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Abstract 

The Autonomous Vehicle Systems Lab specializes in using autonomous planes for 

remote sensing applications. By developing an inexpensive image acquisition platform and the 

algorithms to post process the data, remote sensing can be performed at a lower monetary cost 

with shorter lead times. This thesis presents one algorithm that has shown to be an effective 

alternative to the traditional Bundle Adjustment (BA) algorithm used for making composite 

images from many individual overlapping images. BA simultaneously estimates camera poses 

and visible feature locations from blocks of overlapping imagery, but is computationally 

expensive. The alternate algorithm (ABA) uses a cost function that does not explicitly include 

the feature locations. For photographic sets covering large areas, but having overlap only 

between adjacent photos, the search space and consequently the computational cost is 

significantly reduced when compared to typical BA. The usefulness of the algorithm is 

demonstrated by comparing a digital elevation model created through the ABA with LIDAR 

data. 
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Notation 

Definitions and notations that are introduced throughout the thesis are documented here on one 

page for easy reference. 

Each coordinate space variable has a subscript describing the coordinate system in which it 

resides. For example a variable such as wp denotes a point in world space. 
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ρ  - distance from the principle point of an image 

1 4k kL  - calibration coefficients 

k  - a reference to a specific camera 

l  - a reference to a specific feature 

n  - number of features in a scene 

m  - number of perspectives of each feature 

o  - number of cameras 

feature – object in 3d space that can be identified in multiple images with key points 

key point – a perspective of a feature in image space 

scene parameters – all variables that can be changed within the search space (pose, 

topography, and intrinsic camera parameters) 
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CHAPTER 1 - Introduction and History 

The AVS lab specializes in remote sensing with inexpensive autonomous planes. Composite 

images (mosaics) comprised of many-high resolution images are one of the products offered by 

the post processing of images taken with the onboard camera. Though the avionic sensors 

monitor the aircraft state during a flight, the resulting data is not accurate enough to generate 

high quality mosaics. Through matching of overlapping content in the images, updates on the 

states of the aircraft can be made that give superior mosaics when compared with the original 

data. Bundle Adjustment (BA) has become the industry standard for making these state updates 

based upon multiple input images despite being computational expensive and non-robust.  This 

thesis presents an Alternative Bundle Adjustment (ABA) algorithm to complement the standard 

BA algorithm used for making mosaics. ABA has the advantage of being computationally less 

expensive in certain situations and more robust when working with poor initial estimates of 

camera position and orientation (pose). This thesis discusses the algorithms associated with the 

process and how ABA compares with traditional BA. It also presents two experimental processes 

and a comparison to LIDAR topography.  

Description of the desired mapping products 

The AVS Lab’s ECat unmanned aerial vehicle (UAV) enables a commercial off the shelf digital 

single lens reflex (DSLR) camera to take high resolution, low altitude aerial images over any 

area accessible by short range aircraft. When the images are combined to form a mosaic, a 

significantly higher resolution image can be created than with standard high altitude aerial 

imagery. This also has the added benefit of combining large, hard to visualize data sets by 

eliminating the redundant overlapping sections. Solving for the necessary parameters and 
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applying them towards the final mosaic process is a non-trivial challenge. Such an image needs 

to take into account topography, radiation models, and geo-referencing in order to be a useful 

Geographical Information System (GIS) product. The completed mosaic not only represents a 

view from above, but represents distances correctly without distortion due to perspective. This is 

beneficial from a biological research perspective since data from multiple perspectives can be 

combined and compared in a consistent manner. It also allows a unified scale to be applied to all 

photos for relative size comparisons such as those necessary in estimating areas affected by 

burning fields. Additional sensor information can be integrated into the mosaic to correlate 

separate sensors since the aircraft state estimates have been improved through the mosaicing 

process. The ideal mosaic has the following qualities: 

• Perspective due to non-nadir facing aircraft pose and the perspective transformation is 

eliminated 

• Radiation models have taken into account the difference in light reflection due to 

topography 

• Each unique object only appears once in its entirety in the final image 

• Tall objects appear as though the photo was taken from above without significant 

distortion due to the height of the object 
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Figure 1.1 Example of a mosaic based upon initial pose estimates projected onto a plane 

Figure 1.1 shows a sub-optimal image without many of the properties listed above. It was formed 

by projecting each image onto a plane calculated with the initial pose estimates. Objects in the 

left side of the image appear multiple times while the road in the center appears discontinuous 

and not in its entirety. Though this presents a rough estimate of the scene, it is not correct and 

can be improved to fit many of the ideals presented above through the use of photogrammetry. 

Fig 1.2 shows this corrected photo as an example of what it should look like. 
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Figure 1.2 Mosaic based upon refined poses with images projected onto extracted 

topography 

Review of the history of photogrammetry 

Soon after photography was developed, it was understood that scientific measurements could be 

taken with a reasonable degree of accuracy. Surveying for urban planning, military intelligence, 

and measurement for architectural purposes were the first to enjoy success in the field [16]. The 

United States military and Geological Survey were among those who first used aerial film 

photography methods for land management and planning purposes. Large mosaics could be 

assembled by slicing and assembling the high-resolution photographs onto a single high altitude 

photo for global reference [16]. Though this created large high-resolution mosaics, many of the 

individual processes for assembling the photos were crude. Seams between images were distinct 

slices with very little blending or radiometric correction. Orthorectification, the process of 

removing distortion due to perspective and topography, was attempted by tilting the paper rather 

than taking into account topography [33][34][35]. Geo-referencing, associating geographic 

coordinates for an image location and image splicing, were completed manually which led to 
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accumulating error if accurate geo-referencing was not available. While many novel solutions 

addressed these problems, digital image processing has allowed many of the same operations to 

be performed with higher quality and much shorter processing times. Due to the flexibility 

allowed by image processing and software, many new or previously unmanageable methods 

have been implemented.  

Literature Review 

The AVS Lab strives to create high resolution, low altitude mosaics from multiple smaller 

overlapping images. Unless both pose and topography are accurately known, the estimates of 

both must be improved before the images can be assembled into the desired mosaics. In the case 

that the pose is accurately known over an area with reliable topographical maps, the desired 

mosaic can be generated by projecting the images onto the topography. In the instance where 

pose and topography are unknown, this process must make assumptions about the environment 

or extract the necessary information from the photos alone.  

As a first attempt at combining multiple photos into a mosaic, photos were projected onto a 

common plane using pose estimates without otherwise modifying the images. Figure 1.1 shows 

this result and some of the artifacts associated with it. As a second attempt, photos were 

projected onto that same plane, but given the freedom to translate to match intensity correlations 

with neighboring images. This improved the image, but errors due to orientation and scale were 

not eliminated. For a third and final approach, pairs of key points (features in image space) were 

detected in adjacent images to form a network of relationships between all overlapping images. 

By optimizing the pose parameters, better estimates of both orientation and position for each 

camera could be obtained in addition to the extraction of topography. The following sections 
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discuss the implementation details and characteristics of each method along with examples of 

published research. 

Mosaicing with well known pose and topography 

Mosaicing based upon the initial pose estimates is the most intuitive method for creating 

composite images and performs well when topography and pose are well known. When coupled 

with a metric camera, a sequence of images can be projected onto a topography with impressive 

results [36]. When pose is not well known, the same method will only give a crude mosaic 

regardless of the certainty of the topography. Due to the algorithm’s simplicity, it has shown 

some success for near real-time mosaic creation over flat topography such as [23]. [24] has 

shown some success when a larger reference image and topography is already available.  

Intensity based mosaicing 

Mosaics based upon projections onto a plane from the initial pose estimates can be improved by 

allowing the projections to translate to match intensity correlations between images. Intensity 

correlation is calculated by overlapping areas of an image and subtracting the values of one 

image from another. The overlapping image can then be translated to reduce the intensity 

difference between overlapping sections. Though this cannot improve errors in orientation and 

scale, it can improve the mosaic if there are errors in camera positions such as 

[9][17][21][22][31][32]. In the instance that a false match or an improper relationship has been 

found, this error will accumulate and can damage the rest of the mosaic. This method begins to 

fail when changes in lighting, orientation, or scale are necessary. For optimal results, each photo 

needs to be taken from a nadir perspective with consistent lighting at the same altitude. 

Variations in any of these key elements will cause a poor mosaic. For these reasons, most aerial 
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mosaicing has moved away from this method despite it being the original process with film as 

described in [16]. 

Feature based mosaicing 

Feature based mosaicing develops relationships between photos before any projection happens 

by identifying common elements in overlapping images. By abstracting the data within an image 

to a set of correlated key points between images, the algorithm can be resistant to changes and 

errors in lighting, scale, and pose. The mosaicing algorithm is then free to adjust all parameters 

(pose, topography, and internal camera characteristics) within the system to find a solution that 

yields better estimates of all parameters to form a mosaic. Due to the flexibility allowed by 

abstracting the problem with features, many new algorithms have been presented to generate 

topography and mosaics simultaneously from sets of correlated key points.  

Within feature based mosaicing, two groups have emerged. The first group of literature uses one 

or more homographies, projections onto planes, to account for perspective 

[11][12][13][14][15][26][27][28][29]. This method performs well for planar scenes or for scenes 

with few overlapping images. As images are added, error can accumulate when a non-planar 

environment is being represented with planar constructs. The second group, known as BA, uses 

an estimate of the position of each feature in world space to determine a surface onto which 

images can be projected. This method has shown the greatest promise since it is actively 

approximating the topography while improving the estimates for pose and camera characteristics. 

Examples of BA along with variations and optimizations can be found in [3][10][26]. Despite the 

superior final product offered by BA algorithms, they are computationally complex and non-

robust. This thesis offers an alternative, ABA, which significantly reduces the computational 

complexity while improving the robustness at the cost of the quality of the final product. While 
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this is not a new concept and is published in [39], it is not a well-known algorithm and was 

developed independently. 
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CHAPTER 2 - Description of Image to Mosaic Process and 

Workflow 

ABA and BA only address one step in the mosaicing process. This chapter gives a brief 

overview of each stage in the sequence of steps from planning the aerial survey to combining 

images into a single mosaic. The process proceeds as follows: 

1. Given an area to survey, a flight plan is generated that covers the area with a 

sequence of passes optimized for wind direction, flight time, the UAV’s 

maneuverability, and image overlap.  

2. The UAV flies the generated path taking images with the onboard camera at 

specified locations. 

3. The imagery is processed to extract key points from the overlapping regions of 

image pairs. 

4. Using the key points as landmarks and the initial pose estimates from the 

autopilot, either BA or ABA is used to both improve the pose estimates and to 

estimate the location of each feature. 

5. A digital terrain model (DTM) is created by interpolating elevations for a grid 

based upon the feature estimates from the previous step. 

6. The surveyed images are then reprojected onto the DTM to create a correlation 

between the image content and the topography extracted previously. 

The remainder of the chapter reviews each of these steps in more detail. 
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Flight Path Generation 

The selection of a flight path can have a large impact on the suitability of the aerial survey for 

the mosaicing process. Because cross winds induce the aircraft to crab in order to follow the 

prescribed path, flight paths are selected to be into and with the direction of the wind. Crabbing 

significantly diminishes the region of overlap between adjacent images and should be avoided. In 

addition to wind direction, the flight path manages the order in which a sequence of images is 

taken. If the path is designed to minimize hard turns, the UAV is more likely to be nadir facing 

when the image is taken. Along with orienting the camera in a more nadir pose, smoother turning 

prevents image smear due to a quickly rotating camera while the shutter is exposing the charge 

coupled device (CCD). The flight path also affects how the overlapping areas interact. The 

placement of the overlapping areas can have some implications on how the mosaicing process 

combines the aerial images. If careful attention is not paid to the layout, camera poses can be 

arranged in such a way that singularities in the algorithm greatly reduce the quality of the 

mosaic. The math and software used to generate the flight path is covered in greater detail in 

Andrea Noonan’s thesis [30]. 
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Figure 2.1 A flight path with wind and coverage taken into consideration 

Figure 2.1 shows a typical flight path automatically generated to cover an area of interest 

denoted by the dashed box. The orientation defined by α  allows the UAV to spend most of the 

flight time into or with the wind. By ensuring that photos are taken when the UAV is flying into 

or with the wind, the survey images are likely to have greater overlap with adjacent images. This 

directly affects the mosaicing process since the layout of overlap forms the basis for the 

extraction of topography and pose updates. 

Content extraction and correlation 

Content extraction and correlation algorithms operate on images to abstract common elements 

into a form that only contains the information useful to the algorithm operating on that data. In 

mosaicing, this process finds common objects or landmarks of opportunity known as features 

that are identified in multiple images. A set of key points and images are then associated with 

that feature. Each key point can then be used as a perspective of that feature when estimating 

changes in the scene parameters. Figure 2.2 shows an example of this for two overlapping 
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images. The key points are circled in each image and connected with lines that show the 

correlations. A similar process is done for areas with overlap from multiple images.  

 

Figure 2.2 Key points have been circled with lines connecting correlated pairs. 

Triangulation 

Triangulation refers to the simultaneous estimation of pose and topography. The key points from 

the previous step yield a bearing (direction only) from the camera that can be used with other 

perspectives of the same feature to estimate a position in world space for the associated feature. 

Updates for the pose and feature location can be calculated by assigning a cost to errors with the 

current state. If all the cameras can agree more by moving a feature in world space or adjusting 

the pose, then an update will be applied and the process will iterate until an improvement can no 

longer be found. A successful triangulation yields a state vector with a low cost for which all the 

cameras agree on locations for each feature and an updated set of poses for the cameras. The 

updated poses are more accurate than the original measurements relative to the overall scale and 

the accuracy of the optics that took the images. The feature locations form a triangulated 

irregular network (TIN) that describes the topography of the scene. 
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Terrain extraction 

TIN models may or may not cover the entire area, and the points are arranged in an irregular, 

unevenly spaced grid. As a result, some areas have clumps of data while others are sparsely 

populated.  Luckily, the triangulation step also produced improved pose estimates.  This allows 

further correlation searches using less distinct features to fill in some of the sparse regions 

producing a denser representation of the scene.  Furthermore, densely populated TIN models are 

easily converted through interpolation into digital terrain models (DTMs) that have points on a 

regular grid.  

Mapping 

The final step is to create the mosaic image by combining the imagery, the improved pose 

estimates, and the DTM. The images are projected onto the DTM to determine the color at each 

location. Most locations have color projected from two or more images due to overlap. Either the 

most nadir image is used, or a weighted blending determines the final projected image. This 

process creates an accurate visual and spatial representation of the surveyed scene. Ortho-

rectified maps can then be created from this representation. In addition, viewers may be used to 

provide an interactive perspective of the scene from any location and orientation. Both of these 

methods make use of perspective transformations discussed later in chapter 4. Ortho-rectified 

maps are then created using oblique or orthographic projections. 

65 
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CHAPTER 3 - Discussion of Hardware 

Airframe 

A SIG Kadet Senior ARF hobbyist kit is used for the ECat UAV airframe.  The high wing design 

and approximate 2m wingspan provide stability and adequate lift.  Thrust is generated by a 

Hacker C50 brushless motor with a 16x10” CAM carbon composite folding propeller.  Hitec HS-

81 servos actuate the elevator, rudder, aileron, and flap control surfaces.  The ECat airframe is 

shown in figure 3.1.          

 

Figure 3.1 ECat UAV 

A few modifications to the basic airframe are necessary for hardware accommodation and 

mission specific requirements.  A larger lightweight carbon composite payload bay was designed 

and inserted in place of the original balsa wood compartment, which relied on several cross-

members for structural support.  Another noticeable change includes the addition of skid style 

landing gear, allowing grass prairie landings.  Finally, a balsa wood mount was fabricated for the 

autopilot and resides in the fore compartment between the firewall and the payload bay 

bulkhead.  
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Piccolo II Autopilot 

The Piccolo II autopilot, purchased from CCT, provides the functionality required for the ECat 

UAV navigation and control applications.  With a mass of 233 grams and a 12.2cm x 6.1cm x 

3.8cm size, the autopilot avionics unit, pictured in figure 3.2, readily mounts within most UAV 

airframes.   

IMU

GPS MODULE
 

Figure 3.2: Piccolo II Autopilot Hardware 

A Motorola MPC555 processor, executing at 40 MHZ, provides computation and 

communication with five RS232 payload ports, up to 10 PWM servo channels, 2 CAN ports, 6 

GPIO pins, and 4 analog input pins.  These peripheral devices are interfaced via a 44 pin D sub 

connector and a high density 25 pin microdot connector.  The main cpu board has  several 

daughter boards including a MHX-910 Datalink Radio chipset, a Motorola M12 GPS module, 

IMU, and dual ported mpxv50045 dynamic pressure and mpx4115a static pressure sensors.  The 

radio link allows the streaming of data to and from a ground station unit that provides a 

networking interface between multiple avionics units and CCT’s operator interface (OI) 

software.  The OI, which executes on a PC, displays telemetry updates and also enables the 

dynamic changing of commands, gains, and flight plans.  The IMU, pre-calibrated by CCT, 

delivers three axis gyro and accelerometer readings to the processor over a serial port.  The gyros 

measure angular rates up to 5.2 radians per second, and the accelerometers record up to 10G 
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accelerations.  The Motorola M12 GPS unit generates an estimate of the position and velocity of 

the Synergy Systems AR-05 antenna.  The Piccolo also supports DGPS corrections received 

from the ground station.  The Pitot and static ports provide air data information vital for TAS 

estimation. 

Cameras 

A DSLR Canon Rebel XT was used as the onboard camera. It was selected for its light weight, 

high resolution (8 megapixel effective), high quality lenses, ability to manually control all 

settings, and the ability to remote trigger it. The camera has been mounted in a foam block that 

fills the payload bay to reduce vibration and movement during flight. Despite the advantages of 

using a consumer camera, numerous problems are introduced by using consumer camera. 

Though the available lenses are high quality, they have not been designed for minimal distortion. 

This causes a need for a frequent camera calibration procedure as outlined in chapter 4. In 

addition, the camera contains a rolling shutter that does not expose all elements of the CCD at 

the same time. 

Effects of the Rolling Shutter 

DSLR cameras control the exposure time with two opaque curtains that slide across the CCD at 

different times to expose it for the difference between the two trigger times. Exposure of the 

CCD occurs in the following order: 

1. Curtain 1 moves to expose the CCD to light from the lens. 

2. After a specified exposure time, curtain 2 follows curtain 1 to cover the CCD. 

3. After all elements of the CCD are read, both curtains reset for the next image. 

It takes 5ms for one curtain to travel across the CCD. For any exposure time less than 5ms, both 

curtains are moving at the same time. This creates a thin band of light that exposes the CCD. If 
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the camera is in motion at that time, the resulting image is not a frozen snapshot of the scene but 

a scan of a dynamic scene. This affects the image by moving pixels from where they would be if 

all elements of the CCD were exposed at the same time. The amount of warping present in an 

image depends on the rate of translation and rotation at the time the image was taken. A simple 

calculation compares the contribution due to translation and rotation as follows: 

At 100m of elevation and 1rad/s, an object moves 100m/s relative to the camera. A pixel 

represents 2.6cm on the ground at 100m. For a curtain translation time of 5ms, a shift of 19 

pixels may be seen. This can be compared with the average air speed of 15m/s that would 

produce fewer than 3 pixels of shift. The ground speed depends on the wind. When comparing 

the two, it is important to note that small but quick rotations can easily generate more distortion 

than the typical translational velocity. 
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CHAPTER 4 - Math and Associated Algorithms 

Before the triangulation step can be discussed in detail, the supporting math and associated 

algorithms must be explained. These topics include the Scale Invariant Feature Transform, the 

Levenberg-Marquardt Minimization, Projective Geometry, and Camera Calibration. Chapter 4 

gives an overview of each topic along with references that contain greater detail for the 

interested reader. The cost function is introduced in concept in the minimization section, but not 

defined for both algorithms until chapter 5. 

Scale Invariant Feature Transform 

The Scale Invariant Feature Transform (SIFT) completes the feature extraction and correlation 

step described in figure 2.2. By locating areas of high contrast, SIFT detects key points that are 

likely to be identified in other overlapping images. Key points that appear to be similar, but in 

different images, represent possible matches for a single feature. If two images overlap 

significantly, a large portion of each image should have correlating matches. Ideally, SIFT would 

identify and correlate a dense set of key points evenly distributed throughout the overlapping 

regions. In practice, correlations tend to cluster in areas containing high contrast objects such as 

trees and rocks while few key points are identified in bland areas such as grassy plains. The pair-

wise correlations form a mesh of relationships between image pairs. For images with large 

neighboring overlap, individual features may appear, be identified, and correlated in several 

image pairs. Each pair of perspectives of a single feature provides an estimate of the location of 

that feature through the projections of that feature from the respective camera poses in which it 

appeared. 
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SIFT was designed to identify common objects in overlapping images despite significant 

changes in scale and viewing perspective. This is important to understand since a change in scale 

and perspective makes a numerical comparison of two images difficult. SIFT overcomes the 

scale difficulty by sub-sampling the image multiple times to create a sequence of reduced scale 

layers that contain increasingly sub-sampled copies of the original image. Key points are then 

selected when the intensity of one pixel is higher or lower than all surrounding pixels in that 

layer and the next sub-sampled layer. If two overlapping images have different scales, then the 

same feature should be detected in both images but in different layers. To identify a key point as 

unique regardless of orientation, a descriptor is created based upon the intensity changes within a 

predefined distance. Since the descriptor uses gradient vectors from an area around the key point, 

there will be many of them, each with a different magnitude and direction. All gradient vectors 

are then given a common origin and rotated to align the largest gradient at 0 degrees. The largest 

64 vectors are then described with two-vectors and concatenated giving a large descriptor that 

identifies the key point in question. The descriptor can then be compared with other key points in 

overlapping images through use of the dot product operator. Similar descriptors will have a value 

close to unity when normalized by the product of the two vector magnitudes. A match is 

considered successful when the normalized dot product is significantly larger than all other 

comparisons in the image. This guarantees that a comparison is not only the most likely 

candidate, but also much better than any other key point.  

Scale space elegantly handles many of the challenges that have prevented effective image 

correlation from earlier algorithms. Since SIFT takes place in scale space, the descriptors are 

rotated relative to the largest vector, and works with key points instead of large areas, it is ideal 

for finding overlapping sections despite changes in scale and perspective.  
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Though these elements work well to eliminate false positives, repetitive objects and objects that 

change in appearance as the perspective or the illumination changes will give incorrect results. A 

common example of this is shown when three images of overlapping content are analyzed. An 

object may be detected as common in the first two images and the last two images but not the 

first and last. This makes for a challenging problem when trying to identify a relationship 

between the first and last images. A similar problem arises with photos of repetitive objects. If an 

area has many overlapping images inconsistent correlation is more likely to happen but the 

calculated data is also more valuable since the feature in question appears in more images. The 

process of identifying features based upon pairs of correlations has been completed using an 

original feature manager algorithm that organizes the pairs to make a complete set of features 

and the associated key points. The feature manager makes use of the widely known SIFT 

algorithm developed by David Lowe [1]. David Lowe’s implementation has been used for all 

function calls within the feature management software. More information can be found by 

reviewing [19][20] and the widely available literature associated with it. 

Levenburg-Marquardt Minimization 

Both ABA and BA rely on a minimization algorithm to find a low value for a sum-of-squares 

cost function. The cost functions associated with BA and ABA are nonlinear with respect to the 

parameters varied in the minimization. The Levenberg-Marquardt (LM) algorithm, a hybrid 

approach using both Steepest Gradient Descent (SGD) and the Gauss-Newton (GN) algorithm, 

has been shown to work well on non-linear problems and is commonly used in BA. Both BA and 

ABA define a vector of cost elements c
v .  The inner product of this vector is the scalar cost 

function minimized over the state vector K
v

. Here the state vector K
v

 is a concatenation of 

parameters describing camera poses, and in some cases other variables describing the feature 



` 21

locations and camera parameters. The vector of parameters describing a camera pose is as 

follows:  
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Here / /ϕ ϑ ψ  are defined as roll/pitch/yaw using the rotation matrix defined in equation 4.9 and 

w
kx w

ky w
kz  are defined as the CoP for camera k  in world coordinates. The parameters describing 

the location of a feature l  is defined as 

















=
w
l

w
l

w
l

l

z

y

x

F
v

      4.2 

where each component describes the position of the feature in world space. 

An example of the complete state vector K
v

 for a BA process concatenates all kK
v

 with the 

feature locations.  
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 The optimization process attempts to find a value for K
v

 that minimizes the overall cost, TC c c=
v v .  

To aid in this minimization, the Jacobian 
K

c
J r

r

∂

∂
= , is defined. The Levenburg-Marquardt 

minimization process iteratively updates the state vector K
v

using both the Jacobian and the 



` 22

gradient of the cost. The gradient of the vector cost with respect to K
v

 is calculated by 2 TJ c
v

. It 

describes the direction of steepest cost increase for the current K
v

. The Hessian matrix H  is 

defined as 
2

2

c

K

∂

∂

v

v , but is approximated by JJ T . This is important in the minimization process since 

H  describes the curvature of the cost around the current state K
v

. H  assists in determining the 

update that LM calculates with  

( )
1T TK J J I J cδ λ

−

= +
v v

     4.4 

instead of relying solely on the gradient. The terms JJ T  and Iλ within the inverse represent the 

approximation of the Hessian and the gradient respectively, and λ adjusts the tradeoff between 

SGD and the GN algorithm. The minimization starts with a large initial value for λ  since SGD 

should deliver the fastest convergence when far from a solution. λ  is then reduced by 10 when 

the estimated update K
v

δ  yields a lower cost. The reduction of λ  places more weight on the GN 

algorithm until K
v

δ  fails to yield a lower cost. At this point, less weight is put on the GN 

algorithm by increasing λ  by 10. The tradeoff between the two algorithms is novel since it shifts 

between two algorithms to exploit the strengths of both methods. SGD converges faster when far 

from a minimum but slows when it encounters the curvature typically seen near a minimum. GN 

uses the curvature from the approximation of H  to calculate an update that will converge on the 

minimum faster than SGD when near it. At no time does LM use exclusively one algorithm but 

instead weights the SGD component of the update more or less depending on the success of 

previous values of λ . 

The pseudo code shown in figure 4.1 outlines the LM algorithm used in the triangulation step.  

1. J , K
v

, and C  are saved before any elements of K
v

 are changed. 

2. An update for the state vector is calculated. 
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3. J  and C  are corrected to reflect the new choice of  KK
vv

δ+ . 

4. If C  is lower than Clast , KK
vv

δ+  is kept. Otherwise K
v

δ  is discarded. In both cases, λ  is 

updated. 
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for i = 1 to maxIterations 

J  = Jlast                                  (1) 

             K
v

 = lastK
v

 

C  = Clast  

cJIJJK TT vv
1)( −+= λδ            (2) 

calculate J and C  for KK
vv

δ+     (3) 

if ( C Clast〈 ) {                             (4) 

 /10λ λ=  

 KKK
vvv

δ+=  

} 

else{ 

 *10λ λ=  

          Jlast  = J                                  

                       Clast = C  

                lastK
v

= K
v

  

} 

} 

Figure 4.1 Pseudo Code of the LM Algorithm 

It is important for the cost function to be analytic, and for the Jacobian to be computationally 

tractable. The LM algorithm requires computation of the Jacobian with each iteration in the 

minimization process. The minimization is terminated when a maximum number of iterations is 

reached, the norm of the gradient cJ T v
2  falls below a threshold, C  falls below a threshold, or 

λ  reaches a maximum value indicating that a better solution cannot be found. Marquardt 

recommended replacing the Iλ term with ( )Tdiag J cλ ∗
v

. This replaces the diagonal of the identity 

matrix with the half of the gradient and gives more weight to the terms with a higher gradient. 
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This update did not appear to improve performance in ABA and is therefore not used in the 

minimization routine. A more detailed description and derivation of the LM algorithm can be 

found in [2] [5][18]. 

Creation of a Scene 

A scene is comprised of the camera poses and the set of vectors that point towards the key points 

detected in the images. This creates the framework upon which the minimization and terrain can 

be computed. Figure 4.2 shows the ideal solution for one feature and three images. The green 

lines represent the vectors that project through the key point and the feature. Unfortunately, due 

to errors, the initial pose estimates are not likely to yield a solution like figure 4.2, rather, the 

green lines will be skew. 

 

Figure 4.2 Estimating a feature location based upon pose estimates and vectors created 

from the detected key points in 3 overlapping images. 
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Camera Model and Projective Geometry 

Mathematics and projective geometry are used in photogrammetry to describe the projection of 

3-dimensional points onto a 2-dimensional image or the reverse projection. Through a nonlinear 

projection, any point in a 3-dimensional space can be projected onto an image plane using a 

pinhole camera model. The same process can also be reversed to calculate an infinite number of 

points on a line that correspond with a point in image space. Figure 4.3 is a graphical 

representation of the pinhole camera model and illustrates three notable components. 

• The object in 3-D space to project 

• The Center of Projection (CoP) that all rays pass through 

• The image plane on which images are projected 

Models such as the one shown in figure 4.3 use an image plane that is one focal length behind 

the CoP. This creates an image that has been flipped vertically and horizontally. All references in 

this thesis refer to an image plane that is one focal length in front of the CoP where images are 

not flipped.  

 

Figure 4.3 A pin-hole camera model projection with the image plane behind the CoP [40] 

The key points to understand about a pinhole camera model are as follows: 

• All light rays pass through a single point, the CoP 
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• Since the CoP has no area, the projected image is always in focus 

• The image plane has a finite size 

• The field of view for the camera can be adjusted based upon the image plane size and 

distance from the CoP 

More information about the properties and assumptions of the pinhole camera model can be 

found in [26].  

Coordinate Definitions and Transformations 

Several coordinate frames have been defined in 4.5-8 to assist in the visualization and creation of 

vectors in remaining discussions. Each vector can be expressed in another coordinate system 

through the use of transformations defined in 4.9-13. Every vector is denoted with a superscript 

declaring the coordinate frame it is relative to and a subscript for reference. A brief overview of 

the coordinate systems follows: 

Image space coordinates  

i
f

u
p

v

 
=  

 

v  - 2D image space feature        4.5 
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 - 2D image space feature detected by the feature detection algorithm 4.6 

• Forms the 2 dimensional coordinate system in which images are captured. 

• The units are decimal pixels. 

• The origin is placed at the center of the image. 

Camera space coordinates  
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• Adds an additional dimension to image space to form a 3D coordinate system aligned 

with the body of the camera. 

• One separate coordinate frame for the pose of each image. 

• The origin is defined as the center of projection of the camera. 

• Units are meters. 

World space coordinates 

w
f

w w
f f

w
f

x

p y

z

 
 
 =
 
 
 

v
          4.8 

• Is defined using the North East Down (NED) convention. 

• Has an origin defined by the base station of the autopilot. 

• Units are meters. 

Images are initially processed using the image coordinate system discussed in equation 4.5. Key 

points are then identified in the coordinate system defined in equation 4.6. The image coordinate 

system can be extended to create the camera space coordinates by adding a third dimension. This 

yields a coordinate system that can express vectors relative to the image plane at the time a 

specific image was taken. Lastly, vectors in camera space can be expressed in the world space 

coordinates by taking into consideration the pose of the plane at the time the image was exposed. 

The coordinate spaces defined in 4.5-8 set a framework for vectors defined in each coordinate to 

be expressed in other coordinates. This allows vectors such as key points that have been defined 

in image space to be observed in camera space or compared with correlated key points in world 

space. Likewise, an estimate of a feature in world space can be projected into camera space and 

expressed in image space to be compared with the original detected key point. The ability to 

move between the many camera and image space coordinates to world space provides the ability 
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to make comparisons between overlapping images. The ability to express vectors in a common 

space provides the fundamental basis for BA and ABA. The transformations to express vectors 

from one space into another will follow in the paragraphs surrounding equations 4.9-15. 

Transformations from world space to camera space are accomplished with a rotation and a 

translation. Equation 4.1 defines the Euler angles used for the rotation and the position necessary 

for the translation for a specific camera denoted by the subscript k . Equation 4.9 can be used to 

transform vectors from world space into camera space and back again. This transformation is 

detailed in equations 4.11 and 4.12.  
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To move from camera space to world space as shown in 4.11, a feature location estimate w
fp

v
 is 

pre-multiplied by the rotation matrix defined in 4.8 and added to the camera position vector 

defined in equation 4.1 and 4.10. The additional translation is necessary since 
w

cR  can only 

perform rotations around the origin. The opposite transformation is described in equation 4.11. 

The translation must be performed in the opposite order since the rotation is defined around the 

origin. 
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Equations 4.10-12 show how vectors and positions can be expressed in either world space or 

camera space. The transformation from world space can be taken a step further into image space 

with a projection based upon the pinhole camera model. Given a vector in camera space c
fp

v
 a 

corresponding vector i
fp

v
 in image space can be calculated using equation 4.13. Equation 4.13 

performs a projection onto a defined image plane by multiplying by a ratio of similar triangles. 

Figure 4.4 shows this projection in a single dimension for u  and c
fx . The point c

fx  represents an 

object in camera coordinates to be projected on to an image plane that is f  away from the CoP. 

u  represents the projection of c
fx  onto the image plane. The two similar triangles are formed 

from u , c
fx , and the CoP. 

 

Figure 4.4 Single dimension view of the projection of a point in camera coordinates onto a 

defined image plane. 

i
fp

v
can then be found by multiplying by the ratio of f  and c

fz . 
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Given the transformation shown in equation 4.13, it is important to realize two key points. The 

transformation is non-linear since it is divided by c
fz . It then follows that any cost functions 

based upon projections of world space points onto an image plane will be non-linear as well. 

This has computational implications since a derivative of that cost function will be taken with 

respect to the state vector K
v

. The second notable point is that the projection from world 

c
fz

f

c
fx

u
CoP
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coordinates to image coordinates is not reversible. Since a degree of freedom is lost when 

converting from camera coordinates to image coordinates ( 3 2ℜ ⇒ ℜ ), there exist an infinite 

number of points along a line that that would yield the same i
fp

v
. This implies that a feature must 

have multiple perspectives to estimate a location in world space as described in figure 4.2. 

A set of infinite points can be calculated that contains the original c
fp

v
 discussed in equation 4.13 

by adding a dimension to the detected key point i
fp ′

v
.  

c
f

u

p v

f

 
 ′ =  
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Figure 4.5 Formation of a vector based upon an extracted feature 

Figure 4.5 depicts a single camera frame from figure 4.2 to graphically show the definition in 

equation 4.14. Although a single perspective of a feature does not define the location for w
fp

v , the 

feature’s location w
fp

v  can be estimated with multiple perspectives. Each perspective defines a 

vector along which the feature should lie. This forms the basis of the triangulation step and will 

be discussed in detail in chapter 5. 
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Camera Calibration 

The pinhole camera model is an idealization of what happens inside a camera lens. Real lenses 

have a systematic bias associated with the way the glass distorts light as it passes though. The 

distortion of the light path creates an image where straight lines no longer appear straight and 

geometric relationships between objects are not preserved. An empirical model has been 

developed that uses multiple distorted images of a precisely known target to characterize a lens.  

By altering the coefficients 1k , 2k , 1p , and 2p as defined in equations 4.16 and 4.17, a set of 

coefficients can be found that describe and correct the observed lens distortions.  

The process for calculating the coefficients of the distortion model is referred to as camera 

calibration. By using a target with known feature locations such as a checkerboard, the features 

detected in the image can be assumed to be evenly spaced and orthogonal in world space. The 

use of the checkerboard therefore eliminates the need to estimate the locations of the features and 

allows the calibration algorithm to instead solve for the pose of each camera and the distortion 

coefficients. Figure 4.6 shows an example of a checkerboard image used in the calibration 

process. It is important to note how the straight edges of the checkerboard appear curved in the 

distorted image. Lines intersecting near the center of the image are not as visibly affected since 

distortion is exaggerated near the edge of the image. Figures 4.6 and 4.7 were both taken from 

Jeff Finley [37]. 
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Figure 4.6 Example of significant lens distortion 
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The model discussed in equations 4.16 and 4.17 shows the calculated displacement of each pixel 

as a combination of radial and tangential distortions. Radial distortions make the largest 

contribution to the total distortion and are the most visible when comparing an undistorted image 

with the original. This can be confirmed by observing the graphical lens distortion shown in 

figures 4.8 and 4.9. The lens distorts light towards the center of the image. To correct the 

distortion that took place in the lens, pixels are moved outward according to the vector calculated 

by the distortion model to create an undistorted image. The difference between a distorted image 

and a corrected image can be seen in figure 4.7. Figure 4.7 contains significantly less content 

since pixels have been moved outside the bounds of the image during the correction process. In 

photogrammetry, the corrected location for a detected key point is computed and assumed to be 

part of the pinhole camera model for all future references. 

 

Figure 4.7 Corrected version of figure 4.4 using a calibration model 
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All distortion modeling has been done with a software package described in Heikilla [4] and 

implemented in The Camera Calibration Toolbox for MATLAB [25]. A map of the distortion 

model for the Rebel XT and the lens is shown in figures 4.8 and 4.9.  

The radial error is shown to dominate the image distortion and is introduced in equation 4.16. ρ  

is defined as the distance from the center of the image. The equation and figure both demonstrate 

how radial distortion is greatly exaggerated near the edge of the image. 
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Figure 4.8 Mapping of radial distortion for Canon Digital Rebel XT camera 

The tangential error is described by the following equation where ρ  is again defined as the 

distance from the principle point of the image. 
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Tangential distortion is a product of misalignment of the optical axis of the lens to create a lens 

configuration that is not orthogonal to the ccd and does not intersect the center of the ccd. This 

moves the principle point of the image and provides a shift in one direction to all pixels in the 

image. Due to advances in the machining mounts and the quality control of the placement of the 

ccd, tangential distortion is a small and usually negligible factor in the calibration model though 

the shift in principle point is significant. More detail on the camera calibration derivations can be 

found in [4][6][7][8]. 
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Figure 4.9 Mapping of tangential distortion components for Canon Digital Rebel XT 

camera 
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CHAPTER 5 - Cost Function Definition for Bundle Adjustment and 

Alternative Bundle Adjustment 

The cost function is the most critical part of the design of the triangulation step. It has a 

significant effect on the overall performance of the algorithm, the computational complexity, and 

the flexibility for additional variations. It also affects the preprocessing stages and how the 

images should be taken for optimal coverage. Both BA and ABA fulfill the requirements of 

triangulation, but each with different advantages and disadvantages. Chapter 5 builds upon 

chapter 4 by defining a cost function for BA and ABA. A discussion then follows each cost 

function that outlines the implications on the minimization and solution. The BA algorithm is 

reviewed but not discussed in detail due to the literature that is widely available in [3][10][26]. 

Bundle Adjustment Cost function 

The cost function for BA measures the magnitude of the error between a detected feature in 

image space and the image location of a projected feature estimate from world space. More 

specifically, the element of the cost vector c
v

 for one given feature is: 

′
−= i

f
i
f ppc

vv
      5.1 

where i
fp

v
 is calculated through the transformations described in 4.12-13 from a point in world 

space w
fp

v
 using the current state vector. 

′i
fp

v
 is defined as the location of a detected feature in 

image space. Based upon the relationship of measurements associated with c
v , there is one cost 

measurement for each detected feature in each image. Despite c  being a scalar, it is calculated by 

calculating the magnitude of two additional scalars from image space, u and v  from equations 
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4.5. c  therefore represents two measurements since both components must be minimized for c  to 

be minimized. Based upon the number of measurements from detected features and the number 

of unknown parameters, it is possible to determine if there are enough measurements to solve for 

the unknowns. For example, if there are o  cameras with n  features each with enough overlap so 

each feature is seen in m  images, the combined cost vector c
v  will be of size mn  by 1 . If the 

scene contains areas with large overlap, the cost vector can grow prohibitively large. Conversely 

it can be quite small if limited overlap is available. In the former case, the problem is greatly 

over-constrained and computationally expensive. The latter case may be computationally simple, 

but risks becoming under-constrained if there are fewer constraints than degrees of freedom. A 

more complete analysis of these requirements follows. 

• Every perspective of a feature contributes 2 equations. (u and v in the image plane)  

• Each feature has 3 unknowns for the position in world space.  

• Each calibrated camera has 6 unknowns for the pose. 

To create a constrained system of equations, the number of equations must be greater than or 

equal to the number of unknowns. Due to errors in detection and noise in the measurements, the 

system of equations should be over-constrained with more measurements than unknowns. At 

minimum the following inequality should be met: 

onnm 632 +≥  [38] 5.2 

The key point of the BA cost function is the world space estimation for each feature that is 

included with the state vector K
v

 as described in equation 4.3. It is notably different from the 

state vector defined in ABA that does not contain feature location estimates. More differences 

will be discussed in detail after ABA is explained.  
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Bundle Adjustment Jacobian 

Since the cost function c
v  is computed based upon the state vector K

v
, the detected feature 

locations, and a known camera projection model, J  can be computed analytically. This reduces 

the computational complexity and increases the accuracy of the resulting J  calculation when 

compared with a numerical estimate. Due to the large search space, J  can grow to become 

prohibitively large. If there are o  cameras with 6 unknown parameters and n  features with 

enough overlap so each feature is seen in m  images, then the resultant J  is of size n m∗  by 

6 3o n∗ + ∗ . It is important to take special notice of this size since the inversion of such a large 

Hessian will take significant computation resources. 

Advantages and Disadvantages of Bundle Adjustment 

The image space cost function has some great advantages due to the abstraction provided by the 

projection model. 

• Each feature has a single estimated location in world space. The certainty of that 

estimation can be calculated by the costs associated with that feature. A cost for which 

there is a relatively large error means the certainty of that location is poor. 

• There is no reward or punishment for changing the overall scale of the system. 

• J  naturally segments itself out into blocks that can be manipulated using sparse matrix 

techniques. 

Despite the many advantages, there is one major drawback. The search space for BA is very 

large. This presents a computational challenge that can be difficult to solve. To assist with this, a 

great deal of literature has documented the sparse nature of the BA cost function. Despite the 

large n m∗  by 6 3o n∗ + ∗  size of J , it can be broken into smaller blocks on which it is 

significantly easier to perform complex operations. Since the inverse of a matrix is considered 
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( )3O n  at worst using the Gaussian elimination method, a large search space can make the 

Hessian ( 6 3o n∗ + ∗  square) inversion problematic. Reference [10] discusses many of the 

improvements and solutions to the computational problem discussed here.  

Extensions of Bundle Adjustment 

The flexibility of the BA cost function makes it ideal for adding optimizations such as camera 

calibration. The parameters defined in 4.16-17 can be added to the state vector K
v

 and the cost 

function adjusted appropriately. References in [26] describe BA with camera calibration. Work 

on this thesis performed calibration before the triangulation step due to the static nature of the 

camera setup.  

Examples of BA 

Bundle Block BA (the commercial term referring to sparse matrix enhanced BA) has been 

implemented in several commercially available products. Though most of these products could 

be used to solve the triangulation problem, very little modification of the algorithm is available 

due to the commercial aspects. Other products using BA: 

• Sparse Bundle Adjustment  by M. Lourakis and A. Argyros 

• SOCET SET from BAE Systems 

• Leica Photogrammetry Suite for ERDAS Imagine 

Alternative Bundle Adjustment Cost Function 

Unlike BA, ABA does not explicitly estimate the location of each feature.  Instead it defines the 

minimum distance between a pair of rays emanating from two cameras in the direction of the 

observed feature. This yields a more intuitive cost function along with a much smaller state 
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vector K
v

 for minimization. This greatly simplifies the computation of the update step, and in 

many cases J .  

Figure 5.1 below shows the calculation for one element of the cost vector c
v

. Just as in BA, the 

cost function is an analytic calculation with an analytic J  as well. 1wp
v

and 2wp
v

 are the CoPs for 

an image. 1û
v

 and 2û
v

 are unit vectors that pass through the image points for a feature detected in 

both images. r̂
v

 is a unit vector that is perpendicular to both 1û
v  and 2û

v . 12P
v

 is the line between the 

CoPs.  

 

Figure 5.1 Calculation of the cost function for ABA in world space for two perspectives of 

one feature 

 

A single element of the cost vector is defined by equations 5.3 and 5.4 
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Here, 'ci
fp  is the detected feature vector defined in equation 4.14 and 'ci

wR  is the rotation matrix in 

equation 4.9 for camera each of two cameras. The magnitude of the minimum distance between 

the two rays can be found by projecting the vector between and two points on the rays onto the 

unit vector defining the mutually perpendicular direction, as in equation 5.4.  A feature appearing 

in n  images will have a total of ( )1 *n n−  elements in the cost vector associated with it. 

Advantages and Disadvantages of Alternative Bundle Adjustment 

Moving the cost function into world space changes the algorithm in several ways. The simpler 

cost function is the first obvious advantage and can lead to a simpler J . The simpler cost 

function also reduces the search space by only estimating the parameters associated with the 

camera poses. ABA adjusts J  to *( 1)n m m∗ −  by 6 o∗  as opposed to n m∗  by 6 3o n∗ + ∗  for BA. 

This reduction in search space reduces the size of H  to 6 o∗  square rather than 6 3o m∗ + ∗  square 

for BA. This makes for a simpler computation step when 1−H  is calculated in the update step of 

LMA.  The requirements for a constrained system of equations remain similar to the 

requirements for BA outlined in equation 5.2. However the number of required observations is 

smaller since there are no feature locations to solve for. The updated requirements are shown in 

equation 5.5. 

omnm 6)1(2 ≥−        5.5 

• Each feature has multiple estimated locations in world space.  

• Moving the cameras closer together reduces the overall scale and cost 
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• J  is less sparse than BA, but still sparse. 

Reducing the search space provides the biggest advantage over traditional BA. It also allows for 

changes in necessary overlap and camera models that do not conform to the pinhole camera 

model. The change in cost also introduces several artifacts that will be discussed in chapter 6. 
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CHAPTER 6 - Artifacts of ABA 

Despite the advantages of ABA’s cost function, reducing the search space has some negative 

effects on the final K
v

. The lack of explicit estimates for the feature locations allows the 

minimization algorithm to move in directions that yield a low cost with multiple estimates for 

each feature location. This results in a layering artifact that allows for a discontinuous 

topography surface. In addition to the layering artifact, the overall scale of the camera positions 

naturally shrinks since that will minimize the overall cost. Both of these artifacts and some 

remedies are explored in this chapter. 

Reduction of Scale 

The LM algorithm works to find a minimum solution by adjusting K
v

 in any direction that will 

yield a smaller cost. By reducing the distance between cameras, the entire scene is scaled down. 

This scaling effect also reduces the cost since it is based upon measurements in world space. 

This consistently rewards solutions with cameras closer together regardless of how well the 

extracted topography matches the true terrain. To retain an approximate scale, the differences 

between the initial guesses at the camera locations and those in K
v

 are added to the cost vector c
v . 

This additional cost penalizes the cameras that begin to drift from the initial GPS location, but 

also allows them to adjust for inaccuracies as is often necessary. A weighting factor can also be 

added to this cost vector element to encourage adjustments in orientation, the weakest estimate, 

but not position at the beginning of the search. The weighting can be reduced once the 

orientations are more certain. It should never be eliminated since the positions in K
v

 will reduce 

to a single point and become singular if left un-weighted. It is important to note that despite the 
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weighting, the set of final positions is always slightly smaller than the initial estimates from 

GPS. Since ABA rewards solutions with smaller scale, the cameras will move towards a central 

point until the weighting penalty adds more cost than is saved by moving the cameras. Since a 

higher weighting will generate a higher cost for the same distance from the original GPS, the 

amount by which the scale is reduced is inversely proportional with the weighting. 

Layering 

Since ABA does not keep an explicit estimate of the location of each feature, a cloud of 

estimated points exists for any one feature. This cloud should be reasonably small, but in some 

instances, singularities exist that make it large. Adding to this effect, a large spread for one 

feature is often closely correlated with a large spread in neighboring features. Neighboring 

features then share a similar range in elevation estimates and appear to form multiple layers. 

Since each location estimate is created from the intersections of unit vectors from two images, 

one layer appears for every pair of overlapping images. If an area has many perspectives with a 

wide range of elevations, a simple averaging technique would create discontinuities on the final 

surface where a layer ends. Fig 6.1 shows how this effect can be created despite a cost near zero.  
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Figure 6.1 An example of a sub-optimal zero cost solution with three estimates in a plane 

Much like figure 5.1, each line in figure 6.1 represents a scaled unit vector from a separate CoP 

intersecting the neighboring vectors. In this instance, a minimal cost solution has been found 

with multiple location estimates for a single feature. The intuitive solution to fix this artifact 

would be to add perspectives to increase the number of measurements. This does not reduce the 

uncertainty in this situation if the new perspectives are collinear with the original set of 

perspectives. If new perspectives were instead added such that they offer a view from the side of 

the same feature, the triangle in figure 6.1 would be forced to collapse due to the introduction of 

a new cost that cannot minimize the cost without minimizing the cloud. A perspective that yields 

a unit vector perpendicular to the paper in figure 6.1 would provide the optimal placement. This 

would greatly increase the cost for that feature while allowing an update that would eventually 

reduce the range of estimates and yield a better solution. Since the placement of CoPs is so 
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important, flight path planning and overlap is critical. If the overlap is strongly supported in one 

direction, and weakly supported in another, it will generate situations such as the one shown in 

figures 6.1-2. This has been tested in simulation, shown in figures 7.2-3, and witnessed with real 

data from photographs. 
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Figure 6.2 A zero cost solution with variable scale 

Figure 6.2 demonstrates the scaling issue applied to the layering effect that occurs with the ABA 

when all of the true camera positions are collinear or nearly collinear.  In figure 6.2, A, B and C 

are three camera locations and a, b, c and d are feature locations.  It is assumed that the scale 

between A and B is fixed and that the ray intersections from A and B occur at the true feature 

locations.  It is also assumed that the true position for C is along the line of A and B.  If the 

camera pose for C is oriented correctly, then it may slide along the line of the cameras while 

maintaining zero cost.  The rays from A and B for a particular feature form a plane.  If C is 

collinear with A and B, then its ray will also lie in the same plane.  The rays from C will 

therefore intersect the rays from A and B and provide zero cost irrespective of its position along 

the true line of the cameras.  BA does not have this issue since the feature locations are solved 

for explicitly and scale from one pair of images propagates throughout the entire set block. 
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Conclusions 

Despite the advantages of a greatly reduced state vector, the final minimized state vector and 

topography can have some limitations if the above artifacts are not considered. There are ways to 

avoid the pitfalls through proper image layout and minimization techniques. However, both 

solutions limit the final product and do not address the root cause of fewer defined states in the 

state vector. The disadvantages of the limited search space could be greater than the advantages 

of traditional BA when used in conjunction with other information for validity checks. When 

coupled with BA or another triangulation algorithm that does not suffer from the same artifacts, a 

final combined algorithm better than either could be possible. 
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CHAPTER 7 - Experimental Results 

Chapter 7 discusses experimental results that helped discover and demonstrate the artifacts 

presented in chapter 6. Two experiments were designed to show those artifacts and to prove the 

practicality with a final mosaic. The first experiment shows a simulated environment in which 

cameras and features can be arbitrarily placed and solved for using either algorithm.  K
v

 was 

found using ABA and the intersections points were calculated as shown previously. The 

intersection points calculated from K
v

 shown in figure 7.2 show the areas that had multiple 

overlapping perspectives that were collinear and those that were not. By using both collinear and 

non-collinear CoPs in the same minimization, it is clear that a low cost state vector can yield 

good or poor results depending on the camera placements. The second experiment shows the 

results from a set of images taken from 200m above the prairie and the comparisons to LIDAR 

scans of the same area. This experiment shows the practicality of ABA to produce the desired 

mosaics with experimental images as shown in figure 1.2. 

Layering Experiment 

A series of collinear CoPs will create a singularity as discussed in figure 6.1 and 6.2. To 

demonstrate this point, and allow for experimentation, a simulator was created that would allow 

for arbitrary placement of CoPs and features. Images were taken from the perspective of each 

CoP and stored along with a state vector and set of feature locations. Error was then added to the 

state vector and ABA was given the opportunity to correct the error using the generated images. 

Since the true feature locations and state vector are known, a quantifiable comparison between 

ABA and the truth is known. Figure 7.1 shows a scene with 20 collinear perspectives and one 
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additional offset perspective. Areas that fall within the collinear perspective will separate into a 

set of layers as discussed in chapter 6. The area within view of the offset perspective will settle 

into a single surface. The x’s in the xy plane in figure 7.1 represent features visible to the 

cameras denoted by x’s above the xy plane. 

 

Figure 7.1 Initial scene with features and CoPs visible 

Figure 7.1 from the simulation provides a scenario in which the layering artifact can be directly 

observed and tested. For this experiment, a randomly generated error is added to the initial pose 

estimates to simulate uncertainty from the autopilot sensors. (a range of 10m±  for position and 

11.5o±  for orientation) The minimization algorithm is then allowed to achieve a low cost by 

adjusting the state vector. However, the intersection points begin to degrade long before a 

minimum is discovered. As ABA continues to find a lower cost solution, the layers begin to 
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separate more. This effect is significantly less pronounced in the area observed by an additional 

non-collinear perspective. This area can be seen in the middle of the extracted intersection points 

shown in figure 7.2. 

 

Figure 7.2 Final solution with features and CoPs visible 

Figure 7.2 shows the calculated intersection points from the state vector found by ABA from the 

CoPs with error created by the simulation shown in figure 7.1. The sections on the left and right 

have separated into distinct layers due to collinear CoPs without a side perspective. The section 

in the middle has a significantly smaller range for each feature due to the non-collinear CoP 

indicated with the arrow. To show this effect more clearly, the intersection points of figure 7.2 

have been redrawn in figure 7.3 with fewer features.  
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Figure 7.3 6 selected features from figure 7.2 showing the range of values associated with 

each feature 

Figure 7.3 shows 6 of the same features shown in figure 7.2. Each feature has its own color to 

show the range of position estimates. The table below shows the range for each dimension for 

each feature. 

 Range in X (m) Range in Y (m) Range in Z (m) 

Yellow 5.37 2.39 35.80 

Blue 5.23 5.53 18.80 

Cyan .24 .18 .64 

Magenta .17 .21 .62 

Red 1.88 6.9 30.2 

Green .79 .90 3.8 

Table 7.1 6 selected features from figure 7.2 showing the range of values associated with 

each feature 

The cyan and magenta features are within the perspective of the offset camera and have a small 

range for the position estimate. This differs significantly when compared with the other 4 

features. It is important to note that all features have a significantly larger range in the Z 

direction than the X and Y due to the arrangement of the cameras and the relatively small field of 
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view. It is also important to notice that each feature has a vertical range of position estimates. A 

non-collinear CoP does not eliminate the position uncertainty, but it does reduce it. 

ABA with Aerial Photography 

The second experiment shows the extracted topography from a set of overlapping images and 

compares the results to a LIDAR scan of the same area. The extracted topography can then be 

combined with the aerial imagery to create a composite mosaic with geo-referenced content. The 

example shown in figures 7.4-8 has been generated with two parallel overlapping strips of 

images, one with of 5 images and the other with 6. The final arrangement of cameras is shown 

with the CoPs represented as blue x’s above a surface of red x’s representing the extracted 

topography.  

 

Figure 7.4 Extracted topography from 11 overlapping images 
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The calculated intersection points can be plotted along with the LIDAR scan of the same area for 

an accuracy comparison. The poses naturally wander in scale, position, and orientation as the 

minimization algorithm searches for a low cost solution. This yields a final surface that is 

rotated, scaled, and translated away from the LIDAR scan. To make a valid comparison, the 

DTM must be operated on by scale, rotation, and translation operations to align it with the 

LIDAR data. To provide reference for the scaling/rotation/translation operation, locations on the 

DTM were identified in the field and assigned geo-references with a GPS unit. The selected 

DTM points were then transformed for a best fit to the LIDAR scan with a least squares solution 

using the previously mentioned geo-references. The final model was then modified by manual 

adjustment. The final operation was a combination of rotation, translation and scaling. This 

allows for the correction of the wandering and adjustment of scale. 



` 55

 

Figure 7.5 The extracted topography overlaid on a LIDAR scan 

Figure 7.5 gives a broad view of how well the data fits the LIDAR scan for the same area. By 

sub-sampling just the LIDAR data surrounding the DTM, a more complete perspective of the 

data can be seen. Figure 7.6 shows a side perspective in which some of the data match can be 

visualized. A plot of the differences between the LIDAR scan and the DTM shows the accuracy 

of the middle section in figure 7.8. 
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Figure 7.6 The extracted topography overlaid on a subset of the LIDAR scan 



` 57

 

Figure 7.7 Side perspective of figure 7.6 to show a cross-section view 

If the calculated DTM is subtracted from the LIDAR surface, a surface can be calculated to show 

the difference between the two models. The center section has high-frequency content that stays 

within a 3m meter band and is a minor instance of the layering effect being averaged. The edges 

begin to deteriorate due to fewer tie-points from fewer overlapping images. If given more photos, 

the areas of great overlap would be significantly larger and less prone to distortion near the edge.  
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Figure 7.8 The difference between the topography and the LIDAR scan. It is important to 

note the error range is mostly within 3m for data near the center of the DTM. 

Mosaic Creation 

The geo-referenced mosaicing process can be completed once the DTM has been extracted and 

geo-referenced. The resulting map corresponds the content from the images to geo-spatial 

references with the referenced DTM. This allows all images to be combined and eliminates the 

redundant information from multiple overlapping images. The mosaic shown in figure 1.2 has 

been developed by projecting each image onto the DTM discussed above. For any location on 

the DTM, the camera with the most direct perspective is chosen to assign the pixel value. This 

creates a composite image with visible seams, but with content that is more likely to be correct 
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than if it were developed using pixel values from the edge of the images. There is no blending or 

feathering between images though it might improve the aesthetic qualities. Averaging and 

blending alters the data in unknown ways and is to be avoided. Radiometric corrections could be 

made if the angle of the surface was known for each location on the DTM. This data has not been 

calculated and would be an ideal extension for future work. 
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CHAPTER 8 - Future Research and Conclusions 

ABA has been shown to work well in refining the estimates of both feature locations and camera 

poses. However the final estimates are not close enough to create DTM’s and mosaics for 

applications requiring high precision. Despite the lack of accuracy the improvements are enough 

to make the problem tractable for BA to finish. This can be useful for finding solutions when 

previously BA would not be able to. In addition, the estimates are improved enough where the 

key point detection problem can be recalculated with a better estimation of where a detected key 

point might be able to find related matches. This can greatly reduce the search space for each 

possible key point while increasing the probability that the match is correct. When better 

correlation matches are coupled with better initial estimates, a good final product is more likely 

to be achieved. 

• ABA is computationally more efficient than BA in some situations. 

• ABA provides an improved set of estimates for BA to operate on. 

• ABA has problems with scale and feature location estimation. 

Future Research 

The work presented in this thesis could be expanded in several ways to allow for better state 

vector estimation and mosaic creation. A better key point detection algorithm would assist the 

algorithm with additional measurements between images. Areas that had sparse key point 

coverage such as the corners of the DTM would have much more data to extract the topography 

from. If an improved key point correlation was performed after the initial ABA step but before 
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the final BA process, a denser and more accurate set of correlations could be used. In addition, 

more work could be done on the visualization and output processes. BA could also be applied 

towards camera models without closed form projection models. This would eliminate the world 

space to image space transformation that is so important in the BA algorithm. Work is continuing 

in this area and appears to be the most logical application of ABA. 
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Appendix A - GNU Free Documentation License 

Version 1.2, November 2002 

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 

Everyone is permitted to copy and distribute verbatim copies 

of this license document, but changing it is not allowed. 

0. PREAMBLE 

The purpose of this License is to make a manual, textbook, or other functional and useful 

document "free" in the sense of freedom: to assure everyone the effective freedom to copy and 

redistribute it, with or without modifying it, either commercially or noncommercially. 

Secondarily, this License preserves for the author and publisher a way to get credit for their 

work, while not being considered responsible for modifications made by others. 

This License is a kind of "copyleft", which means that derivative works of the document 

must themselves be free in the same sense. It complements the GNU General Public License, 

which is a copyleft license designed for free software. 

We have designed this License in order to use it for manuals for free software, because 

free software needs free documentation: a free program should come with manuals providing the 

same freedoms that the software does. But this License is not limited to software manuals; it can 

be used for any textual work, regardless of subject matter or whether it is published as a printed 

book. We recommend this License principally for works whose purpose is instruction or 

reference. 

1. APPLICABILITY AND DEFINITIONS 

This License applies to any manual or other work, in any medium, that contains a notice 

placed by the copyright holder saying it can be distributed under the terms of this License. Such 

a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under 

the conditions stated herein. The "Document", below, refers to any such manual or work. Any 

member of the public is a licensee, and is addressed as "you". You accept the license if you copy, 

modify or distribute the work in a way requiring permission under copyright law. 
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A "Modified Version" of the Document means any work containing the Document or a 

portion of it, either copied verbatim, or with modifications and/or translated into another 

language. 

A "Secondary Section" is a named appendix or a front-matter section of the Document 

that deals exclusively with the relationship of the publishers or authors of the Document to the 

Document's overall subject (or to related matters) and contains nothing that could fall directly 

within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a 

Secondary Section may not explain any mathematics.) The relationship could be a matter of 

historical connection with the subject or with related matters, or of legal, commercial, 

philosophical, ethical or political position regarding them. 

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as 

being those of Invariant Sections, in the notice that says that the Document is released under this 

License. If a section does not fit the above definition of Secondary then it is not allowed to be 

designated as Invariant. The Document may contain zero Invariant Sections. If the Document 

does not identify any Invariant Sections then there are none. 

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts 

or Back-Cover Texts, in the notice that says that the Document is released under this License. A 

Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. 

A "Transparent" copy of the Document means a machine-readable copy, represented in a 

format whose specification is available to the general public, that is suitable for revising the 

document straightforwardly with generic text editors or (for images composed of pixels) generic 

paint programs or (for drawings) some widely available drawing editor, and that is suitable for 

input to text formatters or for automatic translation to a variety of formats suitable for input to 

text formatters. A copy made in an otherwise Transparent file format whose markup, or absence 

of markup, has been arranged to thwart or discourage subsequent modification by readers is not 

Transparent. An image format is not Transparent if used for any substantial amount of text. A 

copy that is not "Transparent" is called "Opaque". 

Examples of suitable formats for Transparent copies include plain ASCII without 

markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available 

DTD, and standard-conforming simple HTML, PostScript or PDF designed for human 

modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque 



` 65

formats include proprietary formats that can be read and edited only by proprietary word 

processors, SGML or XML for which the DTD and/or processing tools are not generally 

available, and the machine-generated HTML, PostScript or PDF produced by some word 

processors for output purposes only. 

The "Title Page" means, for a printed book, the title page itself, plus such following 

pages as are needed to hold, legibly, the material this License requires to appear in the title page. 

For works in formats which do not have any title page as such, "Title Page" means the text near 

the most prominent appearance of the work's title, preceding the beginning of the body of the 

text. 

A section "Entitled XYZ" means a named subunit of the Document whose title either is 

precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another 

language. (Here XYZ stands for a specific section name mentioned below, such as 

"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of 

such a section when you modify the Document means that it remains a section "Entitled XYZ" 

according to this definition. 

The Document may include Warranty Disclaimers next to the notice which states that this 

License applies to the Document. These Warranty Disclaimers are considered to be included by 

reference in this License, but only as regards disclaiming warranties: any other implication that 

these Warranty Disclaimers may have is void and has no effect on the meaning of this License. 

2. VERBATIM COPYING 

You may copy and distribute the Document in any medium, either commercially or 

noncommercially, provided that this License, the copyright notices, and the license notice saying 

this License applies to the Document are reproduced in all copies, and that you add no other 

conditions whatsoever to those of this License. You may not use technical measures to obstruct 

or control the reading or further copying of the copies you make or distribute. However, you may 

accept compensation in exchange for copies. If you distribute a large enough number of copies 

you must also follow the conditions in section 3. 

You may also lend copies, under the same conditions stated above, and you may publicly 

display copies. 

3. COPYING IN QUANTITY 
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If you publish printed copies (or copies in media that commonly have printed covers) of 

the Document, numbering more than 100, and the Document's license notice requires Cover 

Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover 

Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both 

covers must also clearly and legibly identify you as the publisher of these copies. The front cover 

must present the full title with all words of the title equally prominent and visible. You may add 

other material on the covers in addition. Copying with changes limited to the covers, as long as 

they preserve the title of the Document and satisfy these conditions, can be treated as verbatim 

copying in other respects. 

If the required texts for either cover are too voluminous to fit legibly, you should put the 

first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto 

adjacent pages. 

If you publish or distribute Opaque copies of the Document numbering more than 100, 

you must either include a machine-readable Transparent copy along with each Opaque copy, or 

state in or with each Opaque copy a computer-network location from which the general network-

using public has access to download using public-standard network protocols a complete 

Transparent copy of the Document, free of added material. If you use the latter option, you must 

take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to 

ensure that this Transparent copy will remain thus accessible at the stated location until at least 

one year after the last time you distribute an Opaque copy (directly or through your agents or 

retailers) of that edition to the public. 

It is requested, but not required, that you contact the authors of the Document well before 

redistributing any large number of copies, to give them a chance to provide you with an updated 

version of the Document. 

4. MODIFICATIONS 

You may copy and distribute a Modified Version of the Document under the conditions 

of sections 2 and 3 above, provided that you release the Modified Version under precisely this 

License, with the Modified Version filling the role of the Document, thus licensing distribution 

and modification of the Modified Version to whoever possesses a copy of it. In addition, you 

must do these things in the Modified Version: 
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A. Use in the Title Page (and on the covers, if any) a title distinct from that of the 

Document, and from those of previous versions (which should, if there were any, be listed in the 

History section of the Document). You may use the same title as a previous version if the 

original publisher of that version gives permission. 

B. List on the Title Page, as authors, one or more persons or entities responsible for 

authorship of the modifications in the Modified Version, together with at least five of the 

principal authors of the Document (all of its principal authors, if it has fewer than five), unless 

they release you from this requirement. 

C. State on the Title page the name of the publisher of the Modified Version, as the 

publisher. 

D. Preserve all the copyright notices of the Document. 

E. Add an appropriate copyright notice for your modifications adjacent to the other 

copyright notices. 

F. Include, immediately after the copyright notices, a license notice giving the public 

permission to use the Modified Version under the terms of this License, in the form shown in the 

Addendum below. 

G. Preserve in that license notice the full lists of Invariant Sections and required Cover 

Texts given in the Document's license notice. 

H. Include an unaltered copy of this License. 

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating 

at least the title, year, new authors, and publisher of the Modified Version as given on the Title 

Page. If there is no section Entitled "History" in the Document, create one stating the title, year, 

authors, and publisher of the Document as given on its Title Page, then add an item describing 

the Modified Version as stated in the previous sentence. 

J. Preserve the network location, if any, given in the Document for public access to a 

Transparent copy of the Document, and likewise the network locations given in the Document 

for previous versions it was based on. These may be placed in the "History" section. You may 

omit a network location for a work that was published at least four years before the Document 

itself, or if the original publisher of the version it refers to gives permission. 
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K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of 

the section, and preserve in the section all the substance and tone of each of the contributor 

acknowledgements and/or dedications given therein. 

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their 

titles. Section numbers or the equivalent are not considered part of the section titles. 

M. Delete any section Entitled "Endorsements". Such a section may not be included in 

the Modified Version. 

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title 

with any Invariant Section. 

O. Preserve any Warranty Disclaimers. 

If the Modified Version includes new front-matter sections or appendices that qualify as 

Secondary Sections and contain no material copied from the Document, you may at your option 

designate some or all of these sections as invariant. To do this, add their titles to the list of 

Invariant Sections in the Modified Version's license notice. These titles must be distinct from any 

other section titles. 

You may add a section Entitled "Endorsements", provided it contains nothing but 

endorsements of your Modified Version by various parties--for example, statements of peer 

review or that the text has been approved by an organization as the authoritative definition of a 

standard. 

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 

25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. 

Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through 

arrangements made by) any one entity. If the Document already includes a cover text for the 

same cover, previously added by you or by arrangement made by the same entity you are acting 

on behalf of, you may not add another; but you may replace the old one, on explicit permission 

from the previous publisher that added the old one. 

The author(s) and publisher(s) of the Document do not by this License give permission to 

use their names for publicity for or to assert or imply endorsement of any Modified Version. 

5. COMBINING DOCUMENTS 

You may combine the Document with other documents released under this License, 

under the terms defined in section 4 above for modified versions, provided that you include in 
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the combination all of the Invariant Sections of all of the original documents, unmodified, and 

list them all as Invariant Sections of your combined work in its license notice, and that you 

preserve all their Warranty Disclaimers. 

The combined work need only contain one copy of this License, and multiple identical 

Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections 

with the same name but different contents, make the title of each such section unique by adding 

at the end of it, in parentheses, the name of the original author or publisher of that section if 

known, or else a unique number. Make the same adjustment to the section titles in the list of 

Invariant Sections in the license notice of the combined work. 

In the combination, you must combine any sections Entitled "History" in the various 

original documents, forming one section Entitled "History"; likewise combine any sections 

Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all 

sections Entitled "Endorsements." 

6. COLLECTIONS OF DOCUMENTS 

You may make a collection consisting of the Document and other documents released 

under this License, and replace the individual copies of this License in the various documents 

with a single copy that is included in the collection, provided that you follow the rules of this 

License for verbatim copying of each of the documents in all other respects. 

You may extract a single document from such a collection, and distribute it individually 

under this License, provided you insert a copy of this License into the extracted document, and 

follow this License in all other respects regarding verbatim copying of that document. 

7. AGGREGATION WITH INDEPENDENT WORKS 

A compilation of the Document or its derivatives with other separate and independent 

documents or works, in or on a volume of a storage or distribution medium, is called an 

"aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of 

the compilation's users beyond what the individual works permit. When the Document is 

included in an aggregate, this License does not apply to the other works in the aggregate which 

are not themselves derivative works of the Document. 

If the Cover Text requirement of section 3 is applicable to these copies of the Document, 

then if the Document is less than one half of the entire aggregate, the Document's Cover Texts 

may be placed on covers that bracket the Document within the aggregate, or the electronic 
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equivalent of covers if the Document is in electronic form. Otherwise they must appear on 

printed covers that bracket the whole aggregate. 

8. TRANSLATION 

Translation is considered a kind of modification, so you may distribute translations of the 

Document under the terms of section 4. Replacing Invariant Sections with translations requires 

special permission from their copyright holders, but you may include translations of some or all 

Invariant Sections in addition to the original versions of these Invariant Sections. You may 

include a translation of this License, and all the license notices in the Document, and any 

Warranty Disclaimers, provided that you also include the original English version of this License 

and the original versions of those notices and disclaimers. In case of a disagreement between the 

translation and the original version of this License or a notice or disclaimer, the original version 

will prevail. 

If a section in the Document is Entitled "Acknowledgements", "Dedications", or 

"History", the requirement (section 4) to Preserve its Title (section 1) will typically require 

changing the actual title. 

9. TERMINATION 

You may not copy, modify, sublicense, or distribute the Document except as expressly 

provided for under this License. Any other attempt to copy, modify, sublicense or distribute the 

Document is void, and will automatically terminate your rights under this License. However, 

parties who have received copies, or rights, from you under this License will not have their 

licenses terminated so long as such parties remain in full compliance. 

10. FUTURE REVISIONS OF THIS LICENSE 

The Free Software Foundation may publish new, revised versions of the GNU Free 

Documentation License from time to time. Such new versions will be similar in spirit to the 

present version, but may differ in detail to address new problems or concerns. See 

http://www.gnu.org/copyleft/. 

Each version of the License is given a distinguishing version number. If the Document 

specifies that a particular numbered version of this License "or any later version" applies to it, 

you have the option of following the terms and conditions either of that specified version or of 

any later version that has been published (not as a draft) by the Free Software Foundation. If the 
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Document does not specify a version number of this License, you may choose any version ever 

published (not as a draft) by the Free Software Foundation. 

How to use this License for your documents 

To use this License in a document you have written, include a copy of the License in the 

document and put the following copyright and license notices just after the title page: 

Copyright (c) YEAR YOUR NAME. 

Permission is granted to copy, distribute and/or modify this document 

under the terms of the GNU Free Documentation License, Version 1.2 

or any later version published by the Free Software Foundation; 

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. 

A copy of the license is included in the section entitled "GNU 

Free Documentation License". 

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the 

"with...Texts." line with this: 

with the Invariant Sections being LIST THEIR TITLES, with the 

Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. 

If you have Invariant Sections without Cover Texts, or some other combination of the 

three, merge those two alternatives to suit the situation. 

If your document contains nontrivial examples of program code, we recommend 

releasing these examples in parallel under your choice of free software license, such as the GNU 

General Public License, to permit their use in free software. 


