2 Score = 8735.14 Event Accumulator Device 2 Score = 7360.62
Normalize 1 Device 2 Score = 8698.97 Load CSV Sim Device 2 =
7814.65 Write CSV 2 Device 2 Score = 5808.25 Pickle PCA Device 2 =
10520.04 Elliptic Envelope Device 2 Score = 6786.19 Labelling 1 De-
vice 2 Score = 3643.04 Loading Pickle PCA Device 2 Score = 8555.35
Loading Pickle Device 2 Score = 6061.18 PCA Transformation 1 De-
vice 2 Score = 8602.16 Saving Pickle Device 2 Score = 6239.79 La-
belling Device 2 Score = 5784.57 MQTT Subscriber 1 Device 2 Score
= 5937.57 MQTT Subscriber Device 2 Score = 7793.85 Write CSV De-
vice 2 Score = 7955.32

1 5 Device 2 -
Half of FBs
and Device
4

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.25 cost)

Grouping Device 4 Score = 12315.26 Normalize Device 4 Score =
11016.02 Grouping 1 Device 4 Score = 8779.68 Load CSV Device
4 Score = 27678.34 Write CSV 1 Device 4 Score = 12463.72 Pickle
Normalization Device 4 Score = 13168.75 Feature Extraction 1 De-
vice 4 Score = 5316.92 Event Accumulator Device 4 Score = 15145.17
Normalize 1 Device 4 Score = 11139.78 Load CSV Sim Device 4 =
10219.65 Write CSV 2 Device 4 Score = 9069.86 Pickle PCA Device
4 = 10197.12 Elliptic Envelope Device 4 Score = 16725.18 Labelling
1 Device 4 Score = 7138.80 Loading Pickle PCA Device 4 Score =
10427.98 Loading Pickle Device 4 Score = 11976.27 PCA Transfor-
mation 1 Device 4 Score = 9375.09 Saving Pickle Device 4 Score =
10704.99 Labelling Device 4 Score = 7881.29 MQTT Subscriber 1 De-
vice 4 Score = 9140.20 MQTT Subscriber Device 4 Score = 13764.54
Write CSV Device 4 Score = 8305.79

2 5 Device 2 -
Half of FBs
and Device
4

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.25 cost)

Grouping Device 2 Score = 8481.73 Feature Extraction Device 2 Score
= 8959.91 Write CSV 1 Device 2 Score = 11746.87 Feature Extrac-
tion 1 Device 2 Score = 8234.89 Pickle Normalization Device 2 Score
= 8770.63 Event Accumulator Device 2 Score = 82255.17 Grouping
1 Device 2 Score = 4232.36 Normalize 1 Device 2 Score = 12210.02
Loading Normalized Pickle Device 2 Score = 20021.56 Load CSV
Sim Device 2 Score = 6821.62 MQTT Publisher 1 Device 2 Score =
8596.58 Loading Pickle PCA Device 2 Score = 8396.25 Elliptic En-
velope Device 2 Score = 7784.56 Labelling Device 2 Score = 8319.11
Write CSV 2 Device 2 Score = 7172.28 Write CSV Device 2 Score
= 6682.33 Pickle PCA Device 2 Score = 6079.00 Elliptic Envelope 1
Device 2 Score = 7062.40 PCA Transformation 1 Device 2 Score =
6833.23 Loading Pickle Device 2 Score = 6732.39 MQTT Subscriber 1
Device 2 Score = 7798.53 MQTT Subscriber Device 2 Score = 5771.00
MQTT Subscriber Device 4 Score = 12043.88

2 5 Device 2 -
Half of FBs
and Device
4

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.25 cost)

Grouping Device 4 Score = 8612.79 Feature Extraction Device 4 Score
= 16034.59 Write CSV 1 Device 4 Score = 14714.40 Feature Extrac-
tion 1 Device 4 Score = 8762.93 Pickle Normalization Device 4 Score
= 10002.80 Event Accumulator Device 4 Score = 10419.14 Grouping
1 Device 4 Score = 11019.73 Normalize 1 Device 4 Score = 8835.81
Loading Normalized Pickle Device 4 Score = 15923.33 Load CSV
Sim Device 4 Score = 8830.93 MQTT Publisher 1 Device 4 Score =
11706.49 Loading Pickle PCA Device 4 Score = 5648.58 Elliptic En-
velope Device 4 Score = 9939.90 Labelling Device 4 Score = 12850.21
Write CSV 2 Device 4 Score = 4829.58 Write CSV Device 4 Score
= 27682.78 Pickle PCA Device 4 Score = 9492.55 Elliptic Envelope
1 Device 4 Score = 10447.17 PCA Transformation 1 Device 4 Score
= 9658.41 Loading Pickle Device 4 Score = 10659.68 MQTT Sub-
scriber 1 Device 4 Score = 10500.69 MQTT Subscriber Device 4 Score
= 12043.88

3 5 Device 2 -
Half of FBs
and Device
4

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.25 cost)

Grouping Device 2 Score = 8560.53 Write CSV 1 Device 2 Score =
7998.11 Normalize Device 2 Score = 4688.61 Feature Extraction De-
vice 2 Score = 8098.33 Loading Normalized Pickle Device 2 Score =
9984.53 Normalize 1 Device 2 Score = 9619.18 Pickle Normalization
Device 2 Score = 9577.90 Event Accumulator Device 2 Score = 5265.76
Load CSV Sim Device 2 Score = 9862.73 MQTT Publisher 1 Device 2
Score = 6326.61 Labelling Device 2 Score = 20021.31 Pickle PCA De-
vice 2 Score = 8232.24 PCA Transformation Device 2 Score = 8897.66
Write CSV 2 Device 2 Score = 9397.12 Write CSV Device 2 Score
= 9505.34 PCA Transformation 1 Device 2 Score = 8526.11 Loading
Pickle PCA Device 2 Score = 7833.38 Loading Pickle Device 2 Score
= 7444.59 Elliptic Envelope Device 2 Score = 10432.99 MQTT Sub-
scriber Device 2 Score = 6693.86 MQTT Subscriber 1 Device 2 Score
= 10644.66

Experiments and Results 82

Table 5.14: Q-Learning results for Distributed Scenario G executions

Execution
Number

Test Num-
ber

Pipeline Algorithm
Selected

Parameters
Tested

Metrics
Evaluated

Results

3 5 Device 2 -
Half of FBs
and Device
4

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.25 cost)

Grouping Device 4 Score = 13143.27 Write CSV 1 Device 4 Score =
227690.16 Normalize Device 4 Score = 7447.28 Feature Extraction De-
vice 4 Score = 13191.77 Loading Normalized Pickle Device 4 Score
= 4891.61 Normalize 1 Device 4 Score = 7100.50 Pickle Normaliza-
tion Device 4 Score = 12598.97 Event Accumulator Device 4 Score =
11722.93 Load CSV Sim Device 4 Score = 11768.75 MQTT Publisher
1 Device 4 Score = 10471.72 Labelling Device 4 Score = 14467.90
Pickle PCA Device 4 Score = 8548.27 PCA Transformation Device 4
Score = 12409.48 Write CSV Device 4 Score = 14171.16 PCA Trans-
formation 1 Device 4 Score = 6349.11 Loading Pickle PCA Device 4
Score = 12765.31 Loading Pickle Device 4 Score = 13184.52 Elliptic
Envelope Device 4 Score = 8774.43 MQTT Subscriber Device 4 Score
= 9450.04 MQTT Subscriber 1 Device 4 Score = 9399.26

4 5 Device 2 -
Half of FBs
and Device
4

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.25 cost)

Normalize Device 2 Score = 9673.72 Load CSV Device 2 Score =
7416.07 Feature Extraction Device 2 Score = 9881.70 Feature Ex-
traction 1 Device 2 Score = 8024.57 Write CSV 1 Device 2 Score =
20018.00 Pickle Normalization Device 2 Score = 9228.15 Event Accu-
mulator Device 2 Score = 8524.90 Grouping Device 2 Score = 7563.25
Load CSV Sim Device 2 Score = 9479.13 Loading Pickle Device 2
Score = 8666.74 Saving Pickle Device 2 Score = 6890.93 Pickle PCA
Device 2 Score = 6866.46 PCA Transformation 1 Device 2 Score =
6858.21 Labelling Device 2 Score = 4665.89 Elliptic Envelope Device
2 Score = 7829.01 Write CSV 2 Device 2 Score = 7743.71 Write CSV
Device 2 Score = 6593.58 Elliptic Envelope 1 Device 2 Score = 8018.09
Loading Pickle PCA Device 2 Score = 5514.12 Labelling 1 Device 2
Score = 3971.61 MQTT Subscriber Device 2 Score = 8288.43 MQTT
Subscriber 1 Device 2 Score = 9015.07

4 5 Device 2 -
Half of FBs
and Device
4

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.25 cost)

Normalize Device 4 Score = 10007.97 Load CSV Device 4 Score =
8956.54 Feature Extraction Device 4 Score = 6974.39 Feature Extrac-
tion 1 Device 4 Score = 14675.85 Write CSV 1 Device 4 Score =
10356.33 Pickle Normalization Device 4 Score = 13891.69 Event Accu-
mulator Device 4 Score = 15054.66 Grouping Device 4 Score = 9306.03
Load CSV Sim Device 4 Score = 12867.58 Loading Pickle Device 4
Score = 11960.07 Saving Pickle Device 4 Score = 12066.92 Pickle PCA
Device 4 Score = 10319.38 PCA Transformation 1 Device 4 Score =
7455.17 Labelling Device 4 Score = 10447.26 Elliptic Envelope De-
vice 4 Score = 12213.72 Write CSV 2 Device 4 Score = 10148.21
Write CSV Device 4 Score = 14093.45 Elliptic Envelope 1 Device 4
Score = 15641.98 Loading Pickle PCA Device 4 Score = 14903.41 La-
belling 1 Device 4 Score = 27674.40 MQTT Subscriber Device 4 Score
= 9266.56 MQTT Subscriber 1 Device 4 Score = 11685.67

5 5 Device 2 -
Half of FBs
and Device
4

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.25 cost)

Grouping Device 2 Score = 6167.25 Load CSV Device 2 Score =
5817.48 Write CSV 1 Device 2 Score = 20016.43 Grouping 1 Device
2 Score = 5696.77 Event Accumulator Device 2 Score = 11173.58 Fea-
ture Extraction 1 Device 2 Score = 8375.44 Normalize Device 2 Score =
6616.10 Pickle Normalization Device 2 Score = 9947.39 Load CSV Sim
Device 2 Score = 8541.54 Loading Normalized Pickle Device 2 Score =
9781.92 Loading Pickle Device 2 Score = 7165.05 Loading Pickle PCA
Device 2 Score = 6960.41 Elliptic Envelope 1 Device 2 Score = 5054.23
Saving Pickle Device 2 Score = 4623.90 Write CSV Device 2 Score =
8822.76 Pickle PCA Device 2 Score = 7059.63 Elliptic Envelope De-
vice 2 Score = 7946.72 Labelling Device 2 Score = 8378.995 Labelling
1 Device 2 Score = 6340.19 PCA Transformation 1 Device 2 Score =
7298.53 Write CSV 2 Device 2 Score = 8437.44 MQTT Subscriber 1
Device 2 Score = 6411.50 MQTT Subscriber Device 2 Score = 9241.48

5 5 Device 2 -
Half of FBs
and Device
4

Q-Learning List Of De-
vices

CPU,
memory
resources
and cost
(device 2
0.25 cost)

Grouping Device 4 Score = 15076.02 Load CSV Device 4 Score =
10707.83 Write CSV 1 Device 4 Score = 4327.03 Grouping 1 Device
4 Score = 13201.84 Event Accumulator Device 4 Score = 9208.60 Fea-
ture Extraction 1 Device 4 Score = 10053.99 Normalize Device 4 Score
= 8825.77 Pickle Normalization Device 4 Score = 8971.73 Load CSV
Sim Device 4 Score = 11655.56 Loading Normalized Pickle Device 4
Score = 8966.13 Loading Pickle Device 4 Score = 5238.52 Loading
Pickle PCA Device 4 Score = 10379.81 Elliptic Envelope 1 Device 4
Score = 13716.77 Saving Pickle Device 4 Score = 11512.67 Write CSV
Device 4 Score = 14979.27 Pickle PCA Device 4 Score = 9721.49 El-
liptic Envelope Device 4 Score = 9544.94 Labelling Device 4 Score =
5666.14 Labelling 1 Device 4 Score = 7877.75 PCA Transformation 1
Device 4 Score = 9790.50 Write CSV 2 Device 4 Score = 27682.67
MQTT Subscriber 1 Device 4 Score = 9430.07 MQTT Subscriber De-
vice 4 Score = 17674.28

The findings obtained in the experiment allowed for a key set of ideas. The first was that

5.3 Results 83

while the task offloading mechanism developed offered three different optimization algorithms,

the Greedy and its Improved Greedy variant worked in a straight-line manner. Given that it was

easily understandable which devices could potentially score better in terms of CPU and memory

resources, it can be said that the results offered by these algorithms didn’t provide much detail

in how substantial the difference between said devices was. This flaw could be considered some-

what corrected in the Q-Learning algorithm since it was possible to understand more clearly just

how a Function Block and its individual needs could adapt to a device’s available resources to

offer. But it was only partially corrected given that, as shown, on many executions, the number of

Function Blocks being evaluated and considered to be part of the system was never constant. This

meant that while the mechanism could provide optimizations effectively, it could not accurately

calculate Function Block needs. What justified this was how DINASORE stores the monitored

Function Block information and overall resource monitoring, which made it, that on some exe-

cutions, certain Function Blocks couldn’t be attributed to any consumption since their initial and

ending timestamps didn’t match to any consumption timestamp, while also not being capable of

being considered as zero consumption Function Blocks, given their initial and ending timestamps

were different. In terms of consumption calculation, the Function Blocks the mechanism detected

as more taxing were the grouping FB, the elliptic envelope FB, the normalize FB, and the la-

belling FB. Other examples of taxing Function Blocks, although not as consistently taxing as the

ones mentioned previously were, the pickle normalization FB, the write to CSV FB, and the fea-

ture extraction FB, This was expected given that these Function Blocks were programmatically

more complex than other Function Blocks. The final idea was related to the Cloud level and the

associated cost of offloading parameter. Although the best device, in computational terms, device

2’s evaluation in scenario F and G executions greatly suffered when the mechanism considered the

cost in the reward attribution process. As expected, the more significant the cost, the higher the

penalty, and even its resource superiority could not even the evaluations’ scores as shown.

Chapter 6

Limitations and Future Work

In this chapter, the limitations resulting of the mechanism developed are presented, and future

work to correct them is suggested. Criticism of the solution obtained is offered.

6.1 Limitations

When collecting information throughout the experiment, it was possible to identify limitations of

the task offloading mechanism and, therefore, present some criticism of the development process.

Firstly speaking about what was developed, a notable limitation of the mechanism was that the

code present in the Main class had to be constantly altered to accommodate the different runs that

were made to get results and obtain the device consumption information text files. More concisely,

to get these files, it was necessary only to call ClientConnector class instances, while to obtain re-

sults, it was required only to call DataConnector and DeviceAvailabilityReader class instances,

which meant that part of the Main class had to be rewritten whenever it was necessary to perform

a measure of a devices’ metrics, and when it was required to aggregate all the information avail-

able in text files to load consumption data on memory. Additionally, it was necessary to change

the code in the main class for algorithm execution, as the Q-Learning output that was presented

had a lot of information displayed to the user. Therefore it wasn’t possible to run all the algorithms

simultaneously without losing output information in the process. Other code alterations had to be

done to correctly load data from different executions to the mechanism, although this was done on

the Utils class. One other limitation explicitly related to the loading of data to the system was that

on practically all algorithm tests, it was possible to verify that not all Function Blocks were eval-

uated, which compromised accuracy goals for the research results. Other limitations also existed,

even if not wholly related to the code developed for the mechanism, but with constituents of the

system with which the mechanism communicated. Namely, DINASORE’s method for originat-

ing monitor and Function Block execution data, via text files, as previously explained, provoked

this flaw in Function Block detection since there was no data available to attribute the intervals in

84

6.2 Future Work 85

which these undetected Function Blocks were performing their task, to timestamps of the moni-

toring of resources done by DINASORE. Another DINASORE related limitation consisted of the

difficulty of attributing more than two devices for the execution of the whole pipeline since the im-

plementation of the MQTT based Function Blocks didn’t support sending and receiving all types

of data, but only one and two-dimensional arrays, which limited the points in which the pipeline

could be divided by different devices. Limitations related to devices themselves were rare, but

the one that did exist was quite substantial since the device with better metrics, device 2, was the

device utilized for initializing and controlling the pipeline’s execution, which caused additional

resource consumption on top of DINASORE and Function Block execution, and possibly skewed

consumption data for said device. With this information, it is possible to state that some aspects of

the research should be subjected to criticism, mainly, the manual process of gathering device re-

source information and loading consumption and device data onto the mechanism, which could be

considered inconvenient since it at least doubled the number of times necessary to run the mech-

anism to get optimization results, the lack of accuracy in optimization results, as some Function

Blocks consumption data was undetected by the mechanism and the lack of accurate device con-

sumption information reading. Finally, the paucity of algorithm executions involving more than

two devices should be a point of criticism, while Cloud level needed further exploration regarding

security and latency factors that could be important in the choice of offloading a task.

6.2 Future Work

For all the limitations and respective criticism resulting from the development phase, future work

could be done to overcome those aspects. Possible points to consider in future research and exper-

iments include improvement in the algorithms developed. Simultaneously, adding new Reinforce-

ment Learning related algorithms, such as Deep Q-Learning, Deep Deterministic Policy Gradient,

for example, should be considered. Another point of improvement could be the integration be-

tween DINASORE and the task offloading mechanism. It would be important that the limitation

regarding the undetected consumption of some Function Blocks’ execution could be solved in fol-

lowing work. Although not part of the scope of the research, this could be achieved by modifying

DINASORE’s source code, mainly the part about the writing of the Function Block execution

and resource parameter information, that could help in better detecting all of the Function Blocks

deployed in the system. One possible solution that wouldn’t require significant changes would

be to reduce the interval of time in which the resources of the devices are monitored, making

it more likely for the timestamps to be associated with the interval of Function Block execu-

tion. One possible change includes significant structural modifications to DINASORE and the

task offloading mechanism. Mainly, how both components communicate makes it hard to monitor

optimization solutions and consumption information in real-time, and simultaneously allow for

dynamic pipeline reconfiguration. This last adjustment would eliminate the need to keep changing

code on the Main class by allowing all of the information to be collected and data to be processed

simultaneously, improving user experience with the mechanism. Considering DINASORE only,

Limitations and Future Work 86

work should be done to ensure that a pipeline can be more easily divided between devices, in-

dependently of the type of data needed to send and receive from one Function Block to another.

This would also aid in making algorithm executions with more device data, which could benefit in

better understanding results and testing their efficiency more accurately. Finally, the Cloud level

solution and its importance to task offloading mechanisms should be further studied and detailed.

Other aspects should be strongly considered, such as security, since specific tasks may contain

very sensitive information and therefore could be regarded as inadequate to send over the Internet,

and latency, which in case of systems where the response times are critical could provide issues.

Chapter 7

Conclusions

In the initial chapters, questions and objectives relating to the research were defined. During the

experiment, the accomplishment of the goals defined was attempted, since concurrently it would

aid in answering those questions. Therefore, for the system at hand, the most critical variables in

the environment that were considered were the CPU and memory resources, alongside possible

offloading costs associated with a device. However, these choices were greatly influenced by the

parameters monitored by DINASORE. In a system with different needs and monitoring method-

ology, the variables that affect the task offloading should reflect those aspects accordingly. It is

possible to affirm that in terms of the design of the mechanism, that an abstract architecture was

obtained. At the same time, it was also possible to realize that the bigger the abstraction of the

communication between components, the larger the degree of the mechanism’s abstraction can be.

Some of DINASORE’s defined architecture made it that the mechanism had to be more "rigid"

than initially planned. In terms of algorithm conception, three algorithms were developed, with

vastly different results and different levels of effectiveness. Nonetheless, no matter how the al-

gorithms are planned out, they should account for the needs of the Function Blocks that are to

be executed, for the available resources a device can provide for execution, specifically for all of

the variables defined as offloading parameters. Although the algorithms offered expected results

when understanding each of the devices involved metrics and overall Function Block consump-

tion, it should be noted that it was hard to attribute a practical value to how efficient they were,

since, at most, the number of devices involved in running the algorithms was two. Therefore the

execution of algorithms with more complex device to Function Block mappings could provide bet-

ter insight into the actual efficiency of what was developed. Regarding the importance of having a

Cloud level, the research couldn’t provide definitive evidence to support a positive or negative in-

fluence. What was clear was that having a Cloud level could prove crucial in cases where tasks are

incredibly demanding, computationally speaking. Still, even then, the probable cost of acquiring

a Cloud solution capable of efficiently running said tasks could prove to be prohibitive. Therefore

one should carefully assess whether or not it is feasible and necessary to include Cloud solutions

87

Conclusions 88

in task offloading mechanisms. In terms of improvements, it should be a priority to change how

DINASORE communicates its consumption data to facilitate real-time optimization suggestions,

dynamic pipeline reconfiguration, and user experience, followed by the improvement of existing

algorithms and development of new ones. Finally, studying the integration of the Cloud level from

other angles, such as security and latency problems, is encouraged.

References

[1] Digital and Intelligent Industry Lab. http://systec-fof.fe.up.pt/systec/web_
en.html. [Online; accessed 21-April-2021].

[2] Cambridge dictionary - production line. https://dictionary.cambridge.org/
dictionary/english/production-line. [Online; accessed 23-April-2021].

[3] Mohammad Aazam, Sherali Zeadally, and Khaled A. Harras. Offloading in fog comput-
ing for IoT: Review, enabling technologies, and research opportunities. Future Generation
Computer Systems, 87:278–289, October 2018.

[4] Khadija Akherfi, Micheal Gerndt, and Hamid Harroud. Mobile cloud computing for compu-
tation offloading: Issues and challenges. Applied Computing and Informatics, 14(1):1–16,
January 2018.

[5] Dr Tarek M Attia. Challenges and Opportunities in the Future Applications of IoT Technol-
ogy. 2nd Europe - Middle East - North African Regional Conference of the International
Telecommunications Society (ITS): "Leveraging Technologies For Growth", Aswan, Egypt,
18th-21st February, 2019, page 16.

[6] M. J. Baxter. Standardization and Transformation in Principal Component Analysis, with
Applications to Archaeometry. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 44(4):513–527, 1995. Publisher: [Wiley, Royal Statistical Society].

[7] Eugen Borcoci. Edge and fog computing - convergence of solutions. ComputationWorld
2018 Conference February 18, 2018, Barcelona, page 118, 2018.

[8] Hugh Boyes, Bil Hallaq, Joe Cunningham, and Tim Watson. The industrial internet of things
(IIoT): An analysis framework. Computers in Industry, 101:1–12, October 2018.

[9] Hugh Boyes, Bil Hallaq, Joe Cunningham, and Tim Watson. The industrial internet of things
(IIoT): An analysis framework. Computers in Industry, 101:1–12, October 2018.

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016.

[11] Siguang Chen, Yimin Zheng, Kun Wang, and Weifeng Lu. Delay Guaranteed Energy-
Efficient Computation Offloading for Industrial IoT in Fog Computing. In ICC 2019 - 2019
IEEE International Conference on Communications (ICC), pages 1–6, Shanghai, China, May
2019. IEEE.

[12] Nhu-Ngoc Dao, Duc-Nghia Vu, Yunseong Lee, Sungrae Cho, Chihyun Cho, and Hyunbum
Kim. Pattern-Identified Online Task Scheduling in Multitier Edge Computing for Industrial
IoT Services. Mobile Information Systems, 2018:e2101206, April 2018. Publisher: Hindawi.

89

http://systec-fof.fe.up.pt/systec/web_en.html
http://systec-fof.fe.up.pt/systec/web_en.html
https://dictionary.cambridge.org/dictionary/english/production-line
https://dictionary.cambridge.org/dictionary/english/production-line

REFERENCES 90

[13] Peter Drahoš, Erik Kucera, Oto Haffner, and Ivan Klimo. Trends in industrial communication
and OPC UA. pages 1–5, January 2018.

[14] Juan Fang, Jiamei Shi, Shuaibing Lu, Mengyuan Zhang, and Zhiyuan Ye. An Efficient
Computation Offloading Strategy with Mobile Edge Computing for IoT. Micromachines,
12(2), February 2021.

[15] Huber Flores, Xiang Su, Vassilis Kostakos, Aaron Yi Ding, Petteri Nurmi, Sasu Tarkoma,
Pan Hui, and Yong Li. Large-scale offloading in the Internet of Things. In 2017 IEEE In-
ternational Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), pages 479–484, Kona, HI, March 2017. IEEE.

[16] Xin Gao, Xi Huang, Simeng Bian, Ziyu Shao, and Yang Yang. PORA: Predictive Offloading
and Resource Allocation in Dynamic Fog Computing Systems. IEEE Internet of Things
Journal, 7(1):72–87, January 2020. arXiv: 2008.00204.

[17] Xiaoyu Hao, Ruohai Zhao, Tao Yang, Yulin Hu, Bo Hu, and Yuhe Qiu. A Risk-Sensitive Task
Offloading Strategy for Edge Computing in Industrial Internet of Things. October 2020.

[18] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan
Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, Septem-
ber 2020.

[19] Zicong Hong, Wuhui Chen, Huawei Huang, Song Guo, and Zibin Zheng. Multi-Hop Coop-
erative Computation Offloading for Industrial IoT–Edge–Cloud Computing Environments.
IEEE Transactions on Parallel and Distributed Systems, 30(12):2759–2774, December 2019.
Conference Name: IEEE Transactions on Parallel and Distributed Systems.

[20] Md. Sajjad Hossain, Cosmas Ifeanyi Nwakanma, Jae Min Lee, and Dong-Seong Kim. Edge
computational task offloading scheme using reinforcement learning for IIoT scenario. ICT
Express, 6(4):291–299, December 2020.

[21] Ben Hoyle, Markus Michael Rau, Kerstin Paech, Christopher Bonnett, Stella Seitz, and
Jochen Weller. Anomaly detection for machine learning redshifts applied to SDSS galax-
ies. Monthly Notices of the Royal Astronomical Society, 452(4):4183–4194, October 2015.
arXiv: 1503.08214.

[22] Mohamed K. Hussein and Mohamed H. Mousa. Efficient Task Offloading for IoT-Based
Applications in Fog Computing Using Ant Colony Optimization. IEEE Access, 8:37191–
37201, 2020. Conference Name: IEEE Access.

[23] Beakcheol Jang, Myeonghwi Kim, Gaspard Harerimana, and Jong Wook Kim. Q-Learning
Algorithms: A Comprehensive Classification and Applications. IEEE Access, 7:133653–
133667, 2019. Conference Name: IEEE Access.

[24] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research, 4:237–285, May 1996.

REFERENCES 91

[25] Sungwook Kim. New Application Task Offloading Algorithms for Edge, Fog, and Cloud
Computing Paradigms. Wireless Communications and Mobile Computing, 2020:e8888074,
October 2020. Publisher: Hindawi.

[26] Sachin Kumar, Prayag Tiwari, and Mikhail Zymbler. Internet of Things is a revolution-
ary approach for future technology enhancement: a review. Journal of Big Data, 6(1):111,
December 2019.

[27] Phillip A. Laplante, Mohamad Kassab, Nancy L. Laplante, and Jeffrey M. Voas. Building
Caring Healthcare Systems in the Internet of Things. IEEE systems journal, 12(3), 2018.

[28] Jiliang Li, Minghui Dai, and Zhou Su. Energy-Aware Task Offloading in the Internet of
Things. IEEE Wireless Communications, 27(5):112–117, October 2020. Conference Name:
IEEE Wireless Communications.

[29] Biswajeeban Mishra and Attila Kertesz. The Use of MQTT in M2M and IoT Systems: A
Survey. IEEE Access, 8:201071–201086, 2020. Conference Name: IEEE Access.

[30] Peshawa Muhammad Ali and Rezhna Faraj. Data Normalization and Standardization: A
Technical Report. January 2014.

[31] Eliseu Pereira, Joao Reis, and Gil Goncalves. DINASORE: A Dynamic Intelligent Recon-
figuration Tool for Cyber-Physical Production Systems. page 9.

[32] Partha Pratim Ray. An Introduction to Dew Computing: Definition, Concept and Implica-
tions. IEEE Access, 6:723–737, 2018. Conference Name: IEEE Access.

[33] Maicon Saturno, Vinícius Pertel, and Fernando Deschamps. Proposal of an automation so-
lutions architecture for Industry 4.0. July 2017.

[34] K R Srinath. Python – The Fastest Growing Programming Language. 04(12):4.

[35] Thomas Strasser, Martijn Rooker, Gerhard Ebenhofer, Alois Zoitl, Christoph Sunder, An-
tonio Valentini, and Allan Martel. Framework for Distributed Industrial Automation and
Control (4DIAC). In 2008 6th IEEE International Conference on Industrial Informatics,
pages 283–288, July 2008. ISSN: 2378-363X.

[36] S Vidhya, Asir Antony Danasingh, and JEBAMALAR LEAVLINE EPIPHANY. Feature
Extraction for Document Classification. April 2015.

Chapter 8

Appendix

In this chapter figures related to the code will be displayed. The link to the spreadsheet of results

is also made available.

8.1 Spreadsheet Link

The spreadsheet whose data was filled in the tables presented in section 5.3 is available at: https://

uporto-my.sharepoint.com/:x:/g/personal/up201909575_up_pt/EQbLOjReRy1Css99Qj18PtUBvvOSGiZ_5Ov27uY79lZK6A?

e=TP5J9k

8.2 Code Related Figures

92

https://uporto-my.sharepoint.com/:x:/g/personal/up201909575_up_pt/EQbLOjReRy1Css99Qj18PtUBvvOSGiZ_5Ov27uY79lZK6A?e=TP5J9k
https://uporto-my.sharepoint.com/:x:/g/personal/up201909575_up_pt/EQbLOjReRy1Css99Qj18PtUBvvOSGiZ_5Ov27uY79lZK6A?e=TP5J9k
https://uporto-my.sharepoint.com/:x:/g/personal/up201909575_up_pt/EQbLOjReRy1Css99Qj18PtUBvvOSGiZ_5Ov27uY79lZK6A?e=TP5J9k

8.2 Code Related Figures 93

Figure 8.1: Devices Class

Figure 8.2: Function Blocks Class

Appendix 94

Figure 8.3: File Reader Class

8.2 Code Related Figures 95

Figure 8.4: Function Block Reader Class

Appendix 96

Figure 8.5: Monitor Reader Class

8.2 Code Related Figures 97

Figure 8.6: Device Availability Reader Class

Appendix 98

Figure 8.7: Data Connector Class

8.2 Code Related Figures 99

Figure 8.8: Greedy Algorithm Class

Appendix 100

Figure 8.9: Show Result Class

8.2 Code Related Figures 101

Figure 8.10: Improved Greedy Algorithm Class

Appendix 102

Figure 8.11: Methods utilized in the Greedy and Improved Greedy algorithms to calculate resource
consumption

Figure 8.12: Method utilized in the Greedy algorithm to obtain device comparison

8.2 Code Related Figures 103

Figure 8.13: Method utilized in the Improved Greedy algorithm to obtain device comparison for
memory resources

Appendix 104

Figure 8.14: Method utilized in the Improved Greedy algorithm to obtain device comparison for
CPU resources

8.2 Code Related Figures 105

Figure 8.15: Methods utilized in the Greedy and Improved Greedy algorithms to aid in the process
of initializing dictionaries and obtaining an objects parameter

Figure 8.16: Methods utilized in the Greedy and Improved Greedy algorithms to aid in the process
of manipulating dictionary data

Appendix 106

Figure 8.17: Methods utilized in the Q-Learning algorithm’s environment to obtain reward, to
calculate step, to render render and reset the algorithm’s state

8.2 Code Related Figures 107

Figure 8.18: Environment class initialization and reward associated methods

Appendix 108

Figure 8.19: Environment class reward associated methods

8.2 Code Related Figures 109

Figure 8.20: Environment class reward associated methods

Appendix 110

Figure 8.21: Q-Learning algorithm initialization and beginning of algorithm

8.2 Code Related Figures 111

Figure 8.22: Q-Learning algorithm update of Q-table and showing results

Appendix 112

Figure 8.23: Methods utilized in the mechanism to aid in file operations

8.2 Code Related Figures 113

Figure 8.24: Main Class

Appendix 114

Figure 8.25: Client Connector Class

Figure 8.26: Client Connector Class Thread

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Research Focus
	1.3 Research Relevance
	1.4 Research Objectives
	1.5 Research Questions
	1.6 Thesis Structure

	2 Literary Review
	2.1 Internet of Things/Industrial Internet of Things
	2.2 Concepts
	2.2.1 Reinforcement Learning

	2.3 IoT Based Task Offloading
	2.4 IIoT Based Task Offloading
	2.5 Summary

	3 Problem Formulation
	3.1 Problem Formulation
	3.1.1 Greedy Algorithm
	3.1.2 Improved Greedy Algorithm
	3.1.3 Q-Learning Algorithm

	4 Implementation
	4.1 Mechanism Architecture
	4.1.1 Mechanism Design

	4.2 Algorithms and File Operations
	4.2.1 File Operations
	4.2.2 Algorithms
	4.2.3 Utility

	5 Experiments and Results
	5.1 Pipeline Description
	5.2 Experiment Design
	5.3 Results
	5.3.1 Local Scenario A
	5.3.2 Local Scenario B
	5.3.3 Local Scenario C
	5.3.4 Local Scenario D
	5.3.5 Distributed Scenario E
	5.3.6 Distributed Scenario F
	5.3.7 Distributed Scenario G

	6 Limitations and Future Work
	6.1 Limitations
	6.2 Future Work

	7 Conclusions
	References
	8 Appendix
	8.1 Spreadsheet Link
	8.2 Code Related Figures

