
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Workflow process definition in a Cyber
Physical Production System

Gonçalo Henriques de Proença Pinho

Mestrado em Engenharia Eletrotécnica e de Computadores

Orientador: Gil Gonçalves

Co-orientador: João Reis

March 31, 2022

© Gonçalo Pinho, 2022

Abstract

As automatization and digitalization grows exponentially in the world we know, industry faces
more and more challenges in order to keep up with the indexed demands. Workflows ease the pro-
cesses definition that allow users to respond to those demands. In order to facilitate workflow
definition for any given scenario, we propose a recommendation system based on user-defined
specific and performance requirements that calculate and return optimal workflows. The system
takes two performance metrics and the user is to choose the amount of preference each perfor-
mance requirement has on the final workflow. This preference is chosen through a percentage
value. The proposed system uses this input from the user and resorts to a function block database
to estimate the best workflow for the desired requirements. The database has all the information of
each function block performance as weights, according to the two defined metrics. Graph theory
and dynamic programming strategies were used to implement this software. So as to automatize
the definition of these weights, an optimizer system was also developed based on a genetic al-
gorithm. This system takes history logs of workflows performance results and returns the most
optimized set of weights to the user, so that they can be used to define each function block to be
then used in the main recommending system. The test validation phase was done using a dataset
from a real-life example. The used paper proposes a strategy to recommend workflows based on
user-defined requirements for specific situations and resorting to a linear programming algorithm.
Both systems were tested on their performance, scalability, and the ability of working as the com-
plement of one another. All tests done showed good performance from both algorithms in different
case scenarios. Afterwards we discussed on different possible approaches for each major step on
the proposed implementation as well as some future work suggestions. Lastly we presented some
overall conclusions on the work done.

i

ii

Agradecimentos

Inicialmente gostava de agradecer aos meus dois orientadores. O professor Gil Gonçalves pela
oportunidade de realizar este trabalho espetacular bem como toda a ajuda dada no processo. Um
especial abraço ao meu co-orientador, o professor João Reis pela sua disponibilidade incansável,
toda a orientação dada e a todas as trocas de ideias que possibilitou que este trabalho pudesse ter
sucesso.

Quero também agradecer do fundo do coração à minha família, à minha mãe, ao meu pai e
à pessoa mais importante da minha vida, a minha irmã pelo apoio incondicional que me deram
não só durante a realização desta dissertação mas também ao longo destes últimos 5 anos e meio,
apesar de todas as diversidades encontradas no caminho. Sem eles nada disto seria possível e
devo-lhes tudo por esta oportunidade.

Um agradecimento especial também à Anabela, ao Luis, ao Gonçalo e à Lia que também são
a minha família e que também mostraram apoio incondicional.

Outro agradecimento a mais um membro da família ainda não mencionado que é o Levi Pe-
seta, por estarmos juntos a apoiar-nos não só nestes últimos 5 anos mas nos últimos 15 anos de
irmandade.

Queria também agradecer a todas as pessoas que me ajudaram a chegar a este ponto, à Catarina
e à Diana que me acompanharam de perto durante a realização deste trabalho, à Matilde por todo
o apoio dado no último ano e meio, aos meus antigos colegas de casa Ana, Anze e João por
terem ajudado bastante nas alturas críticas desta dissertação e a uma pessoa muito especial que me
ajudou a manter a sanidade mental neste últimos meses de trabalho com todo o otimismo da sua
parte, a Maria.

Por último quero agradecer bem lá do fundo às pessoas que me acompanharam de perto nesta
jornada de 5 anos e meio e que pretendo levar comigo para o resto da vida. Sem eles isto não
tinha tido metade da piada e possivelmente muito mais difícil de alcançar. E que apesar de todas
as adversidades estiveram sempre do meu lado e prontos para me receber. Um grande abraço para
o Coentrão, Imobicho, Suma, Barbot, Jynx, Quiche, Impressora, TAC, Eclair, Sirenes, Badass,
Pro-V, Sequóia, Desaparecida, Capucho e Fi (acho que não me enganei na ordem). Isto sem vocês
não valia nada,

Gonçalo Henriques de Proença Pinho

iii

iv

“Dai-me mais vinho, porque a vida é nada.”

Fernando Pessoa

v

vi

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem Definition . 2
1.4 Objectives . 3

2 Bibliographic Review 5
2.1 Research Methodology . 5

2.1.1 Research Questions . 5
2.1.2 Keywords . 6
2.1.3 Research Process . 6

2.2 Literature Review . 7
2.2.1 Digital twins and Cyber-Pysical Production System 8
2.2.2 Workflow definition . 9
2.2.3 Types of workflows . 11
2.2.4 Recommendation systems . 21

3 Implementation 27
3.1 Workflow Recommendation System . 28

3.1.1 Input files . 28
3.1.2 Graph theory . 30
3.1.3 Solution design . 33
3.1.4 System breakdown . 34
3.1.5 Architecture . 37

3.2 Weights Optimization . 39
3.2.1 Input files . 40
3.2.2 Solution design . 40
3.2.3 Genetic algorithm . 42
3.2.4 Library . 45
3.2.5 Architecture . 48

3.3 Overall Implementation . 48
3.3.1 Overall architecture . 50

4 Testing and Validation 51
4.1 Case Study . 52
4.2 Recommendation system . 54
4.3 Genetic algorithm as weights estimator . 65
4.4 Genetic algorithm as weights optimizer . 76

vii

viii CONTENTS

5 Conclusions and Future Work 85

A Appendix 87

References 95

List of Figures

2.1 Integration of CPS and DT. 8
2.2 Gas turbine workflow model. 10
2.3 Weights and ranks calculated with HEFT algorithm. 11
2.4 Systematizing predictive maintenance approaches. 12
2.5 Predictive maintenance workflow. 13
2.6 Big data pipeline architecture and workflow. 14
2.7 Simulation of data ingestion. 15
2.8 Simulation of data processing. 16
2.9 Simulation of data analysis. 16
2.10 High-level flow chart of a data organiser. 18
2.11 Example of a basic Reflex workflow. 18
2.12 Overview of the central role of the Mantid framework in data reduction workflow. 19
2.13 Schematic representation of the Hi-GAL data reduction pipeline. 20
2.14 Schematic representation of an enhanced workflow for model calibration. 21
2.15 Computation pipelines for modeling and prediction. 22
2.16 An overview of AdaPipe system. 22
2.17 Data Fusion Pipelines for Variation Modeling. 23
2.18 Data Fusion Pipelines for Variation Modeling. 23
2.19 Data Fusion Pipelines for Variation Modeling. 23
2.20 WfMR approach framework. 24
2.21 WfMR process. 25
2.22 Hybrid framework architecture. 25
2.23 Statistical analysis of occupancy scale from schedules in workflow. 26

3.1 Requirements CSV snippet. 28
3.2 Function blocks database CSV snippet. 29
3.3 Relation of dependence between the requirements input file and the function blocks

database file. 30
3.4 Graph model example . 32
3.5 Function block model example . 32
3.6 Simple DAG example. 33
3.7 Recommending System Architecture. 38
3.8 Genetic algorithm. 39
3.9 Input dataset for the genetic algorithm. 40
3.10 Weight Optimization System Architecture. 48
3.11 Overall Architecture. 50

4.1 Set-similarity join workflow. 53

ix

x LIST OF FIGURES

4.2 Graph used for this case study. 55
4.3 Small portion of results of test 3. 64
4.4 MAP@K comparison between tests 1, 2, 3, and 4. 65
4.5 Graphic of the average population and best solution fitness evolution through gen-

eration iterations for stage 1. 67
4.6 Histogram with the weights distribution on the last population for stage 1. 68
4.7 Graphic of the average population and best solution fitness evolution through gen-

eration iterations for stage 2. 68
4.8 Histogram with the weights distribution on the last population for stage 2. 69
4.9 Graphic of the average population and best solution fitness evolution through gen-

eration iterations for stage 3. 69
4.10 Histogram with the weights distribution on the last population for stage 2. 70
4.11 Graphic of the average population and best solution fitness evolution through gen-

eration iterations for stage 1. 72
4.12 Graphic of the average population and best solution fitness evolution through gen-

eration iterations for stage 2. 72
4.13 Graphic of the average population and best solution fitness evolution through gen-

eration iterations for stage 3. 72
4.14 Histogram with the weights distribution on the last population for stage 1. 73
4.15 Histogram with the weights distribution on the last population for stage 2. 73
4.16 Histogram with the weights distribution on the last population for stage 3. 74
4.17 MAP@K comparison between tests 2, 4, 5, and 6. 75
4.18 Graphic of the average population and best solution fitness evolution through gen-

eration iterations for stage 1, without initial solution. 77
4.19 Graphic of the average population and best solution fitness evolution through gen-

eration iterations for stage 1, with initial solution. 77
4.20 Histogram for the weights distribution on the last population for stage 1, with no

initial solution. 78
4.21 Histogram for the weights distribution on the last population for stage 1, with

initial solution. 78
4.22 Graphic of the average population and best solution fitness evolution through gen-

eration iterations for stage 2, without initial solution. 79
4.23 Graphic of the average population and best solution fitness evolution through gen-

eration iterations for stage 2, with initial solution. 79
4.24 Histogram for the weights distribution on the last population for stage 2, with no

initial solution. 80
4.25 Histogram for the weights distribution on the last population for stage 2, with

initial solution. 80
4.26 Graphic of the average population and best solution fitness evolution through gen-

eration iterations for stage 3, without initial solution. 81
4.27 Graphic of the average population and best solution fitness evolution through gen-

eration iterations for stage 3, with initial solution. 81
4.28 Histogram for the weights distribution on the last population for stage 3, with no

initial solution. 82
4.29 Histogram for the weights distribution on the last population for stage 3, with

initial solution. 82
4.30 MAP@K comparison between tests 4 and 7. 84

List of Tables

2.1 Table with the relation between each research question and respective keywords. . 7

4.1 Execution time in seconds of each stage on different cluster sizes. 53
4.2 The three shortest possible execution times for each combination of workflow cost. 57
4.3 Weight values for the 24 function blocks after using the Global Normalization

method. CE and TE stand for Cost Efficiency and Time Efficiency, respectively. . 58
4.4 Results for the test 1, using GN for weight estimation. 59
4.5 Calculation process of AP@K for test 1 results. 60
4.6 Test 1 MAP@K for different K values. 60
4.7 Weight values for the 24 function blocks after using the Local Normalization method. 61
4.8 Results for the test 2, using LN for weight estimation. 62
4.9 Calculation process of AP@K for test 2 results 62
4.10 Test 2 MAP@K for different K values. 63
4.11 MAP@K evaluation for test 3. 64
4.12 MAP@K evaluation for test 4. 64
4.13 Top 1 workflow composition, recommended in test 1. 66
4.14 Weights generated by the GA for each block based on test 1. 70
4.15 Results for the test 5, using weights estimated by the GA. 71
4.16 MAP@K evaluation for test 5. 73
4.17 Weights generated by the GA for each block based on test 3. 74
4.18 MAP@K evaluation for test 6. 75
4.19 Weights generated by the GA when good solutions are introduced in the initial

population. Reference values used are from test 4. 83
4.20 MAP@K evaluation for test 7. 83

A.1 Results for the test 3, using GN for weight estimation. 88
A.2 Results for the test 4, using LN for weight estimation. 89
A.3 Top 1 workflow composition, recommended in test 3. 90
A.4 Results for the test 6, using weights estimated by the GA. 91
A.5 Top 1 workflow composition, recommended in test 4. 92
A.6 Modified list from top 1 workflows of test 4, with optimal solutions. 93
A.7 Results for the test 7, using GA for weight optimization. 94

xi

xii LIST OF TABLES

Abbreviations

AutoML Automated Machine Learning
BK Basic Kernel
BRJ Basic Record Join
BTO Basic Token Ordering
COTS Commercial Off-The-Shelf
CPS Cyber-Physical System
CPPS Cyber-Physical Production System
DAG Directed Acyclic Graph
DFP Data Fusion Pipeline
DS Data Source
DT Digital Twins
DW Data Warehouse
EMCA Enhanced Monte Carlo Algorithm
ETL Extract-Transform-Load
FB Function Block
GA Genetic Algorithm
ICE Intelligent Cyber-Enterprise
ICPS Industrial Cyber-Physical Systems
IoT Internet of Things
MILP Mixed Integer Linear Programming
NoSQL Not Only SQL
OPRK One Phased Token Ordering
OPTO One Phase Token Ordering
PK Indexed Kernel
RJMCMC Reversible-Jump Markov Chain Monte Carlo
TEMC Tensor regression-based Extended Matrix Completion
SSJ-MR Set-Similarity Joins using MapReduce
TOD Time-Ordered Data
UDF User-Defined Function
VMI Virtual Machine Instances
WFaaS Workflow as a Service
WfMR Workflow Model Recommendation

xiii

Chapter 1

Introduction

1.1 Context

As times goes, the growing of the industry 4.0 revolution is more and more noticeable. This

has brought us a lot of new, complex and widely known concepts that have been used by companies

at an increasingly rate. Internet of Things (IoT), Smart Factory, Machine Learning, Cyber Physical

Systems (CPS) and cloud systems are some examples of the most known names related to industry

4.0 [1]. The companies have been experiencing a dire need to implement the digitalization of their

own factories as their biggest competitors have been doing it for years.

Digitalization of factories floors are, on one hand, very complex, though on the other hand

have huge potential applications as they bring a full package of advantages such as Machine-to-

Machine (M2M) communication, error tracking, energy and production efficiencies, anomalies

prediction and much more.

Nowadays’ factories floors are way more complex than ever before and that increases the need

to develop tools that would give more flexibility, better communication between different machines

and modularity for the systems. Given that, the digitalization becomes such an important aspect

for the industry. This digitalization creates the so called digital twins. A digital twin may be seen

as a simulated world where everything is connected to everything. It provides a digital version of

a factory with real-time data. This data can be processed and used to improve the performance on

several sectors of an industrial factory.

IEC 61499 is a standardization model based on function blocks to represent processes that

might be part of a workflow. Even though IEC 61499 is a standard developed for distributed con-

trol systems, it is been used nowadays as a tool to implement Cyber-Physical Production Systems

and create key workflows of Digital Twin orchestration. A workflow represents a sequence of pro-

cesses that are supposed to meet some kind of requirements such as solving specific problems, data

processing from sensor readings or production. Workflows are commonly seen in Cyber Physi-

cal Systems (CPS). CPS represent the objects of the physical layer of the industry on a digital

twin. Cyber Physical Production Systems (CPPS) represent a CPS but with the add-on of produc-

tion controlling features. The standardization of these workflow processes is very important as it

1

2 Introduction

makes possible to use a global approach to the adaption and creation of new workflows in a CPPS.

1.2 Motivation

The industry 3.0 revolution has brought us the automatization, computers and electronic de-

vices in general, and hence the need of optimization and adaption of these machines has increased

as well. Industry 4.0 has been making that both easier and possible through digitalization.

Workflows take a huge role on the automation processes, and for this work purposes, a work-

flow is deemed as a simple sequence of processes/activities. Therefore, throughout the rest of the

document we refer to a workflow as a pipeline, thus using both terms.

Workflows can be tested and evaluated to give us a better understanding of how well it meets

desired requirements. To have a better understanding on this, workflows are extremely well ex-

plained with a real life example in [2], as it is explained a real situation with the need to use

workflows to solve a problem, as well as a talk on every aspect someone should be paying atten-

tion to when defining a workflow.

The need of adaption, optimization or even the creation of workflows is huge. A lot of data may

be gathered within the execution of a specific workflow and several different goals or requirements

can be set. Some examples of workflow requirements are mentioned in [3]. Those requirements

are defined as either specific requirements or performance requirements. Specific requirements

describe what the user needs the workflow to do. Performance requirements are the ones linked

with the execution performance of the workflow.

To make it more clear, an example of a workflow in the given context may go from retrieving

data from a working machine, reduce, and normalize that data. For this example, the type of

data ingestion, data reduction, and data normalization are the specific requirements. Performance

requirements could be execution time efficiency and execution cost.

1.3 Problem Definition

Having all this information, setting the problem definition is the next step to take. Defining a

workflow may get really hard depending on the goals and requirements to meet, as well as on its

complexity. Moreover, context adaptability is also a challenging point. Therefore, the plan is to

develop a recommendation framework.

So for different scenarios, a user may want to build a pipeline that meets the desired require-

ments. In order to do this and for each stage of the workflow, he must choose an option that

completes that stage. This may get harder and harder to be done manually when dealing with

several stages and several options for each stage, and so the problem to solve is the automatization

of this process.

Being in a user standpoint and having well defined requirements for a workflow to meet, it

would make life easier to have a solution that could give feedback on how the workflow should be

made or adapted, in case where the workflow already exists and needs performance improving.

1.4 Objectives 3

In short, the engineering problem we have in hands to solve is the formulation of a workflow

in a way that it is mathematically easy to deal with, and that allows going from an input to an

output. The input shall be a set of blocks available to be chosen and a set of requirements for the

workflow to meet, and the output a list of blocks in form of pipeline that maximizes the desired

requirements. To sum up, we are dealing with an optimization problem, specifically maximization.

1.4 Objectives

This dissertation focuses on the study and development of a technology that would solve the

problem of a user who needs workflow tweaking. A system that would receive user-defined spe-

cific and performance requirements for a certain workflow for a specific situation, and send an

optimized workflow as output that meets those requirements, is a good example of a solution to

the problem presented.

In first place, a deep study was done to the world around workflows, researching already ex-

isting ones, understanding the different types there are and examples for each one (e.g. predictive,

optimization and parameters estimation, image and data acquisition and processing, data reduc-

tion, etc). For instance, in [4] it is shown an example of a workflow for a gas turbine maintenance

and is explained why specific processes are used.

As far as the practical implementation concerns, the following topics represent the main goals

of this dissertation:

• Understanding the different requirements for workflows in accordance with all the study

done.

• Development of an adaptive recommending system that calculates the best possible work-

flow while meeting user-defined requirements. This is the core element of the dissertation.

• Understanding how to assess the system performance and use it for testing and validation.

4 Introduction

Chapter 2

Bibliographic Review

This chapter encompasses all the research made as well as the methodology used during this

same research. Research methods will be explained in the section 2.1. Several papers from dif-

ferent areas of interest will be addressed as well as a brief explanation of what information can be

either useful or not for the dissertation in the section 2.2, thus representing the state-of-art.

2.1 Research Methodology

In this section research methods and the approach done on the research process will be ex-

plained.

2.1.1 Research Questions

The first phase of knowledge acquirement regarding this topic was in the first contact with the

supervisors where the paper [5] was recommended for the students to read. The paper addressed

the concept of research questions and their importance for a successful searching. These questions

allow the researcher to figure out which questions were to be answered with the work.

There are two types of research questions mentioned in [5]. General research questions and

specific research questions. The general questions approach the dissertation topic in a generalized

manner while the specific questions focus on gathering much deeper knowledge in specific areas

directly correlated with the dissertation.

The research questions used in this research are presented down below.

General Research Questions

• RQ1: What is a digital twin?

• RQ2: What is the Industrial 4.0 revolution?

• RQ3: What is a Cyber-Physical Production System?

• RQ4: What is a workflow in the CPS context?

5

6 Bibliographic Review

Specific Research Questions

• RQ5: What types of workflows exist?

• RQ6: What are the existent methods to define workflows?

• RQ7: How can we split a pipeline into different phases?

• RQ8: What requirements should be defined for each type of workflow?

• RQ9: What would be the best evaluation metrics for a pipeline performance?

• RQ10: Are there any recommendation systems that recommend workflows?

• RQ11: How should a workflow be defined / formulated for recommendation systems?

2.1.2 Keywords

In order to ease the research, the second phase would be the definition of a few keywords to

be used along with the research questions. The chosen keywords were the following:

• Industry 4.0.

• Digital Twin.

• Cyber-Physical System.

• Pipeline.

• Workflow.

• Predictive Maintenance.

• Data Reduction.

• Prescriptive System.

• Recommendation System.

2.1.3 Research Process

Once research questions and keywords are set, the next step is to find the best search engines

and databases. Two seminars were carried out by a FEUP’s team to enlight the students on this

topic. Several engines were addressed during these seminars, such as IEEE Explore, Web of Sci-

ence, Scopus, Inspec, Google Scholar, and more. Google Scholar was the prevailing engine for

this research.

Besides the searching engines, some applications were also addressed to be used as libraries

for the papers found. Mendeley1 was the choice to serve this purpose.

The table 2.1 is used to clarify which keywords and search strings were used for each of the

Research Questions referred above.
1https://www.mendeley.com/

https://www.mendeley.com/

2.2 Literature Review 7

Table 2.1: Table with the relation between each research question and respective keywords.

Research Question Keywords
What is a digital twin? Digital twin, Digital twins

What is the Industrial 4.0 revolution? Industry 4.0, Industry 4.0 revolution

What is a Cyber-Physical Production System?
Cyber-Physical System,

Cyber-Physical Production System

What is a workflow in the CPS context?
Workflow in a CPS, Workflow,

Pipelines in a CPS, Pipeline

What types of workflows exist?

Predictive maintenance workflow,
Data reduction workflow,

Predictive maintenance pipeline,
Data redcution pipeline

What are the existent methods for workflow definition?
Workflow definition,
Pipeline definition

How can we split a pipeline into different phases?
Workflow definition,
Pipeline definition

What should be the requirements
for each type of workflow?

Workflow definition,
Pipeline definition

What would be the best evaluation
metrics for a pipeline performance?

Workflow definition,
Pipeline definition

Are there any recommendation systems
that recommend workflows?

Recommendation system,
Prescriptive system

Workflow recommendation,
Pipeline recommendation

How should a workflow be formulated for
recommendation systems?

Recommendation system,
Workflow

recommendation sytem,
Pipeline

recommendation system

The results from the research has returned a total of 24 papers which had the needed infor-

mation to answer all the questions. The next section includes the obtained information and its

analysis from all the papers found.

2.2 Literature Review

This section will address all the related work done in order to answer the best way possible to

every research question presented in 2.1.1. The section will be divided in different sub-sections.

In 2.2.1 RQ1, RQ2 and RQ3 will be addressed with some research on DT and CPPS. The sub-

section Workflow definition is one of the most important of the state-of-art as well one of the most

deep-studied as it focus on workflows definition, and how important it is for the industry, aiming

at RQ4, RQ6, RQ7, RQ8, and RQ9. In sub-section 2.2.3 some types of workflow are going to

be presented, and explained in detail, thus answering RQ5. Last but not least in 2.2.4 existing

8 Bibliographic Review

recommendation/prescriptive systems for workflows are studied, compared and correlated with

the system this dissertation proposes to do, in order to answer RQ10 and RQ11.

2.2.1 Digital twins and Cyber-Pysical Production System

As already referred a couple of times both digital twins and Cyber-Physical Systems are two

important concepts in order to have some general context. First of all, it is important to understand

the definition, correlation and comparison of both.

In [6] all this points are explained. They refer to DT as the concept of using a copy of a physical

system to perform real-time optimization. A CPS is seen as the integration of computational

and physical processes. They allocate each of the concepts into two different categories. DT

are in the engineering category and CPS are in the scientific category. On one hand, as the DT

focus on representing a virtual physical model, it is important to have similarities of high detail

between the two systems. It has a high accuracy on several aspects of the model, like geometry,

structure, behavior, rules, and functional properties. It represents a specific physical object. On

the other hand, the CPS focus more on controlling than on mirrored models. "The relationship

between the cyber and the physical worlds of a CPS is not one-to-one, but instead a one-to-many

correspondence"[6]. These two concepts not only have their differences but also their correlation

as well as an integration aspect. The integration of both of them may help factories to get more

precise and efficient operations. They also refer to DT as a critical base to implement a CPS. The

figure 2.1 intends to illustrate this integration.

Figure 2.1: Integration of CPS and DT. From [6].

To sum up both definitions and applications in real world, the paper concludes that having all

the data needed about environment, status, behavior, and properties of a physical system as well as

a good model as its base then a DT can be used to help manufacturers. Those are the core elements

of a digital twin. When it comes to a CPS, it has in account the sensors and actuators, these

generating more and more data that will eventually be processed by the cyber system. Therefore

sensors and actuators are its core elements. In this last paper they also make a small introduction to

some elements of Industry 4.0 revolution, affirming that these two concept appeared along with it,

2.2 Literature Review 9

stating that in Germany, the cyber-physical systems are considered to be the core and the creation

of Industry 4.0 [7].

Another approach taken during the searching for more information about a CPS, was how it

can be implemented and what the future of enterprises will be as an Intelligent CPS. This topic

was studied in [8] as they give a small introduction to the large number of areas that cyber-physical

systems can be implemented, those being medical and healthcare, energy, transportation, mobility,

manufacturing, etc. They present some principles for CPS as to design complex systems, such as

the interoperability and communication between sub-systems as well as approaches to develop

tools to help reducing the energy consumption. These are connected with the expression ICE, this

being an important concept for the implementation of CPS in the industry. Several other aspects

about it are addressed in the paper.

2.2.2 Workflow definition

Being the core element of this dissertation, workflow definition becomes the most important

concept of the research phase. Several papers were under analysis in order to get the best idea

what a workflow is. These papers were [2, 9, 10, 11, 12].

To get a first visualization of what a workflow may be, [2] really helps as they talk about

CPS that use a vast network of devices such as sensors, gateways, switches, routers, computing

resources, applications and services to link both physical and cyber worlds. This application

can be broken down in the form of workflows. A workflow, as explained back in section 1.2,

is a sequence of very-well defined processes that aim to meet predefined requirements. In this

paper they give a real life example of application of workflows. "Considering Flood Disaster

Management applications that may consist in a collection of workflow activities such as capturing

and analyzing social media and sensor data as well as using more complex computational models

to detect dangerous situations in real-time. A workflow activity like this may need to implement

computation models for analyzing social media data, for instance, anomaly detection, clustering,

classification. The workflow activity requires the real-time processing of the sensor data.". They

then address the different requirements deploying a workflow like this would have, such as cyber

device types, cyber application services, social data sources, and ambient physical world. To

finish, they refer 10 different papers that schedule different activities, in different areas of study,

with different approaches ([13], [14], [15], [16], [17], [18], [19], [20], [21], [22].

The paper [10] refers to workflows and its importance as a service in the cloud. This paper

gives some info on computational resources that scheduling a workflow would need. For instance,

3 conclusions are obtained from the studies of scheduling workflows as a service in a cloud, such

as the performance of a WFaaS system will be better when the number of usable Virtual Machine

Instances (VMIs) increases. Besides that, in [4] it is proposed a workflow model for a gas turbine

maintenance. The workflow is shown in Figure 2.2.

One of the best methods of workflow scheduling was studied in [9]. They propose a scheduling

method based on colored Petri nets. Firstly, it is presented the different methods of scheduling

(static, dynamic, and phased). Static would be the scheduling happening in the beginning for the

10 Bibliographic Review

Figure 2.2: Gas turbine workflow model. From [4].

whole workflow and does not have in account the resources available during the execution of the

pipeline. Dynamic would re-schedule the workflow every time a stage is completed, always having

in attention the resources available. The phased approach is the proven to be the best for the case

study in the paper as it is a mix of the other two as it is defined a group of stages to be scheduled all

in once, having then the characteristics of a static scheduling that would be optimized for different

resource availability during execution time. Another good information obtained from this paper

is the evaluation metrics they use to test the performance of each method, these being late tasks,

total tardiness, and average throughput time of instances.

The other two papers, [11] and [12], were two very important source of knowledge. The first

one proposes a very good combination of scheduling algorithm and scheduling strategy. They use

a full-ahead scheduling with the HEFT algorithm [23]. The HEFT algorithm consists on 3 phases:

• Weighting - assigns the weights to the nodes and edges in the workflow.

• Ranking - creates a list of tasks, organized in the order how they should be executed.

• Mapping - assigns the tasks to the resources.

The figure 2.3 shows how to calculate the weights and ranks for each node.

In what scheduling strategy is concerned, it was said above that the best one to match with

the HEFT was the full-ahead strategy though there is one other choice, Just-in time strategy. Just

like it was explained above side-by-side with paper [9], they refer to full-ahead as a static method

where the full graph scheduling is performed at the beginning of execution, and the just-in time

strategy as a dynamic method that consists of mapping the tasks to the resources, always choosing

the most appropriate solution for the current step. There are might be some strategies in between

those, being the phased, just like partitioning [24]. Static seems to be the method that is most

suitable for the dissertation.

In the last paper of this topic [12], they focus on how a pipeline should be split into differ-

ent phases/categories such as data ingestion, communication, storage, analysis, and visualization.

2.2 Literature Review 11

Figure 2.3: Weights and ranks calculated with HEFT algorithm. From [11].

They did a survey by analyzing a total of 38 papers of which would be the best software to develop

each of the phases. This is one of the most completed papers when it comes to rich information as

it addresses what is missing on related papers and proceeds to give input on that missing informa-

tion. The tools proposed for each phase are the following:

• Ingestion - Custom tools.

• Communication - A COTS service.

• Storage - NoSQL databases.

• Analysis - Incorporating a suitable real-time processing tool.

• Visualization - This should be addressed in accordance to the requirements for the data to

be analyzed.

In [4] the most useful piece of information is the visual representation of workflow that gives

a better context on the dissertation main topic. The two most important were [11, 12]. Good

scheduling algorithms as well as good scheduling strategies are presented that may be really help-

ful in future work.

2.2.3 Types of workflows

In this part, workflows will be divided and studied by their types. As shown in 2.2.2, pipelines

can be applied in a big variety of situations. This research focused on three main types of applica-

tion of workflows them being predictive maintenance, data reduction, and parameters estimation.

Each individual type will be explained in the sub-sections down below.

12 Bibliographic Review

2.2.3.1 Predictive maintenance

Maintenance is a very important process for the success of an industry. Machine downtime

is one of the heaviest costs a manufacturing enterprise can have. To avoid this, maintenance and

repair of machines are done following on of three methods, reactive, preventive, and predictive

maintenance [25]. While each of strategies have their own advantages and disadvantages, in [26]

it is explained the strong and weak points of each. While the reactive maintenance has the small-

est costs on the repairing, it does cost a lot on downtime. Preventive does reduce the downtime

to its minimum, though increasing the repair costs as a machine may go under maintenance with

no need. Predictive maintenance offers the best of both worlds as it predicts when a machine

would have a failure or breakdown causing downtime. Predictive maintenance works under heavy

prediction algorithms that can use several history logs. Some papers were selected to study pre-

dictive maintenance in different applications. In [4] it is proposed the workflow model used for

the maintenance of a gas turbine shown in 2.2. In [26] a few more details are addressed such as

the requirements for this type of workflows. They distinguish data ingestion based on historical

data and based on real-time sensor data. It is proposed a mix of strategies for the different data

analysis that want to be done. The figure 2.4 the different approaches on predictive maintenance.

Figure 2.4: Systematizing predictive maintenance approaches. From [26]. Edwards et al. (1998)
[27]. Peng et al. (2010) [28].

In the paper [3] not only a predictive maintenance pipeline is shown, but also discussed the

problem domain and formulation, and evaluation metrics. The base concept of this paper is pre-

dicting equipment failures by just reading logs from the past. Log data is a collection of events

recorded by various applications running on different machines. It has information about the

timestamp, event code, message text, and event severity. The core element of the workflow is a

central database, as data is processed from it. Analysis consist of data preparation, model building,

model evaluation, and monitoring. The predictive maintenance workflow is shown in figure 2.5.

2.2 Literature Review 13

Figure 2.5: Predictive maintenance workflow. From [3].

The requirements for this workflow are:

• Predictive interval.

• Infected interval.

• Responsive duration.

• Interpretability.

• Efficiency.

• Handling class imbalance.

The chosen evaluation metrics were precision and recall given by the following expressions:

Precision =
TruePositives

TruePositives+FalsePositives
(2.1)

Recall =
TruePositives

TruePositives+FalseNegatives
(2.2)

The last paper that was under analysis concerning this topic was [29], having a huge amount of

information regarding several workflow-related topics. It is pointed to major smart manufacturing

facilities where the increasing rate of data production is a big concern. Smart manufacturing is

thoroughly explained as well as the aspects it focus on them being the beneficial transformations it

brings to an industry, the different phases of implementation, and its challenges and requirements.

After addressing all those points, they also propose a data pipeline architecture. This pipeline is

divided in six distinct stages. The stages are:

14 Bibliographic Review

1. Site Manager: multiple functions such as scheduling and job assigning to ingestion engines

based on their availability and location and decide how much data each node should ingest

based on CPU and bandwidth availability.

2. Inesgtion Process: communicate location, bandwidth, CPU and memory availability to the

site manager, interpret data collection tasks sent from the site manager and automatically

extract time-series data in accordance with tasks parameters and transmit the acquired time-

series data to the cloud.

3. Message Queue: notify the subscription service when new data has been received from

the factory and persist the received data in a queue so it may be read by data processing

components in the data pipeline.

4. Subscription Service: listen to the new message queue for new data and notify subscribers

when new data is available for processing.

5. Data Processing: the data processing requirements vary from site-to-site and application-

to-application. Daily average, monthly average, and annual average were the simple aggre-

gation functions for time-series data.

6. Data access: ensure data is stored in the appropriate location/context and respond to re-

quests for data that adhere to the convention.

The pipeline and the stages mentioned above are represented in figure 2.6

Figure 2.6: Big data pipeline architecture and workflow. From [29].

2.2 Literature Review 15

The simulation decomposes the workflow into three distinct parts – data ingestion in the fac-

tory, data processing in the cloud, and feeding industrial analytical applications.

There are two main entities when it comes to data ingestion in the factory (ingestion engine and

smart sensor). The ingestion engine is part of the pipeline and receives data collection instructions

from the site manager, which returns an instruction to read the Return Air Temperature (RAT)
for Air Handling Unit 1 (AHU1). The smart sensor is a third-party component and is programmed

to read the Set Point Temperature (SPT) for the AHU1. See figure 2.7.

Figure 2.7: Simulation of data ingestion. From [29].

Processing of the data coming from the RAT and SPT measurements. This component reads

both messages from the message queue and executes its routine which results in the aggregation

of the results in, for instance, 15-min, hourly, daily and monthly intervals. It is located in folders

that can be accessed by industrial analytic applications. See figure 2.8.

In what industrial analysis is concerned, the time-series data resides in a directory structure

that gives context to the accessed data. Two applications were used. The dashboard uses the

data pipeline to access pre-compiled aggregates of time-series data to eliminate the overhead of

running this routine dynamically. The other application is a predictive maintenance model that

identifies issues in AHU’s. The predictive model requests 15-min data for both measurements

(RAT & SPT) given its need for granular data. Both applications were able to access data using a

common interface without having to engage low-level industrial protocols. See figure 2.9.

16 Bibliographic Review

Figure 2.8: Simulation of data processing. From [29].

Figure 2.9: Simulation of data analysis. From [29].

2.2 Literature Review 17

From [29] a lot of useful information can be obtained like a pipeline example for predictive

maintenance, sub-workflows for the different phases of a workflow, and good techniques to define

very carefully what should be done in each of the phases. The most useful information in [3] for

the dissertation are the requirements for the workflow and the evaluation metrics. The paper [26]

doesn’t quite fit on what it has been the main focus of this research, although some approaches on

predictive maintenance can be useful in the implementation.

2.2.3.2 Data reduction

Data reduction is a good option in situations where there’s a lot of information to be dealt with.

Most of the pipelines found concerning data reduction purposes are linked to astronomy-related

data. It makes sense as data collected from the space usually comes with a lot of noise, increasing

exponentially the rate of data production.

The first paper under analysis is [30]. In the first instance they propose a couple of tools

where data reduction pipelines may be used like MIDAS [31], IRAF [32], and IDL (trademark of

Research Systems Inc.). They propose the first stage of the workflow to be the data organization

which is described by the following steps: files sorting, target identification and group them into

data sets that are incomplete and lastly, calibrations are added to the datasets. The figure 2.10

shows the flow chart for the data organizer. Note that if any step in a darker box fails for any

dataset, then that dataset is labeled as incomplete.

The second stage following data organization is the data processing. Usually data processing

is more complex than the data organization. Therefore it makes total sense to separate both stages.

The final workflow model proposed uses the "Recipe flexible execution workbench" (Reflex de-

sign) implemented in Keppler [33] workflow engine. Figure 2.11 shows the example of a Reflex

application in the Keppler engine.

In the rest of the paper they present some advantages on Reflex workflow design, such as rule-

based data organiser in use, utlilizers may monitor the progress of data reduction, interact with

the process if needed, and modify the pipeline, and also the ability Reflex has to re-execute steps

concerned with changes in parameters in data.

The next paper to be discussed is [34], which addresses the rising and already touched subject

of data production rate in the industrial context. In this case it is talked about the Oak Ridge

National Laboratory (ORNL) and its neutron source facilities, responsible for a huge amount of

data production. This massive quantity of data is stored using the standard schema "NeXus" [35].

This stored data that is then loaded for post-processing by various data reduction workflows using

Mantid framework [36]. Figure 2.12 gives a general idea of how this framework works. This

framework could be a useful tool for data reduction pipelines implementation.

More space-related data to be reduced is addressed in [37, 38]. In [37] it is presented a data

reduction pipeline to reduce data coming from a satellite. This satellite receives data from the

space. The pipeline features newly developed routines such as, accurate data culling, noise esti-

mation, and minimum variance map-making made with the ROMAGAL algorithm, described as

based on a generalized least squares approach [39]. It is also necessary to make noise estimation.

18 Bibliographic Review

Figure 2.10: High-level flow chart of a data organiser. From [30].

Figure 2.11: Example of a basic Reflex workflow. From [30].

2.2 Literature Review 19

Figure 2.12: Overview of the central role of the Mantid framework in data reduction workflow.
From [36].

This paper also provides some concept with acquisition strategy for the input data. The processing

is carried out through a series of IDL and JYTHON tools. Preprocessing includes the identifica-

tion of time-ordered data (TOD), drift removal, and deglitching. The figure 2.13 show the data

reduction pipeline proposed.

At last [38] presents the infrastructure available to perform a data-reduction pipeline. As this

paper doesn’t show a pipeline, the main points to retain are linked with data processing, and

the application to perform data analysis and processing. Since data come in different formats, a

CONVERT class is used to convert all those formats into a format that can be understood by the

algorithm.

In [30] some good interesting knowledge has been taken such as an interesting data reduction

pipeline model (Reflex) as well as a workflow engine (Keppler). They also provide some useful

information on data organization that is a core point of data reduction processes.

Paper [34] has some noticeable information on a possible framework to be explored for pipeline

definition. Also the "NeXus" schema for data storing is a tool worth of reference.

From [37] another data reduction pipeline was studied. A map-making algorithm was also

learned as well as some tools for data processing. A couple of stages for data preprocessing was

also included.

Lastly [38] has some good tips on data processing, and the framework used for this purpose.

2.2.3.3 Parameters estimation

As far as parameter estimation pipelines are concerned three papers were studied. The first

one being [40]. This paper uses captured experimental data as a reference to implement a param-

eter estimation algorithm. The algorithm used is an Enhanced Monte Carlo Algorithm (EMCA).

After the several parameters to estimate are set, and the equations established, the parameters are

estimated with the algorithm.

20 Bibliographic Review

Figure 2.13: Schematic representation of the Hi-GAL data reduction pipeline. From [37].

2.2 Literature Review 21

In [41] it is proposed a workflow used for real-time parameter adaptions. The workflow is

shown in figure 2.14 and it’s split in 3 different categories: analysis step, restriction of optimization

space, and model check. The evaluation metrics for this pipeline is the sensitivity analysis of the

parameters. To finish, all the developed work was done in MATLAB2.

Figure 2.14: Schematic representation of an enhanced workflow for model calibration. From [41].

The third paper [42] is a study on an already existent pipeline "BayesWave" [43]. Further-

more the workflow algorithm uses a tri-dimensional Reversible-Jump Markov Chain Monte Carlo

(RJMCMC) [44].

In short, the most useful knowledge retrieved from the research on workflows for parameter

estimation was the algorithm for parameter estimation EMCA in [40] and RJMCMC in [42, 43].

Moreover, the workflow used in [41] also shown in 2.14 along with the categorization of its differ-

ent stages, and the already existent BayesWave pipeline in [43], is useful information for the work

to be done.

2.2.4 Recommendation systems

The last part of the research done was addressing recommendation systems that would meet the

solution for this dissertation. Some workflow recommendation systems were studied and analysed

through a total of 6 papers. Those papers will be broken down next.

The first two papers to be mentioned [45, 46] are from the same authors and are related. The

first one addresses several important topics about recommendation systems. Firstly it is introduced

the concept of Automated Machine L earning (AutoML) as a good resource to help on finding the

perfect pipelines for a certain context using deep learning methods. However, this methods can

take hours or even days to find the perfect workflow. To prevent this from happening there are a

couple of filtering strategies such as OBOE [47]. Figure 2.15 shows how the pipeline is divided in

three steps, and each step divided with 3 options, having the best path highlighted in a blue line.

AdaPipe is a recommendation system for Adaptive computation Pipelines in ICPS computa-

tion services. The software uses a sparse response matrix where each row and column matches a

2https://www.mathworks.com/products/matlab.html

https://www.mathworks.com/products/matlab.html

22 Bibliographic Review

Figure 2.15: Computation pipelines for modeling and prediction. From [45].

dataset with a pipeline. AdaPipe consists of a TEMC model and two covariates generation ma-

chines. TEMC model takes the covariates tensor and the sparse response matrix as input to com-

plete the response matrix and provide the ranking and subsequent recommendation of pipelines.

An overview of the AdaPipe framework can be seen in figure 2.16. All the steps done by the

algorithm to find the benchmark pipeline is clearly displayed on the schematic representation.

Figure 2.16: An overview of AdaPipe system. From [45].

Afterwards a case study is done. In order to rank the pipelines, it is proposed to use the

minimal number of top-ranked pipelines to reach the best statistical accuracy. One final note on

the three main reasons of why AdaPipe had the best ranking and recommendation performances:

1. Pairwise loss function provides the capability to rank the computation pipelines by com-

paring statistical prediction errors in pairs, but ignoring the alignment between predicted

responses and true responses.

2. A low-rank matrix R and covariates X effectively quantify the implicit and explicit similar-

ities, which jointly contributes to accurate ranking and recommendation performance.

3. The embedded dense vector representations are informative to identify the similarities and

differences among computation pipelines.

2.2 Literature Review 23

The other related paper [46] also presents a pipeline based on machine learning. Figure 2.17

is very similar to the one in 2.15, though it has some disparities. Once again the best path is

represented by the blue line.

Figure 2.17: Data Fusion Pipelines for Variation Modeling. From [46].

As there are a lot of Data Fusion Pipelines (DFPs) options, it is wanted to get the best one.

This should be retrieved from testing all the possible DFP’s and then evaluate the performance of

each one and then selecting the best. Just as told before, executing all DFP’s would require a lot

of resources and once again a learning-to-rank method is used. Figure 2.18 and 2.19 show the

proposed learning-to-rank method and its implementation, respectively.

Figure 2.18: Data Fusion Pipelines for Variation Modeling. From [46].

Figure 2.19: Data Fusion Pipelines for Variation Modeling. From [46].

The third paper found regarding this topic was [48]. This is a small paper that has some

interesting references in the background and related work section. They introduce several rec-

ommender systems such as Linton and colleagues, Matejka and colleagues, and Murphy-Hill and

colleagues. The paper explains that these systems focus on recommending single tools, which

24 Bibliographic Review

can be really useful for some contexts. However, when implementing with no context, this tools

may not constitute a complete task. Afterwards in the paper a Top-K sequential pattern mining

algorithm is used to perform workflow recommendations.

The next paper [52] proposes a workflow model recommendation approach based on a design

information model for product design process recommendation. A Workflow Model Recommen-

dation (WfMR) is divided in 4 stages: design document, design information, design process, and

recommendation algorithm. In order to have a computer able to process the 4 stages above men-

tioned, 3 models are built: design information ontology model, workflow model, mathematical

model for the WfMR algorithm. In figures 2.20 and 2.21, the framework used for the proposed

approach, and the respective process are shown, respectively.

Figure 2.20: WfMR approach framework. From [52].

2.2 Literature Review 25

Figure 2.21: WfMR process. From [52].

It is used a genetic algorithm to distribute the weights between the nodes. The evaluation

metrics proposed are Recall and Precision as previously mentioned in Predictive maintenance

section with equations 2.1 and 2.2.

Next paper [53] proposes a hybrid framework that recommends workflows. This framework

is shown in figure 2.22. It is split in different stages and each stage is explained in the paper.

Figure 2.22: Hybrid framework architecture. From [53].

The generation algorithm is likewise suggested in the paper as shown:

1. Workflow is converted to a graph.

2. Components in the workflow are generalized.

3. The repository is searched for patterns that overlap with the partial workflow.

4. Once matching patterns are found, they are specialized.

5. The partial workflow is then semantically analyzed and enriched.

6. Compatible components are retrieved from the repository based on the enriched workflow

semantics.

26 Bibliographic Review

7. The results are sorted and returned.

This recommendation system was done to do a more dynamic workflow constructor which is

not quiet what is desired for our work.

The last paper [54] refers to a recommender system that does not recommend workflows but

instead recommends options for a user based on workflows. Although this system is not exactly

what is intended to develop, the way the algorithm works can be used in future work. In addition

to that, figure 2.23 represents some good models for data processing that might be used in the

framework to be developed.

Figure 2.23: Statistical analysis of occupancy scale from schedules in workflow. From [54].

In both [45, 46] a very similar approach is used. Though this two papers base their work

methodology in machine learning and that is not quite the path wanted to be taken for the future

work, some really useful information can be taken. The way they think about how to get to a

solution, the way they have divided the model in different stages and their options, mainly the

learn-to-rank method, and the evaluation metrics proposed can be very useful for this dissertation.

The paper [48] has an interesting approach on the lack of available systems that can recom-

mend complex and complete workflows in whatever context they are needed. Besides not only

give a few examples of tools that fit on that description but also implement a simple algorithm to

overcome those same difficulties.

In paper [52] a few important concepts are addressed, such as the parts a WfMR involves

and respective models of implementation. Though it is a very specific application, the presented

genetic algorithm as well as the evaluation metrics may become really useful in the future.

In [53] some visualization details may be useful for contextualization purposes, though it does

not quite fit into what the research focus on.

Lastly and as said above, [54] does not recommend workflows, but uses a recommendation

framework that follows a couple of processes that may become useful.

Chapter 3

Implementation

For the purpose of meeting the all the goals described in Objectives as well as give an answer

to the Problem Definition, a recommending system for workflows was developed. This system

works based on a set of user-defined requirements. These requirements are split into two different

categories, as explained back in Motivation, specific requirements and performance requirements.

In short, the user defines which specific requirements are desired, and chooses a ratio value that

represents the priority given between two performance requirements. Having all that information,

the system recommends the three best workflows, ranked.

The first major step onto the implementation of the project is the choice of the programming

language. Some research was made with Python being the most highlighted option and eventually

chosen due to some of its advantages as for meeting requirements for the project such as:

• It is an object-oriented language.

• Easy to use and learn.

• Tremendous amount of good and useful libraries to use for the purpose, such as NumPy1,

Scikit-Learn2 and CSV3.

• Good support community.

The implementation of the code was done in Visual Studio Code4. This choice was based

on some points of advantage compared to other IDE options. Being light weight, having a robust

architecture, freeware, helpful extensions, good connection with repositories like Git Hub are some

of them as well as some previous working experience with the platform.

1https://numpy.org/
2https://scikit-learn.org/stable/
3https://docs.python.org/3/library/csv.html
4https://code.visualstudio.com/

27

https://numpy.org/
https://scikit-learn.org/stable/
https://docs.python.org/3/library/csv.html
https://code.visualstudio.com/

28 Implementation

3.1 Workflow Recommendation System

3.1.1 Input files

A set of requirements are defined by the user on a csv file named input.csv. Those requirements

are subdivided into different categories. The categories were chosen according with what type of

data process was associated to each one just as studied very carefully in section 2.2. This input file

will be the starting point of the main algorithm.

The file has 2 columns, the first one being the name of the requirement and the second one

the respective value. Every line is a different requirement. The associated values differ for the

different requirements.

Every line but the last one of the csv file represents all the specific requirements. They will

have associated a number 0 or number 1. Number 0 means the final workflow is not supposed to

meet that specific requirement, this being not include a solution for that category while a number

1 means that requirement has to be taken in account when designing the workflow. So it works as

a binary choice because every category will necessarily have to be either selected or not.

The very last line of the csv input file has the value for the two performance requirements

chosen by the user. A value between 0 and 1 that represents the ratio value of preference between

one of the requirements over the other one. A snippet of an example of the csv file and how it

should be structured is shown in figure 3.1.

Figure 3.1: Requirements CSV snippet.

In order to help illustrating how this works, for the explaining example we use performance

and time efficiency as the two performance requirements to classify a workflow. Performance

and efficiency are two of the most used metrics to evaluate workflows [30, 37, 55, 8, 56, 57,

58]. Performance is used very commonly and provides good information about the pipeline.

Efficiency may be a subjective concept since it can refer to a lot of variables such as cost, time,

resources, and much more. In order to keep it simple for the explanation, we used Time Efficiency.

So this last value asks for a better performance for the workflow (when closer to 0) or a faster

workflow (when closer to 1). This way, it is given to the user the ability to be more specific if he

wants to either give priority to a workflow that is faster to be completed or to a workflow that has

a better performance on the final results.

A very similar problem approach was used in [10] as they analyze each workflow on their

performance and cost and also use a performance/price ratio as input.

3.1 Workflow Recommendation System 29

Another important file for the algorithm to work is the function blocks database csv file. This

file contains all the function blocks as well as their information that will later be used in order to

calculate the best workflow.

This csv is composed by 4 columns. Each line represents a function block and each one will

have information on its name, time efficiency and performance values, and in which requirement

it fits. Each one of this properties goes on a column.

They key point here are the values for the time efficiency and performance for each option.

The main idea behind this is that each function block has a set of two weight values, representing

the time efficiency and performance, that profiles itself. The values are between 0 and 1 and they

represent how good a function block is in terms of time efficiency and performance. As opposed to

the Time efficiency/Performance values in the requirements file, these are not mutually exclusive,

this meaning a block can be both good on performance and time efficiency. Another important

note to add on this is that the values are relative to the values of the other function blocks on the

database for a specific category. For instance, if a block has the number 1 in performance it means

it is probably the best one in terms of performance compared to every other block of that category

that was taken in account, though it may not be the best one there is as some options may not be in

the function blocks database. The theory behind these values that characterize each block is better

explained in section 3.2, where it is thoroughly explained the genetic algorithm used to estimate

these values. In some real-life situations these values may be relative between all the blocks of all

the categories as we will see in section 4.1.

The last value is the requirement_id value. The whole code is programmed so each require-

ment category has an associated index number. This number is according with the line number on

the requirements input.csv file explained above.

A suggestion of how the csv file for the function blocks database looks like for the example

presented in figure 3.4, is shown in figure 3.2.

Figure 3.2: Function blocks database CSV snippet.

30 Implementation

There is an important dependence between both the files mentioned above. The requirements

input file follows an order which is connected to the requirement value of each function block

in the function block database. For instance if a specific requirement, for instance req3, is the

third requirement on the input file, then every function block associated with req3 in the function

blocks database should have the number 2 as its requirement_id value as illustrated in figure 3.3.

The function blocks FB8, FB9, FB10, FB11 all belong to the requirement req3 as it is the third

on the requirements file. This guarantees that when the framework reads the requirements file, it

knows exactly what function blocks he should be looking for.

Figure 3.3: Relation of dependence between the requirements input file and the function blocks
database file.

To sum up everything regarding these two files, the framework is scalable on the both require-

ments categories and function blocks. In order for a user to add categories or/and function blocks

to a category, some updates on these files must be done and every step is explained in section 3.3

where it is detailed how both algorithms of weight optimization and workflow recommendation

can work together.

The last additional input file is an optional file called by default workflow.csv. This csv file

contains a workflow suggested by the user in order to receive some recommended changes to make

on it in order to be more suitable with the user’s performance requirements. The csv is composed

by a column and each row has the name of the function block following the order of the original

input requirement files. Two notes on this are that the blocks suggested in this file must be in the

function blocks database, and contain function blocks only from desired categories selected in the

requirements file.

3.1.2 Graph theory

In order for the program to represent all the blocks and the connection between them it is used

graph theory. The choice behind graph theory comes after some research on graphs and how well

3.1 Workflow Recommendation System 31

it suits the context, being an appropriate approach for ranking/ordering problems. Graph theory

has been used quite often with similar problems [53, 30, 59, 60, 61].

Graphs can be either directed or undirected. Directed graphs are the interesting ones here

since the graph is supposed to show a sequence of function blocks as a workflow. Apart from

being directed, the graph is also acyclic, whereas it is divided by categories it must be very well

structured, for instance category 2 blocks can only be followed by blocks of category 3. So as in

[10], workflows are described in Directed Acyclic Graphs (DAG). Another property of the graph

is that its blocks will have a score associated since we want a path to have a fitness value and then

the main problem becomes a route optimization situation. This fitness represents the sum of the

scoring value that a set of function blocks would get by being chosen in a given scenario for a

specific value for time efficiency/performance ratio as input.

Having an idea of how the graph is supposed to work, it is necessary to understand the best

way to represent a graph in the working programming language, Python.

The main strategy is to have a graph implemented that is composed by vertices, each represent-

ing a function block, and edges representing the connection between function blocks of different

categories. So the rule for the graph construction is about a vertex of a specific category can only

connect with a vertex of other category following a specific category order (defined on the require-

ments file mentioned in section 3.1.1) and never between two vertices of the same category nor

between two vertices of non-consecutive categories, following this way the rules of a DAG and

never choosing more than one vertex from the same requirement category.

Usually graphs are implemented using either adjacency lists or adjacency matrices. The most

common rule to decide which one to use is based on the number of edges the graph has. Given a

graph G = (E,V) composed by its edges E and its vertices V , if #E = #V , then we have a sparse

graph. Else if #E = #V 2 the it’s a dense graph. If a graph is more sparse then an adjacency list

should be used, otherwise in case of a more dense graph, an adjacency matrix should be the option.

This makes total sense since a list representation would be more compressed and a bit harder

to access and code, though it would only use the minimum necessary amount of resources while

using a matrix would use the maximum resources. So having a graph with 2 edges only or a

graph with 100 edges would use the same resources for the same number of vertices, being only

advantageous for dense graphs with a lot of edges.

Estimating our number of edges with a realistic example, let’s say we have two categories

of requirements, the first one with 5 blocks and the second one with 10. So the total number of

vertices is 15 and 225 is its square value. Since vertices can only be connected to blocks of the

following category, then each of the 5 first blocks would have 10 edges to the 10 blocks of the

second family of requirements. Adding this up, a total of 50 edges would be part of the graph. In

short, if we use an adjacency matrix, the resources consumption would be the same as if we had

the maximum of 225 edges. Using an adjacency list would take only the necessary memory so it

justifies in our case to use a list since we will never have an approximate number of edges to the

maximum possible according with graph theory.

32 Implementation

Having decided the representation method, two classes were created, one for the graph called

Graph, and one for each vertex called Block. The Block class has seven attributes with five of

them being information about the block plus a list of neighbors of each vertex corresponding to the

vertices it is connected to. The other two (value and precedent) are explained later in section 3.1.4

and they are used for scoring and path choosing purposes. Figure 3.5 shows how every function

block is composed. The graph class contains a dictionary where all the blocks and corresponding

edges will be saved as keys and values respectively as in figure 3.4

Figure 3.4: Graph model example

Figure 3.5: Function block model example

Knowing that DAG’s have been used previously to represent workflows [10], the problem in

hands is to connect different blocks, each one with a value associated, its score, and build paths in

the graph. Each path has a value which is the sum of every block score that is in the path. Several

3.1 Workflow Recommendation System 33

combinations of paths can be achieved, this number depending surely in the number of blocks

and categories, the problem then became how to find the longest path in the graph, and after that

finding the second longest and also the third longest. Finding longest paths in a DAG is a common

problem and several methods are available through dynamic programming [62].

Usually longest path algorithms follow an order to process each vertex and calculate the best

solution for each one starting from the end and moving backwards. This order is called the topo-

logical order. Topological order is obtained by doing the topological sorting of a DAG and only

works in DAGs. Topological sort algorithm is a modification of the Depth First Search algorithm

(DFS). The DFS loops over the graph starting by printing the first vertex, and then looping over

its adjacent vertices, printing each one, and then looping over the adjacent vertices of each of

those vertices and so on keeping doing it recursively, never doing this process more than once to

the same vertex while the topological sort before printing a vertex calls recursively every of its

adjacent vertex until it reaches the end when a vertex has no more adjacent vertices. So a vertex

is never pushed into the order stack until all of its adjacent vertices are already in the stack. The

stack is then reversed.

To illustrate this better an example of a simpler graph is shown in figure 3.6. The topological

order for this graph would be [1,0,3,2,4].

Figure 3.6: Simples DAG example

Following the longest path strategy, once we have the topological order the longest path algo-

rithm follows this same order to check on every possible path, updating the values of the distance

to each of the vertices everytime a higher value is reached. Using this strategy, it is avoided the

overlapping in many repeating sub-paths since only the best ones are kept.

The algorithm is better explained in the section 3.1.4.

3.1.3 Solution design

The working and coding philosophy towards solving the proposed topics was to get a fully

working program meeting the most important requirements as soon as possible even if lacking

optimization. So the idea was to return the best workflow given certain function blocks of cer-

tain specific requirements with certain weights concerning its performance and time efficiency.

Thereby, before the final optimal solution was reached, in section 3.1.4, several tweaks were made

to a worse optimized version during the coding process.

Although the first raw version of the recommendation algorithm could do the essential of what

it is expected to do, going from reading requirements from the user, and using a function block

34 Implementation

database, to build an optimal workflow that meet those requirements and return it to the user, it

had several points missing optimization. First things first, the program would get all the function

blocks from the database and build the graph based on all the function blocks available, thus not

having in account the fact that some of them wouldn’t be a possible solution due to the fact that

the requirements by the user were read later. This way, some non-admissible solutions could be

on the line and had to be taken care of later. This required more resources since the graph was

always the most complex possible having extra vertices and edges that would never be needed.

Another bottleneck point in the first version of the algorithm was the fact that the several

function blocks on the csv file for the function block database had to be in order of requirements

index number. This made it harder to add new blocks to the document since they had to be put in

a very specific order.

The second version of the code had this two points fixed not adding any feature to the final

solution. This way, the code first read the requirements and based on them, would search the blocks

database for the ones that would fit, and use them to build the graph. Apart from that feature, the

reading of this same database was done differently, then being independent of the order the blocks

were on the csv file, therefore making it way easier for the user to add new blocks. In short, the

new version brought optimization in resource consumption, since the graph was filled with usable

function blocks only, and taking all the non-admissible solutions out of the way, while making it

easier for a user to add new information to the database.

The way the best workflows were calculated in the previous versions of the code also changed

to the last version. Firstly, after having the graph all filled up with the vertices and corresponding

edges, the scoring process was done. Note that a workflow class was used having two attributes,

the workflow list and the total score of the workflow, in order to keep things cleaner. The score

was then calculated bye doing the dot product of each block weight values and the input ratio

value for the performance requirements. It checked each requirement at a time in the graph and

for each block it is calculated the score and chosen the highest-scored one. Doing this for every

requirement makes it select the best one for each requirement. This would surely return the top

pipeline, however it would be impossible to return more than one workflow in an optimized way.

Apart from that, we were not fully taking advantage of graph theory to grab the best paths, and so

in the next sub-section the approach taken to solve this is carefully explained.

3.1.4 System breakdown

The algorithm starts by reading the values in the input file and translate them into a matrix of

one line and N columns, being N the number of specific requirements in the file. These values are

carefully explained in section 3.1.1. This way the algorithm will be able to know which function

blocks are supposed to be used and calculate the workflow.

Having the requirements matrix, the next step is to import and create a list of all the function

blocks from the database that are within categories of requirements selected by the user on the

input file. This guarantees that only desired function blocks for one specific problem are being

imported into the program ensuring an important resource optimization. Every optimization step

3.1 Workflow Recommendation System 35

and version of the code is deeply explained in the previous section 3.1.3. So the function starts

by checking each specific requirement, its value and if the workflow is supposed to meet that

specific requirement, then it checks the available function blocks that pertain to that requirement

and appends them to the list. In the end of the importing phase, the function block list will have

the blocks ordered by requirement index. This is an important note for how the graph will be

designed, but also the database doesn’t need to follow a necessary order for the importing to work

properly since it only relies on the requirement property of each block from the database, even

though it orders it correctly while importing them. The value for the time efficiency/performance

in the requirement matrix isn’t yet being evaluated.

The next step is to translate the just created function block list into a graph, so a graph is

created following the class structure. The graph construction goes through two phases, creating

all the vertices and then filling it with every corresponding edge connections. The first phase

consists on reading the function block list imported from the database from the previous stage and

create for each one a block from the class Block, explained in section 3.1.2, and then add it to the

graph by using a class method called add_block. This ensures that every block, fulfilled with its

information, is added as a vertex to the graph. The second phase comes after having the graph

will all the vertices. The function will go through every vertex, check its requirement attribute,

then loop over all the blocks from the graph that belong to the next requirement ID and add an

edge between those two vertices. So this way every block that belongs to the requirement category

1 will connect to every block that has requirement 2 and so on, following therefore the structure

presented in figure 3.4.

Before heading to the workflow generator part, the scores are calculated a priori, using a

function called scoring. This function takes two arguments, the graph and the ratio value of the

two performance requirements defined by the user in the input file. So it gets this input value

and loops over all the vertices in the graph, calculating the score for each one resorting to the

inner graph method calculate_scores. The value of each vertex is stored in the previously talked

attribute of each block, value in section 3.1.2.

The final and most important step from our program is the workflow generator. This is firmly

the core part of the code. The first note is that a class named Workflow is used. The first attribute is

a list containing all the blocks chosen for the final workflow. The other one is the workflow score.

Using the class made it easier to implement the feature of returning more than one workflow. In the

solution design section 3.1.3 it was addressed the need of optimizing the code in order to return the

top 3 workflows, since in previous versions the code would return the best workflow only, while

not taking full advantage of what graph theory can offer.

As previously explained in the last part of section 3.1.2, topological sort followed by longest

path approaches were used. Just like in [62], we first find the topological order and then use that

same order to calculate the longest path. A default topological sort algorithm5 is used as a method

of the graph class. This algorithm is shown in Algorithm 1.

5https://www.geeksforgeeks.org/topological-sorting/

https://www.geeksforgeeks.org/topological-sorting/

36 Implementation

Algorithm 1 Topological sort algorithm

1: visited = [False]∗num_vertices . Creates a list of visited vertices
2: stack = [empty] . Creates an empty stack
3: for vertex in num_vertices do . Loop over all the vertices in the graph
4: if visited[vertex] = False then . Check if this vertex has been visited before
5: procedure TOPOLOGICAL SORT UTIL(vertex,visited,stack) . Recursive function
6: visited[vertex] = True . Vertex marked as visited
7: for a in ad j[v] do . Checking vertex adjacency list
8: if visited[a] = False then
9: TopologicalSortUtil() . Call the recursive function

10: stack.append(v) . Once no more adjacency vertices, it is added to the stack
11: stack[::−1] . Order of the stack is inverted

Having the stack ordered, it is time to run the longest_path function, using once again a stan-

dard algorithm6 with a few changes to meet our graph design. The algorithm used is described

in Algorithm 2. It starts by creating a list of distances for each block, initializing it with each

block score. Then following the topological order it checks for every block the distances of each

of its adjacent vertices. If the distance is lower than the sum of distance of the first block and the

score of its adjacent, then the adjacent block’s distance is updated to this value, and its precedent

attribute is update with the first block. This is where the last attribute of class Block comes in play.

Precedent will then be used to move backwards on the graph to get the longest path.

Doing this for every block in the stack will have us a distance list for each block representing

the maximum score possible if that block is chosen as the last one of the pipeline. This way, we

check on the distances list which of the blocks from the last requirement category on the graph

has the highest value. This block is the last block of our longest path and its distance is our

pipeline score, and so it is added to the workflow list. Then a while loop is used to go to the

precedent block each iteration, and append them accordingly to the workflow list. Once we reach

the condition of no precedent block, it means the first block of the pipeline was reached and the

workflow is completed. The list is then inverted to the correct order.

Now that the best workflow is calculated, the second and third longest paths are to be calcu-

lated. Unfortunately, the longest path algorithm approach is not ready to calculate, for instance,

the three longest paths without "physical" changing the graph. The definition of second longest

path in a DAG is the longest path in the graph that doesn’t share at least one vertex with the longest

path. Following this thinking, the third longest path is the longest path that doesn’t share more

than one vertex with the longest path and the second longest path simultaneously.

In order to achieve this, the longest path function was run several times, each iteration a dif-

ferent block from the best workflow was "removed" from the graph and calculated the longest

path of that graph. "Removed" from the graph doesn’t mean actually removed from the graph but

since the block class has the attribute of its score, this value was changed to large negative number

that would make it never being picked for the longest path. After calculating it, the score value

6https://www.geeksforgeeks.org/find-longest-path-directed-acyclic-graph/

https://www.geeksforgeeks.org/find-longest-path-directed-acyclic-graph/

3.1 Workflow Recommendation System 37

Algorithm 2 Topological sort algorithm

1: dist[0]∗num_vertices . List of distances for each vertex
2: for vertex in graph do
3: dist[vertex] = vertex.value . Updates each distance with the vertex value
4: for i in stack do . Loops over the stack
5: u = stack[i] . u is the vertex in the position i of the stack
6: for v in ad j[u] do
7: if dist[v]<= dist[u]+ v.value then . Compares the current dist of v with v+u
8: dist[v] = dist[u]+ v.value . Updates v dist if reaches a new maximum
9: v.precedent = u . Updates precedent attribute of v with the best option

10: Check what vertex of the last requirement category in the graph has the largest distance.
11: Runs from the end to the beginning following the precedent of every block

is re-added to the block and the loop moves to "remove" next block. Every iteration, the score is

compared to the maximum achieved till then and everytime a new high score is set the second best

pipeline is updated to the current longest. At the end of the loop, the graph is back to the original

and the second best workflow is saved.

The same technique is used to calculate the third best option as well, but instead of "removing"

one vertex at a time it’s removed two, one from each of the two best workflows, never removing

the same block twice in case they share at least one.

This method of ranking workflows by score has some steps to avoid bug situations when for

instance a requirement only has one block, and that block has to be chosen forcibly and so is never

removed from the graph. The same happens if a category only has two blocks and both were

chosen in the best and second best workflow guaranteeing this way that every specific requirement

is always met in the final workflows.

Another feature of the recommendation system is the option for the user to use a workflow as

an input and ask for changes in order to make it more suitable to its needs. The user is asked at

the beginning of the program if he wants to submit a workflow in order to receive suggestions to

change it. If answered positively, then the program compares both the submitted pipeline by the

user and the best workflow calculated for the current performance requirements, and suggests how

blocks should change. If the submitted workflow is the benchmark workflow, then no changes are

suggested.

The recommendation system also features the creation of automatic datasets to be used in the

genetic algorithm as input, later explained in section 3.2.1.

Final note that all the values (ratio, weights) must have exactly two decimal digits in order to

avoid ambiguous situations, later explained in chapter 4.

3.1.5 Architecture

The architecture of the recommendation system is shown in figure 3.7. It decomposes the

system in the several phases of the code, going from the user and its information files, to the

information processing stage where the requirements are read, used to create the function blocks

38 Implementation

list from the database, also reading the workflow submitted by the user, if desired, then proceeding

to the graph building phase, where vertices are created, added to the graph, and then connected

between themselves. The scores are then calculated for each block. The workflow generator

stage starts by calculating the top 3 pipelines, then creating datasets for results analysis. Lastly,

recommendations are sent to the user.

Figure 3.7: Recommending System Architecture.

3.2 Weights Optimization 39

3.2 Weights Optimization

One of the core and distinguishing factors of the work presented is the way the main algorithm

classifies and scores different workflows options, and of course this is directly concerned with

the set of two weights each function block has associated as a characterizing feature. Although

this set of values works in a very objective way when it comes to algorithm and code running, its

real meaning might be a bit more subjective, thus making their assignment a very difficult task.

Knowing that translating how good a block is, concerning its time efficiency and performance to

a range of values between 0 and 1, is a very hard work to do, resorting to a training/optimizing

algorithm seemed like the best path to take. Genetic algorithms (GA) have been used for some time

now in lookalike situations [52, 59]. In [9] genetic algorithms are deeply addressed, thoroughly

explained, and evaluated as well as compared to some non-GA heuristics for optimizing purposes.

Knowing this, a genetic algorithm was implemented to optimize the weight values of a certain

category of function blocks, using a dataset with several samples of a ratio value as an input, for

instance the dataset that is automatically generated by the recommending system, and information

on which function block is the targeted option for each case as a target (section 3.2.1).

Figure 3.8 shows how a genetic algorithm works, and the implementation used on this work is

explained in section 3.2.3

Figure 3.8: Genetic Algorithm.

40 Implementation

3.2.1 Input files

The main function of the genetic algorithm is to help the user to get the most optimized weights

for function blocks in order for the recommendation system return the best results.

As explained before, defining weights of two performance requirements, for every function

block, for instance performance and time efficiency, may get a little tricky and might entail hours

and hours of researching and testing. To avoid this, this automatized feature is made available so

in any case scenario the user can draw on a history log of different workflows performance and

use it to get optimized weights for several function blocks.

The idea behind the GA is to start as an input a pair of ratio values for each of the two weights

and optimize the weights of each function block within a category of a specific requirement that

would return a set of two weights for every block for those input values scenario.

So a training dataset example to be run by the GA would be a csv file starting with two columns

with the decimal percentage of the proportion chosen for each of the performance requirements,

and the following columns fulfilled with zeros and one 1 each corresponding to a function block

of a category, the target one having the value 1. An example of this dataset structure is shown in

figure 3.9. Note that the values from the two first columns add up to 1 since they represent the

ratio value for the performance requirements. For instance in the first sample on this case for a

pair of values of 34% of importance to the performance requirement 1 (performance) and 66% of

importance to the second performance requirement (time efficiency), the desired function block is

the FB3.

Figure 3.9: Input dataset for the genetic algorithm.

Following this format is essential and the whole code is expandable being only subjected to

changes in the hyperparameter values of the algorithm, explained next.

3.2.2 Solution design

So as explained in the beginning of this section, an optimizing algorithm seemed like the

reasonable solution to take. Before implementing a genetic algorithm to estimate the desired

values, deep learning was thought of as the best approach to take and was also implemented and

tested.

Initially some basic concepts were reviewed concerning this topic, such as neural networks,

methods for the weight update process, etc. The key point here was to find a good algorithm to

update our weights the same way weights are updated when doing machine learning. Algorithms

3.2 Weights Optimization 41

like least squares linear regression [63], backpropagation [64], and stochastic gradient descent [65]

were the main solutions to take a look on. Since having a bit of experience in using backpropaga-

tion, as well as its simplicity to understand and implement, this was the first choice.

The idea was to use the backpropagation algorithm to train our weight values, and so a neural

network was implemented following a reasonable structure for our problem.

Firstly it was tried to train all the function blocks within a category. A neural network with 2

layers, the first one with two neurons (the values of the performance/time efficiency ratio required

by the user), and the second layer having the same number of neurons as the amount of function

blocks to train. An output value between 0 and 1 was achieved in the last layer. Each connection

would be the corresponding weights to train. These were initially random, and were then adjusted

by the error of the output value. The input files for this algorithm were the same as for the genetic

algorithm.

A few problems of convergence were found with this algorithm since both weights of perfor-

mance and time efficiency for each function block would have to be adjusted using the same error

value, since this value came from the error between the calculated score and the target value. This

problem became bigger and bigger for more function blocks to be trained.

It was then thought of using a simpler neural network that would train only one function block

at a time. This solution got better results, but only for function blocks that would be on either

ends, too good in performance or too good in time efficiency, having very bad results in cases of

middle term.

Having no conclusive and enough good results with the backpropagation method using deep

learning, the genetic algorithm was the next solution to take. A good advantage of resorting to

a genetic algorithm was that all function blocks of a category would have to be optimized at the

same time.

A quick note on the fact that the same input files were used for every version of the genetic

algorithm. A very standard algorithm was implemented in first place. A 10-solution population

was used in the beginning. The fitness function consisted on calculating the average error of block

choice on every sample compared to the target. Started by calculating the score of each function

block for each dataset example, and then picked the highest-scored one as the choice and compared

it to the target solution. If the right one was picked the error would be 0, otherwise it was 2.

The main problem was the fact that it wouldn’t converge to an optimal solution of 0 errors,

however whenever it did the results were great.

Not knowing that this problem was due to hyperparameter tuning, a few changes were made

to the fitness function in the second version of the genetic algorithm using the same amount of

solutions to the same population.

Rather than being an average number of times that the wrong function block was chosen, the

new fitness function would calculate the average of the sum of absolute error for each case. For

example, knowing that the target file had only one 1 for the supposed function block to be picked,

a module subtraction between each function block score and its target value was done. This fitness

function had a great advantage compared to the first one, which was the fact that it gave much

42 Implementation

more information about the set of actual weights, saying how far it is from the optimal solution in

a non-discrete way.

The problem of this solution was simple to demystify. Since the sum of the modules of the

errors were averaged, the algorithm would converge to a solution where all the weights were set

to 0. This made total sense, because then the optimal point for the fitness was 1, since every

score would be 0 and just one of the function blocks would have error 1. This fitness function

undervalued the function blocks that were supposed to be picked and overvalued the ones that

were not supposed, since they were 3 times more.

Having found this problem, the first thought was to multiply the error on the function block

that needed to be chosen by 3, evening it compared to the other three. A similar result to the

backpropagation was found with fitness function. It returned good values for function blocks that

were in extreme points of performance or time efficiency but poor values for middle-term blocks.

Realizing that the first fitness function actually made total sense in the context, since the main

goal was to get the right function blocks to be picked for every situation possible, it was brought

back from version one. The first version had a problem on converging to a 0 error on the fitness

function on every run, and not in the quality of the solution whenever it did. After some testing and

reading on general genetic algorithms, not converging problems were linked to lack of variability.

Using a population sized 10 solutions and using 5 parents to mate and crossover/mutate in order

to optimize a set of 8 weights, for instance, not enough random solutions were being created to try

to get to better results by going out of its convergence area.

Therefore, hyperparameteres were tuned differently by having a population of 100 solutions

each one, using 30 parents, 30 offspring caused by crossovering and mutating the parents, and the

resting 40 were randomly created each generation. The results were shockingly good. Even with

bigger and more complex datasets with more and more cases, the algorithm would converge to an

optimal solution of 0 errors with less than 200 generations of iteration.

This last version was the starting point of a working solution for weight optimization and

there was just one last little problem: if iterated some generations, a lot of solutions would fit

with an optimal solution having an error of 0. This created a problem of selection of the best

optimal solution, since the fitness function gave the algorithm really limited but super important

information. The way to go from here was to implement a more complex fitness solution that

would draw a distinction on the optimal zero-error solutions but getting from this pool of optimal

solutions, the best one. The full implementation of the GA is explained in the next section.

3.2.3 Genetic algorithm

Genetic algorithms are used for several applications specially in order to solve problems sim-

ilar to this one, as already addressed in the start of this section.

Before explaining our algorithm step by step, just a quick note that a module was edited and

imported into the main program. The functions on the concerned module were edited to meet the

current problem making it a bit more specific for our algorithm. It is carefully explained in section

3.2.4 and referred in the rest of this section as GA module.

3.2 Weights Optimization 43

So the first step into genetic algorithms is to have a nice overview on an algorithm like such.

Figure 3.8 shows an intuitive flowchart of how a genetic algorithm works. Having all the param-

eters set up, it starts a loop over generations and calculates the fitness, selects the mating pool,

selects the parents, from the mating pool does the crossover and mutation process, and finally

generates the offspring.

So the first stage of the code consists on the creation of the input information, from the dataset,

into matrices, and the assignment of the number of weights we are looking to optimize. For

instance, if we have four function blocks, the number of weights shall be eight (one for time

efficiency and one for performance for each one of the blocks). The weights represent the genes

in this context.

The next stage is to set up an initial population. A population is a group of solutions, each

solution being an individual composed by a set of genes. Each individual will have a combination

of values for the genes, a chromosome, that corresponds to the weights of the function blocks to

be optimized. Each chromosome is organized by the number of function blocks, each one with

two weights. Firstly, it is defined the number of solutions per population, that is, the number

of individuals that make up a population. Then, the population size is calculated by getting the

number of people in a population, and structuring it in chromosomes. The final step of this stage

is to create the population, using the first function create_population, from GA module, thereby

creating a full population of random values for every weight between 0 and 1. Larger populations

guarantee a more variable set of solutions, making it easier for the algorithm to converge to an

ideal solution since more combinations of weights are selected and so the chances of getting better

values increase.

After preparing the first population, two more parameters are set before getting into the loop

of generations, the desired number of generations and the number of parents mating. This last one

refers to the number of solutions from a population that are selected for mating and to go directly

into the next population. These are going to be the so named parents, and they represent the fittest

people in a population. Having around 15-20% of a whole population as parents guarantees good

results.

Having these two values defined and entering the loop of generations, thus starting the steps

shown in the flowchart previously. First things first is to make the fitness calculations of the current

population. This is done and returned by the second function from the GA module, cal_pop_fitness.

The returned fitness is an array of the size of the population with the fitness of each individual of

the current population. As explained in the next sub-section, the lower the fitness value the better

the solution. This is due to the fact that the fitness consists on the average of an error and thus it is

supposed to be minimized. So our fitness function is actually a cost function.

After calculating the fitness values for each individual, we need to pick the best of them as

parents. This step is done by the function select_mating_pool from GA module into a mating pool.

Created the mating pool with the best individuals of the population, it is time to do the next step

of the flowchart, the crossovers. Using the selected parents, the function crossover from the GA

module will crossover the genes from the parents following a rule defined in the function, creating

44 Implementation

the offspring. The offspring consists on the resulting solutions from the crossover process. Before

gathering the parents and the offspring chromosomes, the offspring individuals go through one

last process from the GA variant which is mutation. Mutation is applied to the crossover results,

offspring, and done in a uniform way to the random genes. The offspring size represents the same

size of the parents, somewhere around 15-20% of the total population.

After the crossover and mutation processes we have two groups of individuals, the parents and

the mutated offspring. These two are gathered together to form a new population. The two groups

together shouldn’t have enough solutions to fulfill a population as a whole, as they would represent

a maximum of 40% of the next whole population. Therefore, for the rest of solutions are created

random values, just like done in the beginning of the algorithm. When everything is merged a new

population is born and goes as the actual population to the next generation of the loop.

To help visualize the algorithm, let’s put in a practical example. If the population has 100

solutions/individuals and the chosen number of parents mating is 20, then the best 20 individuals

go to the mating pool, it is done a crossover between this 20 individuals into the offspring and

then they are mutated. So we have 20 parents, 20 solutions in the offspring, which come from

crossovering and mutating the 20 parents, and 60 more are created randomly, making it 100. This

new population is the next generation of individuals.

So this whole process of creating new generations of populations follows a rule of selecting

at every generation the best solutions, parents, and use them to try to achieve even better solu-

tions, through crossover and mutation, while guaranteeing that the best individuals from the last

generation are kept to the next one. So if the offspring comes worse than the parents, then it

wouldn’t mess the population up since the best solutions are always kept. Adding a factor of

randomness, with the creation of random individuals to fulfill the rest of the population after the

offspring, allows the population to get better solutions out of the current best solutions. This way

if a generation is good but not the greatest, it helps the population to bring new people out of the

population tendency and increasing the chances of bringing a new better solution, thus exploiting

good solutions out of the convergence area.

The tricky part of creating a good genetic algorithm is to define the best fitness function pos-

sible. The main goal of this algorithm is to get a solution of a population the right values so they

go through a score calculation process and the right function blocks end up being the highest ones

in all samples of the dataset. This way, the fitness function calculates the average of times a solu-

tion got a function block wrong. Minimizing the fitness value, the algorithm will try to return the

solution with less error. Since more than one solution may end up having 0 errors, these all are

optimal solutions, though there is a way of getting the best ones from the optimal solutions. So a

bit more complex fitness function was developed. Instead of only returning the number of errors

throughout all the samples of the input dataset, it also takes in account absolute error, just as done

in the second version referred in section 3.2.2, making a more enriched fitness value for each of

the solutions.

Coefficients were assigned to each of these two values. 0.99 goes for the number of errors,

and 0.01 for the absolute error. This values are justified by the fact that we still want the algorithm

3.2 Weights Optimization 45

to converge to solutions with 0 errors in all the samples, while also wanting that a small difference

may be detected within optimal solutions, that being the least absolute error. This fitness function

is better explained in the next section.

After iterating and generating better and better solutions, a termination condition was set in

order to stop the generations loop whenever the same best and optimal solution stabilizes for a

defined number of iterations.

After getting the best optimal solution, the weight values may not be exactly how they are

supposed to. The GA may actually get an optimal solution, and so the values returned work for

the samples, but they may not work properly in the recommendation system since they may not

be normalized within the function blocks of the category whose weights were just optimized. For

instance all the values, returned may have an order of magnitude of 10−4 and still give the best

workflow possible, but it is desired to have representative values between 0 and 1 of how good a

function block actually is in two performance metrics.

In order to perform this, after gathering the best solution within the last population, a func-

tion called norm is called. This function takes the best solution and the input dataset. Then a

feature scaling normalization between 0 and 1 is done to weights. This procedure doesn’t change

the optimal results, because the values are always relative between function blocks, and so this

normalization method shouldn’t affect the results. In the end a checkup of the new normalized

weights is done with the dataset, to make sure it still is an optimal solution with no errors. The

final values are finally returned to the user.

3.2.4 Library

After some research on how a genetic algorithm works as well as on the best libraries for

python implementation, some good reading material came out in the open.

One of the most suitable modules in python for genetic algorithms is the PyGAD7 library

[66, 67]. It features some really good functions for every common step of a genetic algorithm,

and follows a strong structure of hyperparameters which allows the code to be expandable, thus

making it more reliable.

The main functions from the module were already addressed in the last sub-section, and now

it is explained each one and how it works in the given context.

The first function is the one that generates a population, create_population. It is used in the

beginning to create a new whole initial population and then in every loop of each generation to

create the new random individuals to fulfill the next generation population. This function takes

one argument which is the size of the population. The size of the population is a two dimensional

number, the first one being the number of solutions it is supposed to generate, and the other one

the number of values to generate for each solution. The number of values for each individual

of a population is called a chromosome and is composed by genes that in this context are the

weights. So receiving the total number of weights, the program knows that each function blocks

7https://pygad.readthedocs.io/en/latest/

https://pygad.readthedocs.io/en/latest/

46 Implementation

will have two weights, one for time efficiency and one for performance. The function is prepared

to recognize this and therefore it structures each solution in a matrix of two columns by the number

of function blocks rows.

For instance, if you send 10 solutions per population and 8 weights, then the function will gen-

erate for each of the 10 solutions a chromosome with four rows and two columns, being each row

one function block and the two rows its time efficiency and performance values. In short, it returns

an array sized (10, 4, 2) from a (10, 8) argument. This is all done by using the random.uniform

function from the NumPy module, and gets values between 0 and 1.

The next function of this module is cal_pop_fitness. This is the most important function in the

algorithm, calculating a population fitness, and so the way it makes the calculation is the key for

the main algorithm to converge to an optimal solution. The main idea is to calculate an average

error between the scores that the current weights get from the input value of the dataset and its

target values.

The function takes four arguments, the array with the ratio values, the targets array, a popu-

lation, and a variable for the number of errors. The fitness is a 1-dimensional array with a length

equaled to the number of solutions within a population. The function starts by looping over every

person in the given population, and for each person it loops through each sample from the dataset.

For every input it will calculate a score for each of the function blocks. This is done by doing the

dot product between the weights of the person in question and the input values from the dataset,

which is how the main recommendation algorithm calculates a score to build a workflow (section

3.1.4).

Having the scores for a person for each function block, an intern function is called to choose

the highest-scored block. So basically this function takes the matrix with the scores and turns into

1 the highest one, and into 0 the rest. This way the resulting score matrix will match the target

matrix structure which will be filled with zeros and a one corresponding to the function block to

be picked as the best in each input value (section 3.2.1).

So this way the fitness calculation goes through a check subtracting the new binary score

matrix and the target matrix. The module of the subtraction between. There will be only a value 1

in each matrix and the remaining values are 0, thus the error will either be 0 if the right block was

chosen, or 2 if the wrong one had the highest score. Looping over every case on the dataset, an

average error is calculated, and that value is the average number of errors a person had through the

dataset samples. The fitness value is not only composed by the average value of the errors. The

other part missing is the absolute error of a solution for a given sample input. So, grabbing once

again the original score matrix, it is then subtracted to the target matrix and calculated the sum of

the modules of each number of the result. This gives the information of how close the scores are

from the expected on the target. This is done to help differentiate several optimal solutions. After

running through all the samples an average of this error is also done.

These two values are weight-summed. The final fitness value is composed by 99% of the

average number of errors and 1% of the average error value. Repeating this intensive process for

every single one individual will fulfill the fitness matrix.

3.2 Weights Optimization 47

The third function to be used from the GA module is the select_mating_pool. As explained

previously, this function is called to select the best individuals in the current generation as parents

to produce the offspring of the next generation. The function takes 3 parameters: the population,

the fitness matrix of the population, and the number of parents for mating. This allows the parents

matrix to be shaped exactly like the standard population one but with less solutions, being this

number just the number of parents in the function argument.

So looping over the taken population it chooses the best one by checking the lowest fitness

value, gets its index in the population array, and appending it to the parents array. Everytime a

solution is chosen to be a parent, its fitness value is changed to a high value, such as 99999, so

it won’t be picked again on the next loop. This is done until it has chosen the desired number of

solution to be the parents.

For example, with a population of 10 individuals, and it wants 4 individuals as parents, the

function will get the 4 lowest fitness values and take the corresponding individuals as the parents.

This guarantees that no matter what comes out of the offspring operations, the next generation

won’t have a worse best solution than the previous one as the best, since the best solutions are kept

held into the next one.

The last two functions of this module are the ones that create and modify the offspring. Firstly

there is the crossover function. It takes two arguments: the parents (calculated in the last one)

and the population. The offspring has the exact same shape as the parents. Using from NumPy

module the method random.choice, two parents are randomly chosen to have a crossover between

them. The crossover is done by getting the first column of the chromosome, this being the time

efficiency values of the first individual and mix it with the second column of the chromosome, the

performance values, of the second individual. This is done in loop until the desired number of new

mated individuals is achieved.

Usually after the crossover mutation happens. The mutation function mutates every person of

the offspring generated in the crossover. A default 40% of the weights will randomly be chosen

to suffer a mutation, evenly split between each column. The mutation consists on the sum to the

selected weights of a value randomly generated between -1 and 1, by the random.choice function

from NumPy.

For instance if the offspring has 4 people, and each people has 5 function blocks each with

two weights, making a person have a shape of 5 by 2, then for each person, two random weights

from each column will suffer a mutation.

Mutating random values by some number between -1 and 1 may seem a lot in absolute terms,

since the final weights are supposed to be always between 0 and 1. This was done so when a

population fitness is converging to a local minimum, adding a bit of variety to its solutions may

help find better solutions. Also, a process is done in order to saturate overflow values. So if with

mutation a value goes over 1 or under 0, the new values will be saturated so they stick within the

limits. With this we can affirm that our algorithm will always discard non-admissible solutions.

48 Implementation

3.2.5 Architecture

To help visualize the whole weight optimization system running the genetic algorithm, figure

3.10 shows its architecture. It starts from the user entering its dataset as an input into the main code

block, initial population is then generated, used by the genetic algorithm block that loops over a

user-defined number of generations. Have the termination condition ended, the best solution of the

last population is then selected and goes under feature scaling normalization. The new normalized

data goes under a checkup test afterwards, in order to verify it still is an optimal solution. Verified

that condition, the new set of weights is then returned to the user.

Figure 3.10: Weight Optimization System Architecture.

3.3 Overall Implementation

Now that both algorithms are thoroughly explained in the previous sections, it is important to

emphasize how they may complement each other.

Firstly, the core correlation factor between the two algorithms are the weight values for perfor-

mance and time efficiency for each function block. The recommendation program uses this values

to calculate the score for the workflow options and selects the best one based on the maximum

3.3 Overall Implementation 49

score obtained. The closer to the absolute correct values we have, the better are the results we get

from the main program. That’s why using the genetic algorithm is very important.

Before getting into the main recommendation program, all the function blocks must have valid

weight values. The weight optimization system is recommended to be used prior to this in order

to get the best weight values possible. If a user wants to add new FBs, he may want to use genetic

algorithm (GA) in order to estimate those values.

The genetic algorithm returns to the user the optimized values for every function block within

a category, but does not update the values automatically into the database csv file. This process

must be done by the user manually. Whenever the user wants to add a function block of a cer-

tain category, he has to recalculate all the weights of all the blocks within that category, using

for example, the genetic algorithm. Another crucial point is that function blocks from different

categories can’t be trained at the same time.

Once all the values for performance and time efficiency for every block in the database are

updated, the main program is ready to be run.

To give a tangible example of every procedure the user has to follow let’s suppose the user

wants to add a new category to the database and some function blocks of that same category.

Since both algorithms are fully expandable, this is very achievable. The first thing the user has

to do is to get the performance and time efficiency weight values for the new function blocks.

Since the function blocks are all from the same new category, these values can be retrieved all at

once. Then the user has to make the datasets for input and target values for the genetic algorithm,

following the structure presented in section 3.2.1. Once the datasets are done, the user runs the

genetic algorithm and gets the values for all the weights for the blocks. The next stage consists on

adding the blocks to the database csv file, once again following carefully the structure explained in

section 3.1.1, with the weight values returned by the genetic algorithm. Note that if a new category

is being added, then the respective function blocks will have a new value for the requirement_id

block attribute.

Before running the main workflow recommendation system, the user has to also make some

changes to the requirements csv file as well, adding the new specific requirement regarding the

new category following the order that was told before. Having all these steps been completed, the

last algorithm is ready to be run and should be returning the optimal top 3 workflows, having in

account the new function blocks added by the user.

One last quick example is the case where the user wants to use the categories already presented

in the database, but wants to add one or more function blocks to the database within those cate-

gories. Once again for every category updated, the weights must all be updated and the genetic

algorithm should be run for this purpose. Also, changes to the input and target datasets must be

done. With the new values, the weights of all the function blocks belonging to the category in

question have to be updated in the database file. Since all the function blocks added were from an

already existing category, there is no need to add new requirement lines in the requirements csv

file. Once all this is done, the workflow recommending program is ready to be run.

50 Implementation

3.3.1 Overall architecture

One of the most interesting features about the proposed work is the interopeability of the two

implemented systems. The genetic algorithm uses history log data about workflows based on

two performance metrics/requirements, and generates sets of weights that profile function blocks

(FBs). The recommending system, uses those FBs weights to recommend workflows based on

those same two performance requirements. After the generating the top 3 workflows for a given

scenario, the recommendation system automatically generates datasets based on this results. These

datasets can be used right away by the genetic algorithm based weight optimizer system. Figure

3.11 shows the architecture of the two systems working alongside.

Figure 3.11: Overall Architecture.

The next chapter has different testing methods on both systems to evaluate the quality of the

proposed implementation.

Chapter 4

Testing and Validation

In this chapter several tests were made using a real dataset from a study case [68] where

workflows are also recommended and optimized based on two performance metrics defined by

the user. Having done a lot of research it’s quite hard to find good and clear testing examples

for our system. Usually the procedure of orchestrating workflows is evaluated in several different

metrics such as performance, accuracy, execution times, monetary cost, resources used, and more

depending always on the case scenario where it’s being applied. This way the approaches on most

papers rely on optimization that suits one case or one type of case only, lacking generality and

expandability.

Our work has that property of being able to be applied in as many case scenarios as possible.

This of course is not easy to do and still demands a smart way of interpreting different cases into

our system conditions. This means some ability to "normalize" and adjust datasets into our system

structures. The paper used for testing purposes uses a dataset that suits that structure, with still

some adjustments to be made in order to make it fully working with the proposed system.

As mentioned before our recommendation system recommends the 3 best workflows, in order,

based on two user-defined performance requirements/metrics. The reason behind this number

is that when dealing with this type of scenarios, there is some chance of not returning the best

possible workflow, This is due to the fact that the program does not take in account every variable

existing, taking only two in this case. Therefore, a lot of information may be unknown for the

program, for instance, energy efficiency, resources consumption, execution costs, etc. This way,

returning three workflows makes the system more helpful for real-life scenarios usage.

There are plenty of different ways to evaluate the performance of recommender systems to

know how good the results returned by such are. In this work we proposed the use of MAP@K

as evaluation metric for the whole system, due to the fact that it is suitable for ranking evaluation,

rewarding the system if good solutions are suggested in the first positions.

Precision is one of the most used metrics for recommending systems [69]. In recommending

systems it’s given by the following expression:

Precision =
#RelevantRecommendations

#Recomendations
(4.1)

51

52 Testing and Validation

Precision gives a good notation of how good a system is in terms of number of correct picked

options, but doesn’t seem to care much about order. Thus, precision at cutoff K, or P@K, is the

precision of the system at the recommendation number K [52]. P@K always takes in account the

precision of the recommendation at every point before K, making it an order evaluation metric.

Knowing our system is recommending three workflows, the ideal K point of analysis is K = 3,

although K = 1, and K = 2 may also be used for some reference. Average precision at cutoff K,

or AP@K, is the sum of the precision at every point until K, if relevant, divided by the number of

relevant suggestions which will in our case be always K:

AP@K =
1
K

K

∑
n=1

P(n), i f kth = relevant (4.2)

For the same amount of relevant recommendations within a number of total recommendations,

AP@K rewards a recommendation that has the relevant items on the first suggestions [54].

Finally, when a lot of samples are used, which may be the case, the mean of the average

precision at cutoff k, is the mean value of AP@K of every test done by the system. We may

conclude then that MAP@K treats the system a ranking task. So MAP@K, for K = 3 is our

system’s evaluation metric.

4.1 Case Study

The paper [68] introduces extract-transform-load (ETL) processes as workflows that process

data in several ways and moves it between data sources (DSs) and a data warehouse (DW). They

talk about the importance of performance otimization for ETL processes. It also addresses the fact

that most of the cases, optimization always depends on the workflow designers, since every case

becomes very specific and very personal, as referred above. They contribute with a cost model

for user-defined functions (UDFs) that are seen as black-box operators, in order to optimize those

UDFs choosing a degree of parallelism for an UDF, to meet user-defined performance metrics.

The performance metrics used for the present work are execution time and monetary cost.

The used case studies the workflow of the Set-similarity joins using MapReduce (SSJ-MR)

[70].

The workflow is composed by three stages of data processing:

• Token ordering

• Pair generation

• Record join

The workflow for SSJ-MR is shown in figure 4.1. Each stage can be completed by two of the

optional UDFs: TO1 or TO2, PG1 or PG2, RJ1 or RJ2.

They previously presented an extendible theoretical ETL framework [71]. The recommender

modules generates of the framework optimizes ETL workflows using a cost model library. It also

works with statistics and machine learning algorithms, and stores previous ETL executions.

4.1 Case Study 53

Figure 4.1: Set-similarity join workflow. From [68]

Each of the stages can be completed by two data process approaches, as perceivable in the

workflow in the workflow figure. These approaches are:

• Token ordering: Basic Token Ordering (BTO) and One Phase Token Ordering (OPTO).

• RID Pair generation: Basic Kernel (BK) and Indexed Kernel (PK).

• Record join: Basic Record Join (BRJ) and One Phase Record Join (OPRJ).

They used a simulator to run the several options and retrieve information about execution time,

estimated monetary cost, data size, etc. They tested the 6 different data processes approaches, two

for each stage, and for each one calculates execution time and execution cost in $/h associated to

a n-node cluster configuration to be executed in the Amazon Web Service1, producing a total of

24 options. Table 4.1 has all these options for each algorithm and the number of nodes running in

the integration environment.

Table 4.1: Execution time in seconds of each stage on different cluster sizes.

Stage Algorithm
Nodes [exec cost/h]
2 [0.4$/h] 4 [0.8$/h] 8 [1.6$/h] 10 [2$/h]

1
BTO 191.98 125.51 91.85 84.02
OPTO 175.39 115.36 94.82 92.8

2
BK 753.39 371.08 198.7 164.57
PK 682.51 330.47 178.88 145.01

3
BRJ 255.35 162.53 107.28 101.54
OPRJ 97.11 74.32 58.35 58.11

For each data process, the execution time was calculated for the use of 2 nodes (costing 0.4$/h),

4 nodes (costing 0.8$/h), 8 nodes (costing 1.6$/h) and 10 nodes (costing 2$/h). The model used to

generate the best workflow possible is called Linear Integer Programming Model2. This model is

a mixed integer linear programming (MILP) solver using Simplex method [72]. So a user allocates

a budget and the algorithm returns the fastest possible workflow for that price based on the values

of Table 4.1.
1https://calculator.s3.amazonaws.com/index.html
2http://lpsolve.sourceforge.net/

https://calculator.s3.amazonaws.com/index.html
http://lpsolve.sourceforge.net/

54 Testing and Validation

So this case of study is very interesting given the points of similarity with the work proposed.

The paper also recommends the best possible workflow based on two user-defined performance

metrics, which is the perfect real case to test our system since it’s also based on a two performance

metrics. Another good value on the given dataset is that calculations were made available for the

different UDFs. In order to keep our text homogeneous, we will refer to the UDFs of the given

example as function blocks (FBs) or just blocks. Having the information on the execution time

and cost for each possibility of executing each block will help on the weights calculation in order

to run our recommendation system.

In chapter 3 the two performance requirements, used as an example of implementation only,

were performance and time efficiency. From now on, in order to meet the used case context, the

two performance requirements used to run our algorithms are time efficiency and cost efficiency.

The way we estimate this values is explained next.

4.2 Recommendation system

In this section we evaluated the recommendation system with two different approaches for

weight estimation. After that we used a lot samples to run the algorithm with the same weights of

the two approaches and compared the performance in order to conclude if the system is consistent

on the performance, no matter how many samples are used.

In order to test our recommendation system, we need the function block database filled with

all the FBs and respective weights details. For any case scenario is very important to understand

everything around it in order to make it more accessible to transform the necessary data into our

system’s structures.

The first step is the weights calculations for the FBs. In Table 4.1, we have reference values

of execution time for every algorithm available with different nodes. The best way to extract

this information to our database is to create a block for every possibility of running one of the

algorithms. Since there are a total of six algorithms that can be executed in four different ways

each. This way for each algorithm, four blocks were created, resulting in a total of 24 FBs. For

instance, BTO algorithm is divided in four FBs, BTO_2_Nodes, BTO_4_Nodes, BTO_8_Nodes,

BTO_10_Nodes.

Since we have three different stages, and each stage has to be done by executing one of its

FBs, then this translates into three specific requirement categories. BTO and OPTO FBs belong to

requirement 0, BK and PK FBs to requirement 1, and BRJ and OPRJ to requirement 2.

Therefore, the graph that represents the structure used is shown in figure 4.2.

After having the FBs, it is necessary to estimate their weight values. From the table we can

grab values for cost and execution time of each FB. Our system is ready to take weight values

between 0 and 1, and since less cost and less time means more efficiency, then we can’t use directly

the values of the table. Instead, and since our algorithm suggests workflows based on optimizing

FBs scores, for each block was calculated a time efficiency and cost efficiency weight value. For

this purpose, inverted feature scaling normalization was done to both costs and execution times.

4.2 Recommendation system 55

Figure 4.2: Graph used for this case study.

56 Testing and Validation

Inverted feature scaling normalization is an adaption of the original feature scaling normalization

but instead of subtracting to the original value the minimum on the top of the fraction, the original

value is subtracted to the maximum value. This is done since we want efficiency-related values,

and since both requirements are as more efficient as smaller they are (cost and execution time) this

will normalize the larger numbers into small normalized values and the opposite to the smaller

values of time and cost. The formula of the inverted feature scaling normalization is:

X ′ =
Xmax−X

Xmax−Xmin
(4.3)

For example, a value 1 for every block that runs on 2 nodes (costs the minimum price, 0.4$/h),

and a value 0 for blocks running 10 nodes (maximum cost of 2$/h) as cost efficiency values. Since

the cost values are well-defined and there are only four options, this is pretty straight forward.

On the other hand, time efficiency is not that simple to calculate, and we can take two ap-

proaches in order to calculate the time efficiency value for a FB, a Local Normalization or Global

Normalization.

Local Normalization (LN) normalizes the value of a function block relatively to every block

on its own stage not minding the executing time values of blocks in different stages. This makes

sense since we want to choose the best block in every category given the performance requirements

ratio value defined by the user. And so the fastest-to-execute block in a stage should have a weight

of time efficiency equal to 1, and the slowest a weight equal to 0.

Global Normalization (GN) normalizes each FB time efficiency value in accordance to the

executing times of all the blocks available and not only in the same stage/requirement. This may

not make sense yet, but since all the blocks, in this case, have the executing time in the same unit,

seconds, then it may make sense to let the algorithm know how fast a block is compared to every

other FB. For instance, with LN the time efficiency weight value for the block BK_2_Nodes would

be the same of BTO_2_Nodes once they are the two slowest options of their stages. Even though

the real difference between them on executing time, as referred in 4.1, is actually 561.41 seconds,

which is a huge value.

So having in mind this two approaches for normalization purposes, we decided to run some

tests on both of them, therefore we can make an overall evaluation of the system behavior on

different interpretation of the same problem.

In order to evaluate quantitatively the system results, MAP@K, for K=1,2,3 is used. But to be

able to calculate the MAP@K, a qualitative evaluation has to be made beforehand, since we need

to define the concept of a relevant recommendation in order to calculate precision.

Thereby, the definition of a good/relevant recommendation is the best possible pipeline for a

certain cost, making sure there are no faster pipelines at a smaller cost. In first place we need to

know every possible combination for the cost of a workflow. We know that the cheapest workflow

possible is one composed by three FBs running at 2 nodes, which gives us a cost of 1.2$/h, and the

maximum cost is three FBs running at 10 nodes costing 6$/h. Knowing this, we used a tool based

4.2 Recommendation system 57

on linear programming simplex3 and on evolutionary algorithms4 to get the 3 smallest workflow

execution times of every possible combination for cost. This values are presented in Table 4.2.

Table 4.2: The three shortest possible execution times for each combination of workflow cost.

Execution time (s)
Cost ($/h) 1st pipeline 2nd pipeline 3rd pipeline
6 287.14 295.92 306.7
5.6 287.38 294.97 296.16
5.2 295.21 298.18 314.77
4.8 303.35 312.13 318.48
4.4 311.18 314.15 318.72
4 333.97 336.94 345.05
3.6 334.69 344.84 354.25
3.2 357.48 367.63 368.56
2.8 391.35 401.5 411.17
2.4 451.38 467.97 471.2
2 542.94 553.09 580.18
1.6 602.97 619.56 643.58
1.2 955.01 971.6 1025.89

From this table we can take some conclusions. Every pipeline in the first column should be

chosen before any of the others. So for the top recommendation to be relevant it must be one of

the options from this column. The second column pipelines shall never be recommended before

the first pipeline of that cost. The same rule applies to the third column pipelines that must never

be chosen before the first and the second were chosen for a certain cost. For example, for a cost of

5.6$/h if the workflow with 294.97s of execution time is returned by the recommending system in

a better rank than the workflow with 287.38s, that would be two wrong choices.

Apart from that rule and in order to test the recommending system performance at all levels,

we also take a workflow choice as irrelevant if that workflow could never be picked no matter in

what order since there are cheaper options that are faster. The color code in the Table 4.2 helps

understanding this:

• Green pipelines can be recommended at any rank as long as they are the best ranked pipeline

of its cost.

• Yellow pipelines should never be recommended with a better rank than the corresponding

green pipeline of its cost, that is can only be recommended as the second or third best

pipeline.

• Red pipelines should never be recommended in a better rank than third. This is the con-

sequence of existing always at least two options that are faster at the same or even less

costs.
3https://www.solver.com/linear-quadratic-technology
4https://www.solver.com/excel-solver-evolutionary-solving-method-stopping-conditions

https://www.solver.com/linear-quadratic-technology
https://www.solver.com/excel-solver-evolutionary-solving-method-stopping-conditions

58 Testing and Validation

• White pipelines SHALL never be recommended. This happens because there’s always at

least three options that are faster at the same or less costs.

For instance, the second pipeline of the cost 6$/h shall never be recommended since there are

three pipelines that are faster. One at the same price and two others with a SMALLER price.

The recommending system will return workflows with costs based on the user-defined pref-

erence ratio value between cost and time efficiency and so it may return pipelines with different

costs. And so performing a deep analysis of which recommendations are relevant may get a bit

tricky.

Now that we decided the two different approaches to estimate the FBs weights and defined

clearly a relevant recommendation we can proceed for the practical testing.

So after applying the Global Normalization (GN) technique explained previously in the be-

ginning of this section the following weights were obtained for each FB are presented in Table

4.3.

Table 4.3: Weight values for the 24 function blocks after using the Global Normalization method.
CE and TE stand for Cost Efficiency and Time Efficiency, respectively.

Nodes

Stage Algorithm
2 4 8 10
CE TE CE TE CE TE CE TE

1
BTO 1.00 0.81 0.75 0.90 0.25 0.95 0.00 0.96
OPTO 1.00 0.83 0.75 0.92 0.25 0.95 0.00 0.95

2
BK 1.00 0.00 0.75 0.55 0.25 0.80 0.00 0.85
PK 1.00 0.10 0.75 0.61 0.25 0.83 0.00 0.88

3
BRJ 1.00 0.72 0.75 0.85 0.25 0.93 0.00 0.94
OPRJ 1.00 0.94 0.75 0.98 0.25 1.00 0.00 1.00

Having everything set up to run the recommending algorithm, the first test included 13 samples

varying on the ratio value. The results of this first test are available in Table 4.4.

Firstly we need to interpret this table. The first two columns represent the priority given by

the ratio value to each of the performance requirements, cost efficiency and time efficiency. For

instance, in the first sample a value of 0 was given to cost efficiency and 1 to time efficiency, this

means the user wanted the fastest possible workflow no matter the cost.

The Recommendation columns calculate the execution time and cost for the chosen work-

flow. For instance on the first sample, the best recommended workflow was BTO_10_Nodes,

PK_10_Nodes, OPRJ_10_Nodes. It has the cost of 6$/h since it runs on 10 nodes in each FB

and is the best possible option for a 6$ cost workflow having an execution time of 287.14s. This

was then evaluated for every workflow recommended on every sample, creating this way the Best

Option Chosen columns. If a block is green then the best option was picked for that rank and that

cost. If not then it should be red.

We can conclude from this results that the best pipeline for each cost and rank was recom-

mended for every single sample but the last one. The explanation behind this is that when choos-

ing a ratio value that gives all priority to the cost efficiency requirement, then all the information

4.2 Recommendation system 59

Table 4.4: Results for the test 1, using GN for weight estimation.

Ratio value Recommendation
1st pipeline 2nd pipeline 3rd pipeline

Best option chosen?
cost time

cost ($/h) time (s) cost ($/h) time (s) cost ($/h) time (s) Green - YES | Red - NO
0.00 1.00 6.00 287.14 5.60 287.38 5.60 294.97 287.14 287.38 294.97
0.01 0.99 5.60 287.38 6.00 287.14 5.20 295.21 287.38 287.14 295.21
0.10 0.90 3.60 334.69 3.20 357.48 3.60 344.84 334.69 357.48 344.84
0.20 0.80 2.80 391.35 3.20 357.48 2.80 401.50 391.35 357.48 401.50
0.30 0.70 2.40 451.38 1.60 602.97 2.80 391.35 451.38 602.97 391.35
0.40 0.60 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.50 0.50 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.60 0.40 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.70 0.30 1.20 955.01 1.20 971.60 1.60 602.97 955.01 971.60 602.97
0.80 0.20 1.20 955.01 1.20 971.60 1.20 1025.89 955.01 971.60 1025.89
0.90 0.10 1.20 955.01 1.20 971.60 1.20 1025.89 955.01 971.60 1025.89
0.99 0.01 1.20 955.01 1.20 971.60 1.20 1025.89 955.01 971.60 1025.89
1.00 0.00 1.20 1042.48 1.20 1025.89 1.20 955.01 955.01 971.60 1025.89

about the time efficiency weights will be totally ignored. This happens because the recommenda-

tion algorithm calculates the score for each function block by doing the dot product of its weight

values and the pair cost/time ratio value as explained in section 3.1.4 from the previous chapter.

Therefore, if time ratio value is equal to 0, then the score will only be calculated with the product

of the cost ratio value, which is 1 and the block cost efficiency weight value. Since every FB

that runs on 2 nodes has the same cost efficiency weight, 1, and there are 2 in each stage, then

the algorithm can’t differentiate from the fastest one, this way recommending randomly the FB

that respects the cost efficiency. This actually makes some sense, since when choosing a 1/0 ratio

value for cost preference, the user is telling the program that he doesn’t care on how much time

the block runs, he just wants to get a cheap workflow, and so this is an ambiguous situation. To

check this special situation we ran the program also on a 0.99/0.01 ratio value and it returned from

the three cheapest workflows, the three fastest ones. This is an optimal result.

Another interesting result is when once again a 0/1 ratio value is introduced by the user, in

this case when maximum priority was given to time efficiency. In this case the best workflow

recommendation was a 287.14s, running on 10 nodes on every FB thus costing a total of 6$/h.

However when we run the algorithm with a 0.01/0.99 input ratio value, the first two pipelines

swap places in the ranking, and now the 5.60$/h workflow that takes 283.38s, is the best one,

taking just 0.24s more to execute than the 6$/h option. This also makes lots of sense when we

think about it in real life terms, paying less 0.40$/h while taking just 0.24s more to execute seems

pretty reasonable.

To sum up, in order to get the best practical results we would not recommend running the

algorithm for ratio values of 0/1 or 1/0, at least for this case scenario. Although algorithm still

works and returns exactly what you can expect.

In order to evaluate the algorithm for this run, the average precision for different values of K

were calculated Table 4.5.

The mean of all those values are in Table 4.6. MAP@K, with K taking values from 1 to 3,

60 Testing and Validation

Table 4.5: Calculation process of AP@K for test 1 results.

Ratio value
P AP@K

cost time
P@1 P@2 P@3 AP@1 AP@2 AP@3

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.01 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.10 0.90 1.00 1.00 1.00 1.00 1.00 1.00
0.20 0.80 1.00 1.00 1.00 1.00 1.00 1.00
0.30 0.70 1.00 1.00 1.00 1.00 1.00 1.00
0.40 0.60 1.00 1.00 1.00 1.00 1.00 1.00
0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00
0.60 0.40 1.00 1.00 1.00 1.00 1.00 1.00
0.70 0.30 1.00 1.00 1.00 1.00 1.00 1.00
0.80 0.20 1.00 1.00 1.00 1.00 1.00 1.00
0.90 0.10 1.00 1.00 1.00 1.00 1.00 1.00
0.99 0.01 1.00 1.00 1.00 1.00 1.00 1.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

test 1 had a good value of 0.923. However, considering that ambiguous situation, as it doesn’t

happen because of a problem with a system, then if the last case is ignored then we can consider a

MAP@K equal to 1, for every value of K.

Table 4.6: Test 1 MAP@K for different K values.

MAP@1 MAP@2 MAP@3

0.923 0.923 0.923

The second test was executed with the same samples of test 1 but using FBs weights calculated

through Local Normalization (LN). The resulting weights are shown in Table 4.7.

Comparing the weight values resulting from the LN method and comparing them with the GN

method, cost efficiency (CE) weights are actually the same. This happens because the maximum

and minimum values for each stage are the same for every other stage. The big difference is on time

efficiency (TE) values. With LN, blocks such BTO_10_Nodes, PK_10_Nodes, OPRJ_10_Nodes

all have the same TE weight value. This happens because all of them are the fastest option within

its stages, although they all have quite some difference on execution time. Another huge difference

between the results from GN, is the values of TE for the FBs with 2 nodes. While with GN only

the 2 slowest ones within the whole 24 pool were having values under 0.20. 5 out of the 6 FBs

with 2 nodes got under 0.20 of TE in the LN method.

Running the same 13 samples with these new weight values, the following results were ob-

tained. See Table 4.8.

So from this test 2 we can conclude immediately that the weight estimation using global nor-

malization worked way better than local normalization. This was already expected. Despite the

4.2 Recommendation system 61

Table 4.7: Weight values for the 24 function blocks after using the Local Normalization method.

Nodes
2 4 8 10

Stage Algorithm
CE TE CE TE CE TE CE TE

BTO 1.00 0.00 0.75 0.62 0.25 0.93 0.00 1.00
1

OPTO 1.00 0.15 0.75 0.71 0.25 0.90 0.00 0.92
BK 1.00 0.00 0.75 0.63 0.25 0.91 0.00 0.97

2
PK 1.00 0.12 0.75 0.70 0.25 0.94 0.00 1.00
BRJ 1.00 0.00 0.75 0.47 0.25 0.75 0.00 0.78

3
OPRJ 1.00 0.80 0.75 0.92 0.25 1.00 0.00 1.00

fact that LN may work in cases where there is more independence between blocks of different

categories, LN is not the best approach for this case. The most reasonable explanation for this

results is the fact that all FBs execution time have the same degree of magnitude (couple of hun-

dreds of seconds) then performance should be better when they are normalized globally between

them. In a case where different categories blocks would have significant difference on the degree

of magnitude on the execution times, for instance seconds vs hours, then LN normalization would

make more sense than in this particular case.

The same situation happened for the last sample, having returned the same exact three work-

flows in the same order. A particular result from the this table is the workflow suggested in the

third place for the first sample that had a 0 returned instead of a workflow execution time on the

colored column, but first let’s understand better what the values of the Best option chosen column

actually mean. The values on the columns of green and red are the values of execution time for

the workflow that should have been returned with the same cost as the one recommended in that

place. For instance, in sample 2, the third option was a 5.6$/h workflow with an executing time

of 306.94s. This was returned as a non-relevant result since the second best workflow for that

cost is the one with an execution time of 294.97s as it is displayed in our top-3 pipelines Table

4.2. As the best 5.6$/h pipeline had already been correctly chosen as the first pipeline, then the

next with the same cost should be the one written in that column, with 294.97s of execution time,

instead of the one returned, with 306.94s execution time. So now that the values from Best option

chosen column are explained, let’s have a look at the curious third pipeline recommended for the

first sample. The workflow is a 6$/h workflow that takes 306.7s to execute. Checking Table 4.2

once again we can conclude that this result is non-relevant for two reasons. First and easiest one

is the fact that the recommended pipeline is the third best option for the cost of 6$/h, and so since

only one pipeline of that same cost had already been correctly recommended as the best option,

then the second 6$/h pipeline to be recommended should be the 295.92s one. But why does it

have a zero instead of this value? This leads us to the second reason why it is a non-relevant case.

As also seen in the table the 2nd and 3rd fastest pipelines for the maximum cost shall never be

recommended, since there are at least 3 faster workflows with the same or less cost, as already

explained previously when explaining the meaning of the white colored values of that table. The

0 value on the results table mean that no more pipelines with that cost should be returned given

62 Testing and Validation

Table 4.8: Results for the test 2, using LN for weight estimation.

Ratio value Recommendation
1st pipeline 2nd pipeline 3rd pipeline

Best option chosen?
cost time

cost ($/h) time (s) cost ($/h) time (s) cost ($/h) time (s) Green - YES | Red - NO
0.00 1.00 6.00 287.14 5.60 287.38 6.00 306.70 287.14 287.38 0.00
0.01 0.99 5.60 287.38 6.00 287.14 5.60 306.94 287.38 287.14 294.97
0.10 0.90 5.60 287.38 4.80 303.35 6.00 287.14 287.38 303.35 287.14
0.20 0.80 4.40 337.22 4.80 303.35 4.00 345.05 311.18 303.35 333.97
0.30 0.70 4.00 345.05 3.20 368.56 3.60 367.84 333.97 357.48 334.69
0.40 0.60 2.00 542.94 2.40 520.15 2.00 583.55 542.94 451.38 553.09
0.50 0.50 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.60 0.40 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.70 0.30 1.20 955.01 1.60 602.97 1.60 894.98 955.01 602.97 619.56
0.80 0.20 1.20 955.01 1.20 1025.89 1.20 971.60 955.01 971.60 1025.89
0.90 0.10 1.20 955.01 1.20 1025.89 1.20 971.60 955.01 971.60 1025.89
0.99 0.01 1.20 955.01 1.20 1025.89 1.20 971.60 955.01 971.60 1025.89
1.00 0.00 1.20 1042.48 1.20 1025.89 1.20 955.01 955.01 971.60 1025.89

the already recommended pipelines, which keeps coherent with the with our reasoning.

Now that the results have been qualitatively analyzed, Table 4.9 shows the calculations made

for the average precision at different K values for every sample.

Table 4.9: Calculation process of AP@K for test 2 results

Ratio value
P AP@K

cost time
P@1 P@2 P@3 AP@1 AP@2 AP@3

0.00 1.00 1.00 1.00 0.67 1.00 1.00 0.67
0.01 0.99 1.00 1.00 0.67 1.00 1.00 0.67
0.10 0.90 1.00 1.00 1.00 1.00 1.00 1.00
0.20 0.80 0.00 0.50 0.33 0.00 0.25 0.17
0.30 0.70 0.00 0.00 0.00 0.00 0.00 0.00
0.40 0.60 1.00 0.50 0.33 1.00 0.50 0.33
0.50 0.50 1.00 0.50 0.33 1.00 0.50 0.33
0.60 0.40 1.00 0.50 0.33 1.00 0.50 0.33
0.70 0.30 1.00 1.00 0.67 1.00 1.00 0.67
0.80 0.20 1.00 0.50 0.33 1.00 0.50 0.33
0.90 0.10 1.00 0.50 0.33 1.00 0.50 0.33
0.99 0.01 1.00 0.50 0.33 1.00 0.50 0.33
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

From Table 4.10 we can see the values for MAP@K with different K values. It’s quite no-

ticeable that results from test 2 really aren’t really the best, with MAP@K for K=3 dropping to

0.397. Even if we don’t take in consideration the ambiguous sample of 1/0 ratio value for cost/time

efficiency input, this value goes up to only 0.431. So we can conclude that the choice of weight

values can really make a huge difference on the performance of our recommending system.

4.2 Recommendation system 63

Table 4.10: Test 2 MAP@K for different K values.

MAP@K

MAP@1 MAP@2 MAP@3

0.769 0.558 0.397

With two tests running with 13 samples some conclusions were already made about our system

performance. Weight optimization is an important key factor since tweaking those values really

make a difference on the results, and so this topic will be better addressed in the next section 4.3.

Running our system for 13 samples gave us some information on its performance but how does

the system behaves in terms of performance for more than 13 cases. To test the scalability of

the system, two more tests were run. We used a normal distribution, with mean equal to 0.5 and

standard deviation of 0.145, to generate 99 random values between 0 and 1 in order to test our

system for several different cases, using both weights from the GN and LN approaches that were

used for tests 1 and 2. Note that some values for the input ratio are repeated and so those were

removed from the results. Also, different sets of values for inputs were generated for tests 3 and 4.

So the resultant number of unique testing samples was 47 for both test 3 and test 4. In the appendix

we can find the results of both test 3 and test 4 in the Appendix A.1 and A.2, respectively.

Once again our recommending system performed very nicely for the GN weights optimization.

In a total of 141 workflows recommended, it returned only one non-optimal solution, the third

pipeline for the second sample. Part of the results table is shown in figure 4.3, it order to analyze

the one wrong case. So two 3.2$/h workflow were returned in the last two recommendations.

The first one is a correct solution but the second one was a 368.56s workflow instead of the

optimal 367.63s option. Looking once again at Table 4.2, the 368.56s is the third fastest workflow

for a cost of 3.2$/h and shouldn’t be returned before the 367.63s pipeline which is the second

best for the current cost. Although the difference of time is almost non-significant, 0.93s this

can actually be explained. In order to keep coherence between the recommending system and

the weight optimization based on genetic algorithm program, all the weights, and performance

requirements ratio values were all used with two decimal digits. This avoids getting different

score results for the exact same cases between the two frameworks. This ends up limiting the

capacity of our recommending system. In this example the 368.56s workflow is composed by the

FBs OPTO_4_Nodes, PK_8_Nodes, OPRJ_4_Nodes. The optimal solution for this case, would be

the 367.63s pipeline with the blocks BTO_4_Nodes, PK_10_Nodes, OPRJ_2_Nodes. The score

calculated by the recommending algorithm are done by doing the sum of the dot product between

the two weights of each block and the two ratio values. These two workflows had the exact same

score when rounding to two decimal digits, 2.56. So if weights and scores were all calculated using

more than two decimal digits could be the difference between having the best workflow at all times

and sometimes be recommended a non-optimal solution. This is also why when generating 100

64 Testing and Validation

different samples, around 50 of them were repeated. If we used more than two decimals digits

then much more samples could be run without repeating.

Figure 4.3: Small portion of results of test 3.

As expected for test 4, it recommended several non-relevant workflows, concluding once again

that weight estimation is very important in order to get good results. To evaluate quantitatively the

system performance on both tests, it’s presented in Table 4.11 the MAP@K for test 3 and in Table

4.12 the same metric for test 4.

Table 4.11: MAP@K evaluation for test 3.

MAP@K

MAP@1 MAP@2 MAP@3

1.000 1.000 0.993

Table 4.12: MAP@K evaluation for test 4.

MAP@K

MAP@1 MAP@2 MAP@3

0.830 0.484 0.346

Comparing the MAP@K values of tests that used the same weights we can verify that they are

pretty close. So the test 1 MAP@3 is 0.923 and with the same weights on test 3 inputs is equal to

0.993. Between test 2 and 4, that also used the same weights, the MAP@3 also has no significant

difference being 0.397 and 0.346, respectively. The values for K equal to 1 and 2 also didn’t differ

too much.

Given that, we can conclude that our system is expandable to every pair of values a user

decides to use. Therefore, it doesn’t matter which performance requirement the user gives more

importance the recommendation system will always perform equally. Also having more samples

4.3 Genetic algorithm as weights estimator 65

we conclude that for optimal weights estimation, the recommendation system gives almost perfect

results for every recommendation with the MAP@3 of 0.993.

In order to help visualizing the different approaches and how they affect the system’s perfor-

mance, the graphic in figure 4.4 shows the MAP@K comparison for the 4 different tests.

Figure 4.4: MAP@K comparison between tests 1, 2, 3, and 4.

It’s very noticeable the coherency on the values between the tests with the same weights and

different samples, showing the expandability feature. Apart from that, it is also very clear the two

tests with global normalization with way better precision than the two tests with local normaliza-

tion.

4.3 Genetic algorithm as weights estimator

In this section we introduce test results on the integration of both the genetic algorithm and

recommendation system, doing a completely different strategy on the problem interpretation. We

take some conclusions on how the genetic algorithm allows the user to estimate the weights auto-

matically.

So as concluded several times already, weights estimation is a crucial procedure to guarantee

the best results of the recommendation system. In the previous section we made this estimation

using two different approaches. Both approaches were done manually and required time. For this

case scenario it wasn’t a big deal since we are dealing with just 24 FBs. Also, the testing case

included the Table 4.1 allowed the process to be much easier and the calculations to be linear.

Several times in real-life scenarios, the user may not have such well structured and detailed infor-

mation about how well each function block performs in the two user-defined metrics. Therefore,

the weight estimation procedure may get very tricky, hard, and time-consuming to do, specially if

we speak about a way larger number of FBs.

66 Testing and Validation

Thereby, we propose to use the implemented genetic algorithm (GA) in order to perform this

task based on history logs of workflows. So if the user has available a set of workflows recommen-

dations historic based on the two defined metrics, but not the information about any function block,

then he can use the performance requirements as input to the GA and expect a set of weights to be

returned, based on the workflows used for each case. This weights will describe the performance

of the function blocks, and will be ready to be used in the recommendation system.

To test this strategy, we used some of the tests that were already done, from the previous

section, and used the results as inputs on the GA. The idea is to use the weights returned by the

GA, use them as the FBs weights on the function blocks database, and run the same scenarios once

again on the recommendation and compare if the results become similar to the ones done before.

So in first place we will use the results from test 1, shown in Table 4.4, as inputs to the GA.

First things first, we need to remember that the genetic algorithm takes as input a set of values that

represent the ratio value of cost/time efficiency, and as the target the recommended workflow. The

first property about the GA is that it estimates weight values for FBs of a specific stage at a time.

Thus, the target for each scenario is the function block chosen in that scenario, for the stage of the

blocks that are being optimized. Since we have blocks belonging to 3 different stages, the GA will

have to be run 3 times. The second note on the implemented GA is that it only takes one workflow

as the target. Since on the test 1 results for each scenario, three workflows were recommended, we

will chose the first ones as the input of our GA. This is due to the fact that GA always optimizes

the weight values according to the best possible workflow for each case, as explained previously

in chapter 3.

The first thing to do is to get the top 1 workflow for each cost/time ratio value from test 1 re-

sults. These workflows are shown in Table 4.13. It shows a set of workflows based on performance

metrics, composed by different FBs for different stages. This is the information the user needs to

run the GA in order to get the best weight optimization based on this information.

Table 4.13: Top 1 workflow composition, recommended in test 1.

Ratio value Benchmark pipeline
cost time Stage 1 FB Stage 2 FB Stage 3 FB
0.00 1.00 BTO_10_Nodes PK_10_Nodes OPRJ_10_Nodes
0.01 0.99 BTO_10_Nodes PK_10_Nodes OPRJ_8_Nodes
0.10 0.90 OPTO_4_Nodes PK_10_Nodes OPRJ_4_Nodes
0.20 0.80 OPTO_4_Nodes PK_8_Nodes OPRJ_2_Nodes
0.30 0.70 OPTO_2_Nodes PK_8_Nodes OPRJ_2_Nodes
0.40 0.60 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.50 0.50 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.60 0.40 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.70 0.30 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.80 0.20 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.90 0.10 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.99 0.01 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
1.00 0.00 BTO_2_Nodes BK_2_Nodes OPRJ_2_Nodes

4.3 Genetic algorithm as weights estimator 67

So now that we have the history log of workflows for each scenario, we use this information

to run the genetic algorithm. For each run, the number of iterations, the execution time, the

average fitness of the population, and the number of errors were analyzed. For the first run, we

estimated the weights for the FBs of stage 1. For each population a total 500 solutions were used

in each one. Each iteration will pool the 100 best solutions as parents. A mutation rate is 40%.

A maximum of 2000 generations was defined, but the algorithm breaks if the best solution fitness

value doesn’t improve for 100 generations in a row and the best solution has no more than 0 errors

compared to the target block choice. Figure 4.5 represents the evolution of the average fitness

of the population as well as the fitness value of the current best solution in the population along

the different iterations. The results on the graphic show a negative exponential tendency on the

average fitness throughout the generations. A reminder on the fact that this fitness value actually

represents an error associated to the solutions, and so it is minimized, working more as a cost

function. In this case we can tell that the algorithm found an optimal solution right after the 50th

generation, by the sharp fall on the blue line.

In figure 4.6 is represented a histogram of the distribution of the weights values along the

whole last population, separated in intervals of 0.1. We can tell that most of weights rely on values

close to 1 and 0, with a bit more density in low values close to 0.

Figure 4.5: Graphic of the average population and best solution fitness evolution through genera-
tion iterations for stage 1.

68 Testing and Validation

Figure 4.6: Histogram with the weights distribution on the last population for stage 1.

Figure 4.7 and figure 4.8 show the results for the stage 2 blocks weight training. They are

pretty similar to the stage 1 estimation., though a bit slower.

Figure 4.7: Graphic of the average population and best solution fitness evolution through genera-
tion iterations for stage 2.

4.3 Genetic algorithm as weights estimator 69

Figure 4.8: Histogram with the weights distribution on the last population for stage 2.

Last but not least, for the third and last run on the GA, blocks from stage 3 were estimated

by the GA. Once again the results shown in figures 4.9 and 4.10 show an identical look of the

previous two cases. Although it’s noticeable on the histogram there more weights between 0 and

0.1 than the usual. The average execution time for the 3 runs of the genetic algorithm was 48.24

seconds.

Figure 4.9: Graphic of the average population and best solution fitness evolution through genera-
tion iterations for stage 3.

70 Testing and Validation

Figure 4.10: Histogram with the weights distribution on the last population for stage 2.

The estimated weights for each one of the 24 function block are available at Table 4.14. Some

interesting details can be concluded from this values. If we compare this table with 4.3, which is

the set of weights used in test 1 whose results were the reference for the estimation of these new

weights, there’s a correlation of similar values on FBs that appear the most on the results from

Table 4.13. This is what we could expect, since the genetic algorithm relied on these FBs as the

reference to assign weights and if some FBs were not chosen, then the tendency might be to have

some off values since there was no reference for them in first place. So a solution for this problem

would be using more samples to estimate values in the GA.

Table 4.14: Weights generated by the GA for each block based on test 1.

Nodes

Stage Algorithm
2 4 8 10
CE TE CE TE CE TE CE TE

1
BTO 1.00 0.00 0.27 0.27 0.28 0.01 0.06 1.00
OPTO 1.00 0.87 0.62 0.99 0.03 0.31 0.27 0.33

2
BK 1.00 0.13 0.98 0.07 0.00 0.41 0.00 0.22
PK 1.00 0.24 0.73 0.76 0.38 0.97 0.15 1.00

3
BRJ 0.27 0.42 0.42 0.27 0.00 0.15 0.23 0.24
OPRJ 1.00 0.81 0.49 0.87 0.09 0.88 0.03 0.88

Having these weights, to test the performance of the GA let’s compare the results of running

this new estimated weights on the recommending system with the results of test 1, using the exact

same input values. The expected would be to have the same exact workflows for the top-1 options,

since these were the ones used as a reference, but the 2nd and 3rd options may have interesting

results as well. The results of the recommendation system are listed in Table 4.15. MAP@K is

shown in Table 4.16

From this results we can take some conclusions about the performance of the GA. As expected

the first pipelines recommended match perfectly the first pipelines from test 1 in 4.4. The second

pipelines were the exact same for the first 3 cases and the last one. In the third pipeline column we

4.3 Genetic algorithm as weights estimator 71

Table 4.15: Results for the test 5, using weights estimated by the GA.

Ratio value Recommendation
1st pipeline 2nd pipeline 3rd pipeline

Best option chosen?
cost time

cost ($/h) time (s) cost ($/h) time (s) cost ($/h) time (s) Green - YES | Red - NO
0.00 1.00 6.00 287.14 5.60 287.38 4.80 318.48 287.14 287.38 303.35
0.01 0.99 5.60 287.38 6.00 287.14 4.40 318.72 287.38 287.14 311.18
0.10 0.90 3.60 334.69 3.20 357.48 3.20 368.56 334.69 357.48 367.63
0.20 0.80 2.80 391.35 2.40 451.38 3.20 357.48 391.35 451.38 357.48
0.30 0.70 2.40 451.38 2.80 391.35 1.60 602.97 451.38 391.35 602.97
0.40 0.60 1.60 602.97 2.40 451.38 2.00 542.94 602.97 451.38 542.94
0.50 0.50 1.60 602.97 2.40 451.38 1.20 955.01 602.97 451.38 955.01
0.60 0.40 1.60 602.97 1.20 955.01 1.20 1025.89 602.97 955.01 971.60
0.70 0.30 1.20 955.01 1.20 1025.89 1.60 602.97 955.01 971.60 602.97
0.80 0.20 1.20 955.01 1.20 1025.89 1.60 643.58 955.01 971.60 602.97
0.90 0.10 1.20 955.01 1.20 1025.89 1.60 643.58 955.01 971.60 602.97
0.99 0.01 1.20 955.01 1.20 1025.89 1.20 971.60 955.01 971.60 1025.89
1.00 0.00 1.20 1042.48 1.20 1025.89 1.20 955.01 955.01 971.60 1025.89

see that only two of them matched the test 1 results. So for the first-ranked workflow it matched in

100% of the cases. The overall result, 19 out of the total 39 workflows recommendations matched

between the two tests which means a percentage of 48.72%. In terms of performance of these

weights, the evaluation metric shows us a MAP@3 of 0.632. We can then conclude that if the user

has no information on the FBs performance for defined metrics, that he would be able to set up

decent weight values in order to use on the recommendation system. The results from the GA are

quite impressive. Noting that a MAP@1 of 0.923, and it’s not 1 because of the ambiguous last

scenario, actually represents a good performance. Knowing that the GA estimates and normalizes

weights within categories, it actually does something somewhat like the LN method used in section

4.2. Looking at the performance metrics of the LN approach, Table 4.10, we got a MAP@3 of

0.397. So, even though the GA uses a bit of the theory behind the Linear Normalization method

used in the first tests to the recommending system, it performs way better. Moreover, it’s all done

automatically taking just a few minutes to estimate all the weight values.

The next step is to test the expandability of our genetic algorithm and understand how well

it behaves when it receives a larger dataset of history log data. We have concluded that due to

lack of samples, some blocks weren’t assigned with the best weight estimations by the GA. So,

to test this, we are using the top 1 recommendations of test 3 results from Table A.1 as the input

references for the GA. The workflows of each sample are shown in Table A.3.

So using these workflows as input on our GA we estimate new weights for the FBs. Comparing

the graphics in figures 4.11, 4.12, 4.13 with the ones from the previous runs of the GA, we notice

a slight difference on the number of generations that it takes for the GA to converge to an optimal

solution, unless in the case for stage 2. We also see a sharper exponential drop right in the first

generations. This means that the genetic algorithm works better when he receives larger datasets

as targets, since it converges to optimal solutions in less generations although taking more time

because of the larger number of samples.

72 Testing and Validation

Figure 4.11: Graphic of the average population and best solution fitness evolution through gener-
ation iterations for stage 1.

Figure 4.12: Graphic of the average population and best solution fitness evolution through gener-
ation iterations for stage 2.

Figure 4.13: Graphic of the average population and best solution fitness evolution through gener-
ation iterations for stage 3.

4.3 Genetic algorithm as weights estimator 73

Table 4.16: MAP@K evaluation for test 5.

MAP@K

MAP@1 MAP@2 MAP@3

0.923 0.769 0.632

From the histograms 4.14, 4.15, 4.16 we don’t notice much differences from the last examples

apart from the fact that in stages 1 and 2 optimization, values between 0 and 0.1 seem to have been

increased, which may mean that the GA now has better information on less used FBs. The average

time of execution increased to 127.24 seconds.

Figure 4.14: Histogram with the weights distribution on the last population for stage 1.

Figure 4.15: Histogram with the weights distribution on the last population for stage 2.

74 Testing and Validation

Figure 4.16: Histogram with the weights distribution on the last population for stage 3.

So new weight values were generated and are found in Table 4.17. Once again the most

chosen FBs in test 3 results for top 1 workflows are the ones whose weight values are closer to the

reference in Table 4.3. Running the recommending system with these weights for the same cases

of test 3 returns us the results on Table A.4.

Table 4.17: Weights generated by the GA for each block based on test 3.

Nodes
2 4 8 10

Stage Algorithm
CE TE CE TE CE TE CE TE

BTO 0.19 0.07 0.02 0.05 0.43 0.11 0.01 0.03
1

OPTO 1.00 0.71 0.17 1.00 0.06 0.00 0.20 0.18
BK 0.09 0.04 0.37 0.08 0.66 0.20 0.32 0.58

2
PK 1.00 0.04 0.61 0.84 0.43 0.92 0.00 1.00
BRJ 0.05 0.15 0.01 0.06 0.11 0.02 0.06 0.17

3
OPRJ 0.91 0.92 0.10 1.00 0.08 0.00 0.02 0.00

The results are actually quite good. Every recommended workflow in the first and second

pipeline is a relevant solution. For the third pipeline, only a third of the workflows are non-

relevant solutions. With this results we can confirm that the larger the history log sample the user

has access to use as input reference on the GA, the better the weights estimated by the GA are.

This makes sense since as long the GA has its hyperparameters well tuned to converge, the more

information it gathers, the better the quality of the weights assigned to each FB. Even though the

solutions recommended on the second option are not all the same as from the reference in test 3,

they still are optimal solutions. Quantitatively speaking, MAP@K for this last test is shown in

Table 4.18. Maximum MAP at cutoff points 1 and 2 were obtained and an impressive 0.887 value

for MAP@3.

To sum up this section, the problem was approached from a different perspective. Picturing

what could be a real-life situation, we found an automatized and precised way of estimating weight

4.3 Genetic algorithm as weights estimator 75

Table 4.18: MAP@K evaluation for test 6.

MAP@K

MAP@1 MAP@2 MAP@3

1.000 1.000 0.887

values for our FBs. Doing it manually is subjected to some factors such as the problem interpre-

tation from the user. In section 4.2 we showed two interpretations for the case study, following

distinctive ways of weights estimation for the same FBs using the exact same information, al-

though creating significantly different results performance wise. In order to solve that, we propose

a GA that is ready to estimate a set of values for FBs within a category based on historical logs

on workflows composed by those FBs, evaluated by the user-defined performance metrics. De-

spite the fact that the genetic algorithm itself uses a normalization process that only involves the

FBs from the same category at a time, somewhat similar to the LN method shown in the previous

section, its the results are vastly improved. And so, the genetic algorithm is a powerful tool that

should be used alongside the main recommending algorithm.

In order to help visualizing the different approaches and how they affect the system’s perfor-

mance, the graphic in figure 4.17 shows the MAP@K comparison for the 4 different tests.

Figure 4.17: MAP@K comparison between tests 2, 4, 5, and 6.

The graphic shows clearly that enriched input datasets for the genetic algorithm creates better

and more informed weights, with the increased precision values on test 6 over test 5. Comparing

with tests 2 and 4, the automatized feature of the optimizer system shows better results than when

doing it manually.

76 Testing and Validation

4.4 Genetic algorithm as weights optimizer

The final look into the two programs developed during this work has to do with weight opti-

mization in specific situations. Firstly, we decided to use the recommendation system by calcu-

lating manually the FBs weights using information given about their performance on two defined

metrics. This showed that the main recommending algorithm works pretty well, but its perfor-

mance is dependent on the quality of the weights and how well they represent the performance of

the different FBs. Knowing that we then focused on a way to automatize those weights estimation

in order to try to get higher quality values while facilitating the process, avoiding human related

errors upon that process. We proposed using the GA to generate those values, showing to be a

powerful tool to use alongside the recommending system.

In this section we will propose to use the genetic algorithm as a tool to improve recommen-

dation performance in specific situations. For instance, taking a look at the test 4 results, in Table

A.2, we know that they are poor with a MAP@K of around 0.346. And we know as well that

the explanation for those results is the fact that the approach of calculating the FBs values, LN

was poor and resulted in bad recommendations. If we face this problem as if it was a real-life

example, a user could have some troubles estimating weights, or not having enough data about

the FBs performance. So the idea is to go through the recommendations on test 4, know which

recommendations we want to have improving, and use the GA to generate new weight values in

order to do that procedure.

First of all we know that the GA optimizes weights based on the best workflows for a given

situation, therefore we will use the first pipeline recommendations from test 4 as a starting point.

First we need to know how each of the top 1 recommended workflows are composed for each

input ratio value. This information is described in Table A.5. From this list we know that from the

third to the tenth recommended workflow were not optimal solutions, thereby we want to work on

those.

The idea is to use these results, modify them on the non-optimal recommendations for the

workflows we want, a use it in the GA to have better weight values. To calculate best workflow for

each of the costs of those non-optimal recommendations we will resort once again to table 4.2. So

for a 4.4$/h cost the best workflow has an execution time of 311.18s. For 4$/h the best option has

a running time of 333.97s. Finally the 3.2$/h cost has the fastest workflow at 357.48$/h. Using the

Simplex method explained previously and calculating which blocks will return us this workflows,

Table A.5 has been updated with the new desired solutions. The updated version is in Table A.6.

Note on the changes in referred cases.

So using the information on this table as inputs for the GA will return us new weight values.

The GA allows us to add to the initial population an initial solution. Since we know the weights

being used for the results in test 4, which are bad quality weights, we may use them as a way of

perhaps help the GA to converge faster to an optimal solution. We will run on both conditions,

with and without an initial user solution in order to compare the GA performance.

For the first stage optimization the GA struggled to find an optimal solution, thereby we ran

4.4 Genetic algorithm as weights optimizer 77

the code once again with an initial good solution concluding that as a matter of fact, the GA turned

into better solutions in shorter time. Figures 4.18 and 4.19 show the graphical differences on these

two optimizing runs. As we can see from the blue line, the best fitness is way lower right from the

beginning. In terms of fitness average, no significant differences were noted.

Figure 4.18: Graphic of the average population and best solution fitness evolution through gener-
ation iterations for stage 1, without initial solution.

Figure 4.19: Graphic of the average population and best solution fitness evolution through gener-
ation iterations for stage 1, with initial solution.

In terms of weight distribution for the last population, we can compare the figures 4.20 and

4.21. The second case shows a significant denser area on the weights between 0 and 0.1, while the

first case has bit more homogeneous distribution for the weights.

78 Testing and Validation

Figure 4.20: Histogram for the weights distribution on the last population for stage 1, with no
initial solution.

Figure 4.21: Histogram for the weights distribution on the last population for stage 1, with initial
solution.

4.4 Genetic algorithm as weights optimizer 79

In the second stage of training, both approaches found it easier to calculate a good optimal

solution, although an interesting note on the fact that the algorithm with no initial solution actually

converged faster, around 78 seconds. This seems to be an outlier, with the first case reaching good

solutions faster than expected. Also a sharper drop in the first case average population fitness is

notable in the first couple of generations. These graphical differences are shown in figures 4.22

and 4.23.

Figure 4.22: Graphic of the average population and best solution fitness evolution through gener-
ation iterations for stage 2, without initial solution.

Figure 4.23: Graphic of the average population and best solution fitness evolution through gener-
ation iterations for stage 2, with initial solution.

The look on the weight distribution for the last population on both cases, we take a look at

figures 4.24 and 4.25. No significant differences are seen. Plus, in both runs a lot of weights were

between the 0.1 and 0.3 mark.

80 Testing and Validation

Figure 4.24: Histogram for the weights distribution on the last population for stage 2, with no
initial solution.

Figure 4.25: Histogram for the weights distribution on the last population for stage 2, with initial
solution.

4.4 Genetic algorithm as weights optimizer 81

For the third and last stage of optimization, once again both approaches performed well to

find an optimal solution. Giving it an initial solution made it almost 3 minutes faster, which is

an incredible achievement. Figures 4.26 and 4.27 have the average fitness evolution of the two

approaches. As seen, optimal solutions were found almots in a third of generations on the second

case.

Figure 4.26: Graphic of the average population and best solution fitness evolution through gener-
ation iterations for stage 3, without initial solution.

Figure 4.27: Graphic of the average population and best solution fitness evolution through gener-
ation iterations for stage 3, with initial solution.

As a matter of weight distribution in the last population, figures 4.28 and 4.29, shows some

differences on the behaviour of the last population for the different cases. The second case has a

better distribution between all the weights, opposing to the much more concentrated on low-value

weights on the first case.

82 Testing and Validation

Figure 4.28: Histogram for the weights distribution on the last population for stage 3, with no
initial solution.

Figure 4.29: Histogram for the weights distribution on the last population for stage 3, with initial
solution.

4.4 Genetic algorithm as weights optimizer 83

Summing up all the analysis on the two approaches on the GA, we concluded that most of

the times introducing an already good but non-optimal solution, helps the algorithm to converge

faster. The average time for the GA to find good weights was 284.45 seconds when no solution is

given to the system and 257.16 seconds when it is given. This average should tend to increase with

more testing, since for this case, we had an outlier result on stage two training. For this reason,

we used the weights generated on runs where solutions were introduced into the initial population

since they were, on average, faster.

These final weights are shown in Table 4.19.

Table 4.19: Weights generated by the GA when good solutions are introduced in the initial popu-
lation. Reference values used are from test 4.

Nodes

Stage Algorithm
2 4 8 10
CE TE CE TE CE TE CE TE

1
BTO 1.00 0.00 0.75 0.62 0.25 0.93 0.00 1.00
OPTO 1.00 0.15 0.75 0.71 0.25 0.90 0.00 0.92

2
BK 0.32 0.07 0.13 0.04 0.00 0.63 0.46 0.13
PK 1.00 0.23 0.80 0.69 0.04 0.01 0.19 1.00

3
BRJ 0.00 0.43 0.14 0.45 0.08 0.13 0.52 0.07
OPRJ 1.00 0.83 0.39 0.99 0.09 1.00 0.27 0.03

To check if this strategy worked, these weights were used on the recommending system using

the same input values as in test 4. The results are shown in Table A.7. These results show that

there was a major improvement on the weights.

So by comparing the test 7 and test 4 results, in Table A.2, we may conclude that using the GA

as a weight optimizer for certain case scenarios retrieves incredibly improved results. MAP@K

values for test 7 are in Table 4.20, and we can immediately notice that the performance increased

amazingly, with MAP@K having values of 0.979, 0.941, and 0.746 for cutoff points of K=1,2

and 3. So not only it increased the precision on the first recommended workflows for almost

100% of the cases, but the second and third pipelines recommended also had pretty amazing

results. MAP@2 almost doubled compared to test 4, Table 4.12, while MAP@3 got an astonishing

improvement for more than double.

Table 4.20: MAP@K evaluation for test 7.

MAP@K

MAP@1 MAP@2 MAP@3

0.979 0.941 0.746

Therefore, even though we used optimal solutions just from the top 1 recommended workflows

as reference to the GA, the overall precision of top 2 and top 3 recommendations improved as well.

84 Testing and Validation

In short, using the GA as a weight optimizer works very well. We used the logs of recommen-

dations that used bad quality weight values, thus returning poor performance, in order to improve

those weights for better ones, by using just the top 1 workflow recommendations and changing

them to optimal workflows, as the input reference of our genetic algorithm. Also, explained two

ways of using the GA, one using the test 4 weights as good initial solutions, since they had around

87% of the recommendations on top 1 workflows correctly, in order to help the GA to converge

better and faster, and the other one just using the input references and let the algorithm itself try

to find a solution. Once again the genetic algorithm proved to be a very strong tool to be used

alongside our recommending system so as to not only estimate weight values automatically, but

also as a weight optimizer tool.

Down below in figure 4.30 we can finally visualize better the increased performance when

using the genetic algorithm to optimize a set of weights.

Figure 4.30: MAP@K comparison between tests 4 and 7.

Chapter 5

Conclusions and Future Work

Taking a look back on the main objective for this dissertation, in section 1.4, three main points

were addressed: the importance of understanding the different requirements that define a workflow

as a pipeline, the implementation of an adaptive recommending system that is able to calculate the

best workflow and recommend it to the user, and knowing the best way to assess the system

performance.

The tests performed in the previous chapter evaluated the proposed work in several manners.

Both implemented systems were evaluated on their performance and efficiency, scalability, and

capacity of working together. In order to calculate the system performance, the metric MAP@K

was used, meeting then the third objective of the work.

A few tests were done on the main recommending system, in order to check how well it

performs for different weights values. Then the performance with an expanded range of scenarios

to check whether or not that performance would be untouchable. The following tests were made

on the capacity of merging the two systems. Firstly we tested the weights estimation using the

genetic algorithm so the user wouldn’t need to rely solely on interpretation of a study case, and

also avoiding calculating values manually. This estimation was done based on a set of history

logs of workflows for different case scenarios of cost and time efficiency. The last couple of

tests were about weight optimization using the genetic algorithm and some case scenarios where

the recommendation system didn’t return such precise results. All the results showed that the

proposed work performs really well in different occasions and gives user the chance of using it in

any situation involving workflow specification.

All the tests made in the previous chapter were based on the testing case using a dataset from

a paper. The tests made could still be run on different datasets and case scenarios in order to have

a better overview on the expandability of the proposed work.

Concerning the weight estimation/optimization, the genetic algorithm was not the first option

to be thought. Since the time it may take to optimize weights in cases where there are a larger

number of function blocks and/or specific requirements, execution time might be the bottleneck of

the system. Deep learning techniques may be more efficient solutions. Using neural networks that

use methods such as backpropagation to train weights could be used as an optimization method in

85

86 Conclusions and Future Work

the place of the genetic algorithm.

It was tried to implement a neural network in order to use the known backpropagation method

to train the weights into giving better solutions. It had several problems of convergence to optimal

solutions. A simpler genetic algorithm was implemented. Since it was retrieving good results,

easier implementation and also expandability, it was chosen to be perfected as most as possible.

So the results were overall very positive, with a complete system used for workflow definition

purposes, with the possibility of being applied in the most varied situations. Most of the cases

studied during literature review shown in state-of-art worked their ways towards specific situations,

specific workflows, and specific requirements. So creating the most general possible solution in

order to be used in any situation was the priority of this work.

This way we may conclude the system does meet the first two objectives pointed out for this

dissertation as the system showed to be adaptive for different scenarios, performed really well

when recommending workflows, always with very good values for the best workflow recommen-

dation, which was the main goal for the work, while meeting all the requirements given by the

user, which was the first objective addressed.

As for future work, using the already talked strategy of using deep learning methods in order to

estimate weights for function blocks based on history logs. Deep learning could improve efficiency

of the weight optimization. On the other hand some tweaks could be made as well on the genetic

algorithm. For instance, the current system is a bit limited in terms of working just for blocks of

a specific requirement at a time. Another limiting property of the system is the fact that for each

case of cost/time it uses only the best workflow recommendation as a reference for optimizing

purposes. Making it more flexible in this measure would very likely produce much better results.

In terms of the recommending system, the first thing to be noticed would be the fact that it

works only for two performance metrics. Although the implemented priority feature between two

requirements of preference is very useful, the system could be more expandable on this direction.

Some exploitation could be done as well on the scoring techniques. Even though this method

showed very positive and hard to find results with the dot product calculation, some other methods

could be explored in order to try to get higher performance.

Last but not least, some automatization could be done on the process of data exchange between

the two systems. The proposed implementation has a separated structure of the two presented

systems, although with some auto features such as the datasets generated by the recommendation

system ready to be used by the weight optimization system.

Appendix A

Appendix

87

88 Appendix

Table A.1: Results for the test 3, using GN for weight estimation.

Ratio value Recommendation
1st pipeline 2nd pipeline 3rd pipeline

Best option chosen?
cost time

cost ($/h) time (s) cost ($/h) time (s) cost ($/h) time (s) Green - YES | Red - NO
0.08 0.92 3.60 334.69 4.40 311.18 4.40 314.15 334.69 311.18 314.15
0.17 0.83 2.80 391.35 3.20 357.48 3.20 368.56 391.35 357.48 367.63
0.25 0.75 2.80 391.35 2.40 451.38 2.80 401.50 391.35 451.38 401.50
0.26 0.74 2.80 391.35 2.40 451.38 2.80 401.50 391.35 451.38 401.50
0.28 0.72 2.40 451.38 2.80 391.35 2.40 467.97 451.38 391.35 467.97
0.31 0.69 1.60 602.97 2.40 451.38 1.60 619.56 602.97 451.38 619.56
0.33 0.67 1.60 602.97 1.60 619.56 2.40 451.38 602.97 619.56 451.38
0.34 0.66 1.60 602.97 1.60 619.56 2.40 451.38 602.97 619.56 451.38
0.35 0.65 1.60 602.97 1.60 619.56 2.00 542.94 602.97 619.56 542.94
0.36 0.64 1.60 602.97 1.60 619.56 2.00 542.94 602.97 619.56 542.94
0.38 0.62 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.39 0.61 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.40 0.60 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.41 0.59 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.42 0.58 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.43 0.57 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.44 0.56 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.46 0.54 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.47 0.53 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.48 0.52 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.49 0.51 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.50 0.50 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.51 0.49 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.52 0.48 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.53 0.47 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.54 0.46 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.55 0.45 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.56 0.44 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.57 0.43 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.58 0.42 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.59 0.41 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.60 0.40 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.61 0.39 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.62 0.38 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.63 0.37 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.64 0.36 1.60 602.97 1.60 619.56 1.60 643.58 602.97 619.56 643.58
0.65 0.35 1.60 602.97 1.60 619.56 1.20 955.01 602.97 619.56 955.01
0.66 0.34 1.60 602.97 1.60 619.56 1.20 955.01 602.97 619.56 955.01
0.67 0.33 1.60 602.97 1.20 955.01 1.60 619.56 602.97 955.01 619.56
0.68 0.32 1.20 955.01 1.20 971.60 1.60 602.97 955.01 971.60 602.97
0.70 0.30 1.20 955.01 1.20 971.60 1.60 602.97 955.01 971.60 602.97
0.75 0.25 1.20 955.01 1.20 971.60 1.20 1025.89 955.01 971.60 1025.89
0.76 0.24 1.20 955.01 1.20 971.60 1.20 1025.89 955.01 971.60 1025.89
0.78 0.22 1.20 955.01 1.20 971.60 1.20 1025.89 955.01 971.60 1025.89
0.79 0.21 1.20 955.01 1.20 971.60 1.20 1025.89 955.01 971.60 1025.89
0.80 0.20 1.20 955.01 1.20 971.60 1.20 1025.89 955.01 971.60 1025.89
0.86 0.14 1.20 955.01 1.20 971.60 1.20 1025.89 955.01 971.60 1025.89

Appendix 89

Table A.2: Results for the test 4, using LN for weight estimation.

Ratio value Recommendation
1st pipeline 2nd pipeline 3rd pipeline

Best option chosen?
cost time

cost ($/h) time (s) cost ($/h) time (s) cost ($/h) time (s) Green - YES | Red - NO
0.03 0.97 5.60 287.38 6.00 287.14 5.60 306.94 287.38 287.14 294.97
0.16 0.84 4.80 303.35 4.40 337.22 5.60 287.38 303.35 311.18 287.38
0.21 0.79 4.40 337.22 4.00 345.05 4.80 303.35 311.18 333.97 303.35
0.23 0.77 4.00 345.05 4.40 337.22 4.40 311.18 333.97 311.18 314.15
0.26 0.74 4.00 345.05 4.40 337.22 4.40 311.18 333.97 311.18 314.15
0.27 0.73 4.00 345.05 4.40 337.22 3.60 367.84 333.97 311.18 334.69
0.29 0.71 4.00 345.05 3.20 368.56 3.60 367.84 333.97 357.48 334.69
0.30 0.70 4.00 345.05 3.20 368.56 3.60 367.84 333.97 357.48 334.69
0.31 0.69 3.20 368.56 4.00 345.05 2.80 391.35 357.48 333.97 391.35
0.32 0.68 3.20 368.56 2.80 391.35 2.40 520.15 357.48 391.35 451.38
0.35 0.65 2.00 542.94 2.40 520.15 2.80 391.35 542.94 451.38 391.35
0.36 0.64 2.00 542.94 2.40 520.15 2.80 391.35 542.94 451.38 391.35
0.38 0.62 2.00 542.94 2.40 520.15 2.80 391.35 542.94 451.38 391.35
0.39 0.61 2.00 542.94 2.40 520.15 2.00 583.55 542.94 451.38 553.09
0.40 0.60 2.00 542.94 2.40 520.15 2.00 583.55 542.94 451.38 553.09
0.41 0.59 2.00 542.94 2.40 520.15 2.00 583.55 542.94 451.38 553.09
0.42 0.58 2.00 542.94 2.40 520.15 2.00 583.55 542.94 451.38 553.09
0.43 0.57 2.00 542.94 2.40 520.15 2.00 583.55 542.94 451.38 553.09
0.44 0.56 2.00 542.94 2.00 583.55 2.40 520.15 542.94 553.09 451.38
0.45 0.55 2.00 542.94 2.00 583.55 2.40 520.15 542.94 553.09 451.38
0.47 0.53 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.48 0.52 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.49 0.51 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.50 0.50 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.51 0.49 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.52 0.48 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.53 0.47 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.54 0.46 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.55 0.45 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.56 0.44 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.57 0.43 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.58 0.42 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.59 0.41 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.60 0.40 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.61 0.39 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.62 0.38 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.63 0.37 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.64 0.36 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.65 0.35 2.00 542.94 2.00 583.55 2.00 553.09 542.94 553.09 580.18
0.68 0.32 2.00 542.94 1.60 602.97 1.60 894.98 542.94 602.97 619.56
0.69 0.31 2.00 542.94 1.60 602.97 1.60 894.98 542.94 602.97 619.56
0.70 0.30 1.20 955.01 1.60 602.97 1.60 894.98 955.01 602.97 619.56
0.72 0.28 1.20 955.01 1.60 602.97 1.60 894.98 955.01 602.97 619.56
0.73 0.27 1.20 955.01 1.60 602.97 1.60 894.98 955.01 602.97 619.56
0.76 0.24 1.20 955.01 1.20 1025.89 1.20 971.60 955.01 971.60 1025.89
0.77 0.23 1.20 955.01 1.20 1025.89 1.20 971.60 955.01 971.60 1025.89
0.80 0.20 1.20 955.01 1.20 1025.89 1.20 971.60 955.01 971.60 1025.89

90 Appendix

Table A.3: Top 1 workflow composition, recommended in test 3.

Ratio value benchmark pipeline
cost time stage 1 stage 2 stage 3
0.08 0.92 OPTO_4_Nodes PK_10_Nodes OPRJ_4_Nodes
0.17 0.83 OPTO_4_Nodes PK_8_Nodes OPRJ_2_Nodes
0.25 0.75 OPTO_4_Nodes PK_8_Nodes OPRJ_2_Nodes
0.26 0.74 OPTO_4_Nodes PK_8_Nodes OPRJ_2_Nodes
0.28 0.72 OPTO_2_Nodes PK_8_Nodes OPRJ_2_Nodes
0.31 0.69 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.33 0.67 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.34 0.66 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.35 0.65 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.36 0.64 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.38 0.62 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.39 0.61 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.40 0.60 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.41 0.59 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.42 0.58 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.43 0.57 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.44 0.56 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.46 0.54 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.47 0.53 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.48 0.52 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.49 0.51 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.50 0.50 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.51 0.49 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.52 0.48 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.53 0.47 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.54 0.46 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.55 0.45 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.56 0.44 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.57 0.43 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.58 0.42 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.59 0.41 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.60 0.40 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.61 0.39 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.62 0.38 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.63 0.37 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.64 0.36 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.65 0.35 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.66 0.34 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.67 0.33 OPTO_2_Nodes PK_4_Nodes OPRJ_2_Nodes
0.68 0.32 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.70 0.30 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.75 0.25 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.76 0.24 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.78 0.22 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.79 0.21 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.80 0.20 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.86 0.14 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes

Appendix 91

Table A.4: Results for the test 6, using weights estimated by the GA.

Ratio value Recommendation
1st pipeline 2nd pipeline 3rd pipeline

Best option chosen?
cost time

cost ($/h) time (s) cost ($/h) time (s) cost ($/h) time (s) Green - YES | Red - NO
0.08 0.92 3.60 334.69 3.20 357.48 3.20 368.56 334.69 357.48 367.63
0.17 0.83 2.80 391.35 3.20 357.48 2.00 542.94 391.35 357.48 542.94
0.25 0.75 2.80 391.35 2.40 451.38 2.00 542.94 391.35 451.38 542.94
0.26 0.74 2.40 451.38 2.80 391.35 1.60 602.97 451.38 391.35 602.97
0.28 0.72 2.40 451.38 1.60 602.97 2.80 391.35 451.38 602.97 391.35
0.31 0.69 1.60 602.97 2.40 451.38 2.00 542.94 602.97 451.38 542.94
0.33 0.67 1.60 602.97 2.40 451.38 2.00 542.94 602.97 451.38 542.94
0.34 0.66 1.60 602.97 2.40 451.38 2.00 542.94 602.97 451.38 542.94
0.35 0.65 1.60 602.97 2.40 451.38 2.00 542.94 602.97 451.38 542.94
0.36 0.64 1.60 602.97 2.40 451.38 2.00 542.94 602.97 451.38 542.94
0.38 0.62 1.60 602.97 2.40 451.38 2.80 417.51 602.97 451.38 391.35
0.39 0.61 1.60 602.97 2.40 451.38 2.80 417.51 602.97 451.38 391.35
0.40 0.60 1.60 602.97 2.40 451.38 2.80 417.51 602.97 451.38 391.35
0.41 0.59 1.60 602.97 2.40 451.38 2.80 417.51 602.97 451.38 391.35
0.42 0.58 1.60 602.97 2.40 451.38 2.80 417.51 602.97 451.38 391.35
0.43 0.57 1.60 602.97 2.40 451.38 2.80 417.51 602.97 451.38 391.35
0.44 0.56 1.60 602.97 2.40 451.38 2.80 417.51 602.97 451.38 391.35
0.46 0.54 1.60 602.97 2.40 451.38 2.80 417.51 602.97 451.38 391.35
0.47 0.53 1.60 602.97 2.40 451.38 2.80 417.51 602.97 451.38 391.35
0.48 0.52 1.60 602.97 2.40 451.38 2.80 417.51 602.97 451.38 391.35
0.49 0.51 1.60 602.97 2.40 451.38 1.20 955.01 602.97 451.38 955.01
0.50 0.50 1.60 602.97 2.40 451.38 1.20 955.01 602.97 451.38 955.01
0.51 0.49 1.60 602.97 2.40 451.38 1.20 955.01 602.97 451.38 955.01
0.52 0.48 1.60 602.97 2.40 451.38 1.20 955.01 602.97 451.38 955.01
0.53 0.47 1.60 602.97 2.40 451.38 1.20 955.01 602.97 451.38 955.01
0.54 0.46 1.60 602.97 2.40 451.38 1.20 955.01 602.97 451.38 955.01
0.55 0.45 1.60 602.97 2.40 451.38 1.20 955.01 602.97 451.38 955.01
0.56 0.44 1.60 602.97 2.40 451.38 1.20 955.01 602.97 451.38 955.01
0.57 0.43 1.60 602.97 2.40 451.38 1.20 955.01 602.97 451.38 955.01
0.58 0.42 1.60 602.97 2.40 451.38 1.20 955.01 602.97 451.38 955.01
0.59 0.41 1.60 602.97 2.40 451.38 1.20 955.01 602.97 451.38 955.01
0.60 0.40 1.60 602.97 2.40 451.38 1.20 955.01 602.97 451.38 955.01
0.61 0.39 1.60 602.97 1.20 955.01 2.40 451.38 602.97 955.01 451.38
0.62 0.38 1.60 602.97 1.20 955.01 2.40 451.38 602.97 955.01 451.38
0.63 0.37 1.60 602.97 1.20 955.01 2.40 451.38 602.97 955.01 451.38
0.64 0.36 1.60 602.97 1.20 955.01 2.40 451.38 602.97 955.01 451.38
0.65 0.35 1.60 602.97 1.20 955.01 2.40 451.38 602.97 955.01 451.38
0.66 0.34 1.60 602.97 1.20 955.01 2.40 451.38 602.97 955.01 451.38
0.67 0.33 1.60 602.97 1.20 955.01 2.40 451.38 602.97 955.01 451.38
0.68 0.32 1.20 955.01 1.60 602.97 2.40 451.38 955.01 602.97 451.38
0.70 0.30 1.20 955.01 1.60 602.97 2.40 451.38 955.01 602.97 451.38
0.75 0.25 1.20 955.01 1.60 602.97 2.40 451.38 955.01 602.97 451.38
0.76 0.24 1.20 955.01 1.60 602.97 2.40 471.20 955.01 602.97 451.38
0.78 0.22 1.20 955.01 1.60 602.97 2.40 471.20 955.01 602.97 451.38
0.79 0.21 1.20 955.01 1.60 602.97 2.40 471.20 955.01 602.97 451.38
0.80 0.20 1.20 955.01 1.60 602.97 2.40 471.20 955.01 602.97 451.38
0.86 0.14 1.20 955.01 1.60 602.97 2.40 471.20 955.01 602.97 451.38

92 Appendix

Table A.5: Top 1 workflow composition, recommended in test 4.

Ratio value benchmark pipeline
cost time stage 1 stage 2 stage 3
0.03 0.97 BTO_10_Nodes PK_10_Nodes OPRJ_8_Nodes
0.16 0.84 BTO_10_Nodes PK_10_Nodes OPRJ_4_Nodes
0.21 0.79 BTO_10_Nodes PK_8_Nodes OPRJ_4_Nodes
0.23 0.77 BTO_8_Nodes PK_8_Nodes OPRJ_4_Nodes
0.26 0.74 BTO_8_Nodes PK_8_Nodes OPRJ_4_Nodes
0.27 0.73 BTO_8_Nodes PK_8_Nodes OPRJ_4_Nodes
0.29 0.71 BTO_8_Nodes PK_8_Nodes OPRJ_4_Nodes
0.30 0.70 BTO_8_Nodes PK_8_Nodes OPRJ_4_Nodes
0.31 0.69 OPTO_4_Nodes PK_8_Nodes OPRJ_4_Nodes
0.32 0.68 OPTO_4_Nodes PK_8_Nodes OPRJ_4_Nodes
0.35 0.65 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.36 0.64 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.38 0.62 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.39 0.61 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.40 0.60 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.41 0.59 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.42 0.58 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.43 0.57 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.44 0.56 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.45 0.55 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.47 0.53 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.48 0.52 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.49 0.51 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.50 0.50 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.51 0.49 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.52 0.48 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.53 0.47 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.54 0.46 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.55 0.45 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.56 0.44 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.57 0.43 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.58 0.42 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.59 0.41 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.60 0.40 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.61 0.39 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.62 0.38 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.63 0.37 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.64 0.36 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.65 0.35 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.68 0.32 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.69 0.31 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.70 0.30 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.72 0.28 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.73 0.27 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.76 0.24 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.77 0.23 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.80 0.20 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes

Appendix 93

Table A.6: Modified list from top 1 workflows of test 4, with optimal solutions.

Ratio value benchmark pipeline
cost time stage 1 stage 2 stage 3
0.03 0.97 BTO_10_Nodes PK_10_Nodes OPRJ_8_Nodes
0.16 0.84 BTO_10_Nodes PK_10_Nodes OPRJ_4_Nodes
0.21 0.79 BTO_8_Nodes PK_10_Nodes OPRJ_4_Nodes
0.23 0.77 BTO_8_Nodes PK_10_Nodes OPRJ_2_Nodes
0.26 0.74 BTO_8_Nodes PK_10_Nodes OPRJ_2_Nodes
0.27 0.73 BTO_8_Nodes PK_10_Nodes OPRJ_2_Nodes
0.29 0.71 BTO_8_Nodes PK_10_Nodes OPRJ_2_Nodes
0.30 0.70 BTO_8_Nodes PK_10_Nodes OPRJ_2_Nodes
0.31 0.69 BTO_8_Nodes PK_10_Nodes OPRJ_2_Nodes
0.32 0.68 BTO_8_Nodes PK_10_Nodes OPRJ_2_Nodes
0.35 0.65 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.36 0.64 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.38 0.62 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.39 0.61 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.40 0.60 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.41 0.59 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.42 0.58 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.43 0.57 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.44 0.56 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.45 0.55 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.47 0.53 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.48 0.52 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.49 0.51 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.50 0.50 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.51 0.49 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.52 0.48 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.53 0.47 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.54 0.46 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.55 0.45 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.56 0.44 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.57 0.43 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.58 0.42 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.59 0.41 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.60 0.40 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.61 0.39 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.62 0.38 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.63 0.37 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.64 0.36 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.65 0.35 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.68 0.32 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.69 0.31 OPTO_4_Nodes PK_4_Nodes OPRJ_2_Nodes
0.70 0.30 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.72 0.28 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.73 0.27 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.76 0.24 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.77 0.23 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes
0.80 0.20 OPTO_2_Nodes PK_2_Nodes OPRJ_2_Nodes

94 Appendix

Table A.7: Results for the test 7, using GA for weight optimization.

Ratio value Recommendation
1st pipeline 2nd pipeline 3rd pipeline

Best option chosen?
cost time

cost ($/h) time (s) cost ($/h) time (s) cost ($/h) time (s) Green - YES | Red - NO
0.03 0.97 5.60 287.38 4.80 303.35 5.20 295.21 287.38 303.35 295.21
0.16 0.84 4.80 303.35 4.40 311.18 4.40 326.14 303.35 311.18 314.15
0.21 0.79 4.40 326.14 4.80 303.35 4.00 333.97 311.18 303.35 333.97
0.23 0.77 4.00 333.97 4.40 326.14 4.40 311.18 333.97 311.18 314.15
0.26 0.74 4.00 333.97 4.40 326.14 4.00 336.94 333.97 311.18 336.94
0.27 0.73 4.00 333.97 4.40 326.14 4.00 336.94 333.97 311.18 336.94
0.29 0.71 4.00 333.97 3.20 357.48 4.00 336.94 333.97 357.48 336.94
0.30 0.70 4.00 333.97 3.20 357.48 4.00 336.94 333.97 357.48 336.94
0.31 0.69 3.20 357.48 4.00 333.97 4.00 336.94 357.48 333.97 336.94
0.32 0.68 3.20 357.48 4.00 333.97 2.00 542.94 357.48 333.97 542.94
0.35 0.65 2.00 542.94 3.20 357.48 2.80 519.43 542.94 357.48 391.35
0.36 0.64 2.00 542.94 3.20 357.48 2.80 519.43 542.94 357.48 391.35
0.38 0.62 2.00 542.94 3.20 357.48 2.80 519.43 542.94 357.48 391.35
0.39 0.61 2.00 542.94 3.20 357.48 2.00 553.09 542.94 357.48 553.09
0.40 0.60 2.00 542.94 2.00 553.09 3.20 357.48 542.94 553.09 357.48
0.41 0.59 2.00 542.94 2.00 553.09 3.20 357.48 542.94 553.09 357.48
0.42 0.58 2.00 542.94 2.00 553.09 3.20 357.48 542.94 553.09 357.48
0.43 0.57 2.00 542.94 2.00 553.09 3.20 357.48 542.94 553.09 357.48
0.44 0.56 2.00 542.94 2.00 553.09 3.20 357.48 542.94 553.09 357.48
0.45 0.55 2.00 542.94 2.00 553.09 2.80 519.43 542.94 553.09 391.35
0.47 0.53 2.00 542.94 2.00 553.09 2.80 519.43 542.94 553.09 391.35
0.48 0.52 2.00 542.94 2.00 553.09 2.80 519.43 542.94 553.09 391.35
0.49 0.51 2.00 542.94 2.00 553.09 2.80 519.43 542.94 553.09 391.35
0.50 0.50 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.51 0.49 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.52 0.48 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.53 0.47 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.54 0.46 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.55 0.45 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.56 0.44 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.57 0.43 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.58 0.42 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.59 0.41 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.60 0.40 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.61 0.39 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.62 0.38 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.63 0.37 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.64 0.36 2.00 542.94 2.00 553.09 1.60 894.98 542.94 553.09 602.97
0.65 0.35 2.00 542.94 1.60 894.98 2.00 553.09 542.94 602.97 553.09
0.68 0.32 2.00 542.94 1.60 602.97 1.60 894.98 542.94 602.97 619.56
0.69 0.31 2.00 542.94 1.60 602.97 1.60 894.98 542.94 602.97 619.56
0.70 0.30 1.20 955.01 1.60 602.97 1.60 894.98 955.01 602.97 619.56
0.72 0.28 1.20 955.01 1.60 602.97 1.60 894.98 955.01 602.97 619.56
0.73 0.27 1.20 955.01 1.60 602.97 1.60 894.98 955.01 602.97 619.56
0.76 0.24 1.20 955.01 1.20 971.60 1.60 602.97 955.01 971.60 602.97
0.77 0.23 1.20 955.01 1.20 971.60 1.60 602.97 955.01 971.60 602.97
0.80 0.20 1.20 955.01 1.20 971.60 1.60 602.97 955.01 971.60 602.97

References

[1] Eliseu Pereira, João Reis, and Gil Gonçalves. DINASORE: A dynamic intelligent reconfig-
uration tool for cyber-physical production systems. Eclipse SAM IoT, 2739:63–71, 2020.

[2] Rajiv Ranjan, Lydia Y Chen, Prem Prakash Jayaraman, and Albert Y Zomaya. A note on
advances in scheduling algorithms for cyber-physical-social workflows, 2020.

[3] Ruben Sipos, Dmitriy Fradkin, Fabian Moerchen, and Zhuang Wang. Log-based predic-
tive maintenance. In Proceedings of the 20th ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1867–1876, 2014.

[4] Dmitri Panfilenko, Peter Poller, Daniel Sonntag, Sonja Zillner, and Martin Schneider. BPMN
for knowledge acquisition and anomaly handling in CPS for smart factories. In 2016 IEEE
21st International Conference on Emerging Technologies and Factory Automation (ETFA),
pages 1–4. IEEE, 2016.

[5] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for conducting sys-
tematic mapping studies in software engineering: An update. Information and Software
Technology, 64:1–18, 2015.

[6] Fei Tao, Qinglin Qi, Lihui Wang, and AYC Nee. Digital twins and cyber–physical systems
toward smart manufacturing and industry 4.0: Correlation and comparison. Engineering,
5(4):653–661, 2019.

[7] Shiyong Wang, Jiafu Wan, Daqiang Zhang, Di Li, and Chunhua Zhang. Towards smart
factory for industry 4.0: a self-organized multi-agent system with big data based feedback
and coordination. Computer networks, 101:158–168, 2016.

[8] Ioan Dumitrache, Simona Iuliana Caramihai, Ioan Stefan Sacala, Mihnea Alexandru Moi-
sescu, and Dragos Constantin Popescu. Future enterprise as an intelligent cyber-physical
system. IFAC-PapersOnLine, 53(2):10873–10878, 2020.

[9] Zhijiao Xiao and Zhong Ming. A method of workflow scheduling based on colored petri
nets. Data & Knowledge Engineering, 70(2):230–247, 2011.

[10] Jianwu Wang, Prakashan Korambath, Ilkay Altintas, Jim Davis, and Daniel Crawl. Workflow
as a service in the cloud: architecture and scheduling algorithms. Procedia computer science,
29:546–556, 2014.

[11] Marek Wieczorek, Radu Prodan, and Thomas Fahringer. Scheduling of scientific workflows
in the askalon grid environment. Acm Sigmod Record, 34(3):56–62, 2005.

[12] Ahmed Ismail, Hong-Linh Truong, and Wolfgang Kastner. Manufacturing process data anal-
ysis pipelines: a requirements analysis and survey. Journal of Big Data, 6(1):1–26, 2019.

95

96 REFERENCES

[13] Gonzalo De La Torre, Paul Rad, and Kim-Kwang Raymond Choo. Driverless vehicle secu-
rity: Challenges and future research opportunities. Future Generation Computer Systems,
108:1092–1111, 2020.

[14] Jian Shen, Chen Wang, Anxi Wang, Qi Liu, and Yang Xiang. Moving centroid based rout-
ing protocol for incompletely predictable cyber devices in cyber-physical-social distributed
systems. Future Generation Computer Systems, 108:1129–1139, 2020.

[15] Yiping Wen, Jianxun Liu, Wanchun Dou, Xiaolong Xu, Buqing Cao, and Jinjun Chen.
Scheduling workflows with privacy protection constraints for big data applications on cloud.
Future Generation Computer Systems, 108:1084–1091, 2020.

[16] Liwei Huang, Yutao Ma, Yanbo Liu, and Arun Kumar Sangaiah. Multi-modal bayesian em-
bedding for point-of-interest recommendation on location-based cyber-physical–social net-
works. Future Generation Computer Systems, 108:1119–1128, 2020.

[17] Hong Yao, Muzhou Xiong, Hui Li, Lin Gu, and Deze Zeng. Joint optimization of function
mapping and preemptive scheduling for service chains in network function virtualization.
Future Generation Computer Systems, 108:1112–1118, 2020.

[18] Shijian Li, Minhao Shi, Runhe Huang, Xinwei Chen, and Gang Pan. Perception-
enhancement based task learning and action scheduling for robotic limb in cps environment.
Future Generation Computer Systems, 108:1069–1083, 2020.

[19] Anish Jindal, Neeraj Kumar, and Mukesh Singh. Internet of energy-based demand response
management scheme for smart homes and phevs using svm. Future Generation Computer
Systems, 108:1058–1068, 2020.

[20] Reem Y Ali, Shashi Shekhar, Shounak Athavale, and Eric Marsman. Ulama: A utilization-
aware matching approach for robust on-demand spatial service brokers. Future Generation
Computer Systems, 108:1030–1048, 2020.

[21] Xiaodao Chen, Junqing Fan, Qing He, Yuewei Wang, Dongbo Liu, and Shiyan Hu. Econom-
ical and balanced production in smart petroleum cyber–physical system. Future Generation
Computer Systems, 95:364–371, 2019.

[22] Shangguang Wang, Yan Guo, Yan Li, and Ching-Hsien Hsu. Cultural distance for ser-
vice composition in cyber–physical–social systems. Future Generation Computer Systems,
108:1049–1057, 2020.

[23] Henan Zhao and Rizos Sakellariou. An experimental investigation into the rank function
of the heterogeneous earliest finish time scheduling algorithm. In European Conference on
Parallel Processing, pages 189–194. Springer, 2003.

[24] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal Patil,
Mei-Hui Su, Karan Vahi, and Miron Livny. Pegasus: Mapping scientific workflows onto the
grid. In European Across Grids Conference, pages 11–20. Springer, 2004.

[25] R Keith Mobley. An introduction to predictive maintenance. Elsevier, 2002.

[26] Hedda Lüttenberg, Christian Bartelheimer, and Daniel Beverungen. Designing predictive
maintenance for agricultural machines. 2018.

REFERENCES 97

[27] David J Edwards, Gary D Holt, and FC Harris. Predictive maintenance techniques and their
relevance to construction plant. Journal of Quality in Maintenance Engineering, 1998.

[28] Ying Peng, Ming Dong, and Ming Jian Zuo. Current status of machine prognostics in
condition-based maintenance: a review. The International Journal of Advanced Manufactur-
ing Technology, 50(1-4):297–313, 2010.

[29] Peter O’Donovan, Kevin Leahy, Ken Bruton, and Dominic TJ O’Sullivan. An industrial big
data pipeline for data-driven analytics maintenance applications in large-scale smart manu-
facturing facilities. Journal of Big Data, 2(1):1–26, 2015.

[30] W Freudling, M Romaniello, DM Bramich, P Ballester, V Forchi, CE García-Dabló,
S Moehler, and MJ Neeser. Automated data reduction workflows for astronomy-the eso
reflex environment. Astronomy & Astrophysics, 559:A96, 2013.

[31] K Banse, P Crane, P Grosbol, F Middleburg, C Ounnas, D Ponz, and Banse Waldthausen, H.
Midas-eso’s new image processing system. The Messenger, 31:26–28, 1983.

[32] Tody Tody, Doug. Iraf in the nineties. In Astronomical Data Analysis Software and Systems
II, volume 52, page 173, 1993.

[33] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher, and Altintas
Mock, Steve. Kepler: an extensible system for design and execution of scientific workflows.
In Proceedings. 16th International Conference on Scientific and Statistical Database Man-
agement, 2004., pages 423–424. IEEE, 2004.

[34] William F Godoy, Peter F Peterson, Steven E Hahn, and Jay J Billings. Efficient data man-
agement in neutron scattering data reduction workflows at ornl. In 2020 IEEE International
Conference on Big Data (Big Data), pages 2674–2680. IEEE, 2020.

[35] Mark Könnecke, Frederick A Akeroyd, Herbert J Bernstein, Aaron S Brewster, Stuart I
Campbell, Björn Clausen, Stephen Cottrell, Jens Uwe Hoffmann, Pete R Jemian, David
Männicke, et al. The nexus data format. Journal of applied crystallography, 48(1):301–305,
2015.

[36] Owen Arnold, Jean-Christophe Bilheux, JM Borreguero, Alex Buts, Stuart I Campbell,
L Chapon, Mathieu Doucet, N Draper, R Ferraz Leal, MA Gigg, et al. Mantid—data analysis
and visualization package for neutron scattering and µ sr experiments. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 764:156–166, 2014.

[37] A Traficante, L Calzoletti, M Veneziani, B Ali, G De Gasperis, AM Di Giorgio, F Faustini,
D Ikhenaode, S Molinari, Paolo Natoli, et al. Data reduction pipeline for the hi-gal survey.
Monthly Notices of the Royal Astronomical Society, 416(4):2932–2943, 2011.

[38] Brad Cavanagh, T Jenness, F Economou, and MJ Currie. The orac-dr data reduction pipeline.
Astronomische Nachrichten: Astronomical Notes, 329(3):295–297, 2008.

[39] Lupton Lupton, Robert. Statistics in theory and practice. Princeton University Press, 2020.

[40] Matthew Overlin, Christopher Smith, Marija Ilic, and James L Kirtley. A workflow for non-
linear load parameter estimation using a power-hardware-in-the-loop experimental testbed.
In 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), pages 581–
588. IEEE, 2020.

98 REFERENCES

[41] Sophia Ulonska, Paul Kroll, Jens Fricke, Christoph Clemens, Raphael Voges, Markus M
Müller, and Christoph Herwig. Workflow for target-oriented parametrization of an enhanced
mechanistic cell culture model. Biotechnology journal, 13(4):1700395, 2018.

[42] Bence Bécsy, Peter Raffai, Neil J Cornish, Reed Essick, Jonah Kanner, Erik Katsavouni-
dis, Tyson B Littenberg, Margaret Millhouse, and Salvatore Vitale. Parameter estima-
tion for gravitational-wave bursts with the bayeswave pipeline. The Astrophysical Journal,
839(1):15, 2017.

[43] Neil J Cornish and Tyson B Littenberg. Bayeswave: Bayesian inference for gravitational
wave bursts and instrument glitches. Classical and Quantum Gravity, 32(13):135012, 2015.

[44] Peter J Green. Reversible jump markov chain monte carlo computation and bayesian model
determination. Biometrika, 82(4):711–732, 1995.

[45] Xiaoyu Chen and Ran Jin. Adapipe: A recommender system for adaptive computation
pipelines in cyber-manufacturing computation services. IEEE Transactions on Industrial
Informatics, 2020.

[46] Xiaoyu Chen and Ran Jin. Data fusion pipelines for autonomous smart manufacturing. In
2018 IEEE 14th international conference on automation science and engineering (CASE),
pages 1203–1208. IEEE, 2018.

[47] Chengrun Yang, Yuji Akimoto, Dae Won Kim, and Madeleine Udell. Oboe: Collaborative
filtering for automl model selection. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1173–1183, 2019.

[48] Dylan Bates. Recommending more efficient workflows to software developers. arXiv
preprint arXiv:2102.03670, 2021.

[49] Frank Linton, Deborah Joy, Hans-Peter Schaefer, and linton Charron, Andrew. Owl: A
recommender system for organization-wide learning. Educational Technology & Society,
3(1):62–76, 2000.

[50] Justin Matejka, Wei Li, Tovi Grossman, and matejka Fitzmaurice, George. Community-
commands: Command recommendations for software applications. In Proceedings of the
22nd Annual ACM Symposium on User Interface Software and Technology, UIST ’09, page
193–202, New York, NY, USA, 2009. Association for Computing Machinery. URL: https:
//doi.org/10.1145/1622176.1622214, doi:10.1145/1622176.1622214.

[51] Emerson Murphy-Hill, Rahul Jiresal, and murphy Murphy, Gail C. Improving software
developers’ fluency by recommending development environment commands. In Proceed-
ings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, FSE ’12, New York, NY, USA, 2012. Association for Computing Machinery.
URL: https://doi.org/10.1145/2393596.2393645, doi:10.1145/2393596.
2393645.

[52] Buyun Sheng, Ruiping Luo, Gaocai Fu, Hui Wang, and Xincheng Lu. Workflow model
recommendation approach based on a design information model. IEEE Access, 7:159622–
159634, 2019.

https://doi.org/10.1145/1622176.1622214
https://doi.org/10.1145/1622176.1622214
http://dx.doi.org/10.1145/1622176.1622214
https://doi.org/10.1145/2393596.2393645
http://dx.doi.org/10.1145/2393596.2393645
http://dx.doi.org/10.1145/2393596.2393645

REFERENCES 99

[53] Kamran Soomro, Kamran Munir, and Richard McClatchey. Incorporating semantics in
pattern-based scientific workflow recommender systems: Improving the accuracy of rec-
ommendations. In 2015 Science and Information Conference (SAI), pages 565–571. IEEE,
2015.

[54] Lu Zhen, George Q Huang, and Zuhua Jiang. Recommender system based on workflow.
Decision Support Systems, 48(1):237–245, 2009.

[55] Samet Ayhan, Pablo Costas, and Hanan Samet. Prescriptive analytics system for long-range
aircraft conflict detection and resolution. In Proceedings of the 26th ACM SIGSPATIAL
international conference on advances in geographic information systems, pages 239–248,
2018.

[56] Ahmed Ismail, Hong-Linh Truong, and Wolfgang Kastner. Manufacturing process data anal-
ysis pipelines: a requirements analysis and survey. Journal of Big Data, 6(1):1–26, 2019.

[57] Taesung Park, Sung-Gon Yi, Sung-Hyun Kang, SeungYeoun Lee, Yong-Sung Lee, and
Richard Simon. Evaluation of normalization methods for microarray data. BMC bioin-
formatics, 4(1):1–13, 2003.

[58] Stephen Strother, Stephen La Conte, Lars Kai Hansen, Jon Anderson, Jin Zhang, Sujit Pu-
lapura, and David Rottenberg. Optimizing the fmri data-processing pipeline using predic-
tion and reproducibility performance metrics: I. a preliminary group analysis. Neuroimage,
23:S196–S207, 2004.

[59] Jia Yu, Rajkumar Buyya, and Kotagiri Ramamohanarao. Workflow scheduling algorithms
for grid computing. In Metaheuristics for scheduling in distributed computing environments,
pages 173–214. Springer, 2008.

[60] Artur Andrzejak, Ulf Hermann, and Akhil Sahai. Feedbackflow-an adaptive workflow gener-
ator for systems management. In Second International Conference on Autonomic Computing
(ICAC’05), pages 335–336. IEEE, 2005.

[61] Johannes Kunze Von Bischhoffshausen, Markus Paatsch, Melanie Reuter, Gerhard Satzger,
and Hansjoerg Fromm. An information system for sales team assignments utilizing pre-
dictive and prescriptive analytics. In 2015 IEEE 17th Conference on Business Informatics,
volume 1, pages 68–76. IEEE, 2015.

[62] Golshan Madraki and Robert P Judd. Recalculating the length of the longest path in perturbed
directed acyclic graph. IFAC-PapersOnLine, 52(13):1560–1565, 2019.

[63] Mirko Stojiljkovic. Linear regression in python, 2021.

[64] Jing Li, Ji-hang Cheng, Jing-yuan Shi, and Fei Huang. Brief introduction of back propagation
(bp) neural network algorithm and its improvement. In Advances in computer science and
information engineering, pages 553–558. Springer, 2012.

[65] JVN Lakshmi. Stochastic gradient descent using linear regression with python. International
Journal on Advanced Engineering Research and Applications, 2(7):519–524, 2016.

[66] Ahmed Fawzy Gad. Python genetic algorithm!, 2020. URL: https://pygad.
readthedocs.io/en/latest/.

https://pygad.readthedocs.io/en/latest/
https://pygad.readthedocs.io/en/latest/

100 REFERENCES

[67] Ahmed Fawzy Gad. Pygad: An intuitive genetic algorithm python library. arXiv preprint
arXiv:2106.06158, 2021.

[68] Syed Muhammad Fawad Ali and Robert Wrembel. Towards a cost model to optimize user-
defined functions in an etl workflow based on user-defined performance metrics. In European
Conference on Advances in Databases and Information Systems, pages 441–456. Springer,
2019.

[69] Sharan Srinivas and A Ravi Ravindran. Optimizing outpatient appointment system using ma-
chine learning algorithms and scheduling rules: a prescriptive analytics framework. Expert
Systems with Applications, 102:245–261, 2018.

[70] Rares Vernica, Michael J Carey, and Chen Li. Efficient parallel set-similarity joins using
mapreduce. In Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of data, pages 495–506, 2010.

[71] Syed Muhammad Fawad Ali. Next-generation etl framework to address the challenges posed
by big data. In DOLAP, 2018.

[72] James P Evans and Ralph E Steuer. A revised simplex method for linear multiple objective
programs. Mathematical Programming, 5(1):54–72, 1973.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem Definition
	1.4 Objectives

	2 Bibliographic Review
	2.1 Research Methodology
	2.1.1 Research Questions
	2.1.2 Keywords
	2.1.3 Research Process

	2.2 Literature Review
	2.2.1 Digital twins and Cyber-Pysical Production System
	2.2.2 Workflow definition
	2.2.3 Types of workflows
	2.2.4 Recommendation systems

	3 Implementation
	3.1 Workflow Recommendation System
	3.1.1 Input files
	3.1.2 Graph theory
	3.1.3 Solution design
	3.1.4 System breakdown
	3.1.5 Architecture

	3.2 Weights Optimization
	3.2.1 Input files
	3.2.2 Solution design
	3.2.3 Genetic algorithm
	3.2.4 Library
	3.2.5 Architecture

	3.3 Overall Implementation
	3.3.1 Overall architecture

	4 Testing and Validation
	4.1 Case Study
	4.2 Recommendation system
	4.3 Genetic algorithm as weights estimator
	4.4 Genetic algorithm as weights optimizer

	5 Conclusions and Future Work
	A Appendix
	References

