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Abstract

Pelvic Organ Prolapse has been studied for years - as the consequent damage
to vital organs harnesses the health of many women, leading to pain and
discomfort - and deserves the greater focus during the current work. Given
the fact that its occurrence is associated with the weakening of the pelvic floor
muscles and ligaments, all the features of the pelvic cavity are addressed.

The reviewed literature is meant to serve as a guideline for understand-
ing the causes, implications and possible solutions for this medical condition.
Treatment techniques are split between conservative and surgical approaches,
depending on the severity of the injury. The surgical treatment is supported
by the implantation of meshes, meant to compensate for the compromised
functioning of degraded natural tissues.

Even though these techniques have been perfected in the past, many so-
lutions cannot deliver convincing or safe results. Improved production tech-
niques and materials have been put into play in order to achieve more adequate
solutions. Melt electrospinning writing is one of these techniques and poly
ϵ-caprolactone - a biodegradable polymer – a new material that has shown
interesting results during uniaxial tensile tests developed on mesh prototypes.
The current work relies on the data collected from those tests, in order to
model the meshes’ behaviour on ABAQUS® software.

Once these meshes are built superimposing several filaments of two distinct
diameters measuring 160 and 240 micrometres, the last are also simulated
in order to assess the best constitutive model to represent their stress-strain
relationship – the Linear Elastic model is found to be the best option. This
model is used in the mesh simulations thereafter so that the influence of the
sectional area may be understood - the structure overall capacity of enduring
higher loads increases with the sectional area.

A square-shaped and a cross-shaped geometries are modelled in order to see
how the stress distributions change as a function of the design – it is verified
that the meshes built with the 160 micrometres diameter filaments are the best
option to match the vaginal tissue curve up to a 6% elongation and that the
meshes built with the 240 micrometres diameter filaments and the Restorelle®

commercial mesh show similar behaviours inside the comfort zone.
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Resumo

O Prolapso Pélvico tem sido alvo de sucessivos estudos ao longo dos últi-
mos anos – dada a complexidade dos danos associada aos órgãos da cavidade
pélvica, que levam a sensações de desconforto e dor por parte dos pacientes –
e recebe especial atenção ao longo do presente trabalho. Uma vez que a ocor-
rência desta condição está relacionada com o enfraquecimento dos músculos do
pavimento pélvico, assim como com os ligamentos da cavidade, a constituição
deste é cuidadosamente estudada.

A bibliografia revista serve como base de compreensão das causas, impli-
cações e possíveis soluções para este problema de saúde. As técnicas de trata-
mento dividem-se entre conservadoras e cirúrgicas, dependendo da gravidade
da lesão. O tratamento cirúrgico é suportado pela implantação de malhas,
destinadas a compensar o mau funcionamento dos tecidos degradados.

Apesar do facto destas técnicas terem vindo a ser aperfeiçoadas no pas-
sado, nem todas as soluções garantem resultados convincentes ou seguros. A
necessidade de encontrar novos métodos de produção destas malhas, supor-
tados por materiais inovadores, é evidente. A impressão 3D aparece como
promissora, nomeadamente a técnica de melt electrospinning, assim como o
poly ϵ-caprolactone – um polímero biodegradável – que tem demonstrado re-
sultados interessantes em ensaios de tração uniaxial aplicados a protótipos de
malhas compostos pelo mesmo.

O presente trabalho assenta dos dados experimentais retirados dos men-
cionados ensaios, com o objetivo de simular o comportamento das malhas no
programa ABAQUS®. Sendo estas malhas constituídas pela sobreposição de
filamentos de diâmetros de 160 e 240 micrómetros, estes são também simulados
de forma a encontrar o melhor modelo constitutivo para reproduzir a relação
tensão-deformação registada nos ensaios – o modelo linear elástico apresenta-se
como o mais apropriado. Este modelo é usado nas simulações das malhas com
o objetivo de perceber a influência do valor da área de secção – a capacidade
de suportar valores superiores de tensão aumenta com a área de secção.

Duas geometrias distintas, uma quadrada e outra cruzada, são modeladas
de de forma a visualizar a influência do design nas distribuições de tensão ao
longo das estruturas – verificando-se que as malhas constituídas por filamen-
tos com diâmetro de 160 micrómetros são a melhor opção para reproduzir o
comportamento do tecido vaginal até 6% de elongação e, por outro lado, que
as malhas constituídas por filamentos com diâmetro de 240 micrómetros ap-
resentam um comportamento similar ao das malhas comercialmente utilizadas
da Restorelle® para toda a zona de comforto de deformação.
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‘An intellectual says a simple thing in a hard way. An artist says a hard
thing in a simple way.”

Charles Bukowski
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Chapter 1

Thesis Report

1.1 Introduction

The present work has been developed on behalf of the final Dissertation
of the Integrated Master Degree in Mechanical Engineering from the Faculty of
Engineering of the University of Porto with the purpose of developing 3D com-
putational models for Pelvic Organ Prolapse-Repairing 3D-Printed Biodegrad-
able Mesh Implants.

Pelvic organ prolapse (POP), as a consequence of the weakening of inte-
rior supportive structures such as muscles and ligaments, can lead to serious
discomfort and even organ failure [2]. Surgical implants are, up to the date of
the current work’s writing, the most reliable solution for restoring the natural
position of the uterus. However, past solutions were not completely successful
once many patients experienced injuries and discomfort after the surgery [3].
The fact that these implants often lead to pain and bleeding is a serious con-
cern inside the community [4]. Plus, a proper match between the properties
of the implants and the ones of the biological tissues to be repaired may be
another performance factor to consider.

Aiming at a better understanding of the properties of biodegradable mesh
implants, a less harmful option for the host, simulations on the mechanical
behaviour of filaments were firstly set into motion. Relying on previous ex-
perimental data collected from tensile tests, several constitutive models - for
samples produced through melt electrospinning writing [5] - were tested so
that the best fit could be found and used in the mesh simulations afterwards.
Simulating different mesh geometries with accuracy (also in comparison to
experimental data) would guarantee that the chosen model was indeed ap-
propriate, enabling the creation of new geometries and, ultimately, a more
adequate solution for the mesh implants themselves.

1.2 Background and Main Objectives

Previous research has been carried out by many authors on how to deal
with pelvic health conditions [6]. Increased life expectancy due to healthcare
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improvements is a key factor for the incidence of POP to keep rising in the fu-
ture, hence the importance of properly understanding its fundamental causes.
Given the fact that the impairment degree of the pelvic ligaments defines the
severity of the condition, tracking the several prolapse stages stands as crucial.
Many studies have also been published on those terms, resorting to in vitro
experiments to evaluate the behaviour of the pelvic ligaments, vaginal tissue
and levator ani [7]. The results obtained from these experiments were able to
represent the real in vivo behaviour of the tissues [8], and represent the best
reference for the extraction of such data.

Regarding potential solutions for POP treatment, biodegradable im-
plants must be highlighted. Previous research [5] thoroughly dedicated to
understand how feasible the combination of 3D printing and biodegradable
polymers would be for the production of such implants. The main goal of the
current work was, serving as a follow-up approach, to evaluate which constitu-
tive models would present as the most adequate to simulate filament and mesh
mechanical behaviour, in order to avoid unnecessary costs in the development
and improvement of the biodegradable implants.

1.3 Dissertation Outline
Besides the present Thesis Report, the current work features six other

chapters, enumerated and described below.
In Chapter 2, “Literature Review”, a base context is presented for the

Female Pelvic anatomy, Pelvic Organ Prolapse and related treatments, as well
as the theory supporting the adequacy of PCL and Melt Electrospinning for
implant manufacturing.

In Chapter 3, “Computational Modelling”, a first approach to the stress
distribution analysis is made, so as to the main constitutive models used for
the simulations developed in ABAQUS®.

In Chapter 4, “Finite Element Simulations”, a full characterization of the
constitutive models is shown, before moving into the application of numerical
simulations on filaments and meshes

In Chapter 5, “Results and Discussion”, the outcome of the analyses is
presented according to each model, analysing the results and comparing them
to the experimental data.

In Chapter 6, “Conclusion”, the final considerations regarding the current
work are presented, along with the potential future work on the subject.



Chapter 2

Literature Review

2.1 Female Pelvis Anatomy
As a life supporting structure and the room of numerous vital organs, the

female pelvis has been thoroughly and specifically studied in past years with
the purpose of better understanding, predicting and solving potential health
conditions related to degenerated tissues. Whereas the male pelvis shows a
more balanced geometry, the wider outlet diameter and circular shape seen on
the female anatomy, nevertheless crucial for head engagement and parturition,
predisposes to subsequent pelvic floor weakness [9].

The encircling bony structure is composed by 2 innominate bones, or hip
bones, which are fused to the sacrum posteriorly and to each other anteriorly
at the pubic symphysis. Several protrusions and ledges constitute attachment
sites for muscles, fascial layers and ligaments. One of these, assumed as of great
importance, is the thin and triangular sacrospinous ligament which, connecting
the ischial spines to the lateral margins of the sacrum and coccyx anteriorly
to the sacrotuberous ligament, reinforces the ground support for the cavity’s
interior. The pelvis has 2 basins: the major pelvis and the minor pelvis. The
abdominal viscera occupy the major pelvis; the minor pelvis is the narrower
continuation of the major pelvis inferiorly. The inferior pelvic outlet is closed
by the pelvic floor [9].

Inside the cavity, the uterosacral (USLs) and cardinal ligaments (CLs)
provide apical support to the upper vagina and uterus [9]. It is the impairment
of these tissues that compromises the stability of the whole region. Simulations
of the mechanical properties of the pelvic tissues have been used in [8], with
the intention of delivering pelvic implants capable of mimicking the behaviour
of those tissues.

2.1.1 Bone Cavity
The pelvic girdle connects the vertebral column (axial skeleton) to the

two femora (appendicular skeleton). Transmitting weight from the upper body
to the lower limbs during locomotion and while standing, as well as supporting
the weight of the upper body when seated or stationary are the main functions
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of the pelvic girdle. Two deep articular depressions are found on the bony
pelvis, the acetabula, which give room to the right and left femoral heads and
form the corresponding hip joint. On the superior end, the bony pelvis also
offers support to the vertebral column via the articulation between the top of
the sacrum and the lumbar vertebrae [10].

Figure 2.1: Right hip bone [10].

At each side of the hip bone - Figure 2.3 - stands the iliac crest which
ends in the anterior superior iliac spine and posterior superior iliac spine, at
its anterior and posterior extremities, respectively. Apart from the iliac crest,
in the cavity also lie three other bones (the pubis, the ischium and the ilium)
which compose the hip bone, merging at a Y-shaped epiphysis (the triradiate
cartilage) at the acetabulum. The differentiation between the true and false
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pelvis is given through the plane of the pelvic grim (or pelvic inlet), that shows
a 60 degree inclination to the horizontal. Below the level of the pelvic grim sits
the true (or lesser pelvis) whereas the false (or greater pelvis) is represented
by the structure above it. As shown in Figure 2.2, posteriorly formed by
the prominent anterior lip of the upper surface of the body of the sacrum,
the pelvic grim also accounts, anteriorly, for the pubic crest and the upper
edge of the pubic symphysis. The obturator foramen assures the anterolateral
communication between the true pelvis and adductor region of the thigh being
the first of three anatomical features with that purpose. It is a large opening
in the anterior part of the hip bone with a complete bony boundary. The
sacrotuberous and sacrospinous ligaments constitute the bridging between the
greater and lesser sciatic notches, representing the remaining communication
spots that form the true pelvis [10].

Figure 2.2: Anatomic features of the bony pelvis [10].

Lastly, three main functions enhance the importance of the bone cavity
- Figure 2.5 [10]:

• Force transmission - transmitting the weight of trunk, upper limbs and
head to the lower limbs, and the upward thrust generated by the lower
limbs during locomotion to the vertebral column;
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• Protection - the bony pelvis protects the pelvic viscera and vessels con-
tained within it;

• Muscle attachment - providing anchorage through its external surface to
several extremely powerful muscles such as the glutei, the adductors and
the hamstrings.

2.1.2 Joints and Ligaments
There are four attached joints to the bony pelvis – the right and left

sacroiliac joints, the pubic symphysis and the sacrococcygeal joint - Figure
2.3. Supported and stabilized by the sacrotuberous, sacrospinous, iliolumbar,
and sacroiliac, these joints and ligaments may be described as follows [9] [10].

The sacroiliac joint is a plane synovial joint lying between the auricular
surfaces of the ilium and the sacrum. The joint capsule is attached to the
articular margins of both bones. In addition, numerous thick fibrous bands
pass between the sacral and iliac auricular surfaces obliterating the joint cavity
in places. Further reinforcement is assured by the anterior, interosseous, and
posterior sacroiliac ligaments.

The pubic symphysis is a secondary cartilaginous joint standing in the
middle of the right and left pubic bones. Articular surfaces of the two pubic
bones are covered by a thin plate of hyaline cartilage, joined by thick and dense
bands of fibrocartilage, form the fibrocartilaginous interpubic disc. This joint
is reinforced by the superior pubic ligament superiorly and the arcuate pubic
ligament inferiorly.

The sacrococcygeal joint works as a secondary cartilaginous one between
the narrow inferior extremity of the sacrum and the superior surface of the coc-
cyx. The joint is anteriorly supported by the anterior sacrococcygeal ligament
and posteriorly by the posterior sacrococcygeal ligaments. On both sides lies a
lateral sacrococcygeal ligament between the inferolateral angle of the sacrum
and the transverse process of the coccyx.

The sacrotuberous ligament extends from the medial border of the is-
chial tuberosity to the posterior superior iliac spine, the posterior sacroiliac
ligaments, and the lateral aspect of the sacrum and coccyx. The sacrotuber-
ous ligament stabilizes the sacroiliac joint by preventing the tendency of the
sacrum to be pushed anteroinferiorly by the vertebral column on account of
the weight of the body above.

The sacrospinous ligament is a triangular ligament that lies deep to the
sacrotuberous ligament. Its narrow apex is attached to the tip of the ischial
spine and its broad base is attached to the side of the sacrococcygeal junction.
The sacrospinous ligament and ischial spine together form a boundary between
the greater and lesser sciatic foramina. The sacrotuberous and sacrospinous
ligaments surround the lesser sciatic foramen.

The iliolumbar ligament extends from the fifth lumbar (L5) vertebra split-
ting laterally into two bands. The superior band that passes to the posterior
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end of the iliac crest and the inferior band blend with the anterior sacroiliac
ligament.

Figure 2.3: Joints and ligaments of the pelvis [10].

2.1.3 Muscles

The pelvic muscles, the ones attached to the bone cavity, can be split
in two distinct groups: those that are attached to the bony pelvis outside
the pelvic cavity - from the lower limb (adductors, hamstrings, the glutei,
rectus femoris and others), from the anterior abdominal wall (external oblique,
internal oblique and transversus abdominis), the iliacus and the numerous
perineal muscles that are attached to the lower margin of the pelvic ring below
the pelvic floor – as well as those situated inside the pelvic cavity, which deserve
a greater focus on the current work’s scope [10].
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Figure 2.4: Muscles of the pelvic cavity [10].

The piriformis, the obturator internus, the coccygeus and the levator
ani form the walls and floor of the pelvic cavity – the pronest region for
the development of impairments. The pelvic wall is partly composed by the
piriformis, rising from the front of the sacrum, and by the obturator internus,
that arises from anterolateral aspect of the pelvic cavity on the inner surface
of the obturator membrane and the bony margins of the obturator foramen.
It is also important to notice the fact that these two muscles the tendons of
these two muscles leave the interior of the bony pelvis to enter the gluteal
region where both run immediately behind the capsule of the hip joint capsule
before attaching to the greater trochanter of the femur. These two muscles
work together as external rotators of the hip joint [11].

Regarding the pelvic floor, formed by the midline convergence of the
coccygeus and the levator ani muscles, it may be seen as a muscular hammock
on the bottom of the cavity. Whereas the coccygeus is a delicate muscle,
extending from the tip of the ischial spine to the side of the sacrococcygeal
junction, the levator ani is a larger and wider tissue. Arising from a linear
thickening in the obturator fascia , the first runs inwards to interdigitate with
the contralateral levator ani to form a mobile, thin, gutter-shaped muscular
sheet, slung like a hammock from one side to the other. Finally, in an anterior
position between the medial edges of the two levator ani muscles, the levator
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hiatus (a natural gap) creates a passage for the rectum, urethra and the vagina
[10].

2.1.4 Organs

The viscera present in the female pelvic cavity includes the distal third of
sigmoid colon, the entire rectum, the urinary bladder, the intrapelvic segments
of the right and left ureters, the uterus, the right and left uterine tubes, the
right and left ovaries, and the intrapelvic portion of the vagina [11]. A common
feature in both sexes is the urinary bladder being the most anterior viscus in
the pelvic cavity and the terminal portion of the sigmoid colon and rectum
the most posteriorly located of the intrapelvic viscera. The urinary bladder,
along with the proximal urethra, is, consequently, particularly vulnerable in
fractures and disruptions of the anterior circumference of the pelvic ring [10].

Figure 2.5: Female pelvic viscera and perineum [10].
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2.2 Pelvic Organ Prolapse

2.2.1 Introduction

POP is a common pelvic floor dysfunction (PFD) associated with the
degeneration of pelvic tissues usually related to hormonal changes, vaginal de-
livery, lifestyle and co-morbid factors or aging effects. POP is the descent of
one or more of the anterior vaginal wall, posterior vaginal wall, the uterus
(cervix), or the apex of the vagina (vaginal vault or cuff scar after hysterec-
tomy). Prolapse of pelvic structures can cause a sensation of pelvic pressure
or bulging through the vaginal opening and may be associated with urinary
incontinence, voiding dysfunction, fecal incontinence, incomplete defecation,
and sexual dysfunction [12]. It is estimated that POP prevalence ranges be-
tween 35 and 50% of women [4]. In fact, according to a survey [13], women
have an 11% chance of requiring a surgery due to PFD’s during their lifetime -
either with synthetic or absorbable implants. Currently, this health condition
leads to 300000 operations each year in the United States, with an anatomical
recurrence rate of the prolapse of 31.3% (grade > or = II) [14]. Even though
POP has been on medical record for millennia, dating back to 1835 B.C., an
efficient treatment is yet to be achieved. The setbacks on this regard correlate
to the complexity of the region and the nonexistence of a proper mimicking
procedure of the mechanical properties shown by the natural tissues [6].

2.2.2 Types of Prolapse

Different types of Pelvic Prolapse are classified with regard to the pelvic
organ presenting displacement due to tissue and ligament impairments inside
the cavity. Considering the previously mentioned organs, Figure 2.6 represents
the different types of prolapse.
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Figure 2.6: Types of pelvic organ prolapse [15].

The vaginal vault prolapsed is related to herniation of the vaginal vault
(the expanded region of the vaginal canal at the internal end of the vagina)
caused by the loss of support or weakening of specific ligaments, among other
similar factors. The uterine prolapse, caused by the loss of support of some
ligaments, is the herniation of the uterus. The cystocele consists in the her-
niation of the anterior vaginal wall and bladder. The enterocele corresponds
to the herniation of the superior portion of the posterior vaginal wall caused
by tearing and/or stretching of the posterior vaginal wall endopelvic fascia.
The rectocele regards the herniation of the inferior portion of the posterior
vaginal wall and rectum, having the same associated causes as the enterocele
configuration [2].

2.2.3 Severity and Quantification

Thanks to an examination called POP-Q (Pelvic Organ Quantification),
which measures the relative position of six points of the vagina to the hymen, it
is possible to quantify and classify distinct stages of the advancement of a pelvic
floor dysfunction. An example of a stage 0 prolapse, or absence of prolapse,
is the situation of a patient whose cervix is located as low as the maximum
of the vagina’s length. From here, the classification is made depending on the
the distance of the prolapsed organ to the hymen [16]. Figure 2.7, in turn,
represents the six reference points of the vagina, used for the POP-Q.
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Figure 2.7: POP-Q system: a) Diagram of vaginal relative proportions and segments; b)
Vaginal relative proportions and segments description [17].

The several stages in terms of distal portion measurement may be de-
scribed as follows [2].

• Stage 0 - No prolapse;

• Stage I - The most distal portion of the prolapse is ≥1 cm above the
level of the hymen;

• Stage II - The most distal portion of the prolapse is ≤1 cm proximal of
distal to the hymen;

• Stage III - The most distal portion of the prolapse is ≥1 cm below the
hymen but protrudes no further than 2 cm less than the total vaginal
length;

• Stage IV - Complete eversion of the total length of the vagina, the distal
portion protrudes at least the total vaginal length minus 2 cm beyond
the hymen.

2.2.4 Epidemiology
Even though POP is one of the most common dysfunctions leading to

gynaecological surgery, epidemiological studies of the incidence of this disor-
der are rare. Most of the available documentation relates either to clinical
populations or and surgical registries or to other similar databases, built for
surgically treated prolapsed identification. The number of women who have
pelvic organ prolapse is expected to increase by 46%, to 4.9 million, by 2050
[12].

According to the literature [2], no epidemiological studies have been done
of pelvic organ prolapse in community-based populations. Loss of vaginal or
uterine support in women presenting for routine gynaecological care is seen
in up to 43 to 76% of patients, with 3–6% having descent beyond the hymen
[18]. In the Women’s Health Initiative, 41% of women age 50 to 79 years
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showed some amount of POP, including cystocoele in 34%, rectocoele in 19%,
and uterine prolapse in 14% [19]. In a multi-centre study of 1006 women
age 18–83 years presenting for routine gynaecological care, 24% had normal
support and 38% had stage I, 35% stage II, and 2% stage III POP. It is, then,
safe to conclude that some loss of uterovaginal support is present in most adult
women.

There is no clear consensus, however, about what level of prolapse repre-
sents a variation of normal uterovaginal support and what represents disorder,
although most people would agree that prolapse beyond the hymen is clinically
significant [2]. A woman’s lifetime risk of surgery for pelvic organ prolapse by
age 80 years is about 7%, being the peak incidence of such surgery in individu-
als aged 60 to 69 years [20]. Still, almost 58% of procedures are undertaken in
people younger than 60 years. According to a study conducted in the United
Kingdom in 2011 [21], an estimated 19% of patients who had surgery would
need a repeat operation within 5 years [14].

2.2.5 Etiology and Risk Factors

Research suggests many risk factors for POP [6]. Consequently, the cause
of this disorder is recognized as a spectrum of several factors, varying from pa-
tient to patient. Advancing age and increasing weight are among the most
consistent risk factors, but it is vaginal childbirth the one most frequently as-
sociated with prolapse. Increasing vaginal parity was denoted as the strongest
risk factor for POP in women younger than 60 years [2]. Compared with indi-
viduals who had never given birth, a woman who had delivered two children
sees twice as much risk of developing prolapsed. According to the Women’s
Health Initiative, a single childbirth is also associated with raised odds of uter-
ine prolapse, cystocoele, and rectocele [22]. Every additional delivery up to five
births increased the risk of worsening prolapse by 10–20[%]. Following these
data, studies developed by the Pelvic Organ Support study and the Progetto
Menopausa Italia, showed that the risk of POP increased with parity [23]. Ta-
ble 2.1 shows the potential and established risk factors for the development
of the condition. It is also important to understand the benefits of caesarean
section parturition on reducing the risk of prolapse whereas forceps delivery
enhances it [2], as well as the fact that the risk rises 3% per additional 100g of
the newborn [24].

Table 2.1: Potential and established risk factors of POP

[2]
Risk Factors Established Risk Factors

Vaginal delivery Pregnancy, especially when followed by forceps delivery
Advancing age Young age at first delivery

Obesity Prolonged second stage of labour
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2.2.6 Treatment
Given the intricacies POP may cause on a woman’s life quality, the im-

portance of an efficient treatment is unquestionable. Even though each solution
should theoretically answer to the specific problems of each patient, person-
alized medicine is yet to be fully in play for this kind of heath condition.
Eventually, a detailed picture of the impairments’ severity will allow more
adequate solutions. For now, two types of treatment are considered, the con-
servative treatment, that is a less invasive option, and the surgical treatment.
The last relies on a medical intervention on the impaired tissues, for which the
associated procedures change depending on the type and stage of the prolapse
[8].

2.2.6.1 Conservative Treatment

The conservative approach is supported by the pessary, a prosthetic de-
vice that is inserted into the vagina for structural and pharmaceutical pur-
poses. The pessary, built with silicone, is a safe and quiet efficient medical
device, assuring a substantial improvement on the condition. This option is
chosen as a temporary solution or when the presented symptoms do not force
the woman to face the invasive option, surgery. The length of the instrument
varies between 65 and 100 millimetres and it may be used either as a support
or as a mere extra volume [25]. The support service is usually assured by the
placement of an internal ring that may be seen in Figure 2.8, along with the
representation of such placement. The ring model assures higher comfort than
the three-dimensional version, which is deployed in more severe cases of POP
[26]. However, as a downside of this approach, vaginal erosion and discharge,
constipation and urinary incontinence are usual consequences of pessary im-
plementation, which diminishes its prevalence [15].

Figure 2.8: Pessary examples and a placement technique [26].

A different conservative approach is the rehabilitation therapy, used as
a prevention technique so that POP incidence may be avoided beforehand.
Basically relying on a healthy lifestyle, the woman is advised to improve her
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physical shape, to avoid extreme efforts and engage in pelvic physiotherapy
[25].

2.2.6.2 Surgical Treatment

Surgery stands as the convenient option for patients with more severe
symptoms, which cannot be solved through the conservative treatment op-
tions. In this case, a full reconstruction of the anatomy is intended, re-
establishing functions and structures. Several techniques are used during the
surgical procedure, and depend on the type, stage and general condition of
the prolapsed. Nevertheless, two main differentiations are made with recon-
structive type surgery - which aims at anatomic optimization - and obliterative
type surgery - which permanently closes the vaginal canal [27]. Deciding on
the most adequate technique for a specific case will depend on the state of
the impairments, as previously said. In some cases the tissues will be accessed
from the vagina - apical suspension and vaginal hysterectomy – whereas the
sacrocolpopexy and sacred hysteropexy are related to abdominal interventions
[28].

The anterior colporrhaphy is the most successful procedure for treating
the anterior prolapse, reaching total repair in 80 to 100% of cases [29]. This
technique is the median placation of the endopelvic fascia of the anterior vagi-
nal wall. Regarding the suspension of the vaginal wall on the tendinous arch
fascia, the surgical approach is the correction of the paravaginal defect [28].
The traditional posterior colporrhaphy, the site-specific posterior correction
and the transanal correction are the methods for the treatment of posterior
prolapse.

Finally, in terms of apical prolapse, the usual approaches are either the
apical transvaginal suspension techniques – the suspension to the sacrospinous
ligament and to the uterosacral ligaments - or the sacrocolpopexy, which fixates
the vagina to the anterior longitudinal sacral ligament [28].

2.2.6.3 Surgical Implants

Surgical meshes, the pelvic implants on which some of the procedures
described rely, assure an extra support to the structures in order to compen-
sate the impairments caused by prolapsed pelvic organs. The choice of mesh
type lies between non-absorbable meshes (synthetic structures that are not
biodegradable) and absorbable ones, which slowly dissolve within the body,
allowing natural tissue to grow and consolidate the reinforcement of the liga-
ments and gradually replacing the mesh [30].

Native tissues used to be the most common solution but, given the rel-
atively high failure rate with prolapsed relapses, surgeons turned to synthetic
meshes [3]. The main reason for this being the fact that the implants were
found to be damaging the involving biological tissues due to inappropriate
levels of rigidity. Using polypropylene, which was quite successful in the cor-
rection of hernias, controversy eventually rose due to matters of safety and
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effectiveness related to the treatment. Among these were vaginal bleeding,
urinary infections and incontinence, pain and sensorial discomfort [30]. As
a consequence, rates of recurrence for surgery started to climb, stressing the
importance of properly address the properties and bioactivity of the implants.
In 2019 the FDA actually prohibited the use of polypropylene for transvaginal
repair of anterior POP [31].

Figure 2.9: SEM image of the Restorelle® mesh [5].

Currently, innovative manufacturing techniques materialize the hope for
reaching more efficient and less invasive mesh configurations. A commercially
available option is the Restorelle® mesh - Figure 2.9 - composed by knitted
monofilament with a pore dimension of 2 mm, showing a degradation time
of 2 to 3 years inside the body [5]. Even though it does not perfectly match
the mechanical behaviour of native tissues, it has received the FDA approval,
which represents a major accomplishment [32].

2.3 Melt Electrospinning
The electrostatic drawing (electrospinning) of polymer fibers is a unique

technology for the fabrication of one-dimensional (1D), two-dimensional (2D)
and three-dimensional (3D) materials. Electrospinning manifested a rising
scientific output with an almost exponential rise in publications over the last
twenty years. The maturation of the field is acknowledged with corporate inter-
est in diverse industry sectors such as air/water filtration and industrial areas
relying on nano and sub-micron fibers with specific properties [33]. Moreover,
the fields of tissue engineering and regenerative medicine, which constitute the
framing for the current work, paved the way for the process’s variant based on
polymer melts (melt electrospinning) to approach proper economies of scale,
having found ground on developing applications such as the replication of bi-
ologic structures and micro-structures [33]. In fact, the latest developments
prove the feasibility of using this technique for the production of fibers that
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allow cellular proliferation and growth, an essential feature for tissue engineer-
ing [34]. A general schematic representation of a printing set of this kind may
be found in Figure 2.10.

Figure 2.10: Melt electrospinning onto a static collector. A supply zone forces a molten
polymer through a spinneret to a jet initiation point. A high voltage potential difference
between the spinneret and collector induces an electrical force on the polymer emerging
from the spinneret at the jet initiation point. The emerging polymer is then electrostatically
drawn as a molten polymer jet to the collector where it solidifies as an ultrafine filament. The
reader should notice here are many different melt electrospinning system design iterations
(adapted from [33]).

It is known that this technology permits a precise and predictable fiber
deposition in the combination with moving collectors, allowing the layer-by-
layer fabrication of small to large volume scaffolds with specific designs, shapes
and thicknesses [34]. For the case of the current work, the performance of
the available 3D printer had already been studied [5]. With control over the
device’s parameters such as the temperature and rate of extrusion, voltage and
the linear printing head speed, several geometries where printed and properly
tested afterwards.

2.3.1 Biodegradable Poly ϵ-caprolactone

Poly ϵ-caprolactone (PCL) is a member of the biodegradable polyesters.
As an aliphatic semi-crystalline polymer, its melting temperature ranges be-
tween 59 and 64°C and the glass transition occurs at -60°C. Consequently, at
physiological temperature, the behaviour of the semi crystalline PCL shows
high toughness and superior mechanical properties, having its elasticity as a
function of the molecular weight. These characteristics, along with non-toxicity
and tissue compatibility, are the reason for PCL being widely used as scaffolds
in regenerative therapy [35].

Different mesh geometries may be accomplished using PCL in electro-
spinning writing, as Figure 2.11 demonstrates.
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Figure 2.11: Melt electrospun printed meshes (square-shaped, triangular-shaped and cross
shaped) [5].



Chapter 3

Computational Modelling

3.1 Introduction

This section not only embodies the first explanations of the active pres-
ence of computational assistance in the current work. It regards a theoretical
contextualization for the Finite Element Method (FEM), widely used to per-
form stress analysis of structures and systems for which, due to the level of com-
plexity, analytical solutions are difficult to obtain. These analyses have been
used in many applications across several industry sectors including aerospace,
automotive, architecture and, in recent years, biomedical engineering. Finite
Element Analysis software is used to reduce the number of physical prototypes
and experiments, allowing the development of more competitive products at a
lower cost.

Before developing an efficient model, the whole mathematical context
must be understood in order to simulate the involved material behaviours.
The current work is also a characterization of PCL, where a continuum ap-
proach was used to describe the analysed bodies. Ultimately, the finite element
method will accurately frame the mechanical stresses and strains present on
the continuum bodies, defining them as a finite number of elements with simple
geometries. This process aims at defining the material behaviour.

3.2 Preliminary Concepts

3.2.1 Continuum Bodies

Macroscopic systems are usually described with a continuum approach,
which leads to the continuum theory. A fundamental statement derives from
it assuming that a body, denoted by B, may be described as a continuous dis-
tribution of matter in space and time and it is considered to have a continuous
composition of a set of particles, represented by P ∈ B. Consequently, mass
and volume are continuous functions of continuum particles in a macroscopic
study of a body, which is then known as a continuum body [36].
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Figure 3.1: General motion of a deformable body [37].

Figure 3.1, a continuum body B is represented with particle P ∈ B in-
side the three-dimensional Euclidean space at a given instant of time t. The
continuum body B moves in space from one instant of time to another, and
its placement is denoted as configuration Φ(B) of body B [36].

The configuration of the body B maps the places of all the particles of B
in the Euclidean space. The motion of the body B is related with the vector
field Φ that defines the new location x of a particle X for a fixed t:

x = Φ(X) (3.1)

Considering a given particle X that occupies the position (x;t), in a given
instance, its position is a function of place x at time t:

X = Φ−1(x) (3.2)

3.2.2 Material and Spatial Descriptions

In finite deformation analysis, for the behavior of the body whose mo-
tion is under consideration to be described, a proper coordinate system must
be selected. Given by Equation 3.1, the mentioned material (or referential)
description is a characterization of the motion, or any other quantity, with
respect to the material coordinates X1; X2; X3 and time t. In the material de-
scription, also referred to as Lagragian description, the focus is a single particle
in order to understand its movement.

Given by Equation 3.2, the so-called Eulerian (or spatial) description,
refers to a characterization of the motion, or any other quantity, with respect
to the spatial coordinates x1; x2; x3 and time t. In this case, a point in space
is the object of focus, as well as how time affects that exact point [36].
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3.2.3 Deformation Gradient
Shape, position and orientation of a body generally change in the pres-

ence of motion. A continuum body is said to be deformable if it is able to
change its shape [37]. In Equation 3.1 it is seen that, for a given point P in
the undeformed configuration, a unique point P exists in the deformed config-
uration and a mapping relation, where u(X;t) is the displacement of point P,
can be written as:

x = Φ(X, t) = X + u(X, t) (3.3)

Figure 3.1 shows neighboring points P’ and Q’ at infinitesimal distances
from P and P that are denoted by vectors dX and dx, respectively, in the
two geometries. It is important to notice that the vector dX deforms to dx.
Assuming continuous mapping, the relationship between differential elements
dX and dx can be expressed as follows:

dx = ∂x
∂X

dX ⇒ dx = FdX (3.4)

where F is the deformation gradient that maps elemental vectors of
the reference configuration to elemental vectors in the spatial configuration.
Known as a tensor, it associates a material line element dX in B to the spatial
line element dx in Φ(B). If F = 1, then dX = dx and there is no deformation.
An infinitesimal volume in the undeformed geometry can increase or decrease
its size, but never shrink to a point, i.e., zero volume. Mathematically, this
means that the determinant of deformation gradient, an important property
to make a valid mapping of Φ(X, t) during large deformations must be positive
[37]:

det F ≡ J > 0 (3.5)

3.2.4 Strain Measures
It is now necessary to determine the material elements changes in terms

of (second order) strain tensors associated with both reference and current
configuration [38]. Considering the change in the scalar product of two ele-
mental vectors dX1 and dX2, since they deform to dx1 and dx2, the changes
in length and in the enclosed angle between the two vectors will be involved.
Therefore, considering the Equation 3.4, the spatial scalar product dx1 · dx2
may be written in terms of the material vectors dX1 and dX2:

dx1 · dx2 = dX1 · CdX2 (3.6)

where C corresponds to the right Cauchy-Green deformation tensor, also
known as material tensor quantity, and it is given in terms of the deformation
gradient F as:
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C = FT F (3.7)

Conversely, the initial material scalar product dX1 · dX2 can be written
in terms of the spatial vectors dx1 and dx2:

dX1 · dX2 = dx1 · b−1dx2 (3.8)

where b is the left Cauchy-Green tensor and it is a spatial tensor quantity:

b = FFT (3.9)

The change in scalar product can be found in terms of the material
vectors dX1 and dX2 and the Lagrangian strain tensor E as:

1
2 (dx1 · dx2 − dX1 · dX2) = dX1 · EdX2 (3.10)

where the material tensor E is

E = 1
2(C − I) (3.11)

Alternatively, the same change in scalar product can be expressed with
reference to the spatial elemental vectors dx1 and dx2 and the Eulerian strain
tensor e as:

1
2 (dx1 · dx2 − dX1 · dX2) = dx1 · edx2 (3.12)

where the material tensor e corresponds to

e = 1
2(I − b−1) (3.13)

3.2.5 Stress Measures
Stress is the physical dimension of force per unit area and responsible

for material deformation. Motion and deformation originate interactions be-
tween the material and neighboring material in the inferior part of the body.
Clarifying the used area, when a large deformation occurs, is crucial once the
definition of stress depends on it [38].

A deformable body is considered during a finite motion and, for that
body, a traction vector t can be defined using the area of the differential
element da, the force df acting on it, and the unit normal vector n of the area
as:

t = lim
da→0

df
da

= σn (3.14)

where σ is the Cauchy stress tensor, which is always symmetric and refers
to the deformed geometry as a reference for both force and area. There are six
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independent stress components acting at a certain point of a body, with σ12 =
σ21; σ13 = σ31; σ23 = σ32. For each stress component σij, the convention states
that the first index characterizes the component of the vector t at a certain
point in the direction of the associated base vector ei, and the second index
characterizes the plane that t is acting on, which is described by the direction
of the base vector ej, as can be seen in Figure 3.2.

Figure 3.2: Positive stress components of the traction vectors tei
[36].

For the stress tensors based on the undeformed geometry to be defined,
it is necessary to know both configurations. This enables the possibility of
defining the Kirchhoff stress from the Cauchy stress as follows:

τ = Jσ (3.15)

where J represents its Jacobian defined by J = detF.
Considering the same force f, the differential area dA and the unit normal

N in the undeformed geometry, another traction vector t may be defined as:

T = lim
dA→0

df
dA

= PT N (3.16)

where P is known as the first Piola-Kirchhoff stress tensor; the force
is associated with the deformed geometry and the area with the undeformed
geometry.

Furthermore, the relationship between the Cauchy stress tensor and the
first Piola-Kirchhoff stress tensor can be obtained as follows:

P = JσF−T (3.17)

The first Piola-Kirchhoff stress tensor will not be symmetric once the
deformation gradient is not symmetric in the first place. This particularity,
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which restricts its use, led to the definition of the material or Second Piola-
Kirchhoff stress tensor:

S = PF−T = JF−1σF−T (3.18)

The second Piola-Kirchhoff stress tensor is symmetric, measuring force
per unit undeformed, exclusively assuming forces that act within the unde-
formed solid.

3.3 Principle of Virtual Power
Problems in computational mechanics usually aim at finding an approxi-

mate (finite element) solution for deformations, displacements, forces, stresses,
etc, in a solid body subjected to specific events. To find the exact solutions, the
force and moment equilibrium must be maintained over an arbitrary volume
of the body [39].

The principle of conservation of linear momentum states that the rate of
change of the total linear momentum of a continuum medium is equal to the
vector sum of all external forces acting on the body. In the following equation
of motion:

∂σ

∂x
+ f = ρ

∂2u
∂t2 (3.19)

where ρ represents the mass density of the deformed solid, f the body
force vector (per unit volume) and σ the Cauchy stress distribution. These
equations, Cauchy’s Equations of Motion, must be satisfied for any continuum
in motion. Without acceleration, the following static equilibrium equation is
obtained:

∂σ

∂x
+ f = 0 (3.20)

The principle of virtual work [40] is another method for writing partial
differential equations for linear moment balance in an equivalent integral form.
Thus, it constitutes the basis for the finite element method, corresponding to
the equilibrium of the work done by both internal and external forces with
small, arbitrary and virtual displacements, which satisfy kinematic constraints.

For a deformable solid, subjected to a loading that induces a displace-
ment field u(x) and a velocity field v(x), the loading consists of a prescribed
displacement on a part of the boundary (S1) and a traction t applied to the rest
of the boundary (S2). The loading induces a Cauchy stress and its distribution
within the solid is denoted by σij.

It is necessary to define a kinematically admissible velocity field δv(x),
satisfying δv = 0 on (S1), which corresponds to an arbitrary differentiable
vector field. The virtual velocity gradient and stretch rate are respectively
represented as:
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δL = ∂δv
∂x

(3.21)

δD = 1
2

∂δv
∂x

+
(

∂δv
∂x

)T
 (3.22)

Objectively, the principle of virtual work can be stated as a case in which
the stress, body force and traction are in equilibrium if, and only if, the rate
of the work done by Cauchy stresses on the rate of deformation of any virtual
velocity field are equal to the rate of work done by the traction and body forces
acting on the body (external forces). Therefore, the principle of virtual work
can be written as:

∫
V

σ : δDdV +
∫

V
ρ

dv
dt

δvdV =
∫

V
fδvdV +

∫
S2

tδvdA (3.23)

The Gauss’s theorem may be applied to prove this result since it defines
a quality relationship between surface integrals and volume integrals:

∫
S

n · ()dS =
∫

V

∂

∂x
· ()dV (3.24)

where ( ) is any continuous function-scalar, vector or tensor. Also, some
statements regarding the properties of the Cauchy Stress can be used:

σijδDij = 1
2σij

(
∂δvi

∂xj

+ ∂δvj

∂xi

)
= 1

2

(
σji

∂δvi

∂xj

+ σij
∂δvj

∂xi

)
= σji

∂δvi

∂xj

= ∂

∂xj

(σjiδvi)−
∂σji

∂xj

δvi

(3.25)
Applying these to the first term on the right-hand side of the principle

of virtual work:

∫
V

σ : δDdV =
∫

V

∂σδv
∂x

dV −
∫

V

∂σ

∂x
δvdV (3.26)

Applying the Gauss theorem to the same term and replacing it in Equa-
tion 3.23:

∫
S2

(σ · n)δvdA −
∫

V

∂σ

∂x
δvdV +

∫
V

ρ
dv
dt

δvdV =
∫

V
fδvdV +

∫
S2

tδvdA (3.27)

Concerning the Equation 3.14, it is obtained:

∫
V

fδvdV +
∫

V

∂σ

∂x
δvdV =

∫
V

ρ
dv
dt

δvdV (3.28)
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3.4 Constitutive Equations
Material straining is the concept behind the stresses produced in a body,

as a result of the deformation of the material. Constitutive models aim to
develop mathematical models for representing the real behavior of matter,
depending on the type of material under consideration. They can be dependent
or independent of time and, even though they may also satisfy certain physical
principles, experimental measurements usually support these models since they
cannot be calculated using fundamental physical laws.

3.4.1 Linear Elasticity
Generally, the constitutive behaviour of elastic materials is exclusively

a function of the current state of deformation. This implies that any stress
measure at a particle is a function of the current deformation gradient F as-
sociated with that particle. Alternatively, when the work done by the stresses
during a deformation process is dependent only on the initial state at time t0
and the final configuration at time t, the behavior of a material is said to be
path-independent and it is called hyperelastic [38].

3.4.2 Hyperelasticity
A hyperelastic material assumes the existence of a Helmholtz free-energy

function Ψ, which is defined per unit undeformed volume. When Ψ = Ψ(F)
is a function of F or some strain tensor, the Helmholtz free-energy function
is referred to as the strain-energy function or stored-energy function and the
first Piola-Kirchhoff stress tensor can be calculated as [36]:

P = ∂Ψ(F)
∂F

(3.29)

Assuming the material can be defined through Ψ, which in turn is ob-
tained from physical experiments, the symmetric Cauchy stress tensor, i.e,

σ = J−1PFT = σT

σ = J−1F
(

∂Ψ(F)
∂F

)T

(3.30)

The strain-energy function can be represented in equivalent forms. Once
Ψ remains invariant under rigid body rotations, it is independent of the rota-
tional part of F = RU. Consequently, it can be concluded that a hyperelastic
material depends on the stretching part of F, i.e. the symmetric right stretch
tensor U.

Since the right Cauchy-Green tensor and the Green-Lagrange strain ten-
sor are given by C=U2 and E = (U2 − I)/2, Ψ may be expressed as a function
of the six components of the symmetric material tensors C, E, respectively:
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Ψ(F) = Ψ(C) = Ψ(E) (3.31)

Reducing the constitutive equations for hyperelastic materials at finite
strains, one may deduce:

(
∂Ψ(F)

∂F

)T

= 2∂Ψ(C)
∂C

FT (3.32)

which gives an important reduced form of the constitutive equation for
hyperelastic materials, namely:

σ = J−1F
(

∂Ψ(F)
∂F

)T

= 2J−1F
∂Ψ(C)

∂C
FT (3.33)

Alternative expressions may be obtained for the Piola-Kirchhoff stress
tensors P (not symmetric) and S (symmetric):

P = 2F
∂Ψ(C)

∂C
(3.34)

S = 2∂Ψ(C)
∂C

= ∂Ψ(E)
∂E

(3.35)

3.4.2.1 Isotropic Hyperelastic Materials

Isotropy is a property of a specific type of materials which response, when
studied in a stress-strain experiment, is the same in all directions. This means
that the strain-energy function can be restricted by a particular property of
the material. One example of an approximation to an isotropic material with
a wide range of applications is rubber [36].

Taking into account the Lagragian description, the constitutive relation
must be independent of the coordinate frame selected, since the material has
the same property in all directions [36][38]. The associated necessary condition
is Ψ being only a function of the invariants of C:

Ψ(C, X) = Ψ(I1, I2, I3, X) (3.36)

Which may be defined as,

I1(C) = tr(C) (3.37)

I2(C) = 1
2(I1

2 − C : C) (3.38)

I3(C) = det(C) = J2 (3.39)

Making use of the chain rule of differentiation:
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∂Ψ(C)
∂C

= ∂Ψ
∂I1

∂I1

∂C
+ ∂Ψ

∂I2

∂I2

∂C
+ ∂Ψ

∂I3

∂I3

∂C
(3.40)

The derivates of the invariants with respect to C can be obtained after
some algebraic calculations. Recalling the constitutive e Equation 3.35 and
substituting these derivates into Equation 3.40, the second Piola-Kirchhoff
stress may be presented as:

S = 2
[(

∂Ψ
∂I1

+ I1
∂Ψ
∂I2

)
I − ∂Ψ

∂I2
C + I3

∂Ψ
∂I3

C−1
]

(3.41)

The previous equation may be used, for the case of isotropic hyperelas-
tic materials, to obtain the spatial counterpart of the constitutive equation.
Equation 3.18 gives the relationship between the Cauchy stress and the sec-
ond Piola-Kirchhoff stress. Replacing S in this relation by Equation 3.41 and
multiplying the tensor variables I, C, C−1 and FT from the right hand side
and F from the left hand side, the following equation, in terms of the left
Cauchy-Green tensor B, comes:

σ = 2J−1
[(

∂Ψ
∂I1

+ I1
∂Ψ
∂I2

)
b − ∂Ψ

∂I2
b2 + I3

∂Ψ
∂I3

I
]

(3.42)

Nevertheless this expression involves derivates with respect to the invari-
ants of the material tensor C. Since b and C have the same eigenvalues, their
invariants are identical:

I1(b) = tr(b) = tr(C) = I1(C) (3.43)

I2(b) = 1
2(I1

2 − b : b) = 1
2(I1

2 − C : C) = I2(C) (3.44)

I3(b) = det(b) = J2 = det(C) = I3(C) (3.45)

Consequently, the derivates from Equation 3.42 also relate to the invari-
ants of b.

If the strain-energy function Ψ is an invariant, Ψ is also a function of the
principal stretches and can be represented in the form:

Ψ = Ψ(C) = Ψ(λ1, λ2, λ3) (3.46)

Considering,

I =
3∑

a=1
N̂a ⊗ N̂a (3.47)

C−1 =
3∑

a=1
λ−2

a N̂a ⊗ N̂a (3.48)



3.4 Constitutive Equations 29

And substituing these equations into Equation 3.41, the second Piola-
Kirchhoff stress tensor is obtained:

S =
3∑

a=1

(
2∂Ψ

∂I1
+ 4∂Ψ

∂I2
λ2

a + 2I3
∂Ψ
∂I3

λ−2
a

)
N̂a ⊗ N̂a (3.49)

Since λ2
a are the eigenvalues of C, the invariants may also be obtained

by:

I1 = λ2
1 + λ2

2 + λ2
3 (3.50)

I2 = λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 (3.51)

I3 = λ2
1λ

2
2λ

2
3 (3.52)

After differentiating these equations and substituting them into Equation
3.49, the following expression is reached using the chain rule:

S =
3∑

a=1
SaaN̂a ⊗ N̂a; Saa = 2 ∂Ψ

∂λ2
a

(3.53)

Taking into account the relationship with the second Piola-Kirchhoff
stress tensor, the Cauchy stress is achieved once again:

σ = J−1FSFT =
3∑

a=1

2
J

∂Ψ
∂λ2

a

(
FN̂a

)
⊗
(
FN̂a

)
(3.54)

3.4.2.2 Incompressible Hyperelastic Materials

Incompressible materials [36][38] can sustain finite strains without no-
ticeable volume changes. Volume is kept constant throughout a motion as
these materials are characterized by the incompressibility constraint:

J = 1 (3.55)

To obtain the general constitutive equations for incompressible hypere-
lastic materials, the strain energy function is given by:

Ψ = Ψ(F) − p(J − 1) (3.56)

where the strain-energy Ψ is defined for J = det F = 1 and the scalar p
serves as an indeterminate Lagrange multiplier, known as a hydrostatic pres-
sure, that may only be determined from the equilibrium equations and the
boundary conditions.

Differentiating Equation 3.56 with respect to F and acknowledging the
following equation:
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∂J

∂F
= JFT (3.57)

a constitutive equation for the first Piola-Kirchhoff stress tensor P can
be obtained:

P = −pFT + ∂Ψ(F)
∂F

(3.58)

Multiplying the previous equation by F−1 on the left hand side, the
second Piola-Kirchhoff stress S is obtained:

S = −pF−1FT + F−1 ∂Ψ(F)
∂F

= −pC−1 ∂Ψ(C)
∂C

(3.59)

Conversely, for the case where Equation 3.58 is multiplied by FT from
the right hand side, the Cauchy stress comes as:

σ = −pI + ∂Ψ(F)
∂F

FT = −pI + Fe
∂(F)T

∂F
(3.60)

3.5 Finite Element Method
The finite element method is one of the numerical methods used for

solving differential equations that describe many engineering problems. For
these problems to be solved with the finite element method, the domain of
the body is divided into small segments known as elements. Each element
has a set of nodes that are used to connect this element with other elements,
sequentially used in the discretization of the body. The displacement of the
material points of an element is approximated using a set of shape functions,
the displacements of the nodes and, potentially, their derivates with respect to
the spatial coordinates.

Relying on the principle of virtual work, the finite element formulation
delivers the equilibrium equations. For a given material and loading conditions,
the solution is given by a deformed configuration in a state of equilibrium. To
obtain this new equilibrium position, the Netwon-Raphson iterative solution
is applied, which requires the linearization of the virtual work [37] [39].

3.5.1 Discretized Equilibrium Equations
The displacement field can be approximated by interpolation functions

(shape functions), where n denotes the number of nodes per element, [39] and
it is demonstrated as follows:

u(X) ≈
n∑

i=1
Ni(X)ui (3.61)
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In the expression above, at the beginning of each iteration, the posi-
tion vector is represented by X, the shape functions defined within the finite
element correspond to N i(X) and ui represents the unknown nodal displace-
ment. Considering the interpolation of equation 3.61 and the fact that the
virtual field δu must be compatible with all kinematics constraints, it can be
written as:

δu(X) ≈
n∑

i=1
Ni(X)δui (3.62)

Rewriting the virtual work from equation 3.23 in terms of the virtual
displacement:

δW =
∫

V
σ : δedV −

∫
V

f · δudV −
∫

S2
t · δudA (3.63)

Equation 3.63 can be approximated by a variation over the finite set of
δui, from the discretization process. Thus, for an arbitrary node (a) of the
element (e), it may be written by:

δW (e) =
∫

V (e)
σ : (δua ⊗ Na) dV −

∫
V (e)

f · (Naδua) dV −
∫

S
(e)
2

t · (Naδua) dA

(3.64)
Equation 3.64 can be rearranged since the virtual nodal displacement

is independent of the integration. Plus, the virtual work per element (e) per
node (a) can be expressed in terms of internal and external equivalent nodal
forces, F(e)

inta and F(e)
exta, respectively:

δW (e) = δua·
(∫

V (e)
σNadV −

∫
V (e)

NafdV −
∫

S
(e)
2

NatdA

)
= δua·

(
F(e)

inta − F(e)
exta

)
(3.65)

where F(e)
int a =

∫
V (e) σNadV and F(e)

exta =
∫

V (e) NafdV −
∫

S
(e)
2

NatdA.
Since the virtual work equation must be satisfied for any arbitrary vir-

tual displacement and the equilibrium conditions require that δWe = 0, the
discretized equilibrium equations, in terms of nodal residual force R(e)

fa , emerges
as:

R(e)
fa =

(
F(e)

inta − F(e)
exta

)
= 0 (3.66)

After summing the contribution of every node and element (the assem-
bling process), the global equilibrium equation in the discretized form may be
written as:

Rf = (Finta − Fext) = 0 (3.67)
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3.5.2 Linearization of the Principle of Virtual Work
The principle of virtual work, previously presented, can be linearized,

considering a trial solution φk, in the direction of an increment ∆u in Φk as
[39]:

δW (φk, δu) + D∆uδW (φk, δu) = 0 (3.68)
where the operator D is the directional derivative of the virtual work

equation at φk in the direction of ∆u. Thus, to bring the internal forces into
equilibrium with the external forces, following the Newton-Raphson procedure,
the configuration φk must be adjusted. The linearization of the equilibrium
equation [39] will be considered in terms of internal and external work com-
ponents as:

D∆uδW (φk, δu) = D∆uδWint (φk, δu) − D∆uδWext (φk, δu) = 0 (3.69)

Regardless of the complexity of the definition of the directional derivate,
the final expression’s discretized form may be expressed as follows:

D∆uδW (φk, δu) = δuT Ku (3.70)
where K = ∂∆σ

∂∆ε
corresponds to the stiffness matrix.

Considering equation 3.67, and substituting equation 3.70 into equation
3.68:

Rf + Ku = 0 (3.71)
which provides the basis of the iterative Newton-Raphson scheme, that

can be formulated as:

Ku = −Rf (xk) ; xk+1 = xk + u (3.72)

3.5.3 ABAQUS® Finite Element Software
ABAQUS® is a finite element analysis and computer-aided engineering

software. Based on the finite element method, it is capable of solving differ-
ent types of problems ranging from simple linear analysis to the most chal-
lenging nonlinear simulations. Consisting in a vast product set, it includes
ABAQUS/CAE® (Complete ABAQUS® Environment) - is used for the model-
ing and analysis of mechanical components and assemblies, as well as to visu-
alize the finite element analysis result - and ABAQUS/Standard® - a general-
purpose analysis product that can solve a wide range of linear and nonlinear
problems. The software offers an extensive library of elements and the most
common materials already defined. For complex problems, it enables the devel-
opment of a user subroutine, known as UMAT, to consider specific constitutive
equations to calculate the stiffness matrix and the stresses.
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Finite Element Simulations

4.1 Introduction
In this chapter the main practical work takes place. Through the enu-

meration of the potentially most accurate constitutive models, the reader may
find all the information that leads to the best approximation for the filaments
and meshes properties. Keeping in mind the computationally assisted proce-
dure, all the simulations feature similar conditions to the ones imposed during
the experimental tests [41].

As a first step, relying on the existence of trustful data from previous
experiments [29], a traditional approach took place with the purpose of ver-
ifying PCL’s mechanical properties. Thus, for the ultimate goal of properly
evaluating and designing software based mesh models, matching the stress-
strain curve from the experiments with a similar performance, an appropriate
constitute model for different diameters of PCL filaments was needed. As for
the second step, once again keeping in mind the availability of previous ex-
amples, computational simulations were also put into motion, subjecting the
mesh models to displacement and encastre boundary conditions. This time,
after having found the best model to approximate the filaments’ properties,
the simulations were made with that very model. The procedure was repeated
on different mesh geometries in order to understand which would favour a bet-
ter performance for the implants. Table 4.1 lists the several steps involved in
a finite element analysis.
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Steps Description
1 Dicretizing the structure. The continuum body is subdivided in

finite elements - segments - with the creation of the mesh.
2 Connecting the several elements by a discrete number of nodal

points called nodes.
3 Defining of the elements’ material properties.
4 A set of functions is chosen in order to define the nodal displacement

of each node.
5 The displacement functions dictate the strain magnitude which,

together with the constitutive law of the material, defines the stress
magnitude.

6 The stiffness, damping and inertial matrices create the relationship
between the nodal displacements, velocity and acceleration exerted
in the nodes.

7 Applying external loads and torques.
8 Defining boundary conditions.
9 Solving algebraic equation systems.
10 Calculating displacement, stress or reaction values.

Table 4.1: Steps in FEM structural analysis (adapted from [1]).
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4.2 Constitutive Models
A material’s constitutive law is expressed by the relationship between

stress and strain, being related to the Poisson coefficient and the Young mod-
ulus for linear elastic materials and given by the strain potential energy in
the case of hyperelastic materials – Equation 4.1. This section aims at the
description of such models, as a theoretical baseline for understanding the
computational assistance provided by Abaqus, before moving to the filament
and mesh modelling. It is important to point out the fact that the whole proce-
dure starts at the point where PCL is defined and, consequently, its properties
and mechanical behaviour.

U =
N∑

i+j=1
Cij

(
Ī1 − 3

)i (
Ī2 − 3

)j
+

N∑
i=1

1
Di

(Jel − 1)2j (4.1)

In the previous expression, Jel is the elastic volume ratio, whereas Ī1
and Ī2 measure the material distortion. The parameters N, Cij e Di may
be temperature dependent; the second relates to the shear behaviour of the
material and the third is a compressibility quantity.

4.2.1 Linear Elastic
For linear elastic materials that are exposed to uniaxial tension, as stated

before, only the Young modulus is needed to express the relationship between
stress and strain. The constitutive law is shown in Equation 4.2.

σ = Eε (4.2)

Here, σ is the stress associated with a strain ε and defined by the material
stiffness represented by N. It is important to notice that permanent deforma-
tion occurs beyond the elastic limit. However, for the case of the current work,
the simulations took in consideration the behaviour until that limit only.

4.2.2 Hyperelastic

4.2.2.1 Neo-Hookean

This model is given by the following equation:

U = C10
(
Ī1 − 3

)
+ 1

D1

(
Jel − 1

)2
(4.3)

Here, U represents the strain potential energy per unit volume. The
coefficients C10 and D1 define two temperature dependent parameters of the
material and Ī1 the first invariant of the deflection strain tensor given by
Ī1 = λ̄2

1 + λ̄2
2 + λ̄2

3. The parameter λ̄i represents the deviatoric stretches and it
is given by λ̄i = J− 1

3 λi, being λi the first main stretch [42].
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4.2.2.2 Yeoh

The Yeoh model is given by equation 4.4.

U = C10
(
Ī1 − 3

)
+C20

(
Ī1 − 3

)2
+C30

(
Ī1 − 3

)3
+ 1

D1

(
Jel − 1

)2
+ 1

D2

(
Jel − 1

)4
+ 1

D3

(
Jel − 1

)6

(4.4)
Where Ci0 and Di are two temperature dependent parameters of the

material and Īi represents the invariant of the deflection strain tensor [42].

4.3 Filaments
Previous analyses have studied the efficacy of commercial synthetic pelvic

implants as a function of the attachment point for mesh anchorage [8], as
well as their adequacy for different degrees of tissue impairment [43]. For
both cases various constitutive models were applied in order to address the
mechanical behaviour of the implants - Yeoh and Ogden hyperelastic are two
examples [43]. For these commercial implants, the well-known properties of the
synthetic material assured a better performance of the meshes due to the fact
that prototypes could be tested and adjusted during the development phase.
The main goal of the current work has been to extend those capabilities to
cases with new and improved materials, such as PCL, that may offer a more
appropriate solution for treating POP.

Starting with the filaments, there were two values for the diameter. Each
one was a reference from the experimental data so all the models were sim-
ulated for both diameters as well: one measuring 160 micrometers, with a
cross-sectional area of 0.02 square millimeters and the other 240, with a cross-
sectional area of 0.04524 square millimeters. According to the experimental
data, the samples’ initial length of 50 millimetres was extended in 30% by
displacing one end of the filament and fixating the other as an encastre sup-
port. Even though the measurements included the plastic deformation zone,
the goal was to monitor the material’s behaviour until the elastic limit stress
point, once this is the strain range on which the mesh implants are meant to
function – avoiding permanent deformation.

As described in the previous section, two options were considered for the
material characterization. The first – to define the polymer as a linear elastic
material – implied the selection of a specific point within the linear part of the
stress-strain curve so that the stiffness could be determined. For the second op-
tion, regarding the hyperelastic approximation, a primary material evaluation
was made to get a first set of constitutive models, capable of properly match-
ing the measured performance. Figure 4.1 shows the resulting data points
extracted from the tensile tests on PCL filaments, carried out with samples of
both diameters and, consequently, the limit of the elastic regime that sits at
6.5% and 10% deformation over the initial length of the 160 micrometers and
the 240 micrometers filaments, respectively.
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Figure 4.1: Uniaxial stress-strain response in MPa for a) a 160 micrometers PCL filament
and b) a 240 micrometers PCL filament.

4.3.1 Young’s Modulus
Within the first option of assuming a linear relationship between stress

and strain for the filaments, two distinct paths could be followed. The first
relates to the theoretical value of PCL Young’s Modulus. According to the
literature [44], it can range between 343.9 and 363.4 MPa and the Poisson co-
efficient sits at 0.3 – value used in all of the linear analyses in the current work.
Thus, for the lower and upper limit of this interval and relying on Equation
4.2, the stress associated with the maximum strain – for the elastic limit refer-
ence – was calculated. This procedure would lead to an approximation of the
real stress-strain curve or, at least, to the invalidation of using this theoretical
value as a reference.

However, the mechanical properties of the extruded material could differ
from the ones stated by the literature, especially because a material’s behaviour
like the one studied here is expected to change depending on the geometry
of the sample – on the filament’s diameter, in this case. This hypothesis
would invalidate these references and its existence was actually the very first
motivation for this problem to be addressed in the current work – aiming
at a proper understanding of 3D printed fibers of PCL. In order to extract
the experimental Young’s Modulus, the previously mentioned limit point of
deformation – 3.238 and 5.073 millimetres for the 160 and 240 micrometres
samples, respectively – would provide both the stress and the strain to be
used in Equation 4.2. From here, further conclusions on the disparity between
the theoretical and the experimental values for the Young’s Modulus would
be taken, also giving meaning to the change in stiffness as a function of the
filament section. Nevertheless, it is crucial to notice the fact that this approach
leads only to a close estimate once the curve is not perfectly linear.

4.3.2 Simulation Procedure

Regarding the finite element simulations developed in ABAQUS ®, and
considering the intention to reproduce a uniaxial tensile test, beam elements
stood as the best option to simulate the filaments which were represented as
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wires. Once the measured stresses and strains manifest only in the direction of
the displacement – X direction – and the stress is constant across the filament’s
length, a single element per beam would assure a precise simulation. From
here, the boundary conditions were defined as static, applying the mentioned
displacement on one end of each filament – since that was a safe reference for
the end of the elastic regime for both samples – and an encastre support on the
other. Figure 4.2 shows these configurations with a print from an ABAQUS ®

file. After submitting the analysis, the results would offer stress values that,
determined by the described simulation specificities, could point to the most
adequate constitutive model, according to the experimental data.

Figure 4.2: Boundary conditions representation for a filament model.

It is important to mention the contrast between the linear elastic and
the hyperelastic simulations. Considering it would all come down to the way
the material is defined, once the circumstances of the tensile test are constant,
the first case presented itself as a simpler, more direct replication of the ma-
terial properties – the previous topic “Young’s Modulus” explains it. As for
the second case, the experimental data displayed on Tables 4.2 and 4.3 was
introduced in the software so that the constitutive equations could find the
required parameters to adjust to each given curve. Using experimental data
points is an alternative to the procedure of the linear elastic case, where the
material’s properties where manually introduced and defined its behaviour.

4.3.3 Model Parameters
Regardless of the fact that the use of experimental data points does not

depend on previously defining the parameters for the constitutive equations,
ABAQUS® creates them after simulations are submitted. This outcome, allied
with the resulting stress values, is an indicator of how close the simulation
comes to real behaviour of the samples. This iterative process – repeating
the analysis with the new coefficients and gauging them – enables the under-
standing of how these parameters affect the veracity of the approximation and
allows the user to implement them in further analyses – namely with the mesh
models. The procedure stands as similar to the one developed on the linear
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Table 4.2: Stress-Strain data points from the uniaxial tensile test developed on the 160
micrometres diameter sample.

Nominal Strain [standard travel/initial length] Nominal Stress [MPa]
0 0

0.00050354 0.7624
0.0015881 1.4625
0.00455127 2.2475
0.00722392 3.118
0.00939304 3.837
0.01342139 4.218
0.01477709 5.256
0.01987063 6.142
0.02196227 6.925
0.02728822 7.542
0.03116164 8.396
0.03639075 9.265
0.04599682 10.15625
0.05837239 10.894
0.06162606 11.71875
0.06271062 12.05

Table 4.3: Stress-Strain data points from the uniaxial tensile test developed on the 240
micrometres diameter sample.

Nominal Strain [standard travel/initial length] Nominal Stress [MPa]
0 0

0.00054161 1.4532739
0.00247891 3.60504764
0.0057494 4.544051
0.00772836 5.64570242
0.01029059 6.5946433
0.0150401 7.59822624
0.01939381 8.35075006
0.0239975 10.468293
0.02837204 11.6274048
0.03385064 12.452817
0.03962087 14.0320596
0.04557859 15.483215
0.0601604 16.764814
0.07101344 17.4859863
0.0802833 17.76073
0.10425997 18.118692
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elastic model since the simulation does not rely on experimental data points
to model the samples behaviour, only on input values.

Apart from these considerations related to the linear elastic and hyper-
elastic properties, which were properly attributed to the 50 millimetres long
wire, the sections were also defined as circular, according to the experimental
samples.

4.4 Meshes
For the development of the mesh models, two geometries had also been

previously tested, having been built with the two filament samples. This exper-
imental data, comparatively to the one used as the filaments’ properties source,
plays the role of referencing the parameters measured during the unaxial ten-
sile tests with the meshes, as well as of serving as a term of comparison within
the comfort zone - once placed, the implants’ behaviour is divided in two areas,
according to how their strain feels to the patient, and the comfort zone extends
up to 13% deformation. These two geometries represent a starting point in
terms of mesh implant design as further improvements shall be necessary for
a better reproduction of natural tissue properties. Still, since these samples
materialize a new concept for the manufacturing of such products, their intu-
itive design enables the depiction of the nuances to be taken into account in
cases where melt-electrospinning writing is the production technique. The two
patterns may be seen in Figure 4.3 through an ABAQUS® representation.

Figure 4.3: Software based representation of the mesh models: a) square-shaped mesh; b)
cross-shaped mesh.

Like in the filament analysis, these simulations had to be developed for
two different thickness values – both geometries were simulated with a 160
micrometers diameter section and a 240 micrometers diameter section. Ac-
cording to the experimental data, the samples’ initial length of 40 millimetres
was extended in 25% by displacing one end of the filament and fixating the
other as an encastre support. With the filaments the extension imposed during
the experiments had forced the material into the plastic deformation regime
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(during the experiments), and the same happened with the meshes, hence the
simulations being developed inside the comfort zone where only linear elastic
behaviour is witnessed. The goal was to study the meshes inside the elastic
regime, avoiding permanent deformation on the implants.

For this part of the work, the material would then be defined as linear
elastic once this was the model that best suited the experimental data dur-
ing the filaments’ simulations. Even though two different diameters were in
play, the used Young’s Modulus did not differ as a function of this factor. For
the two diameter values disposed according to the square-shaped mesh geom-
etry, Figure 4.4 is a graphic representation of the experimental data, being
important to acknowledge the resemblance between the mesh behaviour and
the filament behaviour (linear elastic) up to a 10% elongation for the meshes
built with 160 micrometers diameter filaments and 240 micrometers diameter
filaments, respectively. Consequently, the associated Young’s Modulus was
measured in these points.

Figure 4.4: Uniaxial stress-strain response in MPa for a) a 160 micrometers PCL filament
square-shaped mesh and b) a 240 micrometers PCL filament square-shaped mesh.

Similarly, for the cross-shaped mesh, Figure 4.5 shows the experimental
data. The interval of linear elastic behaviour was, for the case of this geom-
etry, assumed up to a 7.5% elongation. Consequently, the structures Young’s
Modulus was measured in these points for both diameters.

Figure 4.5: Uniaxial stress-strain response in MPa for a) a 160 micrometers PCL filament
cross-shaped mesh and b) a 240 micrometers PCL filament cross-shaped mesh.
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4.4.1 Mesh Design
As may be perceived from Figure 4.3, both geometries were developed

according to the dimensions of the tested prototypes - structures with a length
of 40 millimetres and a width of 10 millimetres. In spite of the fact that the
printed meshes most likely presented spots of overlapped material – node points
– the sections were defined evenly for both diameter values, which represented
the thickness of each mesh. Comparatively to the design of the filaments, and
once they may be seen as the unit measure or basic element for the several
geometries, beam elements were also used to simulate the filaments, forming
a net of wires that composed the final structure.

The fundamental feature of this mesh design has been the pore size repli-
cation. The printed and posteriorly tested mesh prototypes were projected
with a pore size of 2 millimetres once the implants must allow natural tissue
to grow in between and around them. Consequently, the models replicated
with ABAQUS® should be developed accordingly. As may easily be seen with
the square-shaped mesh representation in Figure 4.3, the distance between the
vertical and horizontal is defined by that exact pore size of 2 millimetres.

4.4.2 Simulation Procedure
Aligned with the procedure exercised in the filament’s analyses, the simu-

lations for this part of the current work also aimed at reproducing the uniaxial
tensile tests. The main contrast between the two is the fact that, for the
meshes, the displacement is vertically applied and thus represented in the Y
direction. Moreover, the chosen value for the element type was equivalent to
0.5 millimetres on behalf of the output results’ reliability. The graphic practical
implications of this parameter may be seen in Figure 4.6 with a representation
of several nodes within a single cell of the cross-shaped mesh.

Figure 4.6: Element type used on both geometries, here represented through a 4 square
millimetres cell of the cross-shaped mesh.

The boundary conditions, were also defined as static, applying a dis-
placement on one end of the mesh – 5.2 millimetres that represents a 13%
elongation - and an encastre support on the other. The 13% elongation strain
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Table 4.4: High and Low Young’s Modulus values in MPa for each geometry, extracted from
uniaxial tensile tests applied to 3D printed mesh prototypes.

Square-shaped Cross-shaped
Diameter [µm] 160 240 160 240
Young’s Modulus 2.98 9.18 3.04 8.44

assures the whole comfort zone will be covered, which is the main goal of the
current work.

Figure 4.7 shows these configurations with a print from an ABAQUS ®

file. After submitting the analysis, the results would offer stress values that,
determined by the described simulation specificities, would point to the rele-
vance of these approximations through the Linear Elastic model. Depending
on the diameter, each simulation was firstly carried out relying on the Young’s
Modulus values previously registered. Once the circular section was properly
defined, attributing it the created profile and assigning it to the mesh part,
simulations were put into motion for the two cases – 160 and 240 micrometres
diameter samples with the results from the filaments’ simulations, a Young’s
Modulus of 186 MPa.

Figure 4.7: Boundary conditions representation for the square-shaped mesh.

Besides using the stiffness values obtained from the filaments’ simula-
tions, all the geometries, composed by filaments of each diameter, were sim-
ulated with the associated Young’s Modulus - previously mentioned measure-
ments at 10% and 7.5% elongation for the square-shaped and the cross-shaped
geometries, respectively, regarding Figures 4.4 and 4.5. These experimental
values were extracted from the experimental stress-strain curves and relate
to the end of the elastic behaviour. Even though the stress-strain curve of
the meshes is not perfectly linear, a good approximation up to this point was
expected. Table 4.4 shows the extracted Young’s Modulus values, for each
geometry and diameter, assuming the meshes as an uniform sheet-like body.
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Chapter 5

Results and Discussion

After developing the computational models described in the previous
chapter, the analyses provided an insight over the problem of finding an ade-
quate constitutive model for the replication of the filaments behaviour. More-
over, as answers were found, the meshes were also addressed in order to ulti-
mately compare them with the stress over strain response of the Restorelle®

commercial mesh and the vaginal tissue. Thus, the current chapter aims at
an enumeration of the several simulations’ outputs, accompanied by a detailed
discussion on their relevance and accuracy. These explanations are of great
importance before moving into the final conclusions of the current work. Once
again, there is an inherent connection between the results of the filaments’
simulations and the strategies used to model the various mesh geometries.

5.1 Filaments

The analyses of the procedures described above were fundamentally sup-
ported by the comparison of the stress results shown for each case – diameter
and constitutive model – to the experimental values. As the reader may recall,
the simulations were conducted with the intention of matching the mechanical
behaviour shown on the uniaxial tensile tests. Consequently, given the clarity
of the reference values, a relative error - that may be found on Table 5.1 -
was calculated for each model in order to assess the best option to work with
filament models inside the software. This option would be implemented in the
mesh simulations afterwards.

5.1.1 Stress Values

The linear elastic modelling of the filaments showed interesting results.
These may be seen in the following pictures 5.1 and 5.2, for the 160 and 240
micrometres diameter samples, respectively.
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Figure 5.1: Stress value in MPa achieved by the Linear Elastic constitutive model for the
160 micrometre diameter filament.

Figure 5.2: Stress value in MPa achieved by the Linear Elastic constitutive model for the
240 micrometre diameter filament.

For the Neo-Hookean constitutive model, the simulations based on the
available experimental data culminated in the results presented in Figures 5.3
and 5.4 for the 160 and 240 micrometres diameter samples, respectively.

Figure 5.3: Stress value in MPa achieved by the Neo-Hookean constitutive model for the
160 micrometre diameter filament.
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Figure 5.4: Stress value in MPa achieved by the Neo-Hookean constitutive model for the
240 micrometre diameter filament.

For the Yeoh constitutive model the results are presented in figures 5.5
and 5.6 for the 160 and 240 micrometres diameter samples, respectively.

Figure 5.5: Stress value in MPa achieved by the Yeoh constitutive model for the 160 mi-
crometre diameter filament.

Figure 5.6: Stress value in MPa achieved by the Yeoh constitutive model for the 240 mi-
crometre diameter filament.
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5.1.2 Discussion
With access to the stress outputs as a function of the applied constitu-

tive equations, it was now possible to understand which one lead to the best
estimate. Starting with the linear elastic model (Poisson coefficient of 0.3)
and the Young’s Modulus value provided by the literature, the expected stress
value was between 21.28 and 22.49 MPa for the 160 micrometres diameter
sample (160) and between 34.91 and 36.89 MPa for the 240 micrometres di-
ameter sample (240). Knowing that the registered values during the tensile
tests were 12.05 and 18.12 MPa for the 160 and 240, respectively, it is safe to
assume that the properties of the 3D printed PCL are considerably different
to the ones mentioned by the literature. This is most likely linked to the high
temperatures of extrusion associated with the melt electrospining writing, as
well as to the time associated with the cooling of the materials. These factors
imply physical transformations that alter the stiffness and, consequently, the
elastic behaviour of the polymer.

For the case where the Young’s Modulus was extracted from the experi-
mental data, its value was of 186 MPa. The previously shown output stresses
may be taken as accurate simulations since their values fell at 11.52 and 17.73
MPa for the 160 and 240 filaments, respectively. This outcome is not sur-
prising once the reference data point was in fact the limit value of the elastic
regime. Plus, once the simulations aimed at mimicking the experimental tests,
the conformity between the results was predictable; in order to match a linear
segment of a stress-strain curve, the material shall be defined as linear elastic.

Table 5.1: Stress values extracted from the simulations made with different constitutive mod-
els; Relative error of each measurement according to the uniaxial tensile test experimental
data.

160 µm 240 µm
Stress [MPa] error [%] Stress [MPa] error [%]

Experimental Data 12.05 n/a 18.12 n/a
Literature Values 21.28-22.49 70-79 34.91-36.89 126-139

Linear Elastic 11.52 4.4 17.73 2.2
Yeoh 15.24 26.5 16.44 9.3

Neo-Hookean 17.95 49 28.63 58

For this comment section to be concluded, the hyperelastic constitutive
models must also be questioned. Since the tested 3D printed PCL is not
characterized by a perfectly linear elastic regime, it was reasonable to register
the coefficients of the constitutive equations from the Yeoh model - Figures
5.7 and 5.8 show them for both diameters. These were not registered for the
Neo-Hookean model as the discrepancy between the output stresses of this
constitutive equation and the experimental stress data clearly indicates the
inadequacy of using it to simulate the PCL filaments.

Considering the values of the relative error presented in Table 5.1, the
Neo-Hookean model was discarded promptly. The predictions made by this
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model were far worse than the ones achieved by the linear elastic model. As for
the Yeoh constitutive models, despite the associated errors being lower than
the ones of the Neo-Hookean model, the Linear Elastic model still represents
the best option for modelling the 3D printed material

Figure 5.7: Extracted parameters from the Yeoh constitutive model simulation for the 160
micrometre diameter filament.

Figure 5.8: Extracted parameters from the Yeoh constitutive model simulation for the 240
micrometre diameter filament.

From here, the work proceeded towards modelling and simulating the
behaviour of the meshes, taking into account the Linear Elastic model. It is
clear that the PCL filaments’ behaviour must be defined as linear elastic in
order to be simulated inside that same regime. In the first simulations, the
meshes were modeled using the Young’s Modulus value obtained during the
filaments’ simulations - 186 MPa. Even though the Yeoh model could also
be an adequate option for the 240 micrometres diameter sample, the meshes
composed by filaments with this section area shall also be simulated with
the Linear Elastic model. Nevertheless, the experimental measurements taken
from the tensile tests on mesh prototypes shall be considered as well.

5.2 Meshes
The presented stress distributions shall be compared considering the in-

fluence of different values for the Young’s Modulus of the structures - numerical
(filaments’ simulations) and experimental. These representations show a gradi-
ent of stress values throughout the mesh structures that will also be compared
with each other so that the influence of the geometry may be understood.
Afterwards, the comparison between the stress-strain curve obtained from the
simulations takes place, using the results from the experimental data registered
on the uniaxial tensile tests on mesh prototypes. Similarly to the filaments’
results presentation, the stress maps of the three geometries are listed and
commented bellow.
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5.2.1 Stress Values

Four simulations were made with the square-shaped geometry. Each
section area was tested for a 13% elongation, given two different sources for
the Young’s Modulus values. The following Figures 5.9, 5.10, 5.11 and 5.12
show the taken measurements.

Figure 5.9: Stress distribution in MPa measured in the square-shaped mesh built with the
160 micrometre diameter filament at a 5.2 millimetre displacement; Young’s Modulus = 186
MPa (measured for the filaments).

Figure 5.10: Stress distribution in MPa measured in the square-shaped mesh built with the
240 micrometre diameter filament at a 5.2 millimetre displacement.; Young’s Modulus =
186 MPa (measured for the filaments).
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Figure 5.11: Stress distribution in MPa measured in the square-shaped mesh built with the
160 micrometre diameter filament at a 5.2 millimetre displacement.; Young’s Modulus =
2.98 MPa (experimental).

Figure 5.12: Stress distribution in MPa measured in the square-shaped mesh built with the
240 micrometre diameter filament at a 5.2 millimetre displacement.; Young’s Modulus =
9.18 MPa (experimental).

As for the cross-shaped geometry mesh, both the 160 and 240 microme-
tres filaments were used and the four possibilities mentioned above were also
put into practice. Figures 5.13, 5.14, 5.15 and 5.16 show the associated stress
distributions.



52 Chapter 5. Results and Discussion

Figure 5.13: Stress distribution in MPa measured in the cross-shaped mesh built with the
160 micrometre diameter filament at a 5.2 millimetre displacement; Young’s Modulus = 186
MPa (measured for the filaments).

Figure 5.14: Stress distribution in MPa measured in the cross-shaped mesh built with the
240 micrometre diameter filament at a 5.2 millimetre displacement; Young’s Modulus = 186
MPa (measured for the filaments).

Figure 5.15: Stress distribution in MPa measured in the cross-shaped mesh built with the
160 micrometre diameter filament at a 5.2 millimetre displacement; Young’s Modulus = 3.04
MPa (experimental).



5.2 Meshes 53

Figure 5.16: Stress distribution in MPa measured in the cross-shaped mesh built with the
240 micrometre diameter filament at a 5.2 millimetre displacement; Young’s Modulus = 186
MPa (experimental).

5.2.2 Stress-Strain Curves

The curves are compared with the experimental ones - shown by Figures
5.17, 5.18, 5.19 and 5.20. Once the values registered on the simulations with
the numerical Young’s Modulus may be discarded (explained in the next sub-
section), the stress-strain relationship is shown only for the simulations using
the stiffness value measured form the experimental data.

Figure 5.17: Stress-strain relationship for the square-shaped mesh built with the 160 mi-
crometre diameter filament, up to a 5.2 millimetre displacement.
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Figure 5.18: Stress-strain relationship for the square-shaped mesh built with the 240 mi-
crometre diameter filament, up to a 5.2 millimetre displacement.

Figure 5.19: Stress-strain relationship for the cross-shaped mesh built with the 160 microme-
tre diameter filament, up to a 5.2 millimetre displacement.
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Figure 5.20: Stress-strain relationship for the cross-shaped mesh built with the 240 microme-
tre diameter filament, up to a 5.2 millimetre displacement.

5.2.3 Discussion
First of all, regarding the simulations developed with the Young’s Mod-

ulus measured during the filament’s simulations, the stress distributions on
the computationally modeled meshes were not representative of the real stress
response from the meshes during the experimental uniaxial tests. Hence the
numerical stress-strain curves not featuring these cases. The reason behind
this is related to the fact that the models designed in ABAQUS ® respect the
geometrical characteristics of the previously printed prototypes, which implies
a variable sectional area across the meshes’ length and, consequently, the need
for a different stiffness value to represent the whole structure.

As for the simulations run after using the experimental stress-strain re-
sponse from the mesh prototypes as the source for the Young’s Modulus values,
the results were quite more interesting. The reader may see how the stresses
are more evenly distributed with cross-shaped geometries, a detail that indi-
cates how crucial geometry manipulation is in order to improve the surgical
implants’ performance. The resemblance to the experimental stress values,
accordingly to what happened with the filaments, is justified by the fact that
the mesh properties were thoroughly replicated in the software. An impor-
tant part of these results analyses, before looking at each mesh geometry and
thickness independently, is to understand that, for each one of the simula-
tions, the stress values are only a realistic representation up to the end of the
meshes’ elastic regime. The first rupture points do not exist in the simula-
tions since the models were assumed to maintain their stiffness throughout
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the whole comfort zone. Nevertheless, when looking at the elastic regime,
the applied strains trigger a properly matched stress response, especially for
the square-shaped mesh composed by 160 micrometers diameter filaments and
for the cross-shaped mesh composed by 240 micrometers diameter filaments.
The square-shaped mesh geometry composed by 240 micrometres diameter fil-
aments suggests that the linear elastic model may be too inaccurate in this
case. Lastly, the cross-shaped models tend to show a higher resemblance with
the experimental curves.

Finally, the curves must be compared with the ones of the Restorelle®

commercial mesh and of the vaginal tissue. Figure 5.21 displays this informa-
tion, like in the examples listed above, in a stress-strain graph.

Figure 5.21: Stress-strain relationship for all meshes and the vaginal tissue.

The reader is now able to understand how the thickness - filaments’ di-
ameters - may influence the meshes stress response. It is seen that the 160
micrometres geometries perform better up to a 6% deformation, using the
vaginal tissue curve as a reference. However, after this strain point, the re-
semblance is no longer verified. For the geometries with a 240 micrometres
thickness, even though their performance is not as good for initial strain val-
ues - using the vaginal tissue curve as a reference - the second half of the graph
suggests that these may actually be a better option than the Restorelle® com-
mercial mesh since they show a lower rigidity and might, as a consequence,
induce less discomfort on the patient.
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Final Remarks

6.1 Conclusion

POP is a medical condition related to the weakening of the pelvic mus-
cles and ligaments with high levels of prevalence among women, especially of
advanced age. Once these structures are responsible for the support and the
well-functioning of the organs inside the pelvic cavity, their impairment in-
duces complications that compromise the patients’ health. When the damage
of the USLs and CLs reaches a severe degree, the organs may be displaced
leading to pelvic prolapse.

The intricacy of the pelvic region and its consequent demand for com-
plex analyses and treatments is the reason for the associated techniques having
received constant improvements over the past years. Nevertheless, these ap-
proaches will still require further technical investigation that, along with med-
ical counselling, might deliver more adequate solutions. A clear conclusion to
take from the current work is how crucial the stability of the pelvic region is for
women of all ages. Currently, the main hope lies on surgical implants and their
active optimization, aiming at a smoother engagement with host biological tis-
sues, as well as at more efficient structural performances. Past solutions have
not shown perfect results on these matters and were eventually banned from
commercialization and implementation, for the sake of the patients’ safety

The current work aimed at modelling mesh implants in ABAQUS® soft-
ware – starting with the filaments that compose them – and understanding the
mechanical properties of PCL – a 3D printed biodegradable polymer. Making
use of existent experimental data from uniaxial tensile tests, it was possible to
simulate filaments’ performance as a function of their section area – two diame-
ters were tested. Moreover, once the main goal was to identify the constitutive
model that best reproduced the experimental results, different models were
applied in order to reach a conclusion on this concern. Imposing boundary
displacements on one end of each filament – 6.27 and 10% of the total length
for the 160 and 240 micrometres diameter filaments, respectively – the stress
values would answer this question. It was clear that, for a single filament, the
linear elastic model offered the most accurate results, followed by the hypere-
lastic Yeoh and Neo-Hookean models. This perception enabled the modelling
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of different mesh geometries for which experimental data was also available.
As the work moved forward, the meshes were also replicated and given

modeled according to the constitutive law that had been settled as most ap-
propriate during the filaments’ simulations. All the models were exclusively
tested inside the comfort zone of deformation - applying a displacement of 13%
of the total length - since this is the range were the a linear elastic behavior
was witnessed during the experimental uniaxial tensile tests. From here it was
then possible to conclude that different geometries show different stress-strain
responses, and that the thickness of the meshes also plays an important role
on this matter. The cross-shaped geometries tend to be better represented
through the linear elastic model than the square-shaped ones. After compar-
ing the stress-strain curves obtained from the simulations, it is clear that the
meshes built with the 160 micrometres diameter filaments are the best option
to match the vaginal tissue curve up to a 6% elongation and that the meshes
built with the 240 micrometres diameter filaments and the Restorelle® com-
mercial mesh show similar behaviours inside the comfort zone. The prevalence
of the influence of the geometry, as well as of the thickness, enables a promising
understanding for eventually finding solutions that better address POP.

6.2 Future Work
Aiming at further developments on the subject studied in the current

work, the author sees geometry manipulation and optimization as the main
course to follow - changes and improvements on this regard will allow control
over the stiffness of the meshes. Once enough computational models are devel-
oped for the meshes, the optimization of sectional areas might also be possi-
ble, enabling the production of prototypes with variable thicknesses. Creating
databases for this instances shall be the first step to achieve this extra degrees
of freedom in mesh design. For the curious reader to investigate further, an in-
teresting fact is the resemblance between the stress-strain curves of the vaginal
tissue and the ones associated with spiral shaped spider webs.

Another important topic shall be investigating different materials, capa-
ble of providing enough elasticity to operate with bigger deformation values.
The current work only addressed the comfort zone but a functional surgical
implant is supposed to be capable of responding beyond that limit.

As a final remark, the convergence between medical and technical knowl-
edge, together with how patient report the sensation induced by the implants,
will be crucial for POP to be pacifically treated in the future. The need for
personalized approaches, eventually based on MRI’s shall bring for efficient
solutions. A better general understanding of the pelvic muscles and ligaments
is also strongly related to these improvements.
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