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Abstract. Using methods from Convex Analysis, for each generalized pressure function we
define an upper semi-continuous affine entropy-like map, establish an abstract variational prin-
ciple for both countably and finitely additive probability measures and prove that equilibrium
states always exist. We show that this conceptual approach imparts a new insight on dynamical
systems without a measure with maximal entropy, may be used to detect second-order phase
transitions, prompts the study of finitely additive ground states for non-uniformly hyperbolic
transformations and grants the existence of finitely additive Lyapunov equilibrium states for
singular value potentials generated by linear cocycles over continuous self-maps.

1. Introduction

Classical thermodynamic formalism. The modern theory of Dynamical Systems has its
origins in the end of the nineteenth century with the pioneering work of Poincaré, who aimed
at a complete description of the solutions of the differential equations modeling the three body
problem in Celestial Mechanics. It is in the course of this investigation that Poincaré encounters
the intriguing phenomenon of what was later named homoclinic tangencies. Several decades
after this first surfacing of such complex dynamical behavior a common opinion had grown
among researchers that geometric methods were insufficient to fully describe the asymptotic
behavior of dynamical systems in general. In the meantime, some of the ideas from Statistical
Mechanics (e.g. Boltzman ergodic hypothesis), dated from the previous century, were spreading
around, and the main ergodic results of that period, namely von Neumann’s and Birkhoff’s
ergodic theorems, were published. Yet, Kolmogorov’s groundbreaking proposal made in the late
1950’s of bringing both Probability and Entropy Theories into the realm of Dynamical Systems
faced intrinsic difficulties, inasmuch as the latter domain of study had not yet been established
as an independent domain of research.

The theory of uniformly hyperbolic dynamical systems, essentially born in the sixties and
building over the existence of invariant foliations with exponential contracting and expanding
behavior, brought forward both the models and the axiomatic framework which granted some
understanding of the homoclinic behavior and support to the realization of Kolmogorov’s insight.
Meanwhile, the paradigmatic example of Smale’s horseshoe made clear that subshifts of finite
type could codify the hyperbolic dynamical systems, and that such coding was possible due
to the existence of finite partitions with a Markov property. What’s more, the finite Markov
partitions for hyperbolic dynamical systems (both diffeomorphisms and flows) had a further
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benefit: they conveyed the thermodynamic formalism from Statistical Mechanics to Dynamical
Systems, through keystone contributions by Sinai, Ruelle, Bowen, Ratner and Walters [18, 20,
76, 80, 85, 91], among others.

The thermodynamic formalism for dynamical systems aims to prove the existence of invari-
ant probability measures which maximize the topological pressure, besides reporting on their
statistical properties. Such measures, called equilibrium states, are often Gibbs, and include
as specific examples both probability measures absolutely continuous with respect to Lebesgue
and measures of maximal entropy. For uniformly hyperbolic diffeomorphisms and flows, when
restricted to a basic piece of the non-wandering set, equilibrium states exist and are unique for
every Hölder continuous potential (cf. [19, 80, 85]). In the case of diffeomorphisms, the basic
known strategy to prove this remarkable fact is to (semi-)conjugate the dynamics to a subshift
of finite type, via a finite Markov partition. Finer properties, including the analiticity of the
pressure map and the relation between pressure, periodic orbits and dynamical zeta functions,
were later addressed by Parry and Pollicott [67].

Non-uniform hyperbolicity and phase transitions. The study of dynamical systems with
weaker forms of hyperbolicity, such as partial hyperbolicity and dominated splittings, is still
under development (cf. [17]). In particular, an extension of the thermodynamic formalism
beyond the scope of uniform hyperbolicity has been facing several intricacies. A very fruitful
strategy to overcome some of them is the construction of induced and tower dynamics with
hyperbolic behavior (cf. [70, 82]). These induced maps can be well described by countable
shifts, for which the thermodynamic formalism is more or less settled [83], but introduces two
new hindrances. On the one hand, not all invariant probability measures may be lifted to the
induced tower dynamics (see [22] and references therein); on the other hand, equilibrium states
for the tower dynamics may induce probability measures that are σ-finite on the phase space
but this transfer process depends on the integrability of the return time function. While in the
case of C∞-surface diffeomorphisms with positive entropy there are finitely many measures of
maximal entropy (cf. [27]), the previous two issues are among the reasons why the theory of
thermodynamic formalism for non uniformly hyperbolic dynamical systems remains incomplete
even for partially hyperbolic systems.

It is in this context that phase transitions (characterized either by the non-analiticity of the
pressure map or by a discontinuity on the number of its equilibrium states) have been thoroughly
studied. Phase transitions are reasonably well understood in the one-dimensional context (see
[34, 51, 72, 71] and references therein) due to the recent tools to detect and characterize the
sources of non-hyperbolic behavior. Beyond hyperbolicity even the existence of equilibrium
states is far from being established, though the non-uniform hyperbolicity may be enough in
special contexts, as happens in the case of Sinai billiard maps (cf. [5]). Even so, Newhouse
described in [64] sufficient conditions for the entropy map to be upper semi-continuous, which in
particular ensure that C∞ maps of compact manifolds have equilibrium states for every contin-
uous potential. In addition, a codification mechanism by symbolic extensions, and its existence
for smooth dynamics, were also explored by Downarowicz and Newhouse in [38]. Nonetheless,
one can ask under what general conditions do equilibrium states exist, seeing that there are Cr-
surface diffeomorphisms, 1 6 r < +∞, having no measure with maximal entropy (cf. [26]). One
of the main goals in this paper is to prove that they always exist if one drops the requirement
that they are countably additive.
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The use of Convex Analysis. One of the fundamental mathematical tools used in Thermo-
dynamics, Statistical Physics and Stochastic Finance is convexity. For instance, regarding the
theory of lattice gases, Israel observes in [52] that the pressure exists in the thermodynamic
limit as a convex function in the space of interactions; and uses the pioneer work of Bishop
and Phelps on Convex Analysis [14] to construct equilibrium states, to prove that they satisfy
Dobrushin-Lanford-Ruelle condition and to describe phase transitions. The aforesaid paper [14]
is also a cornerstone for several recent applications in Economics, namely on equilibrium theory,
risk measures and stochastic finance (cf. [47] and references therein), where abstract variational
principles appear associated to convex risk measures and penalty functions.

An important application of the Convex Analysis methods in the thermodynamic formalism
within statistical mechanics is due to Israel and Phelps [53] who, inspired by mathematical
models in the classical theory of lattice gases [80], investigated the differentiability, the tangent
functionals and the variational entropy (defined by means of the Legendre-Fenchel transform)
in the case of generalized pressure functions acting on the space of affine real-valued continu-
ous functions whose domain is a compact convex set. Apart from the natural convexity and
continuity assumptions, and the fact that the pressure function acts on a set of affine maps,
such pressure maps were assumed to also satisfy a strong positivity condition (cf. [53, p.136]),
a hypothesis which seldom occurs in the thermodynamic formalism context. Encouraged by the
works of Israel and Phelps [53] and Lopes et al [59], recent formulations of variational principles
using Convex Analysis have appeared in [33, 32, 48], extending [53] to the dynamical context of
shifts on Borel standard spaces and dynamical systems whose transfer operators have a spectral
gap. Since the usual Kolmogorov-Sinai metric entropy is not adequate to the context of shifts on
Borel standard spaces, these authors define a notion of entropy (which they also call variational
entropy) for measures that are eigenvectors of a normalized transfer operator’s dual, and prove,
as a variational principle, that it coincides with the Legendre transform of the spectral radius of
a suitable operator. Similar variational principles have been obtained in the context of weighted
shift spaces acting on continuous or L1-functions (see [2, 7]). In both situations, it may happen
that the pressure function, defined as the logarithm of the spectral radius of the corresponding
transfer operator, even if well adapted to the transfer operator, is hardly related to the classical
notion of topological pressure for dynamical systems.

In what follows, we will use Banach function spaces that contain non-continuous observable
maps, which appear naturally in the context of piecewise smooth dynamical systems (see Sub-
section 7.5). We will focus on the space Bm(X) of bounded measurable functions on a compact
metric space, in which case the Convex Analysis dualities produce an entropy function on the
space of finitely additive measures. In the seventies, Salomon Bochner wrote that, contrary to
popular mathematical opinions, finitely additive measures were more interesting and perhaps
more important than countable additive ones (see [60]). Surely, finitely additive measures arise
in Analysis, Statistics, Measure Theory and Dynamical Systems (see [12, 33] and references
therein), and are closely related to the Banach-Tarski paradox (cf. [90]) and the characteriza-
tion of amenable groups (cf. [68]). We will show in this paper that they can also be used to
detect second-order phase transitions in the classical thermodynamic formalism (see Theorem 1
and Subsection 7.6).

Our main contributions. We address the following problem: to find an abstract variational
principle, valid for real-valued convex, monotone and translation invariant functions defined on
a suitable Banach space of potentials, which is powerful enough to be applied to either the



4 A. BIŚ, M. CARVALHO, M. MENDES, AND P. VARANDAS

classical topological pressure for a continuous self-map or to the more recently defined notions
of pressure for semigroup actions. Inspired by some recent applications of convex analysis to risk
measures in stochastic finance [47] and by differentiability results on the classical topological
pressure function [92], we obtain a variational principle under great generality, which conveys an
upper semi-continuous entropy-like map acting either on the space of finitely additive normalized
set functions or on the space probability measures (cf. Theorem 1). Furthermore, we prove
that these entropy-like functions, which are Fenchel-Legendre transforms of abstract pressure
functions, are affine. This is a crucial property for both the study of differentiability properties of
the pressure functions (see Theorem 3 and Corollary 4) and the characterization of the entropy-
like function determined by the classical topological pressure, when restricted to the set of
invariant probability measures, as the upper semi-continuous concave envelope of the measure-
theoretic entropy (cf. Subsection 6.1.1 for the precise definitions and Theorem 5).

In the special case of entropy functions defined over the space of probability measures, our
contributions not only recover the classical variational principle for the topological pressure of
continuous potentials but also improve the thermodynamic formalism of dynamics which do not
admit equilibrium states, and allow us to address the more general family of bounded potentials
(see Theorem 5 for the precise statement). The latter turned out to be of special interest in order
to consider the pressure functions linked to non-additive sequences of continuous potentials as
singular value potentials associated to linear cocycles. Indeed, in this context we show that
the pressure function of such non-additive sequences coincides with the pressure function of a
single bounded observable, for which our results guarantee the existence of equilibrium states
(see Theorem 8.6 and Subsection 8.2 for more details).

The need to deal with finitely additive measures (respectively, probability measures) is a
consequence of the duality theorem for bounded measurable functions (respectively, continuous
functions with compact support) employed in the proof of Theorem 1. For finitely additive set
functions there are known versions of Poincaré recurrence theorem [9], Birkhoff ergodic theorem
[75], Central limit theorem [55, 74], a strong law of large numbers [30, 31] and a Radon-Nikodym
theorem [61], besides information on the accumulation points of sequences of finitely additive set
functions [65]. Other useful properties of these set functions may be found in [73, 40, 93, 36, 24]
and in the comprehensive book [86].

Finally, we observe that the abstract variational principle in Theorem 1 does not summon any
dynamics, which makes it applicable in many contexts. In [13], using several suitable notions
of pressure, we have applied it to semigroup actions which are finitely generated by continuous
maps, a setting which comprises free semigroups, countable sofic groups and groups endowed
with a reference measure.

2. Main results

2.1. Entropy functions for abstract pressure functions. Let (X, d) be a metric space and
let B stand for the σ-algebra of Borel subsets of X. Denote by B a Banach space over the field
R equal to either

Bm(X) =
{
φ : X → R | φ is Borel measurable and bounded

}
(2.1)

or Cb(X) =
{
φ ∈ Bm(X) | φ is continuous

}
or else Cc(X) =

{
φ ∈ Cb(X) | φ has compact support

}
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endowed with the norm ∥φ∥∞ = supx∈X |φ(x)|. In what follows, Pa(X) will stand for the set of
B-measurable, regular and normalized finitely additive set functions on X, which we will simply
call finitely additive probability measures, with the total variation norm (cf. [41, IV.2.15]). Recall
that the total variation norm in Pa(X) is given by

∥µ− ν∥ = sup

{∣∣∣ ∫ ψ dµ−
∫
ψ dν

∣∣∣ : ψ ∈ B and ∥ψ∥∞ 6 1

}
.

As the set of regular, finitely additive measures endowed with the total variation norm is a Ba-
nach space isometrically isomorphic to the topological dual of Cb(X) (cf. [1, Theorem 14.9]), the
set Pa(X) is compact in the weak∗ topology as a consequence of the classical Banach-Alaoglu
theorem. For future use, we denote by P(X) ⊂ Pa(X) the set of Borel σ-additive probability
measures on X endowed with the weak∗ topology, and by C(X) the space of real valued contin-
uous maps whose domain is X. Inspired by [47], we introduce the following axiomatic definition
of pressure function.

Definition 2.2. A function Γ : B → R is called a pressure function if it satisfies the following
conditions:

(C1) Monotonicity : φ 6 ψ ⇒ Γ(φ) 6 Γ(ψ) ∀φ, ψ ∈ B.

(C2) Translation invariance: Γ(φ+ c) = Γ(φ) + c ∀φ ∈ B ∀ c ∈ R.
(C3) Convexity : Γ(t φ+ (1− t)ψ) 6 tΓ(φ) + (1− t) Γ(ψ) ∀φ, ψ ∈ B ∀ t ∈ [0, 1].

We note that, in comparison to endomorphisms, pressure functions and the abstract frame-
work of [53], here we do not require the pressure function to preserve co-boundary type functions.
This is crucial in [13], where we deal with very abstract pressure functions associated to group
and semigroup actions.

It is not hard to check that properties (C1) and (C2) imply that any pressure function is
Lipschitz continuous, meaning that |Γ(φ)− Γ(ψ)| 6 ∥φ− ψ∥∞ for every φ, ψ ∈ B.

Our first result, inspired by [47], establishes a general variational principle and the existence
of finitely additive equilibrium states for any pressure function.

Theorem 1. Let Γ : B → R be a pressure function. Then

Γ(φ) = max
µ∈Pa(X)

{
h(µ) +

∫
φdµ

}
∀φ ∈ B (2.3)

where

h(µ) = inf
φ∈AΓ

{∫
φdµ

}
and AΓ =

{
φ ∈ B : Γ(−φ) 6 0

}
. (2.4)

Moreover, h(µ) is affine and upper semi-continuous; and if α : Pa(X) → R ∪ {−∞, +∞} is
another function taking the role of h in (2.3), then α 6 h. In addition, one has

h(µ) = inf
φ∈B

{
Γ(φ)−

∫
φdµ

}
∀µ ∈ Pa(X).

If X is locally compact and B = Cc(X) then the maximum in (2.3) is attained in P(X).

Some comments are in order. Theorem 1 can be understood as a variant of the Fenchel-
Moreau Theorem in Convex Analysis (see Theorem VI.5.3 in [43]). We stress that we do not
request compactness of the space X, just local compactness when considering B = Cc(X) due
to the use of the Riesz-Markov Theorem, and that the supremum in (2.3) can be computed
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taking only extremal measures (cf. (5.3)). We also highlight the fact that (2.4) asserts that
the function h is computed by averaging potentials whose additive inverses have non-positive
pressure. Observe, in addition, that h(µ) > 0 if and only if Γ(φ) >

∫
φdµ ∀µ ∈ Pa(X),

a condition which extends a characterization of invariant probability measures for maps with
upper semi-continuous Kolmogorov-Sinai entropy (cf. [91, Theorems 9.11 & 9.12]).

Remark 2.5. The entropy function h = hΓ,B depends on both the pressure function Γ and its
domain. For instance, if X is a compact metric space and Γ : Bm(X) → R is a pressure function
then Γ

∣∣
C(X) : C(X) → R is a pressure function as well, though with a different domain; and,

according to (2.4), the corresponding functions h are computed respectively by

hBm(X)(µ) = inf

{∫
φdµ : φ ∈ Bm(X) and Γ(−φ) 6 0

}
∀µ ∈ Pa(X)

and

hC(X)(µ) = inf

{∫
φdµ : φ ∈ C(X) and Γ(−φ) 6 0

}
∀µ ∈ P(X).

In particular, as hBm(X) is computed on the larger space of finitely additive measures, one has
that hBm(X)(µ) 6 hC(X)(µ) for every µ ∈ P(X).

Remark 2.6. It is straightforward to conclude that µ0 attains the minimum in (2.4) (that is,
h(µ0) =

∫
φ0 dµ0 for some φ0 ∈ AΓ) if and only if Γ(−φ0) = 0 and µ0 is an equilibrium state of

−φ0. For instance, the minimum is attained when µ0 is a measure of maximal entropy (in which
case φ0 = htop(f)); or when µ0 is the Sinai-Ruelle-Bowen measure of a C2 Axiom A attractor
(in which case φ0 = − log Jac(Df|Eu); cf. [19]).

2.2. Uniqueness of the equilibrium states. The variational principle stated in Theorem 1
ensures that there always exist normalized finitely additive measures for which the right-hand

side of (2.3) attains the supremum; that is, the set Eφ(Γ) =
{
µ ∈ Pa(X) : Γ(φ) = h(µ)+

∫
φdµ

}
is non-empty. This raises the subtle question of whether they are unique. To address this issue
we consider functionals tangent to the pressure in our abstract framework.

Given a pressure function Γ : B → R and a potential φ ∈ B, we say µ ∈ Pa(X) is a tangent
functional to Γ at φ (also known as sub-differential) if

Γ(φ+ ψ)− Γ(φ) >
∫
ψ dµ ∀ψ ∈ B. (2.7)

As in [92], the continuity of Γ and the Hahn-Banach Theorem guarantee that the space Tφ(Γ)
of tangent functionals to Γ at φ is non-empty for every φ; and it is easily seen to be a convex
and weak∗ compact set. The use of the Hahn-Banach theorem makes that argument for the
existence of such measures is not constructive. The next result states that the space of tangent
functionals to Γ at φ ∈ B coincides with the space of finitely additive probability measures
attaining the maximum on (2.3), and that typical potentials have a unique equilibrium state.
More precisely:

Theorem 2. Let Γ : B → R be a pressure function. Then

Eφ(Γ) = Tφ(Γ) ∀φ ∈ B.

Moreover, if B = Cb(X) or B = Cc(X), then there exists a residual subset R ⊂ B such that
# Eφ(Γ) = 1 for every φ ∈ R.
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The previous result extends the work of Walters [92] within the context of the classical topo-
logical pressure, for which the uniqueness of equilibrium states is tied in with the differentiability
of the pressure.

A pressure function Γ : B → R is said to be locally affine at φ ∈ B if there exist a neighborhood
V of 0 in B and a unique µφ ∈ Pa(X) such that

Γ(φ+ ψ)− Γ(φ) =

∫
ψ dµφ ∀ψ ∈ V. (2.8)

In particular, Tφ(Γ) = {µφ}. If Γ is locally affine at all elements of B, then µφ does not depend
on φ, and Γ is said to be affine. We say that the pressure function Γ : B → R is Fréchet
differentiable at φ ∈ B if there exists a unique µφ ∈ Pa(X) such that

lim
ψ→ 0

1

∥ψ∥∞

∣∣∣Γ(φ+ ψ)− Γ(φ)−
∫
ψ dµφ

∣∣∣ = 0. (2.9)

It is known (cf. [92, Theorem 6]) that the local affine property is equivalent to Fréchet differen-
tiability when one considers the classical topological pressure function. We will show that the
same statement for general pressure functions is also true.

Theorem 3. Let Γ : B → R be a pressure function. The following assertions are equivalent:

(a) Γ is locally affine at φ.
(b) There exists a unique tangent functional in Tφ(Γ) and

lim
ψ→ 0

sup
{
∥µ− µφ∥ : µ ∈ Tφ+ψ(Γ)

}
= 0.

(c) Γ is Fréchet differentiable at φ.

Therefore, the following statements are mutually equivalent as well: (ā) Γ is affine, (b̄)
∪
φ∈B Tφ(Γ)

is a singleton, and (c̄) Γ is everywhere Fréchet differentiable.

As being affine is a rigid condition, the previous theorem also conveys the information that a
pressure function Γ is rarely everywhere Fréchet differentiable. Consequently, typical pressure
functions either exhibit more than one tangent functional at some element of B, or these do not
vary continuously in the operator norm (see [37] for examples). The previous discussion prompts
us to consider the weaker notion of Gateaux differentiability. A pressure function Γ : B → R
is said to be Gateaux differentiable at φ ∈ B if, for every ψ ∈ B the directional pressure map
t ∈ R 7→ Γ(φ+ tψ) is differentiable, that is, the limit

dΓ(φ)(ψ) := lim
t→ 0

1

t
[ Γ(φ+ tψ)− Γ(φ) ]

exists and is finite for every ψ ∈ B. Concerning real valued convex functions on Banach spaces,
Walters proved in [92, Corollary 2] a criterion for Gateaux differentiability. In our setting, the
corresponding statement reads as follows.

Corollary 4. Let Γ : B → R be a pressure function. Then Γ is Gateaux differentiable at φ if
and only if there exists a unique tangent functional in Tφ(Γ).
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2.3. Existence of equilibrium states. The duality results in Theorem 1 can also be used to
obtain a new insight on the thermodynamic formalism of a continuous self-map on a compact
metric space. Indeed, in this context we provide the following variational principle regarding
the classical topological pressure (we refer the reader to Subsection 7.2 for the definitions).

Theorem 5. Let f : X → X be a continuous transformation of a compact metric space X with
htop(f) < +∞. The upper semi-continuous entropy map hf : P(X) → R given by

hµ(f) = inf
φ∈C(X)

{
Ptop(f, φ)−

∫
φdµ

}
∀µ ∈ P(X)

satisfies:

(a) 0 6 hµ(f) 6 hµ(f) ∀µ ∈ Pf (X).

(b) For every continuous potential φ : X → R,

Ptop(f, φ) = max
µ∈P(X)

{
hµ(f) +

∫
φdµ

}
= max

µ∈Pf (X)

{
hµ(f) +

∫
φdµ

}
(2.10)

where Pf (X) denotes the space of f -invariant Borel probability measures on X endowed
with the weak∗ topology.

(c) Every measure µ ∈ P(X) which attains the maximum (2.10) is f-invariant.

(d) The restriction of hf to Pf (X) is the upper semi-continuous concave envelope of Kolmogorov-
Sinai metric entropy.

The elements of the set

D =
{
µ ∈ Pf (X) : 0 6 hµ(f) < hµ(f)

}
(2.11)

are the f -invariant probability measures where the entropy function µ ∈ Pf (X) 7→ hµ(f) fails
to be upper semi-continuous. The classical variational principle together with Theorem 5 (b)
imply that

sup
µ∈Pf (X)

{
hµ(f) +

∫
φdµ

}
= sup

µ∈Pf (X)

{
hµ(f) +

∫
φdµ

}
even if D ̸= ∅. This shows that the measures in D (which play a role for instance if the entropy
spectrum {hµ(f) : µ ∈ Pf (X)} is not an interval) do not affect the supremum. Still, such
measures have a say when we look for equilibrium states (see an example in Subsection 7.4). More
details on the relation between the star-entropy and the h-entropy are given in Proposition 7.4.
Finally, it is worthwhile mentioning that one can obtain a similar statement to the one of
Theorem 5 using finitely additive measures instead of probability measures (see Remark 7.11).

Remark 2.12. When htop(f) < +∞ and, additionally, the entropy map µ ∈ Pf (X) 7→ hµ(f)
is upper semi-continuous (as happens, for instance, when f is expansive), Theorem 5 and [91,
Theorem 9.12] imply that hµ(f) = hµ(f) for every µ ∈ Pf (X). Thus, under these assumptions,
the map hf : P(X) → R is an extension of the metric entropy (with negative values at P(X) \
Pf (X)).

The previous results pave the way to the description of multifractal analysis for Birkhoff
averages, large deviations or ergodic optimization in both hyperbolic and non-hyperbolic con-
texts. Actually, while upper semi-continuity of entropy and uniqueness of equilibrium states are
useful ingredients to provide a full description of the entropy map, the dimension of the level
sets associated to Birkhoff averages and the maximizing probability measures, these properties
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may fail beyond the realm of uniform hyperbolicity. We will give a simple illustration through
an application in ergodic optimization (see Subsection 6.2 for definitions and the concept of
zero temperature limits). Taking into account Theorem 5 and [54, Theorem 4.1] (replacing the
usual entropy function by the upper semi-continuous map µ 7→ hµ(f)) we obtain the following
information.

Corollary 6. Let f : X → X be a continuous map on a compact metric space X such that
htop(f) < +∞ and let φ : X → R be a continuous observable. Then

1

t
Ptop(f, tφ) = max

ν ∈Pf (X)

{1

t
hν(f) +

∫
φdν

}
−→

t→+∞
max

ν ∈Pf (X)

∫
φdν.

Moreover, if for each t > 0 one chooses an f -invariant probability measure νt ∈ Pf (X) satisfying
Ptop(f, tφ) = hνt(f) +

∫
t φ dνt then any weak∗ accumulation point ν∞ ∈ Pf (X) of (νt)t> 0 as

t→ +∞ satisfies:

(a)
∫
φdν∞ = max

µ∈Pf (X)

∫
φdµ

(b) hν∞(f) = max
ν ∈Mf (X,φ)

hν(f) > max
ν ∈ Mf (X,φ)

hν(f)

(c) lim
t→+∞

hνt(f) = hν∞(f)

where Mf (X,φ) stands for the set of f-invariant φ-maximizing probability measures obtained
through zero-temperature limits.

2.4. Non-additive thermodynamic formalism. The previous Convex Analysis conclusions
also apply to the thermodynamic formalism and the ergodic optimization for sub-additive se-
quences of continuous potentials, which include as special cases the singular value potentials
associated to linear cocycles, a topic that goes beyond the scope of hyperbolic dynamical sys-
tems (see Section 8 for definitions and a discussion on previous results). This is so in spite of
the fact that the Legendre-Fenchel duality is not available in this context, since the space of
sub-additive sequences of continuous functions is not a vector space. As far as we know, this
approach brings forth novelty even in the case when f is the one-sided full shift.

In what follows, given a cocycle A ∈ C(X,GL(ℓ,R)) over a continuous map f : X → X, we
denote by P (f,A, Φα⃗) the topological pressure of its singular value potential Φα⃗ (see Defini-
tion 8.1, equation (8.9) and Subsection 8.2.2 for the precise definitions).

Theorem 7. Let f be a continuous self-map of a compact metric space (X, d). There is an upper
semi-continuous map hf : Pa(X) → R such that, for every cocycle A ∈ C(X,GL(ℓ,R)), every
vector α⃗ = (α1, α2, . . . , αℓ) ∈ Rℓ with α1 > α2 > · · · > αℓ and the corresponding non-additive
sequence Φα⃗ of singular value potentials, there exists a map ψΦα⃗

∈ Bm(X) such that

P (f,A, Φα⃗) = max
µ∈Pa(X)

{
hµ(f) +

∫
ψΦα⃗

dµ
}

and

∀µ ∈ Pf (X) ψΦα⃗
(x) =

k∑
i=1

αi · λi(A, x) at µ-almost every x ∈ X.

Moreover, the set of finitely additive equilibrium states is non-empty for every linear cocycle in
C(X,GL(ℓ,R)) and the zero temperature limits of finitely additive equilibrium states have the
largest value of hf amongst the Lyapunov optimizing measures.
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3. A variational principle: Proof of Theorem 1

We begin this section by recalling some duality results on the Banach spaces we will consider.
If X is locally compact, it follows from the Riesz-Markov representation Theorem that the dual
of C(X) can be identified with the collection of all finite signed measures on (X,B) equipped
with the weak∗ topology, and that the subset of its positive normalized elements corresponds
to the space P(X) (cf. [57, pp. 253]). This is clearly the case if X is a compact metric space,
where C(X) = Cc(X) = Cb(X). In the non-compact setting, the dual of Cb(X) is identified
with the space of regular Borel and finitely additive measures endowed with the total variation
norm (cf. Theorem 14.9 in [1]). An extension of the Riesz-Markov Theorem informs that the
dual of Bm(X) is represented by the space of Borel finitely additive measures with the topology
induced by the total variation norm (see [46, 50]), whose subset of positive normalized elements
corresponds to Pa(X).

For the sake of completeness and rigor, we include a proof of the first part of Theorem 1
along the lines of that provided by Föllmer and Schied (see [47]). Let (X, d) be a metric space,
B = Bm(X) and Γ : B → R be a pressure function. Define

AΓ =
{
φ ∈ B : Γ(−φ) 6 0

}
and h(µ) := inf

φ∈AΓ

{∫
φdµ

}
.

We start showing that, for every φ ∈ B, one has

Γ(φ) > sup
µ∈Pa(X)

{
h(µ) +

∫
φdµ

}
. (3.1)

Due to translation invariance it is clear that Γ(φ − Γ(φ)) = 0. Thus φ̃ := Γ(φ) − φ belongs to
AΓ. Therefore, for every µ ∈ Pa(X)

h(µ) 6
∫
φ̃ dµ = Γ(φ)−

∫
φ dµ

which implies (3.1). Conversely, given φ ∈ B we need to find µφ ∈ Pa(X) such that

Γ(φ) 6 h(µφ) +

∫
φ dµφ. (3.2)

Yet, it is enough to do it for φ such that Γ(φ) = 0 since the general case follows from taking
φ− Γ(φ) and the translation invariance property of Γ. So, consider φ ∈ B such that Γ(φ) = 0.
Thus the observable −φ does not belong to the set

BΓ = {ψ ∈ B : Γ(−ψ) < 0}

which is convex and open due to the convexity and continuity of Γ. Therefore, by the geometric
version of the Hahn-Banach Theorem there is a continuous, not identically zero, linear functional
L : B → R which separates the sets {−φ} and BΓ in the sense that

L(−φ) 6 inf
ψ ∈BΓ

L(ψ). (3.3)

By linearity of L, this is equivalent to saying that

L(φ) + inf
ψ ∈BΓ

L(ψ) > 0. (3.4)

Lemma 3.5. L is positive and L(1) > 0, where 1 stands for the constant function equal to one.
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Proof. Consider ψ ∈ B such that ψ > 0. Firstly, let us see that for every λ > 0 we have
λψ + c ∈ BΓ, where c = Γ(0) + 1. Indeed, by translation invariance and monotonicity of Γ one
has

Γ(−λψ − c) = Γ(−λψ)− c 6 Γ(0)− c < 0.

Due to (3.3), this in turn implies that

L(−φ) 6 L(λψ + c) = λL(ψ) + cL(1) ∀λ > 0.

Thus, if L(ψ) < 0 then L(−φ) = −∞, leading to a contradiction with the fact that L is a
bounded functional. This proves that L is a positive functional. In particular, L(1) > 0.

Let us now prove that L(1) ̸= 0. As L is linear and not identically zero, we may take ψ0 ∈ B
such that L(ψ0) > 0 and ∥ψ0∥∞ < 1. Write ψ0 = ψ+

0 − ψ−
0 , where ψ+

0 = max {ψ0, 0} and
ψ−
0 = max {−ψ0, 0}. Then, as L is positive, we have

L(ψ+
0 ) = L(ψ0) + L(ψ−

0 ) > L(ψ0) > 0 and L(1− ψ+
0 ) > 0

since 1− ψ+
0 > 0. Using again both the linearity and the monotonicity of L we finally conclude

that

L(1) = L(1− ψ+
0 ) + L(ψ+

0 ) > L(ψ+
0 ) > 0.

�

The previous lemma indicates that the continuous linear operator L
L(1) is positive and nor-

malized. Therefore, according to an extension of the Riesz-Markov Representation Theorem
[41], there is a finitely additive probability measure µφ ∈ Pa(X) (which belongs to P(X) if
B = Cc(X) and X is locally compact) such that∫

ψ dµφ =
L(ψ)

L(1)
∀ψ ∈ B.

We are left to show that µφ satisfies (3.2). Observe that for every ψ ∈ AΓ and every ε > 0 we
have that ψ + ε ∈ BΓ. In other words, AΓ, ε := {ψ + ε : ψ ∈ AΓ} ⊂ BΓ. Hence

h(µφ) = inf
ψ ∈AΓ

∫
ψ dµφ 6 inf

ψ ∈BΓ

∫
ψ dµφ 6 inf

ψ ∈AΓ, ε

∫
ψ dµφ = inf

ψ ∈AΓ

∫
ψ dµφ + ε.

Since ε > 0 is arbitrary we conclude that h(µφ) = infψ ∈BΓ

∫
ψ dµφ. Consequently,

h(µφ) +

∫
φ dµφ =

(
inf

ψ ∈BΓ

∫
ψ dµφ

)
+
L(φ)

L(1)
=

(
inf

ψ ∈BΓ

L(ψ)

L(1)

)
+
L(φ)

L(1)

=
1

L(1)

(
L(φ) + inf

ψ ∈BΓ

L(ψ)

)
> 0 = Γ(φ)

where we have used relation (3.4) in the last step. This completes the proof of (3.2).

Endowing Pa(X) with the total variation distance, the function h is upper semi-continuous
since it is defined as the infimum of the family of continuous functions

(
µ ∈ Pa(X) 7→

∫
φdµ

)
φ∈AΓ

(cf. [4, 18]).
We proceed by showing the maximality (hence uniqueness) of the function h among those

which satisfy (2.3). Let α be such a map. Then,

Γ(−ψ) > α(µ) +

∫
−ψ dµ ∀ψ ∈ B ∀µ ∈ Pa(X)
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or, equivalently,

α(µ) 6 Γ(−ψ) +
∫
ψ dµ ∀ψ ∈ B ∀µ ∈ Pa(X)

which implies that

α(µ) 6 inf
ψ ∈B

{
Γ(−ψ) +

∫
ψ dµ

}
∀µ ∈ Pa(X). (3.6)

Moreover, as AΓ ⊂ B and Γ(−ψ) 6 0 for every ψ ∈ AΓ we conclude that

α(µ) 6 inf
ψ ∈B

{
Γ(−ψ) +

∫
ψ dµ

}
6 inf

ψ ∈AΓ

{
Γ(−ψ) +

∫
ψ dµ

}
6 inf

ψ ∈AΓ

{∫
ψ dµ

}
= h(µ) ∀µ ∈ Pa(X).

The previous reasoning using α = h allows us to conclude that

h(µ) = inf
ψ ∈B

{
Γ(−ψ) +

∫
ψ dµ

}
∀µ ∈ Pa(X). (3.7)

As B is a vector space the equality (3.7) can be rewritten as

h(µ) = inf
ψ ∈B

{
Γ(−ψ)−

∫
−ψ dµ

}
= inf

ψ ∈B

{
Γ(ψ)−

∫
ψ dµ

}
.

We are left to prove that h is affine. The convex set Pa(X) is compact in the weak∗ topology
(cf. [41, Theorem 2, V.4.2]) and so, by the Krein-Milman Theorem, it is the closed convex hull
of its extreme points. Moreover, we can use the the Choquet Representation Theorem (cf. [3,
Theorem 6.6] or [91, p.153]) to express each member of Pa(X) in terms of the extreme elements
of Pa(X). More precisely, if Ea(X) denotes the set of extreme points of Pa(X) and µ belongs to
Pa(X) then there is a unique measure Pµ on the Borel subsets of the compact metrizable space
Pa(X) such that Pµ(Ea(X)) = 1 and∫

X
ψ(x) dµ(x) =

∫
Ea(X)

(∫
X
ψ(x) dm(x)

)
dPµ(m) ∀ψ ∈ Bm(X). (3.8)

Hence every µ ∈ Pa(X) is a generalized convex combination of extreme finitely additive prob-
ability measures. We write µ =

∫
Ea(X) m dPµ(m) and call this equality the decomposition in

extremes of the finitely additive probability measure µ.

Lemma 3.9. Given µ ∈ Pa(X) whose decomposition in extremes is µ =
∫
Ea(X) m dPµ(m), then

h(µ) =

∫
h(m) dPµ(m).

In particular, the function h is affine.

Proof. Recall that h(µ) = infψ ∈AΓ

∫
ψ dµ and the map ψ ∈ Bm(X) 7→

∫
ψ dµ is continuous.

By (3.8) there exists a probability measure Pµ giving full weight to the space Ea(X) of extreme
measures of Pa(X) and satisfying

∫
ψ dµ =

∫
Ea(X)

(∫
ψ dm

)
dPµ(m). In particular,

h(µ) = inf
ψ ∈AΓ

∫
Ea(X)

(∫
ψ(x) dm(x)

)
dPµ(m).
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Moreover, as Pµ is countably additive, the Monotone Convergence Theorem (cf. [77, Theorem
IV.15, Vol. I]) for nets of continuous maps when applied to the net (

∫
ψ dµ)ψ ∈AΓ

implies that

h(µ) = inf
ψ ∈AΓ

∫
Ea(X)

(∫
ψ(x) dm(x)

)
dPµ(m)

=

∫
Ea(X)

(
inf

ψ ∈AΓ

∫
ψ(x) dm(x)

)
dPµ(m) =

∫
Ea(X)

h(m) dPµ(m).

Finally, by Choquet Theorem, given µ1, µ2 ∈ Pa(X) there exist unique probability measures
Pµ1 , Pµ2 giving full weight to Ea(X) and such that µi =

∫
Ea(X) m dPµi(m) for i = 1, 2. In

particular, for each 0 < α < 1, one has

αµ1 + (1− α)µ2 =

∫
Ea(X)

m d [αdPµ1 + (1− α) dPµ2 ](m)

and, using the first part of the lemma, one gets

h(αµ1 + (1− α)µ2) =

∫
Ea(X)

h(m)d[αPµ1 + (1− α)Pµ2 ](m) = αh(µ1) + (1− α)h(µ2).

This ends the proof of Theorem 1. �

4. Tangent functionals: Proof of Theorem 2

The argument we will present follows closely the one in [91, Theorems 9.14 and 9.15]. Consider
φ ∈ B and assume that µ ∈ Eφ(Γ). Then, by Theorem 1,

Γ(φ+ ψ)− Γ(φ) > h(µ) +

∫
(φ+ ψ) dµ− h(µ)−

∫
φdµ =

∫
ψ dµ ∀ψ ∈ B.

This shows that Eφ(Γ) ⊆ Tφ(Γ). To establish the converse inclusion, fix µ ∈ Tφ(Γ) and note that

Γ(φ+ ψ)− Γ(φ) >
∫
ψ dµ ∀ψ ∈ B

⇕

Γ(φ+ ψ)−
∫

(φ+ ψ) dµ > Γ(φ)−
∫
φdµ ∀ψ ∈ B.

This equivalence together with the variational principle in Theorem 1, the fact that B is a vector
space and equation (3.7) imply that

h(µ) = inf
ψ ∈B

{
Γ(φ+ ψ)−

∫
(φ+ ψ) dµ

}
> Γ(φ)−

∫
φdµ.

Since the reverse inequality

h(µ) 6 Γ(φ)−
∫
φdµ

is an immediate consequence of (2.3), we conclude that Tφ(Γ) ⊆ Eφ(Γ). The second claim in the
statement of Theorem 2 is a consequence of [62] (see also [69, page 12]), which ensures that the
convex function Γ, acting on the separable Banach space B = Cb(X) or B = Cc(X), admits a
unique tangent functional for every φ in a residual subset of B.
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5. Fréchet differentiability: Proof of Theorem 3

In this section we will show the characterization of Fréchet differentiability of the pressure
functional in terms of tangent functionals.

(a) ⇒ (b). As Γ is locally affine at φ, there exist (a unique) µφ ∈ Pa(X) (respectively, a signed
probability measure if X is locally compact and B = Cc(X)) such that, for every ψ1, ψ2 ∈ B
whose norms are small enough, one has

Γ(φ+ ψ1)− Γ(φ+ ψ2) =

∫
(ψ1 − ψ2)µφ.

This implies that Tφ+ψ(Γ) = {µφ} for every ψ ∈ B with small enough norm. Thus,

lim
ψ→ 0

sup
{
∥µ− µφ∥ : µ ∈ Tφ+ψ(Γ)

}
= lim

ψ→ 0
{0} = 0.

(b) ⇒ (c). Assume that there exists a unique tangent functional µφ ∈ Tφ(Γ) and that

lim
ψ→ 0

sup
{
∥µ− µφ∥ : µ ∈ Tφ+ψ(Γ)

}
= 0. (5.1)

As µφ ∈ Tφ(Γ), one has

Γ(φ+ ψ)− Γ(φ) >
∫
ψ dµφ ∀ψ ∈ B.

Moreover, the uniqueness of the tangent functional µφ at φ and Theorem 2 imply that

Γ(φ) = h(µφ) +

∫
φ dµφ and Γ(φ) > h(µ) +

∫
φ dµ ∀µ ̸= µφ.

So, given ψ ∈ B and µ ∈ Tφ+ψ(Γ) = Eφ+ψ(Γ), one gets

0 6 Γ(φ+ ψ)− Γ(φ)−
∫
ψ dµφ = h(µ) +

∫
(φ+ ψ) dµ− Γ(φ)−

∫
ψ dµφ

6 h(µ) +

∫
(φ+ ψ) dµ− h(µ)−

∫
φ dµ−

∫
ψ dµφ

=

∫
ψ dµ−

∫
ψ dµφ 6 ∥ψ∥∞ ∥µ− µφ∥.

Therefore, by assumption (5.1), one has

lim
ψ→ 0

1

∥ψ∥∞

∣∣∣∣Γ(φ+ ψ)− Γ(φ)−
∫
ψ dµφ

∣∣∣∣ = 0.

(c) ⇒ (a). The map h is affine, but the pressure function Γ is not associated to an underlying
dynamics. Therefore, part of the argument to prove Theorem 6 of [92] (the analogue of The-
orem 3 for the topological pressure) has to be adapted to the general setting we are dealing
with. Assume that Γ is Fréchet differentiable at φ ∈ B. Then, as Γ is convex, there is a unique
tangent functional to Γ at φ (cf. [78, Chapt. IV, §44]), say Tφ(Γ) = {µφ}, and µφ satisfies

lim
ψ→ 0

1

∥ψ∥∞

∣∣∣Γ(φ+ ψ)− Γ(φ)−
∫
ψ dµφ

∣∣∣ = 0.
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By (2.7), one also has

Γ(φ+ ψ)− Γ(φ) >
∫
ψ dµφ ∀ψ ∈ B.

We are left to prove the reverse inequality for ψ inside a neighborhood of 0 in B.

Lemma 5.2. Let (µn)n∈N be a sequence in Pa(X) such that limn→+∞ h(µn)+
∫
φdµn = Γ(φ).

Then limn→+∞ ∥µn − µφ∥ = 0.

Proof. Given ε > 0, take δ > 0 so that

ψ ∈ B, ∥ψ∥∞ 6 δ ⇒ 0 6 Γ(φ+ ψ)− Γ(φ)−
∫
ψ dµφ 6 ε ∥ψ∥∞.

For each n ∈ N consider εn = Γ(φ) − h(µn) −
∫
φdµn, and let N ∈ N be such that for every

n > N one has 0 6 εn < εδ. Therefore, if ∥ψ∥∞ 6 δ and n > N ,∫
ψ dµn −

∫
ψ dµφ = Γ(φ) +

∫
ψ dµn − Γ(φ)−

∫
ψ dµφ

= h(µn) +

∫
φdµn + εn +

∫
ψ dµn − Γ(φ)−

∫
ψ dµφ

= h(µn) +

∫
(φ+ ψ) dµn + εn − Γ(φ)−

∫
ψ dµφ

6 Γ(φ+ ψ) + εn − Γ(φ)−
∫
ψ dµφ

= Γ(φ+ ψ)− Γ(φ)−
∫
ψ dµφ + εn < 2δε.

Since these estimates are also valid for −ψ, one has
∣∣∣ ∫ ψ dµn−∫

ψ dµφ

∣∣∣ < 2δε for every ∥ψ∥∞ 6 δ

and n > N . Thus, if n > N ,

∥µn − µφ∥ = sup

{∣∣∣ ∫ ψ dµn −
∫
ψ dµφ

∣∣∣ : ∥ψ∥∞ 6 1

}
=

1

δ
sup

{∣∣∣ ∫ ψ dµn −
∫
ψ dµφ

∣∣∣ : ∥ψ∥∞ 6 δ

}
<

1

δ
2δε = 2ε.

�

Recall that, by Lemma 3.9, one has h(µ) =
∫
h(m) dPµ(m) for every µ ∈ Pa(X) whose

decomposition in extreme points is µ =
∫
Ea(X) m dPµ(m). Thus,

Γ(φ) = sup
{
h(µ) +

∫
φdµ | µ ∈ Ea(X)

}
. (5.3)

Lemma 5.4. The tangent functional µφ is an extreme point of Pa(X) and

Γ(φ) > sup
{
h(µ) +

∫
φdµ | µ ∈ Ea(X) and µ ̸= µφ

}
.

Proof. Using (5.3), one can choose a sequence (µn)n∈N of extreme finitely additive probability
measures with

lim
n→+∞

(
h(µn) +

∫
φdµn

)
= Γ(φ).
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Then, by Lemma 5.2, one has limn→+∞ ∥µn−µφ∥ = 0. Since distinct extreme points in Pa(X)
have norm distance equal to 2 (cf. [3]), there is N ∈ N such that µn = µN for every n > N .
Therefore, µN = µφ, so µφ is an extreme point of Pa(X). In addition, observe that, since
Tφ(Γ) = Eφ(Γ) = {µφ}, the previous argument also shows that one cannot have

Γ(φ) = sup
{
h(µ) +

∫
φdµ | µ ∈ Ea(X) and µ ̸= µφ

}
.

Thus, Γ(φ) > sup
{
h(µ) +

∫
φdµ | µ ∈ Ea(X) and µ ̸= µφ

}
. �

Lemma 5.5. There is a neighborhood U of µφ in the total variation norm such that

h(µφ) > sup
{
h(µ) | µ ∈ U , µ ∈ Ea(X) and µ ̸= µφ

}
.

Proof. Let a = Γ(φ)− sup
{
h(µ) +

∫
φdµ | µ ∈ Ea(X) and µ ̸= µφ

}
and U the neighborhood

of µφ given by

U =
{
µ ∈ Pa(X) :

∣∣∣ ∫ φdµ−
∫
φdµφ

∣∣∣ < a/2
}
.

If µ ∈ U is an extreme of Pa(X) and µ ̸= µφ, then

h(µ) 6 h(µ) +

∫
φdµ−

∫
φdµφ +

a

2
6 Γ(φ)− a−

∫
φdµφ +

a

2

= Γ(φ)−
∫
φdµφ − a

2
= h(µφ)−

a

2

where the last equality is due to the fact that Tφ(Γ) = Eφ(Γ) = {µφ}. �
We are finally ready to show that Γ is locally affine at φ. Let a be as in the proof of Lemma 5.5.

Then, for every ψ ∈ Bm(X) satisfying ∥ψ − φ∥∞ < a/2, one has

sup
{
h(µ) +

∫
ψ dµ | µ ∈ Ea(X) and µ ̸= µφ

}
6 Γ(φ)− a+ ∥ψ − φ∥∞ 6 Γ(ψ)− a+ 2 ∥ψ − φ∥∞ < Γ(ψ).

Thus, by (5.3), all such maps ψ which are a/2-close to φ have µφ as unique extreme Γ-equilibrium
state in Pa(X). In particular,

∥ψ − φ∥∞ < a/2 ⇒ Γ(ψ) = h(µφ) +

∫
ψ dµφ.

So Γ is locally affine at φ. This ends the proof of the first part of Theorem 3.
Regarding the second list of equivalent assertions stated in Theorem 3, firstly assume that Γ

is everywhere Fréchet differentiable. The previous equivalent conditions imply that Γ is locally
affine at every φ ∈ B, so, by the connectedness of the vector space B, we conclude that Γ is
affine. Conversely, affine functions are clearly Fréchet differentiable. Hence items (ā) and (b̄)
are equivalent. Assume now that Γ is affine. Then there exists µ ∈ Pa(X) such that for every
φ ∈ B one has

Γ(φ+ ψ)− Γ(φ) =

∫
ψ dµ ∀ψ ∈ B.

Thus µ is a tangent functional to every φ ∈ B. As any element in Pa(X) is determined by its
integrals over B, the previous equality implies that µ is the unique tangent functional at every
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φ ∈ B. So,
∪
φ∈B Tφ(Γ) = {µ}, and (ā) implies (c̄). Finally, condition (c̄) implies (ā) due to

the corresponding local property (c) ⇒ (a). This completes the proof of Theorem 3.

6. Pressure, entropy and zero temperature limits

We start by defining the topological and free energy for a continuous transformation of a
compact metric space, along with a recollection of some of their properties.

6.1. Entropy and pressure. Let f : X → X be a continuous transformation of a compact
metric space (X, d). Given n ∈ N, define the dynamical distance dn : X ×X → [0,+∞) by

dn(x, z) = max
{
d(x, z), d(f(x), f(z)), . . . , d(fn(x), fn(z))

}
which generates the same topology as d. For every x ∈ X, n ∈ N and ε > 0, we denote byBf

n(x, ε)
the open ball centered at x with radius ε with respect to the metric dn. Having fixed n ∈ N
and ε > 0, we say that a set E ⊂ X is (n, ε)–separated by f if dn(x, z) > ε ∀x ̸= z ∈ E.
Denote by sn(f, ε) the maximal cardinality of all (n, ε)–separated subsets of X by f . Due to
the compactness of X, the number sn(f, ε) is finite. The topological entropy of f is defined by

htop(f) = lim
ε→ 0+

lim sup
n→+∞

1

n
log sn(f, ε).

More generally, given a continuous map φ : X → R (also called a potential), the topological
pressure of f and φ is defined by

Ptop(f, φ) = lim
ε→ 0+

lim sup
n→+∞

1

n
log Pn(f, φ, ε) (6.1)

where, for every n ∈ N,

Pn(f, φ, ε) = sup
E

{ ∑
x∈E

eS
f
n φ(x) : E ⊂ X is (n, ε)-separated

}
(6.2)

and Sfn φ(x) = φ(x) + φ(f(x)) + · · ·+ φ(fn(x)). This way, one assigns to each point x ∈ X the

weight eS
f
nφ(x) determined by the potential φ along the block of the first n iterates of f at x. In

particular, Ptop(f, 0) = htop(f).
As X is compact, C(X) is a subspace of Bm(X) where ∥.∥∞ is the norm of the uniform

convergence. The pressure map

Ptop(f, .) : C(X) → R ∪ {+∞}
satisfies, for every φ, ψ ∈ C(X) and constant c ∈ R, the following properties [91]:

(1) htop(f) + min φ 6 Ptop(f, φ) 6 htop(f) + max φ.

(2) Ptop(f, .) is either finite valued or constantly +∞.

(3) If Ptop(f, .) < +∞, then Ptop(f, .) is convex.

(4) Ptop(f, φ+ c) = Ptop(f, φ) + c.

(5) φ 6 ψ ⇒ Ptop(f, φ) 6 Ptop(f, ψ).

(6) Ptop(f, φ+ ψ ◦ f − ψ) = Ptop(f, φ).

(7) If Ptop(f, .) < +∞, then |Ptop(f, φ)− Ptop(f, ψ)| 6 ∥φ− ψ∥∞.
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We observe that (6.1) and (6.2) can be used to define a pressure function on the space Bm(X)
of bounded potentials which, by some abuse of notation, we still denote by Ptop(f, .) : Bm(X) →
R∪{+∞}. To avoid any confusion, in order to distinguish the pressure functions we will mention
their domains.

Denote by Pf (X) the space of f -invariant Borel probability measures on X endowed with the
weak∗ topology. Given µ ∈ Pf (X) and a continuous potential φ : X → R, the free energy of f ,
µ and φ is given by

Pµ(f, φ) = hµ(f) +

∫
φdµ

where hµ(f) is the metric entropy of f with respect to µ (definition and properties may be read
in [91, Chapter 4]). A measure µ ∈ Pf (X) is called an equilibrium state for the potential φ if
Pµ(f, φ) = supν ∈Pf (X)

{
hν(f) +

∫
φdν

}
.

6.1.1. Star-entropy. The lack of upper semi-continuity of the entropy map has led some au-
thors to regularize the notion of metric entropy. For instance, given µ ∈ Pf (X), the concept of
star-entropy was introduced in [64] and later explored by Viana and Yang in [89], being defined
by

h∗µ(f) = sup
{
lim sup
n→+∞

hµn(f) | (µn)n∈N is a sequence in Pf (X) with lim
n→+∞

µn = µ
}
.

It is known that, for every µ ∈ Pf (X), one has

hµ(f) 6 h∗µ(f) 6 hµ(f) + hloc(f) (6.3)

where hloc(f) stands for the local entropy of f , defined by

hloc(f) = lim
ε→ 0+

lim
δ→ 0+

lim sup
n→+∞

1

n
sup
x∈X

log sn(f, δ, B
f
n(x, ε))

and sn(f, δ,B
f
n(x, ε)) denotes the maximal cardinality of an (n, δ)-separated subset of Bf

n(x, ε).
The first inequality of (6.3) is a straightforward consequence of the definition of h∗, while the
second was proved in [64] (see also [25, Appendix B]), from which we conclude that hloc(f)
bounds the defect in upper semi-continuity of the map µ ∈ Pf (X) 7→ hµ(f). The star-
entropy function h∗ : Pf (X) → R is related to the entropy structures of Boyle and Downarowicz
(cf. [21]) since h∗ is precisely the upper semi-continuous envelope of the metric entropy. More
precisely, when the topological entropy of f is finite the map h∗ is bounded from above by
T = the topological entropy of f and one has (see [38, p. 466–467])

h∗ = inf
{
T : Pf (X) → R | T is continuous and T (µ) > hµ(f) ∀µ ∈ Pf (X)

}
. (6.4)

The advantage of considering the star-entropy is that the function µ ∈ Pf (X) 7→ h∗µ(f) is upper
semi-continuous when Pf (X) is endowed with the weak∗-topology. In particular, defining the
star-pressure by

P ∗
top(f, φ) = sup

µ∈Pf (X)

{
h∗µ(f) +

∫
φdµ

}
one guarantees that there always exists an f -invariant probability measure which attains the
supremum. Yet, the behavior of the star-entropy function may differ substantially from the usual
metric entropy map (we refer the reader to [81] for examples of smooth interval maps without
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an invariant probability measure with maximal entropy), and so the corresponding maximum
values and maximal measures might fail to describe standard physical quantities.

Denote the topological entropy of f by htop(f) and assume that it is finite. Let h∗∗ be the
upper semi-continuous concave envelope of the metric entropy, defined in Pf (X) by

h∗∗ = inf
{
T : Pf (X) → R | T is continuous, affine and T (µ) > hµ(f) ∀µ ∈ Pf (X)

}
. (6.5)

Thus

hµ(f) 6 h∗µ(f) 6 h∗∗µ (f) 6 htop(f) ∀µ ∈ Pf (X).

6.2. Ergodic optimization. Given φ ∈ C(X), the map µ ∈ Pf (X) 7→
∫
φdµ is continuous

and defined on a compact metric space. Hence it has a maximum, which is realized by f -invariant
probability measures. These are referred to as φ-maximizing probability measures, and may be
not unique. It is therefore useful to find φ-maximizing probability measures which are the most
chaotic, meaning those which carry larger metric entropy. It is known that, if the metric entropy
map is upper semi-continuous, then the φ-maximizing probability measures obtained through
zero-temperature limits have this property (cf. [54, Theorem 4.1]). More precisely, on the one
hand, if htop(f) < +∞, then

1

t
Ptop(f, tφ) = sup

ν ∈Pf (X)

{1

t
hν(f) +

∫
φdν

}
−→
t→+∞

sup
ν ∈Pf (X)

∫
φdν = max

ν ∈Pf (X)

∫
φdν.

On the other hand, if for each t > 0 large enough there exists a unique equilibrium state µt for
f with respect to tφ, then any weak∗ accumulation probability measure µ ∈ Pf (X) of (µt)t> 0

as t goes to +∞ is a φ-maximizing probability measure.
Two difficulties to carry on this approach for dynamical systems which may not be expansive

is that the entropy function may not be upper semi-continuous, and so equilibrium states likely
fail to exist at sufficiently small temperatures. We refer the reader to [87] for a class of non-
uniformly expanding maps for which the entropy function is not upper semi-continuous, and for
which one can only ensure that tφ has an equilibrium state for small values of the parameter t.
The results in Theorem 5 guarantee a way to bypass these issues using the variational h-entropy,
which still satisfies the variational principle with respect to the classical pressure function.

7. Variational principles: Proof of Theorem 5

In the mid seventies the thermodynamic formalism was brought from statistical mechanics to
dynamical systems by the pioneering work of Sinai, Ruelle and Bowen [19], which established a
powerful correspondence between one-dimensional lattices and uniformly hyperbolic dynamics
and conveyed several notions from one setting to the other. The success of this approach ulti-
mately relies on a variational principle for the topological pressure, along with the construction
of equilibrium states as the class of pressure maximizing invariant probability measures. In
this section we first show that Theorem 1 extends the classical thermodynamic formalism for
continuous maps on compact metric spaces, and then we complete the proof of Theorem 5.
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7.1. Classical variational principle. Given a continuous transformation f : X → X acting
on a compact metric space (X, d), the variational principle (cf. [91, §9.3]) states that, given a
continuous potential φ : X → R,

Ptop(f, φ) = sup
µ∈Pf (X)

{
hµ(f) +

∫
X
φdµ

}
.

Moreover, the previous least upper bound coincides with the supremum evaluated on the set of
ergodic probability measures (cf. [91, Corollary 9.10.1]). A probability measure which attains
the maximal value is called an equilibrium state for f and the potential φ. For instance, an
equilibrium state for f and the potential φ ≡ 0 is a measure with maximal entropy.

In the event that htop(f) < +∞ and the entropy function µ ∈ Pf (X) 7→ hµ(f) is upper
semi-continuous, the metric entropy satisfies (see [91, Theorem 9.12])

hµ(f) = inf
φ∈C(X)

{
Ptop(f, φ)−

∫
φdµ

}
= sup

{
lim sup
n→+∞

hµn | (µn)n∈N is a sequence in Pf (X) with lim
n→+∞

µn = µ
}
.

In this case, an easy computation using [91, Theorem 9.12] also yields

hµ(f) = inf
φ∈Λ

∫
φdµ

where Λ = {Ptop(f, φ)− φ : φ ∈ C(X)}.

7.2. New variational principle. Keeping the classical notion of topological pressure and sum-
moning Theorem 1, we replace the entropy map (metric or star) acting on the space Pf (X) by
a more general real valued function hf whose domain is the space P(X) of the Borel probability
measures on X. More precisely, assume that htop(f) < +∞; then Ptop(f, .) : C(X) → R is a
pressure function (cf. Section 6) to which we may apply Theorem 1. This way, we conclude that
the map hf : P(X) → R given by

hµ(f) = inf
φ∈APtop

∫
φdµ

where APtop = {φ ∈ C(X) : Ptop(f,−φ) 6 0} is upper semi-continuous, satisfies

hµ(f) = inf
φ∈C(X)

{
Ptop(f, φ)−

∫
φdµ

}
∀µ ∈ P(X) (7.1)

and

Ptop(f, φ) = max
µ∈P(X)

{
hµ(f) +

∫
φdµ

}
∀φ ∈ C(X). (7.2)

It is immediate from (7.1) that hµ(f) 6 htop(f) for every µ ∈ P(X). Moreover, using the
aforementioned strategy, it is clear that, given φ ∈ C(X), there exists µφ ∈ P(X) such that
Ptop(f, φ) = hµφ(f) +

∫
φdµφ. In the special case of φ ≡ 0 one gets both the equality

htop(f) = max
µ∈P(X)

hµ(f)

and µ0 ∈ P(X) where hf attains its maximum value htop(f). This ends the proof of Theorem 5.

Corollary 7.3. Given φ ∈ C(X), every µφ ∈ P(X) attaining the maximum at (7.2) is f-
invariant.
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Proof. Recall that µ ∈ P(X) is said to be f -invariant if
∫
(ψ ◦ f) dµ =

∫
ψ dµ for every ψ in

C(X). Fix µφ ∈ P(X) such that Ptop(f, φ) = hµφ(f) +
∫
φdµφ, and consider ψ ∈ C(X). By

the variational relation (7.2) applied to both φ + ψ ◦ f − ψ and φ + ψ − ψ ◦ f we may take
µ1, µ2 ∈ P(X) such that

Ptop(f, φ+ ψ ◦ f − ψ) = hµ1(f) +

∫
φdµ1 +

∫
(ψ ◦ f) dµ1 −

∫
ψ dµ1

and

Ptop(f, φ+ ψ − ψ ◦ f) = hµ2(f) +

∫
φdµ2 +

∫
ψ dµ2 −

∫
(ψ ◦ f) dµ2.

Using the equalities

Ptop(f, φ+ ψ ◦ f − ψ) = Ptop(f, φ) = Ptop(f, φ+ ψ − ψ ◦ f)

(cf. Subsection 6) together with (7.2), we conclude that

hµφ(f) +

∫
φdµφ = hµ1(f) +

∫
φdµ1 +

∫
(ψ ◦ f) dµ1 −

∫
ψ dµ1

> hµφ(f) +

∫
φdµφ +

∫
(ψ ◦ f) dµφ −

∫
ψ dµφ

so
∫
(ψ ◦ f) dµφ −

∫
ψ dµφ 6 0. In a similar way, we deduce that

hµφ(f) +

∫
φdµφ = hµ2(f) +

∫
φdµ2 +

∫
ψ dµ2 −

∫
(ψ ◦ f) dµ2

> hµφ(f) +

∫
φdµφ +

∫
ψ dµφ −

∫
(ψ ◦ f) dµφ

hence
∫
ψ dµφ −

∫
(ψ ◦ f) dµφ 6 0. �

A straightforward consequence one draws from the classical variational principle and the fact
that the metric entropy is always non-negative is that the pressure function determines Pf (X),
in the sense that, if htop(f) < +∞, then (cf. [91, Theorem 9.11])

µ ∈ Pf (X) ⇔
∫
φdµ 6 Ptop(f, φ) ∀φ ∈ C(X).

Therefore, by (7.1), if htop(f) < +∞ and µ belongs to P(X) then

µ ∈ Pf (X) ⇔ hµ(f) > 0.

7.3. Linking h and h∗∗. Here we prove the second part of Theorem 5, relating the h∗∗-entropy
(defined by (6.5)) with the h-entropy function as a consequence of the following result.

Proposition 7.4. Let f : X → X be a continuous transformation acting on a compact metric
space X with htop(f) < +∞. Then:

(a) Ptop(f, φ) = maxµ∈Pf (X)

{
h∗f (µ) +

∫
φdµ

}
∀φ ∈ C(X).

(b) hµ(f) 6 h∗µ(f) 6 h∗∗µ (f) = hµ(f) ∀µ ∈ Pf (X).
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The remainder of this subsection is devoted to the proof of this proposition. We start relating
hµ(f), hµ(f) and h

∗
µ(f) when µ belongs to Pf (X). As previously mentioned, for every µ ∈ Pf (X)

one has hµ(f) 6 h∗µ(f). Moreover, by the classical variational principle, for each µ ∈ Pf (X) we
get

hµ(f) 6 Ptop(f, φ)−
∫
φdµ ∀φ ∈ C(X).

So

hµ(f) = inf
φ∈C(X)

{
Ptop(f, φ)−

∫
φdµ

}
> hµ(f). (7.5)

If h∗µ(f) > hµ(f) for some µ ∈ Pf (X), then there exists ν ∈ Pf (X) satisfying hν(f) > hν(f),
contradicting (7.5). This proves that hµ(f) 6 h∗µ(f) 6 hµ(f) for every µ ∈ Pf (X). These
inequalities, together with Theorem 1, yield

sup
µ∈Pf (X)

{
hµ(f) +

∫
φdµ

}
6 max

µ∈Pf (X)

{
h∗µ(f) +

∫
φdµ

}
6 max

µ∈Pf (X)

{
hµ(f) +

∫
φdµ

}
.

On the other hand, as Pf (X) ⊂ P(X), one has for every φ ∈ C(X)

max
µ∈Pf (X)

{
hµ(f) +

∫
φdµ

}
6 max

µ∈P(X)

{
hµ(f) +

∫
φdµ

}
.

Therefore, from both the classical and the new variational principle (7.2) we deduce that

max
µ∈Pf (X)

{
hµ(f) +

∫
φdµ

}
6 max

µ∈P(X)

{
hµ(f) +

∫
φdµ

}
= Ptop(f, φ) = sup

µ∈Pf (X)

{
hµ(f) +

∫
φdµ

}
6 max

µ∈Pf (X)

{
h∗µ(f) +

∫
φdµ

}
6 max

µ∈Pf (X)

{
hµ(f) +

∫
φdµ

}
.

and, consequently,

Ptop(f, φ) = max
µ∈Pf (X)

{
hµ(f) +

∫
φdµ

}
= max

µ∈Pf (X)

{
h∗µ(f) +

∫
φdµ

}
. (7.6)

Notice that the supremum is attained since hf is upper semi-continuous on Pf (X), so the map
µ ∈ Pf (X) 7→ hµ(f) +

∫
φdµ is upper semi-continuous as well; similar comment regarding h∗.

This proves item (a) of the proposition.

Remark 7.7. The previous argument also works if we replace h∗ by h∗∗. Thus

Ptop(f, φ) = max
µ∈Pf (X)

{
h∗∗µ (f) +

∫
φdµ

}
. (7.8)
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We proceed by showing that h∗∗ = h in Pf (X). According to [39, A.2.1], the map h∗∗ is
smaller than any other upper semi-continuous concave map that also upper bounds the metric
entropy. Therefore, one has h∗∗ 6 h, since h is upper semi-continuous, affine (hence concave)
and satisfies (7.5). So, regarding item (b) of the proposition, we are left to show that h∗∗ > h
in Pf (X).

To prove this inequality, we just need to adapt the argument in [91, Theorem 9.12] and this
way conclude that, for every µ ∈ Pf (X),

h∗∗µ (f) > inf
φ∈C(X)

{
Ptop(f, φ)−

∫
φdµ

}
which, due to (7.1), yields h∗∗µ (f) > hµ(f).

Take µ0 ∈ Pf (X) and, as htop(f) < +∞, consider a real number b > h∗∗µ0(f). Let C be the
set

C =
{
(µ, t) ∈ Pf (X)× R : 0 6 t 6 h∗∗µ (f)

}
.

Since h∗∗ is concave, C is a convex set: if (µ, t) and (ν, s) belong to C and 0 6 p 6 1, then
pµ+ (1− p)ν ∈ Pf (X) and

0 6 pt+ (1− p)s 6 ph∗∗µ (f) + (1− p)h∗∗ν (f) 6 h∗∗pµ+(1−p)ν(f).

Moreover, if we consider C as a subset of the dual C(X)∗ with the weak∗ topology, then (µ0, b)
does not belong to the closure C of C. Indeed, if there was a sequence

(
(µn, tn)

)
n
∈ C converging

to (µ0, b), then, since h
∗∗ is upper semi-continuous, one would get

b = lim
n→+∞

tn 6 lim sup
n→+∞

h∗∗µn(f) 6 h∗∗µ0(f)

contradicting the choice of b. Therefore, there is a continuous functional F : C(X)∗ × R → R
separating the disjoint convex sets C and {(µ0, b)}, that is, such that

F ((µ, t)) < F ((µ0, b)) ∀ (µ, t) ∈ C. (7.9)

Since we are using the weak∗ topology on C(X)∗, there are ψ ∈ C(X) and γ ∈ R such that
F ((µ, t)) =

∫
ψ dµ+ tγ for every (µ, t) ∈ C(X)∗ × R. Thus (7.9) becomes∫

ψ dµ+ tγ <

∫
ψ dµ0 + bγ ∀ (µ, t) ∈ C.

In particular, ∫
ψ dµ+ h∗∗µ (f)γ <

∫
ψ dµ0 + bγ ∀µ ∈ Pf (X)

so, when µ = µ0, one obtains∫
ψ dµ0 + h∗∗µ0(f)γ <

∫
ψ dµ0 + bγ.

Therefore γ > 0, and so∫
ψ

γ
dµ+ h∗∗µ (f) <

∫
ψ

γ
dµ0 + b ∀µ ∈ Pf (X).

Consequently, by the variational principle (7.8),

Ptop

(
f,
ψ

γ

)
6

∫
ψ

γ
dµ0 + b.
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Hence,

b > Ptop

(
f,
ψ

γ

)
−
∫
ψ

γ
dµ0 > inf

φ∈C(X)

{
Ptop(f, φ)−

∫
φdµ0

}
which implies that

h∗∗µ0(f) > inf
φ∈C(X)

{
Ptop(f, φ)−

∫
φdµ0

}
.

The proof of the proposition is complete.

Remark 7.10. If µ0 ∈ Pf (X) is an equilibrium state for f and φ with respect to the classical
variational principle, that is,

Ptop(f, φ) = hf (µ0) +

∫
φdµ0

then µ0 attains the maximum at (7.2) as well. Indeed,

Ptop(f, φ) > hµ0(f) +

∫
φdµ0 > hf (µ0) +

∫
φdµ0 = Ptop(f, φ).

The converse is false, though, as the example in Subsection 7.4 illustrates.

Remark 7.11. When the metric entropy map is not upper semi-continuous, the map hf = h∗∗

is a strict upper bound for the metric entropy. Thus, Theorem 5 motivates the search for
an optimal upper semi-continuous upper bound. Clearly, Theorem 1 applied to the pressure
function Ptop(f, .) : Bm(X) → R ∪ {+∞} provides in general a better bound than hf , since it
guarantees that

Ptop(f, φ) = max
µ∈Pa(X)

{
h∞(µ) +

∫
φdµ

}
∀φ ∈ Bm(X)

where the upper semi-continuous map h∞ is defined by

h∞(µ) = inf
φ∈Bm(X)

{
Ptop(f, φ)−

∫
φdµ

}
∀µ ∈ Pa(X)

and so hµ(f) 6 h∞(µ) 6 hµ(f) for every µ ∈ P(X).

7.4. An example without a measure with maximal entropy. Given φ ∈ C(X), de-
note by Pφ(f,X) ⊂ Pf (X) the space of (classical) equilibrium states for f and φ. Both
Pφ(f,X) and Tφ(Ptop) are convex sets, but whereas Tφ(Ptop) is always non-empty and com-
pact for the weak∗ topology, this is sometimes not true for Pφ(f,X), as we will now check.
In general, one has Pφ(f,X) ⊂ Tφ(Ptop), with equality if and only if the metric entropy
map is upper semi-continuous at every element of Tφ(Ptop) (cf. [91]). As stated in Theo-
rem 2, it is the set Eφ(Γ) of the f -invariant probability measures which maximize the map
Γ(φ) = maxµ∈Pf (X)

{
hµ(f) +

∫
φdµ

}
that fills in the gap between Pφ(f,X) and Tφ(Ptop).

Let us briefly recall the example given on [91, p. 193] of a homeomorphism without a measure
with maximal entropy. We start describing the β-shift. Let β > 1 be given and take the
expansion of 1 in powers of β−1, that is, 1 =

∑+∞
n=1 an β

−n where

a1 = [β] and an =
[
βn −

n−1∑
j=1

aj β
n−j] ∀n > 2.
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Then 0 6 an 6 k−1 for all n ∈ N, where k = [β]+1. So we can consider a = (an)n∈N as a point
in the space Σ+

k =
∏+∞
i=1 {0, 1, · · · , k − 1}, within which we define the lexicographical ordering,

that is, (xn)n∈N < (yn)n∈N if xj < yj for the smallest j with xj ̸= yj . Let σ+ : Σ+
k → Σ+

k be
the one-sided shift transformation. Note that σn+(a) 6 a for every n ∈ N0. Define

Yβ =
{
x = (xn)n∈N ∈ Σ+

k : σn+(x) 6 a ∀n ∈ N0

}
.

This is a non-empty closed subset of Σ+
k , and one has σ+(Yβ) = Yβ and htop(σ+|Yβ ) = log β.

Besides, if Σk =
∏+∞
i=−∞ {0, 1, · · · , k − 1} and

Xβ =
{
x = (xn)n∈Z ∈ Σk : (xi, xi+1, · · · ) ∈ Yβ ∀ i ∈ Z

}
then Xβ is closed in Σk, invariant under the two-sided shift σ and htop(σ|Xβ

) = log β as well.

Now choose an increasing sequence (βn)n∈N such that 1 < βn < 2 and limn→+∞ βn = 2.
Let fn : Xβn → Xβn denote the two-sided βn-shift and consider on Σk a metric dn inducing the
product topology and satisfying dn(x, y) 6 1 for every x, y ∈ Σk. Define a new space X as the
disjoint union of all the spaces Xβn together with a compactification point x∞, and put on X
the metric

ρ(x, y) =



1
n2 dn(x, y), if x, y ∈ Xβn∑p
j=n

1
j2
, if x ∈ Xβn , y ∈ Xβp and n < p

∑+∞
j=n

1
j2
, if x = x∞ and y ∈ Xβn .

Then (X, ρ) is a compact metric space and the sequence of subsets
(
Xβn

)
n∈N converges to x∞,

that is, the sequence

n ∈ N 7→ τn = inf
{
ρ(z, x∞) : z ∈ Xβn

}
converges to 0. Moreover, the map f : X → X defined as f|Xβn

= fn and f(x∞) = x∞ is a

homeomorphism of (X, ρ); and the Borel f -invariant probability measures are given by

+∞∑
n=1

pn µn +
(
1−

+∞∑
n=1

pn

)
δx∞

where µn ∈ Pfn(Xβn) for every n ∈ N, and the numbers pn are non-negative and satisfy∑+∞
n=1 pn 6 1. Hence the ergodic elements of Pf (X) are either ergodic measures in Pfn(Xβn)

for some n or δx∞ . Therefore, if Ef (X) stands for the subset of ergodic measures in Pf (X), then

htop(f) = sup
{
hµ(f) : µ ∈ Ef (X)

}
= sup

n∈N
sup

{
hµn(fn) : µn ∈ Efn(Xβn)

}
= sup

n∈N
htop(fn) = lim

n→+∞
log βn = log 2.

Now, if f had a maximal entropy measure, then there should exist an ergodic maximal entropy
measure µ. Thus µ would belong to Efn(Xβn) for some n, and so hµ(f) = log βn < log 2.

Let us look instead for a maximizing probability measure of h∗.

Lemma 7.12. Let ε > 0 be given and, for each n ∈ N, consider µn ∈ Pfn(Xβn) such that
htop(fn) = h∗µ(fn). Then any accumulation point of (µn)n∈N in the weak∗ topology is δx∞.
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Proof. Take ψ ∈ C(X). Our aim is to show that limn→+∞
∫
ψ dµn = ψ(x∞). As ψ is continuous

on the compact X, the subsets
(
Xβn

)
n∈N are pairwise disjoint and converge to x∞ with respect

to the metric ρ, then the sequence of continuous maps
(
ψn = ψ|Xβn

)
n∈N converges uniformly

to ψ(x∞). Therefore,∣∣∣∣∫ ψ dµn − ψ(x∞)

∣∣∣∣ =

∣∣∣∣∫ (
ψn − ψ(x∞)

)
dµn

∣∣∣∣ 6 ∥ψn − ψ(x∞)∥∞
n→+∞−→ 0.

�
From Lemma 7.12 and the upper semi-continuity of h∗ we also conclude that

h∗δx∞ (f) > lim sup
n→+∞

h∗µn(f) = lim sup
n→+∞

h∗µn(fn) = log 2.

Since by definition h∗δx∞ (f) 6 hδx∞ (f) 6 htop(f) = log 2, the measure δx∞ maximizes both h∗

and h. On the contrary, hδx∞ (f) = 0. In particular, as hδx∞ (f) < hδx∞ (f), the measure δx∞
belongs to D (cf. (2.11)).

7.5. Pressure derived from Ruelle-Perron-Frobenius transfer operators. Some of the
statistical properties of equilibrium states are often proved using transfer operators, and the
topological pressure arises as the logarithm of the spectral radius of such an operator (cf. [56]).
However, the spectral theory of these operators is more powerful when the transfer operator
preserves the spaces of Hölder continuous or bounded variation potentials. In what follows,
we recall some of these concepts and show that Theorem 1 also imparts a new insight in the
thermodynamic formalism of piecewise continuous maps.

Let f : X → X be a piecewise continuous map on a metric space (X, d) and assume that
κ := supx∈X #f−1(x) < +∞. Then, given a potential φ ∈ Bm(X), the Ruelle-Perron-
Frobenius transfer operator with weight φ is (well) defined by

Lφ : Bm(X) → Bm(X)

ψ 7→ Lφ(ψ) : x ∈ X 7→
∑

f(y)=x

eφ(y) ψ(y). (7.13)

Denote by r(Lφ) the spectral radius of Lφ which, according to Gelfand’s formula (cf. [42]), may

be computed by r(Lφ) = limn→+∞ n

√
∥Lnφ∥.

Lemma 7.14. The function P : Bm(X) → R given by P (φ) = log r(Lφ) is a pressure function.

Proof. Fix φ ∈ Bm(X). Since the space Bm(X) is endowed with the supremum norm and Lφ is
a positive operator, for every n ∈ N one has

∥Lnφ∥ = sup
∥ψ∥∞ =1

∥Lnφ(ψ)∥∞ = ∥Lnφ(1)∥∞.

So r(Lφ) = limn→+∞ n

√
∥Lnφ(1)∥∞, which is bounded by κ e∥φ∥∞ . Now, given a ∈ [0, 1],

φ1, φ2 ∈ Bm(X) and n ∈ N, we write

Lnaφ1+(1−a)φ2
(1)(x) =

∑
fn(y)=x

eSn(aφ1+(1−a)φ2)(y) =
∑

fn(y)=x

(
eSnφ1(y)

)a(
eSnφ2(y)

)1−a
and apply Hölder’s inequality to get

∥Lnaφ1+(1−a)φ2
(1)∥∞ 6 ∥Lnφ1

(1)∥a∞∥Lnφ2
(1)∥1−a∞ .
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Taking logarithm, dividing by n and letting n go to +∞, we obtain

log
(
r(Laφ1+(1−a)φ2

)
)
6 a log

(
r(Lφ1)

)
+ (1− a) log

(
r(Lφ2)

)
thereby showing the convexity of the function P . The monotonicity follows from the positivity
of the operator Lφ and the proof of the translation invariance is immediate. �

Consequently, Theorem 1 yields the following variational principle.

Corollary 7.15. Let f : X → X be a piecewise continuous map on a metric space X such that
κ := supx∈X #f−1(x) < +∞. Given φ ∈ B = Bm(X), there exists an upper semi-continuous
map hB : Pa(X) → R such that

log r(Lφ) = max
µ∈Pa(X)

{
hB(µ) +

∫
φdµ

}
In particular, there is µφ ∈ Pa(X) satisfying Rohlin’s-like formula (cf. [79])

hB(µφ) =

∫
log

(
r(Lφ) e−φ

)
dµφ.

We illustrate this result with the following class of examples.

Example 7.16. Consider a C1-piecewise expanding map f : X → X whose domain is the union
of a finite number of subintervals Xi = [ai, bi) or Xi = (ai, bi], where ai < bi, within which f
is continuous. Let φ = − log |f ′|, which we assume to be piecewise continuous and bounded,
though it may not exhibit any further regularity. The corresponding transfer operator is given
by

ψ ∈ Bm(X) 7→ Lφ(ψ)(x) =
∑

f(y)=x

1

|f ′(y)|
ψ(y)

and Corollary 7.15 ensures that there exists µφ ∈ Pa(X) such that

hB(µφ) +

∫
log |f ′| dµφ = log r(Lφ).

For instance, the Lorenz maps satisfy the previous assumptions with X = [−1, 0) ∪ (0, 1].

We observe that, while dealing with a transfer operator acting on a suitable Banach space
X and exhibiting a spectral gap, Giulietti et al [48, Theorem F] showed a variational principle
similar to the one in Corollary 7.15 with an entropy-like function hX computed by

hX (µ) = inf
ϕ∈X

{
log λX (ϕ)−

∫
ϕdµ

}
for every f -invariant probability measure µ, where λX (ϕ) denotes the spectral radius of the
transfer operator Lϕ : X → X . In general, since X ( Bm(X) one has hµ(f) 6 hB(µ) 6 hX (µ)
for every µ ∈ Pf (X). In the special case that f is a Ruelle expanding map on a compact metric
space X and X = Cα(X), α > 0, the spectral radius of the operator Lϕ acting on both spaces
Cα(X) and C(X) coincide and the three notions of entropy (with B = C(X)) are the same.
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7.6. Finitely additive equilibrium states and second order phase transition. Consider
the Manneville-Pomeau family of maps fα : [0, 1] → [0, 1], α > 0, given by

fα(x) =

{
x (1 + 2αxα) if x ∈ [0, 12 [

2x− 1 if x ∈ [12 , 1].
(7.17)

It is known that the metric entropy map of each fα is upper semi-continuous, and that this family
exhibits phase transitions with respect to the potentials φα,t = −t log |f ′α|, parameterized by
t ∈ R. For instance:

(MP1) If α > 0 and t ∈ ]−∞, 1[, there exists a unique equilibrium state µα,t for fα and φα,t.

(MP2) If α > 0, the map t ∈ [1,+∞[ 7→ Ptop(−t log |f ′α|) is equal to zero and the Dirac measure
δ0 is an equilibrium state with respect to φα,t.

(MP3) If 0 < α < 1, there exist two equilibrium states with respect to φα,1, namely the Dirac δ0
and an fα-invariant probability measure µα,1 which is absolutely continuous with respect
to the Lebesgue measure; moreover, the map t ∈ R 7→ Ptop(−t log |f ′α|) is not C1.

(MP4) If α > 1, there exists a unique equilibrium state for φα,t for any t ∈ R; moreover, the map
t ∈ R 7→ Ptop(−t log |f ′α|) is C1, but not C2, and there is an fα-invariant, σ-finite and
infinite measure which is absolutely continuous with respect to the Lebesgue measure.

We refer the reader to [23, 58, 88] for an ample discussion on phase transitions of the Manneville-
Pomeau family.

It is worth noticing that the C1-smoothness of the pressure is compatible with the presence
of second-order phase transitions. Yet, in the special case of the Manneville-Pomeau maps and
α > 1, the second order phase transitions for the potential φα,t ∈ Cα([0, 1]) ⊂ C0([0, 1]) can
be detected as first order phase transitions when one considers the pressure function defined
on the space of bounded observables or, equivalently, when one replaces the space of invariant
probability measures by the larger set of invariant finitely additive measures. More precisely,
let P (fα, ·) : Bm([0, 1]) → R be the pressure function defined by P (fα, φ) = log r(Lφ) (recall
Lemma 7.14 and the definition of the transfer operator Lφ in (7.13)). Then

P (fα, φ) = max
µ∈Pa([0,1])

{
h(µ) +

∫
φdµ

}
(7.18)

where

h(µ) = inf
φ∈Bm([0,1])

{
log r(Lφ)−

∫
φdµ

}
for every finitely additive Borel probability measure µ. As P (fα, log |f ′α|) = log r(L− log |f ′α|) = 0
and

∥Lnφ∥∞ > ∥Lnφ(1)∥∞ > (Lnφ(1))(0) > enφ(0)

for every φ ∈ Bm([0, 1]), one concludes that h(δ0) > 0. Moreover, for every fα-invariant proba-
bility measure µ,

h(µ) = inf
φ∈Bm([0,1])

{
log r(Lφ)−

∫
φdµ

}
6 inf

φ∈C0([0,1])

{
log r(Lφ)−

∫
φdµ

}
= inf

φ∈C0([0,1])

{
P (fα, φ)−

∫
φdµ

}
= hµ(fα)
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where the last equality is due to the fact that the metric entropy map of fα is upper semi-
continuous, while the last but one is a consequence of the conjugation between fα and the
doubling map, for which such an equality holds (see e.g. [29]). Therefore, h(δ0) 6 hµ(δ0) = 0;
hence h(δ0) = 0. In the particular case of φ = − log |f ′α| we get

P (fα,− log |f ′α|) = 0 = max
µ∈Pa([0,1])

{
h(µ)−

∫
log |f ′α| dµ

}
and the Dirac measure δ0 attains the maximum.

A second equilibrium state appears while one looks for absolutely continuous finitely additive
invariant measures. Consider the Lebesgue measure on [0, 1] (which we abbreviate into Leb)
and the Banach space L∞(Leb, [0, 1]) of equivalent classes of the essentially bounded real-valued
Lebesgue measurable maps φ : [0, 1] → R, under the relation φ v ψ if and only if φ = ψ
at Leb almost everywhere. Endow L∞(Leb, [0, 1]) with the essential supremum norm. The
Hewitt-Yosida representation theorem (cf. [49]) informs that the dual of L∞(Leb, [0, 1]) is the
space of bounded finitely additive measures m on the Borel subsets of [0, 1] which are absolutely
continuous with respect to Leb (in the sense that Leb(A) = 0 implies m(A) = 0), with the norm
of total variation. Denote by Pa,Leb([0, 1]) the set of normalized elements of

(
L∞(Leb, [0, 1])

)∗
and by Pa,Leb(fα) ⊂ Pa,Leb([0, 1]) the subset of those elements which are fα-invariant. According
to [33], the space Pa,Leb(fα) is non-empty.

Given µ ∈
(
L∞(Leb, [0, 1])

)∗
, consider the upper semi-continuous entropy function

H(µ) =

{
infφ∈L∞(Leb,[0,1])

{
log r(L̂φ)−

∫
φdµ

}
if µ is fα-invariant

−∞ otherwise
(7.19)

where r(L̂φ) is the spectral radius of a transfer operator L̂φ obtained as the extension to
L∞(Leb, [0, 1]) of the operator Lφ acting on Bm([0, 1]) (for more details we refer the reader
to [6]). The previous definition allows us to build a pressure function on L∞(Leb, [0, 1]). Given
φ ∈ L∞(Leb, [0, 1]), define

P̂ (fα, φ) = sup
µ∈Pa,Leb(fα)

{
H(µ) +

∫
φdµ

}
. (7.20)

By the Legendre-Fenchel duality,

P̂ (fα, φ) = log r(L̂φ).

Moreover, P̂ satisfies the following variational principle (cf. [6, Theorem 1])

P̂ (fα, φ) = max
µ∈Pa,Leb(fα)

{
H(µ) +

∫
φdµ

}
. (7.21)

In addition, as the spectral radius can be evaluated using the constant map 1, which belongs to
both Bm([0, 1]) and L

∞(Leb, [0, 1]), one has

log r( ̂L− log |f ′α|) = log r(L− log |f ′α|) = 0.

Consequently,

0 = P (fα,− log |f ′α|) = P̂ (fα,− log |f ′α|) = max
µ∈Pa,Leb(fα)

{
H(µ)−

∫
log |f ′α|dµ

}
.
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Let mα be a finitely additive probability measure absolutely continuous with respect to Leb
where the previous maximum is attained, that is,

H(mα) =

∫
log |f ′α| dmα.

Then

0 = P̂ (fα,− log |f ′α|) = H(mα)−
∫

log |f ′α| dmα

= inf
φ∈L∞(Leb,[0,1])

{
log r(L̂φ)−

∫
φdmα

}
−

∫
log |f ′α| dmα

6 inf
φ∈Bm([0,1])

{
log r(Lφ)−

∫
φdmα

}
−

∫
log |f ′α| dmα

= h(mα)−
∫

log |f ′α| dmα 6 P (fα,− log |f ′α|) = 0.

Thus, summoning the previous information on mα and δ0, and Corollary 4, one deduces that:

Corollary 7.22. If (fα)α> 1 is the Manneville-Pomeau family (7.17), then # Tφα,1(Ptop) > 2.

In particular, for every α > 1 the map Ptop : C0([0, 1]) → R is Gateaux differentiable, though
its extension to Bm([0, 1]) is not Gateaux differentiable at φα,1.

8. Non-additive sequences of continuous potentials: Proof of Theorem 7

In this section, we fix a continuous endomorphism of a compact metric space X and, instead
of the classic pressure function with respect to a given potential φ : X → R and the sequence of
sums (Snφ)n∈N, we consider non-additive sequences of continuous potentials. Although these
objects arise naturally in the study of Lyapunov exponents and dimension theory, the non-
additive thermodynamic formalism is still barely understood. We refer the reader to [10, 11, 45,
35] for a thorough discussion on these topics.

Let f : X → X be a continuous map on a compact metric space (X, d). We say that a
sequence Φ = (φn)n∈N ∈ C(X)N of continuous potentials is

(1) sub-additive if φm+n 6 φm + φn ◦ fm ∀m, n ∈ N;
(2) almost additive if there exists a uniform constant C > 0 such that

φm + φn ◦ fm − C 6 φm+n 6 φm + φn ◦ fm + C ∀m, n ∈ N;
(3) asymptotically additive if for any ε > 0 there exists φε ∈ C(X) such that

lim sup
n→+∞

1

n

∥∥∥φn − n−1∑
j=0

φε ◦ f j
∥∥∥
∞
< ε.

It is known that every almost additive sequence is asymptotically additive, and that for every
asymptotically additive sequence Φ = (φn)n∈N ∈ C(X)N there exists φ ∈ C(X) such that

lim sup
n→+∞

1

n

∥∥∥φn − n−1∑
j=0

φ ◦ f j
∥∥∥
∞

= 0

(cf. [35, 44]). Therefore, both the variational principle and the existence of finitely additive
equilibrium states established in Theorem 5 admit an immediate generalization to this context
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(the modifications necessary to deal with sequences in other Banach spaces are left as an easy
exercise to the interested reader.) Henceforth, we will aim at the more general context of sub-
additive sequences of continuous potentials.

Definition 8.1. Given a sequence Φ = (φn)n∈N ⊂ C(X) of continuous potentials, the non-
additive topological pressure is defined by

P (f, Φ) = lim
ε→ 0+

lim sup
n→+∞

1

n
log

(
sup
E

∑
x∈E

eφn(x)
)

(8.2)

where the supremum is taken over the (n, ε)-separated subsets E of X.

This definition coincides with the usual notion of topological pressure Ptop(f, φ) when there

is φ ∈ C(X) such that φn =
∑n−1

j=0 φ ◦ f j for every n ∈ N. It is known (cf. [11]) that every
almost additive sequence of continuous potentials which have bounded distortion admits a unique
equilibrium state, which is a Gibbs measure. More recently, it was proved in [35] that any almost
additive or asymptotically additive sequence of continuous potentials have the same pressure of
an additive sequence associated to a continuous potential. However, it is not known whether this
potential inherits the distortion properties of the original almost additive sequence. Moreover,
for sub-additive sequences of continuous potentials no general construction of equilibrium states
is known, though for these sequences Cao, Feng and Huang [28] established the following general
variational principle.

Theorem 8.3. [28] Given a continuous self-map f : X → X of a compact metric space X, if
Φ = (φn)n∈N is a sub-additive sequence of continuous potentials such that P (f, Φ) > −∞, then

P (f, Φ) = sup
µ∈Pf (X)

{
hµ(f) + F∗(Φ, µ)

}
(8.4)

where, for every f-invariant probability measure µ,

F∗(Φ, µ) := lim
n→+∞

1

n

∫
φn dµ.

We note that if Φ = (φn)n∈N is a sub-additive sequence of continuous potentials then F∗(Φ, µ)
is well defined for every µ ∈ Pf (X). In fact, the sequence of real numbers (an)n∈R given by

an =
∫
φn dµ is sub-additive, hence limn→+∞

1
n an = infn∈N

1
n an by Fekete’s Lemma.

8.1. An alternative variational principle for sub-additive sequences. One might expect
a counterpart of Theorem 1 for a more general context of Banach spaces of sequences of functions.
This faces non-trivial difficulties, though. Contrary to what happens within the simpler case of
almost additive sequences, albeit providing a convex cone in the space of sequences of potentials,
sub-additivity is not preserved under multiplication by negative numbers. This is a major
obstruction since the entropy in Theorem 1 is defined using observable maps φ such that −φ has
non-positive pressure, which makes the Banach space generated by sub-additive sequences not
suitable to this approach. To overcome this difficulty we will combine two pressure functions
to which we apply Theorem 1, thus reducing the previous problem, concerning sub-additive
sequences of functions, to the construction of equilibrium states for a single bounded potential
(see Lemma 8.5).
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In order to apply Kingman’s Sub-additive Ergodic Theorem, we need to narrow our analysis
to the set

Sb =
{
Φ = (φn)n∈N ∈ C(X)N : Φ is sub-additive and inf

x∈X

[
inf
n∈N

1

n
φn(x)

]
> −∞

}
.

This set comprises relevant families of sequences of continuous potentials arising within the
theory of linear cocycles, as we will detail on Subsection 8.2. We also observe that Φ ∈ Sb if
and only if it is sub-additive and F∗(Φ, µ) > −∞ for every f -invariant probability measure µ
(cf. [84, pp. 336–337]). Moreover:

Lemma 8.5. Given Φ = (φn)n∈N ∈ Sb, the map ψΦ defined by

x ∈ X 7→ ψΦ(x) = inf
n∈N

1

n
φn(x)

is measurable, upper semi-continuous, belongs to Bm(X) and satisfies∫
ψΦ dµ = F∗(Φ, µ) ∀µ ∈ Pf (X).

Proof. For every Φ = (φn)n∈N ∈ Sb, the corresponding map ψΦ is measurable and upper semi-
continuous, hence upper bounded on the compact X. Since Φ belongs to Sb, the map ψΦ is
also lower bounded. Moreover, by the Kingman’s Sub-additive Ergodic Theorem (see [91]), the
maps infn∈N

1
n φn and lim infn→+∞

1
n φn coincide in a set with full measure and, for every

µ ∈ Pf (X) one has
∫
lim infn→+∞

1
n φn dµ = F∗(Φ, µ). So,

∫
ψΦ dµ = F∗(Φ, µ) as well. �

In the remaining of this subsection we restrict to Sb and consider P (f, .) in order to improve the
variational relation (8.4). More precisely, we will show the following counterpart of Theorem 5
in this context, using Bm(X) instead of C(X).

Theorem 8.6. Let f be a continuous self-map of a compact metric space (X, d) whose topological
entropy is finite. Then there exists an affine and upper semi-continuous entropy map h1 :
Pa(X) → R such that

P (f, Φ) = max
µ∈Pa(X)

{
h1(µ) +

∫
ψΦ dµ

}
∀Φ ∈ Sb.

Proof. An effortless computation shows that the map Γ1 : Bm(X) → R defined by

ψ ∈ Bm(X) 7→ Γ1(ψ) = sup
µ∈Pf (X)

{
hµ(f) +

∫
ψ dµ

}
is a pressure function. Therefore, we may apply Theorem 1 and conclude that there exists an
affine and upper semi-continuous map h1 : Pa(X) → R such that, for every µ ∈ Pa(X),

h1(µ) = inf
ψ ∈AΓ1

∫
ψ dµ

and, for each ψ ∈ Bm(X),

Γ1(ψ) = max
µ∈Pa(X)

{
h1(µ) +

∫
ψ dµ

}
.

Besides, P (f,Φ) > infµ∈Pf (X) F∗(Φ, µ) > −∞ for every (φn)n∈N ∈ Sb (cf. [28]). In addition,

from Lemma 8.5 and Theorem 8.3 one deduces that, for every Φ = (φn)n∈N ∈ Sb,
P (f,Φ) = Γ1(ψΦ).
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That is,

sup
µ∈Pf (X)

{
hµ(f) + F∗(Φ, µ)

}
= sup

µ∈Pf (X)

{
hµ(f) +

∫
ψΦdµ

}
= max

µ∈Pa(X)

{
h1(µ) +

∫
ψΦdµ

}
.

�

8.2. Application to linear cocycles and Lyapunov equilibrium states. Non-uniform
hyperbolicity is defined in terms of Lyapunov exponents: a diffeomorphism is non-uniformly
hyperbolic if it has no zero Lyapunov exponents and there exists at least one positive and one
negative exponent. These numbers measure the exponential asymptotic rates of contraction
or expansion along fixed directions, and became a fundamental tool to characterize chaotic
dynamics. Linear cocycles turn to be a powerful mean to attest the abundance of non-uniformly
hyperbolic behavior, as it allows to detach the underlying dynamics from the action it induces
on a vector space. Here we are mainly interested in the existence of Lyapunov equilibrium states
for linear cocycles. Some recent contributions on this topic comprise [8, 15, 44, 45].

8.2.1. Lyapunov exponents. We start recalling some preliminary notions. Let f be a contin-
uous map on a compact metric space (X, d). Given an integer ℓ > 1, a field K = R or C and a
measurable matrix-valued map A : X → GL(ℓ,K), the linear cocycle generated by A and driven
by f is the map

FA : X ×Kℓ → X ×Kℓ

(x, v) 7→ (f(x), A(x)v) .

Its iterates are FnA (x, v) = (fn(x), An(x)v), where

An(x) = A(fn−1(x)) · · ·A(f(x))A(x)

for every n ∈ N, A0(x) = x and, if f is invertible,

An(x) = A(fn(x))−1 · · ·A(f−1(x))−1

when n < 0. We shall also refer to the cocycle as a pair (f,A). A natural example of linear
cocycle is given by the derivative cocycle associated to a diffeomorphism f ∈ Diff 1(X) on a
compact Riemannian manifold X, in which case the cocycle is generated by A(x) = Df(x) for
each x ∈ X.

Oseledets’ Theorem asserts that, under mild conditions, the Lyapunov exponents of the co-
cycle (f,A) are well defined. More precisely, given an f -invariant probability measure µ, if
log ∥A±∥ ∈ L1(µ) then for µ-almost every x ∈ X there exist an integer k(x) > 1, a splitting

Kℓ = E1,A
x ⊕ · · · ⊕ E

k(x),A
x and real numbers (called Lyapunov exponents)

λ1 (A,µ, x) > · · · > λk(x) (A,µ, x)

such that, for every v ∈ Ei,Ax \ {0} and 1 6 i 6 k(x),

A(x)
(
Ei,Ax

)
= Ei,A

f(x) and λi(A,µ, x) = lim
n→+∞

1

n
log ∥An(x)v∥.
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If, in addition, µ is ergodic, then k(x), the Lyapunov exponents λi(A,µ, x) and the dimensions of

the subspaces Ei,Ax are µ-almost everywhere constant, in which case one simplifies the notation
by writing λi(A,µ).

Remark 8.7. If X is a compact Riemannian manifold, f is a C1-diffeomorphism on X and µ
is an f -invariant and ergodic probability measure then the Lyapunov exponents of µ are defined
as the corresponding Lyapunov exponents for the derivative cocycle A = Df .

8.2.2. Singular value sub-additive potentials. In what follows, ∧kL stands for the kth
exterior power of the linear map L. Assume that the linear cocycle A : X → GL(ℓ,K) is con-
tinuous. Then the Lyapunov exponents can be computed using exterior powers and a family of
sub-additive sequences of potentials. More precisely, if µ is an f -invariant and ergodic proba-
bility measure and one takes for each k ∈ N the sub-additive sequence Φk = (φk,n)n∈N of the
continuous functions

x ∈ X 7→ φk,n(x) = log ∥ ∧k An(x)∥
then

lim
n→+∞

1

n
φk,n(x) =

k∑
i=1

λi(A,µ) at µ-almost every x ∈ X.

Motivated by applications in dimension theory and aiming to apply their results to Falconer’s
singular value function and affine iterated function systems with invertible affinities, Bochi and
Morris [15] studied the following continuous parameterized family of sub-additive sequences of
potentials. Given α⃗ = (α1, α2, . . . , αℓ) ∈ Rℓ with α1 > α2 > · · · > αℓ, consider the sequence
Φα⃗ = (φα⃗,n)n∈N defined by

φα⃗,n(x) = log
( ℓ∏
i=1

si(A
n(x))αi

)
where si(L) denotes the ith singular value of the linear map L. Then it is shown in [15] that if
µ is an f -invariant and ergodic probability one has

lim
n→+∞

1

n
φα⃗,n(x) =

k∑
i=1

αi · λi(A,µ) at µ-almost every x ∈ X. (8.8)

Now, the variational principle for the previous family of sub-additive sequences, established
by Theorem 8.3, says that, if htop(f) < +∞ and P (f,A, Φα⃗) is the pressure function defined
by (8.2) when Φ = Φα⃗, then

P (f,A, Φα⃗) = sup
µ∈Pf (X)

{
hµ(f) +

∫ k∑
i=1

αi · λi(A,µ, x) dµ
}
. (8.9)

Invariant measures attaining the previous equality, so called Lyapunov equilibrium states, may
be hard to find. In the special context of cocycles over a full shift, the metric entropy function
is upper semi-continuous and so these equilibrium states always exist. Moreover, within totally
disconnected spaces, it has been shown under great generality that, for typical one-step cocycles
and Hölder continuous fiber-bunched cocycles, the previous families of sequences of potentials
satisfy a quasi-additivity property, and so they have unique Lyapunov equilibrium states (cf.
[45, 66]). More recently, Bochi and Morris (cf. [15, Theorem 1]) proved that, in this setting,
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there are finitely many Lyapunov equilibrium states, these have full support, and are unique for
potentials at large temperatures.

It is known that the existence of Lyapunov equilibrium states for the family (βΦα⃗)β > 0 carries
information on Lyapunov optimizing measures. For example, given Lyapunov equilibrium states
µβ with respect to βΦα⃗, β > 0, any weak∗ accumulation point of (µβ)β > 0 is an ergodic optimizing
measure for the potential Φα⃗. Additionally, in the case of 2 × 2 one-step dominated cocycles,
Bochi and Rams [16] proved that Lyapunov optimizing measures always exist and, under an
additional strong domination condition, these have zero topological entropy. More information
about the behavior of zero temperature limits may be read in [63].

8.3. Proof of Theorem 7. Let f be a continuous map on a compact metric space (X, d). For
each cocycle A ∈ C(X,GL(ℓ,R)) and vector α⃗ = (α1, α2, . . . , αℓ) ∈ Rℓ with α1 > α2 > · · · > αℓ
consider the corresponding non-additive sequence Φα⃗ of singular value potentials. The map

ψΦα⃗
(x) := inf

n∈N

1

n
φα⃗,n(x), x ∈ X

defined by Lemma 8.5 is a measurable, upper semi-continuous and bounded function on X.
Combining equations (8.8) and (8.9) one gets

P (f,A, Φα⃗) = sup
µ∈Pf (X)

{
hµ(f) +

∫
ψΦα⃗

dµ
}
.

Consider now the function P(f, ·) : Bm(X) → R defined by

P(f, ψ) = sup
µ∈Pf (X)

{
hµ(f) +

∫
ψ dµ

}
.

It is immediate to check that this is a pressure function. Thus, applying Theorem 1, one obtains
an affine and upper semi-continuous entropy entropy function

hα⃗ : Pa(X) → R ∪ {−∞, +∞}
satisfying

P (f,A, Φα⃗) = P(f, ψΦα⃗
) = max

µ∈Pa(X)

{
hα⃗µ(f) +

∫
ψΦα⃗

dµ
}
. (8.10)

The set of finitely additive probability measures attaining the maximum is f -invariant (recall
the proof of Corollary 7.3). Moreover, by Theorem 1 there is an upper semi-continuous map
hf : Pa(X) → R such that, for every non-additive sequence Φα⃗ of singular value potentials, one
has

P (f,A, Φα⃗) = max
µ∈Pa(X)

{
hµ(f) +

∫
ψΦα⃗

dµ
}
.

We are left to show that the set of finitely additive equilibrium states is non-empty for
every linear cocycle in C(X,GL(ℓ,R)), and that the zero temperature limits of finitely additive
equilibrium states have the largest value of hα⃗f amongst the Lyapunov optimizing measures. This

is a simple consequence of equality (8.10) and the fact that, as

sup
µ∈Pa(X)

hα⃗µ(f) 6 htop(f) < +∞

then one has
1

t
P(f, tΦα⃗) = max

µ∈Pa(X)

{1

t
hα⃗µ(f) +

∫
ψΦα⃗

dµ
}

−→
t→+∞

max
µ∈Pa(X)

∫
ψΦα⃗

dµ



36 A. BIŚ, M. CARVALHO, M. MENDES, AND P. VARANDAS

and

1

t
P (f,A, tΦα⃗) = sup

µ∈Pf (X)

{1

t
hµ(f) +

∫
ψΦα⃗

dµ
}

−→
t→+∞

sup
µ∈Pf (X)

∫
ψΦα⃗

dµ = sup
µ∈Pf (X)

∫ k∑
i=1

αi · λi(A,µ, x) dµ.

Therefore, there exists an f -invariant finitely additive probability measure µΦα⃗
∈ Pa(X) such

that ∫
ψΦα⃗

dµΦα⃗
= sup

µ∈Pf (X)

∫ k∑
i=1

αi · λi(A,µ, x) dµ.
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[8] B. Bárány, A. Käenmäki and I. Morris. Domination, almost additivity and thermodynamical formalism for

planar matrix cocycles. Israel J. Math. 239 (2020) 173–214. 8.2
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Math. 5 (1934) 69–98. 3
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[63] R. Mohammadpour. Zero temperature limits of equilibrium states for subadditive potentials and approximation

of the maximal Lyapunov exponent. Topol. Methods Nonlinear Anal. 55:2 (2020) 697–710. 8.2.2
[64] S. Newhouse. Continuity properties of the entropy. Ann. of Math. 129 (1989) 215–237. 1, 6.1.1, 6.1.1
[65] O. Nikodym. A theorem on infinite sequences of finitely additive real valued measures. Rend. Sem. Mat.

Padova 24 (1955) 265–286. 1
[66] K. Park. Quasi-multiplicativity of typical cocycles. Comm. Math. Phys. 376:3 (2020) 1957–2004. 8.2.2
[67] W. Parry and M. Pollicott. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque
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