Fast Publish/Subscribe Using Linux eBPF

Michael Tatarski, Helge Parzyjegla, Peter Danielis, and Gero Miihl
Institute of Computer Science
University of Rostock, 18051 Rostock, Germany
michaeltatarski@yahoo.de, {helge.parzyjegla, peter.danielis, gero.muehl} @uni-rostock.de

Abstract—In recent years, the requirements for publish/sub-
scribe systems have changed enormously. Mainly, this is due
to the vastly increasing number of smart objects, services, and
apps being connected to the cloud and their growing demand for
bandwidth and realtime message processing. Unfortunately, many
publish/subscribe systems are hardly able to handle both neces-
sary and available data rates when being built on conventional
network stacks that suffer from significant system overhead.

In this paper, we present a novel architecture for fast pub-
lish/subscribe that consists of an edge broker for preprocessing
notifications and a cloud broker that leverages eBPF to efficiently
process network packages and speed up notification delivery. We
address limitations of eBPF, discuss different filter options, and
quantify the achievable performance. The evaluation confirms a
significant performance improvement of the eBPF-enabled cloud
broker when compared to a conventional implementation.

I. INTRODUCTION

Publish/subscribe is a versatile communication pattern [1]
gaining a lot of interest in the Internet of Things (IoT) where
it connects reams of smart objects over the cloud to managing
services and (mobile) user applications [7]. In publish/sub-
scribe, a data producer, also called a publisher, generates no-
tifications about events of interest, e. g., a new sensor reading.
A data consumer, also called a subscriber, uses a subscription
to specify notifications in which it is interested to receive.
An intermediary notification service is then responsible to
deliver a published notification to all interested subscribers
that have a matching subscription. The resulting many-to-
many, indirect, data-centric, and asynchronous communication
is characterized by a high degree of decoupling [1] well suited
for flexible IoT applications.

The notification service is often realized by one or more
interconnected publish/subscribe brokers that exchange noti-
fications and subscriptions. Usually, brokers implement sub-
scription matching and notification forwarding on the applica-
tion layer using an overlay network which, on the one hand,
eases the development of sophisticated notification dissemina-
tion strategies. On the other hand, those brokers suffer from
significant system overhead when being built on top of those
general-purpose network protocol stacks that are part of our
contemporary operating systems [3].

In contrast, with the Linux extended Berkeley Packet Filter
(eBPF) framework [2], it is possible to load specific applica-
tion logic into deepest protocol layers in the operating system
kernel or driver where network packets can be processed with-
out much overhead. Experiments [5], [6] show a significant
performance improvement and reduction in latency. In the

following, we briefly discuss limitations of eBPF, sketch an
architecture for eBPF-based publish/subscribe, and evaluate
the achievable performance improvement.

II. EBPF CHALLENGES

The performance improvement by eBPF is offset by nu-
merous limitations [4] under which developers have to write
kernel space programs. To ensure the security and stability
of the Linux kernel, eBPF code is based on a restricted
instruction set, executed in an in-kernel virtual machine, and
verified before loading. Termination of eBPF programs is
enforced by not allowing dynamic loops and backward jumps
as well as restricting the calling of other eBPF programs in
order to avoid infinite recursions. Although predefined data
structures and libraries (i.e., helper functions) are available
for stateful processing and more complex tasks, respectively,
the management of the rather dynamic subscription tables for
forwarding notifications becomes very challenging. Moreover,
the only events that trigger the execution of network-related
eBPF code is the reception and sending of packets making
timeouts or periodic tasks (e. g., for the maintenance of data
structures) impossible. Finally, for buffering notifications in
order to better decouple publishers and subscribers in time,
eBPF is particularly not suited.

III. EBPF-BASED PUBLISH/SUBSCRIBE

To better cope with the eBPF challenges and limitations
above, we split our publish/subscribe middleware into two
main components: an edge broker and a cloud broker. The
edge broker is built on conventional network libraries, offers
a common publish/subscribe API to clients, and helps to
decouple publishers and subscribers, for example, by buffering
notifications whenever necessary. In addition, the edge broker
preprocesses notifications, aggregates subscriptions, and labels
their data packets accordingly before sending them into the
cloud. There, the cloud broker leverages eBPF to process the
packets as fast as possible and to forward the notifications to
edge brokers with subscribed clients.

A. Cloud Broker Overview

The cloud broker’s functions are implemented by several
cooperating eBPF programs that are bound to two kernel
network hooks. Programs at the eXpress Data Path (XDP)
hook are run directly after the packet has been received by
the network card. We mainly use the XDP hook to filter
and classify received packets as notifications or subscriptions.

Due to a preprocessing and appropriate labeling at the edge
broker, the registration of new subscriptions can already be
accomplished by a subsequent eBPF program at this early
stage. However, for forwarding notifications, we pass the
packet towards the next hook.

At the Traffic Control (TC) hook, the kernel has parsed a
packet’s fields and metadata and exposes this information in
the sk_buff data structure. Furthermore, helper functions are
now available that ease replacing the packet’s destination IP
address and recalculating checksums in order to forward the
notification to edge brokers with corresponding subscribers.

B. Channel-based and Topic-based Filtering

We support both channel-based and topic-based publish/sub-
scribe. With channel-based filtering, notifications are published
in a channel and forwarded to all subscribers of this channel.
We use the channel number as index in a BPF__ARRAY OF _MAPS
to access the channel’s forwarding table implemented as a
simple BPF_ARRAY that holds all IP addresses of edge brokers
with channel subscribers.

With topic-based filtering, notifications are published under
a topic and forwarded to all subscribers of this specific topic
or a superordinated topic, i.e., a higher-level topic that also
includes the more specific one. We let the edge brokers map a
notification’s topic string to an index number which is attached
as label to the notification’s packet. This is done for each
level of the topic hierarchy. Then, the cloud broker uses a
separate BPF_ARRAY OF MAPS for each hierarchy level and per-
forms multiple lookups with the corresponding label number,
respectively, in order to gather all forwarding destinations.

Please note that the depth of the topic hierarchy, the
maximum number of channels/topics (per hierarchy level),
and the maximum number of subscribed edge brokers per
channel/topic has to be statically set at compile time in order
to comply with eBPF restrictions (cf. Sect. II). If these do
not meet the runtime conditions, we simply ignore topics
from levels that are too low, merge them if channel numbers
overflow, and in case of too small forwarding tables, replace
the oldest entry with a new subscription.

IV. EVALUATION

In our evaluation, we compared the performance of the
eBPF-based cloud broker to a user space broker of equal
functionality that is written in C and uses conventional data-
gram sockets provided by Linux. We measured the number of
forwarded notifications per second for a growing set of sub-
scribers, 1. e., subscribed edge brokers, for both channel-based
and topic-based publish/subscribe. For topic-based filtering,
the topic hierarchy had three levels.

Figure 1 shows the evaluation results. The number of
processed notifications decreases in all configurations the more
subscribers are present to which a notification copy needs to be
forwarded. Channel-based filtering forwards more notifications
than topic-based filtering since it only requires one instead
of three forwarding table lookups. Finally, the eBPF broker
clearly outperforms the user space implementation by a factor
of 20 to 25 for both the channel- and the topic-based variant.

—m— eBPF (channels)

—e— eBPF (topics)

—A— User space (channels)
—— User space (topics)

107

109

10°

Notifications per Second

104

103

| | |
400 600 800

Number of Subscribers

|
0 200

Figure 1. Forwarded notifications for an increasing number of subscribers.

V. CONCLUSIONS

In this paper, we leveraged Linux eBPF to speed up the
processing and forwarding of notifications in channel-based
and topic-based publish/subscribe. We splitted our publish/
subscribe middleware into an edge broker programmed with
conventional means and an eBPF-based broker in the cloud. By
preprocessing notifications and subscriptions at the edge, we
were able to ease the forwarding in the cloud and to alleviate
some of the limitations of eBPF code. Our evaluation showed
that the eBPF-based broker outperforms a conventional user
space implementation by a factor of 20 to 25. This enormous
performance improvement justifies certain concessions w.r.t.
the dynamics of the application environment. In future, we
want to work on delivery guarantees for a reliable notification
dissemination as well as on strategies to scale out eBPF-based
broker deployments in the cloud.

REFERENCES

[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The
many faces of publish/subscribe. ACM Comput. Surv., 35(2):114-131,
June 2003.

[2] Linux Foundation. eBPF website. https://ebpf.io.

[3] I. Marinos, R. N. Watson, and M. Handley. Network stack specialization
for performance. SIGCOMM Comput. Commun. Rev., 44(4):175-186,
Aug. 2014.

[4] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal. Creating
complex network services with eBPF: Experience and lessons learned.
In IEEE Int. Conf. High Perform. Switch. Routing (HPSR), pages 1-8.
IEEE, 2018.

[5] S. Miano, F. Risso, M. V. Bernal, M. Bertrone, and Y. Lu. A framework
for eBPF-based network functions in an era of microservices. IEEE Trans.
Netw. Serv. Manag., 18(1):133-151, Mar. 2021.

[6] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and G. Carle.
Performance implications of packet filtering with linux ebpf. In 30th Int.
Teletraffic Congr. (ITC), pages 209-217. IEEE, 2018.

[71 Y. Sun, X. Qiao, B. Cheng, and J. Chen. A low-delay, lightweight
publish/subscribe architecture for delay-sensitive iot services. In IEEE
Int. Conf. Web Serv. (ICWS), pages 179-186. IEEE, 2013.

