
Bregman proximal minimization

algorithms, analysis and applications

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Mr. Mahesh Chandra Mukkamala

aus Jolapuram, Indien

Tübingen

2021

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 16.11.2021
Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter: Prof. Dr. Peter Ochs
2. Berichterstatterin: Prof. Dr. Emilie Chouzenoux
3. Berichterstatter: Prof. Dr. David Russell Luke

Acknowledgements
First and foremost, I would like to thank my advisor, Prof. Dr. Peter Ochs. Without his guidance and

consistent support, it would have been difficult, if not impossible for me to turn my passion of being an able

researcher into reality. His knack for finding my mistakes in the minutest of mathematical details has helped

me in learning at a faster pace and improving with time. His perfection has led us to publish some very high

quality research papers which would otherwise have been impossible. I will forever be indebted to my advisor

for accepting me as his PhD student.

I am deep grateful to the German Research Foundation, for providing me with the financial support for the

entirety of my PhD via DFG Grant OC 150/1-1.

I also convey my thanks to my second advisor, Prof. Dr. Jürgen Hausen. Even though our interaction was

brief, his quick responsiveness in certain administrative tasks is quite commendable and a quality which I

should also aim at. I also thank Prof. Dr. Emilie Chouzenoux for accepting to be a reviewer for my thesis. I

would also like to thank my research collaborators, Prof. Dr. Shoham Sabach, Prof. Dr. Thomas Pock, Felix

Westerkamp, Emanuel Laude, Prof. Dr. Daniel Cremers, Prof. Dr. Jalal Fadili. Their collaborations have

helped me gain the technical knowledge and the experience to solve hard and complicated problems patiently

and efficiently.

I would like to convey my thanks to Prof. Dr. Matthias Hein as he was the one who inspired me to embark

on this tough path of optimization and machine learning related research, in the early stages of my career.

My big thanks to Ellen Wintringer, Dr. Lars Schneider, Martina Jung for their support with the administrative

issues and Peter W. K. Franke for his support with the information and technical issues. Also, I am thankful

to my colleagues, Sheheryar Mehmood, Jan-Hendrik Lange, Shida Wang, Oskar Adolfson for all the fruitful

discussions we had during our research seminar, and support in general.

I would like to thank my family for their love and affection, without whom I would not have been able

to pursue my research ambitions. I convey special thanks to my wife Anu, for her continuous support,

understanding and love. Without her my life would be just incomplete. My son Shiva was born while I was

writing my thesis. Apart from his innocent love towards me, his full efforts to not let me finish my thesis is

commendable.

v

For

Anu and Shiva

Abstract
In this thesis, we tackle the optimization of several non-smooth and non-convex objectives that arise in practice.

The classical results in context of Proximal Gradient algorithms rely on the so-called Lipschitz continuous

gradient property. Such conditions do not hold for many objectives in practice, including the objectives arising

in matrix factorization, deep neural networks, phase retrieval, image denoising and many others. Recent

development, namely, the L-smad property allows us to deal with such objectives via the so-called Bregman

distances, which generalize the Euclidean distance. Based on the L-smad property, Bregman Proximal

Gradient (BPG) algorithm is already well-known. In our work, we propose an inertial variant of BPG, namely,

CoCaIn BPG which incorporates adaptive inertia based on the function’s local behavior. Moreover, we prove

the global convergence of the sequence generated by CoCaIn BPG to a critical point of the function. CoCaIn

BPG outperforms BPG with a significant margin, which is attributed to the proposed non-standard double

backtracking technique. A major challenge in working with BPG based methods is designing the Bregman

distance that is suitable for the objective. In this regard, we propose Bregman distances that are suitable to

three applications, matrix factorization, deep matrix factorization and deep neural networks. We start with

the matrix factorization setting and propose the relevant Bregman distances, then we tackle the deep matrix

factorization and deep neural network settings. In all these settings, we also propose the closed form update

steps for BPG based methods, which is crucial for practical application. We also propose the closed form

inertia that is suitable for efficient application of CoCaIn BPG. However, until here the setting is restricted to

additive composite problems and generic composite problems such as the objectives that arise in robust phase

retrieval are out of the scope. In order to tackle generic composite problems, the L-smad property needs to

be generalized even further. In this regard, we propose MAP property and based on which we propose Model

BPG algorithm. The classical techniques of the convergence analysis based on the function value proved to be

restrictive. Thus, we propose a novel Lyapunov function that is suitable for the global convergence analysis.

We later unify Model BPG and CoCaIn BPG, to propose Model CoCaIn BPG for which we provide the global

convergence results. We supplement all our theoretical results with relevant empirical observations to show

the competitive performance of our methods compared to existing state of the art optimization methods.

Keywords: Composite non-convex non-smooth minimization, non-Euclidean distances, Bregman distance,

Bregman Proximal Gradient method, inertial methods, deep learning, matrix factorization, deep linear neural

networks, global convergence, model functions, Lyapunov function.

ix

Zusammenfassung

In dieser Arbeit beschäftigen wir uns mit der Optimierung mehrerer nicht-glatter und nicht-konvexer Probleme,

die in der Praxis auftreten. Die klassischen Ergebnisse im Zusammenhang mit proximalen Gradientenverfahren

beruhen auf der sogenannten Lipschitz-kontinuierlichen Gradienteneigenschaft. Diese Bedingungen gelten

jedoch nicht für alle Zielfunktionen in der Praxis, einschließlich der Probleme, die bei der Matrixfaktorisierung,

tiefen neuronalen Netzen, dem Phase retrieval, der Bildentrauschung und vielen anderen auftreten. Eine neuere

Entwicklung, nämlich die L-smad-Eigenschaft, erlaubt es uns, solche Probleme über die sogenannten Bregman-

Distanzen zu behandeln, die die euklidische Distanz verallgemeinern. Basierend auf der L-smad-Eigenschaft

ist der Bregman Proximal Gradient (BPG) Algorithmus bereits bekannt. In unserer Arbeit schlagen wir

eine variante von BPG mit Momentum vor, nämlich CoCaIn BPG, die adaptive Trägheit basierend auf

dem lokalen Verhalten der Funktion einbezieht. Außerdem beweisen wir die globale Konvergenz der von

CoCaIn BPG erzeugten Sequenz zu einem kritischen Punkt der Funktion. CoCaIn BPG übertrifft BPG mit

einem signifikanten Vorsprung, was auf die vorgeschlagene nicht-standardisierte Double-Backtracking-Technik

zurückgeführt wird. Eine große Herausforderung bei der Arbeit mit BPG-basierten Methoden ist der Entwurf

der Bregman-Distanz, die für das Problem geeignet ist. In diesem Zusammenhang schlagen wir Bregman-

Distanzen vor, die für drei Anwendungen geeignet sind: Matrixfaktorisierung, tiefe Matrixfaktorisierung und

tiefe neuronale Netze. Wir beginnen mit der Matrixfaktorisierung und schlagen die relevanten Bregman-

Distanzen vor, dann gehen wir die tiefe Matrixfaktorisierung und tiefe neuronale Netzwerke an. In all diesen

Anwendunge schlagen wir auch die Update-Schritte in geschlossener Form für BPG-basierte Methoden vor,

was für die Praxis entscheidend ist. Wir schlagen auch die geschlossene Form der Trägheit vor, die für eine

effiziente Anwendung von CoCaIn BPG geeignet ist. Bis hierhin ist die Einstellung jedoch auf additive

zusammengesetzte Probleme beschränkt und generische zusammengesetzte Probleme, wie die Probleme, die bei

der robusten Phasenrückgewinnung auftreten, sind außerhalb des Rahmens. Um generische zusammengesetzte

Probleme angehen zu können, muss die L-smad-Eigenschaft noch weiter verallgemeinert werden. In diesem

Zusammenhang schlagen wir die MAP-Eigenschaft vor, auf deren Basis wir den Modell-BPG-Algorithmus

entwickeln. Die klassischen Techniken der Konvergenzanalyse, die auf dem Funktionswert basieren, erwiesen

sich als einschränkend. Daher schlagen wir eine neuartige Lyapunov-Funktion vor, die für die globale

Konvergenzanalyse geeignet ist. Später vereinen wir das Modell BPG und CoCaIn BPG, um das Modell

CoCaIn BPG vorzuschlagen, für das wir die globalen Konvergenzergebnisse liefern. Wir ergänzen alle unsere

theoretischen Ergebnisse durch relevante empirische Beobachtungen, um die konkurrenzfähige Leistung

unserer Methoden im Vergleich zu bestehenden State-of-the-Art-Optimierungsmethoden zu zeigen.

xi

Contents

Acknowledgements v

Abstract ix

Zusammenfassung xi

List of Figures xxi

1 Introduction 1

1.1 Introduction . 1

1.2 Overview . 5

1.2.1 Part I: additive composite setting . 5

1.2.1.1 Practical applications . 6

Standard phase retrieval. 6

Image denoising. 7

Matrix factorization. 7

Deep matrix factorization. 7

Deep neural networks. 8

Poisson linear inverse problems. 8

1.2.2 Part II: generic composite setting . 9

1.2.2.1 Practical applications . 9

Standard phase retrieval. 9

Robust phase retrieval. 10

1.3 Publications . 10

2 Convex analysis 11

2.1 Affine sets . 11

2.2 Convex sets . 12

2.2.1 Operations preserving convexity of sets . 13

2.2.2 Properties of convex sets . 13

xiii

xiv CONTENTS

2.3 Convex functions . 13

2.3.1 Operations preserving convexity of functions . 15

2.3.2 Convexity tests . 15

2.3.3 Conjugate function . 16

2.3.4 Subgradient and subdifferential . 16

2.4 Convex optimization . 16

2.4.1 Lipschitz continuous gradient . 16

2.4.2 Proximal Gradient Method . 17

2.4.3 Backtracking . 18

2.4.4 Accelerated Proximal Gradient Method . 19

2.4.5 Strong convexity . 19

3 Variational analysis 21

3.1 Variational analysis . 21

3.2 Subgradients and subdifferentials . 22

Regular subdifferential. 22

Failure of calculus with regular subdifferential. 22

Limiting subdifferential. 22

Critical points. 22

Fermat’s rule. 22

Horizon subdifferential. 23

Consequences. 23

Convex functions. 23

Subderivative. 23

3.3 Set convergence . 23

3.3.1 Subdifferentials with set convergence . 24

3.4 Normal cone and tangent cone . 24

Tangent cone. 25

Normal cone. 25

Clarke regularity. 26

Optimality conditions in constrained optimization. 26

Relation between subdifferentials and normal cones. 26

3.5 Lipschitz continuity and strict continuity . 27

3.5.1 Coercivity . 27

3.6 Subdifferentials based on the function structure . 27

3.6.1 Results on separable functions . 27

3.6.2 Results on additive functions . 28

3.6.3 Chain rule . 29

CONTENTS xv

3.6.4 Results on parametric functions . 29

3.7 KL framework . 30

3.7.1 Discussion . 33

4 Bregman distances 35

4.1 Abstract . 35

4.2 Introduction . 36

4.2.1 Contributions . 37

4.2.2 Related work . 38

4.3 Bregman distances . 38

4.3.1 Properties . 40

4.3.2 Examples . 40

4.4 The Bregman framework . 41

4.4.1 Smooth adaptable functions . 42

4.5 Bregman distance for matrix factorization . 43

4.5.1 Connection to related work in 2D setting . 43

Method 1. 43

Method 2. 44

Method 3. 44

4.6 Bregman distances for deep matrix factorization . 45

Even number of layers. 45

Odd number of layers. 46

Strong convexity of h. 46

4.7 Bregman distances for deep neural networks - Regression setting 47

4.7.1 Activation functions . 47

Sigmoid activation function. 48

Tanh activation function. 48

Softplus activation function. 48

4.7.2 Regression setting . 48

4.8 Bregman distances for deep neural networks - Classification setting 52

4.8.1 Deep linear neural networks . 54

4.8.2 Deep non-linear neural networks . 55

4.9 Chapter conclusion . 57

5 CoCaIn BPG 59

5.1 Abstract . 59

5.2 Introduction . 60

5.2.1 Contributions . 62

5.2.2 Related work . 62

xvi CONTENTS

5.3 The Bregman Proximal Gradient algorithm . 63

5.4 The inertial Bregman Proximal Gradient method . 64

5.4.1 The convex-concave backtracking procedure . 64

5.5 Well-posedness of CoCaIn BPG . 65

5.6 Convergence analysis of CoCaIn BPG . 67

5.6.1 Lyapunov function descent property of CoCaIn BPG 67

5.6.2 Global convergence for CoCaIn BPG . 68

5.6.3 CoCaIn BPG without backtracking . 70

5.6.4 Implementing the double backtracking procedure . 71

5.7 Numerical experiments . 71

5.7.1 Finding global minima of univariate functions . 71

5.7.2 Escaping spurious stationary points . 73

5.7.3 Quadratic inverse problems in phase retrieval . 74

`1-norm . 76

Squared `2-norm . 76

5.7.4 Non-convex robust denoising with non-convex TV regularization 77

5.8 Chapter conclusion . 79

6 Matrix factorization 81

6.1 Abstract . 81

6.2 Introduction . 81

6.2.1 Contributions . 82

6.2.2 Related work . 82

6.3 Closed form update steps for BPG-MF and CoCaIn BPG-MF 83

6.4 Discussion . 85

6.5 Experiments . 86

Algorithms. 86

Simple matrix factorization. 86

Statistical evaluation. 86

Matrix completion. 86

Non-negative matrix factorization. 88

Time comparisons. 88

6.6 Chapter conclusion . 89

7 Deep matrix factorization 91

7.1 Abstract . 91

7.2 Introduction . 91

7.2.1 Contributions . 92

7.2.2 Related work . 92

CONTENTS xvii

7.3 BPG for deep matrix factorization . 93

7.3.1 Closed form updates for BPG . 93

L2-regularization. 93

L1-regularization. 94

7.3.2 Global convergence of BPG for regularized DLNN . 94

7.4 CoCaIn BPG for deep matrix factorization . 94

7.4.1 Closed form inertia . 94

7.4.2 Global convergence of CoCaIn BPG for regularized DLNN 95

7.5 Discussion of BPG variants . 95

The base algorithm BPG. 95

BPG with backtracking. 96

BPG vs PALM. 96

Alternating vs non-alternating strategies. 96

Stochastic setting extensions. 96

7.6 Experiments . 96

Algorithms. 96

Experiment 1. 97

Experiment 2. 97

Experiment 3. 97

Analysis. 98

7.7 Chapter conclusion . 99

8 Deep neural networks 103

8.1 Abstract . 103

8.2 Introduction . 103

8.2.1 Contributions . 104

8.2.2 Related work . 105

8.3 Closed form updates . 105

8.3.1 Regularization . 106

L2-regularization. 106

L1-regularization. 106

8.4 Closed form inertia . 106

8.4.1 Closed form inertia - Regression setting . 106

8.4.2 Closed form inertia - DLNN - Classification setting . 107

8.4.3 Closed form inertia - DNN - Classification setting . 107

8.5 Experiments . 108

Regression setting with deep non-linear neural nets - Experiment A. 108

Classification setting with deep non-linear neural nets - Experiment B. 109

xviii CONTENTS

8.6 Chapter conclusion . 111

9 Model BPG 113

9.1 Abstract . 113

9.2 Introduction . 114

9.2.1 Contributions . 115

9.2.2 Related work . 116

9.3 Problem setting and Model BPG algorithm . 117

Discussion on Assumption G. 120

9.4 Gradient-like Descent sequence . 121

9.5 Global convergence analysis of Model BPG algorithm . 123

9.5.1 New Lyapunov function . 123

9.5.2 Sufficient descent property . 124

9.5.3 Relative error condition . 125

9.5.4 Subsequential convergence . 128

Discussion. 130

9.5.5 Global convergence to a stationary point of the Lyapunov function 131

9.5.6 Global convergence to a stationary point of the objective function 132

9.5.7 Convergence rates . 133

9.6 Examples . 134

9.6.1 Additive composite problems . 135

9.6.2 Composite problems . 137

9.7 Experiments . 139

Model BPG with backtracking. 139

9.7.1 Standard phase retrieval . 140

Model 1. 140

Model 2. 140

9.7.2 Robust phase retrieval . 142

9.7.3 Poisson linear inverse problems . 143

Closed form update step - No regularization. 145

Closed form update step - L1 regularization. 145

Closed form update step - L2 regularization. 146

9.8 Chapter conclusion . 147

10 Inertial Model BPG 149

10.1 Abstract . 149

10.2 Introduction . 149

10.2.1 Contributions . 150

10.2.2 Related work . 150

CONTENTS xix

10.3 Model CoCaIn BPG . 150

10.3.1 Implementation and double backtracking . 151

10.4 Global convergence analysis of Model CoCaIn BPG . 152

10.4.1 Descent property . 152

10.4.2 Relative error condition . 153

10.4.3 Subsequential convergence . 153

10.4.4 Global convergence . 155

10.4.5 Convergence rates . 155

10.5 Examples . 156

10.5.1 Additive composite problems . 156

10.5.2 Composite problems . 157

10.6 Experiments . 157

10.7 Chapter conclusion . 158

11 Conclusion and outlook 159

11.1 Conclusion . 159

11.2 Outlook . 160

A Appendix for Bregman distances - Chapter 4 163

A.1 Technical lemmas and proofs . 163

A.2 Proof of Proposition 4.5.0.1 . 166

A.3 Bregman distance and L-smad property . 167

A.3.1 Proof of Proposition 4.6.0.1 . 173

A.3.2 Results for H3. 174

A.3.3 Proof of Proposition 4.6.0.2. 174

A.4 Proof of Lemma 4.7.2.2 . 175

A.5 Proof of Lemma 4.7.2.3 . 176

B Appendix for CoCaIn BPG - Chapter 5 185

B.1 Proof of Lemma 5.5.0.1 . 185

B.2 Proof of Lemma 5.6.0.1 . 186

B.3 Proof of Proposition 5.6.1.1 . 187

B.4 Proof of Proposition 10.4.1.2 . 187

B.5 Proof of Theorem 5.6.2.1 . 188

B.6 Proof of Proposition 5.6.2.2 . 190

B.7 Proof of Proposition 5.6.2.3 . 191

B.8 Proof of Lemma B.8.0.1 . 191

B.9 Proof of Proposition 5.7.3.1 . 192

xx CONTENTS

C Appendix for matrix factorization - Chapter 6 193

C.1 Overview of the results . 193

C.2 Closed form solutions: Part I for matrix factorization . 193

Method 1: . 196

Method 2: . 196

C.2.1 Extensions to L2-regularized matrix factorization . 196

C.2.2 Extensions to graph regularized matrix factorization 196

C.2.3 Extensions to L1-regularized matrix factorization . 197

C.2.4 Extensions with nuclear norm regularization . 199

C.2.5 Extensions with non-convex sparsity constraints . 201

C.3 Closed form solutions: Part II for NMF variants . 202

C.3.1 Extensions to L2-regularized NMF . 205

C.3.2 Extensions to L1-regularized NMF . 206

C.3.3 Extensions to graph regularized non-negative matrix factorization 206

C.3.4 Extensions to symmetric NMF via non-symmetric relaxation. 207

C.3.5 Extensions to NMF with non-convex sparsity constraints (Sparse NMF) 208

C.4 Matrix completion problem . 209

C.5 Closed form solution with 5th-order polynomial . 210

C.5.1 Conversion to cubic equation . 212

C.5.2 Extensions to mixed regularization terms . 212

D Appendix for deep matrix factorization - Chapter 7 215

D.1 Proof of Theorem 7.3.2.1 . 215

D.2 Closed form update steps . 215

D.2.1 Proof of Proposition 7.3.1.1 . 216

D.2.2 L2-regularization . 217

D.2.3 Closed form updates for L1 Regularization . 217

D.3 Closed form inertia . 218

D.3.1 Proof of Proposition 7.4.1.1 . 218

D.3.2 Closed form inertia for matrix factorization . 219

E Appendix for deep neural networks - Chapter 8 221

E.1 Proof of Proposition 8.3.0.1 . 221

F Appendix for Model BPG - Chapter 9 223

F.1 Proof of Example 9.3.0.1 . 223

F.2 Model function preserves first order information . 223

F.3 Proof of Proposition 9.3.0.1 . 224

CONTENTS xxi

G Appendix for Inertial Model BPG - Chapter 10 225

G.1 Proof of Lemma 10.4.1.1 . 225

G.2 Proof of Proposition 10.4.1.1 . 226

G.3 Proof of Lemma 10.4.2.1 . 227

G.4 Proof of Proposition 10.4.3.2 . 228

G.5 Proof of Theorem 10.4.4.1 . 229

List of Figures

1.1 The inequalities in (1.1.3) guarantee that the objective function f(x) = x2 has a quadratic
concave minorant and a quadratic convex majorant at any y ∈ R with any L ≥ 2. 3

1.2 The inequalities in (1.1.5) guarantee that the objective function f(x) = x4 has a concave
minorant and a convex majorant that is not quadratic. Here, we use h(x) = 1

4x
4 and L ≥ 4

such that L-smad property holds true. Here, it is not possible to construct a quadratic majorant
or a quadratic minorant at every y ∈ R. 4

4.1 Illustration of the Bregman distance between two point x, y ∈ R. Set h(x) = x4. The Bregman
distance is the difference between h(x) and the linearization of h at y evaluated at x, which
we denote via the red line segment. 36

5.1 The inequalities in (5.2.2) guarantee that the objective function has a quadratic concave
minorant and a quadratic convex majorant. The proposed convex-concave backtracking
strategy locally estimates both the lower and the upper approximations using a double
backtracking procedure. 61

5.2 Better performance by CoCaIn. In the left-hand side plot, the function has a unique critical
point. CoCaIn BPG finds it faster than the other two methods. In the right-hand side plot, the
function has a very small gradient and CoCaIn BPG reaches a significantly lower function value
than the two other methods. These plots hint that CoCaIn BPG can significantly accelerate
the convergence speed with comparison to GD and iPiano which use only a simple backtracking
procedure. 72

5.3 CoCaIn can find the global minimum. The left-hand side plot explicitly shows the behavior
in terms of function values versus the iterations counter. In the center plot, we use x∗PG as a
short hand notation for the critical point achieved by the Proximal Gradient Method with
backtracking, and for CoCaIn BPG method we use x∗CoCaIn. The iPiano method achieves
the same critical point as the CoCaIn BPG method however it is slower. In the right-hand
side plot, we plot Lk (the minorant parameter) obtained by CoCaIn BPG method versus the
iterations counter. The hilly structures represent that CoCaIn BPG can bypass local maxima
and eventually converge to zero. Meaning that CoCaIn BPG adapts to the “local convexity" of
the function. 73

5.4 Function with spurious stationary points. The left-hand side plot shows the contours of the
objective function, and the four critical points (denoted with blue diamond). In the right-hand
side plot, we show the objective function, where the z-axis represents the function value. Here,
the critical points appear as downward kink. 74

5.5 CoCaIn can find the global minimum. The CoCaIn BPG algorithm finds the global minimum
at (1, 1), from various initialization points. 75

xxiii

xxiv LIST OF FIGURES

5.7 CoCaIn BPG for phase retrieval. The plots illustrate that CoCaIn BPG, CoCaIn BPG CFI and
BPG with backtracking performances are competitive to other state of the art optimization
algorithms. By suboptimality we mean the difference between the function value and the
minimum function value attained by any of the algorithms. The difference is very significant
when compared with BPG (without backtracking). This is due to the large L used in the
algorithm, thus resulting in smaller steps. On the other hand, CoCaIn BPG uses the local
parameters Lk and L̄k, thus enjoys larger steps. The function values versus the time plots
reveal that CoCaIn BPG rapidly attains a lower function value in a very early stage. Note
that CoCaIn BPG and CoCaIn BPG CFI perform very similarly, thus illustrating the benefits
of closed form solutions. 77

5.8 CoCaIn BPG for robust denoising. We denote `2-data term for the setting considered with
f0 set to squared `2-norm based loss and f1 set to (5.7.10). We denote `1-data term for the
setting with f0 set to `1-norm loss and f1 as in (5.7.10). By our setting, we consider (5.7.9)
and (5.7.10). The plots illustrate that BPG methods are competitive for the non-convex robust
image denoising problems. IBPM-LS from [139] is barely having any progress, due to flat
surfaces. However, BPG methods do not have this issue. The plots illustrate that CoCaIn
BPG performance is superior. Also, the reconstructed image obtained by applying CoCaIn
BPG to our setting gives a robust reconstruction compared to other reconstructed images. . 78

6.1 Simple matrix factorization on synthetic dataset. 87
6.2 Statistical evaluation on simple matrix factorization. 87
6.3 Matrix completion on Movielens datasets [83]. 88
6.4 Test RMSE plots on MovieLens datasets [83]. 88
6.5 Non-negative matrix factorization on Medulloblastoma dataset [35]. 89
6.6 Time plots for simple matrix factorization on synthetic dataset. 89
6.7 Time plots for non-negative matrix factorization on Medulloblastoma dataset [35]. 89
6.8 Time plots for matrix completion on MovieLens datasets [83]. 90

7.1 Convergence plots illustrate the competitive performance of CoCaIn BPG variants for DLNN. 97
7.2 Convergence plots illustrate the competitive performance of CoCaIn BPG for matrix completion

task. 98
7.3 Plots illustrate the competitive performance of CoCaIn BPG variants for DLNN in Experiment 1. 99
7.4 Time plots illustrate the competitive performance of BPG methods, PALM methods in

Experiment 1. 100
7.5 Convergence plots for Experiment 3 where BPG based methods and PALM based methods are

competitive. 101
7.6 Test RMSE plots for Experiment 2 illustrating the competitive performance of CoCaIn BPG

CFI. 101

8.1 Comparison on BPG, BPG-WB, FBS-WB on deep neural network with L2-regularization in
regression setting. Here, BPG-WB outperforms other methods in terms of function values
versus iterations or time. 109

8.2 Comparison on BPG, BPG-WB, FBS-WB on deep neural network with L1-regularization in
regression setting. Here, BPG-WB outperforms other methods in terms of function values
versus iterations or time. 109

8.3 Comparison on BPG, BPG-WB, FBS-WB on deep neural network with L2-regularization in
classification setting. Here, BPG-WB outperforms other methods in terms of function values
versus time and is competitive to FBS-WB in terms of function values versus iterations. . . . 110

LIST OF FIGURES xxv

8.4 Comparison on BPG, BPG-WB, FBS-WB on deep neural network with L1-regularization in
classification setting. Here, BPG-WB outperforms other methods in terms of function values
versus iterations or time. 110

8.5 We consider the plots of f1 function values versus iterations in the context of regression and
classification setting with L2-regularization. We compared BPG, BPG-WB and FBS-WB.
Here, either BPG-WB is competitive to or outperforms other algorithms. 111

8.6 We consider the plots of f1 function values versus iterations in the context of regression and
classification setting with L1-regularization. We compared BPG, BPG-WB and FBS-WB.
Here, either BPG-WB is competitive or outperforms other algorithms. 111

9.1 In this experiment we compare the performance of Model BPG, Model BPG with backtracking
(denoted as Model BPG-WB), and IBPM-LS [138] on standard phase retrieval problems, with
both L1 and squared L2 regularization. For this purpose, we consider M1 model function
as in (9.7.4) without absolute sign (which is the same setting as [28]), and with M2 model
function as in (9.7.6). Model BPG with M2 (9.7.6) is faster in both the settings and Model
BPG variants perform significantly better than IBPM-LS. By reg, we mean regularization. . 141

9.2 We illustrate that when Model BPG applied to standard phase retrieval problem in (9.7.3),
with model function chosen to be either Model 1 in (9.7.4) or Model 2 in (9.7.6), result in
sequences where the Lyapunov function value evaluations are monotonically nonincreasing. In
terms of iterations, Model BPG with Model 2 (Model BPG M2) is better than Model BPG
with Model 1 (Model BPG M1). In terms of time, Model BPG M1 and Model BPG M2
perform almost the same, however, towards the end Model BPG M2 is faster in both the cases.
By reg we mean regularization, and by Lyapunov f.v. we mean Lyapunov function values. . . 142

9.3 In this experiment we consider the performance of Model BPG vs Model BPG with Backtracking
(denoted as Model BPG-WB) vs IBPM-LS [138] on robust phase retrieval problems, with both
L1 and squared L2 regularization. Model BPG variants perform similarly and are better than
IBPM-LS. By reg, we mean regularization. 143

9.4 Under the same setting as in Figure 9.3, we illustrate that Model BPG when applied on robust
phase retrieval problems, with both L1 and squared L2 regularization, results in sequences with
monotonically decreasing Lyapunov function evaluations, thus validating Proposition 9.5.2.1.
By reg we mean regularization, and by Lyapunov f.v. we mean Lyapunov function values. . . 143

9.5 In this experiment we compare the performance of Model BPG, Model BPG with Backtracking
(denoted as Model BPG-WB) and IBPM-LS [138] on Poisson linear inverse problems with L1
regularization, squared L2 regularization and with no regularization. We set the regularization
parameter λ to 0.1. The plots illustrate that Model BPG-WB is faster in all the settings,
followed by Model BPG. 146

9.6 By Lyapunov f.v. we mean Lyapunov function values. Under the same setting as in Figure 9.5,
we illustrate here that Model BPG results in sequences that have monotonically nonincreasing
Lyapunov function value evaluations. 146

10.1 In this experiment we consider the performance of Model CoCaIn BPG vs Model BPG vs Model
BPG with Backtracking (denoted as Model BPG-WB) vs IBPM-LS [138] on robust phase
retrieval problem setting given in Section 9.7.2, with both L1 and squared L2 regularization.
We illustrate that Model CoCaIn BPG outperforms IBPM-LS by a significant margin and
other methods by a small margin, in terms of function value vs iterations. However, when
function value vs time plots are considered, Model BPG is faster compared to Model CoCaIn
BPG. 158

Chapter 1

Introduction

1.1 Introduction . 1
1.2 Overview . 5

1.2.1 Part I: additive composite setting . 5
1.2.1.1 Practical applications . 6

1.2.2 Part II: generic composite setting . 9
1.2.2.1 Practical applications . 9

1.3 Publications . 10

1.1 Introduction

Non-convex and non-smooth optimization is prevalent in many research fields such as Machine Learning,
Data Science, Computer Vision, Statistics and many others (for example, see Chapters 5, 6, 7, 8, 9, 10). By
non-convex, we mean not necessarily convex, and similarly by non-smooth, we mean not necessarily smooth.
The non-smoothness and non-convexity can arise due to various factors of the problem structure, such as
sparsity inducing function components, objectives enabling low rank structures, objectives enabling robust
statistics, function components based on robust regularization, optimization over a constraint set and many
others. Such factors in turn influence the design of optimization algorithms. Owing to the non-smoothness
and the non-convexity, the design and the availability of suitable algorithms is challenging. The standard
black box solvers developed for smooth optimization problems, such as Steepest Descent, Conjugate Gradient,
L-BFGS, Newton’s Method and many other algorithms are not suitable for non-smooth non-convex problems,
in general. There exist few extensions of such algorithms which are also valid for certain non-smooth problems,
however, such extensions are valid only in a restrictive setting. For example, BFGS is conducive for box
constraints, however, its generalization to generic constraint sets is difficult.

Moreover, the objective functions that arise in the above-mentioned research fields are usually large in scale,
as the datasets used in constructing the objectives are ever increasing in size. In order to optimize such
objectives efficiently, the plausible algorithms must have computationally cheap update steps. In this regard,
algorithms relying on line-search procedure are not preferable as each iteration can be computationally
expensive (for example, several function evaluations might be required at each iteration). Also, methods
relying on second-order information, such as Newton’s method, are not suitable as the involved updates are
either computationally expensive or numerically unstable. However, algorithms like Gradient Descent and

1

2 1.1. Introduction

some of its variants are preferable to tackle large-scale problems, as they rely on the first order information
thus resulting in computationally cheap updates. Such first order methods are increasingly becoming popular
(for example, see [13]). Notably, there exist several first order information based algorithms in the context of
convex optimization. Such algorithms and their corresponding theoretical guarantees are not suitable for
non-convex non-smooth problems, in general. However, it is possible to draw ideas from convex optimization
to develop suitable first order algorithms while tackling several of the above-mentioned factors that influence
the problem structure.

In order to achieve such a goal, it is important to detect the problem classes that enable a clear classification
of the properties of the objective, which in turn can be leveraged to develop first order algorithms. Some
popular problem classes include additive composite problem class (Chapter 5) and generic composite problem
class (Chapters 9). Additive composite setting essentially deals with functions, where the objective function
is made up of a non-smooth component and a smooth component. For example, objectives with a smooth
data term and a non-smooth regularization term fall under additive composite setting. The generic composite
problem setting involves objectives made up of a non-smooth function and a function which is a composition
of two functions. It is often the case that each problem class is explored individually to develop appropriate
algorithms. However, we discuss later in this thesis that it is possible to tackle both the problem classes and
beyond in an unified manner.

In the context of additive composite setting, the development of many popular algorithms, such as Proximal
Gradient Method (for example, see Chapter 2) and its inertial variant iPiano [137], relied on the so-called
Lipschitz continuous gradient property (defined below) of the smooth component of the objective. Notably,
many objectives that arise in practical applications have a Lipschitz continuous gradient. However, many
contemporary research problems use objectives that do not have a Lipschitz continuous gradient. For example,
objectives arising in matrix factorization, deep neural networks and many others do not have a Lipschitz
continuous gradient. Moreover, Lipschitz continuous gradient property is not suitable for composite problem
structures. This motivates various extensions of the Lipschitz continuous gradient property, which forms the
main premise of this thesis. In particular, we explore various extensions of the Lipschitz continuous gradient
property, develop related algorithms and provide their convergence analysis, while taking into consideration
several of above-mentioned factors that influence the problem structure.

In this regard, we consider the optimization of non-convex and non-smooth objectives of the following form:

inf
x∈RN

f(x), (1.1.1)

where f : RN → R is a proper lower semicontinuous function and is lower bounded. We assume that the
reader has some familiarity with the basics of real and convex analysis. As we will see in later chapters,
many practical applications fall under this category, such as Poisson linear inverse problems (Chapter 9),
phase retrieval problems (Chapter 5), matrix factorization problems (Chapter 6), deep matrix factorization
(Chapter 7) problems and many others.

Our main objective here is to develop algorithms that optimize (1.1.1) with theoretical convergence guarantees.
In order to achieve this goal, the function is required to have good structural properties. One such property
is the Lipschitz continuous gradient property, which we recall below. For illustration purposes, let f be
a continuously differentiable function over RN . The function f is said to be (classically) L-smooth (has
L-Lipschitz continuous gradient), if there exists L > 0, such that for all x, y ∈ RN , we have

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ . (1.1.2)

Chapter 1. Introduction 3

The norm used in the above equation is the `2-norm, and we use the same notation for the rest of this
thesis, unless specified otherwise. Simple one-dimensional functions like x2, log(1 + x2) have a Lipschitz
continuous gradient. Typical objectives arising in regularized least squares problems (for example, see [9])
have a Lipschitz continuous gradient. The setting in such problems involve A ∈ RM×N , b ∈ RM , and an
objective function f : RN → R given by f(x) = 1

2 ‖Ax− b‖
2. It is straightforward to see that the function f

has a L-Lipschitz continuous gradient with L =
∥∥ATA∥∥.

A notable implication of (1.1.2) is the following Descent Lemma:

f(y) + 〈∇f(y), x− y〉 − L

2
‖x− y‖2 ≤ f(x) ≤ f(y) + 〈∇f(y), x− y〉+

L

2
‖x− y‖2 , ∀x, y ∈ RN . (1.1.3)

The upper bound of the Descent Lemma is also referred to as a quadratic convex majorant, whereas the lower
bound is also referred to as a quadratic concave minorant. We illustrate the Descent Lemma in Figure 1.1,
where the upper and lower quadratic bounds of the Descent Lemma are provided for a one-dimensional
function f(x) = x2.

The above-mentioned Descent Lemma (1.1.3) plays a crucial role in the convergence analysis of Gradient
Descent, Proximal Gradient (PG) method and many others (see [13, 124]). For example, the update step
involved in the Gradient Descent algorithm is essentially the minimizer of the upper bound in the Descent
Lemma (1.1.3) at the current iterate, say xk ∈ RN , as illustrated below

xk+1 = argminx∈RN

{
f(xk) + 〈∇f(xk), x− xk〉+

L

2
‖x− xk‖2

}
⇔ xk+1 = xk −

1

L
∇f(xk) . (1.1.4)

Figure 1.1: The inequalities in (1.1.3) guarantee that the objective function f(x) = x2 has a quadratic
concave minorant and a quadratic convex majorant at any y ∈ R with any L ≥ 2.

Simple functions like x4, x3, (x2 + y2)2, (1 − xy)2 do not have a Lipschitz continuous gradient, thus the
quadratic bounds in the Descent Lemma do not exist. Several objectives that arise in practice also do not have
a Lipschitz continuous gradient, for example, the objectives that arise in phase retrieval, matrix factorization,
deep neural networks and many others (see Chapter 4). This means that algorithms based on the Lipschitz

4 1.1. Introduction

continuous gradient property are not applicable. This motivates the extensions of the Lipschitz continuous
gradient property which can be leveraged to produce algorithms with theoretical convergence guarantees.
One such extension is the L-smad property [28].

The key is to observe that the condition (1.1.3) is equivalent to the convexity of L‖ · ‖
2

2 − f and L‖ · ‖
2

2 + f .
The L-smad property (Definition 4.4.1.1) deals with replacing the squared `2 norm with a so-called Legendre
function (Definition 4.3.0.1), say h. For simplicity, we use a convex and a continuously differentiable h. The
L-smad property states that a pair of functions (f, h) is L-smad on RN if there exists a constant L > 0 such
that the functions Lh − f and Lh + f are convex on RN . This eventually implies an Extended Descent
Lemma given by

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ LDh(x, y) , ∀x, y ∈ RN , (1.1.5)

where Dh(x, y) is the Bregman distance between the points x, y generated by h given by

Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉 ,

and f is assumed to be continuously differentiable over RN . Notably, the bounds in the L-smad property
need not be quadratic, and the bounds with higher order behavior can be incorporated via an appropriate
Bregman distance. The precise setting will be explained later in Chapter 5. We illustrate the Extended
Descent Lemma for a simple function x4 in Figure 1.1, where the upper and lower bounds of the Extended
Descent Lemma are considered at a point y. Due to choice of the Bregman distance, the bounds in Figure 1.1
are quartic and not quadratic.

Figure 1.2: The inequalities in (1.1.5) guarantee that the objective function f(x) = x4 has a concave
minorant and a convex majorant that is not quadratic. Here, we use h(x) = 1

4x
4 and L ≥ 4 such that L-smad

property holds true. Here, it is not possible to construct a quadratic majorant or a quadratic minorant at
every y ∈ R.

Based on this Extended Descent Lemma, the popular Bregman Proximal Gradient (BPG) algorithm was
proposed in [28] with a global convergence guarantee. The update step of BPG is essentially the minimizer of

Chapter 1. Introduction 5

the upper bound in (1.1.5), as illustrated below

xk+1 = argminx∈RN {f(xk) + 〈∇f(xk), x− xk〉+ LDh(x, xk)} .

Such an update step was classically considered in the so-called Mirror Descent (for example, see [14]) update
step. BPG is more general and will be discussed in Chapter 4.

Equipped with the above-mentioned notions, in this thesis we aim to answer the following questions.

• The update step of BPG relies on the upper bound of the L-smad property. However, the significance
of the lower bound is not clear. Thus, we ask the questions: What is the significance of the lower
bound? What are its implications? How can it be leveraged in optimization algorithms? Can we
achieve theoretical convergence guarantees to such algorithms?

• For illustrative purposes, we relied on the continuous differentiable property of f . In general, this need
not hold. In this regard, we ask the questions: Is the L-smad property valid in general? If so, what
class of problems is it valid for? If not, are there any extensions of the L-smad property? How can
we leverage both the upper and lower bounds in such extensions in optimization algorithms? What
guarantees do such algorithms have?

We describe our contributions below.

1.2 Overview

We broadly classify our work into two parts, namely,

• Part I: additive composite setting (Chapter 4 - 8),

• Part II: generic composite setting (Chapter 9 - 10).

1.2.1 Part I: additive composite setting

The problems of type (1.1.1) are difficult to tackle due to their generic nature. We first aim at solving a
special case of the above problem, namely the additive composite problems given by

inf
x∈RN

f(x) , f(x) := f0(x) + f1(x) , (1.2.1)

where f0 is a proper lower semicontinuous function and f1 is a continuously differentiable function that
satisfies certain favorable properties, which we will detail later. The separable nature of the function f can be
exploited to develop the relevant algorithms. Many practical applications such as phase retrieval (Chapter 5),
matrix factorization (Chapter 6), deep matrix factorization (Chapter 7) and many others fall under the
category of additive composite problems. Thus, it is justified to explore these problems initially and we later
consider the optimization problem in (1.1.1). We aim at providing first-order algorithms that are suitable for
additive composite problems of type (1.2.1) based on the L-based property.

We recall the Bregman distance notion and several of its properties in Chapter 4. We also recall the L-based
property in Chapter 4. In Chapter 5, we recall the popular BPG algorithm [28] which is based on the
L-smad property. In the same chapter, we propose the CoCaIn BPG algorithm, which is an inertial variant of
BPG. We note that BPG relies only on the upper bound for the function obtained via the L-smad property.

6 1.2. Overview

However, CoCaIn BPG makes use of both upper and lower bounds in the L-smad property in order to
incorporate inertia, that is conducive for non-convex non-smooth problems. Both BPG and CoCaIn BPG
rely on Bregman distances, which can be problem-dependent. Designing such Bregman distances is usually
non-trivial and hard. In this regard, we tackle the following applications in the context of additive composite
problems:

• standard phase retrieval (see Chapter 5),

• image denoising (see Chapter 5),

• matrix factorization (see Section 4.5 and Chapter 6),

• deep matrix factorization (see Section 4.6 and Chapter 7),

• deep neural networks (see Section 4.7, Section 4.8 and Chapter 8),

• Poisson linear problems (see Chapter 9).

Detailed discussion about the applications is provided below in Section 1.2.1.1. For most of the above
mentioned applications, we propose Bregman distances that are suitable for the problem in Chapter 4, which
in turn results in the applicability of BPG algorithms and their theoretical guarantees. In other cases, we
use the previously proposed Bregman distances from the literature. For each of the application mentioned
above, we provide relevant empirical illustrations by comparing BPG based algorithms with other state of
the art algorithms and show the competitiveness of BPG based algorithms. For certain problems, we propose
a variant of CoCaIn BPG, namely CoCaIn BPG CFI, where CFI stands for closed form inertia. We develop
the theory required for CoCaIn BPG CFI, which involves obtaining the closed form solution for the inertia in
the CoCaIn BPG algorithm.

1.2.1.1 Practical applications

We briefly detail here the above-mentioned practical applications.

Standard phase retrieval. In Chapter 5, 9, we consider the standard phase retrieval problem, a special
case of the so-called quadratic inverse problems. Tackling the phase retrieval problem has been an active area
of research in the recent years [40, 47, 64, 110, 164]. The setting involves certain sampling vectors ai ∈ RN

and measurements bi > 0, for i = 1, 2, . . . ,M . The goal is to find x ∈ RN , for which the following quadratic
system of equations is approximately satisfied:

|〈ai, x〉|2 ≈ b2i , ∀ i = 1, 2, . . . ,M. (1.2.2)

Such system of quadratic equations is solved through the following optimization problem:

min
x∈RN

{
f(x) :=

1

M

M∑
i=1

(xTAix− bi)2 +R(x)

}
, (1.2.3)

where R(x) is the regularization term and Ai = aia
T
i , for i = 1, 2, . . . ,M . The Bregman distances that are

suitable for this problem were initially considered in [28]. We use the same Bregman distances in order to
apply BPG and CoCaIn BPG (see Chapter 5) for the above-mentioned phase retrieval problems.

Chapter 1. Introduction 7

Image denoising. In Chapter 5, we consider the problem of image denoising of a given possible noisy image
b ∈ RM×N , where M,N ∈ N. The goal is to obtain the true image, denoted by x ∈ RM×N . Such problems
are popular in the context of image processing [36]. We need the following technical details to provide the
full problem statement. The spatial finite difference operator is given by (Dx)i,j :=

(
(Dx)1

i,j , (Dx)2
i,j

)
where

i ∈ [M] and j ∈ [N]. The horizontal spatial finite differences are given by (Dx)1
i,j := xi+1,j − xi,j for all

i < M and 0 otherwise. The vertical spatial finite differences are given by (Dx)2
i,j := xi,j+1 − xi,j for all

j < N and 0 otherwise. In the setting of (1.2.1), the problem here involves the following functions

f0 (x) :=
M∑
i=1

N∑
j=1

log (1 + |xi,j − bi,j |) , (1.2.4)

f1 (x) := λ

M∑
i=1

N∑
j=1

log
(

1 + ρ ‖(Dx)i,j‖22
)
, (1.2.5)

where λ, ρ > 0. The function f0 is non-smooth non-convex and f1 is smooth non-convex. The function f1 is
a non-convex variant of the popular Total Variation (TV) regularizer, which is used to prefer smooth signals
while preserving sharp changes in the signal (such as edges of images). We show that the proposed variants
of BPG outperform other state of the art optimization methods. We also illustrate that the denoised image
obtained with our setting is much better compared to various other choices of f0.

Matrix factorization. The matrix factorization problem is considered in Section 4.5 and Chapter 6. Matrix
factorization has numerous applications in machine learning [112, 156], computer vision [48, 82, 157, 170],
bio-informatics [35, 155] and many others. Here given a matrix A ∈ RM×N , one is interested in the factors
U ∈ RM×K and Z ∈ RK×N such that A ≈ UZ holds. This is usually cast into the following non-convex
optimization problem

min
U∈U ,Z∈Z

{
f(U,Z) ≡ 1

2
‖A− UZ‖2F +R1(U) +R2(Z)

}
, (1.2.6)

where U ,Z are constraint sets and R1,R2 are regularization terms. In Section 4.5, we propose the Bregman
distances that are suitable for the matrix factorization problem such that the L-smad property holds. Using
such Bregman distances, we propose further the BPG-MF and the CoCaIn BPG-MF algorithms in Chapter 6,
which are actually the special cases of BPG and CoCaIn BPG for the matrix factorization setting. Moreover,
we provide various pointers for efficient implementation of these algorithms and various empirical observations
are provided to illustrate the superior performance of BPG methods over the classical alternating technique
based methods (for example, PALM [26] or iPALM [144]).

Deep matrix factorization. In Section 4.6 and Chapter 7, we consider the following optimization problem

min
Wi∈Wi ,∀i∈{1,...,N}

{
f(W) :=

1

2
‖W1W2 · · ·WNX − Y ‖2F +R(W)

}
, (1.2.7)

where N denotes the number of layers and R(W) is certain separable regularization term. Such problems
arise in the context of deep matrix factorization or deep linear neural networks [77, 175]. We denote by
Wi = Rdi×di+1 where di ∈ N, for all i ∈ {1, . . . , N}. Let dN+1 = d and X ∈ Rd×nT be fixed, where nT ∈ N,
which typically corresponds to the number of training samples. Similarly we have fixed Y ∈ Rd1×nT , which

8 1.2. Overview

typically corresponds to the labels of the inputs in X. We denote by W := (W1, . . . ,WN), meaning W lies in
the product space W :=W1×· · ·×WN , equipped with the norm ‖W‖2F :=

∑N
i=1 ‖Wi‖2F . We focus on N ≥ 2

in this thesis. Deep matrix factorization model also has applications in matrix completion (c.f. Section 7.6).
We develop Bregman distances suitable for this setting in Section 4.6. On deep matrix factorization problems,
we provide empirical observations of BPG and CoCaIn BPG algorithms vs the alternating strategy based
algorithms such as PALM [26] and iPALM [144], and also non-alternating strategy based algorithms such as
forward–backward splitting with backtracking (FBS-WB) and iPiano with backtracking (iPiano-WB) [137].
Here, CoCaIn BPG is the best performing algorithm compared to other algorithms.

Deep neural networks. Deep neural networks has been an active area of research in the recent years [77],
due to the state of the art performance on various artifical intelligence tasks [77, 96, 105, 154]. In this regard,
we consider two problem settings, the regression setting and the classification setting. We start with the
description of the regression setting. In Chapter 8, under the same notation as in deep matrix factorization,
we consider the following optimization problem that arises in deep neural network training:

min
Wi∈Wi ∀i∈[N]

{
f(W) :=

1

2
‖σN (WN . . . σ1(W1X))− Y ‖2F +R(W)

}
, (1.2.8)

where σi : RN → R, for i = {1, . . . , N} are the so-called activation functions (Definition B), that are smooth
and R(W) is certain separable regularization term. The above given problem falls under the category of
regression setting. We now describe the classification setting. Let K be the number of classes. Given a
training dataset with M inputs, denoted xj ∈ Rd1 for j ∈ {1, . . . ,M}, and the corresponding class jk in
{1, 2 . . . ,K} for each input. Continuing the notation in the regression setting, xj is the jth column of X and
set K = d, M = nT . Here, the label for the jth sample would be yj ∈ RN , such that all the elements are zero
except the jthk element which is set to one. The goal is find a model which uses this training dataset to predict
the class labels for new unseen datapoints. In the classification setting, we consider the following objective:

min
Wi∈Wi ∀i∈[N]

f(W) :=
M∑
j=1

(
− log

(
ezj,jk∑K
k=1 e

zj,k

))
+R(W)

 . (1.2.9)

where the vector zj ∈ RN is generated via certain deep neural network, which can be possibly be a linear
network or a non-linear network for the jth sample and zj,jk is the jthk coordinate of zj , jk denotes the class
of jth sample and it lies in {1, 2 . . . ,K}. For j ∈ {1, . . . , N}, with deep linear neural networks we have
zj = W1 . . .WNxj , and with generic deep non-linear neural network we have zj := σN (WN . . . σ1(W1xj)). For
both the regression and the classification settings, we provide Bregman distances in Chapter 4 and closed
form solutions for the update steps of BPG algorithms are provided in Chapter 8. We also provide few
efficient ways to implement CoCaIn BPG in Chapter 8. Using real world datasets, we provide few empirical
comparisons on BPG vs BPG-WB (BPG with backtracking) vs FBS-WB (forward–backward splitting with
backtracking), and illustrate that BPG-WB is the best performing method.

Poisson linear inverse problems. Inverse problems under Poisson noise have various applications in
nuclear medicine, electron microscopy and many others [18, 176]. For all i = 1, . . . ,M , let bi > 0, ai 6= 0 and
ai ∈ RN+ be known. For any x ∈ RN+ , 〈ai, x〉 > 0 and

∑M
i=1(ai)j > 0, for all j = 1, . . . , N , i = 1, . . . ,M . The

Chapter 1. Introduction 9

optimization problem involved in Poisson linear inverse problems is:

min
x∈R+

{
f(x) :=

M∑
i=1

(〈ai, x〉 − bi log(〈ai, x〉)) + φ(x)

}
, (1.2.10)

where φ is the regularizing function, which is potentially non-convex. For this problem, the suitable Bregman
distances were already developed in previous works such as [10, Lemma 7]. We use their ideas to illustrate
the applicability of Model BPG algorithm. We provide empirical comparisons of Model BPG variants vs
IBPM-LS [139].

In all of the above mentioned problems, we illustrate the numerical competitiveness of our methods based on
the BPG.

1.2.2 Part II: generic composite setting

Additive composite setting can be restrictive and certain practical applications such as robust phase retrieval
(Chapter 9) and many other problems are out of the scope. Thus, we consider the optimization of generic non-
smooth non-convex problems of type (1.1.1) in Chapter 9, 10. Firstly, note that the continuous differentiability
of f required in the L-smad property is restrictive. Simple functions like

∣∣x4 − 1
∣∣ and many objectives that

arise in practice are not continuously differentiable. Thus, more general notion compared to the L-smad
property is sought. Based on the initial work in [55], we propose an extension of L-smad property, which
we call as MAP property in Chapter 9. MAP property relies on the notion of so-called model function (see
Definition 9.3.0.2) which serves as a local function approximation satisfying certain growth property. Based on
the model function notion and the MAP property, we propose an extension of the BPG algorithm, which we
call Model BPG. This unifies several algorithms that are suitable for several generic composite problems and
additive composite problems, for example, Proximal Gradient Method [13, Chapter 10], Bregman Proximal
Gradient [28], Prox-Linear Method [43, 62] and many others. The convergence analysis of Model BPG is
non-trivial and requires the development of new theoretical tools. In this regard, we propose a novel Lyapunov
function as a measure of progress for the Model BPG algorithm and provide the global convergence analysis
for the sequence generated by Model BPG. We later provide an inertial variant of Model BPG that relies on
the same strategy as CoCaIn BPG, which we call Model CoCaIn BPG. Based on similar theoretical tools of
Model BPG, we provide the convergence analysis for Model CoCaIn BPG.

In the context of generic composite problems, we consider the following applications:

• standard phase retrieval (see Chapter 9),

• robust phase retrieval (see Chapter 9, 10).

1.2.2.1 Practical applications

We briefly detail here the above-mentioned practical applications.

Standard phase retrieval. We have provided a brief explanation of the standard phase retrieval problem
in Section 1.2.1.1. In Chapter 9, we use the same objective and rewrite it such that it falls under generic
composite problem setting. Here, we illustrate the applicability of Model BPG and its variants.

10 1.3. Publications

Robust phase retrieval. Considering the same notation as in the standard phase retrieval problem
provided above, the robust phase retrieval problem involves the following optimization problem :

min
x∈RN

{
f(x) :=

1

M

M∑
i=1

∣∣xTAix− bi∣∣+R(x)

}
,

where R(x) is the regularization term. Such a setting was recently explored in [56, 64]. We note that the
above-mentioned problem falls under generic composite problem category considered in Chapter 9, 10. For
this case, we illustrate the applicability of Model BPG in Chapter 9 and Model CoCaIn BPG in Chapter 10.

1.3 Publications

Some chapters in this thesis comprises the content of some journal publications, conference publications and
pre-prints which we list below. The Chapter 9 comprises the content of a paper that is in review for a journal.
The content in Sections 4.7 and 4.8, Chapters 8 and 10 is neither published anywhere nor in review.

The Chapter 5 comprises the content of the following publication ([121]):

• M. C. Mukkamala, P. Ochs, T. Pock, and S. Sabach. Convex-Concave backtracking for inertial Bregman
Proximal Gradient algorithms in non-convex optimization. SIAM Journal on Mathematics of Data
Science, 2(3):658–682, 2020.

The Chapter 9 is comprises the content of the following pre-print ([118]) that is in review for a journal:

• M. C. Mukkamala, J. Fadili, and P. Ochs. Global convergence of model function based Bregman
proximal minimization algorithms. arXiv preprint arXiv:2012.13161, 2020.

The Section 4.5 and Chapter 6 comprises the content of the following publication ([120]):

• M. C. Mukkamala and P. Ochs. Beyond alternating updates for matrix factorization with inertial
Bregman proximal gradient algorithms. In Advances in Neural Information Processing Systems, pages
4266–4276, 2019.

The Section 4.6 and Chapter 7 comprises the content of the following pre-print ([122]):

• M. C. Mukkamala, F. Westerkamp, E. Laude, D. Cremers, and P. Ochs. Bregman proximal framework
for deep linear neural networks. arXiv preprint arXiv:1910.03638, 2019.

A condensed version of the above pre-print is published and the publication details ([123]) are given below.

• M. C. Mukkamala, F. Westerkamp, E. Laude, D. Cremers, and P. Ochs. Bregman proximal gradient
algorithms for deep matrix factorization. In Scale Space and Variational Methods in Computer Vision,
pages 204-215, 2021.

Chapter 2

Convex analysis

2.1 Affine sets . 11
2.2 Convex sets . 12

2.2.1 Operations preserving convexity of sets . 13
2.2.2 Properties of convex sets . 13

2.3 Convex functions . 13
2.3.1 Operations preserving convexity of functions . 15
2.3.2 Convexity tests . 15
2.3.3 Conjugate function . 16
2.3.4 Subgradient and subdifferential . 16

2.4 Convex optimization . 16
2.4.1 Lipschitz continuous gradient . 16
2.4.2 Proximal Gradient Method . 17
2.4.3 Backtracking . 18
2.4.4 Accelerated Proximal Gradient Method . 19
2.4.5 Strong convexity . 19

In this chapter we briefly explain the popular notions from the convex analysis and the convex optimization
fields. Note that this chapter is not my contribution and we only list the results that are detailed in [19, 150].

2.1 Affine sets

The line between two points x1, x2 ∈ RN such that x1 6= x2 is a collection of points of the following form:

θx1 + (1− θ)x2 ,

where θ ∈ R. The set of such points for θ ∈ [0, 1] form a line segment. A set C ⊂ RN is an affine set, if
for any two points x, y ∈ C and θ ∈ R, the point θx + (1 − θ)y lies in C. Intuitively, this means that the
line generated using any two distinct points in C lies in C, if the set C is an affine set. It is possible to
define affine sets using more than two points. Firstly, we need to define the notion of affine combination. An
affine combination of the points x1, . . . , xk in RN is given by θ1x1 + . . .+ θkxk, where θ1 + . . .+ θk = 1 and
θi ∈ R, for i ∈ {1, . . . , k}. A standard induction argument reveals that an affine set contains all the affine
combinations of its points. Let A ∈ RM×N , b ∈ RM , then the set of points given by C := {x ∈ RN |Ax = b}
is an affine set. Note that C is the solution set to the linear system of equations Ax = b.

11

12 2.2. Convex sets

Consider any set C ⊂ RN . The affine hull of the set C, denoted affC, is given by

affC := {θ1x1 + . . .+ θkxk |x1, . . . , xk ∈ C, θ1, . . . , θk ∈ R, θ1 + . . .+ θk = 1} .

The affine dimension of a set C ⊂ RN is the dimension of its affine hull. This can possibly be different from
the standard notion of the dimension of a set. For example, consider the set C := {(x1, x2) ∈ R2 |x2

1 +x2
2 = 1},

which is a unit circle. Usually, C is said to have dimension one. However, its affine dimension is two, as
affC = R2. Consider a set C ⊂ RN , then a point y ∈ RN is said to be an interior point of C, if there exists
r > 0 such that B(x, r) ⊂ C where B(x, r) := {y ∈ RN | ‖x− y‖ ≤ r}. The set of all the interior points of C
is said to be the interior of C, denoted as intC. Many concepts in optimization rely on the notion of interior,
however, interior is a restrictive notion as there can exist sets for which interior is empty and a more general
notion is sought. Relative interior serves this purpose and it is given by

riC = {x ∈ C : B(x, r) ∩ affC ⊂ C, for certain r ≥ 0} .

The relative boundary of a set C ⊂ RN is given by clC \ riC, where clC denotes the closure of C. As an
example for relative interior and relative boundary, we record below example given in [33, Example 2.2].

Consider the following set

C := {x ∈ R3 | − 1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1, x3 = 0} .

Then, we have affC = {x ∈ R3 |x3 = 0}. Note that the interior of the set C is empty, however, its relative
interior is nonempty and is given by

relintC := {x ∈ R3 | − 1 < x1 < 1, −1 < x2 < 1, x3 = 0} .

The relative boundary is given by

{x ∈ R3 | max{|x1| , |x2|} = 1, x3 = 0} .

2.2 Convex sets

A set C ⊂ RN is said to be convex if λx+ (1−λ)y ∈ C, whenever x, y ∈ C and 0 ≤ λ ≤ 1. In other words, C
is convex if the line segment between any two points in C also lies in C. An example of convex set is B(x, r),
for some x ∈ C and r > 0. It is straightforward to see that all affine sets are convex. In the same spirit as
the notion of affine combination, the convex combination of the points x1, . . . , xk ∈ C for C ⊂ RN is given by
θ1x1 + . . .+ θkxk where θ1 + . . .+ θk = 1 and θ1, . . . , θk ≥ 0. The convex hull of C is the collection of all the
convex combinations of the points in C, given by

convC = {θ1x1 + . . .+ θkxk |x1, . . . , xk ∈ C, θ1 + . . .+ θk = 1 and θ1, . . . , θk ≥ 0} .

Note that convC is convex and convC is the smallest convex set that contains C. Extensions of convex
combination of infinite terms are possible (see [33, Section 2.1.4]). Some examples of convex sets are given
below.

• The Euclidean ball given by B(x, r) := {x ∈ RN | ‖x− x0‖2 ≤ r} is convex for any x0 ∈ RN .

Chapter 2. Convex analysis 13

• The empty set ∅ is convex.

• The half-space given by {x ∈ RN |Ax ≤ b} for some A ∈ RM×N , b ∈ RM .

Various examples of convex sets can be found in [33, Section 2.1.4].

2.2.1 Operations preserving convexity of sets

In order to determine the convexity of sets, it is useful to explore the properties of convex sets, in particular
the operations that preserve the convexity. Such operations can be useful to generate more convex sets from
given convex sets. The intersection of convex sets is convex, i.e., ∩i∈ICi of any collection {Ci | i ∈ I} of
convex sets is convex, where I is an index set. The cardinality of I can even be infinite. The vector sum
C1 + C2 of two convex sets C1 and C2 is convex. Convexity is preserved under scaling and translation, i.e.,
λC and C + a are convex for any convex set C ⊂ RN , scalar λ ∈ R and a ∈ RN . The image and inverse
image of a convex set under a affine function are convex. Several other operations that preserve convexity
can be found in [33, Section 2.3].

2.2.2 Properties of convex sets

If C is a convex set in RN and λ1, λ2 are positive scalars, then the following holds:

(λ1 + λ2)C = λ1C + λ2C .

We now recall few statements from [148, Chapter 6]. Let x ∈ riC and y ∈ clC. Then (1− λ)x+ λy belongs
to riC for 0 ≤ λ < 1. Also, cl (riC) = clC and ri (clC) = riC. The closure and the relative interior of C are
convex while having the same affine hull as C. For various other properties of convex sets, we refer the reader
to [148, Chapter 6].

2.3 Convex functions

For a function f : RN → R, we denote dom f to be a subset in RN on which f is defined. We record the
following definition of a convex function from [33, Section 3.1.1]. A function f : RN → R is said to be convex,
if dom f is convex, and if for any x, y ∈ dom f , λ ∈ [0, 1] the following holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) .

A convex function f is strictly convex if the above condition holds strictly when x 6= y and λ ∈ (0, 1). Some

of the examples of convex functions are provided below. Here, we refer to [33, Section 3.1.4, Section 3.1.5].

• The function f : RN → R given by f(x) = 1
2x

TQx+qTx+r is convex, where Q is a positive semi-definite
matrix, q ∈ RN and r ∈ R.

• The function f : R→ R given by f(x) = eax is convex for a ∈ R.

• The function f : R→ R given by f(x) = xa is convex on R++ when a ≥ 1 or a ≤ 0.

• The function f : R→ R given by f(x) = |x|p is convex on R when p ≥ 1.

• The function f : R→ R given by f(x) = − log(x) is convex on R++.

14 2.3. Convex functions

Note that the convexity of dom f is embedded into the definition of a convex function f provided above. It is
often convenient to work with a definition without explicitly stating the requirement on the domain. In this
regard, extended real-value functions are used, wherein a function f is extended to all of RN by assigning
the function value to +∞ outside dom f . Thus, an extended real-valued function f : RN → R is convex if it
satisfies the following property:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) , for all x, y ∈ RN , λ ∈ [0, 1] ,

where R := [−∞,+∞] is the extended real line, which we define shortly. The domain of f is then redefined as

dom f := {x ∈ RN | f(x) <∞} .

The extended real valued system is defined as R := [−∞,+∞] and entails the usual arithmetic operations
and the following additional operations:

• 0(±∞) = (±∞)0 = 0;

• for a ∈ R, the condition a±∞ = ±∞ holds;

• (−∞) + (−∞) = (−∞), (+∞) + (+∞) = (+∞), (+∞) + (−∞) = (−∞) + (+∞) = (+∞);

• for a ∈ (0,+∞], the condition a(±∞) = (±∞) holds;

• for a ∈ [−∞, 0), the condition a(±∞) = (∓∞) holds;

• the expression (±∞)/(±∞) is undefined.

The extended real line R has all the standard properties of a compact set, including the existence of a
supremum (least upper bound) and an infimum (greatest lower bound) with possibly infinite values for
every subset in R. For an empty set, the following entities are standard inf ∅ = +∞, sup ∅ = −∞, thus
inf ∅ > sup ∅. For simplicity, we denote +∞ as ∞. Note that the notion of extended real-valued function is
suitable for convex functions as well as for generic functions which we will focus in Chapter 3.

For a function f : RN → R, the graph of the function is given by

Graphf := {(x, α) ∈ RN+1 |α = f(x)} .

The epigraph of a function f : RN → R is defined by

epif := {(x, y) | f(x) ≤ y, x ∈ RN , y ∈ R} .

A function f : RN → R

• is convex if epif is a convex set;

• is closed if epif is a closed set;

• is said to be a proper function if it attains f(x) < ∞ for atleast one x ∈ RN , and f does not attain
−∞ function value;

• is said to be a lower semi-continuous function at x̄ ∈ RN if f(x̄) ≤ lim infx→x̄ f(x) ;

Chapter 2. Convex analysis 15

• is said to be a lower semi-continuous function if it is a lower semi-continuous function at each point in
RN ;

For a function f : RN → R, with α ∈ R the α-level set is defined by

lev≤αf := {x ∈ RN | f(x) ≤ α} .

For a function f : RN → R the following notions are equivalent, f is closed, f is a lower semi-continuous
function and lev≤αf is closed for any α ∈ R .

We now provide an example of an extended real-valued function that is convex. Consider a closed convex set
C, then the indicator function δC : RN → R is given by

δC(x) =

{
0 , x ∈ C ,
∞ , x /∈ C ,

(2.3.1)

is a convex function. A comprehensive list of examples of convex functions is provided in [33, Section 3.1.5].

2.3.1 Operations preserving convexity of functions

Detection of convexity of functions is an important practical problem. In general, verifying the definition
of convexity can be cumbersome. Thus, it is preferable to have certain standard operations that preserve
convexity, which can also be used to generate new convex functions. These operations can also help in
detecting convexity of a function from its components. Some of operations under which convexity is stable
are provided below.

• Weighted sum of convex functions with non-negative weights is convex. This is also true for infinite
sums and integrals.

• Convexity is preserved under composition with an affine mapping, i.e., if f is convex on RN , then
f(Ax+ b) is convex, where A ∈ RN×M , b ∈ RN and x ∈ RM .

• Convexity is preserved under pointwise supremum or maximum of any family of convex functions.

For detailed description of operations and additional operations that preserve convexity, we refer the reader
to [33, Section 3.2].

2.3.2 Convexity tests

We now provide some criterion for testing the convexity of a function. One could directly verify the definition
of a convex function. However, for certain functions with some nice properties, additional criterion can be
used for ease of checking convexity.

Consider a differentiable function f : C → R, where C ⊂ RN is an open set. Then, f is convex if and only
dom f (:= C) is convex and

f(y) ≥ f(x) + 〈∇f(x), y − x〉 , holds for all x, y ∈ C. (2.3.2)

In order to test for strict convexity, the above inequality is replaced by strict inequality, i.e.,

f(y) > f(x) + 〈∇f(x), y − x〉 , holds for all x, y ∈ C,

16 2.4. Convex optimization

and the rest of the conditions remain the same. The property in (2.3.2) is remarkable, because for any fixed
x ∈ C, the affine function f(x) + 〈∇f(x), · − x〉 is a global underestimator the function. Thus, only by using
the local information, certain global information can be obtained.

Consider a twice differentiable function f : C → R, such that for ∇2f(x) exists for all x in C, which is open.
Then, f is convex if and only dom f (:= C) is convex and ∇2f(x) � 0, for all x ∈ C. If ∇2f(x) � 0 for all
x ∈ C, then f is strictly convex, however, the converse is not true (for example, x4 is strictly convex with
∇2f(0) = 0).

2.3.3 Conjugate function

We now consider the conjugate function notion. Consider an extended real-valued function f : RN → R.
Then, the conjugate of the function f∗ : RN → R is defined by

f∗(y) := sup
x∈RN

〈x, y〉 − f(x) .

Conjugate function is also called as Legendre transformation, Legendre-Fenchel transform, or Fenchel conjugate.
Intuitively, for a given (slope) y, the conjugate function f∗(y) provides the minimum shift that is required
to place the affine function 〈x, y〉 such that it is exactly below the graph of the function f . A remarkable
property of the conjugate function is that f∗ is a closed convex function, even if f is not a convex function.

2.3.4 Subgradient and subdifferential

Let f : RN → R be a proper convex function. Let x ∈ dom f and the v ∈ RN is said to be a subgradient of f
at x if we have

f(y) ≥ f(x) + 〈v, y − x〉 , for all y ∈ RN .

Collection of all subgradients of f at x ∈ RN is called subdifferential of f at x, and it is given by

∂f(x) = {v ∈ RN | f(y) ≥ f(x) + 〈v, y − x〉 for all y ∈ RN} .

For a point x such that x /∈ dom f , we set ∂f(x) = ∅. If f is differentiable at x ∈ dom f , then ∂f(x) = {∇f(x)}.
Subdifferentials are very helpful in characterizing the set of minimizers. Consider a proper convex function
f : RN → R, then x∗ lies in the set of minimizers argminx∈RN f(x) if and only if 0 ∈ ∂f(x). This property is
known as Fermat’s rule or Fermat’s optimality condition.

2.4 Convex optimization

Convex optimization is a vast topic in itself. In order to keep the presentation in line with rest of the chapters,
here we will focus on a prominent algorithm, Proximal Gradient Method. We require few technical details
before presenting the Proximal Gradient Method.

2.4.1 Lipschitz continuous gradient

We briefly extend the discussion regarding Lipschitz continuous gradient, given in Chapter 1. If f is twice
continuously differentiable with a L-Lipschitz continuous gradient, then we have ∇2f(x) � LI for all x ∈ RN .
Instead of considering the full space RN in the definition of L-smoothness, we now consider a more general
variant that provides the notion of L-smoothness over a set. Consider a function f : RN → R such that over a

Chapter 2. Convex analysis 17

set C ⊂ int dom f it is continuously differentiable. Then, f is said to be L-smooth over C (or has L-Lipschitz
continuous gradient over C) if it satisfies the following condition:

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ C .

As a consequence of the above definition, if the set C is convex, we have the following Descent Lemma [13,
Lemma 5.7]:

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ L

2
‖x− y‖2 , for any x, y ∈ C .

2.4.2 Proximal Gradient Method

In order to present several algorithms in convex optimization in a unified manner, we focus on the Proximal
Gradient Method. For the description of Proximal Gradient Methods we rely on [13, Chapter 10].

Consider the following optimization problem

min
x∈RN

{f(x) := f0(x) + f1(x)} ,

where we assume that f0 : RN → R is a proper closed convex function, f1 : RN → R is a proper, closed
function with convex domain dom f1, dom f0 ⊂ int dom f1 and f1 has a L-Lipschitz continuous gradient over
int dom f1. Additionally, we also assume that the set of minimizers Argminx∈RN f(x) is non-empty, and thus
f is lower bounded, which we denote by f∗. In such a setting, the Proximal Gradient Method is given in
Algorithm 1.

Algorithm 1: PGM: Proximal Gradient Method

• Initialization: Select x0 ∈ dom f .

• For each k ≥ 1: Choose τk such that τk ∈ (0, 2/L) and compute

xk+1 = argminx∈RN

{
f0(x) + f1(xk) + 〈∇f1(xk), x− xk〉+

1

2τk
‖x− xk‖2

}
. (2.4.1)

The update step in PGM basically involves the quadratic majorizer of f1 and the function f0 remains as it is,
at the point xk. As per [13, Lemma 10.4], PGM has the following descent property

f(xk+1) ≤ f(xk)−
(

1

τk
− L

2

)
‖xk+1 − xk‖2 .

The above result implies that the function value is monotonically nonincreasing with the sequence generated
by PGM. As per [13, Theorem 10.15], all the limit points of the sequence generated by PGM are stationary
points of f . Under certain additional conditions, one can also show global convergence of the sequence
generated by PGM [7], in the sense that the whole sequence converges to a single point that is a stationary
point of f (for example, see [7]). Note that we do not assume convexity of f till here.

18 2.4. Convex optimization

If f1 is convex, then PGM attains the convergence rate of O(1/k) in terms of function values to the optimal
value f∗. In precise terms, set τk = 1

L , then for any x∗ ∈ Argminx∈RN f , the following condition holds true:

f(xk)− f∗ ≤
L ‖x0 − x∗‖

2k
. (2.4.2)

If f0 is an indicator function δC over a nonempty closed convex set C ⊂ RN , then Proximal Gradient Method
reduces to Projected Gradient Descent. If f0 is a zero function, then the Proximal Gradient Method reduces
to the so-called Gradient Descent with the update xk+1 = xk − τk∇f1(xk) . If f0(x) = λ ‖x‖1 for some λ > 0,
then Proximal Gradient Method reduces to Iterative Shrinkage-Thresholding Algorithm (ISTA).

2.4.3 Backtracking

A major drawback of PGM is the requirement to know the value of L, which can be difficult to compute, in
general. Even if L is known, it is often very large, thus resulting in small steps for PGM. However, one can
locally estimate the value of L via the quadratic bounds in (1.1.3). The upper bound in (1.1.3) governs the
step-size, thus at each iteration of PGD one can modify the step-size to incorporate local constant L̄k > 0

such that the following condition holds:

f1(xk+1) ≤ f1(xk) + 〈∇f1(xk), xk+1 − xk〉+
L̄k
2
‖x− xk‖2 .

In particular, the step-size can be chosen such that it is non-increasing, which can be chosen, for example, by
setting τk ≤ min

{
τk−1, L̄

−1
k

}
. The full algorithm, Proximal Gradient Method with backtracking is provided

in Algorithm 2.

Algorithm 2: PGM-WB: Proximal Gradient Method with Backtracking

• Initialization: Select x0 ∈ dom f and L̄0 > 0.

• For each k ≥ 1: Choose L̄k ≥ L̄k−1, set τk ≤ min
{
τk−1, L̄

−1
k

}
and compute

xk+1 = argminx∈RN

{
f0(x) + f1(xk) + 〈∇f1(xk), x− xk〉+

1

2τk
‖x− xk‖2

}
(2.4.3)

with L̄k fulfilling

f1(xk+1) ≤ f1(xk) + 〈∇f1(xk), xk+1 − xk〉+
L̄k
2
‖x− xk‖2 . (2.4.4)

In order to find an appropriate L̄k such that (2.4.4) holds true, one can use the backtracking procedure, which
we describe now. In backtracking procedure, to find L̄k such that the condition (2.4.4) is satisfied, start with
an estimate for L̄k > 0 and if the condition (2.4.4) fails to hold, then increase the estimate of L̄k by a scaling
factor greater than one. By repetitively scaling the estimate, the condition (2.4.4) holds true for certain
appropriate L̄k after finite number of repetitions as the function f1 has a Lipschitz continuous gradient. In
order to obtain the condition on step-size such that the step-size is decreasing, we set τk ≤ min

{
τk−1, L̄

−1
k

}
and L̄k ≥ L̄k−1. A similar variant was provided in [13, Chapter 10], for which similar convergence results as
in (2.4.2) are obtained and there is no change in convergence rate when f1 is assumed to be convex.

Chapter 2. Convex analysis 19

2.4.4 Accelerated Proximal Gradient Method

In the context of convex f1, PGM acheives O(1/k) convergence rate. It is possible to obtain a better rate
O(1/k2) in terms of function values. In this regard, we provide Accelerated Proximal Gradient Method
(APGM) in Algorithm 3. It is also referred to as “fast proximal method” or “FISTA”. The strategy used relies
on the classical Nesterov’s Accelerated Gradient Method [126]. The idea is to develop an extrapolated point
(2.4.6) before performing PGM like update. The extrapolated point is governed by an inertial parameter
γk and a careful choice of the step-size and the inertial parameter leads to an accelerated convergence rate
O(1/k2) in terms of function values.

Algorithm 3: APGM: Accelerated Proximal Gradient Method

• Initialization: Select y0 = x0 ∈ dom f and t0 = 1.

• For each k ≥ 1: Choose γk ∈ [0, 1] and compute

xk+1 ∈ Argmin
x∈RN

{
f0(x) + f1(yk) + 〈∇f1(yk), x− yk〉+

L

2
‖x− yk‖2

}
. (2.4.5)

• Set tk+1 =
1+
√

1+4t2k
2 , γk = tk−1

tk+1
and compute

yk = xk + γk(xk − xk−1) . (2.4.6)

If f1 is convex such that dom f1 = RN then for any x∗ ∈ Argminx∈RN f , APGM attains the following
convergence rate:

f(xk)− f∗ ≤
2L ‖x0 − x∗‖

(k + 1)2
.

Note that PGM has only O(1/k) convergence rate, whereas APGM attains O(1/k2) convergence rate, hence
the term “accelerated”. Moreover, the increase in computational effort in APGM compared to PGM is minimal.
For a comprehensive review of PGM, APGM and related variants, we refer the reader to [13, Chapter 10].
The choice of the inertial parameter can be relaxed in the non-convex setting significantly, which we consider
in Chapter 5.

2.4.5 Strong convexity

We recall the notion of a strongly convex function. Consider a function f : RN → R. It is said to be strongly
convex with modulus/parameter µ > 0, or equivalently µ-strongly convex for certain µ > 0, if dom f is convex
and for any x, y ∈ dom f , λ ∈ [0, 1] the following condition holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ

2
λ(1− λ) ‖x− y‖2 .

Another equivalent definition is the following. A function f : RN → R is said to be strongly convex with
modulus µ > 0, if f − (µ/2) ‖ · ‖2 is convex. Note that the above definitions of strong convexity do not require
the differentiability of the function. We now provide variants of the strong convexity definition, when f is
differentiable.

20 2.4. Convex optimization

If f is a continuously differentiable convex function over RN , we can use the following definition. The function
f is strongly convex with modulus µ > 0, if for all x, y ∈ RN we have

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
µ

2
‖x− y‖2 .

Intuitively, this means that there exists a quadratic lower bound for f which can be generated using the
local information at any point. If f is a twice continuously differentiable µ-strongly convex function, we can
equivalently say that for all x ∈ RN the condition ∇2f(x) � µI holds. Clearly, simple functions like x2, x4 +x2

are strongly convex. Let A ∈ RM×N , b ∈ RM , then the function f : RN → R given by f(x) = 1
2 ‖Ax− b‖

2 is
strongly convex if λmin(ATA) > 0. Usually, when the function is strongly convex, one can obtain stronger
convergence guarantees such as linear convergence rate for PGM and APGM variants [13, 124], which we
skip discussing for brevity.

Chapter 3

Variational analysis

3.1 Variational analysis . 21
3.2 Subgradients and subdifferentials . 22
3.3 Set convergence . 23

3.3.1 Subdifferentials with set convergence . 24
3.4 Normal cone and tangent cone . 24
3.5 Lipschitz continuity and strict continuity . 27

3.5.1 Coercivity . 27
3.6 Subdifferentials based on the function structure . 27

3.6.1 Results on separable functions . 27
3.6.2 Results on additive functions . 28
3.6.3 Chain rule . 29
3.6.4 Results on parametric functions . 29

3.7 KL framework . 30
3.7.1 Discussion . 33

3.1 Variational analysis

For this chapter, we mainly refer to [150] and sparsely we refer also to [116]. For an extended real-valued
function f : RN → R, it is of interest to know whether f attains its minimum and the properties of minimizers,
if any. It is well-known that a continuous function defined on a compact set attains its minimum (Weierstrass
Extreme Value Theorem). In the context of extended real-valued functions, can a similar statement be made?
Before we answer this question, we require the following notion. A function f : RN → R is level-bounded if for
any α ∈ R the level set lev≤αf is bounded. Here, lev≤αf can possibly be empty. Note that if f : RN → R is
level-bounded then f(x)→∞ as ‖x‖ → ∞. Now, we answer the question regarding attainment of minimum
for an extended real-valued function with the following theorem.

Theorem 3.1.0.1. [150, Theorem 1.9] Let f : RN → R be a lower semi-continuous, level-bounded and a
proper function, then inf f is finite and argminf is nonempty and compact.

In order to attain the minimum of a function, the iterative algorithms that use the local first-order information
are popular. For a differentiable function, the gradient of the function provides the local first-order information.
For a convex function, the subgradient of the function provides with such information. However, for a generic

21

22 3.2. Subgradients and subdifferentials

extended real-valued function, the notion of subgradient has to be defined. Firstly, we require the following
notion. The sequence (xν)ν∈N is said to be f -attentive convergent if xν → x and f(xν) → f(x), which is
denoted by xν→

f
x.

3.2 Subgradients and subdifferentials

Regular subdifferential. We record the definition of subgradients from [150, Definition 8.3]. Consider a
function f : RN → R and a point x̄ with f(x̄) finite. A vector v ∈ RN is a regular subgradient of f at x̄,
written v ∈ ∂̂f(x̄), if

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(‖x− x̄‖) , (3.2.1)

or equivalently

lim inf
x→x̄,x 6=x̄

f(x)− f(x̄+ 〈v, x− x̄,)〉
‖x− x̄‖ ≥ 0. (3.2.2)

The set ∂̂f(x̄) is called a regular subdifferential (or presubdifferential or Fréchet subdifferential or viscosity
subdifferential). The regular subdifferential is equal to {∇f(x̄)} when f is differentiable at x̄. For a convex
function f , the usual subdifferential and regular subdifferential coincide. We are interested in non-smooth non-
convex problems, for which the regular subdifferential can possibly be empty (for example, when f(x) = − |x|
at x = 0 then ∂̂f(x̄) = ∅). The regular subdifferential is a convex set.

Failure of calculus with regular subdifferential. Certain desirable properties such as the standard
calculus, the closedness property do not hold for the regular subdifferential. For example, the sum rule of
subdifferential ∂̂(f0 + f1)(x) ⊂ ∂̂f0(x) + ∂̂f1(x) may fail to hold for certain f0 : RN → R, f1 : RN → R (for
f1(x) = − |x|, f0(x) = |x| at x = 0, ∂̂(f0 + f1)(x) = {0} whereas ∂̂f0(x) + ∂̂f1(x) = ∅). Another desirable
property in optimization is the closedness property of subdifferential, where if there is a sequence (xν)ν∈N
such that xν→

f
x then the sequence (vν)ν∈N for vν ∈ ∂̂f(xν) is expected to converge to v ∈ ∂̂f(x), however

this may not hold for the regular subdifferential. Thus, a generalization of regular subdifferential known as
general subdifferential was proposed.

Limiting subdifferential. A vector v ∈ RN is a (general) subgradient of f at x̄ with finite f(x̄), written
v ∈ ∂f(x̄), if there are sequences xν→

f
x̄, vν ∈ ∂̂f(xν) and vν → v. The set ∂f(x̄) is called general or

limiting subdifferential (also called as Mordukhovich subdifferential). Limiting subdifferential can be possibly
non-convex and the standard calculus is applicable. Also, the set ∂f(x̄) satisfies the closedness property by
definition, and the condition ∂̂f(x̄) ⊂ ∂f(x̄) holds true.

Critical points. Equipped with the notion of limiting subdifferential, the set of critical points of a function
f : RN → R is defined by

critf := {x ∈ RN | 0 ∈ ∂f(x)} .

Fermat’s rule. We record now the Fermat’s rule for extended real-valued function (see [134, Theorem
4.23]). For a proper function f : RN → R, if the point x̄ is a local minimum then 0 ∈ ∂f(x̄). As a consequence,
if f = f0 + g for certain smooth function f0, then 0 ∈ ∂f(x̄) is equivalent to the condition −∇f0(x) ∈ ∂g(x̄)

(see [134, Corallary 4.24]).

Chapter 3. Variational analysis 23

Horizon subdifferential. In addition to the regular subdifferential and the limiting subdifferential, we
also consider the notion of horizon subdifferential. For an extended real-valued function f : RN → R at
certain point there can exist certain directions such that function can get infinitely steep or possibly has a
jump in function value. Such directions are characterized by the horizon subdifferential, which we define
now. A vector v ∈ RN is a horizon subgradient of f at x̄ with finite f(x̄), written v ∈ ∂∞f(x̄), if there
are sequences xν→

f
x̄, vν ∈ ∂̂f(xν), one has λνvν → v for some sequence λν ↘ 0. The set of all horizon

subgradients ∂∞f(x̄) is called horizon subdifferential.

Consequences. Based on the above defined notions, we have the following results from [150, Exercise 8.8].
If f0 is differentiable at x̄, then ∂̂f(x̄) = {∇f0(x̄)}, so ∇f0(x̄) ∈ ∂f0(x̄). If f0 is smooth on a neighborhood
of x̄, then ∂f(x̄) = {∇f0(x̄)} and ∂∞f(x̄) = {∇f0(x̄)}. If f = g + f0 with g finite at x̄ and f0 is smooth on
a neighborhood of x̄, then ∂̂f(x̄) = ∂̂g(x̄) +∇f0(x̄), ∂f(x̄) = ∂g(x̄) +∇f0(x̄), and ∂∞f(x̄) = ∂∞g(x̄).

Convex functions. In the context of convex functions, based on [150, Proposition 8.12], we have the
following notions. For any proper, convex function f : RN → R and any point x̄ ∈ dom f , one has

∂f(x̄) = {v | f(x) ≥ f(x̄) + 〈v, x− x̄〉 for all x} = ∂̂f(x̄) ,

∂∞f(x̄) ⊂ {v | 0 ≥ 〈v, x− x̄〉 for all x ∈ dom f} = Ndom f (x̄) .

The horizon subgradient inclusion is an equation when f is locally lsc at x̄ or when ∂f(x̄) 6= ∅.

Subderivative. We consider the following definition of subderivative from [150, Definition 8.1]. For a
function f : RN → R and a point x̄ with f(x̄) finite, the subderivative function df(x̄) : RN → R is defined by

df(x̄)(w̄) := lim inf
τ↘0
w→w̄

f(x̄+ τw)− f(x̄)

τ
.

The subderivative given above is actually the lower subderivative. If lim inf is replaced by lim sup, then one
obtains the upper subderivative. For a function f : RN → R and a point x̄ with f(x̄) finite, the regular
subderivative function df(x̄) : RN → R is defined by

d̂f(x̄)(w̄) := lim
δ↘0

lim sup
x→
f
x̄

τ↘0

(
inf

w∈B(w̄,δ)

f(x+ τw)− f(x)

τ

) ,

where B(w̄, δ) := {w ∈ RN | ‖w − w̄‖ ≤ δ}.

3.3 Set convergence

The limiting subdifferential and horizon subdifferential can be seen as certain evolutions of the sets pertaining
to the regular subdifferential. However, in order to consider the evolution or the sequence of sets, we need to

24 3.4. Normal cone and tangent cone

define the set convergence concepts. We require the following notations:

N∞ := {N ⊂ N | N\N is finite } ,
N#
∞ := {N ⊂ N | N is infinite } .

Clearly, N∞ ⊂ N#
∞. We denote limν→∞ when ν → ∞ and ν ∈ N and limν→

N
∞ for convergence of a

subsequence based on the index set N in N∞ and N#
∞. Based on these notations, we require the following

notions related to convergence of sets, namely, the outer limit and inner limit. Consider a sequence of sets
(Cν)ν∈N in RN , then its outer limit is defined by

lim sup
ν→∞

Cν := {x ∈ RN | ∃N ∈ N#
∞, ∃xν ∈ Cν(ν ∈ N) with xν→

N
x} , (3.3.1)

and its inner limit is defined by

lim inf
ν→∞

Cν := {x ∈ RN | ∃N ∈ N∞, ∃xν ∈ Cν(ν ∈ N) with xν→
N
x} . (3.3.2)

The limit of the sequence (Cν)ν∈N exists if the inner limit and the outer limit are equal, that is

lim
ν→∞

Cν := lim sup
ν→∞

Cν := lim inf
ν→∞

Cν . (3.3.3)

The outer limit and the inner limit of a sequence (Cν)ν∈N always exist and can possibly be empty. However,
the limit of a sequence (Cν)ν∈N may not exist.

3.3.1 Subdifferentials with set convergence

Consider an extended real-valued function f : RN → R that is finite at x̄ ∈ RN . Then, equipped with the
notions of outer and inner limits, the limiting subdifferential can be equivalently defined as following:

∂f(x̄) := lim sup
x→
f
x̄
∂̂f(x) .

Similarly, the horizon subdifferential is expressed as

∂∞f(x̄) = lim sup
x→
f
x̄

λν↘0

λν ∂̂f(x) ,

where

lim sup
x→
f
x̄

λν↘0

∂̂f(x) = {v ∈ RN | ∃xν → x̄, f(xν)→ f(x), λν ↘ 0, vν → v with vν ∈ ∂̂f(xν) for all ν ∈ N}.

3.4 Normal cone and tangent cone

Another equivalent characterization of subdifferentials can be obtained using the notion of normal cones. A
related notion to the normal cone is the tangent cone, thus we discuss both the concepts in conjunction.

Chapter 3. Variational analysis 25

Tangent cone. We list below few important notions from [150, Chapter 6]. A sequence xν → x̄ is said
to converge from the direction dirw if for some sequence of scalars τν ↘ 0 the vectors xν−x̄

τν converge to w.
We denote xν→

C
x if xν → x̄ with xν ∈ C. A vector w ∈ RN is tangent to a set C ⊂ RN at a point x̄ ∈ C,

written w ∈ TC(x̄), if
xν − x̄
τν

→ w for some xν→
C
x̄, τν ↘ 0 .

The set of all the tangent vectors at x̄ is the tangent cone TC(x̄).

Normal cone. Firstly, we define the normal vectors whose collection represents the normal cone. We
record the definition as in [150, Definition 6.3]. Let C ⊂ RN and x̄ ∈ C. A vector v is normal to C at x̄ in
the regular sense, or a regular normal, written v ∈ N̂C(x̄), if

〈v, x− x̄〉 ≤ o(‖x− x̄‖) for x ∈ C .

It is normal to C at x̄ in the general sense, or simply a normal vector, written v ∈ NC(x̄), if there are
sequences xν→

C
x̄ and vν → v with vν ∈ N̂C(xν) . As per [150, Proposition 6.5], we deduce that NC(x̄), N̂C(x̄)

are closed cones. Also, N̂C(x̄) is convex and can be related to the tangent cone via the following equivalence:

v ∈ N̂C(x̄) ⇐⇒ 〈v, w〉 ≤ 0 for all w ∈ TC(x̄).

Additionally, NC(x̄) = lim sup
x→
C
x̄
NC(x) ⊃ NC(x̄).

We record below the following crucial results on normal and tangent cones.

Proposition 3.4.0.1. [150, Proposition 6.41] With RN expressed as Rn1 × . . . × Rnm, write x ∈ RN as
(x1, . . . , xm) with components xi ∈ Rni. If C = C1 × . . . × Cm for closed sets Ci ∈ Rni, then at any
x̄ = (x̄1, . . . , x̄m) with x̄i ∈ Ci one has

NC(x̄) = NC1(x̄1)× . . .×NCm(x̄m),

N̂C(x̄) = N̂C1(x̄1)× . . .× N̂Cm(x̄m),

TC(x̄) ⊂ TC1(x̄1)× . . .× TCm(x̄m),

T̂C(x̄) = T̂C1(x̄1)× . . .× T̂Cm(x̄m).

Furthermore, C is regular at x̄ if and only if each Ci is regular at x̄i. In the regular case the inclusion for
TC(x̄) becomes an equation like the others.

Proposition 3.4.0.2. [150, Theorem 6.42] Let C = C1 ∩ . . . ∩ Cm for closed sets Ci ⊂ RN , and let x̄ ∈ C.
Then

TC(x̄) ⊂ TC1(x̄) ∩ . . . ∩ TCm(x̄),

N̂C(x̄) ⊃ N̂C1(x̄) + . . .+ N̂Cm(x̄).

Under the condition that the only combination of vectors vi ∈ NCi(x̄) with v1 + . . .+ vm = 0 is vi = 0 for all i
(this being satisfied for m = 2 when C1 and C2 are convex and cannot be seperated), one also has

T̂C(x̄) ⊃ T̂C1(x̄) ∩ . . . ∩ T̂Cm(x̄),

26 3.4. Normal cone and tangent cone

NC(x̄) ⊂ NC1(x̄) + . . .+NCm(x̄).

If in addition every Ci is regular at x̄, then C is regular at x̄ and

TC(x̄) = TC1(x̄) ∩ . . . ∩ TCm(x̄),

NC(x̄) = NC1(x̄) + . . .+NCm(x̄).

Clarke regularity. Another crucial notion is the Clarke regularity of sets, which we record from [150,
Definition 6.4]. A set C ⊂ RN is regular at one of its points x̄ in the sense of Clarke if it is locally closed at x̄
and every normal vector to C at x̄ is a regular normal vector, i.e., NC(x̄) = N̂C(x̄).

We now record the notion of subdifferential regularity from [150, Definition 7.25]. A function f : RN → R
is called subdifferentially regular at x̄ if f(x̄) is finite and epif is Clarke regular at (x̄, f(x̄)) as a subset of
R× R.

Optimality conditions in constrained optimization. Normal cones and tangent cones play an impor-
tant role in optimization. For example, they characterize the optimality conditions in constrained optimization
problems. In this regard, we record [150, Theorem 6.12]. Consider the problem of minimizing a differentiable
function f0 over a set C ⊂ RN . A necessary condition for x̄ to be locally optimal is

〈∇f0(x̄), w〉 ≥ 0 for all w ∈ TC(x̄) ,

which is the same as −∇f0(x̄) ∈ N̂C(x̄) and implies

−∇f0(x̄) ∈ NC(x̄), or 0 ∈ ∇f0(x̄) +NC(x̄).

When C is convex, the above given conditions are equivalent and can also written as

〈∇f0(x̄), x− x̄〉 ≥ 0 for all x ∈ C ,

which means that the linearized function f0(x̄) + 〈∇f0(x̄), · − x̄〉 achieves its minimum over C at x̄. When
f0 too is convex, the equivalent conditions are sufficient for x̄ to be globally optimal.

Relation between subdifferentials and normal cones. The subgradients are closely are closely related
to the normal cones generated from the epigraphs. We record below the relations as in [150, Theorem 8.9].
For a function f : RN → R and a point x̄ with f(x̄) finite, we have

∂̂f(x̄) = {v | (v,−1) ∈ N̂epif (x̄, f(x̄))} ,
∂f(x̄) = {v | (v,−1) ∈ Nepif (x̄, f(x̄))} ,
∂∞f(x̄) ⊂ {v | (v, 0) ∈ Nepif (x̄, f(x̄))} .

The last relation holds with equality if f is locally lower semicontinuous at x̄.

Chapter 3. Variational analysis 27

3.5 Lipschitz continuity and strict continuity

We record here the definitions of Lipschitz continuity and strict continuity given in [150, Definition 9.1]. Let
F be a single-valued mapping defined on a set D ⊂ RN , with values in RM . Let X ⊂ D. F is Lipschitz
continuous on X if there exists κ ∈ R+ = [0,∞) with∥∥F (x′)− F (x)

∥∥ ≤ κ∥∥x′ − x∥∥ for all x, x′ ∈ X.

Then, κ is called a Lipschitz constant for F on X. F is strictly continuous at x̄ relative to X if x̄ ∈ X and
the value

lipXF (x̄) := lim sup
x,x′→

X
x̄

x 6=x′

‖F (x′)− F (x)‖
‖x′ − x‖

is finite. More simply, F is strictly continuous at x̄, where lipXF (x̄) is this modulus relative to X. F is
strictly continuous relative to X if, for every point x̄ ∈ X, F is strictly continuous at x̄ relative to X.

The horizon subdifferential characterizes the strict continuity property. From [150, Theorem 9.13], we have
that for a function f : RN → R that is locally lower semicontinuous at x̄ with finite f(x̄), the conditions
∂∞f(x̄) = {0} and the f being strictly continuous at x̄ are equivalent.

3.5.1 Coercivity

The following is the standard definition (see [152, Definition 1.2.33]) of coercive and super-coercive functions.
A function f : RN → R is called

• coercive if lim‖x‖→∞ f(x) = +∞,

• supercoercive if lim‖x‖→∞
f(x)
‖x‖ = +∞.

Consider the two dimensional problem f(x, y) := |a− xy|2, where a ∈ R, x ∈ R, y ∈ R. Note that f is not
coercive, because when y = 0 and |x| → ∞, then

√
x2 + y2 →∞ however f stays constant at |a|2. However,

a slight modification of the function given by f(x, y) = |a− xy|2 + λx2 + λy2 results in coercivity, due to the
additional quadratic term. Moreover, it is easy to see that f is supercoercive. Some examples of coercive
functions that are super-coercive include ‖x‖22, xTAx for some symmetric positive definite matrix A. An
example of a coercive function that is not super-coercive is ‖x‖1.

3.6 Subdifferentials based on the function structure

Depending on the structure of the function, the rules for the calculation of the subdifferentials can be
simplified significantly. In this regard, we consider various structures, such as separable functions, composite
functions, additive functions.

3.6.1 Results on separable functions

The following result pertains to the functions that have separability in the variables. In particular, the
following result illustrates the construction of the subdifferentials when the subdifferentials of the components
are known.

28 3.6. Subdifferentials based on the function structure

Proposition 3.6.1.1 (Proposition 10.5 in [150]). Let f(x) = f1(x1) + . . . + fm(xm) for lsc functions
fi : Rni → R, where x ∈ RN is expressed as (x1, . . . , xm) with xi ∈ Rni. Then at any x̄ = (x̄1, . . . , x̄m) with
f(x̄) finite and dfi(x̄i)(0) = 0, one has

∂̂f(x̄) = ∂̂f1(x̄1)× . . .× ∂̂fm(x̄m),

∂f(x̄) = ∂f1(x̄1)× . . .× ∂fm(x̄m),

∂∞f(x̄) = ∂∞f1(x̄1)× . . .× ∂∞fm(x̄m),

while on the other hand

df(x̄) ≥ df1(x̄1) + . . .+ dfm(x̄m) ,

d̂f(x̄) ≤ d̂f1(x̄1) + . . .+ d̂fm(x̄m) .

Moroever, f is regular at x̄ when fi is regular at x̄i for each i. Then the inclusions and inequalities become
equations.

3.6.2 Results on additive functions

The following result pertains to the functions that comprises of additive components, in the sense that the
function can be expressed as a summation of few other functions. In such a case, using the subdifferentials of
the component functions, we can deduce the following result.

Corollary 3.6.2.1 (Corollary 10.9 in [150]). Suppose f = f1 + . . .+fm for proper, lsc functions fi : RN → R,
and let x̄ ∈ dom f . Then

∂̂f(x̄) ⊃ ∂̂f1(x̄) + . . .+ ∂̂fm(x̄),

df(x̄) ≥ df1(x̄) + . . .+ dfm(x̄).

Under the condition that the only combination of vectors vi ∈ ∂∞fi(x̄) with v1 + . . .+ vm = 0 is v1 = v2 =

. . . = vm = 0 (this being true in the case of convex functions f1, f2 when dom f1 and dom f2 cannot be
separated), one also has that

∂f(x) ⊂ ∂f1(x) + . . .+ ∂fm(x) ,

∂∞f(x) ⊂ ∂∞f1(x) + . . .+ ∂∞fm(x) ,

d̂f(x̄) ≤ d̂f1(x̄) + . . .+ d̂fm(x̄) .

If also each fi is regular at x̄, then f is regular at x̄ and

∂f(x) = ∂f1(x) + . . .+ ∂fm(x) ,

∂∞f(x) = ∂∞f1(x) + . . .+ ∂∞fm(x) ,

d̂f(x̄) = d̂f1(x̄) + . . .+ d̂fm(x̄) .

In the above provided Corollary 3.6.2.1, the requirement that the only combination of vectors vi ∈ ∂∞fi(x̄)

with v1 + . . .+ vm = 0 is v1 = v2 = . . . = vm = 0 is also known as the qualification condition.

Chapter 3. Variational analysis 29

3.6.3 Chain rule

It is often the case that the functions have a composite structure, and in such a case one is interested in
the chain rule or rules through which the subdifferentials of a function can be obtained. In this regard, we
consider the following result.

Theorem 3.6.3.1 (Theorem 10.6 in [150]). Suppose f(x) = g(F (x)) for a proper, lsc function g : RM → R
and a smooth mapping F : RN → RM . Then at any point x̄ ∈ dom f = F−1(dom g) one has

∂̂f(x̄) ⊃ ∇F (x̄)∗∂̂g(F (x̄)),

df(x̄)(w) ≥ dg(F (x̄))(∇F (x̄)w).

If the only vector y ∈ ∂∞g(F (x̄)) with ∇F (x̄)∗y = 0 is y = 0 (this being true for convex g when dom g cannot
be separated from the range of the linearized mapping w → F (x̄) +∇F (x̄)w) one also has

∂f(x̄) ⊂ ∇F (x̄)∗∂g(F (x̄)), ∂∞f(x̄) ⊂ ∇F (x̄)∗∂∞g(F (x̄)),

d̂f(x̄)(w) ≤ d̂g(F (x̄))(∇F (x̄)w).

If in addition g is regular at F (x̄), then f is regular at x̄ and

∂f(x̄) = ∇F (x̄)∗∂g(F (x̄)), ∂∞f(x̄) = ∇F (x̄)∗∂∞g(F (x̄)),

df(x̄)(w) = dg(F (x̄))(∇F (x̄)w).

Theorem 3.6.3.1 is a very generic result and the result stated in Corollary 3.6.2.1 can be seen as a special case
of the above given theorem (see proof of Corollary 10.9 in [150]). There are many important consequences of
Theorem 3.6.3.1 which can be found in [150, Chapter 10, Section B].

3.6.4 Results on parametric functions

One of the consequences of Theorem 3.6.3.1 is the chain rule result pertaining to the partial subdifferentiation.
At times the function can have dependency on two (or more) variables. In such a case, one might be interested
to know the subdifferentials with respect to one variable. The following result considers such a setting.

Corollary 3.6.4.1 (Corollary 10.11 in [150]). For a proper, lsc function f : RN × RM → R and a point
(x̄, ū) ∈ dom f , let ∂xf(x̄, ū) denote the subgradients of f(· , ū) at x̄, and similarly ∂̂xf(x̄, ū) and ∂∞x f(x̄, ū).
Likewise, let dxf(x̄, ū) and d̂xf(x̄, ū) denote the subderivative functions associated with f(· , ū) at x̄. One
always has

∂̂xf(x̄, ū) ⊃ {v | ∃y with (v, y) ∈ ∂̂f(x̄, ū)},
dxf(x̄, ū)(w) ≥ df(x̄, ū)(w, 0) for all w.

Under the condition that (0, y) ∈ ∂∞f(x̄, ū) implies y = 0 (this being true for convex f with dom f cannot be
separated from (RN , ū)), one also has

∂xf(x̄, ū) ⊂ {v | ∃y with (v, y) ∈ ∂f(x̄, ū)},
∂∞x f(x̄, ū) ⊂ {v | ∃y with (v, y) ∈ ∂∞f(x̄, ū)},

d̂xf(x̄, ū)(w) ≤ d̂f(x̄, ū)(w, 0) for all w.

30 3.7. KL framework

If also f is regular at (x̄, ū), then f(· , ū) is regular at x̄ and

∂xf(x̄, ū) = {v | ∃y with (v, y) ∈ ∂f(x̄, ū)},
∂∞x f(x̄, ū) = {v | ∃y with (v, y) ∈ ∂∞f(x̄, ū)},

d̂xf(x̄, ū)(w) = d̂f(x̄, ū)(w, 0) for all w.

Based on the above results, one can rewrite the Fermat’s rule as below.

Example 3.6.4.1. [150, Example 10.12] For a proper, lsc function f : RN × RM → R and vector ū ∈ RM ,
consider the problem of minimizing f(x, ū) over x ∈ RN . Suppose x̄ is locally optimal and

@ y 6= 0 with (0, ȳ) ∈ ∂∞f(x̄, ū),

which in the case of convex f means that dom f does not have a supporting half-space at (x̄, ū) with normal
vector of the form (0, y) 6= (0, 0). Then

∃ ȳ with (0, ȳ) ∈ ∂f(x̄, ū).

If f is regular at (x̄, ū) and f(x̄, ū) is convex in x, this condition is sufficient for x̄ to be globally optimal.

3.7 KL framework

The convergence results of various algorithms in this thesis rely on the so-called Kurdyka–Łojasiewicz (KL)
property. It has became a standard tool in recent years, and it is essentially satisfied by any function that
appears in practice, we just state the definition here and refer to [7, 22, 23, 26, 97] for more details. The
following definition is from [7].

Definition 3.7.0.1 (Kurdyka–Łojasiewicz property). Let f : RN → R be an extended real valued function
and let x̄ ∈ dom ∂f . If there exists η ∈ (0,∞], a neighborhood U of x̄ and a continuous concave function
ϕ : [0, η)→ R+ such that

ϕ(0) = 0, ϕ ∈ C1(0, η), and ϕ′(s) > 0 for all s ∈ (0, η),

and for all x ∈ U ∩ [f(x̄) < f(x) < f(x̄) + η] the Kurdyka–Łojasiewicz inequality

ϕ′(f(x)− f(x̄))‖∂f(x)‖− ≥ 1 (3.7.1)

holds, then the function has the Kurdyka–Łojasiewicz property at x̄. If, additionally, the function is lower
semi-continuous and the property holds for each point in dom ∂f , then f is called a Kurdyka–Łojasiewicz
function.

We abbreviate Kurdyka–Łojasiewicz property as KL property. The function ϕ in the KL property is known as
a desingularizing function. Many functions arising in practical problems satisfy the KL property, for example,
semi-algebraic functions with a desingularizing function of the following form:

ϕ(s) = cs1−θ ,

Chapter 3. Variational analysis 31

for certain c > 0 and θ ∈ [0, 1). The KL property is crucial in order to prove the global convergence of
sequences generated by many algorithms, for example, PALM [26], iPALM [144], BPG [28], CoCaIn BPG (see
Chapter 5) and many others. For the purpose of simplification of analysis, we use the following uniformization
lemma for the KL property as detailed in [26].

Lemma 3.7.0.1 (Uniformized KL property [26, Lemma 3.6]). Let Ω be a compact set and let f : RN → R be
proper and lower semicontinuous function. Assume that f is constant on Ω and satisfies KL property at each
point on Ω. Then, there exist ϑ > 0, η > 0, a continuous concave function ϕ : [0, η)→ R+ such that

ϕ(0) = 0, ϕ ∈ C1(0, η), and ϕ′(s) > 0 for all s ∈ (0, η),

and for all x̄ ∈ Ω and x in the following intersection

{x ∈ RN : dist(x,Ω) < ϑ} ∩ [f(x̄) < f(x) < f(x̄) + η]

one has,
ϕ′(f(x)− f(x̄))‖∂f(x)‖− ≥ 1 . (3.7.2)

It is well known that the class of functions definable in an o-minimal structure satisfies KL property [23,
Theorem 14]. The exact definition of o-minimal structure is given in [23, Definition 6], which we record below.
We require the definition of canonical projection Π : RN+1 → RN onto RN , which is defined by

Π(x1, . . . , xN , t) = (x1, . . . , xN) .

Definition 3.7.0.2 (o-minimal structure [23, Definition 6]). An o-minimal structure on (R,+, .) is a sequence
of boolean algebras ON of “definable” subsets of RN , such that for each N ∈ N

(i) if A in ON , then A×R and R×A belong to ON+1;

(ii) if Π : RN+1 → RN is the canonical projection onto RN then for any A in ON+1, the set Π(A) belongs
to ON ;

(iii) ON contains a family of algebraic subsets of RN , that is, every set of the form

{x ∈ RN : p(x) = 0} ,

where p : RN → R is a polynomial function;

(iv) the elements of O1 are exactly the finite unions of intervals and points.

Definition 3.7.0.3 (definable function [23, Definition 7]). Given an o-minimal structure O (over (R,+, .)),
a function f : RN → R is said to be definable in O if its graph belongs to ON+1.

Numerous functions and sets can be defined in an o-minimal structure, for example, sets and functions that
are semi-algebraic and globally subanalytic. For a comprehensive discussion, we refer the reader to [21], [23,
Section 4], [57] and [134, Section 4.5].

Semi-algebraic functions play a crucial role in this thesis. Hence, we briefly recall the definition of semi-algebraic
sets and semi-algebriac functions as in [134, Definition 4.26].

32 3.7. KL framework

Definition 3.7.0.4. A subset S of RN is a real semi-algebraic set if it is expressible as

S =

p⋃
j=1

q⋂
i=1

{x ∈ RN | fi,j(x) = 0, gi,j(x) < 0},

where fi,j , gi,j : RN → R, 1 ≤ i ≤ q, 1 ≤ j ≤ p, p, q ∈ N, are real polynomials. A function f : RN → R
is called a semi-algebraic function if its graph Graph f is a semi-algebraic subset of RN+1. A set-valued
mapping F : RN ⇒ RM is semi-algebraic if its graph GraphF is a semi-algebraic subset of RN+M

There are numerous examples of semi-algebraic sets and functions. We list below few of them from [21, 26, 134].

• All real polynomial functions are semi-algebraic.

• Indicator functions of semi-algebraic sets are semi-algebraic.

• The sparsity measure of a vector x ∈ RN defined by ‖x‖0, that is the number of non-zero terms in x, is
semi-algebraic (see [26, Example 5.2]).

• The p-norm of a vector x ∈ RN defined by

‖x‖p =

(
d∑
i=1

|xi|p
) 1

p

is semi-algebraic when p is a rational number and not semi-algebraic when p is an irrational number
(see [26, Example 5.3]).

• We state the following results as in [54]. The semi-algebraic subsets of R are the unions of finitely many
points and open intervals. If A is semi-algebraic subset of RN and L ⊂ RN a line, then L ∩ A is the
union of finitely many points and open intervals.

• Consider the following sets:
S1 := {(x, y) ∈ R2 | y = exp(x)} ,

S2 := {(x, y) ∈ R2 | ∃n ∈ N, y = nx} ,

S3 := {(x, y) ∈ R2 | y = bxc or (x ∈ Z and x ≤ y ≤ x+ 1)} .

The sets S1, S2, S3 are not semi-algebraic.

• Then, the function given by 1
2 ‖A− UZ‖

2
F , where A ∈ RM×N , U ∈ RM×K and Z ∈ RK×N , is semi-

algebraic, as it is a real polynomial function. Even if A is a fixed matrix, the function still remains
semi-algebraic. Such problems arise in the context of matrix factorization, which we consider later in
this thesis.

Verifying that a given function satisfies the KL property could be difficult, however in their seminal work
[22], Bolte, Daniilidis and Lewis prove that any proper, lower semicontinuous and semi-algebraic function
satisfies the KL property on its domain. This important result makes this proof technique very powerful,
since we are familiar with many semi-algebraic functions that appear very often in applications. In fact, the
same result holds for (possibly non-smooth) functions that are definable in an o-minimal structure [22, 23].
For examples and more details about the relations between KL and other important notions, see [22, 24]

Chapter 3. Variational analysis 33

and references therein. Instead of considering the further properties of semi-algebraic sets and functions, it
is beneficial to consider the properties in the context of o-minimal structure as it is a more general notion.
Hence, we now focus on the properties that arise in o-minimal structures. The following result shows that the
functions definable in an o-minimal structure are closed under pointwise addition and multiplication. This is
a standard result which can, for example, be found in [134, Corollary 4.32].

Lemma 3.7.0.2. Let S, T ⊂ RM , S ∩ T = ∅, and let f : S → RN , g : T → RN be maps that belong to O.
Then, pointwise addition and multiplication, f + g and f · g, restricted to S ∩ T belongs to O.

The following result connects KL property to functions that are definable in an o-minimal structure.

Theorem 3.7.0.3 ([23, Theorem 14]). Any proper lower semi-continuous function f : RN → R that
is definable in an o-minimal structure O has the Kurdyka–Łojasiewicz property at each point of dom ∂f .
Moreover the function ϕ in Lemma 3.7.0.1 is definable in O.

3.7.1 Discussion

KL property plays a crucial role in the convergence analysis of many optimization algorithms, such as
Proximal Gradient Method [7], Bregman Proximal Gradient (BPG) [28], Proximal Alternating Linearized
Minimization (PALM) based algorithms [26, 144] and many others. Usually, the essential conditions required
for the global convergence analysis of certain optimization algorithms can be collected in an abstract manner,
and are clearly summarized and studied in [7, 26]. Basically, the conditions that need to be verified are called
“sufficient descent condition”, “relative error condition”, and “continuity condition”. The sequence satisfying
such conditions is at-times called gradient-like descent sequence [28], which we detail in Section 9.4. In the
context of KL functions, to prove the global convergence of the full sequence of iterates generated by certain
optimization algorithm, it mostly suffices to prove that it is a gradient-like descent sequence.

In this thesis, we use the same technique in the analysis of the proposed algorithms, CoCaIn BPG in Chapter 5,
Model BPG in Chapter 9, Model CoCaIn BPG in Chapter 10.

Chapter 4

Bregman distances

4.1 Abstract . 35
4.2 Introduction . 36

4.2.1 Contributions . 37
4.2.2 Related work . 38

4.3 Bregman distances . 38
4.3.1 Properties . 40
4.3.2 Examples . 40

4.4 The Bregman framework . 41
4.4.1 Smooth adaptable functions . 42

4.5 Bregman distance for matrix factorization . 43
4.5.1 Connection to related work in 2D setting . 43

4.6 Bregman distances for deep matrix factorization . 45
4.7 Bregman distances for deep neural networks - Regression setting . 47

4.7.1 Activation functions . 47
4.7.2 Regression setting . 48

4.8 Bregman distances for deep neural networks - Classification setting . 52
4.8.1 Deep linear neural networks . 54
4.8.2 Deep non-linear neural networks . 55

4.9 Chapter conclusion . 57

4.1 Abstract

The L-smad property, a generalization of the Lipschitz continuous gradient property, relies on the so-called
Bregman distances, which are generalized proximity measures. In this chapter, we review the Bregman
distance concept and recall some known properties. We also recall the L-smad property. The focus here is on
proposing suitable Bregman distances to some popular objectives that arise in real world applications. We
mainly focus on objectives that arise in matrix factorization, deep matrix factorization and deep non-linear
neural networks, for which we verify the L-smad property. For this purpose, we propose novel Bregman
distances suitable for the considered setting.

35

36 4.2. Introduction

4.2 Introduction

The Euclidean distance is a standard tool that is very prevalent in the optimization field. It is used in
concepts such as Lipschitz continuous gradient property, strong convexity, proximal algorithms and many
others. In the introduction of this thesis, we mentioned that the Lipschitz continuous gradient property is
restrictive, as it is based on quadratic bounds. Such quadratic bounds arise due to the usage of the Euclidean
distance. This is because the Euclidean distance cannot capture all the geometries that arise in real world
applications. Hence, generalized proximity measures are sought after. In this thesis, we are mainly interested
in Bregman distances that generalize the Euclidean distance. Bregman distances are generated from so-called
Legendre function (Definition 4.3.0.1), say h. Essentially, the Bregman distance is the difference between h
and the linear approximation of h. For illustrative purposes, let h be convex and continuously differentiable
over RN . Then, the Bregman distance Dh between two points x, y ∈ RN generated by h is given by

Dh(x, y) = h(x)− (h(y) + 〈∇h(y), x− y〉) ,

where h(y) + 〈∇h(y), x− y〉 is the linear approximation of h at y. We illustrate the Bregman distance using
a simple function h(x) = x4 in Figure 4.1.

Figure 4.1: Illustration of the Bregman distance between two point x, y ∈ R. Set h(x) = x4. The Bregman
distance is the difference between h(x) and the linearization of h at y evaluated at x, which we denote via the
red line segment.

Bregman distances were first considered in [34] in the context of projection onto the intersection of closed
convex sets, which arises in the fields of image reconstruction, minimization of convex functions, statistical
estimation and many others. Recently, Bregman distances became popular in various applications related
to both convex and non-convex optimization, which we will discuss shortly. We are mainly interested in

Chapter 4. Bregman distances 37

one thread of research that involves proposing extensions to the Lipschitz continuous gradient property and
developing related algorithms. Notably, such algorithms are applicable to various problems arising in machine
learning, computer vision, statistics and many other fields (see Chapter 5, 6, 7, 8, 9, 10).

In this regard, for non-convex and non-smooth optimization, the extension of the Lipschitz continuous gradient
property known as the L-smad property was proposed in [28] and it will be key to this thesis. Based on the
L-smad property, the Bregman Proximal Gradient (BPG) algorithm was proposed in [28], which we recall
in Chapter 5. BPG forms the foundation for the developing various algorithms, which will be the focus of
subsequent chapters. In this chapter, our goals are

• to introduce the concept of Bregman distance and its properties,

• to introduce the L-smad property and discuss its significance,

• to discuss the algorithmic implications of the L-smad property,

• to explore various practical applications and develop suitable Bregman distances such that the L-smad
property is satisfied.

4.2.1 Contributions

Our main contributions in this chapter involves proposing appropriate Bregman distances suitable for the
objectives that arise in the context of matrix factorization, deep matrix factorization and deep neural network
settings such that the L-smad property is satisfied. In particular, we list our contributions below.

• We propose a novel Bregman distance for matrix factorization problem (1.2.7) with the following
auxiliary function (called kernel generating distance) with certain c1, c2 > 0:

h(U,Z) = c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

)
,

and verify the L-smad property. The generated Bregman distance embeds the crucial coupling between
the variables U and Z.

• For the matrix factorization problems, we connect with few parallel works and show that our Bregman
distance results in the tightest value for L in the L-smad property.

• Based on similar ideas used in the matrix factorization setting, we propose the Bregman distances
suitable for deep matrix factorization problems and verify the L-smad property.

• Finally, we also consider both the regression and the classification problems that arise in the context of
deep non-linear neural networks and propose suitable Bregman distances to satisfy the L-smad property.

• For the deep matrix factorization and the generic deep non-linear neural network settings, we rely on
the Legendre functions that takes the following form:

h(x) =
N∑
i=1

ai ‖x‖2i2 ,

where ai ≥ 0 for all i ∈ {1, . . . , N}. The choice of a′is vary according to the setting in consideration.

38 4.3. Bregman distances

4.2.2 Related work

As mentioned earlier, Bregman distances were first considered in [34] in the context of projection onto the
intersection of closed convex sets. Earlier methods relied on Euclidean distances to generate an orthogonal
projection, whereas with Bregman distances, non-orthogonal projections are possible. Various related settings
were considered in [44, 45] that popularized Bregman distances further. Bregman distances also became
popular in the context of proximal point algorithms [46, 160]. In the related works on maximal monotone
operator setting, the Bregman distances were popularized due to [65]. The seminal Mirror Descent algorithm
[14] incorporates Bregman distances in the update step, and such an update step can be interpreted as a
Gradient Descent like step in the dual space based on the reference function that generates the Bregman
distance.

Recently, there has been huge surge of work on Bregman distances [16, 37, 53, 66, 71, 91, 141, 161]. This is
due to the flexibility one gains in modelling the proximity measures and the ability to design algorithms that
are suitable for objectives that arise in machine learning, computer vision and many others contemporary
research areas. In this regard, the so-called Bregman Proximal Gradient [28] and related algorithms (see
Chapter 5, 9, 10) are increasingly becoming popular. A major drawback of using Bregman Proximal Gradient
algorithms is that the update step is non-trivial to solve. However, at times the special structure of the Bregman
distance can result in closed form update steps, simple case being Gradient Descent with the Euclidean
distance. Also, for instance in the minimization problem obtained for deblurring an image under Poisson
noise, one can obtain a closed form expression for an optimization subproblem using a Bregman distance
generated by Burg’s entropy [139]. Various closed form update steps were also proposed in Chapter 6, 7, 8.

The crucial observation that Bregman distances can indeed be used to generalize the notion of Lipschitz
continuous gradient was considered in [10]. However, their setting was restricted to convex problems. This
was later mitigated in [28], via the L-smad property for non-convex problems. During the same time, closely
related notions such as relative smoothness [109], and relative continuity [108] were also proposed based on
Bregman distances. Before [10] and [109], the work in [20] also considered a generalization of the Lipschitz
continuous gradient notion. More related references also include [98, 130]. We later see in this thesis that the
L-smad property defined above can also be restrictive, and thus we propose the MAP property in Chapter 9
(based on a closely related work is [55]) to generalize the L-smad property even further. The Bregman
Proximal Gradient algorithms detailed later in Chapter 5 rely on the L-smad property. Model BPG variants
in Chapter 9 and Chapter 10 rely on the MAP property.

In order for the BPG or Model BPG based algorithms to be applicable, it is required to verify the L-smad or
the MAP property. In this regard, we mainly tackle the objectives arising in matrix factorization, deep matrix
factorization and deep neural networks. Bregman distances for structured matrix factorization problems
were considered in [58, 84, 103, 162] along with our work in Section 4.5. Extensions to deep linear neural
networks were considered in Section 4.6. We also propose suitable Bregman distances to various practical
deep neural network settings in Section 4.7, 4.8. Bregman distances allow for many optimization algorithms,
which were previously thought to be completely different to co-exist in a single algorithm, thus making the
analysis simpler.

4.3 Bregman distances

In Chapter 1, it was mentioned that the Lipschitz continuous gradient property is restrictive and more general
notion such as L-smad property is sought after. However, the L-smad property relies on generalized proximity

Chapter 4. Bregman distances 39

measures known as Bregman distances, which generalize the standard Euclidean distance. Bregman distances
are generated from so-called Legendre functions, which is defined below.

Definition 4.3.0.1 (Legendre function [149, Section 26]). Let h : RN → R be a proper lsc convex function.
It is called:

(i) essentially smooth, if h is differentiable on int domh, with moreover ‖∇h(xk)‖ → ∞ for every sequence
(xk)k∈N ∈ int domh converging to a boundary point of domh as k →∞;

(ii) of Legendre type if h is essentially smooth and strictly convex on int domh.

Some properties of Legendre function include the following:

dom ∂h = int domh, and ∂h(x) = {∇h(x)}, ∀x ∈ int domh.

Additional properties can be found in [11, Section 2.3]. Legendre function has variants such as kernel
generating distance [28], or a reference function [109]. Generic reference functions used in [109] are more
general compared to Legendre functions, as they do not require essential smoothness. In this thesis, we only
consider Legendre functions or kernel generating distances, which are almost equivalent and the discussion is
provided below. We provide below the definition of kernel generating distance, which was recently stated in
[28] (in this respect see also [8]).

Definition 4.3.0.2. (Kernel Generating Distance) Let C be a nonempty, convex and open subset of RN .
Associated with C, a function h : RN → (−∞,+∞] is called a kernel generating distance if it satisfies the
following:

(i) h is proper, lower semicontinuous and convex, with domh ⊂ C and dom ∂h = C.

(ii) h is C1 on int domh ≡ C.

We denote the class of kernel generating distances by G(C).

A strictly convex kernel generating distance function is equivalent to the Legendre function, due to the
following standard result (for example, see [148, Theorem 26.1]).

Definition 4.3.0.3. Let h : RN → R be a proper, lsc and convex function. The following statements are
equivalent:

(i) h is essentially smooth.

(ii) ∂h(x) = {∇h(x)} when x ∈ int domh, while ∂h(x) = ∅ for x /∈ int domh.

(iii) dom ∂h = int domh 6= ∅.

The significance of kernel generating distance is as follows. In several optimization problems that arise in
practical applications, it is the case that the objective function is optimized over a nonempty, convex and
open set C ⊂ RN . At times, it is conducive for optimization if the set C is assigned to a kernel generating
function h, such that the sub-problems that arise in algorithms (for example, see Chapter 5) essentially
become unconstrained.

40 4.3. Bregman distances

The Bregman distance associated with any Legendre function h or a kernel generating distance is defined by

Dh(x, y) = h(x)− h(y)− 〈x− y,∇h(y)〉 , ∀x ∈ domh, y ∈ int domh . (4.3.1)

This object is not a distance according to the classical definition (for example, it is not symmetric in general).
However, the Bregman distance between two points is nonnegative if and only if the function h is convex. If
h is known to be strictly convex, we have that Dh (x, y) = 0 if and only if x = y. The classic example of
a Bregman distance is the squared Euclidean distance, which is generated by h(x) = (1/2) ‖x‖2. For more
examples, results and applications of Bregman distances, see [11, 46, 65, 160, 161] and references therein.

4.3.1 Properties

For this section, we use the results stated in [139, Section 3]. The class of proper, closed, convex Legendre
functions is denoted by L .

Proposition 4.3.1.1. Let h ∈ L and Dh be the associate Bregman distance.

(i) Dh is strictly convex on every convex subset of dom ∂h with respect the first argument.

(ii) For y ∈ int domh, it holds that Dh(x, y) = 0 if and only if x = y.

(iii) For x ∈ RN and u, v ∈ int domh the following three point identity holds:

Dh(x, u) = Dh(x, v) +Dh(v, u) + 〈x− v,∇h(v)−∇h(u)〉 . (4.3.2)

Proof. (i) and (ii) follow directly from the definition of h being essentially strictly convex. (iii) is stated in
[12, Prop. 2.3]. It follows from the definition of a Bregman distance.

4.3.2 Examples

Prominent examples of Bregman distances can be found in [10, Example 1, 2]. We provide some examples
below. For any vector x ∈ RN , the i th coordinate is denoted by xi.

• Bregman distance generated from h(x) = 1
2‖x‖2 is equivalent to the Euclidean distance. Here, the

conjugate is given by h∗(y) = 1
2‖y‖2.

• Let x, x̄ ∈ RN++, for h(x) = −∑N
i=1 log(xi) (Burg’s entropy), the generated Bregman distance is

Dh(x, x̄) =

N∑
i=1

(
xi
x̄i
− log

(
xi
x̄i

)
− 1

)
.

Such distances are helpful in Poisson linear inverse problems [10, 139] (Chapter 9). Here, the conjugate
is given by h∗(y) = −∑N

i=1 log(−yi)− 1 with domh∗ = RN−−, where RN−− := (−∞, 0)× . . .× (−∞, 0).

• Let x ∈ RN+ , x̄ ∈ RN++, for h(x) =
∑N

i=1 xi log(xi) (Boltzmann–Shannon entropy), with 0 log(0) := 0,
the Bregman distance is given by

Dh(x, x̄) =

N∑
i=1

xi(log(xi)− log(x̄i))− (xi − x̄i) .

Chapter 4. Bregman distances 41

Such distances are helpful to handle simplex constraints [14]. Here, the conjugate is given by h∗(y) =∑N
i=1 exp(yi)−N with domh∗ = RN .

• Phase retrieval problems [28] (standard phase retrieval problem mentioned in Section 1.2.1) use the
Bregman distance based on the Legendre function h : RN → R that is given by

h(x) =
1

4
‖x‖42 +

1

2
‖x‖22 .

Here, the conjugate is given by h∗(y) = 3
4 ‖y‖

4
3
2 + 1

2 ‖y‖
2
2 with domh∗ = RN .

• In Section 4.5, we show that matrix factorization problems use the Bregman distance based on the
Legendre function h : RN1 × RN2 → R that is given by

h(x1, x2) = c1

(‖x1‖2 + ‖x2‖2
2

)2

+ c2

(‖x1‖2 + ‖x2‖2
2

)
,

with certain c1, c2 > 0 and N1, N2 ∈ N. Here, the conjugate function h∗ : RN1 × RN2 → R is given by

h∗(y1, y2) =
3c1

4(c
4
3
1)

(
‖y1‖2 + ‖y2‖2

) 4
3 +

1

2c2

(
‖y1‖2 + ‖y2‖2

)
,

with full domain.

• In deep neural networks (see Section 4.6, 4.7, 4.8), the following Legendre functions are prominent

h(x) =

N∑
i=1

ai ‖x‖2i2 ,

where ai ≥ 0 for all i ∈ {1, . . . , N}. Here, the value of N varies according to the setting under
consideration. Here, the conjugate is given

h∗(y) =
N∑
i=1

ai(2i− 1)

(
1

c(2i)

) 2i
2i−1

‖y‖
2i

2i−1

2 ,

with full domain.

• Fermi-Dirac entropy is given by h(x) = x log(x) + (1− x) log(1− x) with domh = [0, 1]. The conjugate
of the Fermi-Dirac entropy is given by h∗(y) = log(1 + exp(y)) with domh∗ = R.

• Hellinger function is given by h(x) = −
√

1− x2 with domh = [−1, 1]. The conjugate is given by
h∗(y) =

√
1 + y2 with domh∗ = R.

4.4 The Bregman framework

In this section we detail the recent concept of smooth adaptable functions (functions satisfying the L-smad
property), which in some sense extends and generalizes the class of smooth functions with globally Lipschitz
continuous gradient.

42 4.4. The Bregman framework

We focus on additive composite problems given by:

(P) inf
{
f ≡ f0 (x) + f1 (x) : x ∈ C

}
,

where f0, f1 satisfy Assumption A given below. One important feature of using Bregman distances in
optimization algorithms is the ability of relate the constraint set C to a certain kernel generating distances
function h ∈ G(C). For the rest of the chapter, we make the following assumption.

Assumption A. (i) h ∈ G(C) with C = domh.

(ii) f0 : RN → (−∞,+∞] is a proper and lower semicontinuous function (possibly non-convex) with
dom f ∩ C 6= ∅.

(iii) f1 : RN → (−∞,+∞] is a proper and lower semicontinuous function (possibly non-convex) with
domh ⊂ dom f1, which is continuously differentiable on C.

(iv) v(P) := inf
{
f (x) : x ∈ C

}
> −∞.

4.4.1 Smooth adaptable functions

Here, we deal with the non-convex optimization model (P) where the gradient of the smooth function f1 is
not globally Lipschitz. Recently, Bauschke, Bolte and Teboulle [10], observed that the property of having a
Lipschitz continuous gradient can be interpreted equivalently as a certain convexity condition on the function
itself (see description above (1.1.5) in Chapter 1). This opens the gate for generalizing known results in the
convex setting. It was extended to the non-convex setting in [28] with the concept of smooth adaptable
functions given below.

Definition 4.4.1.1 (L-smooth adaptable). A pair (f1, h) is called L-smooth adaptable (L-smad) on C if
there exists L > 0 such that Lh− f1 and Lh+ f1 are convex on C.

Note that the L-smad property considered in Chapter 1 is a special case of the above definition with C = RN .
The optimization model (P) appears with a smooth term in the objective function which is very common in
many fields of applications. For L-smooth adaptable functions, we will use the following extended version of
the Descent Lemma (see [28, Lemma 2.1, p. 2134]).

Lemma 4.4.1.1 (Extended Descent Lemma). The pair of functions (f1, h) is L-smooth adaptable on C if
and only if:

|f1 (x)− f1 (y)− 〈∇f1 (y) , x− y〉| ≤ LDh (x, y) , ∀ x, y ∈ int domh. (4.4.1)

Remark 4.4.1.1 (Invariance to strong convexity). We would like to note that the L-smooth adaptable property
is invariant when h is additionally assumed to be σ-strongly convex. Indeed, as described in [28], since
convexity of f1 is not needed, we can define ω(x) := (σ1/2) ‖x‖2, and then for any 0 < σ1 < σ, we have

Lh− f1 = L (h− ω)− (f1 − Lω) := Lh̄− f̄1,

namely, the new pair
(
f̄1, h̄

)
satisfies the L-smad property on C.

Based on the L-smad property, provably globally convergent algorithms can be developed, which is the main
focus on Chapter 5. We already illustrated the L-smad property in Figure 1.2. Now, we focus on providing
few practical examples of the L-smad property. To this regard, we focus on objectives that arise in the
context of matrix factorization, deep matrix factorization and deep non-linear neural networks. We design
the Bregman distances for each of the mentioned setting and verify the L-smad property.

Chapter 4. Bregman distances 43

4.5 Bregman distance for matrix factorization

Matrix factorization has numerous applications in machine learning [112, 156], computer vision [48, 82, 157,
170], bio-informatics [35, 155] and many others. Given a matrix A ∈ RM×N , one is interested in the factors
U ∈ RM×K and Z ∈ RK×N such that A ≈ UZ holds. This is usually cast into the following non-convex
optimization problem

min
U∈U ,Z∈Z

{
f ≡ 1

2
‖A− UZ‖2F +R1(U) +R2(Z)

}
, (4.5.1)

where R1,R2 are regularization terms, 1
2 ‖A− UZ‖

2
F is the data-fitting term, and U ,Z are the constraint

sets for U and Z respectively. Here, R1(U) and R2(Z) can be potentially non-convex extended real valued
functions and possibly non-smooth.

Denote f1(U,Z) := 1
2 ‖A− UZ‖

2
F and f0(U,Z) := R1(U) +R2(Z). We prove the L-smad property for f1.

The kernel generating distance is a linear combination of

h1(U,Z) :=

(
‖U‖2F + ‖Z‖2F

2

)2

and h2(U,Z) :=
‖U‖2F + ‖Z‖2F

2
, (4.5.2)

Proposition 4.5.0.1. Let f1, h1, h2 be as defined above. Then, for L ≥ 1, the function f1 satisfies the
L-smad property with respect to the following kernel generating distance

ha(U,Z) = 3h1(U,Z) + ‖A‖F h2(U,Z) . (4.5.3)

The proof is given in Section A.2 in the appendix. The Bregman distances considered in [28] are separable
and are not applicable for matrix factorization problems. The inherent coupling between two subsets of
variables U,Z is the main source of non-convexity in the objective f1. The kernel generating distance (in
particular h1) contains the interaction/coupling terms between U and Z which makes it amenable for matrix
factorization problems.

4.5.1 Connection to related work in 2D setting

We briefly consider a two dimensional matrix factorization problem to compare various related strategies
[28, 103] to compute the appropriate Bregman distance. In this regard, we use three strategies to develop
suitable Bregman distances, namely, method 1 from [28], method 2 from [103] and method 3 from our setting.

Method 1. Consider the setting of standard phase retrieval from Section 1.2.1 (also see Chapter 5). Denote
Ai := aia

T
i ,

f1 (x) =
1

4

m∑
i=1

(
〈x,Aix〉 − b2i

)2
, and h (x) =

1

4
‖x‖42 +

1

2
‖x‖22 .

As per [28, Lemma 5.1], the function Lh− f1 is convex, where

L ≥
m∑
i=1

(
3 ‖Ai‖2 + ‖Ai‖

∣∣b2i ∣∣) .

44 4.5. Bregman distance for matrix factorization

In the setting of two dimensions using x = (x1, x2), m = 1 and A1 = 1
2

(
0, 1

1, 0

)
, we obtain the matrix

factorization problem in 2D. Then, with

L ≥
(

3

2
+

1√
2

∣∣b21∣∣) , h(x1, x2) =
1

4
(x2

1 + x2
2)2 +

1

2
(x2

1 + x2
2) ,

the function Lh− f1 is convex. In other words, the following function is convex, with certain θ ≥ 1,

θ

(
3

2
+

1√
2

∣∣b21∣∣)(1

4
‖x‖42 +

1

2
‖x‖22

)
− f1 ,

= θ

(
3

2
+

1√
2

∣∣b21∣∣)(1

c1

c1

4
‖x‖42 +

1

c2

c2

2
‖x‖22

)
− f1 .

Then, with c1 = 3
2 , c2 =

b21
2 , we can deduce that L1h1 − f1 is convex, where

L1 ≥
(

3

2
+

1√
2

∣∣b21∣∣) 1

min{c1, c2}
, h1(x) :=

c1

4
‖x‖42 +

c2

2
‖x‖22 .

Rewriting L1 lower bound, we obtain that

L1 ≥ (
√

2b21 + 3) max

{
1

3
,

1

b21

}
.

Method 2. From the method in [103], after a brief calculation, we obtain that with the following Legendre
function

h2(x1, x2) =
3

2

(
x1

2 + x2
2
)2

4
+
b21
2

(
x1

2 + x2
2

2

)
+ 1 ,

and with any

L2 ≥ (
√

2b21 + 3) max

{
1

3
,

1

b21

}
,

the function L2h2 − f1 is convex. Note that the constant in the Legendre function is not affecting the
convexity of L2h2 − f1.

Method 3. With the matrix factorization setting which we proposed in this chapter, we deduce that with

h3(x1, x2) = c1

(
x2

1 + x2
2

2

)2

+ c2

(
x2

1 + x2
2

2

)
,

c1 = 3
2 and c2 =

b21
2 , the function L3h3 − f1 is convex for L3 ≥ 1.

As illustrated above, it is clear that L3 gives the tightest value on the choice of scaling factor required for the
Legendre function. This implies that our analysis in the context of matrix factorization is the tightest. In
regard to method 1, the immediate relation to the matrix factorization problem was not clear. Additionally,
the matrix Ai is required to be symmetric, thus generalization of above mentioned strategy in method 1 may
fail in higher dimensions.

Chapter 4. Bregman distances 45

We continue the matrix factorization setting in Chapter 6, where we illustrate the efficient applicability of
BPG based algorithms based on the proposed Bregman distances.

4.6 Bregman distances for deep matrix factorization

Matrix factorization problems consider only two factors and it is natural to consider extensions that involve
arbitrary number of factors. Deep matrix factorization deals with this setting, which is our main focus in
this section. We note that the Bregman distance proposed for matrix factorization is not valid for the deep
matrix factorization setting involving an arbitrary number of factors. The main contribution of this section is
to derive Bregman distances suitable for performing deep matrix factorization with a quadratic loss. Such a
problem is equivalent to training a so-called deep linear neural network, which is an important and interesting
optimization problem. As remarked by [77] and in view of [49, 92, 169, 175], it is well justified to study
the theoretically more tractable deep linear neural networks instead of the more challenging deep nonlinear
networks (Section 4.7, 4.8). Deep matrix factorization model also has applications in matrix completion (c.f.
Section 7.6).

Based on the additive composite problem setting in Section 4.4, the deep matrix factorization problem or
equivalently training a so-called deep linear neural network (DLNN) model involves solving the following
optimization problem:

min
Wi∈Wi ,∀i∈{1,...,N}

f1(W) + f0(W) , (4.6.1)

where
f1(W) :=

1

2
‖W1W2 · · ·WNX − Y ‖2F ,

f0 is possibly a regularization term, and N denotes the number of layers. Here, we set f0 to be a zero
function, as our main focus here is to provide suitable Bregman distances such that f1 is L-smad with respect
to h. Furthermore, we denote by Wi = Rdi×di+1 where di ∈ N for all i ∈ {1, . . . , N}. Let dN+1 = d and
X ∈ Rd×nT be fixed, where nT ∈ N, which typically corresponds to the number of training samples. Similarly
we have fixed Y ∈ Rd1×nT , which typically corresponds to the labels of the inputs in X. We denote by
W := (W1, . . . ,WN), meaning W lies in the product space W :=W1 × · · · ×WN , equipped with the norm
‖W‖2F :=

∑N
i=1 ‖Wi‖2F . We focus on N ≥ 2 in this section.

To prove the L-smad property we consider its characterization via the Hessian. More precisely, if h and f1

are twice continuously differentiable, Lh− f1 and f1 + Lh are convex if and only if L∇2h(x) � ∇2f1(x) and
−L∇2h(x) � ∇2f1(x), i.e., the eigenvalues of the Hessian of f1 are bounded by the eigenvalues of the Hessian
of Lh. Our analysis suggests that the odd and the even case have to be considered separately.

Even number of layers. Let N be even and define the following functions:

H1(W) :=

(
‖W‖2F
N

)N
, H2(W) :=

(
‖W‖2F
N

)N
2

.

Then, we have the following result, which shows that for an appropriate linear combination of H1 and H2 we
obtain the L-smad property for f1 in (4.6.1).

46 4.6. Bregman distances for deep matrix factorization

Proposition 4.6.0.1. Let H1, H2 be as defined above and let f1 be as in (4.6.1). Then, for L = 1, the
function f1 satisfies the L-smad property with respect to the following kernel generating distance

Ha(W) = c1(N)H1(W) + c2(N)H2(W) , (4.6.2)

where we have

c1(N) =
(2N − 1)NN

2N !
‖X‖2F , c2(N) =

‖Y ‖F ‖X‖F (N − 1)N
N−2

2

(N − 2)
N−2

2

.

The proof is given in Section A.3.1 in the appendix.

Note that Ha is a polynomial of order 2N as a linear combination of a degree 2N and a degree N polynomial.
The resulting Bregman distances are data-dependent. More precisely, the coefficients c1(N) and c2(N) are
dependent on the number of layers, X and Y . We remark that for N = 2 and ‖X‖F = 1, this matches the
results from Section 4.5 for the matrix factorization problems.

Odd number of layers. Let N be odd and denote

H3(W) :=

(
‖W‖2F + 1

N + 1

)N+1
2

. (4.6.3)

As the following proposition reveals, the loss function for the odd case is L-smooth adaptable with respect to
a degree 2N polynomial Hb which is given as a linear combination of H1 and H3.

Proposition 4.6.0.2. Let H1, H3 be as defined above and let f1 be as in (4.6.1). Then, for L = 1, the
function f1 satisfies the L-smad property with respect to the following kernel generating distance

Hb(W) = c1(N)H1(W) + c3(N)H3(W) , (4.6.4)

where we have

c1(N) =
(2N − 1)NN

2N !
‖X‖2F , c3(N) =

‖Y ‖F ‖X‖F (N − 1)(N + 1)
N−1

2

(N − 1)
N−1

2

.

The proof is given in Section A.3.3 in the appendix.

Like in the even case H1 is a polynomial of order 2N . However, here H2 is not applicable as N is odd. We
fix this issue using H3, a polynomial of order N + 1. Note that the analysis of the objective results in a
polynomial of degree only N . This is automatically resolved with H3, because the constant term 1 in H3

allows for certain terms to be of order N , while preserving the convexity of H3. Note that this is just one
potential way to obtain polynomials of order N . We show that the proposed Bregman distances are efficient
to implement in practice.

Strong convexity of h. The global convergence result of BPG in [28] (also Theorem 7.3.2.1) relies on the
strong convexity of h. We denote σ as the strong convexity parameter. For N = 2 the strong convexity is

Chapter 4. Bregman distances 47

satisfied directly by Ha. Denote the following:

H4(W) :=
‖W‖2F
N

.

For even N > 2, with ρ > 0, we use the following h:

h(W) = Ha(W) + ρH4(W) , (4.6.5)

for which σ = 2ρ
N . For odd N > 2, with ρ > 0, we use the following h:

h(W) = Hb(W) + ρH4(W) , (4.6.6)

thus σ = 1

(N+1)
N−1

2

+ 2ρ
N . We fix ρ in the initialization phase of the algorithms.

In Chapter 7, we explore the application of BPG and other BPG based methods based on the Bregman
distances proposed in this section, to solve deep matrix factorization problems. We now embark on deep
non-linear neural networks with possibly more than two factors.

4.7 Bregman distances for deep neural networks - Regression setting

Deep non-linear neural networks form a major chunk of the research in the field of machine learning in the
recent times [77, 96, 105, 146]. This is due to the state of the art performance attained by deep neural
networks in various research areas of machine learning, such as computer vision, natural language processing
and many others. For an introduction to deep neural networks, we recommend the reader to the book [77].
Deep non-linear neural networks rely on so-called non-linear activation functions, whereas in deep matrix
factorization setting we use only the linear activation functions. Our focus here is on the regression problems
that arise in the context of deep learning, whereas in the next section we focus on the classification problems.

We describe below the objective that arises in regression setting with deep (non-linear) neural networks.
Denote Wi = Rdi+1×di where di ∈ N for all i ∈ {1, 2, . . . , N} where N is a positive integer such that N ≥ 2.
Also, dN+1 = d, X ∈ Rd1×nT , Y ∈ Rd×nT be fixed, where nT ∈ N. Typically, Y denotes the labels/targets
for the inputs X and nT corresponds to the number of training samples. Moreover, W := (W1, . . . ,WN)

and W ∈ W :=W1 × · · · ×WN . Also, we denote ‖W‖2F :=
∑N

i=1 ‖Wi‖2F , which is the induced norm on the
product space W. The optimization problem suitable for the regression setting with deep non-linear neural
networks is:

min
Wi∈Wi ∀i∈[N]

{
f1(W) :=

1

2
‖σN (WN . . . σ1(W1X))− Y ‖2F

}
, (4.7.1)

where σi : R→ R for i ∈ {1, . . . , N} are activation functions, which are applied element-wise. We will discuss
the exact properties of the activation functions later in this section. Note that when σ(x) = x, we obtain the
deep matrix factorization setting.

4.7.1 Activation functions

Henceforth, we consider the following assumption on the so-called activation functions σ1, . . . , σN .

48 4.7. Bregman distances for deep neural networks - Regression setting

Assumption B. Let σ : R→ R be an activation function that is twice continuously differentiable. There
exist certain constants D,E, F > 0, C ≥ 0 such that the following conditions hold true for any x ∈ R:

σ(x) ≤ C|x|+D , σ′(x) ≤ E , σ′′(x) ≤ F .

The following are examples of popular activation functions that satisfy Assumption B.

Sigmoid activation function. The sigmoid activation function σ1 : R→ R is given by

σ1(t) =
1

1 + e−t
.

The first and second order derivatives of σ1 are given by

σ′1(t) = σ1(t)(1− σ1(t)) , σ′′1(t) = σ′1(t)− 2σ′1(t)σ1(t) .

It is easy to see that σ1 satisfies Assumption B with C = 0, D = 1, E = 1, F = 1.

Tanh activation function. The tanh activation function is σ2 : R→ R is given by

σ2(t) = tanh(t) .

It’s first and second order derivatives are given by

σ′2(t) = 1− σ2(t)2 , σ′′2(t) = −2σ2(t)(1− σ2(t)2) .

It is easy to see that σ2 satisfies Assumption B with C = 0, D = 1, E = 1, F = 4
3
√

3
.

Softplus activation function. Let α > 0, the softplus activation function is σ3 : R→ R is given by

σ3(t) =
1

α
log(1 + eαt) .

It’s first and second order derivatives are given by

σ′3(t) =
eαt

1 + eαt
, σ′′3(t) = α

eαt

1 + eαt
− α e2αt

(1 + eαt)2
= α

eαt

(1 + eαt)2
.

Following the calculation in [129], we deduce that σ3(t) ≤ log 2
α + |t|. It is easy to see that σ3 satisfies

Assumption B with C = 1, D = log 2
α , E = 1, F = α.

4.7.2 Regression setting

Recall the following Generalized AM-GM inequality. Let a1, . . . , aN be non-negative real numbers then the
following inequality holds true

a1a2 . . . aN ≤
(
a1 + a2 + . . .+ aN

N

)N
.

Chapter 4. Bregman distances 49

The mapping SN : W → Rd1×nT is given by

SN (W1, . . . ,WN) := σN (WN . . . σ1(W1X)).

Similarly, we denote the mappings SN−1, . . . , S1 and S0 := X.

In order to analyse the L-smad property, we need to be aware of the second order terms that arise in the
Taylor expansion of the objective. The objective in (4.7.1) relies on SN . Thus, we initially consider both the
first and second order terms of SN , using the following result. For the purpose of ease of understanding, we
now consider N = 2. However, we later consider a generic positive integer N .

Lemma 4.7.2.1. Consider N = 2 and let H1 ∈ W1 and H2 ∈ W2. Consider the mapping S2(W1,W2) :=

σ2(W2σ1(W1X)) and in the expansion S2(W1 +H1,W2 +H2), the first order term containing H1 is given by

σ′2(W2σ1(W1X)) ◦ (W2(σ′1(W1X) ◦ (H1X))) ,

the first order term containing H1 is given by

σ′2(W2σ1(W1X)) ◦ (H2σ1(W1X)) ,

the second order term containing H1 is given by

σ′2(W2σ1(W1X)) ◦
(
W2

(
1

2
σ′′1(W1X) ◦ (H1X) ◦ (H1X)

))
,

the second order term containing H2 is given by

1

2
σ′′2(W2σ1(W1X)) ◦ (H2σ1(W1X)) ◦ (H2σ1(W1X)) ,

and the second order term which couples H1 and H2 is given by

σ′2(W2σ1(W1X)) ◦ (H2(σ′1(W1X) ◦ (H1X))) .

Proof. Considering the expansion

S2(W1 +H1,W2 +H2) := σ2((W2 +H2)σ1((W1 +H1)X)) .

We find the first order term containing H1 of the above given expansion by setting H2 = 0. Similarly, we
obtain the first order term containing H2 by setting H1 = 0. We provide the calculation for first order term
containing H1. Considering the first order expansion of σ1((W1 +H1)X) ignoring the higher order terms, we
obtain the following:

σ1(W1X +H1X) = σ1(W1X) + σ′1(W1X) ◦ (H1X) ,

where we used the fact that σ1 is applied element-wise. Then, we obtain the following:

σ2(W2σ1(W1X +H1X))

= σ2(W2(σ1(W1X) + σ′1(W1X) ◦ (H1X))) ,

= σ2(W2σ1(W1X) +W2(σ′1(W1X) ◦ (H1X))) ,

= σ2(W2σ1(W1X)) + σ′2(W2σ1(W1X)) ◦ (W2(σ′1(W1X) ◦ (H1X))) .

50 4.7. Bregman distances for deep neural networks - Regression setting

where in the first step we used the first order expansion of σ1 and in the last step we used the first order
expansion of σ2. Similarly, to find the first order term containing H2, we set H1 = 0. Then, we obtain the
following:

σ2((W2 +H2)σ1(W1X))

= σ2(W2σ1(W1X) +H2σ1(W1X)) ,

= σ2(W2σ1(W1X)) + σ′2(W2σ1(W1X)) ◦ (H2σ1(W1X)) ,

where in the last step we used the first order expansion of σ2. In order to find the second order term containing
only H1, using the following second order expansion

σ1(W1X +H1X) = σ1(W1X) + σ′1(W1X) ◦ (H1X) +
1

2
σ′′1(W1X) ◦ (H1X) ◦ (H1X) .

We are only interested in the second order term, thus we ignore the σ′1(W1X) ◦ (H1X) in the above expansion.
Now, we obtain

σ2(W2(σ1(W1X) +
1

2
σ′′1(W1X) ◦ (H1X) ◦ (H1X)))

= σ2

(
W2σ1(W1X) +W2

(
1

2
σ′′1(W1X) ◦ (H1X) ◦ (H1X)

))
,

= σ2(W2σ1(W1X)) +

(
σ′2(W2σ1(W1X)) ◦

(
W2

(
1

2
σ′′1(W1X) ◦ (H1X) ◦ (H1X)

)))
,

where in the last step we used second order Taylor expansion of σ2 element-wise. Now, considering the second
order expansion containing H2 we obtain

σ2((W2 +H2)σ1(W1X))

= σ2(W2σ1(W1X) +H2σ1(W1X)) ,

= σ2(W2σ1(W1X)) + σ′2(W2σ1(W1X)) ◦ (H2σ1(W1X)) +
1

2
σ′′2(W2σ1(W1X)) ◦ (H2σ1(W1X)) ◦ (H2σ1(W1X)) .

In order to find the coupling term containing H1, H2, we consider the following

σ2((W2 +H2)σ1(W1X +H1X))

= σ2((W2 +H2)(σ1(W1X) + σ′1(W1X) ◦ (H1X))) ,

= σ2(W2σ1(W1X) +H2(σ′1(W1X) ◦ (H1X))) ,

= σ2(W2σ1(W1X)) + σ′2(W2σ1(W1X)) ◦ (H2(σ′1(W1X) ◦ (H1X))) .

Thus, we arrive at the proposed result.

Using the same logic as Lemma 4.7.2.1, we obtain the following result for a generic positive integer N .

Lemma 4.7.2.2. Let Hi ∈ Wi, for i ∈ {1, . . . , N}. Considering the following expansion

SN (W1 +H1, . . . ,WN +HN) ,

the first order term is given by ∆i,N for i ∈ {1, . . . , N} in (A.4.1), the second order terms are given by ∆i,j,N

for i, j ∈ {1, . . . , N} in (A.4.2) and ∆i,i,N for i ∈ {1, . . . , N} in (A.4.3).

Chapter 4. Bregman distances 51

The proof is provided in Section A.4 in the appendix.

Henceforth, we use the notions provide in Lemma 4.7.2.2. Now, we consider the first and second order terms
that arise in the Taylor expansion of the objective in (4.7.1).

Lemma 4.7.2.3. Let Hi ∈ Wi, for i ∈ {1, . . . , N}. Consider the following expansion

f1(W1 +H1, . . . ,WN +HN) ,

then there exist Λu ≥ 0 for u ∈ {1, . . . , N} such that the second order form is given by

1

2
〈(H1, . . . ,HN),∇2f1(W)(H1, . . . ,HN)〉 ≤

 N∑
u=0

Λu

 N∑
p=1

‖Wp‖2
u(N∑

i=1

‖Hi‖2
)
.

The proof is provided in Section A.5 in the appendix.

We record the following variant of Lemma A.3.0.2. The following result states that first order term and
bounds on second order terms that arise in the Taylor expansion of the function H defined below.

Lemma 4.7.2.4. Let Hi ∈ Wi, for i ∈ {1, . . . , N}. Consider the following kernel generating distance:

H(W1, . . . ,WN) :=

(∑N
j=1 ‖Wj‖2

N

)N
.

It’s gradient with respect to Wi for i ∈ {1, . . . , N} is given by

∇WiH(W) =
2

NN

(
N

N − 1, 1

) N∑
j=1

‖Wj‖2
N−1

Wi ,

and the following lower bound holds true

〈
(H1, . . . ,HN),∇2H(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥ 2

(∑N
j=1 ‖Wj‖2

N

)N−1(N∑
k=1

‖Hk‖2F

)
,

and the following upper bound holds true

〈
(H1, . . . ,HN),∇2H(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤
(

2(2N − 1)

NN−1

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−1

.

The proof follows from the proof of Lemma A.3.0.2. Based on the above result, we have the following lemma
which is crucial to prove the L-smad property.

Lemma 4.7.2.5. Based on the notions in Lemma 4.7.2.3, consider the following kernel generating distance:

h(W) :=

2N∑
u=1

Γu

(∑N
p=1 ‖Wp‖2

u

)u
, (4.7.2)

52 4.8. Bregman distances for deep neural networks - Classification setting

where

Γu =



(∑9
i=1 Θi

)
(u)u−1 , if 1 ≤ u ≤ N − 1 ,

(Θ1 + Θ2 + Θ3 + Θ4 + Θ5 + Θ6)NN−1 , if u = N ,

(Θ5 + Θ9) (N + 1)N , if u = N + 1,

Θ5 , if u ∈ {N + 2, . . . , 2N} .

(4.7.3)

Then, it’s gradient with respect to Wi for i ∈ {1, . . . , N} is given by

∇Wih(W) =
2N∑
u=1

2Γu
uu

(
u

u− 1, 1

) N∑
j=1

‖Wj‖2
u−1

Wi .

Also, the following lower bound holds true:

〈
(H1, . . . ,HN),∇2h(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥

2N∑
u=1

2Γu

(
N∑
i=1

‖Hi‖2F

)(∑N
j=1 ‖Wj‖2

u

)u−1

,

and the following upper bound holds true:

〈
(H1, . . . ,HN),∇2h(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤

2N∑
u=1

(2Γu(2u− 1))

(
N∑
k=1

‖Hk‖2F

)(∑N
j=1 ‖Wj‖2

u

)u−1

.

Proof. The proof is a simple consequence of Lemma 4.7.2.4 and Lemma 4.7.2.3.

Note that h is strongly convex as Γ1 6= 0. Now, we provide our main result that is the L-smad property.

Proposition 4.7.2.1 (L-smad property). Consider h in (4.7.2) and f1 in (4.7.1), then the function Lh− f1

is convex with L = 1.

Proof. Combining the results of Lemma 4.7.2.5 and Lemma 4.7.2.3, we obtain

1

2

〈
(H1, . . . ,HN),∇2h(W)(H1, . . . ,HN)

〉
≥ 1

2

〈
(H1, . . . ,HN),∇2f1(W)(H1, . . . ,HN)

〉
.

A similar calculation leads to the convexity of Lh+ f1 for certain L, however, such a condition is not crucial
for this chapter. Thus, we skip it. In Chapter 8, we explore the application of BPG and other BPG based
methods based on the Bregman distances proposed in this section.

4.8 Bregman distances for deep neural networks - Classification setting

Classification problems based on deep neural networks are very popular in machine learning and related fields.
Several practical objectives such as hand written recognition [99], image classification [96], spam detection
[168] and many other problems [77] rely on classification problems. In classification setting, essentially we
are given a training data with inputs and corresponding class labels. The goal is to develop a classifier
(function) where an input is passed to obtain the class label. We now describe the objective that arises
in the classification setting. For the purpose of self-containedness of the chapter, we repeat the text from
Chapter 1. Let K be the number of classes. Given a training dataset with M inputs, denoted xj ∈ Rd1 for

Chapter 4. Bregman distances 53

j ∈ {1, . . . ,M}, and the corresponding class jk in {1, 2 . . . ,K} for each input. Continuing the notation in
the regression setting, xj is the jth column of X and set K = d, M = nT . Here, the label for the jth sample
would be yj ∈ RN , such that all the elements are zero except the jthk element which is set to one. The goal is
find a model which uses this training dataset to predict the class labels for new unseen datapoints. In this
regard, we consider the following objective:

min
Wi∈Wi ∀i∈[N]

f1(W) :=

M∑
j=1

(
− log

(
ezj,jk∑K
k=1 e

zj,k

)) . (4.8.1)

where the vector zj ∈ RN is generated via certain deep neural network, which can be possibly be a linear
network or a non-linear network for the jth sample and zj,jk is the jthk coordinate of zj , jk denotes the class
of jth sample and it lies in {1, 2 . . . ,K}. For j ∈ {1, . . . , N}, with deep linear neural networks we have
zj = W1 . . .WNxj , and with generic deep non-linear neural network we have zj := σN (WN . . . σ1(W1xj)).

We recall few properties of the cross-entropy loss given above. Let i ∈ {1, . . . ,K} and consider the following
function f̃ : RK → R given by

f̃(x) = − log

(
exi∑K
i=1 e

xi

)
. (4.8.2)

For convenience denote S̃i(x) := exi∑K
j=1 e

xj
. The gradient of S̃i for i ∈ {1, . . . ,K} is given by

(∇S̃i(x))j =

{
S̃i(x))(1− S̃i(x)) if j = i ,

−S̃i(x)S̃j(x) if j 6= i .
(4.8.3)

Thus, the gradient of f̃ is given by

(∇f̃(x))j =

{
−(1− S̃j(x)) if j = i ,

S̃j(x) if j 6= i .
(4.8.4)

Note that we have the following: ∥∥∥∇2f̃(x)
∥∥∥
F
≤ 2
√
K , ∀x ∈ RK .

This is because of the following manipulations:

〈
h,∇2f̃(x)h

〉
=

K∑
j=1

hj

〈
∇S̃j(x), h

〉
,

≤ ‖h‖

√√√√ K∑
j=1

〈
∇S̃j(x), h

〉2
,

≤ ‖h‖2
√√√√ K∑

j=1

∥∥∥∇S̃j(x)
∥∥∥2
,

≤ 2
√
K ‖h‖2 ,

54 4.8. Bregman distances for deep neural networks - Classification setting

where
∥∥∥∇S̃j(x)

∥∥∥ ≤ 2 and in the second last step we use Cauchy-Schwarz inequality.

4.8.1 Deep linear neural networks

We first consider the deep linear neural network model via the following result.

Lemma 4.8.1.1. Denote the following

f1(W) :=

M∑
j=1

(
− log

(
ezj,jk∑K
k=1 e

zj,k

))
, (4.8.5)

where zj = W1 . . .WNxj for all j = 1, . . . ,M . Let Hi ∈ Wi, for i ∈ {1, . . . , N}. Consider the following
expansion

f1(W1 +H1, . . . ,WN +HN) ,

then there exist Λu ≥ 0 for u ∈ {1, . . . , N} such that the second order form is given by

1

2
〈(H1, . . . ,HN),∇2f1(W)(H1, . . . ,HN)〉 (4.8.6)

≤ 1

2
2
√
KN

 M∑
j=1

‖xj‖2
(N∑

i=1

‖Hi‖2
)(∑N

p=1 ‖Wp‖2

N − 1

)N−1

. (4.8.7)

Proof. Considering the second order term of f1(W1 +H1, . . . ,WN +HN) we have the following calculation
after simple manipulations:

1

2
〈(H1, . . . ,HN),∇2f1(W)(H1, . . . ,HN)〉

≤ 1

2
2
√
K

M∑
j=1

∥∥∥∥∥
N∑
i=1

∆
(j)
i,N

∥∥∥∥∥
2

,

≤ 1

2
2
√
K

M∑
j=1

∥∥∥∥∥∥
N∑
i=1

i−1∏
p=1

Wp

Hi

 N∏
p=i+1

Wp

xj

∥∥∥∥∥∥
2

,

≤ 1

2
2
√
KN

M∑
j=1

N∑
i=1

‖xj‖2
i−1∏
p=1

‖Wp‖2
 ‖Hi‖2

 N∏
p=i+1

‖Wp‖2
 ,

≤ 1

2
2
√
KN

 M∑
j=1

‖xj‖2
(N∑

i=1

‖Hi‖2
)(∑N

p=1 ‖Wp‖2

N − 1

)N−1

.

Lemma 4.8.1.2. Based on the notions in Lemma 4.7.2.3, consider the following kernel generating distance:

h(W) := Γ̂N

(∑N
p=1 ‖Wp‖2

N

)N
(4.8.8)

Chapter 4. Bregman distances 55

where

Γ̂N = 2
√
K

N ‖X‖2
2(N − 1)N−1

NN if 1 ≤ j ≤ N . (4.8.9)

Then, it’s gradient with respect to Wi for i ∈ {1, . . . , N} is given by

∇Wih(W) =
2Γ̂N
NN

(
N

N − 1, 1

) N∑
j=1

‖Wj‖2
N−1

Wi .

Also, the following lower bound holds true:

〈
(H1, . . . ,HN),∇2h(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥ 2Γ̂N

(
N∑
i=1

‖Hi‖2F

)(∑N
j=1 ‖Wj‖2

N

)N−1

,

and the following upper bound holds true:

〈
(H1, . . . ,HN),∇2h(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤
(

2Γ̂N (2N − 1)
)(N∑

k=1

‖Hk‖2F

)(∑N
j=1 ‖Wj‖2

N

)N−1

.

Proof. The proof is a simple consequence of Lemma 4.7.2.4 and Lemma 4.7.2.3.

Using the above notions and let ρ > 0, denote the following:

h(W) := Γ̂N

(∑N
p=1 ‖Wp‖2

N

)N
+
ρ

2
‖W‖2 , (4.8.10)

where the additional quadratic term is required in order for the strong convexity to hold. The following
results states the L-smad property.

Proposition 4.8.1.1 (L-smad property). Consider h in (4.8.10) and f1 in (4.8.5), then the function Lh−f1

is convex with L = 1.

Proof. Combining the above results we obtain

1

2

〈
(H1, . . . ,HN),∇2h(W)(H1, . . . ,HN)

〉
≥ 1

2

〈
(H1, . . . ,HN),∇2f1(W)(H1, . . . ,HN)

〉
.

4.8.2 Deep non-linear neural networks

Using the same notions as before and set dN = K, we consider the following optimization problem:

min
Wi∈Wi ∀i∈[N]

f1(W) :=
M∑
j=1

(
− log

(
ezj,jk∑K
k=1 e

zj,k

))
, (4.8.11)

where zj,jk is the jthk coordinate of zj , jk denotes the class in {1, 2 . . . ,K} to which the sample xj belongs to,
and zj := σN (WN . . . σ1(W1xj)) for j ∈ {1, . . . ,M}. Note that zj is obtained via a deep non-linear neural
network.

56 4.8. Bregman distances for deep neural networks - Classification setting

Lemma 4.8.2.1. Let Hi ∈ Wi, for i ∈ {1, . . . , N}. Consider the following expansion

f1(W1 +H1, . . . ,WN +HN) ,

then there exist Λu ≥ 0 for u ∈ {1, . . . , N} such that the second order form is given by

1

2
〈(H1, . . . ,HN),∇2f1(W)(H1, . . . ,HN)〉 ≤ 2

√
KΘ1

N−1∑
j=0

 N∑
p=1

‖Wp‖2
N−j−1

(N∑
i=1

‖Hi‖2
)
.

Proof. Considering the second term of f1(W1 +H1, . . . ,WN +HN) we have

1

2
〈(H1, . . . ,HN),∇2f1(W)(H1, . . . ,HN)〉

≤ 1

2
2
√
K

M∑
j=1

∥∥∥∥∥
N∑
i=1

∆
(j)
i,N

∥∥∥∥∥
2

,

≤ 2
√
K
N

2

M∑
j=1

N∑
i=1

∥∥∥∆
(j)
i,N

∥∥∥2
,

≤ 2
√
KΘ1

N−1∑
j=0

 N∑
p=1

‖Wp‖2
N−j−1

(N∑
i=1

‖Hi‖2
)
,

where ∆
(j)
i,N denotes the expression of ∆i,N with X replaced by xj and Θ1 is exactly as in (A.5.2).

Lemma 4.8.2.2. Based on the notions in Lemma 4.7.2.3, consider the following kernel generating distance:

h(W) :=
N∑
j=1

Γ̃j

(∑N
p=1 ‖Wp‖2

j

)j
(4.8.12)

where
Γ̃j = 2

√
KΘ1j

j if 1 ≤ j ≤ N . (4.8.13)

Then, it’s gradient with respect to Wi for i ∈ {1, . . . , N} is given by

∇Wih(W) =

N∑
u=1

2Γ̃u
uu

(
u

u− 1, 1

) N∑
j=1

‖Wj‖2
u−1

Wi .

Also, the following lower bound holds true:

〈
(H1, . . . ,HN),∇2h(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥

N∑
u=1

2Γ̃u

(
N∑
i=1

‖Hi‖2F

)(∑N
j=1 ‖Wj‖2

u

)u−1

,

Chapter 4. Bregman distances 57

and the following upper bound holds true:

〈
(H1, . . . ,HN),∇2h(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤

N∑
u=1

(
2Γ̃u(2u− 1)

)(N∑
k=1

‖Hk‖2F

)(∑N
j=1 ‖Wj‖2

u

)u−1

.

Proof. The proof is a simple consequence of Lemma 4.7.2.4 and Lemma 4.7.2.3.

Note that (4.8.12) is strongly convex for N ≥ 2.

Proposition 4.8.2.1 (L-smad property). Consider h in (4.8.12) and f1 in (4.8.11), then the function Lh−f1

is convex with L = 1.

Proof. Combining the above results we obtain

1

2

〈
(H1, . . . ,HN),∇2h(W)(H1, . . . ,HN)

〉
≥ 1

2

〈
(H1, . . . ,HN),∇2f1(W)(H1, . . . ,HN)

〉
.

In Chapter 8 we explore the application of BPG and other BPG based methods based on the Bregman
distances proposed in this section to solve the classification problems arising with deep neural networks.

4.9 Chapter conclusion

In this chapter, we briefly reviewed various concepts and properties related to Bregman distances, which
are generalized proximity measures. The extension of the Lipschitz continuous gradient property, namely,
the L-smad property is also described. We proposed Bregman distances that are suitable for objectives that
arise in the context of matrix factorization, deep matrix factorization and deep non-linear neural networks.
As we will see in the later chapters, the proposed Bregman distances play a key role in the application of
BPG based algorithms for the above-mentioned objectives. The ideas used to develop the Bregman distances
in this chapter can be used for various other problems with similar structure, such as tensor factorization,
tensor completion, matrix recovery problems, which requires further exploration.

Chapter 5

CoCaIn BPG

5.1 Abstract . 59
5.2 Introduction . 60

5.2.1 Contributions . 62
5.2.2 Related work . 62

5.3 The Bregman Proximal Gradient algorithm . 63
5.4 The inertial Bregman Proximal Gradient method . 64

5.4.1 The convex-concave backtracking procedure . 64
5.5 Well-posedness of CoCaIn BPG . 65
5.6 Convergence analysis of CoCaIn BPG . 67

5.6.1 Lyapunov function descent property of CoCaIn BPG . 67
5.6.2 Global convergence for CoCaIn BPG . 68
5.6.3 CoCaIn BPG without backtracking . 70
5.6.4 Implementing the double backtracking procedure . 71

5.7 Numerical experiments . 71
5.7.1 Finding global minima of univariate functions . 71
5.7.2 Escaping spurious stationary points . 73
5.7.3 Quadratic inverse problems in phase retrieval . 74
5.7.4 Non-convex robust denoising with non-convex TV regularization 77

5.8 Chapter conclusion . 79

5.1 Abstract

Backtracking line-search is an old yet powerful strategy for finding a better step sizes to be used in Proximal
Gradient algorithms. The main principle is to locally find a simple convex upper bound of the objective
function, which in turn controls the step size that is used. In case of inertial Proximal Gradient algorithms,
the situation becomes much more difficult and usually leads to very restrictive rules on the extrapolation
parameter. In this chapter, we show that the extrapolation parameter can be controlled by locally finding
also a simple concave lower bound of the objective function. This gives rise to a double convex-concave
backtracking procedure which allows for an adaptive choice of both the step size and extrapolation parameters.
We apply this procedure to the class of inertial Bregman Proximal Gradient methods, and prove that
any sequence generated by these algorithms converges globally to a critical point of the function at hand.
Numerical experiments on a number of challenging non-convex problems in image processing and machine

59

60 5.2. Introduction

learning were conducted and show the power of combining inertial step and double backtracking strategy in
achieving improved performances.

5.2 Introduction

We continue the setting from Section 4.4. Firstly, we recall the problem setting here. Consider the non-convex
additive composite minimization problems, which include the sum of two extended-valued functions: a
non-smooth function denoted by f0 (possibly non-convex) and a smooth function denoted by f1 (possibly
non-convex) of the following form

(P) inf
{
f (x) ≡ f0 (x) + f1(x) : x ∈ C

}
,

where C is a nonempty, closed and convex set in RN . In Chapter 4, we introduced the L-smad property. In this
chapter, we recall Bregman Proximal Gradient algorithm and discuss that it is suitable for above-mentioned
problems. The goal of this chapter is to incorporate inertia into BPG and propose a new algorithm with
global convergence guarantees, while relying on the upper and lower bounds that arise in the L-smad property.

The convexity condition in the L-smad property (Definition 4.4.1.1) easily yields an approximation of the
objective function at hand by a convex function from above (majorant) and a concave function from below
(minorant). In the traditional setting, where the gradient of the smooth function f1 is Lipschitz continuous,
the majorant and the minorant are quadratic functions. In this case, it is well-known that the tightness of the
quadratic approximations is directly related to restrictions on the step size to be used in the algorithm. The
same relation is true for the convexity condition. In addition to their global existence, these approximations
can be locally improved by backtracking (line search) strategies and it is well-known that tight approximations
are advantageous. The significance of the minorants is not clear, in general. The goal of this chapter is to
leverage the minorant functions to incorporate inertia into the Bregman Proximal Gradient method, where the
step-size is already governed by the majorants. For improved local approximations, we rely on backtracking
procedures for both the upper and lower bounds using the convex-concave backtracking strategy.

We would like to give the reader a first intuition about the convex-concave backtracking strategy on a
simple instance of problem (P). In the following, we consider the following particular instance of problem
(P): C = RN , f0 ≡ 0 and the gradient of f1 is L-Lipschitz continuous. Even in this simpler setting, the
convex-concave backtracking strategy is novel. In this smooth and non-convex setting, an update step of a
classical inertial based gradient method, starting with some x0 ∈ RN , reads as follows

yk = xk + γk(x
k − xk−1),

xk+1 = yk − 1

L̄k
∇f1(yk),

where γk ∈ [0, 1], k ∈ N, is an extrapolation parameter and L̄k > 0. If f1 is convex and the extrapolation
parameter γk is carefully chosen, this recovers the popular Nesterov’s Accelerated Gradient Method [126] (for
f 6= 0, again in the convex setting, see [15]). It is well-known that the gradient step above, can be equivalently
written as follows

xk+1 = argminx∈RN

{
f1(yk) +

〈
∇f1(yk), x− yk

〉
+
L̄k
2

∥∥∥x− yk∥∥∥2
}
.

Chapter 5. CoCaIn BPG 61

For a proper L̄k, the function to be minimized above is a convex quadratic majorant of the function f1 (due
to the classical Descent Lemma), which is a property that is also crucial for the convergence analysis of the
algorithm. Classically, L̄k ≥ L, k ∈ N, is a sufficient condition to guarantee the existence of a quadratic
majorant. However, locally, i.e., between the points yk and xk+1, the parameter L̄k may be significantly
smaller than the global Lipschitz constant L (which will immediately affect the step size of the algorithm).
More precisely, note that the Descent Lemma,∣∣∣f1(x)− f1(yk)−

〈
∇f1(yk), x− yk

〉∣∣∣ ≤ L

2

∥∥∥x− yk∥∥∥2
, ∀ x ∈ RN , (5.2.1)

actually guarantees the existence of a quadratic minorant and a quadratic majorant that are determined by
the same (global) parameter L. However, only the majorant limits the step size that is used in the algorithm.
As shown in Figure 5.1, tighter approximations can be computed if the parameters of the minorant and the
majorant are allowed to differ:

− Lk
2

∥∥∥x− yk∥∥∥2
≤ f1(x)− f1(yk)−

〈
∇f1(yk), x− yk

〉
≤ L̄k

2

∥∥∥x− yk∥∥∥2
, (5.2.2)

i.e., the minorant parameter Lk could be different from the majorant parameter L̄k.

f1

(
yk
)

+
〈
∇f1

(
yk
)
, x− yk

〉
+ L̄k

2

∥∥x− yk∥∥2

f1

(
yk
)

+
〈
∇f1

(
yk
)
, x− yk

〉
− Lk

2

∥∥x− yk∥∥2

f1(xk+1)

yk xk xk−1xk+1

Figure 5.1: The inequalities in (5.2.2) guarantee that the objective function has a quadratic concave
minorant and a quadratic convex majorant. The proposed convex-concave backtracking strategy locally
estimates both the lower and the upper approximations using a double backtracking procedure.

While the step size of the algorithm only depends on the majorant parameter L̄k, the extrapolation parameter
γk also depends on the minorant parameter Lk. When L̄k = L̄ and Lk = L, for all k ∈ N, it was established
in [166] that for any 0 ≤ γk ≤ γ, when

γ <

√
L̄

L+ L̄

(
=

1√
2

for L̄ = L

)
,

the generated sequence converges linearly (under certain error bound condition).

If the minorant parameter Lk is close to 0, which means that the function f1 is “locally convex”, the
extrapolation parameter γk can be taken close to 1, which makes the algorithm we present “similar" to an

62 5.2. Introduction

Accelerated gradient method in the non-convex setting.

Below, we will show that using the minorant and the majorant in a local fashion (instead of their global
counterparts) is very useful in developing the inertial Bregman Proximal Gradient method.

5.2.1 Contributions

Our contributions are the following.

• Interestingly, while the step size is usually restricted by the quality of the majorant, the extrapolation
(also known as inertia or over-relaxation) parameter is affected by the quality of the minorant. This
observation suggests to adapt the majorant and the minorant independently. In this chapter we propose
an efficient backtracking strategy that locally determines a tight majorant and minorant to exploit
as much information as possible from the objective function, to be used in the proposed algorithm.
This leads to a highly efficient algorithm, which is able to detect “the degree of local convexity” of the
objective function (see Section 5.4 for details). As the backtracking procedure seeks for tight convex
majorants and concave minorants, our idea is to combine it with an inertial step.

• We propose an inertial version of the Bregman Proximal Gradient (BPG) algorithm, which uses a
convex-concave backtracking procedure to dynamically adjust the step size and the extrapolation
parameter. Therefore, we call our algorithm Convex-Concave Inertial BPG (CoCaIn BPG in short).

• We prove a global convergence result of this algorithm (see Section 5.6 for the details) to critical points
of the objective function.

• The efficiency, which we demonstrate on several practical applications, comes from combining the
inertial step with the novel convex-concave backtracking strategy, which fully exploits the power of
tight local approximations in achieving large step sizes and large extrapolation parameters that can be
used at the same time.

5.2.2 Related work

Our proposed algorithm belongs to the class of inertial based optimization methods. The most well-
known method in this class is the so-called Heavy-ball method, which was introduced by Polyak [145] to
minimize convex and smooth functions. A popular variant of the method based on Nesterov’s technique (see
Section 2.4.4), when applied to the additive composite model (P) with C = RN , takes the following form.
Start with any x0 = x1 ∈ RN , and generate iteratively a sequence {xk}k∈N via

yk = xk + γk(x
k − xk−1), (5.2.3)

xk+1 ∈ argminx

{
f0 (x) + f1(yk) +

〈
∇f1(yk), x− yk

〉
+

1

2τk

∥∥∥x− yk∥∥∥2
}
, (5.2.4)

where γk ∈ [0, 1] is an extrapolation parameter and τk > 0 is a step size parameter. In [137], an inertial
Proximal Gradient algorithm, called iPiano, was proposed1. It was shown that under Assumption A, if f0

is convex and f1 has a globally Lipschitz continuous gradient, the sequence {xk}k∈N converges globally to
a critical point (in this setting, under additional error-bound condition, a linear rate of convergence was

1With a small modification that the proximity term is centered around the extrapolated point yk, while the gradient of f1 is
evaluated at xk.

Chapter 5. CoCaIn BPG 63

proved in [166]). The case where also the function f0 is not necessarily convex was treated in [29, 134]. Two
years later, in [144] a block version of the method, called iPALM was proposed and analyzed in the fully
non-convex setting, i.e., both f0 and f1 are non-convex. In this case, a global convergence result to critical
points was also established. A unified analysis was presented in [136]. Our goal is to incorporate the Bregman
distances along with the inertial scheme mentioned in (5.2.3), (5.2.4) .

5.3 The Bregman Proximal Gradient algorithm

In this section we review the basic notations and results needed to study Bregman based optimization
methods. We first recall the definition of the Bregman proximal mapping [160], which is associated with a
proper and lower semi-continuous function f : RN → (−∞,+∞], and is defined by

proxhf (x) := argmin
{
f0 (u) +Dh (u, x) : u ∈ RN

}
, ∀ x ∈ int domh.

With h ≡ (1/2) ‖ · ‖2, the above boils down to the classical set-valued Moreau proximal mapping introduced
in [117]. In this regard, more discussion can be found in the recent survey paper [161], and references therein.
Here, we will focus on the Bregman Proximal Gradient mapping, which will take a central role in the algorithm
to be developed in the next section. Given x ∈ int domh and a step size parameter τ > 0, the Bregman
Proximal Gradient mapping is defined by

Tτ (x) := argmin

{
f0 (u) + f1(u) + 〈∇f1 (x) , u− x〉+

1

τ
Dh (u, x) : u ∈ C

}
= argmin

{
f0 (u) + f1(u) + 〈∇f1 (x) , u− x〉+

1

τ
Dh (u, x) : u ∈ RN

}
, (5.3.1)

where the second equality follows from the fact that domh ⊂ C. Note that here with h ≡ (1/2) ‖ · ‖2, the
above recovers the classical Proximal Gradient mapping. Now, we record below the Bregman Proximal
Gradient (BPG) algorithm in Algorithm 4 from [28].

Algorithm 4: BPG: Bregman Proximal Gradient

• Input: τ > 0.

• Initialization: x1 ∈ int domh ∩ dom f0.

• For each k ≥ 1: compute

xk+1 ∈ Tτ (xk) (5.3.2)

Since f0 could be non-convex, the mapping Tτ is not, in general, single-valued. This mapping emerges
from the usual approach, which consists of linearizing the differentiable function f1 around a point x and
regularizing it with a proximal distance from that point. Similar to [28], the following assumption guarantees
that the Bregman Proximal Gradient mapping is well-defined.

Assumption C. (i) The function h+ τf0 is supercoercive for all τ > 0, that is,

lim
‖u‖→∞

h (u) + τf0 (u)

‖u‖ =∞.

64 5.4. The inertial Bregman Proximal Gradient method

(ii) For all x ∈ C, we have Tτ (x) ⊂ C.

Assumption C(i) is a standard coercivity condition, which is for instance automatically satisfied when C is
compact. On the other hand, Assumption C(ii) can be shown to hold under a classical constraint qualification
condition. It also holds automatically when f0 is convex or when C = RN . The following result from [28],
ensures that the Bregman Proximal Gradient mapping is well-defined.

Lemma 5.3.0.1 (Well-posedness of Tτ). Suppose that Assumptions A and C hold, and let x ∈ int domh.
Then, the set Tτ (x) is a nonempty and compact subset of int domh.

We record below the assumptions and the convergence result of BPG as stated in [28].

Theorem 5.3.0.2. Let Assumption A and C hold. Assume that domh = RN , h is σ-strongly convex on
RN , and let ∇h and ∇g be Lipschitz continuous on any bounded subset on RN . Let {xk}k∈N be a sequence
generated by BPG which is assumed to be bounded and let 0 < λL < 1. The following assertions hold.

• Subsequential convergence. Any limit point of the sequence {xk}k∈N is a critical point of f .

• Global convergence. Suppose that f satisfies the KL property on dom f . Then, the sequence {xk}k∈N
has finite length and converges to a critical point x∗ of f .

In essence, the above theorem states that the sequence generated by BPG converges to a single point which
in turn is a critical point of the function f . A main drawback of BPG is that only the upper bound (see
(4.4.1)) of the L-smad property is used and it governs the update step. The role of the lower bound in (4.4.1)
is not clear. In the next section, we develop the CoCaIn BPG algorithm, which takes into consideration both
the upper bound and the lower bound in (4.4.1) to perform the update and incorporate inertia. We obtain
similar convergence result as BPG, while additionally gaining on the empirical performance.

We later see in Chapter 9 that BPG is restrictive and cannot be applied to the objectives with generic
composite structure are out of scope. In order to enhance the applicability, we provide Model BPG algorithm
in Chapter 9, which is more general than BPG and also retains the global convergence result. We now focus
on proposing the inertial variant of BPG.

5.4 The inertial Bregman Proximal Gradient method

We aim to propose a Bregman variant of the method mentioned above in (5.2.3) and (5.2.4), which also
handles the two involved parameter γk and τk, k ∈ N, in a dynamic fashion. The update step is essentially
the same as that of BPG, except that the update is performed at the extrapolated point. To this end we
incorporate into our basic steps two routines aiming at controlling and updating these parameters.

5.4.1 The convex-concave backtracking procedure

As illustrated on a simple example in the introduction, the origin of this procedure comes from the fact that
for smooth adaptable functions we can build lower and upper approximations as given in Lemma 4.4.1.1:

− LDh (x, y) ≤ f1(x)− f1(y)− 〈∇f1(y), x− y〉 ≤ L̄Dh (x, y) , ∀ x, y ∈ int domh. (5.4.1)

Even though the existence of the parameters L and L̄ could be globally guaranteed, in practice it is often
difficult or computationally expensive to evaluate them. In such cases it is recommended to apply a

Chapter 5. CoCaIn BPG 65

backtracking procedure that can locally verify the validity of the inequalities given in (5.4.1). However, in
most cases only the upper approximation and the corresponding parameter L̄ are used. Here, we will develop
a double backtracking procedure that locally verifies both the lower and the upper approximations, in order
to better control and update the extrapolation parameter γk and the step size parameter τk at each iteration
k ∈ N. To the best of our knowledge, this is the first attempt to use the lower approximation in algorithms
for tackling non-convex problems. It should be noted that in the case that f1 is convex we have by definition
L = 0, or even a convex quadratic lower approximation can be found when f1 is strongly convex (see [161] for
a discussion and references about a strong convexity property with respect to a Bregman distance). Based on
the concepts described above, we will make the following additional assumptions on the involved functions.

Assumption D. (i) The function h : RN → (−∞,+∞] is σ-strongly convex on C.

(ii) The pair of functions (f1, h) is L-smooth adaptable on C.

(iii) There exists α ≤ 0 such that f (·)− (α/2) ‖ · ‖2 is convex2.

A few comments on the assumption above are now in order. The first item is related to Remark 4.4.1.1, which
says that the smooth adaptable property is invariant to strongly convex kernel generating distance functions
h. The third assumption allows us to deal with non-convex functions f0 since α could be negative. Also for
functions that are strongly convex, we set α = 0, as our analysis does not benefit from a positive parameter
in Assumption D(iii). See Section 5.7 for examples of functions that satisfy all these assumptions. Now we
are ready to present our algorithm, which is called Convex-Concave inertial (CoCaIn) Bregman Proximal
Gradient (see Algorithm 5).

The two input parameters δ and ε are free to be chosen by the user. As we will see later the parameter ε
measures the descent to be achieved at each iteration of the algorithm. We describe here each step of the
CoCaIn BPG algorithm and defer certain implementation details to Section 5.6.4. The steps (5.4.2) and
(5.4.5) are the classical steps of the Inertial Proximal Gradient Method, while here since we are dealing with
the Bregman variant, it must be guaranteed that the auxiliary vector yk as defined in (5.4.2) belongs to
int domh. Otherwise the Bregman Proximal Gradient step (5.4.5) is not defined (see Section 5.3). Even
though, in general, it is not easy to guarantee that, in our case this will not be an issue. Indeed, in order
to derive global convergence results of Bregman based algorithms in the non-convex setting an essential
assumption seems to be that the kernel generating distance function h has a full domain, i.e., domh = RN

(see, for instance, [28] for more details about this limitation). The steps (5.4.4) and (5.4.6) implement the
double backtracking procedure (see Section 5.6.4). The step (5.4.3) is designed to control the extrapolation
parameter γk, k ∈ N, and should be validated at each iteration. However, a natural question would be if such
a parameter always exists? We postpone the positive answer to this question, to Section 5.5, and conclude
this section with a list of our theoretical contributions.

5.5 Well-posedness of CoCaIn BPG

Now, we verify the well-posedness of the CoCaIn BPG algorithm. An important tool in achieving our goal is
the recently introduced symmetry coefficient of a Bregman distance, which measures the lack of symmetry in
Dh (· , ·), see [10].

2Such functions are called semi-convex with modulus α (see [134, 135]).

66 5.5. Well-posedness of CoCaIn BPG

Algorithm 5: CoCaIn BPG: Convex-Concave inertial BPG

• Input. δ, ε > 0 with 1 > δ > ε.

• Initialization: x0 = x1 ∈ int domh ∩ dom f0, L̄0 >
−α

(1−δ)σ and τ0 ≤ L̄−1
0 .

• For each k ≥ 1: compute

yk = xk + γk(x
k − xk−1) ∈ int domh, (5.4.2)

where γk is chosen such that

(δ − ε)Dh(xk−1, xk) ≥ (1 + Lkτk−1)Dh(xk, yk) (5.4.3)

holds and such that Lk satisfies

f1(xk) ≥ f1(yk) +
〈
∇f1(yk), xk − yk

〉
− LkDh(xk, yk). (5.4.4)

Now, choose L̄k ≥ L̄k−1, set τk ≤ min
{
τk−1, L̄

−1
k

}
and compute

xk+1 ∈ argminu

{
f0 (u) +

〈
∇f1(yk), u− yk

〉
+

1

τk
Dh(u, yk)

}
(5.4.5)

with L̄k fulfilling

f1(xk+1) ≤ f1(yk) +
〈
∇f1(yk), xk+1 − yk

〉
+ L̄kDh(xk+1, yk). (5.4.6)

Definition 5.5.0.1 (Symmetry coefficient). Given h ∈ G(C), its symmetry coefficient is defined by

α (h) := inf

{
Dh (x, y)

Dh (y, x)
: x, y ∈ int domh, x 6= y

}
∈ [0, 1] .

An important and immediate consequence of this definition is the fact that for all x, y ∈ int domh we have

α (h)Dh (x, y) ≤ Dh (y, x) ≤ α (h)−1Dh (x, y) , (5.5.1)

where we have adopted the convention that 0−1 = +∞ and +∞× r = +∞ for all r ≥ 0. Clearly, the closer
is α (h) to 1, the more symmetric Dh is with perfect symmetry when α (h) = 1 (which holds if and only if
h = ‖ · ‖2).
To this end, we need to convince the reader about the existence of γk, k ∈ N, which satisfies (5.4.3), i.e., that

(δ − ε)Dh(xk−1, xk) ≥ (1 + Lkτk−1)Dh(xk, yk),

holds true. The following result provides a positive answer to the existences question and information on the
relevant extrapolation parameters that satisfy this inequality.

Lemma 5.5.0.1 (General extrapolation behavior). Given h ∈ G(C) with α (h) > 0. Let x1, x2, y ∈ int domh

and y := x1 + γ (x1 − x2) with γ ≥ 0. Then, for a given κ > 0, there exists γ∗ > 0 such that

Dh (x1, y) ≤ κDh (x2, x1) , ∀ γ ∈ [0, γ∗] . (5.5.2)

Chapter 5. CoCaIn BPG 67

The proof of Lemma 5.5.0.1 is given in Section B.1 in the appendix.

Remark 5.5.0.1. Note that in the above lemma, γ∗ depends only on the symmetry coefficient α (h). Therefore,
for the Euclidean distance with α (h) = 1, this implies that,

γ∗ =
−1 +

√
1 + 8κ

4
.

However, for the Euclidean distance, the expression in (5.5.2), can be simplified significantly. Indeed, since
we take h = (1/2) ‖ · ‖2, then using the fact that yk − xk = γk(x

k − xk−1) we obtain that γk ≤
√
κ. In the

case of CoCaIn BPG, we have the following restriction on the maximal extrapolation parameter that can

be used γk ≤
√

δ−ε
1+Lkτk−1

=

√
(δ−ε)L̄k−1

L̄k−1+Lk
with τk−1 = L̄−1

k−1. A related bound also appeared in [166] as we

discussed in the introduction. When, the values of Lk and L̄k−1 are almost equal and δ − ε ≈ 1, then it is
possible to choose the inertial parameter γk such that γk ≈ 1/

√
2. We discuss more about bounds of γk,

k ∈ N, in Section 5.6.3.

5.6 Convergence analysis of CoCaIn BPG

Before we proceed to the convergence analysis, we need the following technical lemma.

Lemma 5.6.0.1 (Function descent property). Let {xk}k∈N be a sequence generated by CoCaIn BPG. Then,
for all k ∈ N, we have

f(xk) ≥ f(xk+1) +
1

τk
Dh

(
xk, xk+1

)
+
α

2

∥∥∥xk+1 − xk
∥∥∥2
−
(

1

τk
+ Lk

)
Dh

(
xk, yk

)
. (5.6.1)

The proof of Lemma 5.6.0.1 is given in Section B.2 in the appendix.

Since we are dealing with inertial based methods, which belong to the class of non-descent methods, we can
not expect to use classical convergence techniques for non-convex problems (see below for more information
about it). In order to overcome the lack of descent, we will use the Lyapunov technique, which involves
the construction of a sequence of new functions, which will be used to “better" measure the progress of the
algorithm, where by progress we mean a decrement in the Lyapunov function values. In several cases a trivial
Lyapunov function would be to use the function itself, however in the case of non-descent methods, it is not
a good choice, since it does not capture well the behavior of the iterates. The behavior of two subsequent
iterates must be taken into consideration along with the function, as observed in [137, 159].

5.6.1 Lyapunov function descent property of CoCaIn BPG

Let {xk}k∈N be a sequence generated by CoCaIn BPG. We define, at iterate k ∈ N, the following Lyapunov
function

fkδ

(
xk, xk−1

)
= τk−1

(
f(xk)− v(P)

)
+ δDh(xk−1, xk). (5.6.2)

This Lyapunov function involves two terms: (i) the term τk−1

(
f(xk)− v(P)

)
, which measures the progress

in original function values f with respect to the global optimal value of problem (P) and (ii) the term given
by δDh(xk−1, xk), which ensures that the iterates stay close enough, with respect to the Bregman distance.
Before we motivate further the usage of this Lyapunov function, we show its descent property.

68 5.6. Convergence analysis of CoCaIn BPG

Proposition 5.6.1.1. Let {xk}k∈N be a sequence generated by CoCaIn BPG. Then, for all k ∈ N, we have

fkδ

(
xk, xk−1

)
≥ fk+1

δ

(
xk+1, xk

)
+ εDh(xk−1, xk). (5.6.3)

The proof of Proposition 5.6.1.1 is given in Section B.3 in the appendix.

Proposition 5.6.1.2. Let {xk}k∈N be a sequence generated by CoCaIn BPG. Then, the following assertions
hold:

(i) The sequence
{
fk+1
δ

(
xk+1, xk

)}
k∈N

is nonincreasing.

(ii)
∑∞

k=1Dh(xk−1, xk) <∞, and hence the sequence
{
Dh(xk−1, xk)

}
k∈N converges to zero.

(iii) min1≤k≤nDh(xk−1, xk) ≤ f1
δ

(
x1, x0

)
/ (εn).

The proof of Proposition 10.4.1.2 is given in Section B.4 in the appendix.
In order to proceed with the global convergence analysis of CoCaIn BPG, we will need throughout the rest of
this section, to additionally assume the following.

Assumption E. (i) domh = C = RN .

(ii) ∇h and ∇f1 are Lipschitz continuous on any bounded subset of RN .

5.6.2 Global convergence for CoCaIn BPG

In this subsection we show the global convergence result of CoCaIn BPG. The goal is to show that the whole
sequence {xk}k∈N, that is generated by CoCaIn BPG, converges to a critical point, in terms of the limiting
subdifferential which contains only general subgradients [150, Definition 8.3]. To this end, we denote the set
of critical points by

crit f =
{
x ∈ RN : 0 ∈ ∂f (x) ≡ ∂f0 (x) +∇f1(x)

}
.

Note that, such a set is well-defined due to Fermat’s rule [150, Theorem 10.1, p. 422] and due to the concept
of limiting subdifferential.

From now on we will make the following assumption regarding the sequence of majorant parameters
{
L̄k
}
k∈N:

there exists an integer K ∈ N such that L̄k = L̄ for all k ≥ K (K can be as large as the user wishes). It should
be noted that thanks to Assumption D(ii) and Lemma 4.4.1.1, there exists a global majorant parameter L̄
such that (5.4.6) holds true for all k ∈ N. On the other hand, since in anyway we require that the parameters
do not decrease between two successive iterations, it makes sense that at some point we will stop changing
them and continue with a fixed value. However, it is very important not using the global parameter L̄
right from the beginning since in practice the parameter L̄k determined by (5.4.6) might be much smaller
(especially in early stages of the algorithm).

In the second phase of the algorithm, i.e., when k ≥ K, it also makes sense to assume that τk = τ for all
k ≥ K where τ ≤ L̄−1. This immediately suggests that our Lyapunov function can also be simplified. More
precisely, we define the following new Lyapunov function:

fδ1 (x, y) =

{
fkδ (x, y) , x = xk, y = xk−1, for some k < K,

f (x) + δ1Dh (y, x) , otherwise,
(5.6.4)

Chapter 5. CoCaIn BPG 69

where δ1 = δ/τ .

The global convergence result is based on showing that CoCaIn BPG generates a gradient-like descent
sequence according to Definition 5.6.2.1 (see below). This involves three properties which need to be verified:
“sufficient descent condition”, “relative error condition” and “continuity condition”. Such a convergence analysis
is based on a recent technique, which was initiated by Attouch and Bolte [6], and later on was simplified and
unified in [26]. A more general framework was proposed in [136].

The main tool that stands behind this technique is the Kurdyka-Łojasiewicz (KL) property [97, 106] (see
[22] for the non-smooth case), which is properly defined before in Chapter 3. In order to derive the global
convergence of our algorithm, we prove that the sequence generated by BPG is a gradient-like descent
sequence, which we recall below. For the interested readers we refer to [28, Appendix 6, p. 2147], where a
short and self-contained summary of this proof methodology can be found. It should be noted again that
here we consider a modification, which fits non-descent methods like CoCaIn BPG.

Definition 5.6.2.1 (Gradient-like descent sequence). A sequence {xk}k∈N is called a gradient-like descent
sequence for minimizing fδ1 if the following three conditions hold:

(C1) Sufficient decrease condition. There exists a positive scalar ρ1 such that

ρ1

∥∥∥xk − xk−1
∥∥∥2
≤ fδ1

(
xk, xk−1

)
− fδ1

(
xk+1, xk

)
, ∀ k ∈ N.

(C2) Relative error condition. There exist an integer K ∈ N and a positive scalar ρ2 such that∥∥∥wk+1
∥∥∥ ≤ ρ2

(∥∥∥xk − xk−1
∥∥∥+

∥∥∥xk+1 − xk
∥∥∥) , wk+1 ∈ ∂fδ1

(
xk+1, xk

)
, ∀ k ≥ K.

(C3) Continuity condition. Let x be a limit point of a subsequence
{
xk
}
k∈K, then

lim supk∈K⊂N f(xk) ≤ f (x).

Based on Definition 5.6.2.1 and the KL property, the following global convergence result holds true. We
provide its proof in Section B.5 in the appendix.

Theorem 5.6.2.1 (Global convergence). Let {xk}k∈N be a bounded gradient-like descent sequence for minimiz-
ing fδ1 . If f satisfies the KL property, then the sequence {xk}k∈N has finite length, i.e.,

∑∞
k=1

∥∥xk+1 − xk
∥∥ <∞

and it converges to x∗ ∈ crit f .

Now, in a sequence of lemmas, we prove that CoCaIn BPG generates a gradient-like descent sequence for
minimizing fδ1 . Moreover, the boundedness of the sequence is guaranteed with the coercivity of the objective,
which is typically satisfied in practice. In order to prove condition (C1), we first note that Proposition 10.4.1.2
is also valid for the new Lyapunov function fδ1 as recorded now (for the sake of simplicity we omit the exact
details of the proof, which is almost identical to the proof above).

Proposition 5.6.2.1. Let {xk}k∈N be a sequence generated by CoCaIn BPG. Then, the following assertions
hold:

(i) The sequence
{
fδ1
(
xk+1, xk

)}
k∈N is nonincreasing, converging and condition (C1) of Definition 5.6.2.1

holds true.

(ii)
∑∞

k=1Dh(xk−1, xk) <∞, and hence the sequence
{
Dh(xk−1, xk)

}
k∈N converges to zero.

70 5.6. Convergence analysis of CoCaIn BPG

(iii) min1≤k≤nDh(xk−1, xk) ≤
(
fδ1
(
x1, x0

)
− f∗

)
/ (εn) where f∗ = v(P) > −∞ (by Assumption A(iv)).

Now we can prove the following result, which means that condition (C2) holds true.

Proposition 5.6.2.2. Let {xk}k∈N be a bounded sequence generated by CoCaIn BPG. Then, there exist
wk+1 ∈ ∂fδ1

(
xk+1, xk

)
and a positive scalar ρ2 such that∥∥∥wk+1

∥∥∥ ≤ ρ2

(∥∥∥xk − xk−1
∥∥∥+

∥∥∥xk+1 − xk
∥∥∥) , ∀ k ≥ K.

The proof of Proposition 5.6.2.2 is given in Section B.6 in the appendix.
Now we are left with showing that CoCaIn BPG generates a sequence that satisfies condition (C3).

Proposition 5.6.2.3. Let {xk}k∈N be a bounded sequence generated by CoCaIn BPG. Let x∗ be a limit point
of a subsequence

{
xk
}
k∈K, then lim supk∈K⊂N f(xk) ≤ f (x∗).

The proof of Proposition 5.6.2.3 is given in Section B.7 in the appendix.

The global convergence of CoCaIn BPG now easily follows from our general result on gradient-like descent
sequences (see Theorem 5.6.2.1)

Theorem 5.6.2.2 (Global convergence of CoCaIn BPG). Let {xk}k∈N be a bounded sequence generated
by CoCaIn BPG. If f0 and f1 satisfy the KL property, then the sequence {xk}k∈N has finite length, i.e.,∑∞

k=1

∥∥xk+1 − xk
∥∥ <∞ and it converges to x∗ ∈ crit f .

Before we conclude this section, we provide a simplified variant of CoCaIn BPG.

5.6.3 CoCaIn BPG without backtracking

Note that CoCaIn BPG uses a local estimate of the minorant and majorant parameters Lk and L̄k, k ∈ N,
determined by the backtracking steps (5.4.4) and (5.4.6), respectively. However, when the global parameter
L is known (guaranteed in Assumption D(ii)), we can skip the backtracking steps, and provide a simplified
variant of CoCaIn BPG.

Algorithm 6: CoCaIn BPG without backtracking

• Input. δ, ε > 0 with 1 > δ > ε.

• Initialization. x0 = x1 ∈ int domh ∩ dom f0, L ≥ max{ −α
(1−δ)σ , L} and τ0 ≤ L−1.

• General Step. For k = 1, 2, . . ., compute

yk = xk + γk(x
k − xk−1) ∈ int domh, (5.6.5)

xk+1 ∈ argminu

{
f0 (u) +

〈
∇f1(yk), u− yk

〉
+

1

τk
Dh(u, yk)

}
, (5.6.6)

where τk ≤ min{τk−1, L
−1} and γk ≥ 0 satisfies

(δ − ε)Dh(xk−1, xk) ≥ 2Dh(xk, yk) . (5.6.7)

For the inertial step (5.6.7), when h = (1/2) ‖ · ‖2 we can obtain that γk ≤
√

δ−ε
2 with L̄ = L. Using Remark

5.5.0.1, if δ− ε ≈ 1, one could choose the extrapolation parameter as follows γk ≈ 1/
√

2. However, in general,

Chapter 5. CoCaIn BPG 71

the closed form expression for γk is difficult to obtain, for which backtracking line-search strategy can be
used. In later chapters (Chapter 6, 7, 8), we develop techniques to obtain closed form inertia for problem
specific Bregman distances. We use their technique later in the context of quadratic inverse problems to
propose a new variant of CoCaIn BPG with closed form inertia.

5.6.4 Implementing the double backtracking procedure

The update steps of CoCaIn BPG are based on the double backtracking strategy (see steps (5.4.4) and
(5.4.6)). Here, we describe some implementation details of these two steps. Note that the inner loops for
finding the minorant and the majorant parameters Lk and L̄k, k ∈ N, are implemented in a sequential fashion.
By this, we mean that at iteration k ∈ N we first execute the steps (5.4.2), (5.4.3) and (5.4.4) in order to
compute an appropriate yk, only then we proceed to steps (5.4.5) and (5.4.6) in order to compute xk+1. Note
that the fact that the sequence

{
L̄k
}
k∈N does not decrease is crucial in order to decouple the steps (5.4.2)

and (5.4.5). More precisely, we now describe the backtracking procedure to find Lk. Let ν > 1 be a scaling
parameter and arbitrarily initialize Lk,0 > 0. Then, we find the smallest Lk ∈

{
ν0Lk,0, ν

1Lk,0, ν
2Lk,0, . . .

}
that satisfies (5.4.4) and such that γk ≥ 0 satisfies

Dh(xk, yk) ≤ δ − ε
Lkτk−1 + 1

Dh(xk−1, xk).

We can now describe the procedure to find L̄k. Let ν > 1 and initialize L̄k,0 := L̄k−1, then we take the smallest
L̄k ∈

{
ν0L̄k,0, ν

1L̄k,0, ν
2L̄k,0, . . .

}
that satisfies (5.4.6). Therefore,

{
L̄k
}
k∈N is monotonically non-decreasing.

Note, however, we do not require any monotonicity of the sequence {Lk}k∈N.
The double backtracking strategy preserves the sign of Lk, however, only −Lk ≤ L̄k is required. Changing
the sign of Lk when the function is locally strongly convex might lead to additional acceleration. However,
we leave this kind of adaptation for future work.

5.7 Numerical experiments

Our goal in this section is to illustrate the performance of CoCaIn BPG in various situations. We start with
minimization of univariate functions, which emphasizes the power of incorporating inertial terms into the
BPG algorithm and using the double backtracking procedure. Then we provide some insights on the following
practical applications: quadratic inverse problems in phase retrieval and non-convex robust denoising with
non-convex total variation regularization. The efficiency of CoCaIn BPG will be demonstrated for matrix
factorization in Chapter 7, for deep linear neural networks in Chapter 7. For the experiments, we use Intel(R)
Core(TM) i7-7700K CPU @ 4.20GHz machine with 8 CPUs with x86_64 architecture. We use Python
programming language along with popular numerical computing libraries such as Numpy3 and Scipy4. For
Section 5.7.4 we additionally use Numba, an open source just in time compiler5.

5.7.1 Finding global minima of univariate functions

We begin with two examples of minimizing univariate non-convex functions, which shed some light on the
two main features of our algorithm: (i) inertial term and (ii) double backtracking procedure. We consider

3https://numpy.org/
4https://www.scipy.org/
5http://numba.pydata.org/

72 5.7. Numerical experiments

unconstrained minimization of functions f1 : R → R, with Lipschitz continuous gradient, i.e., model (P)
with d = 1, f0 ≡ 0 and C = R. The two functions are: f1(x) = log

(
1 + x2

)
and f1(x) = (1 + ex)−1. We

compare three methods: CoCaIn BPG with h = (1/2) ‖ · ‖2 and refer to it as CoCaIn with Euclidean distance,
classical Gradient descent (GD) method with backtracking (which is actually CoCaIn with Euclidean distance
and with γk = 0 for all k ∈ N), and iPiano6 [137] (with the inertial parameter set to 0.7). When using a
backtracking procedure in GD and iPiano methods, we mean that only the majorant parameter is varied. We
use the same initialization for all the algorithms and report the performance in Figure 5.2.

0 10 20 30 40 50
Iterations

0

1

2

3

4

Fu
nc

tio
n

va
lu

e

CoCaIn with Euclidean distance
GD with Backtracking
iPiano

(a) f1(x) = log
(
1 + x2

)
0 200 400 600 800 1000

Iterations
10−8

10−7

10−6

10−5

10−4

10−3

10−2

Fu
nc

tio
n

va
lu

e
(lo

g
sc

al
e)

CoCaIn with Euclidean distance
GD with Backtracking
iPiano

(b) f1(x) =
1

1+ex

Figure 5.2: Better performance by CoCaIn. In the left-hand side plot, the function has a unique critical
point. CoCaIn BPG finds it faster than the other two methods. In the right-hand side plot, the function has a
very small gradient and CoCaIn BPG reaches a significantly lower function value than the two other methods.
These plots hint that CoCaIn BPG can significantly accelerate the convergence speed with comparison to GD
and iPiano which use only a simple backtracking procedure.

In the second experiment, we illustrate the robustness of CoCaIn BPG to local minima and critical points.
We consider the non-smooth and non-convex function f (x) = |x|+ sin (x) + cos (x), with many critical points
as shown in the center plot of Figure 5.3, and set f0 (x) = |x| and f1(x) = sin (x) + cos (x) (which is obviously
a non-convex function with Lipschitz continuous gradient). Here again we take h = (1/2) ‖ · ‖2. In order to
apply CoCaIn BPG, the main computational step is of the following form:

xk+1 ∈ argminx

{
|x|+

〈
x− yk, cos

(
yk
)
− sin

(
yk
)〉

+
1

2τk

(
x− yk

)2
}
, (5.7.1)

which results in the following update step

xk+1 = max
{

0,
∣∣∣yk − τk∇f1(yk)

∣∣∣− τk} sgn
(
yk − τk∇f1(yk)

)
. (5.7.2)

We compare CoCaIn BPG with Euclidean distance to the classical Proximal Gradient (PG) method with
backtracking (CoCaIn BPG with Euclidean distance and γk = 0, k ∈ N), and iPiano. As mentioned in the
first experiment, when using a backtracking procedure in PG and iPiano methods we mean that only the
majorant parameter is varied.

As shown in Figure 5.3, CoCaIn BPG achieves the global minimum, whereas the PG with backtracking gets
stuck in a local minimum. We performed the same experiment starting at 100 equidistant points sampled

6In this particular case, the method coincides with the Heavy-ball method [145].

Chapter 5. CoCaIn BPG 73

0 3 6 9 12 15 18 21
Iterations

0

2

4

6

8

10

12

14

Fu
nc

tio
n

va
lu

e

CoCaIn with Euclidean distance
PGD with Backtracking
iPiano

(a) Function value plot

−6 −2 2 6 10 14

4

8

12

16

x∗CoCaIn

f = 0.57

x∗PG

f = 8.42

x0

f = 14.33

(b) f (x) = |x|+ sin (x) + cos (x)

0 10 20 30 40 50
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
we

r b
ou

nd
 v

al
ue

s

CoCaIn with Euclidean distance

(c) Lk value

Figure 5.3: CoCaIn can find the global minimum. The left-hand side plot explicitly shows the behavior in
terms of function values versus the iterations counter. In the center plot, we use x∗PG as a short hand notation
for the critical point achieved by the Proximal Gradient Method with backtracking, and for CoCaIn BPG
method we use x∗CoCaIn. The iPiano method achieves the same critical point as the CoCaIn BPG method
however it is slower. In the right-hand side plot, we plot Lk (the minorant parameter) obtained by CoCaIn
BPG method versus the iterations counter. The hilly structures represent that CoCaIn BPG can bypass local
maxima and eventually converge to zero. Meaning that CoCaIn BPG adapts to the “local convexity" of the
function.

from the interval [−15, 15]. The average final function value for CoCaIn was 2.75, whereas for PG method
with backtracking it was 3.21 and for the iPiano it was 3.37. This means that CoCaIn BPG reaches the
global minimum from 52 points, PG method with backtracking achieves the global minimum only from 27

points and iPiano from 39 points. Hence, the behavior illustrated in Figure 5.3 is not due to the choice of
initialization, instead it is due to additional features of the CoCaIn BPG algorithm. This illustrates the great
power of using double backtracking procedure in minimizing univariate non-convex functions.

5.7.2 Escaping spurious stationary points

Here, we provide evidence that CoCaIn BPG can escape spurious stationary points in minimizing non-convex
functions of two variables. Let bi ∈ R, i = 1, 2, . . . ,m, be samples of a noisy signal with additive Gaussian
noise. A very common task in signal processing is to recover the true data. However, due to the noise, data
can be prone to several outliers. In such cases, a robust loss [70] is used. Moreover, prior information about
the data, can be embedded through a regularizing term (for instance, a sparsity promoting regularizer). Given
λ, ρ > 0, we consider minimization of

f (x) = λ
m∑
i=1

log
(

1 + ρ (xi − bi)2
)

+
m∑
i=1

log (1 + |xi|) , (5.7.3)

with

f0 (x) :=
m∑
i=1

log (1 + |xi|) and f1(x) := λ
m∑
i=1

log
(

1 + ρ (xi − bi)2
)
.

The function f0 is a non-convex sparsity promoting regularizer (also known as the log-sum penalty term
[42, 131]) and the function f1 is a robust loss. For illustration purposes, we consider a simple instance of
problem (5.7.3) where m = 2, λ = 0.5 and ρ = 100. For minimizing this function we set C = R2 and
h (x) := (1/2)

(
x2

1 + x2
2

)
to be used in the CoCaIn BPG method.

74 5.7. Numerical experiments

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(a) Function contour

x 1

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5
x2

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5

z

1.39
3.69
5.98
8.27

(b) Function surface

Figure 5.4: Function with spurious stationary points. The left-hand side plot shows the contours of the
objective function, and the four critical points (denoted with blue diamond). In the right-hand side plot, we
show the objective function, where the z-axis represents the function value. Here, the critical points appear
as downward kink.

Before presenting the numerical results, we would like to note that in this example, the function f0 (x)−
(α/2)h (x) is convex for any α ≤ −1 and Lh− f1 is convex for all L ≥ 100. Each iteration of CoCaIn BPG
would require to compute the Bregman Proximal Gradient mapping, which in this case reduces to the classical
Proximal Gradient mapping (due to the choice of h). Note that due to the separability of the functions f0

and f1, the needed minimization problem can be split into two individual minimizations with respect to
x1 and x2. These two optimization problems (after simple manipulations) reduces to computation of the
proximal mapping of the univariate function f̃(x) := log (1 + |x|). A closed form formula can be found in
[76] and reads as follows:

proxτ f̃(x) (y) =

sgn (y) argminx∈E
{
f̃(x) + 1

2τ (x− |y|)2
}
, if (|y| − 1)2 − 4 (τ − |y|) ≥ 0,

0, otherwise,

where

E =

0,

 |y| − 1 +
√

(|y| − 1)2 − 4 (τ − |y|)
2


+

,

 |y| − 1−
√

(|y| − 1)2 − 4 (τ − |y|)
2


+

 ,

with [x]+ := max {0, x}.
Now we can apply CoCaIn BPG method and the function behavior is described in Figure 5.4.
The performance of CoCaIn BPG is illustrated in Figure 5.5, which shows that CoCaIn BPG can indeed
escape spurious critical points to reach the global minimum.

5.7.3 Quadratic inverse problems in phase retrieval

Phase retrieval has been an active research topic for several years [40, 64, 110, 164]. It gained a lot of
attention from the optimization community, due to resulting hard non-convex problems [28, 47, 64]. The

Chapter 5. CoCaIn BPG 75

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(a) From (2, 2)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(b) From (−2, 2)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(c) From (2,−2)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(d) From (−2,−2)

Figure 5.5: CoCaIn can find the global minimum. The CoCaIn BPG algorithm finds the global minimum
at (1, 1), from various initialization points.

phase retrieval problem can be described as follows. Given sampling vectors ai ∈ RN , i = 1, 2, . . . ,m, and
measurements bi > 0, we seek to find a vector x ∈ RN such that the following system of quadratic equations
is approximately satisfied,

|〈ai, x〉|2 ≈ b2i , ∀ i = 1, 2, . . . ,m. (5.7.4)

The values in sampling vectors and measurements are taken from a uniform distribution over [0, 1) interval7.
One typical way to tackle this system is by solving an optimization problem that seeks to minimize a certain
error/noise measure in accomodating the equations. The objective function also depends on the type of noise
[47] in the system (for instance, Gaussian or Poisson noise). We assume additive Gaussian noise and the
squared error measure.

f (x) = f0 (x) +
1

4

m∑
i=1

(
〈ai, x〉2 − b2i

)2
, f1(x) =

1

4

m∑
i=1

(
〈ai, x〉2 − b2i

)2
. (5.7.5)

The function f0 acts as a regularizing term and is used to incorporate certain prior information on the
wished solution. We conduct experiments with two options of regularizing functions: (i) squared `2-norm,
f0 (x) = (λ/2) ‖x‖2 and (ii) `1-norm, f0 (x) = λ ‖x‖1. When applying here the CoCaIn BPG method we use
the following kernel generating distance function

h (x) =
1

4
‖x‖42 +

1

2
‖x‖22 . (5.7.6)

We obviously have that domh = RN and we record below a result [28, Lemma 5.1, p. 2143], which shows
that the pair (g, h) satisfies the L-smad property (see Definition 4.4.1.1).

Lemma 5.7.3.1. Let f1 and h be as defined above. Then, for any L satisfying

L ≥
m∑
i=1

(
3
∥∥aiaTi ∥∥2

+
∥∥aiaTi ∥∥ ∣∣b2i ∣∣) ,

the function Lh− g is convex on RN .

By the design of CoCaIn BPG algorithm, the inertial parameter γk must satisfy (5.4.3). However, this
involves backtracking over γk, which can computationally expensive for high dimensional problems. To this
regard, we propose closed form expression for γk which satisfies (5.4.3). We also illustrate with our numerical

7https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.random.rand.html

https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.random.rand.html

76 5.7. Numerical experiments

experiments, that CoCaIn BPG variant with closed form inertia is competitive to our main algorithm CoCaIn
BPG.

Proposition 5.7.3.1. Denote ∆k := xk − xk−1, for any k ≥ 1 the following holds

Dh(xk, yk) ≤ γ2
k ‖∆‖2

(
3
∥∥∥xk∥∥∥2

+
7

2

)
.

The proof of Proposition 5.7.3.1 is given in Section B.9 in the appendix.
Therefore, in this case, Assumptions A, C, D and E are valid. We now discuss the update step of CoCaIn
BPG, which requires the solution of the following subproblem

xk+1 ∈ argminx

{
f0 (x) +

〈
∇f1(yk), x− yk

〉
+

1

τk
Dh(x, yk)

}
. (5.7.7)

Following [28], we provide closed form formulas for these optimization problems when f0 is either the squared
`2-norm or the `1-norm.

`1-norm Here we use the following closed form solution, derived in [28, Proposition 5.1, p. 2145]. First, we
define the soft-thresholding operator with respect to the parameter θ > 0, as follows

Sθ (y) = argminx∈RN

{
θ ‖x‖1 +

1

2
‖x− y‖2

}
= max {|y| − θ, 0} sgn (y) , (5.7.8)

where all operations are applied coordinate-wise. Then the closed form solution of problem (5.7.7) is given by

xk+1 = t∗Sλτk
(
∇h(yk)− τk∇f1(yk)

)
,

where t∗ is the unique positive real root of the following cubic equation

t3
∥∥∥Sλτk (∇h(yk)− τk∇f1(yk)

)∥∥∥2

2
+ t− 1 = 0 .

Squared `2-norm Using similar arguments as of [28, Proposition 5.1, p. 2145], we can easily derive that
the solution of problem (5.7.7) is given by

xk+1 = t∗
(
τk∇f1(yk)−∇h(yk)

)
,

where t∗ is the unique real root of the following cubic equation

t3
∥∥∥τk∇f1(yk)−∇h(yk)

∥∥∥2
+ (2λτk + 1) t+ 1 = 0.

We illustrate, in Figure 5.7, the performance of CoCaIn BPG and CoCaIn BPG with closed form inertia
(CoCaIn BPG CFI), compared with two other algorithms: (i) the Bregman Proximal Gradient method with
backtracking (denoted by BPG-WB) using the same kernel generating distance function (which is exactly
CoCaIn BPG with γk = 0 for all k ∈ N) and (ii) the Inexact Bregman proximal minimization line search
algorithm (denoted by IBPM-LS) of [139]. We also compare with the Bregman Proximal Gradient (BPG)
method of [28] without backtracking and with the parameter L as derived in Lemma 5.7.3.1.

Chapter 5. CoCaIn BPG 77

100 101 102 103

Iterations (log scale)

10−4

10−3

10−2

10−1

100

101

102

103

104

S
u

b
op

ti
m

al
it

y
(l

og
sc

al
e)

CoCaIn BPG

CoCaIn BPG CFI

BPG-WB

BPG

IBPM-LS

(a) `1-norm

10−2 10−1 100

Time (log scale)

101

102

103

104

F
u

n
ct

io
n

va
lu

e
(l

og
sc

al
e)

CoCaIn BPG

CoCaIn BPG CFI

BPG-WB

BPG

IBPM-LS

(b) `1-norm

100 101 102 103

Iterations (log scale)

10−4

10−3

10−2

10−1

100

101

102

103

104

S
u

b
op

ti
m

al
it

y
(l

og
sc

al
e)

CoCaIn BPG

CoCaIn BPG CFI

BPG-WB

BPG

IBPM-LS

(c) Squared `2-norm

10−2 10−1 100

Time (log scale)

101

102

103

104

F
u

n
ct

io
n

va
lu

e
(l

og
sc

al
e)

CoCaIn BPG

CoCaIn BPG CFI

BPG-WB

BPG

IBPM-LS

(d) Squared `2-norm

Figure 5.7: CoCaIn BPG for phase retrieval. The plots illustrate that CoCaIn BPG, CoCaIn BPG CFI and
BPG with backtracking performances are competitive to other state of the art optimization algorithms. By
suboptimality we mean the difference between the function value and the minimum function value attained
by any of the algorithms. The difference is very significant when compared with BPG (without backtracking).
This is due to the large L used in the algorithm, thus resulting in smaller steps. On the other hand, CoCaIn
BPG uses the local parameters Lk and L̄k, thus enjoys larger steps. The function values versus the time plots
reveal that CoCaIn BPG rapidly attains a lower function value in a very early stage. Note that CoCaIn BPG
and CoCaIn BPG CFI perform very similarly, thus illustrating the benefits of closed form solutions.

5.7.4 Non-convex robust denoising with non-convex TV regularization

We consider the problem of image denoising of a given image b ∈ RM×N , where M,N ∈ N. The goal is
to obtain the true image, denoted by x ∈ RM×N . However, in real world applications, it is possible that
the measurements are noisy with outliers. The standard routine to deal with outliers is to use robust loss
function. The basic idea is to heavily penalize small errors and reasonably penalize large errors. This is done
to ensure that the predicted data x, is not influenced significantly by outliers. We consider a fully non-convex
formulation of the problem, which includes a non-convex loss function along with a non-convex regularization.

We need the following technical details to provide the full problem statement. The spatial finite difference
operator is given by (Dx)i,j :=

(
(Dx)1

i,j , (Dx)2
i,j

)
where i ∈ [M] and j ∈ [N]. The horizontal spatial finite

differences are given by (Dx)1
i,j := xi+1,j − xi,j for all i < M and 0 otherwise. The vertical spatial finite

differences are given by (Dx)2
i,j := xi,j+1 − xi,j for all j < N and 0 otherwise. The problem involves the

following functions

f0 (x) :=
M∑
i=1

N∑
j=1

log (1 + |xi,j − bi,j |) , (5.7.9)

f1(x) := λ

M∑
i=1

N∑
j=1

log
(

1 + ρ ‖(Dx)i,j‖22
)
, (5.7.10)

where λ, ρ > 0. The function f0 is non-smooth non-convex and f1 is smooth non-convex. The function f1

is a non-convex variant of the popular Total Variation (TV) regularizer, which is used to prefer smooth
signals while preserving sharp changes in the signal (such as edges of images). For an overview on non-convex
regularizations we refer the reader to [131, 167]. Consider h (x) = (1/2) ‖x‖2F . It is easy to prove the convexity
of f0 (x)− (α/2) ‖x‖2F , by checking that its right derivative is monotonically increasing [86, Theorem 6.4], for
all α ≤ −1. The function Lh− f1 is convex for L ≥ 16λρ. Due to separability of the function f0, we can split
the computation of the corresponding Bregman Proximal Gradient mapping, into the following separable

78 5.7. Numerical experiments

(a) Ground truth (b) Noisy image (c) `2-data term (d) `1-data term (e) Our setting

100 101 102

Iterations (log scale)

150000

200000

250000

F
u

n
ct

io
n

va
lu

e
(l

og
sc

al
e)

CoCaIn BPG

CoCaIn BPG CFI

BPG-WB

BPG

IBPM-LS

(f) Function value vs iterations

101 102

Time (log scale)

2× 105

F
u

n
ct

io
n

va
lu

e
(l

og
sc

al
e)

CoCaIn BPG

CoCaIn BPG CFI

BPG-WB

BPG

IBPM-LS

(g) Function value vs Time

Figure 5.8: CoCaIn BPG for robust denoising. We denote `2-data term for the setting considered with f0
set to squared `2-norm based loss and f1 set to (5.7.10). We denote `1-data term for the setting with f0 set to
`1-norm loss and f1 as in (5.7.10). By our setting, we consider (5.7.9) and (5.7.10). The plots illustrate that
BPG methods are competitive for the non-convex robust image denoising problems. IBPM-LS from [139] is
barely having any progress, due to flat surfaces. However, BPG methods do not have this issue. The plots
illustrate that CoCaIn BPG performance is superior. Also, the reconstructed image obtained by applying
CoCaIn BPG to our setting gives a robust reconstruction compared to other reconstructed images.

subproblems

xk+1
i,j ∈ argminxi,j∈R

{
log (1 + |xi,j − bi,j |) +

〈
xi,j − yki,j ,∇f1(yk)i,j

〉
+

1

2τk

(
xi,j − yki,j

)2
}
,

which as discussed in Section 5.7.2, can be reduced to the computation of the proximal mapping of the
function log (1 + |x− b|).
We consider two additional experimental settings apart from our main setting given by (5.7.9) and (5.7.10).
Firstly, we use the `2-norm based data term with the same regularization as in (5.7.10). Secondly, we use
the squared `1-norm based data term with regularization as in (5.7.10). We use the good image given in
Figure 5.8a and add severe noise randomly of 105 magnitude. We illustrate the robustness of the model
given by (5.7.9) and (5.7.10) to such outliers. The reconstructed image from `2-norm based data penalty
term is given in Figure 5.8c and the reconstructed image from `1-norm based data penalty term is given in
Figure 5.8d, after applying CoCaIn BPG. Clearly the `1-norm based data penalty is better than `2-norm

Chapter 5. CoCaIn BPG 79

based data penalty term, which is due to the robustness properties of `1-norm. However, even using `1-norm
is not enough in the presence of severe outliers, the robustness properties are not so significant. This is
mitigated by our setting, where the reconstructed image is given in Figure 5.8e. In our setting, the data term
in (5.7.9) is very robust to outliers. In all the settings, we used λ = 10 and ρ = 1. The convergence plots for
the experiments with (5.7.9) and (5.7.10) are given in Figure 5.8f and 5.8g. Note that CoCaIn BPG CFI
uses the closed form inertia with Euclidean distance. BPG-WB and BPG are same as in earlier experiments.
IBPM-LS is a general purpose line-search algorithm for non-convex non-smooth problems proposed in [139].
Even though, IBPM-LS is general, BPG based methods are much faster. The comparisons also illustrate that
CoCaIn BPG is better in terms of convergence with respect to iterations and competitive with respect to
time. CoCaIn BPG CFI performs very similar to CoCaIn BPG and as anticipated the time plots illustrate
that CoCaIn BPG CFI is slightly faster than CoCaIn BPG.

5.8 Chapter conclusion

In this chapter, we proposed an inertial variant of the Bregman Proximal Gradient algorithm, namely, CoCaIn
BPG. It relies on double backtracking strategy, which combines both the upper and lower bounds that arises
in the L-smad property. In particular, the lower bound governs the inertia and the upper bound governs the
step-size. We also proved the global convergence for the sequence generated by CoCaIn BPG. We supplement
the theory with several practical applications and some illustrations. An implication of this chapter’s work is
that once a suitable Bregman distance is developed, the CoCaIn BPG algorithm is readily applicable. We
leverage this in the subsequent chapters where we apply CoCaIn BPG algorithm to optimize the objectives
that arise in matrix factorization, deep matrix factorization, deep neural networks settings based on Bregman
distances developed in Chapter 4.

Chapter 6

Matrix factorization

6.1 Abstract . 81
6.2 Introduction . 81

6.2.1 Contributions . 82
6.2.2 Related work . 82

6.3 Closed form update steps for BPG-MF and CoCaIn BPG-MF . 83
6.4 Discussion . 85
6.5 Experiments . 86
6.6 Chapter conclusion . 89

6.1 Abstract

Matrix factorization is a popular non-convex optimization problem, for which alternating minimization
schemes are mostly used. They usually suffer from the major drawback that the solution is biased towards
one of the optimization variables. A remedy is non-alternating schemes based on the L-smad property. We
already exploited this theory to propose suitable Bregman distances for matrix factorization problems in
Chapter 4. In this chapter, we make use of the developed Bregman distances to make BPG and CoCaIn
BPG applicable for matrix factorization. The global convergence guarantees are readily valid as a simple
consequence. A major challenge in the usage of BPG methods is the efficiency of the update step, for which
we develop here closed form solutions which helps improve practical efficiency. In several experiments, we
observe a superior performance of our non-alternating schemes (BPG based methods) in terms of speed and
objective value at the limit point.

6.2 Introduction

We recall the matrix factorization setting described in Section 4.5. Given a matrix A ∈ RM×N , in matrix
factorization setting one is interested in the factors U ∈ RM×K and Z ∈ RK×N such that A ≈ UZ holds.
This is usually cast into the following non-convex optimization problem

min
U∈U ,Z∈Z

{
f(U,Z) ≡ 1

2
‖A− UZ‖2F +R1(U) +R2(Z)

}
, (6.2.1)

81

82 6.2. Introduction

where R1,R2 are regularization terms, 1
2 ‖A− UZ‖

2
F is the data-fitting term, and U ,Z are the constraint

sets for U and Z respectively. Here, R1(U) and R2(Z) can be potentially non-convex extended real valued
functions and possibly non-smooth. We denote f0(U,Z) := R1(U) +R2(Z) and f1(U,Z) := 1

2 ‖A− UZ‖
2
F .

Many practical matrix factorization problems can be cast into the form of (6.2.1). The choice of f0 and f1 is
dependent on the problem, for which we provide some examples in Section 6.5. Moreover by definition, f0 is
separable in U and Z, which we assume only for practical reasons.

The most frequently used techniques for solving matrix factorization problems involve alternating updates
(Gauss–Seidel type methods [75]) like PALM [26], iPALM [144], BCD [171], BC-VMFB [50], HALS [51] and
many others. A common disadvantage of these schemes is their bias towards one of the optimization variables.
Such alternating schemes involve fixing a subset of variables to do the updates. In order to guarantee
convergence to a stationary point, alternating schemes require the first term in (6.2.1) to have a Lipschitz
continuous gradient only with respect to each subset of variables. However, in general Lipschitz continuity of
the gradient fails to hold for all variables. In order to use non-alternating schemes for (6.2.1), one possible
way is to generalize the gradient Lipschitz continuity and for this purpose, we use the L-smad property.

In this regard, we already provided Bregman distances in Chapter 4. Here, we ask the question: “Can we
apply BPG and CoCaIn BPG efficiently for matrix factorization problems?”. This question is significant, since
convergence of the Bregman proximal minimization variants BPG and CoCaIn BPG relies on the L-smad
property. A crucial issue is the efficient computability of the algorithm’s update steps, which is particularly
hard due to the coupling between two subsets of variables. We successfully solve this challenge.

6.2.1 Contributions

In particular, we list our contributions below.

• We make recently introduced powerful Bregman proximal minimization based algorithms BPG [28] and
CoCaIn BPG (see Chapter 5) and the corresponding convergence results are applicable to the matrix
factorization problems when L2 or L1-regularization is incorporated (see Section 7.3.1).

• We compute the analytic solution for subproblems of the proposed variants of BPG, for which the usual
analytic solutions based on Euclidean distances cannot be used.

• Experiments show a significant advantage of BPG and CoCaIn BPG which are non-alternating by
construction, compared to popular alternating minimization schemes such as PALM [26] and iPALM
[144].

6.2.2 Related work

Alternating minimization is the go-to strategy for matrix factorization problems due to coupling between two
subsets of variables [1, 73, 172]. In the context of non-convex and non-smooth optimization, recently PALM
[26] was proposed and convergence to stationary point was proved. An inertial variant, iPALM was proposed
in [144]. However, such methods require a subset of variables to be fixed. We remove such a restriction here
and take the contrary view by proposing non-alternating schemes based on a powerful Bregman proximal
minimization framework, where we use BPG and CoCaIn BPG algorithms based on the Bregman distances
from Section 4.5.

Chapter 6. Matrix factorization 83

Recently, the symmetric non-negative matrix factorization problem was solved with a non-alternating Bregman
proximal minimization scheme [58] with the following kernel generating distance

h(U) =
‖U‖4F

4
+
‖U‖2F

2
.

However for the generic matrix factorization problem, such a h is not suitable, unlike our Bregman distance
from Section 4.5.

Non-negative matrix factorization (NMF) is a variant of the matrix factorization problem which requires the
factors to have non-negative entries [74, 101]. Some applications are hyperspectral unmixing, clustering and
others [67, 73]. The non-negativity constraints pose new challenges [101] and only convergence to a stationary
point [73, 87] is guaranteed, as NMF is NP-hard in general. Under certain restrictions, NMF can be solved
exactly [4, 113] however such methods are computationally infeasible. We give efficient algorithms for NMF
and show the superior performance empirically.

Matrix completion is another variant of matrix factorization arising in recommender systems [95] and bio-
informatics [107, 163], which is an active research topic due to the hard non-convex optimization problem
[41, 68]. The state-of-the-art methods were proposed in [89, 173] and other recent methods include [174].
Here, our algorithms are either faster or competitive.

Our algorithms are also applicable to graph regularized NMF (GNMF) [38], sparse NMF [26], nuclear norm
regularized problems [39, 88], symmetric NMF via non-symmetric extension [177].

6.3 Closed form update steps for BPG-MF and CoCaIn BPG-MF

In this section, our focus is to use the Bregman distances proposed for matrix factorization problems in
Section 4.5 to make BPG and CoCaIn BPG applicable. Also, we are interested in the transfer of theoretical
convergence guarantees. A major challenge in the application of BPG based algorithms is that the update
step is not available in closed form. Thus, the rest of the section is focussed on developing closed form update
steps for BPG algorithms applied for matrix factorization problems.

We denote the BPG algorithm for matrix factorization as BPG-MF and the CoCaIn BPG algorithm as
CoCaIn BPG-MF. BPG algorithm involves the following update step at each k = 1, 2, . . .:

P k = λ∇Uf1

(
Uk, Zk

)
−∇Uh(Uk, Zk) , Qk = λ∇Zf1

(
Uk, Zk

)
−∇Zh(Uk, Zk) ,

(Uk+1, Zk+1) ∈ argmin
(U,Z)∈C

{
λf0(U,Z) +

〈
P k, U

〉
+
〈
Qk, Z

〉
+ h(U,Z)

}
. (6.3.1)

CoCaIn BPG algorithm involves a similar update step at an extrapolated point and also involves the double
backtracking step as described in Chapter 5. To make BPG-MF and CoCaIn BPG-MF an efficient choice for
solving matrix factorization, namely closed form expressions for the main update steps (6.3.1) (similarly for
CoCaIn BPG-MF) need to be developed.

Note that as BPG-MF and CoCaIn BPG-MF essentially involve the same update step, thus we focus on
closed form updates for BPG-MF and the extensions to CoCaIn BPG-MF are straightforward.

84 6.3. Closed form update steps for BPG-MF and CoCaIn BPG-MF

For the derivation, we refer to the appendix (see Chapter C), here we just state our results. For the
L2-regularized problem

f1(U,Z) =
1

2
‖A− UZ‖2F , f0(U,Z) =

λ0

2

(
‖U‖2F + ‖Z‖2F

)
, h = ha

with c1 = 3, c2 = ‖A‖F and 0 < λ < 1 the BPG-MF updates are:

Uk+1 = −rP k , Zk+1 = −rQk with r ≥ 0 , c1

(∥∥−P k∥∥2

F
+
∥∥−Qk∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 .

The following BPG-MF are equivalent to the above given closed form updates, however, the following updates
have better numerical stability.

Uk+1 = −r
√

2Pk√
‖Pk‖2

F
+‖Qk‖2

F

, Zk+1 = −r
√

2Qk√
‖Pk‖2

F
+‖Qk‖2

F

with r ≥ 0 ,

2c1r
3 + (c2 + λ0)r −

√
‖Pk‖2

F
+‖Qk‖2

F√
2

= 0 .

For NMF with additional non-negativity constraints, we replace −P k and −Qk by Π+(−P k) and Π+(−Qk)
respectively where Π+(.) = max{0, .} and max is applied element wise.

Now consider the following L1-regularized problem

f1(U,Z) =
1

2
‖A− UZ‖2F , f0(U,Z) = λ1 (‖U‖1 + ‖Z‖1) , h = ha . (6.3.2)

The soft-thresholding operator is defined for any y ∈ RN by Sθ (y) = max {|y| − θ, 0} sgn (y) where θ > 0.
Set c1 = 3, c2 = ‖A‖F and 0 < λ < 1 the BPG-MF updates with the above given f1, f0, h are:

Uk+1 = rSλ1λ(−P k), Zk+1 = rSλ1λ(−Qk) with r ≥ 0 and

c1

(∥∥∥Sλ1λ(−P k)
∥∥∥2

F
+
∥∥∥Sλ1λ(−Qk)

∥∥∥2

F

)
r3 + c2r − 1 = 0 .

The above given closed form updates can also be equivalently stated as following:

Uk+1 = r
√

2Sλ1λ
(−Pk)√

‖Sλ1λ
(−Pk)‖2

F
+‖Sλ1λ

(−Qk)‖2

F

, Zk+1 = r
√

2Sλ1λ
(−Qk)√

‖Sλ1λ
(−Pk)‖2

F
+‖Sλ1λ

(−Qk)‖2

F

with r ≥ 0 ,

2c1r
3 + c2r −

√
‖Sλ1λ

(−Pk)‖2

F
+‖Sλ1λ

(−Qk)‖2

F√
2

= 0 .

We denote a vector of ones as eD ∈ RN . For additional non-negativity constraints we need to replace Sλ1λ(−P k)

with Π+(−
(
P k + λ1λeMe

T
K

)
) and Sλ1λ

(
−Qk

)
to Π+(−

(
Qk + λ1λeKe

T
N

)
). Excluding the gradient compu-

tation, the computational complexity of our updates is O(MK + NK) only, thanks to linear operations.
PALM and iPALM additionally involve calculating Lipschitz constants with at most O(K2 max{M,N}2)

computations. Examples like graph regularized NMF (GNMF) [38], sparse NMF [26], matrix completion [95],
nuclear norm regularization [39, 88], symmetric NMF [177] and proofs are given in the appendix.

Note that when f0 := 0, we cannot conclude the global convergence result of BPG and CoCaIn BPG as f1 is
not coercive. However, under the L1-regularization and L2-regularization settings the objective is coercive,
thus the global convergence results of BPG algorithms are applicable.

Chapter 6. Matrix factorization 85

6.4 Discussion

We briefly remark some properties of the update steps of BPG-methods. Note that the updates are independent
for U and Z in (6.3.1), where updates can be done in parallel blockwise (communication is only required to
solve the 1D cubic equation). This can be potentially used to increase the speedup in practice, in particular
for large matrices. Some terms in gradients overlap, so using temporary variables in implementation can
possibly increase the speedup.

We now provide insights on why BPG-methods are a better choice over other methods, with focus on
alternating methods.

• PALM-methods estimate a Lipschitz constant with respect to a block of coordinates in each iteration,
which is expensive for large block matrices. BPG-methods use a global L-smad constant, which is
computed only once.

• PALM-methods cannot be parallelized block wise, for example, in the two block case, the computation
of the Lipschitz constant of the second block must wait for the first block to be updated, hence it is
inherently serial.

• Alternating minimization methods do not converge for non-smooth regularization terms and can
be inefficient (for, e.g., ALS) for some matrix factorization problems (see, for example, [94, 147]).
BPG-methods and PALM-methods converge (due to linearization).

• PALM is not applicable to the 2D function f1(x, y) = (x3 + y3)2, because the block-wise Lipschitz
continuity of the gradients fails to hold even after fixing one variable. BPG-methods are applicable here.

• PALM is not applicable to, for example, symmetric matrix factorization as also pointed in [58] or the
following penalty method based (relaxed) orthogonal NMF problem (see (6.2.1))

min
U∈U ,Z∈Z

{
f ≡ 1

2
‖A− UZ‖2F +

ρ

2

∥∥UTU − I∥∥2

F
+ IU≥0 + IZ≥0 +R1(U) +R2(Z)

}
,

where second term does not have a block-wise Lipschitz continuous gradient for any ρ > 0. Here
BPG-methods are applicable (similarly also for Projective NMF) with minor changes to the Bregman
distance. For symmetric matrix factorization, we recover the kernel generating distances proposed in
[58].

• BPG-methods are very general so the choice of applications will increase substantially and this will
potentially open doors to design new losses and regularizers, without restricting to Lipschitz continuous
gradients.

State of the art models. The state-of-the-art matrix factorization models in [89] go beyond two factors
and new factorization models are introduced. BPG algorithms are not valid in their setting, and requires
potentially developing new Bregman distances. Also, BPG based methods are not applicable for big data
setting, where stochasticity plays a major role. The stochastic version of BPG was recently proposed in [55].
The empirical comparisons to [89] is still open. Moreover, designing the appropriate kernels in the context of
new factorization models can possibly require substantially technical proofs.

Extensions. Our algorithms can potentially extended to several applications, for example, multi-task
learning, general matrix sensing, weighted PCA with various applications including cluster analysis, phase

86 6.5. Experiments

retrieval, power system state estimation. Even though CoCaIn BPG-MF appears to perform best, the
performance of BPG-MF which forms the basis for CoCaIn BPG-MF, is worst as illustrated in 6.5. This
possibly implies that the kernel choice or the coefficients involved in the kernels are not optimal. Such optimal
choice of kernel generating distances were partially explored in the context of symmetric matrix factorization
setting in [58], where new Bregman distances based on Gram kernels were introduced with state of the art
performance in applicable settings.

6.5 Experiments

In this section, we show experiments for the optimization problem in (6.2.1). Denote the regularization
settings, R1: with R1 ≡ R2 ≡ 0, R2: with L2 regularization R1(U) = λ0

2 ‖U‖
2
F and R2(Z) = λ0

2 ‖Z‖
2
F for

some λ0 > 0, R3: with L1 Regularization R1(U) = λ0 ‖U‖1 and R2(Z) = λ0 ‖Z‖1 for some λ0 > 0.

Algorithms. We compare our first order optimization algorithms, BPG-MF and CoCaIn BPG-MF, and
recent state-of-the-art optimization methods iPALM [144] and PALM [26]. We focus on algorithms that
guarantee convergence to a stationary point. We also use BPG-MF-WB, where WB stands for "with
backtracking", which is equivalent to CoCaIn BPG-MF with γk ≡ 0. We use two settings for iPALM, where
all the extrapolation parameters are set to a single value β set to 0.2 and 0.4. PALM is equivalent to iPALM
if β = 0. We use the same initialization for all methods.

Simple matrix factorization. We set U = RM×K and Z = RK×N . We use a randomly generated
synthetic data matrix with A ∈ R200×200 and report performance in terms of function value for three
regularization settings, R1, R2 and R3 with K = 5. Note that this enforces a factorization into at most
rank 5 matrizes U and Z, which yields an additional implicit regularization. For R2 and R3 we use λ0 = 0.1.
CoCaIn BPG-MF is superior1 as shown in Figure 6.1 .

Statistical evaluation. We also provide the statistical evaluation of all the algorithms in Figure 6.2,
for the above problem. The optimization variables are sampled from [0,0.1] and 50 random seeds are
considered. CoCaIn BPG outperforms other methods, however PALM methods are also very competitive. In
L1 regularization setting, the performance of CoCaIn BPG is the best. In all settings, BPG-MF performance
is worst due to a constant step size, which might change in settings where local adapation with backtracking
line search is computationally not feasible.

Matrix completion. In recommender systems [95] given a matrix A with entries at few index pairs in set
Ω, the goal is to obtain factors U and Z that generalize via following optimization problem

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖PΩ (A− UZ)‖2F +

λ0

2

(
‖U‖2F + ‖Z‖2F

)}
, (6.5.1)

where PΩ preserves the given matrix entries and sets others to zero. We use 80% data of MovieLens-100K,
MovieLens-1M and MovieLens-10M [83] datasets and use other 20% to test. CoCaIn BPG-MF is faster than
all methods as given in Figure 6.3. The MovieLens datasets are essentially a matrix A ∈ RM×N , where M
denotes the number of users and N denotes the number of movies. Only a few non-zero entries are given and
the entries denote the ratings which the user has provided for a particular movie. The ratings can take the

1Note that in the y-axis label v(P) is the least objective value attained by any of the methods.

Chapter 6. Matrix factorization 87

value between 1 and 5, which we refer to as scale. The exact statistics of all the MovieLens datasets are given
below.

Dataset Users Movies Non-zero entries Scale

MovieLens100K 943 1682 100000 1-5
MovieLens1M 6040 3952 1000209 1-5
MovieLens10M 71567 10681 10000054 1-5

The plots provided for the matrix completion problem uses only 80% of the data and we use the remaining
20% as test data in order to obtain the generalization performance to unseen matrix entries with the resulting
factors U ∈ RM×K and Z ∈ RK×N where we useK = 5. The predicted rating to a particular i ∈ {1, 2, . . . ,M}
and j ∈ {1, 2, . . . , N} is given by (UZ)ij . The test data is comprised of matrix indices with unseen entries
and we denote this set of indices as ΩT . A popular measure for the test data is the Test RMSE, which is
given by the following entity:

Test RMSE =

√√√√ 1

|ΩT |
M∑
i=1

N∑
j=1

I(i,j)∈ΩT (Aij − (UZ)ij)
2 ,

where |ΩT | denotes the cardinality of the set ΩT and I(i,j)∈ΩT = 1 if the index pair (i, j) lies in the set ΩT

else it is zero. The Test RMSE comparisons for the MovieLens Dataset are given below in Figure 6.4.

100 101 102 103

Iterations (log scale)

10−4

10−3

10−2

10−1

100

101

102

103

104

Ψ
(U

k
,Z

k
)
−
v

(P
)

(l
og

sc
al

e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(a) No regularization

100 101 102 103

Iterations (log scale)

10−4

10−3

10−2

10−1

100

101

102

103

104

Ψ
(U

k
,Z

k
)
−
v

(P
)

(l
og

sc
al

e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(b) L2-regularization

100 101 102 103

Iterations (log scale)

10−4

10−3

10−2

10−1

100

101

102

103

104

Ψ
(U

k
,Z

k
)
−
v

(P
)

(l
og

sc
al

e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(c) L1-regularization

Figure 6.1: Simple matrix factorization on synthetic dataset.

1532.5 1535.0 1537.5 1540.0 1542.5 1545.0 1547.5 1550.0

Function value

0

10

20

30

40

N
u

m
b

er
of

se
ed

s

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

(a) No regularization

1545.0 1547.5 1550.0 1552.5 1555.0 1557.5 1560.0 1562.5

Function value

0

5

10

15

20

25

30

35

40

N
u

m
b

er
of

se
ed

s

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

(b) L2-regularization

1585 1590 1595 1600 1605 1610

Function value

0

1

2

3

4

5

6

N
u

m
b

er
of

se
ed

s

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

(c) L1-regularization

Figure 6.2: Statistical evaluation on simple matrix factorization.

88 6.5. Experiments

100 101 102 103

Iterations (log scale)

10−2

10−1

100

101

102

103

104

105

Ψ
(U

k
,Z

k
)
−
v

(P
)

(l
og

sc
al

e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(a) MovieLens-100K

100 101 102 103

Iterations (log scale)

100

101

102

103

104

105

106

Ψ
(U

k
,Z

k
)
−
v

(P
)

(l
og

sc
al

e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(b) MovieLens-1M

100 101 102 103

Iterations (log scale)

102

103

104

105

106

107

Ψ
(U

k
,Z

k
)
−
v

(P
)

(l
og

sc
al

e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(c) MovieLens-10M

Figure 6.3: Matrix completion on Movielens datasets [83].

100 101 102 103

Iterations (log scale)

100

2× 100

T
es

t
rm

se
(l

og
sc

al
e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(a) MovieLens-100K

100 101 102 103

Iterations (log scale)

100

2× 100

T
es

t
rm

se
(l

og
sc

al
e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(b) MovieLens-1M

100 101 102 103

Iterations (log scale)

100

2× 100

T
es

t
rm

se
(l

og
sc

al
e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(c) MovieLens-10M

Figure 6.4: Test RMSE plots on MovieLens datasets [83].

As evident from Figures 6.1, 6.5, 6.3, CoCaIn BPG-MF, BPG-MF-WB can result in better performance than
well known alternating methods. BPG-MF is not better than PALM and iPALM because of prohibitively
small step-sizes (due to ‖A‖F in (4.6.2)), which is resolved by CoCaIn BPG-MF and BPG-MF-WB using
backtracking. Time comparisons are also provided, where we show that our methods are competitive. The
plots in Figure 6.4 show that the proposed methods BPG-MF-WB and CoCaIn BPG-MF are competitive to
PALM and iPALM. BPG-MF is slow in the beginning, however it is competitive to other methods towards
the end.

Non-negative matrix factorization. We consider the same setting as the simple matrix factorization
problem considered in 6.5, however we set U = RM×K+ and Z = RK×N+ . We consider Medulloblastoma dataset
[35] dataset with matrix A ∈ R5893×34. As evident from Figure 6.5, PALM based methods outpeform BPG
methods here. This raises new open questions and hints at potential variants of BPG which are better suited
for constrained problems.

Time comparisons. We provide time comparisons in Figures 6.6, 6.7, 6.8 for all the experimental settings
mentioned in Section 6.5, where we mention the dataset in the caption. Since, we used logarithmic scaling,
we used an offset of 10−2 for all algorithms for better visualization.

As evident from the plots, the proposed variants BPG-MF-WB and CoCaIn BPG-MF are competitive that
PALM and iPALM. BPG-MF is mostly slow, due to constant step-size, which can be potentially helpful when
backtracking is computationally expensive.

Chapter 6. Matrix factorization 89

100 101 102 103

Iterations (log scale)

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

Ψ
(U

k
,Z

k
)
−
v

(P
)

(l
og

sc
al

e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(a) No-regularization

100 101 102 103

Iterations (log scale)

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

Ψ
(U

k
,Z

k
)
−
v

(P
)

(l
og

sc
al

e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(b) L2-regularization

100 101 102 103

Iterations (log scale)

10−7

10−5

10−3

10−1

101

103

Ψ
(U

k
,Z

k
)
−
v

(P
)

(l
og

sc
al

e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(c) L1-regularization

Figure 6.5: Non-negative matrix factorization on Medulloblastoma dataset [35].

10−2 10−1 100 101 102 103 104

Time (log scale)

2× 103

3× 103

4× 103

6× 103

F
u

n
ct

io
n

va
lu

e
(l

og
sc

al
e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(a) No regularization

10−2 10−1 100 101 102 103 104

Time (log scale)

2× 103

3× 103

4× 103

6× 103

F
u

n
ct

io
n

va
lu

e
(l

og
sc

al
e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(b) L2-regularization

10−2 10−1 100 101 102 103 104

Time (log scale)

2× 103

3× 103

4× 103

6× 103

F
u

n
ct

io
n

va
lu

e
(l

og
sc

al
e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(c) L1-regularization

Figure 6.6: Time plots for simple matrix factorization on synthetic dataset.

10−2 10−1 100 101 102 103 104 105

Time (log scale)

102

6× 101

2× 102

3× 102

4× 102

F
u

n
ct

io
n

va
lu

e
(l

og
sc

al
e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(a) No-Regularization

10−2 10−1 100 101 102 103 104 105

Time (log scale)

102

6× 101

2× 102

3× 102

4× 102

F
u

n
ct

io
n

va
lu

e
(l

og
sc

al
e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(b) L2-regularization

10−2 10−1 100 101 102 103 104 105

Time (log scale)

102

F
u

n
ct

io
n

va
lu

e
(l

og
sc

al
e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(c) L1-regularization

Figure 6.7: Time plots for non-negative matrix factorization on Medulloblastoma dataset [35].

6.6 Chapter conclusion

We proposed non-alternating algorithms to solve matrix factorization problems, contrary to the typical
alternating strategies. We achieve this using the Bregman proximal algorithms, BPG [28] and an inertial
variant CoCaIn BPG (Chapter 5) for matrix factorization problems. For this purpose, we use the Bregman
distances from Section 4.5, which allow for applicability and also enable the transfer of convergence results
when L1 or L2-regularization is used. Moreover, we also provide non-trivial efficient closed form update steps
for many matrix factorization problems. This line of thinking raises new open questions, such as extensions
to tensor factorization [94], to robust matrix factorization [173], stochastic variants [55, 78, 119, 128] and

90 6.6. Chapter conclusion

10−2 10−1 100 101 102 103 104 105 106

Time (log scale)

105

4× 104

6× 104

2× 105

F
u

n
ct

io
n

va
lu

e
(l

og
sc

al
e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(a) MovieLens-100K

10−2 10−1 100 101 102 103 104 105 106

Time (log scale)

106

F
u

n
ct

io
n

va
lu

e
(l

og
sc

al
e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(b) MovieLens-1M

10−1 101 103 105 107

Time (log scale)

107

F
u

n
ct

io
n

va
lu

e
(l

og
sc

al
e)

CoCaIn BPG-MF

BPG-MF-WB

BPG-MF

PALM

iPALM (β = 0.2)

iPALM (β = 0.4)

(c) MovieLens-10M

Figure 6.8: Time plots for matrix completion on MovieLens datasets [83].

state-of-the-art matrix factorization model [89]. We consider similar extensions to deep matrix factorization
and deep non-linear neural network settings in the subsequent chapters.

Chapter 7

Deep matrix factorization

7.1 Abstract . 91
7.2 Introduction . 91

7.2.1 Contributions . 92
7.2.2 Related work . 92

7.3 BPG for deep matrix factorization . 93
7.3.1 Closed form updates for BPG . 93
7.3.2 Global convergence of BPG for regularized DLNN . 94

7.4 CoCaIn BPG for deep matrix factorization . 94
7.4.1 Closed form inertia . 94
7.4.2 Global convergence of CoCaIn BPG for regularized DLNN . 95

7.5 Discussion of BPG variants . 95
7.6 Experiments . 96
7.7 Chapter conclusion . 99

7.1 Abstract

In this chapter, we use the Bregman distances for deep matrix factorization problems from Section 4.6, which
yields BPG algorithms with theoretical convergence guarantees. In fact, these are the first non-alternating
algorithms for such problems allowing for a constant step size strategy. Moreover, we demonstrate the
numerical competitiveness of the proposed methods compared to existing state of the art schemes. The main
implications of our results are strong convergence guarantees for BPG algorithms. We also propose strategies
for their efficient implementation. For example, closed form updates and a closed form expression for the
inertial parameter of CoCaIn BPG. Moreover, the BPG method requires neither diminishing step sizes nor
line search, unlike its corresponding Euclidean version.

7.2 Introduction

In this chapter, we revisit the deep matrix factorization problem mentioned in Section 4.6, using the
same notation. Recall that the optimization problem involved in the deep matrix factorization problem or

91

92 7.2. Introduction

equivalently training a so-called deep linear neural network (DLNN) model, is the following:

min
Wi∈Wi ,∀i∈{1,...,N}

f1(W) + f0(W) ,

where
f1(W) :=

1

2
‖W1W2 · · ·WNX − Y ‖2F , (7.2.1)

and f0 is the regularization term.

We verified the L-smad property for f1 by proposing appropriate Bregman distances in Section 4.6. In this
chapter, we make use of such Bregman distances such that BPG and CoCaIn BPG algorithms are applicable.
However, the standard implementation of BPG based methods is not efficient, in general. There are certain
technical issues that require resolution. In this chapter, we tackle all such issue and provide practical solutions.

7.2.1 Contributions

In particular, our contributions are the following.

• We enable an efficient implementation of the update steps involved in BPG based methods via closed
form analytic expressions for various practical settings.

• Finding appropriate inertia (or momentum) for CoCaIn BPG can be computationally expensive. In
order to mitigate this issue, we propose a novel variant of CoCaIn BPG, called CoCaIn BPG CFI that
improves the efficiency for large scale problems.

• The developed Bregman distances in Chapter 4 yield a base algorithm (BPG) that allows for modifications
in analogy to the development of alternating, stochastic or inertial variants of the base Proximal Gradient
(PG) method, for which we provide a comprehensive discussion.

• Additionally, we empirically illustrate that BPG based algorithms are usually competitive and are often
superior to PG variants, whenever both are applicable.

7.2.2 Related work

In [58] a low-rank semidefinite program is reformulated in terms of a symmetric matrix factorization problem
which is solved with BPG. To this end the authors prove that the corresponding objective is L-smad relative to
a quartic kernel. In Section 4.5, this idea has been extended to a more general regularized matrix factorization
problem, for which Bregman distance is proposed to guarantee the L-smad property of the corresponding
objective. However, in the deep matrix factorization setting, such a Bregman distance is not valid. Extending
on the matrix factorization setting, we already proposed suitable Bregman distances for the deep matrix
factorization problem in Section 4.6. Hence, our main focus is to use those Bregman distances to make BPG
and CoCaIn BPG algorithms applicable to solve deep matrix factorization problems. Various related state of
the art results for deep matrix factorization models were also explored in [17, 115, 165]. A variant of the
deep matrix factorization model can also be used for matrix completion [3, 94], which we explore towards the
end of this chapter. As mentioned in Section 4.6, it is well justified to study the deep matrix factorization
problems [49, 77, 92, 169, 175] before embarking on the deep non-linear neural network setting. Here, we
mainly focus on the efficient application of BPG algorithms on deep matrix factorization problems.

Deep linear neural networks are not popular compared to the deep non-linear neural networks (see Chapter 8),
as they capture more complex geometries [77]. Even though deep linear neural networks essentially describe

Chapter 7. Deep matrix factorization 93

a linear model, Mirror Descent (BPG with f0 := 0) eventually inherits the so-called implicit regularization
bias observed for Gradient Descent optimization [3, 72, 80]. The implicit regularization bias is helpful to
incorporate the information beyond what is specified in the objective [79, 127]. As a future work, the exact
quantification of the implicit regularization of BPG based methods could be explored.

7.3 BPG for deep matrix factorization

7.3.1 Closed form updates for BPG

In practice, in order to make use of kernel generating distances proposed in Proposition 4.6.0.1, 4.6.0.2
with BPG, we require efficient update steps. It is in general difficult to compute the Bregman proximal
mapping (Tλ in (5.3.1)) in closed form, even for common f0. Typically this involves the computation of the
convex conjugate function of the problem-dependent h which can be hard to derive. In our case we show in
Proposition 7.3.1.1, that the computation of the BPG map (5.3.1) can be reduced to a simple projection
problem and a simple one-dimensional nonlinear equation, more precisely a polynomial equation with a unique
real root. Such a closed form solution is also valid for any other Bregman proximal algorithm including,
stochastic BPG [55]. Using f1 from (7.2.1) and f0 := 0 and we set h as in Proposition 4.6.0.1, 4.6.0.2.

Proposition 7.3.1.1. In BPG, with above defined f1, f0, h, denoting P ki := λ∇Wif1

(
W k
)
− ∇Wih(W k) ,

the update steps in each iteration are given by

W k+1
i = −r

√
N P ki
‖P‖F

, for all i ∈ {1, . . . , N},

with ‖P‖2F =
∑N

i=1

∥∥P ki ∥∥2

F
. For N = 2, r ≥ 0 satisfies

2c1(2)r3 + c2(2)r − ‖P‖F√
2

= 0 ,

if N > 2 and even, r ≥ 0 satisfies

2c1(N)r2N−1 + c2(N)rN−1 +
2ρ

N
r − ‖P‖F√

N
= 0 ,

and, if N > 2 and odd, r ≥ 0 satisfies

2c1(N)r2N−1 + c3(N)

(
Nr2 + 1

N + 1

)N−1
2

r +
2ρ

N
r − ‖P‖F√

N
= 0 . (7.3.1)

The proof is given in Section D.2.1 in the appendix. With a slight abuse of denotation, we are referring that
Proposition 7.3.1.1 provides closed form solution, even though r must be found by solving one-dimensional
nonlinear equation. We now consider non-zero f0.

L2-regularization. The squared L2-regularizer is given by

f0(W) :=
λ0

2

N∑
i=1

‖Wi‖2F , with λ0 > 0 . (7.3.2)

94 7.4. CoCaIn BPG for deep matrix factorization

To obtain closed forms replace 2ρ
N with

(
2ρ
N + λλ0

)
in Proposition 7.3.1.1.

L1-regularization. The L1-regularizer is given by

f0(W) :=

N∑
i=1

µi ‖Wi‖1 , (7.3.3)

with µi > 0 for all i ∈ {1, . . . , N} . Using the element wise soft-thresholding operator Sθ(x) = max{|x| −
θ, 0}sgn(x), the closed form updates are obtained by replacing −P ki with Sλµi(−P ki) in Proposition 7.3.1.1.
Proof is given in Section D.2.3 in the appendix.

7.3.2 Global convergence of BPG for regularized DLNN

We prove the global convergence of BPG applied to minimize f := f1 + f0 by invoking [28, Theorem 4.1],
where f0 being either L2-regularizer or L1-regularizer, and f1 be as defined in (4.6.1).

Theorem 7.3.2.1 (Global convergence of BPG for regularized DLNN). Let f1 be defined as in (4.6.1) with
N > 1, and f0 be either L2-regularization as in (7.3.2) or L1-regularization as in (7.3.3). If N = 2, choose
the kernel generating distance function h = Ha as in (4.6.2). If N > 2 and even, then choose h as in (4.6.5),
otherwise, if N > 2 and odd, then choose h as in (4.6.6). Then, f has the KL-property and f1 is L-smad
w.r.t. h. Moreover, the sequence {xk}k∈N generated by BPG is bounded, has finite length, and converges to a
critical point of f .

The proof is provided in Section D.1 in the appendix. We remark that our theory does not provide global
convergence guarantees for no regularization (f0 := 0).

7.4 CoCaIn BPG for deep matrix factorization

7.4.1 Closed form inertia

Now, we present one of our main contribution for efficiently using CoCaIn BPG. The maximal extrapolation
is restricted by (5.4.3), where for a constant κ > 0, the following holds:

Dh(xk, yk) ≤ κDh(xk−1, xk) . (7.4.1)

For large scale problems, checking the condition (7.4.1) in a backtracking loop may be expensive. For this
purpose, we propose a crucial closed form solution for the extrapolation parameter, which is efficient to
implement in practice. For Euclidean distances, 0 < γk ≤

√
κ satisfies (7.4.1). Such a closed form interval

is non-trivial to obtain in general. However, the structure of the proposed Bregman distances allows for a
closed form inertial parameter, as shown in Proposition 7.4.1.1.

Proposition 7.4.1.1. Denote xk = (W k
1 , . . . ,W

k
N). For κ > 0, yk := xk + γk(x

k − xk−1) and xk 6= xk−1,
the parameter γk given by

0 < γk ≤
√
κDh(xk−1, xk)

χ(N)
≤ 1 ,

Chapter 7. Deep matrix factorization 95

satisfies the condition (7.4.1), where χ(N) is given by
c1(N)Bk + c2(N)Ck , for N = 2 ,

c1(N)Bk + c2(N)Ck + ρ ‖∆k‖2 , for even N > 2 ,

c1(N)Bk + c3(N)Dk + ρ ‖∆k‖2 , for odd N > 2 ,

with ∆k = xk − xk−1, Ωk = 2
∥∥xk∥∥2

+ 2 ‖∆k‖2 ,

Bk =
(2N − 1) ‖∆k‖2 (Ωk)

(N−1)

NN−1
, Ck =

(
(N − 1) ‖∆k‖2 (Ωk)

N−2
2

)
(N

N
2
−1)

, Dk =
N ‖∆k‖2 (Ωk + 1)

N−1
2

(N + 1)
N−1

2

.

The proof of Proposition 7.4.1.1 is given in Section D.3.1. For N = 2 (matrix factorization) we provide tighter
bounds in Lemma D.3.2.2 in the appendix. We denote the variant of CoCaIn BPG with closed form inertia
(Proposition 7.4.1.1) as CoCaIn BPG CFI.

7.4.2 Global convergence of CoCaIn BPG for regularized DLNN

We focus on the specialized global convergence result of CoCaIn BPG for regularized DLNN problems, which
relies on the L-smad property for DLNN provided in Proposition 4.6.0.1 and Proposition 4.6.0.2.

Theorem 7.4.2.1 (Global convergence of CoCaIn BPG for regularized DLNN). Let f1 be defined as in
(4.6.1) with N > 1, and f0 be either L2-regularization given in (7.3.2) or L1-regularization given in (7.3.3).
If N = 2, choose the kernel generating distance function h = Ha as in (4.6.2). If N > 2 and even, then
choose h as in (4.6.5), otherwise, if N > 2 and odd, then choose h as in (4.6.6). Then, f has the KL-property
and f1 is L-smad w.r.t. h. Moreover, the sequence {xk}k∈N generated by CoCaIn BPG is bounded, has finite
length, and converges to a critical point of f .

The proof is identical to Theorem 7.3.2.1, except Theorem 5.6.2.2 from Chapter 5 is used instead of [28,
Theorem 4.1]. Note that CoCaIn BPG CFI is a special case of CoCaIn BPG. Thus, Theorem 7.4.2.1 also
holds true for CoCaIn BPG CFI.

7.5 Discussion of BPG variants

We discuss the applicability and performance of BPG based algorithms for DLNN compared to several existing
optimization schemes.

The base algorithm BPG. The key advantage of BPG for DLNN compared to its Euclidean variant, the
Proximal gradient (PG) method, is the guaranteed convergence when a constant step size rule is used. This
is enabled by validity of L-smad property (Proposition 4.6.0.1 and 4.6.0.2). On the contrary, PG, which
requires a classical L-smoothness can only be used by the following trick. Under a coercivity assumption,
all iterates generated by PG lie in a compact set, on which a global Lipschitz constant for the objective’s
gradient can be found. However, the compact set is usually unknown (and cannot be determined before
running the algorithm), and can potentially be extremely large which makes the practical computation of
such a global Lipschitz constant difficult or computationally intractable. A good heuristic guess may result in
PG being more efficient than BPG. Therefore, BPG and CoCaIn BPG (with L̄ = L in Algorithm 5) render

96 7.6. Experiments

promising alternatives to PG when line search must be avoided due to a prohibitively expensive function
evaluation.

BPG with backtracking. If backtracking line search variants are affordable for solving the given opti-
mization problem, then BPG, CoCaIn BPG and their Euclidean variants PG and iPiano provide the same
convergence guarantees. Intuitively, from a global perspective, the adapted upper and lower bounds given by
the Bregman distance for BPG should tightly approximate to the objective function than quadratic functions
as required for L-smoothness. This situation can change when backtracking line search is used and only
locally tight approximations are sought. We cannot claim that any of the two strategies has a clear and
consistent advantage. The performance can depend significantly on the starting point and the initialization
of the parameters and needs problem dependent exploration.

BPG vs PALM. Proximal Alternating Linearized Minimization (PALM) [26] has a clear bias towards the
first block of coordinates, if the update direction points into a narrow valley. This effect may be compensated
by its inertial variant iPALM. For DLNN with identical regularizers, this effect cannot be observed due to
the symmetry of the objective function with respect to the blocks of coordinates, resulting in an oftentimes
favorable performance. We leave the exploration of alternating variants of BPG as future work. Related
works include [85, 103, 162].

Alternating vs non-alternating strategies. We would like to stress two important advantages of non-
alternating schemes such as BPG over alternating minimization strategies like PALM or iPALM. Firstly,
BPG allows for block-wise parallelization, and, secondly, there are interesting settings for which alternating
minimization is not applicable. The obvious example is symmetric matrix factorization, for which BPG
is studied in [58]. In the context of DLNN (N > 2 in (4.6.1)) requiring W1 = W2 = . . . = WN (upto a
transpose) can be considered as a prototype for an unrolled recurrent neural network architecture, where
weights are shared across layers. Here, there is no natural way to apply alternating minimization schemes
and the objective is not classically L-smooth.

Stochastic setting extensions. A stochastic version of BPG was developed recently in [55], for which our
Bregman distances are valid to train DLNN. Several popular stochastic variants such as Adam [93], Adagrad
[63], SC-Adagrad [119] can potentially be extended with a Bregman proximal framework.

7.6 Experiments

We provide experiments for deep matrix factorization with squared L2-regularizer, L1-regularizer and a
non-regularized setting (4.6.1). For regularized objectives, Theorem 7.3.2.1, 7.4.2.1 provide global convergence
guarantees for BPG and CoCaIn BPG, respectively. Here, we provide three experiments, two with randomly
generated dataset and the other with real world data.

Algorithms. In the experiments, we compare BPG and CoCaIn BPG (Algorithm 5) with many existing
optimization methods. We consider alternating strategies such as PALM [26] and iPALM [144]. As non-
alternating algorithms, we use Forward–Backward Splitting with backtracking (FBS-WB) and iPiano with
backtracking (iPiano-WB) [137]. We also inspect CoCaIn BPG CFI and BPG-WB, which is CoCaIn BPG
with γk ≡ 0.

Chapter 7. Deep matrix factorization 97

(c) L1-regularization (N = 3) (a) L1-regularization (N = 4) (b) L1-regularization (N = 5)

Figure 7.1: Convergence plots illustrate the competitive performance of CoCaIn BPG variants for DLNN.

Experiment 1. We set Wi ∈ R5×5, ∀i = 1, ..., N, where all weights are initialized with 0.1. Our dataset
contains 50 data points with input X ∈ R5×50 and the output Y ∈ R5×50 randomly generated in the interval
[0, 1]. In this experiment, we work with a network consisting of three, four and five layers (N = 3, 4, 5)
and L1 regularization is used. The convergence plots are given in Figure 7.1, where the y-axis measures
difference between the absolute objective and the least objective value attained by any of the methods. The
additional experiments within the setting of Experiment 1, however, with squared L2 regularization and no
regularization are provided in Figure 7.3. In these experiments, we set the regularization parameter λ0 = 0.1,
the step size λ of BPG to 0.99 and ρ = 1. For iPALM we use two settings β = 0.2 and β = 0.4. In most
of the settings the convergence speed of CoCaIn BPG is similar to iPiano-WB. The alternating schemes
PALM and iPALM do not include a time consuming backtracking mechanism. In terms of speed, this results
in a better performance for the non-regularized DLNN problem. However, in the regularized setting BPG
based methods with a possibly more effective update step remain superior together with iPiano-WB. In this
experiment, there is no clear speed advantage of CoCaIn BPG over CoCaIn BPG CFI. The size of the used
data is small yet and the strength of the closed form inertial BPG might lie in large scale datasets.

Experiment 2. We consider the matrix completion problem [95] that essentially uses

f1(W) :=
1

2
‖PΩ(W1W2 · · ·WNX − Y)‖2F

instead of f1 in (4.6.1) and PΩ is a masking operator over a given set of indices Ω, which sets the elements at
indices that are not in Ω to zero, while retaining other elements. The changes incurred are the replacement of
‖Y ‖F by ‖PΩ(Y)‖F in Proposition 4.6.0.1 and 4.6.0.2, and the replacement of the term (W1W2 . . .WNX − Y)

to PΩ (W1W2 . . .WNX − Y) in the gradient expression given in Proposition A.3.0.1 in the appendix. We use
MovieLens-100K data [83] with N = 4 and X is a scalar with X = 1. We use 80% of the data here and later
we use 20% of the data to test the performance of the model. The weights W1 ∈ R943×5,W2 ∈ R5×5,W3 ∈
R5×5,W4 ∈ R5×1682 are initialized with 0.01. The convergence plots are given in Figure 7.2. For Experiment
2, we use ρ = 0.001. From the plots in Figure 7.6, it is clear that CoCaIn BPG is not the best in terms
of test RMSE, even though it is the best performing algorithm in terms of achieving lower objective value
(Figure 7.2). The theoretical justification is still requires further exploration.

Experiment 3. In this experiment we use the same hyperparameters, weight initialization and input
X ∈ R7×50 as in Experiment 1. While we used independently generated input and output data in Experiment
1, the output data is now generated with Y = AX + 0.0001N , where A is a randomly generated matrix in

98 7.6. Experiments

(a) L2-regularization (N = 4) (b) L1-regularization (N = 4) (c) No Regularization (N = 4)

(a) L2-regularization (N = 4) (b) L1-regularization (N = 4) (c) No Regularization (N = 4)

Figure 7.2: Convergence plots illustrate the competitive performance of CoCaIn BPG for matrix completion
task.

[0, 0.1]2×7 and N ∼ N (0, 1). Additionally, the weights are not squared matrices, i.e W1 ∈ R2×3. The results
are provided in Figure 7.5. While BPG-WB and CoCaIn BPG CFI achieve the best performance in a setting
with L2-regualrizer or no regularizer, both algorithms can not compete with the alternating algorithms PALM
and iPALM as well as iPiano-WB in case of L1-regularizers. Here, CoCaIn BPG is strong with a convergence
better than iPiano-WB.

Analysis. The performance of CoCaIn BPG, CoCaIn BPG CFI and BPG-WB is mostly better than
other methods. The next competitive algorithms include FBS-WB and iPiano-WB, followed by PALM
and iPALM. The performance of the alternating algorithms strongly depend on the usage of a regularizer,
whereas BPG-WB is competitive in both settings. At first glance, the performance of BPG appears to be
weaker compared to CoCaIn BPG, BPG-WB, FBS-WB, iPiano-WB and other methods. However, line search
techniques may not be always desirable in practical scenarios, because line search requires multiple objective
evaluations, which can be computationally expensive (see Section 7.5). Moreover, PALM and iPALM need
block-wise Lipschitz constant computations in each iteration, which can be expensive. PALM based methods
do not perform well on matrix completion task. In the setting of Experiment 2, we provide additional plots
in Figure 7.6, where we plot Test RMSE vs iterations and Test RMSE is given by

Test RMSE =

√
1

|ΩT |
‖PΩT (W1W2 · · ·WNX − Y)‖2F

where ΩT is the index set of test data, which is 20% of the full MovieLens-100K data. The results for time
comparison are given in Figure 7.4. For better visualization an offset of 10−2 is used in the time plots.

Chapter 7. Deep matrix factorization 99

Finally, note that the proposed Bregman distances involve the norms of the weights, which can be very large
for large N and might result in numerically instability. An important open research problem, is to develop
numerically stable Bregman distances.

(a) L2-regularization (N = 4) (b) L2-regularization (N = 5) (c) L2-regularization (N = 3)

(d) No Regularization (N = 5) (e) No Regularization (N = 4) (f) No Regularization (N = 3)

Figure 7.3: Plots illustrate the competitive performance of CoCaIn BPG variants for DLNN in Experiment
1.

7.7 Chapter conclusion

We considered the optimization problem involved in deep matrix factorization with a quadratic loss, or
equivalently, training a deep linear neural network. Our main contribution is to make BPG and its inertial
variant CoCaIn BPG applicable and enable the transfer of their convergence results to such problems. We
provide various crucial pointers for efficient implementation of BPG based algorithms. In particular, we
develop the update formulas, which are crucial for efficient large scale optimization. Also, the validity of
inertial (or momentum) parameter in CoCaIn BPG requires to be checked via backtracking line search. To
avoid expensive backtracking operation, we derive an analytic expression. This work paves the way for our
next chapter, where we embark on the challenging deep non-linear neural network based on similar ideas
developed in this chapter.

100 7.7. Chapter conclusion

(a) L2-regularization (N = 3) (b) L1-regularization (N = 3) (c) No Regularization (N = 3)

(d) L2-regularization (N = 4) (e) L1-regularization (N = 4) (f) No Regularization (N = 4)

(g) L2-regularization (N = 5) (h) L1-regularization (N = 5) (i) No Regularization (N = 5)

Figure 7.4: Time plots illustrate the competitive performance of BPG methods, PALM methods in
Experiment 1.

Chapter 7. Deep matrix factorization 101

(a) L2-regularization (N = 3) (b) L1-regularization (N = 3) (c) No Regularization (N = 3)

(d) L2-regularization (N = 4) (e) L1-regularization (N = 4) (f) No Regularization (N = 4)

(g) L2-regularization (N = 5) (h) L1-regularization (N = 5) (i) No Regularization (N = 5)

Figure 7.5: Convergence plots for Experiment 3 where BPG based methods and PALM based methods are
competitive.

(a) L2-regularization (N = 4) (b) L1-regularization (N = 4) (c) No Regularization (N = 4)

Figure 7.6: Test RMSE plots for Experiment 2 illustrating the competitive performance of CoCaIn BPG
CFI.

Chapter 8

Deep neural networks

8.1 Abstract . 103
8.2 Introduction . 103

8.2.1 Contributions . 104
8.2.2 Related work . 105

8.3 Closed form updates . 105
8.3.1 Regularization . 106

8.4 Closed form inertia . 106
8.4.1 Closed form inertia - Regression setting . 106
8.4.2 Closed form inertia - DLNN - Classification setting . 107
8.4.3 Closed form inertia - DNN - Classification setting . 107

8.5 Experiments . 108
8.6 Chapter conclusion . 111

8.1 Abstract

In this chapter, we consider the objectives arising in deep non-linear neural settings. In particular, we
consider both the regression setting and the classification setting. Based on the Bregman distances proposed
in Chapter 4, we make BPG based algorithms applicable. We provide results for both the regression setting
and the classification setting, while extending to deep non-linear neural networks. For efficient practical
application of BPG methods, we develop closed form update steps for various practical settings. We also
develop closed form inertial solutions for efficient implementation of CoCaIn BPG. We provide various
empirical evaluations using real world datasets to supplement our claims.

8.2 Introduction

Deep learning is a popular technique to achieve the state of the art performance on many Machine Learning
problems that arise in Computer Vision, Natural Language Processing and many other research areas
[77, 96, 105, 154]. In the previous chapters, we considered matrix factorization (Chapter 6) and deep matrix
factorization (Chapter 7) which essentially falls under the category of deep linear neural network setting.
However, in practice deep non-linear neural networks are preferred. We are mainly interested in the regression

103

104 8.2. Introduction

setting (see Section 4.7) and the classification setting (see Section 4.8), which we recall below. We recall the
regression setting from Section 4.7, which involves the following optimization problem:

min
Wi∈Wi ∀i∈[N]

{f0(W) + f1(W)} , (8.2.1)

where
f1(W) :=

1

2
‖σN (WN . . . σ1(W1X))− Y ‖2F ,

and f0 is the regularization term. The classification setting as described in Section 4.8 involves the same
problem as (8.2.1), however, f1 is set to the following:

f1(W) :=
M∑
j=1

(
− log

(
ezj,jk∑K
k=1 e

zj,k

))
,

where with deep linear neural networks we set zj = W1 . . .WNxj , and with generic deep non-linear neural
network we set zj := σN (WN . . . σ1(W1xj)).

Much of the effort has gone into the understanding of the optimization of objectives that arise in deep neural
networks. However, there is no constant step-size algorithm with global convergence guarantees that is
suitable for deep non-linear neural networks, as far as we know. We tackle this open problem via the so-called
L-smad property, which we introduced in Chapter 4. The L-smad property played a crucial role in the
development of BPG-based methods (see [28] and Chapter 5). However, proving such a property is non-trivial
and was tackled in Section 4.7, 4.8 for objectives in deep neural network settings. In the same spirit as matrix
factorization and deep matrix factorization, there will be certain technical issues that need to be resolved in
order to apply BPG-based methods based on the L-smad property. In this chapter, we will successfully tackle
the issues. The techniques used are essentially the same as that of deep matrix factorization setting and thus
we do not go into detail regarding the proofs. A notable distinction between the deep matrix factorization
case and the deep non-linear neural networks case is that in the later case we do not have a distinction
between odd and even layers, whereas in the former case we required such a distinction.

8.2.1 Contributions

We use the Bregman distances proposed in Section 4.7, 4.8 for the regression and the classification settings
that arise in the context of deep non-linear neural networks to enable the applicability of BPG-based methods,
in particular BPG and CoCaIn BPG. To this end, we briefly list our contributions below.

• A major challenge that arises in the application of BPG based methods is the efficient implementation
of the update steps. In this regard, we provide closed form solutions to the subproblems that arise in
BPG based methods.

• Based on the above-mentioned Bregman distances, in order to enhance the efficiency of the implementa-
tion of CoCaIn BPG method, we provide results pertaining to closed form inertia that result in efficient
extrapolation steps.

• Finally, we supplement our theory with various empirical comparisons on real world datasets for both
the regression and the classification settings. We observe that BPG methods are competitive compared
to forward–backward splitting method. However, we found that CoCaIn BPG suffers from severe
numerical issues, which we leave it as an open research question.

Chapter 8. Deep neural networks 105

8.2.2 Related work

Optimization of deep neural networks is a hard research problem [31, 77]. Various state of the art results are
achieved via efficient optimization of deep neural networks [96, 105, 154]. Typically, stochastic gradient based
algorithms are used in deep neural network training [30, 32]. In the full gradient setting, algorithms such as
the Gradient Descent variants (with and without momentum) are applicable [151], and adaptive algorithms
like Adam [93], Adagrad [63], SC-Adagrad [119] are applicable. Inspite of their efficiency, they require heavy
tuning of the step-size and other hyperparameters while having limited theoretical convergence guarantees.
Here, algorithms with constant step-size with global convergence guarantees are relatively unknown. To train
deep neural networks, one possible class of algorithms that has global convergence guarantees is the class
of alternating optimization methods. As mentioned in Chapter 6, popular alternating methods [75] include
PALM [26], iPALM [144], BCD [171], BC-VMFB [50], HALS [51]. However, alternating methods have a bias
towards one of the weights, and also the computation of the Lipschitz constant of a block-wise gradient can
be expensive. Inorder to mitigate this we leverage the Bregman distances proposed in Section 4.7, 4.8 to
make non-alternating Bregman proximal minimization algorithms applicable along with their convergence
guarantees.

8.3 Closed form updates

We already proposed suitable Bregman distances for deep non-linear neural networks in Section 4.7, 4.8 for
both the regression and the classification settings. These Bregman distances can essentially be seen as a
special case of the following kernel generating distance:

2N∑
u=1

Cu
(∑N

p=1 ‖Wp‖2

N

)u
, (8.3.1)

where the constants Cu are non-negative for u ∈ {1, . . . , 2N}. The choices for constants Cu vary according to
the setting. The subproblems that arise in the update steps of BPG and CoCaIn BPG are similar. Thus, we
focus on the closed form update steps for BPG with the following result.

Proposition 8.3.0.1. Let f1 be any of the before-mentioned objectives stated in this chapter and h be its
corresponding kernel generating distance that takes the form (8.3.1) with appropriately chosen coefficients,
such that (f1, h) satisfies L-smad property. In BPG, denoting P ki := λ∇Wif1

(
W k
)
−∇Wih(W k) , the update

step in each iteration are given by

W k+1
i = −r

√
N P ki
‖P‖F

, for all i ∈ {1, . . . , N},

with ‖P‖2F =
∑N

i=1

∥∥P ki ∥∥2

F
. Then, quantity r ≥ 0 satisfies

2N∑
u=1

2Cu
(u
N

)
r2u−1 −

√∑N
i=1

∥∥P ki ∥∥2

F√
N

= 0. (8.3.2)

The proof is provided in Section E.1 in the appendix. In order to obtain an even more general result, one can
replace 2N with any positive integer greater than one.

106 8.4. Closed form inertia

8.3.1 Regularization

Recall that we are interested in the following problem:

inf
{
f(x) := f0(x) + f1(x) : x ∈ RN

}
. (8.3.3)

We now consider the closed form update of BPG-based methods when regularization term f0 is used in
conjunction with f1, where f1 is any of the before-mentioned objectives in Sections 4.7, 4.8.

L2-regularization. Recall that the squared L2-regularizer is given by

f0(W) :=
λ0

2

N∑
i=1

‖Wi‖2F , with λ0 > 0 . (8.3.4)

To obtain the closed form solutions replace 2C1
N with

(
2C1
N + λλ0

)
in Proposition 8.3.0.1.

L1-regularization. Recall that the L1-regularizer is given by

f0(W) :=
N∑
i=1

µi ‖Wi‖1 , (8.3.5)

with µi > 0 for all i ∈ {1, . . . , N} . Using the element wise soft-thresholding operator Sθ(x) = max{|x| −
θ, 0}sgn(x), the closed form updates are obtained by replacing −P ki with Sλµi(−P ki) in Proposition 8.3.0.1.

8.4 Closed form inertia

In CoCaIn BPG, the linear extrapolation parameter γk is found such that the following condition holds true:

Dh(xk, yk) ≤ κDh(xk−1, xk) .

In this section, we focus on obtaining closed form solutions for γk based on the Bregman distances considered
for regression and classification problems arising in deep neural networks.

8.4.1 Closed form inertia - Regression setting

Consider the setting from Section 4.7. As a consequence of Lemma A.3.0.3 we obtain the following result.

Lemma 8.4.1.1. Let h be as in (4.7.2). Denote for any k ≥ 1, xk = (W k
1 , . . . ,W

k
N), ∆k := xk − xk−1 and

the following

Ek :=

2N∑
u=1

(
Γu

(2u− 1)

uu−1

)
‖∆k‖2

(
2
∥∥∥xk∥∥∥2

+ 2 ‖∆k‖2
)(u−1)

.

The following upper bound holds true
Dh(xk, yk) ≤ γ2

kEk .

Furthermore, as a simple consequence of Lemma 8.4.1.1 we obtain the following closed form inertia, which
can be used in CoCaIn BPG.

Chapter 8. Deep neural networks 107

Proposition 8.4.1.1. Let h be as in (4.7.2). Denote xk = (W k
1 , . . . ,W

k
N). For κ > 0, yk := xk+γk(xk−xk−1)

and xk 6= xk−1, the parameter γk given by

0 < γk ≤
√
κDh(xk−1, xk)

χ(N)
≤ 1 ,

satisfies the condition
Dh(xk, yk) ≤ κDh(xk−1, xk) ,

where χ(N) = Ek.

8.4.2 Closed form inertia - DLNN - Classification setting

We continue the setting of Section 4.8.1. In the same spirit as Section 8.4.1, we consider the issue of obtaining
a closed form inertial solution for efficient application of CoCaIn BPG. As a consequence of Lemma A.3.0.3
we obtain the following result.

Lemma 8.4.2.1. Let h be as in (4.8.10). Denote for any k ≥ 1, xk = (W k
1 , . . . ,W

k
N), ∆k := xk − xk−1 and

the following

Fk :=Γ̂N

(
(2N − 1)

NN−1

)
‖∆k‖2

(
2
∥∥∥xk∥∥∥2

+ 2 ‖∆k‖2
)(N−1)

+
ρ

2
‖∆k‖2 .

The following upper bound holds true
Dh(xk, yk) ≤ γ2

kFk .

Furthermore, as a simple consequence of Lemma 8.4.2.1 we obtain the following closed form inertia, which
can be used in CoCaIn BPG.

Proposition 8.4.2.1. Let h be as in (4.8.10). Denote xk = (W k
1 , . . . ,W

k
N). For κ > 0, yk := xk + γk(x

k −
xk−1) and xk 6= xk−1, the parameter γk given by

0 < γk ≤
√
κDh(xk−1, xk)

χ(N)
≤ 1 ,

satisfies the condition
Dh(xk, yk) ≤ κDh(xk−1, xk) ,

where χ(N) = Fk.

8.4.3 Closed form inertia - DNN - Classification setting

We consider the setting from Section 4.8.2. As a consequence of Lemma A.3.0.3 we obtain the following
result.

Lemma 8.4.3.1. Let h be as in (4.8.12). Denote for any k ≥ 1, xk = (W k
1 , . . . ,W

k
N), ∆k := xk − xk−1 and

the following

Gk :=

N∑
u=1

(
Γ̃u

(2u− 1)

uu−1

)
‖∆k‖2

(
2
∥∥∥xk∥∥∥2

+ 2 ‖∆k‖2
)(u−1)

.

108 8.5. Experiments

The following upper bound holds true
Dh(xk, yk) ≤ γ2

kGk .

Furthermore, as a simple consequence of Lemma 8.4.3.1 we obtain the following closed form inertia, which
can be used in CoCaIn BPG.

Proposition 8.4.3.1. Let h be as in (4.8.12). Denote xk = (W k
1 , . . . ,W

k
N). For κ > 0, yk := xk + γk(x

k −
xk−1) and xk 6= xk−1, the parameter γk given by

0 < γk ≤
√
κDh(xk−1, xk)

χ(N)
≤ 1 ,

satisfies the condition
Dh(xk, yk) ≤ κDh(xk−1, xk) ,

where χ(N) = Gk.

8.5 Experiments

In this section, we consider the numerical performance of BPG methods on the objectives arising in deep
non-linear neural networks. Basically, we consider the optimization of the following problem:

min
Wi∈Wi ,∀i∈{1,...,N}

f0(W) + f1(W) , (8.5.1)

where f0 is either the squared L2 regularization or L1 regularization or no regularization (f0 := 0), and the
choice of f1 depends on the setting we use. We consider the following settings:

Regression setting with deep non-linear neural nets - Experiment A. Here, considering the setting
as in Section 4.7, where we use the following choice of f1:

f1(W) :=
1

2
‖σN (WN . . . σ1(W1X))− Y ‖2F . (8.5.2)

We use sigmoid function as activation functions, that is σi(x) = 1
1+e−x for i = 1, . . . , N . We redo the

calculation as in Lemma 4.7.2.3 to obtain that the following Legendre function and the objective in (8.5.2)
satisfy the L-smad property:

h(W) = c1

(
‖W‖2F
N

)
+ c2

(
‖W‖2F
N

)N+1

,

where c1 = Nc̃1
2 , c2 = c̃2(N + 1)N

(
N
N+1

)N+1
with c̃1 = N

2 Θ̃ + 1
4

(
‖Y ‖F +

√
Θ̃
)

2Θ̃ + N−1
4 (1 + Θ̃) and

c̃2 = N
2 Θ̃ + 1

4

(
‖Y ‖F +

√
Θ̃
)

Θ̃ + N−1
4 , Θ̃ = max

(
(maxi=1,...,N did0) , ‖X‖2F

)
. For the regression setting, we

use the Boston house pricing dataset [90] available at https://raw.githubusercontent.com/jbrownlee/
Datasets/master/housing.data containing 506 samples with 13 features for each sample. The description
regarding the Boston house pricing dataset can be found at https://www.cs.toronto.edu/~delve/data/
boston/bostonDetail.html.

https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data
https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

Chapter 8. Deep neural networks 109

(a) Regression, L2-regularization (b) Regression, L2-regularization

Figure 8.1: Comparison on BPG, BPG-WB, FBS-WB on deep neural network with L2-regularization in
regression setting. Here, BPG-WB outperforms other methods in terms of function values versus iterations or
time.

(a) Regression, L1-regularization (b) Regression, L1-regularization

Figure 8.2: Comparison on BPG, BPG-WB, FBS-WB on deep neural network with L1-regularization in
regression setting. Here, BPG-WB outperforms other methods in terms of function values versus iterations or
time.

Classification setting with deep non-linear neural nets - Experiment B. Here, based on Section 4.8
we use the following choice of f1:

f1(W) :=
M∑
j=1

(
− log

(
ezj,jk∑K
k=1 e

zj,k

))
, (8.5.3)

where zj := σN (WN . . . σ1(W1xj)) for j ∈ {1, . . . ,M}. We use sigmoid function as activation functions, that
is σi(x) = 1

1+e−x for i = 1, . . . , 4. We redo the calculation as in Lemma 4.8.1.1 to obtain that the following
Legendre function and the objective in (8.5.2) satisfy the L-smad property:

h(W) = ĉ1

(
‖W‖2F
N

)
+ ĉ2

(
‖W‖2F
N

)N+1

,

110 8.5. Experiments

(a) Classification, L2-regularization (b) Classification, L2-regularization

Figure 8.3: Comparison on BPG, BPG-WB, FBS-WB on deep neural network with L2-regularization in
classification setting. Here, BPG-WB outperforms other methods in terms of function values versus time and
is competitive to FBS-WB in terms of function values versus iterations.

(a) Classification, L1-regularization (b) Classification, L1-regularization

Figure 8.4: Comparison on BPG, BPG-WB, FBS-WB on deep neural network with L1-regularization in
classification setting. Here, BPG-WB outperforms other methods in terms of function values versus iterations
or time.

where ĉ1 = 2
√
KN2θ̃ and ĉ2 = 2

√
Kθ̃ N

N+1

(N+1) . For the classification setting, we use the Iris dataset from
https://archive.ics.uci.edu/ml/datasets/iris containing 150 samples with 4 features for each sample.
In the Iris dataset, there are three class labels and for each label there are 50 samples.

In both the settings, we fix N = 4. We set µi = 0.1 for all i = 1, . . . , N for the L1 regularization setting
and λ0 = 0.1 for squared L2 regularization. For the purpose of empirical comparisons, we use Bregman
Proximal Gradient (BPG) algorithm, BPG with backtracking (BPG-WB), Forward–Backward Splitting
with backtracking (FBS-WB) algorithms. For the L2-regularization setting, the results of regression and
classification problems setting are given in Figures 8.1, 8.3. In Figures 8.2, 8.4, we illustrate the regression
and classification setting under L1-regularization. We used the same initialization for all the algorithms.

In the regression setting, we set the d4 = 1, d3 = 5, d2 = 5 and d1 = 13. In the classification setting, we set
the d4 = 3, d3 = 3, d2 = 3 and d1 = 4. The choices of parameters for the backtracking step is the same for
FBS-WB and BPG-WB. In all the plots, we observe that BPG-WB is competitive to FBS-WB. In terms of
function value vs time, BPG-WB is faster compared to FBS-WB. We note that the Bregman distances used

https://archive.ics.uci.edu/ml/datasets/iris

Chapter 8. Deep neural networks 111

(a) Regression, L2-regularization (b) Classification, L2-regularization

Figure 8.5: We consider the plots of f1 function values versus iterations in the context of regression and
classification setting with L2-regularization. We compared BPG, BPG-WB and FBS-WB. Here, either
BPG-WB is competitive to or outperforms other algorithms.

(a) Regression, L1-regularization (b) Classification, L1-regularization

Figure 8.6: We consider the plots of f1 function values versus iterations in the context of regression and
classification setting with L1-regularization. We compared BPG, BPG-WB and FBS-WB. Here, either
BPG-WB is competitive or outperforms other algorithms.

in BPG methods involve higher order terms which make the BPG methods unstable to initialization with
large values. We leave the comprehensive exploration of the algorithms for future work. Also, the double
backtracking step involved in CoCaIn BPG has resulted in severe numerical issues. This results in exploding
function values or infinite loop while backtracking and this needs to be further explored. In Figures 8.5
and 8.6, we plot the f1 function value versus iterations and see that BPG-WB is either outperforms other
methods or is competitive to other methods.

8.6 Chapter conclusion

In this chapter, a constant step-size based algorithm with global convergence guarantees was proposed to train
deep non-linear neural networks. For this purpose, we use suitable Bregman distances proposed in Section 4.7
to make the Bregman proximal minimization methods and their guarantees applicable. All the technical issues
such as closed form updates and closed form inertia of CoCaIn BPG are resolved. Our empirical comparisons

112 8.6. Chapter conclusion

illustrate that BPG-WB is competitive to FBS-WB. However, in our preliminary observations CoCaIn BPG
appears to face severe numerical issues, which needs to be resolved in future. Another open problem that still
persists is the applicability of stochastic BPG in [55] to optimize the objectives mentioned in this chapter.
Our work in this chapter can pave for a new a class of algorithms that have global convergence guarantees,
suitable for various other deep neural network classes, such as residual deep neural networks.

Chapter 9

Model BPG

9.1 Abstract . 113
9.2 Introduction . 114

9.2.1 Contributions . 115
9.2.2 Related work . 116

9.3 Problem setting and Model BPG algorithm . 117
9.4 Gradient-like Descent sequence . 121
9.5 Global convergence analysis of Model BPG algorithm . 123

9.5.1 New Lyapunov function . 123
9.5.2 Sufficient descent property . 124
9.5.3 Relative error condition . 125
9.5.4 Subsequential convergence . 128
9.5.5 Global convergence to a stationary point of the Lyapunov function 131
9.5.6 Global convergence to a stationary point of the objective function 132
9.5.7 Convergence rates . 133

9.6 Examples . 134
9.6.1 Additive composite problems . 135
9.6.2 Composite problems . 137

9.7 Experiments . 139
9.7.1 Standard phase retrieval . 140
9.7.2 Robust phase retrieval . 142
9.7.3 Poisson linear inverse problems . 143

9.8 Chapter conclusion . 147

9.1 Abstract

The L-smad property cannot handle non-smooth functions, for example, simple non-smooth functions like∣∣x4 − 1
∣∣ and also many practical composite problems are out of scope. We fix this issue by proposing the MAP

property, which generalizes the L-smad property and is also valid for a large class of non-convex non-smooth
composite problems. Based on the proposed MAP property, we propose a globally convergent algorithm
called Model BPG, that unifies several existing algorithms. The convergence analysis is based on a new
Lyapunov function. We also numerically illustrate the superior performance of Model BPG on standard phase
retrieval problems, robust phase retrieval problems, and Poisson linear inverse problems, when compared to a
state of the art optimization method that is valid for generic non-convex non-smooth optimization problems.

113

114 9.2. Introduction

9.2 Introduction

In the earlier chapters, we focussed on the additive composite problems. However, in this chapter, we focus on
generic composite problems. In particular, we are interested in solving the following non-convex optimization
problem:

(PM) inf
x∈RN

f(x),

where f : RN → R is a proper lower semicontinuous function that is lower bounded. Special instances of
the above mentioned problem include two broad classes of problems, namely, additive composite problems
(Section 9.6.1) and composite problems (Section 9.6.2).

In this chapter, we design an abstract framework for provably globally convergent algorithms based on suitable
approximations of the objective, where the convergence analysis is moreover driven by a requirement on the
approximation quality. A classical special case is that of a continuously differentiable f : RN → R, whose
gradient mapping is Lipschitz continuous over RN . For such a function, the following Descent Lemma (cf.
Lemma 1.2.3 of [124])

− L

2
‖x− x̄‖2 ≤ f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉 ≤ L̄

2
‖x− x̄‖2 , for all x, x̄ ∈ RN , (9.2.1)

which describes the approximation quality of the objective f by its linearization f(x̄) + 〈∇f(x̄), x− x̄〉 in
terms of a quadratic error estimate with certain L, L̄ > 0. Such inequalities play a crucial role in designing
algorithms that are used to minimize f . Gradient Descent is one such algorithm, which we focus here. We
illustrate Gradient Descent in terms of sequential minimization of suitable approximations to the objective,
based on the first order Taylor expansion – the linearization of f around the current iterate xk ∈ RN . Consider
the following model function at the iterate xk ∈ RN :

f(x;xk) := f(xk) + 〈∇f(xk), x− xk〉 , (9.2.2)

where 〈 · , · 〉 denotes the standard inner product in the Euclidean vector space RN of dimension N and
f(· ;xk) is the linearization of f around xk. Set τ > 0. Now, the Gradient Descent update can be written
equivalently as follows:

xk+1 = argminx∈RN

{
f(x;xk) +

1

2τ
‖x− xk‖2

}
⇔ xk+1 = xk − τ∇f(xk) . (9.2.3)

Its convergence analysis is essentially based on the Descent Lemma (9.2.1), which we reinterpret as a bound
on the linearization error (model approximation error) of f . However, obviously (9.2.1) imposes a quadratic
error bound, which cannot be satisfied in general.

We discussed earlier in Chapters 4, 5 that the L-smad property fixes this issue. We briefly recall the L-smad
property. A continuously differentiable function f : RN → R is L-smad with respect to a Legendre function
h : RN → R over RN with L̄, L > 0, if the following condition holds true:

− LDh(x, x̄) ≤ f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉 ≤ L̄Dh(x, x̄) , for any x, x̄ ∈ RN . (9.2.4)

We interpret these inequalities as a generalized distance measure for the linearization error of f . Similar to
the Gradient Descent setting, minimization of f(x̄) + 〈∇f(x̄), x− x̄〉+ 1

τDh(x, x̄) essentially results in the
Bregman Proximal Gradient (BPG) algorithm’s update step [28].

Chapter 9. Model BPG 115

However, the L-smad property relies on the continuous differentiability of the function f , thus non-smooth
functions as simple as

∣∣x4 − 1
∣∣ or ∣∣1− (xy)2

∣∣ or log(1 +
∣∣1− (xy)2

∣∣) cannot be captured under the L-smad
property. Numerous difficult non-smooth optimization problems cannot be captured either. This motivates a
more general notion than the L-smad property.

This lead us to the development of the MAP property (Definition 9.3.0.3), where MAP abbreviates Model
Approximation Property. Consider a function f : RN → R that is proper lower semicontinuous, and a
Legendre function h : RN → R with domh = RN . For certain x̄ ∈ RN , we consider generic model function
f(x; x̄) that is proper lsc and approximates the function around the model center x̄, while preserving the
local first order information (Definition 9.3.0.2). The MAP property is satisfied with the constants L̄ > 0 and
L ∈ R if for any x̄ ∈ RN the following holds:

− LDh(x, x̄) ≤ f(x)− f(x; x̄) ≤ L̄Dh(x, x̄) , ∀x ∈ RN . (9.2.5)

Note that we do not require the continuous differentiability of the function f . Our MAP property is inspired
from [55], however, their work considers only the lower bound, and also they rely on decomposition of function
into two components.

We illustrate the MAP property with a simple example. Consider a composite problem f(x) = g(F (x)) :=∣∣x4 − 1
∣∣, where F (x) := x4 − 1 is a continuously differentiable function over R, and g(x) := |x| is a Lipschitz

continuous function over R. Note that neither the Lipschitz continuity of the gradient nor the L-smad
property is valid for this problem. However, the MAP property is valid here. At certain x̄ ∈ R, we consider
the model function that is given by f(x; x̄) := g(F (x̄) +∇F (x̄)(x− x̄)), where ∇F (x̄) is the Jacobian of F
at x̄. Then, with L̄ = L = 4, the MAP property is satisfied:

− LDh(x, x̄) ≤ g(F (x))− g(F (x̄) +∇F (x̄)(x− x̄)) ≤ L̄Dh(x, x̄) , for all x, x̄ ∈ R , (9.2.6)

where h(x) = 1
4x

4 and the generated Bregman distance is Dh(x, x̄) = 1
4x

4 − 1
4 x̄

4 − x̄3(x− x̄). We provide
further details in Example 9.3.0.1 and in Example 9.3.0.2.

We considered the above given composite problem for illustration purposes, and we emphasize that our
framework is applicable for large classes of non-convex problems (see Section 9.6). Similar to the BPG setting,
minimization of f(x; x̄) + 1

τDh(x, x̄) essentially results in Model BPG algorithm’s update step. The precise
definition of the model function is provided in Definition 9.3.0.2, the MAP property in full generality is
provided in Definition 9.3.0.3, and the Model BPG algorithm is provided in Algorithm 7.

We now discuss our main contributions and the related work.

9.2.1 Contributions

Our main contributions are the following.

• We introduce the MAP property, which generalizes the Lipschitz continuity assumption of the gradient
mapping and the L-smad property [10, 28]. Earlier proposed notions were restricted to additive composite
problems. The MAP property is essentially an extended Descent Lemma that is valid for generic composite
problems (see Section 9.6), based on Bregman distances. Our theory is applicable to generic non-convex
non-smooth objectives, and is not restricted to composite objectives. MAP like property was also partially
considered in [55], however with focus on stochastic optimization. The MAP property relies on the notion
of model function, that serves as a function approximation, and preserves the local first order information

116 9.2. Introduction

of the function. Our work extends the foundations laid by [55, 60] that consider generic model functions
(potentially non-convex), and [139] which considers convex model functions.

• Based on the MAP property, Model based Bregman Proximal Gradient (Model BPG) algorithm (Al-
gorithm 7) is proposed. Several existing algorithms such as Proximal Gradient Method [52], Bregman
Proximal Gradient method [28] (or Mirror Descent [14]), Prox-Linear algorithm [62], and many other
algorithms can be seen as a special case. Moreover, novel algorithms arise depending on the definition of
the model function. We emphasize that Model BPG is practical, simple to implement and also does not
require special knowledge about the problem such as the so-called information zone [27]. Close variants of
Model BPG already exist in the literature, such as line search based Bregman Proximal Gradient method
[139], and Mirror Descent variant [55], however, the convergence of the full sequence of iterates was not
known.

• The standard global convergence analysis, in the sense that the full sequence of iterates converges to a single
point, relies on descent properties of function values evaluated at the iterates of an algorithm. However,
using function values can be restrictive, and alternatives are sought [142]. To fix this issue, we introduce a
new Lyapunov function, through which we prove the global convergence of the full sequence of iterates
generated by Model BPG. We eventually show that the sequence generated by Model BPG converges to
a critical point of the objective function, which is potentially non-convex and non-smooth. Notably, the
usage of a Lyapunov function is popular for inertial algorithms [137] (also see Chapter 5) and through our
work we aim to popularize Lyapunov functions also for noninertial algorithms.

• The global convergence analysis of Bregman Proximal Gradient (BPG) [28] relies on the full domain of the
Bregman distance. However, there are many Bregman distances for which the domain is restricted. We
show in this chapter, that under certain assumptions that are typically satisfied in practice, the global
convergence of the full sequence of iterates generated by Model BPG using generic Bregman distances can
indeed be obtained (Theorem 9.5.5.2, 9.5.6.3). In general, this requires the limit points of the sequence
to lie in the interior of domain of the employed Legendre function. While this is certainly a restriction,
nevertheless, the considered setting is highly nontrivial and novel in the general context of non-convex
non-smooth optimization. Moreover, it allows us to avoid the common restriction of requiring (global)
strong convexity of the Legendre function, which is a severe drawback that rules out many interesting
applications in related approaches (e.g., see Section 9.7.3).

• We provide a comprehensive numerical section showing the superior performance of Model BPG compared
to a state of the art optimization algorithm, namely, inexact Bregman proximal minimization line search
(IBPM-LS) [138], on standard phase retrieval problems, robust phase retrieval problems and Poisson linear
inverse problems.

9.2.2 Related work

Our work is fundamentally based on three pillars, namely, Bregman distances, model functions, and Kurdyka–
Łojasiewicz (KL) inequality. Bregman distances are certain generalized proximity measures, which generalize
Euclidean distances (see Chapter 4). Model functions serve as function approximations which preserve local
first order information about the function. The KL inequality is a certain regularity property of the function
crucial for the global convergence analysis of Model BPG, and is typically satisfied by objectives that arise in
practice (see Chapter 3). Here, we briefly review the related work on model functions. The rest of the related

Chapter 9. Model BPG 117

work regarding KL property and the Bregman proximal minimization is already considered in the earlier
chapters.

The MAP property relies on the concept of the model function, which is essentially a function approximation
that preserves the local first order information. In smooth optimization, it is common to use the Taylor
approximation of a certain order as model function. In non-smooth optimization, we can only speak of
“Taylor-like” models [60, 132, 133, 139], which is a (nonunique) approximation that satisfies certain error
bound or a growth function [60, 139]. The class of model functions used in [132, 133] only satisfy a lower
bound, and bundle methods are developed, which is a different class of algorithms that we do not discuss here.
The growth functions in [60, 139] that measure the approximation quality of the model function, which is also
used in this chapter, can be interpreted as a generalized first-order oracle. It has been shown in [139] that the
concept of model functions unifies several algorithms for smooth and non-smooth optimization, for example,
Gradient Descent, Proximal Gradient Descent, Levenberg Marquardt’s method, ProxDescent, certain variable
metric versions of these algorithms and some related majorization–minimization based algorithms. More
recently, model functions were considered in the context of the Conditional Gradient Method in [140]. A
particularly interesting class of model functions is the one for which the approximation quality measure is
formed by Bregman distances [10, 28, 139], which is our main focus in this chapter.

9.3 Problem setting and Model BPG algorithm

We solve possibly non-smooth and non-convex optimization problems of the form

(PM) inf
x∈RN

f(x) , (9.3.1)

that satisfy the following assumption, which we impose henceforth.

Assumption F. The objective function f : RN → R is proper, lower semi-continuous (possibly non-convex
non-smooth) and a coercive function, i.e., as ‖x‖ → ∞ we have f(x)→∞.

Due to [150, Theorem 1.9], the function f satisfying Assumption F is bounded from below, and Argminx∈RN f(x)

is nonempty and compact. We denote the following:

v(PM) := inf
x∈RN

f(x) > −∞ .

We denote the set of critical points with respect to the limiting subdifferential as crit f . We require the
following technical definitions.

Definition 9.3.0.1 (Growth function [60, 139]). A differentiable univariate function ς : R+ → R+ is called
growth function if it satisfies ς(0) = ς ′+(0) = 0, where ς ′+ denotes the one sided (right) derivative of ς. If,
in addition, ς ′+(t) > 0 for t > 0 and equalities limt↘0 ς

′
+(t) = limt↘0 ς(t)/ς

′
+(t) = 0 hold, we say that ς is a

proper growth function.

Example of a proper growth function is ς(t) = η
r t
r for η, r > 0. Lipschitz continuity and Hölder continuity

can be interpreted with growth functions or, more generally, with uniform continuity [139]. We use the notion
of a growth function to quantify the difference between a model function (defined below) and the objective
function.

118 9.3. Problem setting and Model BPG algorithm

Definition 9.3.0.2 (Model function). Let f be a proper lower semi-continuous (lsc) function. A function
f(· , x̄) : RN → R with dom f(· , x̄) = dom f is called model function for f around the model center x̄ ∈ dom f ,
if there exists a growth function ςx̄ such that the following is satisfied:

|f(x)− f(x; x̄)| ≤ ςx̄(‖x− x̄‖) , ∀x ∈ dom f. (9.3.2)

Model function is essentially a first-order approximation to a function f (see Lemma F.2.0.1), which explains
the naming as "Taylor-like model" by [60]. The qualitative approximation property is represented by the
growth function. We refer to (9.3.2) as a bound on the model error, and the symbol ςx̄ denotes the dependency
of the growth function on the model center x̄.

Few remarks are in order, which we provide below:

• Informally, the model function approximates the function well near the model center. Convex model
functions are explored in [139, 140], however in our setting, the model functions can be non-convex.

• Nonconvex model functions were considered in [60], however only subsequential convergence was shown.
Their work is focussed on the termination criterion of the algorithms, however, they do not present an
implementable algorithm.

If the growth function constants are independent of x̄, this results in a uniform approximation. However,
typically the growth function depends on the model center, as we illustrate below.

Example 9.3.0.1 (Running example). Let f(x) = |g(x)| with g(x) = ‖x‖4 − 1. With x̄ ∈ RN as the model
center, we consider the following model function:

f(x; x̄) := |g(x̄) + 〈∇g(x̄), x− x̄〉| .

As per the proof provided in Section F.1 in the appendix, the model error is given by

|f(x)− f(x; x̄)| ≤ 24‖x̄‖2‖x− x̄‖2 + 8‖x− x̄‖4 ,

where the growth function is ςx̄(t) = 24‖x̄‖2t2 + 8t4.

The above example illustrates that a constant in the growth function ςx̄(t) is dependent on the model center.
It is often of interest to obtain a uniform approximation for the model error |f(x)− f(x; x̄)|, where the
growth function is not dependent on the model center. In general, obtaining such a uniform approximation is
not trivial, and may even be impossible. Moreover, typically finding an appropriate growth function is not
trivial.

For this purpose, it is preferable to have a global bound on the model error, for which such a bound can be
easily verified, the dependency on the model center is more structured, and the constants arising do not have
any dependency on the model center. In the context of additive composite problems, previous works such
as [10, 28, 109] relied on Bregman distances to upper bound the model error and verified the model error
property with a simple convexity test based on second order information (c.f. [10, Proposition 1]). Based
on this idea, we propose the following MAP property, which is valid for a huge class of generic non-convex
problems and also generalizes the previous works. We emphasize that the MAP property is valid for a large
class of non-smooth functions. MAP like property that is valid for composite problems was also explored in
[55]. We provide the precise connections to previous works and examples in Section 9.6.

Chapter 9. Model BPG 119

Definition 9.3.0.3 (MAP: Model approximation property). Let h be a Legendre function that is continuously
differentiable over int domh. A proper lsc function f with dom f ⊂ cl domh and dom f ∩ int domh 6= ∅,
and model function f(· , x̄) for f around x̄ ∈ dom f ∩ int domh satisfies the Model Approximation Property
(MAP) at x̄, with the constants L̄ > 0,L ∈ R, if for any x̄ ∈ dom f ∩ int domh the following holds:

− LDh(x, x̄) ≤ f(x)− f(x; x̄) ≤ L̄Dh(x, x̄) , ∀x ∈ dom f ∩ domh . (9.3.3)

Remark 9.3.0.1. We provide the following remarks.

• The design of a model function is independent of an algorithm. However, algorithms can be governed by
the model function, for example, Model BPG in Algorithm 7. The property of a model function is rather
an analogue to differentiability or a (uniform) first-order approximation. Note that for x̄ ∈ int domh,
the Bregman distance Dh(x, x̄) is bounded by o(‖x− x̄‖), which is a growth function. Therefore, the
MAP property requires additional algorithm specific properties of the model function. In particular, we
require the constants L̄ and L to be independent of x̄, which provides a global consistency between the
model function approximations.

• The condition dom f ⊂ cl domh is a minor regularity condition. For example, if dom f = [0,∞) and
domh = (0,∞) (e.g., for h in Burg’s entropy), such a function h can still be used in MAP property.
However, the L-smad property [28] would require x, x̄ in (9.3.3) to lie in int domh (see also Section 9.6.1).

• Note that the choice of L is unrestricted in MAP property. For non-convex f , L is typically a positive
real number. For convex f typically the condition L ≥ 0 holds true. However, note that the values of
L, L̄ are governed by the model function. In the context of convex additive composite problems, L < 0

can hold true for relatively strongly convex functions [109].

• A closely related work in [55] considers only the lower bound of the MAP property and their algorithm
terminates by choosing an iterate based on certain probability distribution. In stark contrast, Model
BPG relies on the upper bound of the MAP property and there is no need to invoke any probabilistic
argument to choose the final iterate. Also, [55] considers weakly convex model functions whereas we do
not have such a restriction.

• For the global convergence analysis of Model BPG sequences, in addition to the condition τk ∈ [τ , τ̄]

on step-size, the condition that τk → τ , as k → ∞ for certain τ > 0 is required (see Theo-
rem 9.5.5.2 , 9.5.6.3).

Example 9.3.0.2 (Running example – contd). We continue Example 9.3.0.1 to illustrate the MAP property.
Let h(x) = 1

4‖x‖4, we clearly have

g(x)− g(x̄)− 〈∇g(x̄), x− x̄〉 ≤ 4Dh(x, x̄) , ∀x ∈ RN ,

which in turn results in the following upper bound for the model error

|f(x)− f(x; x̄)| ≤ |g(x)− g(x̄)− 〈∇g(x̄), x− x̄〉| ≤ 4Dh(x, x̄) .

The upper bound is obtained in terms of a Bregman distance. Clearly, the constants arising do not have any
dependency on the model center.

We now present Model BPG that we analyze for the setting of Assumption G.

120 9.3. Problem setting and Model BPG algorithm

Algorithm 7: Model BPG: Model based Bregman Proximal Gradient

• Initialization: Select x0 = x1 ∈ dom f ∩ int domh. Choose τ , τ̄ such that 0 < τ < τ̄ < (1/L̄).

• For each k ≥ 1: Choose τk ∈ [τ , τ̄] and compute

xk+1 ∈ Argmin
x∈RN

{
f(x;xk) +

1

τk
Dh(x, xk)

}
. (9.3.4)

Assumption G. Let h be a Legendre function that is C2 over int domh. Moreover, the conditions dom f ∩
int domh 6= ∅ and crit f ∩ int domh 6= ∅ hold true.

• The exist L̄ > 0,L ∈ R such that for any x̄ ∈ dom f ∩ int domh, the function f with dom f ⊂ cl domh,
and model function f(· , x̄) for f around the model center x̄ satisfies the MAP property at x̄ with the
constants L̄, L.

• For any x̄ ∈ dom f ∩ int domh, the following qualification condition holds true:

∂∞x f(x; x̄) ∩ (−Ndomh(x)) = {0} , ∀x ∈ dom f ∩ domh . (9.3.5)

• For all x, y ∈ dom f , the condition

(0, v) ∈ ∂∞f(x; y) implies v = 0 , and (v, 0) ∈ ∂∞f(x; y) implies v = 0

hold true. Moreover, f(x; y) is regular [150, Definition 7.25] at any (x, y) ∈ dom f × dom f .

• The function f(x; x̄) is a proper, lsc function and is continuous over (x, x̄) ∈ dom f × dom f .

By ∂xf(x; x̄) we mean the limiting subdifferential of the model function x 7→ f(x; x̄) with x̄ fixed and ∂f(x; y)

denotes the limiting subdifferential w.r.t (x, y); dito for the horizon subdifferential.

Discussion on Assumption G. The qualification condition in (9.3.5) is required for the applicability of
the subdifferential summation rule (see [150, Corollary 10.9]). Assumption G(iii) and [150, Corollary 10.11]
ensures that for all x, y ∈ dom f , the following holds true:

∂f(x; y) = ∂xf(x; y)× ∂yf(x; y) , ∂∞f(x; y) = ∂∞x f(x; y)× ∂∞y f(x; y) . (Assumption G(iii)’)

Our analysis relies on (Assumption G(iii)’). However, note that Assumption G(iii) is a sufficient condition for
(Assumption G(iii)’) to hold. Certain classes of functions mentioned in Section 9.6 satisfy (Assumption G(iii)’)
directly, instead of Assumption G(iii). Assumption G(iv) is typically satisfied in practice and plays a key role
in Lemma 9.5.6.2. Based on Assumption G(iii), for any fixed x̄ ∈ dom f , the model function f(x; x̄) is regular
at any x ∈ dom f . Using this fact, we deduce that the model function preserves the first order information
of the function, in the sense that for x ∈ dom f the condition ∂yf(y;x)|y=x = ∂̂f(x) holds true, which we
prove in Lemma F.2.0.1 in the appendix. Many popular algorithms such as Gradient Descent, Proximal
gradient method, Bregman Proximal Gradient method, Prox-Linear method are special cases of Model BPG
depending on the choice of the model function and the choice of Bregman distance, thus making it a unified

Chapter 9. Model BPG 121

algorithm (also c.f. [139]). Examples of model functions are provided in Section 9.6, for which we verify all
the assumptions. Other related model functions can also be found in [139, Section 5].

Let τ > 0, x̄ ∈ dom f ∩ int domh, the update mapping from (9.3.4) of Model BPG is defined by

Tτ (x̄) := Argmin
x∈RN

f(x; x̄) +
1

τ
Dh(x, x̄) . (9.3.6)

Denote εk :=
(

1
τk
− L̄

)
> 0 and clearly ε ≤ εk ≤ ε̄, where ε̄ := 1

τ − L̄ and ε := 1
τ̄ − L̄.

Well-posedness of the update step (9.3.4) is given by the following result.

Lemma 9.3.0.1. Let Assumption F, G hold true and let x̄ ∈ dom f ∩ int domh. Then, for all 0 < τ < 1
L̄

the set Tτ (x̄) is a nonempty compact subset of dom f ∩ int domh.

Proof. Firstly, note that as a consequence of MAP property due to Assumption G and nonnegativity of
Bregman distances, the following condition is satisfied

f(x) ≤ f(x; x̄) +
1

τ
Dh(x, x̄) , ∀x ∈ dom f ∩ domh . (9.3.7)

If the set dom f ∩ domh is bounded, the objective f(· ; x̄) + 1
τDh(· , x̄) is coercive. Otherwise, the coercivity

of f implies that the objective f(· ; x̄) + 1
τDh(· , x̄) is coercive, due to (9.3.7). Then, the result follows from a

simple application of [98, Lemma 3.6] and [150, Theorem 1.9].

The conclusion of the lemma remains true under other sufficient conditions. For instance, if the model has an
affine minorant and h is supercoercive (for example, see [28, Section 3.1]). We now show that Model BPG
results in monotonically nonincreasing function values.

Proposition 9.3.0.1 (Sufficient descent property in function values). Let Assumptions F, G hold. Also, let
(xk)k∈N be a sequence generated by Model BPG, then the following holds for k ≥ 1

f(xk+1) ≤ f(xk)− εkDh(xk+1, xk) . (9.3.8)

We provide the proof of Proposition 9.3.0.1 in Section F.3 in the appendix.

Remark 9.3.0.2. Under Assumptions F, G, the coercivity of f along with Proposition 9.3.0.1 implies that the
iterates of Model BPG lie in the compact set {x : f(x) ≤ f(x0)}, thus bounded.

9.4 Gradient-like Descent sequence

We briefly review the concept of Gradient-like Descent sequence from [136]. For ease of global convergence
analysis of Model BPG we use following results from [136]. Let F : RN × RP → R be a proper, lower
semi-continuous function that is bounded from below, then assume the following assumption from [136] holds.

Assumption H (Gradient-like Descent sequence [136]). Let (un)n∈N be a sequence of parameters in RP

and let (εn)n∈N be an `1-summable sequence of non-negative real numbers. Moreover, we assume there are
sequences (an)n∈N, (bn)n∈N, and (dn)n∈N of non-negative real numbers, a non-empty finite index set I ⊂ Z
and θi ≥ 0, i ∈ I, with ∑i∈I θi = 1 such that the following holds:

122 9.4. Gradient-like Descent sequence

(i) (Sufficient decrease condition) For each n ∈ N, it holds that

F(xn+1, un+1) + and
2
n ≤ F(xn, un) .

(ii) (Relative error condition) For each n ∈ N, the following holds: (set dj = 0 for j ≤ 0)

bn+1‖∂F(xn+1, un+1)‖− ≤ b
∑
i∈I

θidn+1−i + εn+1 .

(iii) (Continuity condition) There exists a subsequence ((xnj , unj))j∈N and (x̃, ũ) ∈ RN × RP such that

(xnj , unj)
F→ (x̃, ũ) as j →∞ .

(iv) (Distance condition) It holds that

dn → 0 =⇒ ‖xn+1 − xn‖2 → 0 and

∃n′ ∈ N : ∀n ≥ n′ : dn = 0 =⇒ ∃n′′ ∈ N : ∀n ≥ n′′ : xn+1 = xn

(v) (Parameter condition) It holds that

(bn)n∈N 6∈ `1 , sup
n∈N

1

bnan
<∞ , inf

n
an =: a > 0 .

Such an assumption is crucial in order to obtain global convergence of the sequences generated by Model
BPG. Assumption H is more general compared to the conditions that arise in standard Gradient-like Descent
sequence [28], which is basically based on the first three conditions.

We now provide the global convergence statement from [136], based on Assumption H. Firstly, denote
the following. The set of limit points of a bounded sequence ((xn, un))n∈N is given by ω(x0, u0) :=

lim supn→∞ {(xn, un)} , and the subset of F-attentive limit points is denoted by

ωF (x0, u0) :=
{

(x̄, ū) ∈ ω(x0, u0) | (xnj , unj)
F→ (x̄, ū) for j →∞

}
.

Theorem 9.4.0.1 (Global convergence [136, Theorem 10]). Suppose F is a proper lower semi-continuous
Kurdyka–Łojasiewicz function that is bounded from below. Let (xn)n∈N be a bounded sequence generated by an
abstract algorithm parametrized by a bounded sequence (un)n∈N that satisfies Assumption H. Assume that
F-attentive convergence holds along converging subsequences of ((xn, un))n∈N, i.e. ω(x0, u0) = ωF(x0, u0).
Then, the following holds:

(i) The sequence (dn)n∈N satisfies
∑∞

k=0 dk < +∞ , i.e., the trajectory of the sequence (xn)n∈N has finite
length with respect to the abstract distance measures (dn)n∈N.

(ii) Suppose dk satisfies ‖xk+1−xk‖2 ≤ c̄dk+k′ for some k′ ∈ Z and c̄ ∈ R, then
∑∞

k=0 ‖xk+1−xk‖2 < +∞ ,

and the trajectory of the sequence (xn)n∈N has a finite Euclidean length, and thus (xn)n∈N converges to
x̃ from (iii).

(iii) Moreover, if (un)n∈N is a converging sequence, then each limit point of ((xn, un))n∈N is a critical point,
which in the situation of (ii) is the unique point (x̃, ũ) from (iii).

Chapter 9. Model BPG 123

9.5 Global convergence analysis of Model BPG algorithm

The convergence analysis of most algorithms in non-convex optimization is based on a descent property.
Usually, the objective value is shown to decrease, for example, as in Proposition 9.3.0.1 and in the analysis of
additive composite problems [28, Lemma 4.1]. However, function values proved to be restrictive, primarily
because the same techniques as additive composite problems do not work anymore for general composite
problems, and alternatives like [142] are sought after.

9.5.1 New Lyapunov function

Here, we discuss one of our main contribution. We propose a Lyapunov function as our measure of progress.
The Lyapunov function F h

L̄
is given by

F hL̄ : RN × RN → R , (x, x̄) 7→ f(x; x̄) + L̄Dh(x, x̄) , (9.5.1)

and domF h
L̄

= (dom f)2∩(domh× int domh) . The set of critical points of the above given Lyapunov function
is given by

critF hL̄ :=
{

(x, x̄) ∈ RN × RN : (0, 0) ∈ ∂F hL̄(x, x̄)
}
. (9.5.2)

Usage of Lyapunov functions is a popular strategy in the analysis of inertial methods [137] (Chapter 5). Even
though our algorithm is non-inertial in nature, we show that the above defined Lyapunov function is suitable
for the global convergence analysis. Certain previous works such as [114] considered a Lyapunov function
based analysis for (non-inertial) Forward–Douglas–Rachford splitting method. Also, Lyapunov function based
analysis is popular in the context of dynamical systems [81].

The motivation for using the Lyapunov function F h
L̄
instead of the function f is the following. In each iteration

of Model BPG, we optimize the model function with a proximity measure, and the analysis with our proposed
Lyapunov function reflects this explicitly, unlike the function value. The proposed Lyapunov function is
related to the Bregman-Moreau envelope [98] of the model function f(· ; x̄) where x̄ ∈ dom f ∩ int domh.
Under certain special case of the model function (Section 9.6.1), such a Bregman-Moreau envelope is related
to the Bregman forward-backward envelope [2]. In the context where the Bregman distance is set to the
Euclidean distance, the related works which consider value function based analysis is provided [25, 142, 158].

We now look at some properties of F h
L̄
.

Proposition 9.5.1.1. The Lyapunov function defined in (9.5.1) satisfies the following properties:

(i) For all x ∈ dom f ∩ domh and y ∈ dom f ∩ int domh, we have f(x) ≤ F h
L̄

(x, y) .

(ii) For all x ∈ dom f ∩ int domh, we have F h
L̄

(x, x) = f(x) .

(iii) Moreover, we have
inf

(x,y)∈RN×RN
F hL̄(x, y) ≥ v(PM) > −∞ . (9.5.3)

Proof. (i) This follows from MAP property and the definition of F h
L̄
.

(ii) Substituting y = x in (9.5.1) gives the result.

(iii) By MAP property, for all (x, y) ∈ domF h
L̄
we have the following:

v(PM) ≤ f(x) ≤ f(x; y) + L̄Dh(x, y) .

124 9.5. Global convergence analysis of Model BPG algorithm

Furthermore, we obtain the following:

inf
x∈dom f ∩ domh

f(x) ≤ inf
(x,y)∈domFh

L̄

(
f(x; y) + L̄Dh(x, y)

)
.

The statement follows using infx∈RN f(x) = v(PM) > −∞ due to Assumption F .

Equipped with the Lyapunov function F h
L̄
, we focus now on the global convergence result of Model BPG.

Our global convergence analysis is broadly divided into the following five parts.

• Sufficient descent property. In Section 9.5.2, we show that the sequence generated by Model BPG
results in monotonically nonincreasing Lyapunov function values.

• Relative error condition. In Section 9.5.3, based on certain additional assumptions, we show that
the infimal norm of the subdifferential of the Lyapunov function can be upper bounded by an entity
that depends on the difference of successive iterates, and that entity tends towards zero asymptotically,
implying stationarity in the limit.

• Subsequential convergence. In Section 9.5.4, we explore the behavior of limit points obtained
from the sequence generated by Model BPG. We prove F h

L̄
-attentive convergence along converging

subsequences. Moreover, we prove that the set of F h
L̄
-attentive limit points is compact, connected

and F h
L̄
is constant on this set. When all limit points of the sequence generated by Model BPG lie in

int domh, we show that all the limit points are critical points of the Lyapunov function.

• Global convergence to stationarity point of the Lyapunov function. Under the condition that
the Lyapunov function satisfies Kurdyka–Łojasiewicz property, we show in Section 9.5.5 that the full
sequence generated by Model BPG converges to a point x such that (x, x) is a critical point of the
Lyapunov function. However, the relation of x to the function f is not imminent here.

• Global convergence to stationarity point of the function. In Section 9.5.6, we prove that the
update mapping is continuous and also show that fixed points of the update mapping are critical points
of f . We exploit these properties to deduce that the full sequence of iterates generated by Model BPG
converges to a critical point of f .

9.5.2 Sufficient descent property

We have already proved the sufficient descent property in terms of function values in Proposition 9.3.0.1.
Here, we prove the sufficient descent property of the Lyapunov function.

Proposition 9.5.2.1 (Sufficient descent property). Let Assumptions F, G hold. Also, let (xk)k∈N be a
sequence generated by Model BPG, then the following holds for k ≥ 1

F hL̄(xk+1, xk) ≤ F hL̄(xk, xk−1)− εkDh(xk+1, xk) . (9.5.4)

Proof. By global optimality of xk+1 as in (9.3.4), we have

f(xk+1;xk) +
1

τk
Dh(xk+1, xk) ≤ f(xk;xk) = f(xk) .

Chapter 9. Model BPG 125

We have the following inequality from the MAP property

f(xk;xk) = f(xk) ≤ f(xk;xk−1) + L̄Dh(xk, xk−1) .

Thus, the result follows from the definition of F h
L̄
in (9.5.1).

Proposition 9.5.2.2. Let Assumptions F, G hold and let (xk)k∈N be a sequence generated by Model BPG.
The following assertions hold:

(i) The sequence
{
F h
L̄

(xk+1, xk)
}
k∈N is nonincreasing and converges to a finite value.

(ii)
∑∞

k=1Dh(xk+1, xk) <∞, and hence the sequence {Dh(xk+1, xk)}k∈N converges to zero.

(iii) For any n ∈ N, the condition

min
1≤k≤n

Dh(xk+1, xk) ≤
F h
L̄

(x1, x0)− v(PM)

εn

holds true.

Proof. (i) Nonincreasing property follows trivially from Proposition 9.5.2.1 and as εk > 0. We know from
Proposition 9.5.1.1(iii) that the Lyapunov function is lower bounded, which implies convergence of{
F h
L̄

(xk+1, xk)
}
k∈N to a finite value.

(ii) Let n be a positive integer. Summing (9.5.4) from k = 1 to n and using ε ≤ εk we get

n∑
k=1

Dh(xk+1, xk) ≤
1

ε

(
F hL̄ (x1, x0)− F hL̄ (xn+1, xn)

)
≤ 1

ε

(
F hL̄ (x1, x0)− v(PM)

)
, (9.5.5)

since F h
L̄

(xn+1, xn) ≥ v(PM). Taking the limit as n→∞, we obtain the first assertion, from which we
immediately deduce that {Dh(xk+1, xk)}k∈N converges to zero.

(iii) From (B.4.1) we also obtain,

n min
1≤k≤n

(Dh(xk+1, xk)) ≤
n∑
k=1

(Dh(xk+1, xk)) ≤
1

ε

(
F hL̄ (x1, x0)− v(PM)

)
,

which after division by n yields the result.

9.5.3 Relative error condition

For the purposes of analysis, we require the following assumption.

Assumption I. We have the following conditions:

• Consider any bounded set B ⊂ dom f . There exists c > 0 such that for any x, y ∈ B we have

‖∂yf(x; y)‖− ≤ c‖x− y‖ .

• The function h has bounded second derivative on any compact subset B ⊂ int domh.

126 9.5. Global convergence analysis of Model BPG algorithm

• For bounded (uk)k∈N, (vk)k∈N in int domh, the following holds as k →∞:

Dh(uk, vk)→ 0 ⇐⇒ ‖uk − vk‖ → 0 .

Through Example 9.5.3.1, we illustrate Assumption I(i), which governs the variation of the model function
w.r.t. model center. Assumption I(ii) is a standard condition required for the analysis of Bregman proximal
methods [28, 139](Chapter 5). Assumption I(iii) essentially states that the asymptotic behavior of vanishing
Bregman distance is equivalent to that of vanishing Euclidean distance (cf. [139, Remark 18]). Such a
condition is satisfied for many Bregman distances, such as those distances based on Boltzmann–Shannon
entropy [139, Example 40] and Burg entropy [139, Example 41].

Example 9.5.3.1. We continue Example 9.3.0.1 to illustrate Assumption I(i). A quick calculation reveals
that ∇2g(x) is bounded over bounded sets. Consider any bounded set B ⊂ RN . Define c := supx̄∈B ‖∇2g(x̄)‖
and choose any x̄ ∈ B, then consider the model function given by :

f(x; x̄) := |g(x̄) + 〈∇g(x̄), x− x̄〉| .

The subdifferential of the model function is given by

∂x̄f(x; x̄) = u∇2g(x̄)(x− x̄) ,

where u ∈ ∂g(x̄)+〈∇g(x̄),x−x̄〉 |g(x̄) + 〈∇g(x̄), x− x̄〉|. Considering the fact that ‖u‖ ≤ 1 and by the definition
of c we have the following:

inf
v∈∂x̄f(x;x̄)

‖v‖ ≤ c‖x− x̄‖ ,

which verifies Assumption I(i).

Now, we look at the relative error condition, which bounds the infimal norm of the subdifferential of the
Lyapunov function, i.e., infv∈∂Fh

L̄
(xk+1,xk) ‖v‖, with the term ‖xk+1− xk‖ upto a scaling factor. Such a bound

is useful to achieve stationarity asymptotically, and plays a crucial role in proving global convergence. Note
that with the descent property (Proposition 9.5.2.1) and Assumption I(iii), we have ‖xk+1 − xk‖ → 0.

Lemma 9.5.3.1 (Relative error). Let Assumptions F, G, I hold. Let the sequence (xk)k∈N be generated by
Model BPG lie in a compact set in int domh, then there exists a constant C > 0 such that for certain k ≥ 0,
we have

‖∂F hL̄(xk+1, xk)‖− ≤ C‖xk+1 − xk‖ , (9.5.6)

where ‖∂F h
L̄

(xk+1, xk)‖− := infv∈∂Fh
L̄

(xk+1,xk) ‖v‖.

Proof. As per [150, Exercise 8.8] or [116, Theorem 2.19], the subdifferential ∂F h
L̄

(xk+1, xk) is given by

∂F hL̄(xk+1, xk) = ∂f(xk+1;xk) + L̄∇Dh(xk+1, xk) , (9.5.7)

because the Bregman distance is continuously differentiable around xk ∈ dom f ∩ int domh. Using [150,
Corollary 10.11], Assumption G(iv), and using the fact that h is C2 over int domh (cf. Assumption G) we

Chapter 9. Model BPG 127

obtain

∂F hL̄(xk+1, xk) =
(
∂xk+1

f(xk+1;xk) + L̄
(
∇h(xk+1)−∇h(xk)

)
,

∂xkf(xk+1;xk)− L̄∇2h(xk)(xk+1 − xk)
)
. (9.5.8)

Consider the following:

inf
ζ∈∂F (xk+1,xk)

‖v‖ = inf
ξ∈∂f(xk+1;xk)

‖ξ + L̄∇Dh(xk+1;xk)‖ ,

=

(
inf

(ξx,ξy)∈∂f(xk+1;xk)
‖(ξx, ξy) + L̄∇Dh(xk+1, xk)‖

)
,

≤
(

inf
ξx∈∂xk+1

f(xk+1;xk)
‖(ξx + L̄

(
∇h(xk+1)−∇h(xk)))‖

)

+

(
inf

ξy∈∂xkf(xk+1;xk)
‖(ξy + L̄∇2h(xk)(xk+1 − xk))‖

)
, (9.5.9)

where in the first equality we use (9.5.7), in the second equality we use the result in (9.5.8) with ξ := (ξx, ξy)

such that ξx ∈ ∂xk+1
f(xk+1, xk) and ξy ∈ ∂xkf(xk+1, xk), and in the last step we used

∇Dh(xk+1, xk) = (∇h(xk+1)−∇h(xk),∇2h(xk)(xk+1 − xk)) . (9.5.10)

The optimality of xk+1 in (9.3.4) implies the existence of ξk+1
xk+1

∈ ∂xk+1
f(xk+1;xk) such that the following

condition holds:
ξk+1
xk+1

+
1

τ
k

(∇h(xk+1)−∇h(xk)) = 0 . (9.5.11)

Therefore, the first block coordinate in (9.5.8) satisfies

ξk+1
xk+1

+ L̄
(
∇h(xk+1)−∇h(xk)

)
= εk

(
∇h(xk+1)−∇h(xk)

)
. (9.5.12)

Now consider the first term of the right hand side in (9.5.9). We have

inf
ξx∈∂xk+1

f(xk+1;xk)
‖(ξx + L̄

(
∇h(xk+1)−∇h(xk)))‖ ≤ ‖ξk+1

xk+1
+ L̄

(
∇h(xk+1)−∇h(xk)

)
‖ ,

≤ εk‖
(
∇h(xk+1)−∇h(xk)

)
‖ ,

≤ εkL̃h‖xk+1 − xk‖ ,

where in the second step we used (9.5.12) and in the last step we applied mean value theorem along with the
fact that the entity ‖∇2h(xk+1 + s(xk+1 − xk))‖ is bounded by a constant L̃h > 0 for certain s ∈ [0, 1], due
to Assumption I(ii). Considering the second term of the right hand side in (9.5.9), we have

inf
ξy∈∂xkf(xk+1;xk)

‖(ξy + L̄∇2h(xk)(xk+1 − xk))‖

≤ inf
ξy∈∂xkf(xk+1;xk)

‖ξy‖ + ‖L̄∇2h(xk)(xk+1 − xk)‖ ,

≤ c‖xk+1 − xk‖ + L̄Lh‖(xk+1 − xk)‖ ,

128 9.5. Global convergence analysis of Model BPG algorithm

where in the last step we used Assumption I(i) and the fact that ‖∇2h(xk)‖ is bounded by Lh. The result
follows from combining the results obtained for (9.5.12).

9.5.4 Subsequential convergence

We now consider results on generic limit points and show that stationarity can indeed be attained for iterates
produced by Model BPG. The set of limit points of some sequence (xk)k∈N is denoted as follows

ω(x0) :=

{
x ∈ RN | ∃K ⊂ N : xk →

k∈K
x

}
,

and its subset of f -attentive limit points

ωf (x0) :=

{
x ∈ RN | ∃K ⊂ N : (xk, f(xk))→

K
(x, f(x))

}
.

We explore below certain properties that are generic to any bounded sequence, and are later helpful to
quantify properties of the sequence generated by Model BPG.

Proposition 9.5.4.1. For a bounded sequence (xk)k∈N such that ‖xk+1 − xk‖ → 0 as k →∞, the following
holds:

(i) ω(x0) is connected and compact,

(ii) limk→∞ dist(xk, ω(x0)) = 0.

The proof relies on the same technique as the proof of [26, Lemma 3.5] (also see [26, Remark 3.3]).

We now show that the sequence generated by Model BPG (xk)k∈N indeed attains ‖xk+1−xk‖ → 0 as k →∞,
which in turn enables the application of Proposition 9.5.4.1 to deduce the properties of the sequence generated
by Model BPG, which later proves to be crucial for the proof of global convergence.

Proposition 9.5.4.2. Let Assumption F, G, I hold. Let (xk)k∈N be a sequence generated by Model BPG.
Then, we have

εDh(xk+1, xk)→ 0 , as k →∞ . (9.5.13)

The condition ε > 0 implies that xk+1 − xk → 0 as k →∞.

Proof. Note that the sequence (xk)k∈N is a bounded sequence (see Remark 9.3.0.2). By the descent property
(Proposition 9.5.2.1) and using εk ≥ ε we have after rearranging

εDh(xk+1, xk) ≤ F hL̄(xk, xk−1)− F hL̄(xk+1, xk) .

Summing on both sides and due to the convergence of Lyapunov function, using Proposition 9.5.2.1, we
obtain ∞∑

k=1

(
εDh(xk+1, xk)

)
≤ F hL̄(x0, x−1)− lim

k→∞
F hL̄(xk+1, xk) <∞ ,

which implies (10.4.4). For ε > 0, Assumption I(iii) together with (10.4.4) imply xk+1−xk → 0 as k →∞.

Analyzing the full set of limit points of the sequence generated by Model BPG is difficult, as illustrated in
[139]. Obtaining the global convergence is still an open problem. Moreover, the work in [139] relies on convex
model functions.

Chapter 9. Model BPG 129

In order to simplify slightly the setting, we restrict the set of limit points to the set int domh. Such a choice
may appear to be restrictive, however, Model BPG when applied to many practical problems results in
sequences that have this property as illustrated in Section 9.7.

To this regard, denote the following

ωint domh(x0) := ω(x0) ∩ int domh and ωint domh
f (x0) := ωf (x0) ∩ int domh .

The subset of F h
L̄
-attentive (similar to f -attentive) limit points is

ωFh
L̄

(x0) :=

{
(y, x) ∈ RN × RN | ∃K ⊂ N : (xk, F

h
L̄(xk, xk−1))→

K
(x, F hL̄(y, x))

}
.

Also, we define ω(int domh)2

Fh
L̄

:= ωFh
L̄
∩ (int domh× int domh).

Proposition 9.5.4.3. Let Assumptions F, G, I hold. Let (xk)k∈N be a sequence generated by Model BPG.
Then, the following holds:

(i) ωint domh(x0) = ωint domh
f (x0),

(ii) x ∈ ωint domh
f (x0) if and only if (x, x) ∈ ω(int domh)2

Fh
L̄

(x0).

(iii) F h
L̄
is constant and finite on ω(int domh)2

Fh
L̄

(x0) and f is constant and finite on ωint domh
f (x0) with same

value.

Proof. (i) We show the inclusion ωint domh(x0) ⊂ ωint domh
f (x0) and ωint domh

f (x0) ⊂ ωint domh(x0) is clear by
definition. Let x? ∈ ωint domh(x0), then we obtain the following

f(x?) +

(
L+

1

τk

)
Dh(x?, xk)

(9.3.3)
≥ f(x?;xk) +

1

τk
Dh(x?, xk)

(9.3.4)
≥ f(xk+1;xk) +

1

τk
Dh(xk+1, xk)

(9.3.3)
≥ f(xk+1)−

(
L̄− 1

τk

)
Dh(xk+1, xk)

εk>0
≥ f(xk+1) .

Obviously, by Assumption I(iii) combined with the fact that xk→
K
x?, we have Dh(x?, xk) → 0 as k→

K
∞,

which, together with the lower semicontinuity of f , implies

f(x?) ≥ lim inf
k→
K
∞
f(xk+1) ≥ f(x?) ,

thus x? ∈ ωint domh
f (x0).

(ii) If x ∈ ωint domh
f (x0), then we have xk→

K
x for K ⊂ N, and f(xk)→

K
f(x). As a consequence of Proposi-

tion 9.5.2.2 and Assumption I(iii), Dh(xk+1, xk)→ 0 as k →∞, which implies that xk+1→
K
x. The first part

of the proof implies f(xk+1)→
K
f(x). We also have F h

L̄
(xk+1, xk)→

K
f(x) which we prove below, which implies

that (x, x) ∈ ωint domh
Fh
L̄

(x0). Note that by definition of F h
L̄
we have the following

F hL̄(xk+1, xk) = f(xk+1;xk) + L̄Dh(xk+1, xk) ,

= f(xk+1) + (f(xk+1;xk)− f(xk+1)) + L̄Dh(xk+1, xk) ,

130 9.5. Global convergence analysis of Model BPG algorithm

and with the MAP property we have

f(xk+1) ≤ F hL̄(xk+1, xk) ≤ f(xk+1) + (L̄+ L)Dh(xk+1, xk) . (9.5.14)

Thus, we have that F h
L̄

(xk+1, xk)→
K
f(x) as Dh(xk+1, xk)→

K
0. Conversely, suppose (x, x) ∈ ωint domh

Fh
L̄

(x0) and

xk→
K
x for K ⊂ N. This, together with Dh(xk+1, xk) → 0 as k→

K
∞, induces F h

L̄
(xk+1, xk)→

K
f(x), which

further implies f(xk+1)→
K
f(x) due to the following. Note that we have

f(xk+1) = F hL̄(xk+1, xk) + (f(xk+1)− f(xk+1;xk)) + L̄Dh(xk+1, xk)

≥ F hL̄(xk+1, xk) + (L̄− L)Dh(xk+1, xk) .

Finally we have

F hL̄(xk+1, xk) + (L̄− L)Dh(xk+1, xk) ≤ f(xk+1) ≤ F hL̄(xk+1, xk) .

Thus, with Dh(xk+1, xk) → 0 as k→
K
∞ and F h

L̄
(xk+1, xk)→

K
f(x), we deduce that f(xk+1)→

K
f(x). And

therefore x ∈ ωint domh
f (x0).

(iii) By Proposition 9.5.2.1, the sequence (F h
L̄

(xk+1, xk))k∈N converges to a finite value F . Note that
Dh(xk+1, xk)→ 0 as k→

K
∞ due to Proposition 9.5.2.2 (ii), when combined with Assumption I(iii) implies

that ‖xk+1 − xk‖ → 0. For (x?, x?) ∈ ω
(int domh)2

Fh
L̄

(x0, x0) there exists K ⊂ N such that xk→
K
x? and

F h
L̄

(xk+1, xk)→
K
F h
L̄

(x?, x?) = f(x?), i.e., the value of the limit point is independent of the choice of the

subsequence. The result follows directly and by using (i).

The following result summarizes that F h
L̄
-attentive sequences converge to a stationary point.

Theorem 9.5.4.1 (Sub-sequential convergence to stationary points). Let Assumptions F, G, I hold. If the
sequence (xk)k∈N is generated by Model BPG, then

ω
(int domh)2

Fh
L̄

(x0) ⊂ crit (F hL̄) . (9.5.15)

Proof. From (9.5.6), we have ‖∂F h
L̄

(xk+1, xk)‖− ≤ C‖xk+1 − xk‖ for some constant C > 0. Using ‖xk+1 −
xk‖ → 0, convergence of (τk)k∈N, and Proposition 9.5.4.3(i) yields (10.4.5), by the closedness property of the
limiting subdifferential.

Discussion. Subsequential convergence to a stationary point was already considered in few works. In
particular, the work in [60] already provides such a result, however, it relies on certain abstract assumptions.
Even though such assumptions are valid for some practical algorithms, the authors do not consider a concrete
algorithm. Moreover, their abstract update step depends on the minimization of the model function, which
can require additional regularity conditions on the problem. For example, if the model function is linear, then
the domain must be compact to guarantee the existence of a solution. A related line-search variant of Model
BPG was considered in [139], for which subsequential convergence to a stationarity point was proven. The
subsequential convergence results in [139] are more general than our work, as they analyse the behavior of
limit points in domh, cl domh, int domh (cf. [139, Theorem 22]). Our analysis is restricted to limit points
in int domh, as typically such an assumption holds in practice (see Section 9.7). Though subsequential

Chapter 9. Model BPG 131

convergence is satisfactory, proving global convergence is nontrivial, in general. It is not yet clear from our
work, whether global convergence can be proven if the limit points lie on the boundary of domh. Both the
above-mentioned works rely on function values to obtain a subsequential convergence result. We change
this trend. In this chapter, we rely on Lyapunov function and obtain an even stronger result, that is global
convergence of the sequence generated by Model BPG to a stationarity point.

9.5.5 Global convergence to a stationary point of the Lyapunov function

Assumption J. Let O be an o-minimal structure. The functions f̃ : RN × RN → R , (x, x̄) 7→ f(x; x̄)

with dom f̃ := dom f × dom f , and h̃ : RN × RN → R , (x, x̄) 7→ h(x̄) + 〈∇h(x̄), x− x̄〉 with dom h̃ :=

domh× int domh are definable O.

Lemma 9.5.5.1. Let Assumptions F, G, I, J hold. Then, the Lyapunov function F h
L̄
is definable in O, and

satisfies KL property at any point of dom ∂F h
L̄
.

Proof. As per the conditions of Lemma 3.7.0.2, we deduce that functions that are definable in an o-minimal
structure are closed under addition and multiplication. With Assumption J, it is easy to deduce that the
F h
L̄
is also definable in O using Lemma 3.7.0.2. Invoking Theorem 3.7.0.3, we deduce that F h

L̄
satisfies KL

property at any point of dom ∂F h
L̄
.

In the context of additive composite problems, the global convergence analysis of BPG based methods [28]
(Chapter 5) relies on strong convexity of h. However, in our setting we relax such a requirement on h, via the
following assumption. Note that imposing such an assumption (Assumption K) is weaker than imposing the
strong convexity of h, as we only need the strong convexity property to hold over a compact convex set. Such
a property can be satisfied even if h is not strongly convex, for example, Burg’s entropy (see Section 9.7.3).

Assumption K. For any compact convex set B ⊂ int domh, there exists σB > 0 such that h is σB-strongly
convex over B, i.e., for any x, y ∈ B the condition Dh(x, y) ≥ σB

2 ‖x− y‖
2 holds.

Now, we present the global convergence result of the sequence generated by Model BPG.

Theorem 9.5.5.2 (Global convergence to a stationary point under KL property). Let Assumptions F, G,
I, J, K hold. Let the sequence (xk)k∈N be generated by Model BPG (Algorithm 7) with τk → τ for certain
τ > 0 and the condition ωint domh(x0) = ω(x0) holds true. Then, convergent subsequences are F h

L̄
-attentive

convergent, and
∞∑
k=0

‖xk+1 − xk‖ < +∞ (finite length property) .

Moreover, the sequence (xk)k∈N converges to x such that (x, x) is a critical point of F h
L̄
.

Proof. Note that the sequence (xk)k∈N generated by Model BPG is a bounded sequence (see Remark 9.3.0.2).
The proof relies on Theorem 9.4.0.1 provided in Section 9.4, for which we need to verify the conditions (i)–(v).
Due to Lemma 9.5.5.1, F h

L̄
satisfies Kurdyka–Łojasiewicz property at each point of dom ∂F h

L̄
.

Note that as ωint domh(x0) = ω(x0) holds true, there exists a sufficiently small ε > 0 such that B̃ := {x :

dist(x, ω(x0)) ≤ ε} ⊂ int domh. As ω(x0) is compact due to Proposition 9.5.4.1(i), the set B̃ is also compact.
Moreover, the convex hull of the set B̃ denoted by B := conv B̃ is also compact, as the convex hull of a
compact set is also compact in finite dimensional setting. A simple calculation reveals that the set B lies
in the set int domh. Thus, due to Proposition 10.4.3.1 along with Proposition 9.5.4.1(ii), without loss of

132 9.5. Global convergence analysis of Model BPG algorithm

generality, we assume that the sequence (xk)k∈N generated by Model BPG lies in the set B. By definition of
σB as per Assumption K we have

Dh(xk+1, xk) ≥
σB
2
‖xk+1 − xk‖2 , (9.5.16)

through which we obtain

F hL̄(xk+1, xk) ≤ F hL̄(xk, xk−1)− εkσB
2
‖xk+1 − xk‖2 ,

which is (i) with dk = εkσB
2 ‖xk+1 − xk‖2 and ak = 1. We also have existence of wk+1 ∈ ∂F hL̄(xk+1, xk) due to

Lemma 9.5.3.1 such that for some C > 0 we have

‖∂F hL̄(xk+1, xk)‖− ≤ C‖xk+1 − xk‖ ,

which is (ii) with b = C, since the coefficients for both Euclidean distances are bounded from above. The
continuity condition (iii) is deduced from a converging subsequence, whose existence is guaranteed by
boundedness of (xk)k∈N, and Proposition 9.5.4.3 guarantees that such convergent subsequences are F h

L̄
-

attentive convergent. The distance condition (iv) holds trivially as εk > 0 and σB > 0. The parameter
condition (v), holds because bn = 1 in this setting, hence (bn)n∈N 6∈ `1 and also we have

sup
n∈N

1

bnan
= 1 <∞ , inf

n
an = 1 > 0 .

Theorem 9.4.0.1 implies the finite length property from which we deduce that the sequence (xk)k∈N generated
by Model BPG converges to a single point, which we denote by x. As (xk+1)k∈N also converges to x, the
sequence ((xk+1, xk))k∈N converges to (x, x), which is a critical point of F h

L̄
due to Theorem 9.5.4.1.

9.5.6 Global convergence to a stationary point of the objective function

The global convergence result in Theorem 9.5.5.2 shows that Model BPG converges to a point, which in turn
can be used to represent a critical point of the Lyapunov function. However, our goal is to find a critical
point of the objective function f . We now establish the connection between a critical point of the Lyapunov
function and a critical point of the objective function. Such a connection can later be exploited to conclude
that the sequence generated by Model BPG converges to a critical point of f .

Firstly, we need the following result, which establishes the connection between fixed points of the update
mapping and critical points of f .

Lemma 9.5.6.1. Let Assumptions F, G hold. For any 0 < τ < (1/L̄) and x̄ ∈ dom f ∩ int domh, the fixed
points of the update mapping Tτ (x̄) are critical points of f .

Proof. Let x̄ ∈ dom f ∩ int domh be a fixed point of Tτ , in the sense the condition x̄ ∈ Tτ (x̄) holds true. By
definition of Tτ (x̄), the following condition holds true:

0 ∈ ∂f(x; x̄) +
1

τ
(∇h(x)−∇h(x̄))

at x = x̄, which implies that 0 ∈ ∂f(x̄; x̄). As a consequence of Lemma F.2.0.1, we have ∂f(x̄; x̄) ⊂ ∂f(x̄),
thus x̄ is a critical point of the function f .

Chapter 9. Model BPG 133

We also require the following technical result.

Lemma 9.5.6.2 (Continuity property). Let Assumptions F, G, I hold. Let the sequence (xk)k∈N be bounded
such that xk → x̄, where xk ∈ dom f ∩ int domh for all k ∈ N, and x̄ ∈ dom f ∩ int domh. Let τk → τ , such
that 0 < τ ≤ τk ≤ τ̄ < 1/L̄. Let there exist a bounded set B ⊂ int domh, such that Tτk(xk) ⊂ B, xk ∈ B for
all k ∈ N. If lim supk→∞ Tτk(xk) ⊂ dom f ∩ int domh, then lim supk→∞ Tτk(xk) ⊂ Tτ (x̄).

Proof. Consider any sequence (yk)k∈N such that for any k ∈ N, the condition yk ∈ Tτk(xk) holds true. Recall
that f(x; y) is continuous on its domain due to Assumption G(iv). By optimality of yk ∈ Tτk(xk), for any
z ∈ RN we have the following:

f(yk;xk) +
1

τk
Dh(yk, xk) ≤ f(z;xk) +

1

τk
Dh(z, xk) . (9.5.17)

As a consequence of boundedness of the sequence (yk)k∈N, by Bolzano–Weierstrass Theorem there exists a
convergent subsequence. Let yk→

K
π such that π ∈ dom f ∩ int domh. Note that τk→

K
τ for some K ⊂ N.

Applying limit on both sides of (9.5.17) using the continuity of the model function and the Bregman distance
gives

f(π; x̄) +
1

τ
Dh(π, x̄) ≤ f(z; x̄) +

1

τ
Dh(z, x̄) , ∀ z ∈ dom f ∩ domh , (9.5.18)

which implies that π minimizes the function f(· ; x̄) + 1
τDh(· , x̄). This implies that π ∈ Tτ (x̄) and the result

follows.

The following result establishes the fact the sequence generated by Model BPG indeed converges to a critical
point of the objective function.

Theorem 9.5.6.3 (Global convergence to a stationary point of the objective function). Under the conditions
of Theorem 9.5.5.2, the sequence generated by Model BPG converges to a critical point of f .

Proof. The sequence (xk)k∈N generated by Model BPG under the assumptions as in Theorem 9.5.5.2 is
globally convergent, thus let xk → x and also xk+1 → x. As xk+1 ∈ Tτk(xk) and τk converges to τ , with
Lemma 9.5.6.2 we deduce that x ∈ Tτ (x) . Additionally, with the result in Lemma 9.5.6.2, we deduce that x
is the fixed point of the mapping Tτ (x), i.e., x ∈ Tτ (x). Then, using Lemma 9.5.6.1 we conclude that x is a
critical point of the function f .

9.5.7 Convergence rates

It is possible to deduce convergence rates for a certain class of desingularizing functions. Based on [6, 26, 69],
we provide the following result, which provides the convergence rates for the sequence generated by Model
BPG.

Theorem 9.5.7.1 (Convergence rates). Under the conditions of Theorem 9.5.5.2, let the sequence (xk)k∈N
generated by Model BPG converge to x ∈ dom f ∩ int domh, and let the Lyapunov function F h

L̄
satisfy

Kurdyka–Łojasiewicz property with the following desingularizing function:

ϕ(s) = cs1−θ ,

for certain c > 0 and θ ∈ [0, 1). Then, we have the following:

• If θ = 0, then (xk)k∈N converges in finite number of steps.

134 9.6. Examples

• If θ ∈ (0, 1
2], then there exists ρ ∈ [0, 1) and G > 0 such that for all k ≥ 0 we have

‖xk − x‖ ≤ Gρk .

• If θ ∈ (1
2 , 1), then there exists G > 0 such that for all k ≥ 0 we have

‖xk − x‖ ≤ Gk−
1−θ
2θ−1 .

Proof. Here, we consider the same notions as in the proof of Theorem 9.5.5.2. First, using the convexity of
the function −s1−θ we obtain

(F hL̄(xk, xk−1)− v(PM))1−θ − (F hL̄(xk+1, xk)− v(PM))1−θ

≥ (1− θ)(F hL̄(xk, xk−1)− v(PM))−θ(F hL̄(xk, xk−1)− F hL̄(xk+1, xk)) ,

≥ (1− θ)(F hL̄(xk, xk−1)− v(PM))−θ
εkσB

2
‖xk+1 − xk‖2 ,

≥ (1− θ)(F hL̄(xk, xk−1)− v(PM))−θ
εσB

2
‖xk+1 − xk‖2 ,

where in the second inequality we used the Proposition 9.5.2.1 along with the definition of σB , and in the last
step we used εk ≥ ε. Denote U := ω

(int domh)2

Fh
L̄

(x0), and thanks to Theorem 9.5.4.1 we have U ⊂ crit (F h
L̄

).
Due to Proposition 9.5.4.1, we already know that U is a connected compact set and

lim
k→∞

dist ((xk+1, xk), U) = 0 .

Continuing the calculation, following the proof technique of [26, Theorem 3.1], using Lemma 3.7.0.1 with
Ω = U , we deduce that there exists l ∈ N, C1 > 0 such that for any k > l, the following holds:

k∑
i=l+1

‖xi+1 − xi‖ ≤ ‖xl+1 − xl‖ + C1(F hL̄(xl+1, xl)− v(PM))1−θ .

Denote ∆l :=
∑∞

i=l ‖xi+1−xi‖. On application of Lemma 3.7.0.1 with Ω = U , and Lemma 9.5.3.1, we deduce
that there exists C2 > 0 such that

∆l+1 ≤ ∆l −∆l+1 + C2(∆l −∆l+1)
1−θ
θ .

The rest of the proof is only a slight modification to the proof of [6, Theorem 5].

9.6 Examples

In this section we consider special instances of (PM), namely, additive composite problems and a broad class of
composite problems. The goal is to quantify assumptions for these problems such that the global convergence
result (Theorem 9.5.6.3) of Model BPG is applicable. To this regard, we only consider the functions that
satisfy Assumption F. Typically, function is made up of function components and these components govern
the function behavior. Thus, it is beneficial to introduce properties on the components of f , for which certain
plausible conditions will enable the applicability of Model BPG. In this section, henceforth we enforce the
following blanket assumptions.

Chapter 9. Model BPG 135

(B1) The function h is a Legendre function that is C2 over int domh. For any compact convex set B ⊂
int domh, there exists σB > 0 such that h is σB-strongly convex over B. Also, h has bounded second
derivative on any bounded subset B1 ⊂ int domh. Moreover, for bounded (uk)k∈N, (vk)k∈N in int domh,
the following holds as k →∞:

Dh(uk, vk)→ 0 ⇐⇒ ‖uk − vk‖ → 0 .

(B2) The function f is coercive and additionally the conditions dom f ∩ int domh 6= ∅, crit f ∩ int domh 6= ∅,
dom f ⊂ cl domh hold true.

(B3) The functions f̃ : RN ×RN → R , (x, x̄) 7→ f(x; x̄) with dom f̃ := dom f × dom f , and h̃ : RN ×RN →
R , (x, x̄) 7→ h(x̄) + 〈∇h(x̄), x− x̄〉 with dom h̃ := domh × int domh are definable in an o-minimal
structure O.

Note that h satisfies Assumption (B1) which considers the same conditions on h as in Assumptions G, I, K.
The function satisfies Assumption (B2), which is a consolidation of function specific assumptions in Assump-
tions F,G. Clearly, Assumption (B3) implies Assumption J.

9.6.1 Additive composite problems

We consider the following non-convex additive composite problem:

inf
x∈RN

f(x) , f(x) := f0(x) + f1(x) , (9.6.1)

which is a special case of (PM). Additive composite problems arise in several applications, such as standard
phase retrieval [28], low rank matrix factorization (Chapter 6), deep linear neural networks (Chapter 7), and
many more. We impose the following conditions that are common in the analysis of Forward–Backward
algorithms [137], which are used to optimize additive composite problems.

(C1) f0 : RN → R is a proper, lsc function and is regular at any x ∈ dom f0. Also, the following qualification
condition holds true:

∂∞f0(x) ∩ (−Ndomh(x)) = {0} , ∀x ∈ dom f0 ∩ domh . (9.6.2)

(C2) f1 : RN → R is a proper, lsc function and is C2 on an open set that contains dom f0. Also, there exist
L̄, L > 0 such that for any x̄ ∈ dom f0 ∩ int domh, the following condition holds true:

− LDh(x, x̄) ≤ f1(x)− f1(x̄)− 〈∇f1(x̄), x− x̄〉 ≤ L̄Dh(x, x̄) , ∀x ∈ dom f0 ∩ domh . (9.6.3)

Note that with Assumption (C1), (C2) it is easy to deduce that dom f0 = dom f . For x̄ ∈ dom f , the model
function f(· ; x̄) : RN → R which, when evaluated at x ∈ dom f gives

f(x; x̄) := f0(x) + f1(x̄) + 〈∇f1(x̄), x− x̄〉 . (9.6.4)

Using the model function in (9.6.4) and the condition (9.6.3), we deduce that there exist L, L̄ > 0 such that
for any x̄ ∈ dom f ∩ int domh, MAP property is satisfied at x̄ with L, L̄ as the following holds true:

− LDh(x, x̄) ≤ f(x)− f(x; x̄) ≤ L̄Dh(x, x̄) , ∀x ∈ dom f ∩ domh , (9.6.5)

136 9.6. Examples

as f(x) − f(x; x̄) := f1(x) − f1(x̄) − 〈∇f1(x̄), x− x̄〉, thus satisfying Assumption G(i). The condition in
(9.6.5) is similar to the popular L-smad property in [28]. The main addition is that x ∈ dom f ∩ domh and
x̄ ∈ dom f ∩ int domh, whereas the L-smad property requires x, x̄ ∈ dom f ∩ int domh. We illustrate this
below.

Remark. Consider f1(x) := 1
2x

2, f0(x) := δ[0,∞)(x) and h(x) = x log(x) with domh = [0,∞) under
0 log(0) = 0. Clearly, domh ⊂ dom f1 and dom f ⊂ domh hold true. The function f1 is differentiable at
x = 0, and condition in (9.6.3) holds true for x = 0. This scenario is not considered in the L-smad property
(see [28, Lemma 2.1]).

We present below Model BPG algorithm that is applicable for additive composite problems. Using the model
function in (9.6.4) in Model BPG we recover the BPG algorithm from [28].

BPG is Model BPG (Algorithm 7) with

f(x;xk) := f0(x) + f1(xk) + 〈∇f1(xk), x− xk〉 . (9.6.6)

For h(x) = 1
2‖x‖2, Model BPG is equivalent to Proximal Gradient Method. Assumptions (C1), (C2) along

with (B2) imply proper, lsc property of f and lower-boundedness of f , thus satisfying Assumption F.
Considering (C1) we deduce that f0(x) is regular at x ∈ dom f0. Using [150, Proposition 10.5] we note that
f0(x) is regular at all (x, x̄) ∈ dom f × dom f . Let (x, x̄) ∈ dom f × dom f , using [150, Proposition 10.5] on
f0, we obtain the following result:

∂(x,y)f0(x) = (∂xf0(x), 0) , ∂∞(x,y)f0(x) = (∂∞x f0(x), 0) . (9.6.7)

Let (x, x̄) ∈ dom f × dom f , we consider the following entity:

∂f(x; x̄) = ∂(f0(x) + f1(x̄) + 〈∇f1(x̄), x− x̄〉) ,

and in order for the summation rule of subdifferential ([150, Corollary 10.9]) to be applicable at (x, x̄), we
need finiteness of f0(x) and continuously differentiability of f̃1(x, x̄) := f1(x̄) + 〈∇f1(x̄), x− x̄〉 (also see [150,
Exercise 8.8]). Clearly, f0 is finite at (x, x̄), and f̃1 is finite and also continuously differentiable around (x, x̄)

due to Assumption (C2). Thus, using (9.6.7) and [150, Corollary 10.9] we obtain the following conditions:

∂f(x; x̄) = (∂xf0(x) +∇f1(x̄),∇2f1(x̄)(x− x̄)) , ∂∞f(x; x̄) = (∂∞x f0(x), 0) , (9.6.8)

and as a result (Assumption G(iii)’) is satisfied. Using the condition (9.6.2) and (9.6.8), we deduce that
Assumption G(ii) is satisfied. Now, we verify Assumption I(i). Consider a bounded subset S in dom f . For
fixed x ∈ dom f , and for all x̄ ∈ S we have

∂x̄f(x; x̄) = {∇x̄(f(x; x̄))} = {∇2f1(x̄)(x− x̄)}. (9.6.9)

Note that ∇f1 is Lipschitz continuous on any bounded subset of dom f , as f1 is C2 on dom f . This implies
that the Hessian is bounded on bounded sets of dom f . Thus, based on the same notions in (9.6.9), we deduce
that there exists a constant M > 0 such that

‖∇x̄(f(x; x̄))‖ ≤M‖x− x̄‖ ,

Chapter 9. Model BPG 137

holds true, thus verifying Assumption I(i). As a simple consequence of Assumption (C1), (C2) the condition
Assumption G(iv) is satisfied.

As discussed above, Assumptions (C1), (C2), (B1), (B2), (B3) imply Assumptions F, G, I, J, K. Thus, as a
consequence of Theorem 9.5.5.2, 9.5.6.3 we obtain the following result which provides the global convergence
of the sequence generated by BPG to a stationary point.

Theorem 9.6.1.1 (Global convergence of BPG sequence). Let Assumptions (C1), (C2), (B1), (B2), (B3)
hold. Let the sequence (xk)k∈N be generated by BPG and the condition ωint domh(x0) = ω(x0) holds true. Let
τk → τ for certain τ > 0. Then, the sequence (xk)k∈N has finite length, that is

∞∑
k=0

‖xk+1 − xk‖ < +∞ ,

and the sequence (xk)k∈N converges to x, which is a critical point of f .

9.6.2 Composite problems

We consider the following non-convex composite problem:

inf
x∈RN

f(x) , f(x) := f0(x) + g(F (x)) , (9.6.10)

which is a special case of the problem (PM). Composite problems arise in robust phase retrieval, robust PCA,
censored Z2 synchronization [59, 61, 62, 102, 125]. We require the following conditions.

(D1) f0 : RN → R is a proper, lsc function and is regular at any x ∈ dom f0. Also, the following qualification
condition holds true:

∂∞f0(x) ∩ (−Ndomh(x)) = {0} , ∀x ∈ dom f0 ∩ domh . (9.6.11)

(D2) g : RM → R is a Q-Lipschitz continuous function and a regular function. Also, there exists P > 0 such
that at any x ∈ RM , the following condition holds true:

sup
v∈∂g(x)

‖v‖ ≤ P . (9.6.12)

(D3) F : RN → RM is C2 over RN . Also, there exist L > 0 such that for any x̄ ∈ dom f0 ∩ int domh, the
following condition holds true:

‖F (x)− F (x̄)−∇F (x̄)(x− x̄)‖ ≤ LDh(x, x̄) , ∀x ∈ dom f0 ∩ domh ,

where ∇F (x̄) is the Jacobian of F at x̄.

Note that when M = 1, g(x) = x, the problem in (9.6.10) is a special case of (9.6.1). However, for a generic
g satisfying (D2), the problem in (9.6.10) cannot be captured under the additive composite problem setting
given in Section 9.6.1. Thus, in this section we consider a separate analysis for generic composite problems in
(9.6.10).

The properties (D1), (D2), (D3) along with (B2) imply proper, lsc property and lower-boundedness of
f , thus satisfying Assumption F. Note that with Assumption (D1), (D2), (D3) it is easy to deduce that

138 9.6. Examples

dom f0 = dom f . Let x̄ ∈ dom f and we consider the following model function which, when evaluated at
x ∈ dom f gives:

f(x; x̄) = f0(x) + g(F (x̄) +∇F (x̄)(x− x̄)) . (9.6.13)

Using (D2), (D3) we deduce that there exists L̄ := LQ > 0 such that for any x̄ ∈ dom f ∩ int domh, the
following MAP property holds at x̄ with L̄:

|f(x)− f(x; x̄)| = |g(F (x))− g(F (x̄) +∇F (x̄)(x− x̄))| ≤ L̄Dh(x, x̄) ,

for all x ∈ dom f ∩ domh, as g is Q-Lipschitz continuous and (D3) holds true. Thus, Assumption G(i) is
satisfied with L̄ = L = LQ. Before we verify other assumptions, we present Prox-Linear BPG, a specialization
of Model BPG that is applicable to composite problems.

Prox-Linear BPG is Model BPG (Algorithm 7) with

f(x;xk) := f0(x) + g(F (xk) +∇F (xk)(x− xk)) . (9.6.14)

For h(x) = 1
2‖x‖2, Prox-Linear BPG is related to Prox-Linear method [61, 102]. Considering (D1), we

deduce that f0(x) is regular at x ∈ dom f0. Using [150, Proposition 10.5] we note that f0(x) is regular at
all (x, x̄) ∈ dom f × dom f . Using [150, Theorem 10.6] and (D2) we deduce that g(F (x̄) +∇F (x̄)(x− x̄)) is
regular for all (x, x̄) ∈ RN × RN . Furthemore, as a consequence of [150, Corollary 10.9], the function f(x; x̄)

is regular at (x, x̄) ∈ dom f × dom f .

Using [150, Proposition 10.5] on f0 we deduce that for all (x, x̄) ∈ dom f × dom f , the following conditions
hold true:

∂(x,x̄)f0(x) = (∂xf0(x), 0) , ∂∞(x,x̄)f0(x) = (∂∞x f0(x), 0) . (9.6.15)

For this section, henceforth, we set (x, x̄) ∈ dom f × dom f and denote F (x; x̄) := F (x̄) +∇F (x̄)(x − x̄).
Note that as ∂∞F (x;x̄)g(F (x; x̄)) = {0} due to (D1) and [150, Theorem 9.13], we deduce that the only y such
that

y ∈ ∂∞F (x;x̄)g(F (x; x̄)) with (∇F (x̄)∗y, (∇F (x̄) +∇x̄(∇F (x̄)(x− x̄)))∗y) = (0, 0) is y = 0 , (9.6.16)

where ∇F (x̄)∗ denotes the adjoint of ∇F (x̄), and ∇x̄(∇F (x̄)(x− x̄)) denotes the Jacobian of the mapping
∇F (x̄)(x− x̄) at x̄ with fixed x. Due to (D3), regularity of g and (9.6.16) we have

∂g(F (x; x̄)) =
(
∇F (x̄)∗∂F (x;x̄)g(F (x; x̄)), (∇F (x̄) +∇x̄(∇F (x̄)(x− x̄)))∗∂F (x;x̄)g(F (x; x̄))

)
.

A similar statement also holds for ∂∞g(F (x; x̄)) which on using ∂∞F (x;x̄)g(F (x; x̄)) = {0} due to [150, Theorem
9.13] results in ∂∞g(F (x; x̄)) = {0, 0}. This further implies that the following qualification condition holds
true:

∂∞(x,x̄)f0(x) ∩ (−∂∞g(F (x; x̄)))) = {(0, 0)} . (9.6.17)

Using the qualification condition (9.6.17) along with [150, Corollary 10.9], we obtain the following:

∂f(x, x̄) = ∂(x,x̄)f0(x) + ∂g(F (x; x̄)))) , ∂∞f(x; x̄) = (∂∞x f0(x), 0) . (9.6.18)

Thus, (Assumption G(iii)’) is satisfied. Additionally, using the condition (9.6.11) in (D1), we deduce that
Assumption G(ii) is satisfied. Now, we verify Assumption I(i). Let’s consider a bounded subset S in dom f .

Chapter 9. Model BPG 139

For x̄ ∈ dom f , there exists a constant MS > 0 (dependent on S) such that for all w ∈ ∂x̄f(x; x̄) :=

(∇F (x̄) +∇x̄(∇F (x̄)(x− x̄)))∗∂F (x;x̄)g(F (x; x̄)) the following condition holds true:

‖w‖ ≤MS‖x− x̄‖ , ∀x ∈ S , (9.6.19)

where we have used the boundedness of second order derivatives of components of F over S, as F is a twice
continuously differentiable mapping, and boundedness of subgradients of g as per (9.6.12). As a simple
consequence of Assumption (D1), (D2), (D3) the condition Assumption G(iv) is satisfied.

As discussed above, Assumptions (D1), (D2), (D3), (B1), (B2), (B3) imply Assumptions F, G, I, J, K.
Thus, as a consequence of Theorem 9.5.5.2, 9.5.6.3 we obtain the following result which provides the global
convergence of the sequence generated by Prox-Linear BPG to a stationary point.

Theorem 9.6.2.1 (Global convergence of Prox-Linear BPG sequence). Let Assumptions (D1), (D2), (D3),
(B1), (B2), (B3) hold. Let the sequence (xk)k∈N be generated by Prox-Linear BPG and the condition
ωint domh(x0) = ω(x0) holds true. Let τk → τ for certain τ > 0. Then, the sequence (xk)k∈N has finite length,
that is ∞∑

k=0

‖xk+1 − xk‖ < +∞ ,

and the sequence (xk)k∈N converges to x, which is a critical point of f .

9.7 Experiments

For the purpose of empirical evaluation we consider many practical problems, namely, standard phase retrieval
problems, robust phase retrieval problems and Poisson linear inverse problems. We compare our algorithms
with inexact Bregman proximal minimization line search (IBPM-LS) [138], which is a popular algorithm to
solve generic non-smooth non-convex problems. Before we provide the empirical results, we comment below
on a variant of Model BPG based on the backtracking technique, which we used in the experiments.

Model BPG with backtracking. It is possible that the value of L̄ in the MAP property is unknown.
This issue can be solved by using a backtracking technique, where in each iteration a local constant L̄k is
found such that the following condition holds:

f(xk+1) ≤ f(xk+1;xk) + L̄kDh(xk+1, xk) . (9.7.1)

The value of L̄k is found by taking an initial guess L̄0
k. If the condition (B.8.2) fails to hold, then with a

scaling parameter ν > 1, we set L̄k to the smallest value in the set {νL̄0
k, ν

2L̄0
k, ν

3L̄0
k, . . .} such that (B.8.2)

holds true. Enforcing L̄k ≥ L̄km for k ≥ 1 ensures that after finite number of iterations there is no change in
the value of L̄k, which takes us to the situation that we analyzed in the chapter. The condition L̄k ≥ L̄km
can be enforced by choosing L̄0

k = L̄km.

Code. The code is open sourced at the following link: https://github.com/mmahesh/composite-optimization-code.
It contains the implementation of the algorithms, the random synthetic datasets generation process, the
choices for hyper-parameters, the plots generation process and all the other related details.

https://github.com/mmahesh/composite-optimization-code

140 9.7. Experiments

9.7.1 Standard phase retrieval

The phase retrieval problem involves approximately solving a system of quadratic equations. Let bi ∈ R and
Ai ∈ RN×N be a symmetric positive semi-definite matrix, for all i = 1, . . . ,M . The goal of standard phase
retrieval problem is to find x ∈ RN such that the following system of quadratic equations is satisfied:

xTAix ≈ bi, for i = 1, . . . ,M. (9.7.2)

In standard terminology, bi’s are measurements and Ai’s are so-called sampling matrices. In the context
of Bregman proximal algorithms, regarding the phase retrieval problem, we refer the reader to [28] and
Chapter 5. Further references regarding the phase retrieval problem include [40, 110, 164]. The standard
technique to solve such system of quadratic equations is to solve the following optimization problem:

min
x∈RN

P0(x) , P0(x) :=
1

M

M∑
i=1

(xTAix− bi)2 +R(x) , (9.7.3)

where R(x) is the regularization term. We consider here L1 regularization with R(x) = λ‖x‖1 and squared
L2 regularization with R(x) = λ

2‖x‖2, with some λ > 0. We consider two model functions in order to solve
the problem in (9.7.3).

Model 1. Here, the analysis falls under the category of additive composite problems given in Section 9.6.1,
where we set the following:

f0(x) := R(x) , and f1(x) :=
1

M

M∑
i=1

(xTAix− bi)2 .

We consider the standard model for additive composite problems from [28], where around y ∈ RN , the model
function P0(· ; y) : RN → R at x ∈ RN is given by

P0(x; y) :=
1

M

M∑
i=1

(
(yTAiy − bi)2 + (yTAiy − bi) 〈2Aiy, x− y〉

)
+R(x) . (9.7.4)

Consider the following Legendre function:

h(x) =
1

4
‖x‖4 +

1

2
‖x‖2 .

Then, due to [28, Lemma 5.1] the following L-smad property or the MAP property is satisfied :

|P0(x)− P0(x; y)| ≤ L0Dh(x, y) , for all x, y ∈ RN , (9.7.5)

where L0 ≥
∑M

i=1(3‖Ai‖2F + ‖Ai‖F |bi|). In this setting, Model BPG subproblems have closed form solutions
(see [28] and Chapter 5).

Model 2. The importance of finding better models suited to a particular problem was emphasized in [5].
The above provided model function in (9.7.4) is satisfactory, however, we would like take advantage of the
structure of the function (9.7.3). Taking inspiration from [5], a simple observation that the objective is

Chapter 9. Model BPG 141

(a) L1 reg (b) Squared L2 reg (c) L1 reg (d) Squared L2 reg

Figure 9.1: In this experiment we compare the performance of Model BPG, Model BPG with backtracking
(denoted as Model BPG-WB), and IBPM-LS [138] on standard phase retrieval problems, with both L1 and
squared L2 regularization. For this purpose, we consider M1 model function as in (9.7.4) without absolute
sign (which is the same setting as [28]), and with M2 model function as in (9.7.6). Model BPG with M2
(9.7.6) is faster in both the settings and Model BPG variants perform significantly better than IBPM-LS. By
reg, we mean regularization.

nonnegative can be exploited to create a new model function. We incorporate such a behavior in our second
model function provided below. We use the Prox-Linear setting described in Section 9.6.2, where for any
x ∈ RN we set the following:

f0(x) := R(x) ,

(F (x))i = (xTAix− bi)2 , for all i = 1, . . . ,M ,

and for any ỹ ∈ RM we set

g(ỹ) :=
1

M
‖ỹ‖1 , for ỹ ∈ RM .

Based on the model function (9.6.13), for fixed y ∈ RN , we consider the model function P1(· ; y) : RN → R
which, when evaluated at x ∈ RN gives

P1(x; y) :=
1

M

M∑
i=1

∣∣(yTAiy − bi)2 + (yTAiy − bi) 〈2Aiy, x− y〉
∣∣+R(x) . (9.7.6)

Considering the Legendre function h(x) = 1
4‖x‖4 + 1

2‖x‖2 and [28, Lemma 5.1], a simple calculation reveals
that the following MAP property holds true:

|P0(x)− P1(x; y)| ≤ L0Dh(x, y) , for all x, y ∈ RN , (9.7.7)

with L0 ≥
∑M

i=1(3‖Ai‖2F + ‖Ai‖F |bi|). In this setting, Model BPG subproblems are solved using Primal-Dual
Hybrid Gradient algorithm (PDHG) [143].

We provide empirical results in Figure 9.1, where we show superior performance of Model BPG variants
compared to IBPM-LS, in particular, with the model function provided in (9.7.6). For simplicity, we choose a
constant step-size τ in all the iterations, such that τ ∈ (0, 1/L0). We empirically validate Proposition 9.5.2.1 in
Figure 9.2. All the assumptions required to deduce the global convergence of Model BPG are straightforward
to verify, and we leave it as an exercise to the reader. Note that here int domh = RN , thus the condition
ωint domh(x0) = ω(x0) holds trivially.

142 9.7. Experiments

(a) L1 reg (b) Squared L2 reg (c) L1 reg (d) Squared L2 reg

Figure 9.2: We illustrate that when Model BPG applied to standard phase retrieval problem in (9.7.3),
with model function chosen to be either Model 1 in (9.7.4) or Model 2 in (9.7.6), result in sequences where
the Lyapunov function value evaluations are monotonically nonincreasing. In terms of iterations, Model BPG
with Model 2 (Model BPG M2) is better than Model BPG with Model 1 (Model BPG M1). In terms of time,
Model BPG M1 and Model BPG M2 perform almost the same, however, towards the end Model BPG M2 is
faster in both the cases. By reg we mean regularization, and by Lyapunov f.v. we mean Lyapunov function
values.

9.7.2 Robust phase retrieval

Now, we consider the robust phase retrieval problem, where the goal is the same as standard phase retrieval
problem, that is to solve the system of quadratic equations in (9.7.2). It is well known that L1 loss is more
robust to noise compared to squared L2 loss [70]. The problem in (9.7.3) uses squared L2 loss. Here, we
consider L1 loss based robust phase retrieval problem, which involves solving the following optimization
problem :

min
x∈RN

f(x), f(x) :=
1

M

M∑
i=1

∣∣xTAix− bi∣∣+R(x) ,

where we set R(x) = λ‖x‖1 (L1 regularization) or R(x) = λ
2‖x‖2 (squared L2 regularization), for some λ > 0.

Such an objective is preferred if the data obtained is noisy, and we require the solution that is robust to noise.
We use the Prox-Linear setting described in Section 9.6.2, where for any x ∈ RN we set the following:

f0(x) := R(x) ,

(F (x))i = xTAix− bi , for all i = 1, . . . ,M ,

and for any ỹ ∈ RM we set

g(ỹ) :=
1

M
‖ỹ‖1 , for ỹ ∈ RM .

We consider the following model function. For fixed y ∈ RN , the model function f(x; y) at x ∈ RN is given by

f(x; y) :=
1

M

M∑
i=1

∣∣yTAiy − bi + 〈2Aiy, x− y〉
∣∣+R(x) . (9.7.8)

With the Legendre function h(x) = 1
2‖x‖2 and as a consequence of triangle property, a simple calculation

reveals that for all x, y ∈ RN we have

|f(x)− f(x; y)| ≤ 0.5L1‖x− y‖2 ,

Chapter 9. Model BPG 143

(a) L1 reg (b) Squared L2 reg (c) L1 reg (d) Squared L2 reg

Figure 9.3: In this experiment we consider the performance of Model BPG vs Model BPG with Backtracking
(denoted as Model BPG-WB) vs IBPM-LS [138] on robust phase retrieval problems, with both L1 and squared
L2 regularization. Model BPG variants perform similarly and are better than IBPM-LS. By reg, we mean
regularization.

(a) L1 reg (b) Squared L2 reg (c) L1 reg (d) Squared L2 reg

Figure 9.4: Under the same setting as in Figure 9.3, we illustrate that Model BPG when applied on robust
phase retrieval problems, with both L1 and squared L2 regularization, results in sequences with monotonically
decreasing Lyapunov function evaluations, thus validating Proposition 9.5.2.1. By reg we mean regularization,
and by Lyapunov f.v. we mean Lyapunov function values.

with L1 ≥ 2
∑M
i=1 λmax(Ai)

M . We use a constant step-size τk = τ such that τ ∈ (0, 1/L1). All the other
assumptions of Model BPG are straightforward to verify and we leave it as an exercise to the reader. In each
iteration of Model BPG, subproblems take the following form:

Argmin
x∈RN

{
1

M

M∑
i=1

∣∣yTAiy − bi + 〈2Aiy, x− y〉
∣∣+R(x) +

1

2τ
‖x− y‖2

}
,

which we solve using Primal-Dual Hybrid Gradient algorithm (PDHG) [143]. The empirical results are
reported in Figure 9.3, where we illustrate the better performance of Model BPG based methods compared to
IBPM-LS [138] on robust phase retrieval problems. We empirically validate Proposition 9.5.2.1 in Figure 9.4.
Note that here int domh = RN , thus the condition ωint domh(x0) = ω(x0) holds trivially.

9.7.3 Poisson linear inverse problems

We now consider a broad class of problems with varied practical applications, known as Poisson inverse
problems [10, 18, 131, 139]. The problem setting is as follows. For all i = 1, . . . ,M , let bi > 0, ai 6= 0 and
ai ∈ RN+ be known. Moreover, we have for any x ∈ RN+ , 〈ai, x〉 > 0 and

∑M
i=1(ai)j > 0, for all j = 1, . . . , N ,

i = 1, . . . ,M . Equipped with these notions, one can write the optimization problem of Poisson linear inverse

144 9.7. Experiments

problems as following:

min
x∈R+

{
f(x) :=

M∑
i=1

(〈ai, x〉 − bi log(〈ai, x〉)) + φ(x)

}
, (9.7.9)

where φ is the regularizing function, which is potentially non-convex. For simplicity, we set φ = 0. The
function f1 : RN → R at any x ∈ RN is defined as following:

f1(x) :=
M∑
i=1

(〈ai, x〉 − bi log(〈ai, x〉)) .

Note that the function f1 is coercive. Since f1 is a continuous function, its level set restricted to R+, i.e.,
C := {x ≥ 0 : f1(x) ≤ f1(x0)} is compact, for any x0 ∈ R+. In order to apply Model BPG, we need h such
that the MAP property is satisfied. We consider the Legendre function h : RN++ → R that is given by

h(x) = −
N∑
i=1

log(xi) , for all x ∈ RN++, (9.7.10)

where xi is the ith coordinate of x. The above given function h is also known as Burg’s entropy. Consider the
following lemma.

Lemma 9.7.3.1. Let h be defined as in (9.7.10). For L ≥ ∑M
i=1 bi, the function Lh − f1 and Lh + f1 is

convex on RN++, or equivalently the following L-smad property or the MAP property holds true:

− LDh(x, x̄) ≤ f1(x)− f1(x̄)− 〈∇f1(x̄), x− x̄〉 ≤ LDh(x, x̄) , for all x, x̄ ∈ RN++ . (9.7.11)

Proof. The proof of convexity of Lh− f1 follows from [10, Lemma 7]. The function Lh+ f1 is convex as f1 is
convex.

When Model BPG is applied to solve (9.7.9) with h given in (9.7.10), if the limit points of the sequence
generated by Model BPG lie in int domh, our global convergence result is valid. However, it is difficult to
guarantee such a condition. This is because, there can exist subsequences for which certain components of the
iterates can tend to zero. In such a scenario, some components of ∇2h(xk) will tend to ∞, which will lead to
the failure of the relative error condition in Lemma 9.5.3.1. In that case, our analysis cannot guarantee the
global convergence of the sequence generated by Model BPG.

Thus, in such a scenario it is important to guarantee that the iterates of Model BPG lie in RN++. To this
regard, we modify the problem (9.7.9), by adding certain constraint set, such that all the limit points lie in
int domh. Then, the global convergence of the sequence generated by Model BPG sequence can be guaranteed.
The full objective after the modification is provided below

min
x∈RN

{
f(x) := δCε(x) +

M∑
i=1

(〈ai, x〉 − bi log(〈ai, x〉)) + φ(x)

}
, (9.7.12)

where for certain ε > 0 we denote

Cε = {x : xi ≥ ε, ∀i = 1, . . . , N} ,

Chapter 9. Model BPG 145

and δCε(·) is the indicator function of the set Cε. We consider φ = 0 or φ(x) = λ‖x‖1 or φ(x) = λ‖x‖
2

2 , with
certain λ > 0. Note that Cε ⊂ R+. For practical purposes, Cε is almost the same as R+, when ε is chosen
sufficiently small. Note that the choice of ε is only heuristic. To this end, with x̄ ∈ Cε, we consider the
following model function which, when evaluated at x gives:

f(x; x̄) := δCε(x) + f1(x̄) + 〈∇f1(x̄), x− x̄〉+ φ(x) . (9.7.13)

The Legendre function in (9.7.10) is still valid as Cε ⊂ R+, and the MAP property holds true as a consequence
of Lemma 9.7.3.1. The coercivity of the function f along with Proposition 9.3.0.1 implies that the iterates of
Model BPG will lie in the compact convex set {x : f(x) ≤ f(x0)}. Thus, the sequence generated by Model
BPG is bounded. The analysis falls under the category of additive composite problems given in Section 9.6.1,
where we set f1 := f1 and f0(·) := δCε(·) + φ(·). In the earlier discussion, we have proved the crucial
assumptions for applying Model BPG to Poisson linear inverse problems. The rest of the assumptions in
Theorem 10.5.1.1 are straightforward to verify and we leave it as an exercise to the reader. We now provide
closed form expressions for the update step (9.3.4) in three settings of φ.

Closed form update step - No regularization. Set φ = 0. The update step of Model BPG involves
solving the following subproblem:

xk+1 ∈ argminx δCε(x) + f(xk) + 〈∇f(xk), x− xk〉+
1

τk
Dh(x, xk) .

The optimality condition for the ith component of xk+1 due to Fermat’s rule is given by

0 = (vk+1)i +∇f(xk)i +
1

τk

(1

(xk)i
− 1

(xk+1)i

)
,

for some vk+1 ∈ NCε(xk+1). Thus, we deduce that with τk chosen such that 1 + τk∇f(xk)i(xk)i > 0, for
i = 1, . . . , N , the solution is given by

xk+1 = max

{
ε,

xk
1 + τk∇f(xk)xk

}
, (9.7.14)

where all the operations are performed element-wise.

Closed form update step - L1 regularization. We consider here the standard L1 regularization setting,
where with certain λ > 0 we set φ(x) = λ‖x‖1. The update step of Model BPG involves solving the following
subproblem:

xk+1 ∈ argminx δCε(x) + λ‖x‖1 + f(xk) + 〈∇f(xk), x− xk〉+
1

τk
Dh(x, xk) .

Based on [10, Section 5.2] and Fermat’s rule we deduce that with τk chosen such that 1 + τkλ(xk)i +

τk∇f(xk)i(xk)i > 0, for i = 1, . . . , N , the closed form solution is given by

xk+1 = max

{
ε,

xk
1 + τkλxk + τk∇f(xk)xk

}
, (9.7.15)

where all the operations are performed element-wise.

146 9.7. Experiments

(a) L1 regularization (b) Squared L2 regularization (c) No regularization

Figure 9.5: In this experiment we compare the performance of Model BPG, Model BPG with Backtracking
(denoted as Model BPG-WB) and IBPM-LS [138] on Poisson linear inverse problems with L1 regularization,
squared L2 regularization and with no regularization. We set the regularization parameter λ to 0.1. The
plots illustrate that Model BPG-WB is faster in all the settings, followed by Model BPG.

(a) L1 regularization (b) Squared L2 regularization (c) No regularization

Figure 9.6: By Lyapunov f.v. we mean Lyapunov function values. Under the same setting as in Figure 9.5,
we illustrate here that Model BPG results in sequences that have monotonically nonincreasing Lyapunov
function value evaluations.

Closed form update step - L2 regularization. We consider here the standard L2 regularization setting,
where with certain λ > 0 we set φ(x) = λ

2‖x‖22. The update step of Model BPG involves solving the following
subproblem:

xk+1 ∈ argminx δCε(x) +
λ

2
‖x‖22 + f(xk) + 〈∇f(xk), x− xk〉+

1

τk
Dh(x, xk) .

The optimality condition for the ith component of xk+1 due to Fermat’s rule is given by

0 = (vk+1)i + λ(xk+1)i +∇f(xk)i +
1

τk

(1

(xk)i
− 1

(xk+1)i

)
,

for some vk+1 ∈ NCε(xk+1). Based on [10, Section 5.2] we deduce that with τk chosen such that 1 +

τk∇f(xk)i(xk)i + τkλε > 0, for i = 1, . . . , N , the closed form solution is given by

xk+1 = max

ε,
√

(1 + τkxk∇f(xk))2 + 4λτkx
2
k − (1 + τkxk∇f(xk))

2λτkxk

 , (9.7.16)

Chapter 9. Model BPG 147

where all the operations are performed element-wise.

The empirical results are reported in Figure 9.5, where we illustrate the better performance of Model BPG
based methods compared to IBPM-LS [138], when applied on Poisson linear inverse problems. We empirically
validate Proposition 9.5.2.1 in Figure 9.6. Note that here int domh = RN++. Based on the aforementioned
closed form solutions it is clear that the sequence generated by Model BPG lies in Cε. The condition
Cε ⊂ int domh implies that ωint domh(x0) = ω(x0) holds true.

9.8 Chapter conclusion

Bregman proximal minimization framework is prominent in solving additive composite problems, in particular,
using BPG [28] algorithm or its variants (Chapter 5). However, extensions to generic composite problems
was an open problem. To this regard, based on foundations of [60, 139], we proposed Model BPG algorithm
that is applicable to a vast class of non-convex non-smooth problems, including generic composite problems.
Model BPG relies on certain function approximation, known as model function, which preserves first order
information about the function. The model error is bounded via certain Bregman distance, which drives the
global convergence analysis of the sequence generated by Model BPG. The analysis is nontrivial and requires
significant changes compared to the standard analysis of [6, 7, 26, 28]. Moreover, we numerically illustrate
the superior performance of Model BPG on various real world applications.

Chapter 10

Inertial Model BPG

10.1 Abstract . 149
10.2 Introduction . 149

10.2.1 Contributions . 150
10.2.2 Related work . 150

10.3 Model CoCaIn BPG . 150
10.3.1 Implementation and double backtracking . 151

10.4 Global convergence analysis of Model CoCaIn BPG . 152
10.4.1 Descent property . 152
10.4.2 Relative error condition . 153
10.4.3 Subsequential convergence . 153
10.4.4 Global convergence . 155
10.4.5 Convergence rates . 155

10.5 Examples . 156
10.5.1 Additive composite problems . 156
10.5.2 Composite problems . 157

10.6 Experiments . 157
10.7 Chapter conclusion . 158

10.1 Abstract

In this chapter, we propose an inertial variant of the Model BPG algorithm. In particular, we use the inertial
technique of CoCaIn BPG algorithm along with Model BPG, to propose Model CoCaIn BPG algorithm. We
also show that the sequence generated by Model CoCaIn BPG is globally convergent to a critical point of the
function. We use similar convergence analysis techniques used in Model BPG and CoCaIn BPG convergence
analysis, however, using a new Lyapunov function. We also supplement our theory with empirical results
on robust phase retrieval problem, where we show that when function value vs iterations is considered, the
Model CoCaIn BPG outperforms other state of the art optimization methods.

10.2 Introduction

We continue the setting of Chapter 9. In this chapter, we answer the question “Can we incorporate Nesterov’s
inertia into Model BPG?”. In this regard, we incorporate the inertial strategy of CoCaIn BPG (proposed in

149

150 10.3. Model CoCaIn BPG

Chapter 5) in Model BPG setting to propose Model CoCaIn BPG. As mentioned in Chapter 9, the Model
BPG framework is helpful in a unified analysis of several objectives, in particular the objectives arising in
additive composite problems and composite problems. Thus, Model BPG can be used as a foundation to
propose and analyse related algorithms, which otherwise need to be explored for each individual problem
setting.

The crucial idea behind Model CoCaIn BPG is that the local lower and upper bounds of the function in
the MAP property can be leveraged to use appropriate inertia, similar to CoCaIn BPG algorithm using
the bounds in the L-smad property. In particular, the lower bounds governs the inertial parameter and the
upper bound governs the step-size parameter. A straightforward advantage of Model CoCaIn BPG is the
ready applicability to generic composite problems, whereas CoCaIn BPG is valid only for additive composite
problems.

10.2.1 Contributions

Our main contribution is the proposal of Model CoCaIn BPG. Even though the high level idea of its
convergence analysis remains the same as that of Model BPG, there are few significant changes that are
crucial, which we detail below.

• Firstly, the Lyapunov function used for Model BPG analysis is not suitable anymore. Thus, we propose
a new Lyapunov function which incorporates the inertial nature of Model CoCaIn BPG via a dependency
on the inertial parameter.

• The analysis of CoCaIn BPG relies on a Lyapunov function that includes additive components of the
objective function and the Bregman distance upto a scaling factor. However, as mentioned in the
Model BPG setting, using the objective value in the measure of progress can be restrictive for analyzing
generic composite setting. Thus, the Lyapunov function we use has additive components that involve
the model function rather than the function. We note that we heavily rely on the ideas used in the
CoCaIn BPG analysis (Chapter 5) to prove the descent property for the Lyapunov function.

• A new semi-convexity assumption (see Assumption L) of the model function is considered for the
analysis of Model CoCaIn BPG and it is strictly weaker than the condition considered for CoCaIn BPG
convergence analysis.

10.2.2 Related work

Using the Nesterov’s inertial strategy [15, 126], in this chapter we propose Model CoCaIn BPG, an inertial
variant of the Model BPG. The theoretical tools [136] we used for the global convergence analysis of Model
CoCaIn BPG are essentially the same as that of Model BPG (Chapter 9). Our work generates ideas that
can possibly be used to analyse several similar algorithms. For example, various other inertial variants using
Polyak’s momentum [145] or regularized nonlinear acceleration technique [153] can be analysed using similar
ideas as that of Model CoCaIn BPG.

10.3 Model CoCaIn BPG

In addition to Assumptions F, G, I, J, K in Chapter 9, we also require the following assumption.

Assumption L (Algorithm). We make the following assumptions:

Chapter 10. Inertial Model BPG 151

(i) For any x̄ ∈ int domh ∩ dom f , the function f(x; x̄)− α(x̄)
2 ‖x‖22 is convex for certain constant α(x̄) ≤ 0.

(ii) For all x1, x2 ∈ dom f ∩ int domh, there exists γ ∈ [0, 1] such that y := x1 + γ(x1 − x2) lies in
dom f ∩ int domh.

Based on the above assumption, we propose the following algorithm.

Algorithm 8: Model CoCaIn BPG: Model based CoCaIn Bregman Proximal Gradient

• Initialization: Select x0 = x1 ∈ dom f ∩ int domh. Choose τ , τ̄ such that 0 < τ < τ̄ < (1/L̄). Set
δ, ε > 0 with 1 > δ > ε and L̄0 ≥ −α(x0)

(1−δ)σ .

• For each k ≥ 1: Compute

yk = xk + γk (xk − xk−1) ∈ int domh, (10.3.1)

where γk is chosen such that

(δ − ε)Dh (xk−1, xk) ≥ (1 + Lkτk−1)Dh (xk, yk) (10.3.2)

holds and such that Lk satisfies

f(xk) ≥ f(xk; yk)− LkDh (xk, yk) . (10.3.3)

• Now, choose L̄k ≥ max
{
L̄k−1,

−α(yk)
(1−δ)σ

}
, set τk ≤ min

{
τk−1, L̄

−1
k

}
and compute

xk+1 ∈ Argmin
x∈RN

{
f(x; yk) +

1

τk
Dh (x, yk)

}
(10.3.4)

with L̄k fulfilling
f(xk+1) ≤ f(xk+1; yk) + L̄kDh (xk+1, yk) . (10.3.5)

The steps are essentially the same as that of CoCaIn BPG, however the update step is similar to Model BPG.
For brevity, we skip the discussion regarding the steps of the algorithm.

10.3.1 Implementation and double backtracking

The crucial aspect of Model CoCaIn BPG is the double backtracking technique. Note that there are two
backtracking steps in the algorithm, one to control step-size and the other to control inertia. The standard way
of doing double backtracking might not be feasible as pointed out in Chapter 5, however double backtracking
technique from CoCaIn BPG (see Chapter 5) makes this feasible. We extend this strategy to incorporate the
model function hence the name Model CoCaIn BPG. The implementation of Model CoCaIn BPG is similar
to the implementation of CoCaIn BPG (see Section 5.6.4), with only involving minor modification due to the
usage of model functions. Thus, we skip the discussion here. Note that when γk = 0 in Model CoCaIn BPG,
then the resulting algorithm is Model BPG with Backtracking.

152 10.4. Global convergence analysis of Model CoCaIn BPG

10.4 Global convergence analysis of Model CoCaIn BPG

10.4.1 Descent property

Similar to Model BPG, we use a Lyapunov function in order to analyse Model CoCaIn BPG. Here, with
δ > 0 we consider the following Lyapunov function:

GhL̄ : RN × RN × RN × R× R× R→ R ,
(x1, x2, x3, γ, τ, θ)→ τ (f(x1; y) + θDh(x1, y)− v(PM)) + δDh (x2, x1) .

where y = x2 + γ(x2 − x3) for certain γ ∈ R. Firstly, we need the following technical result.

Lemma 10.4.1.1 (Function descent property). Let (xk)k∈N be a sequence generated by Model CoCaIn BPG.
Then, for all k ∈ N, we have

f(xk; yk−1) + L̄k−1Dh(xk, yk−1) ≥ f (xk+1; yk) + L̄kDh(xk+1, yk) +
α(yk)

2
‖xk+1 − xk‖22

+
1

τk
Dh (xk, xk+1)−

(
1

τk
+ Lk

)
Dh (xk, yk) . (10.4.1)

The proof is provide in Section G.1 in the appendix.

We now provide the descent property in terms of Lyapunov function values for the sequence generated by
Model CoCaIn BPG.

Proposition 10.4.1.1. Let (xk)k∈N be a sequence generated by Model CoCaIn BPG. Then, for all k ∈ N,
we have

GhL̄
(
xk, xk−1, xk−2, γk−1, τk−1, L̄k−1

)
≥ GhL̄

(
xk+1, xk, xk−1, γk, τk, L̄k

)
+ εDh (xk−1, xk) . (10.4.2)

Proposition 10.4.1.2. Let (xk)k∈N be a sequence generated by Model CoCaIn BPG. Then, the following
assertions hold:

(i) The sequence
{
Gh
L̄

(
xk+1, xk, xk−1, γk, τk, L̄k

)}
k∈N is nonincreasing.

(ii)
∑∞

k=1Dh (xk−1, xk) <∞, and hence the sequence {Dh (xk−1, xk)}k∈N converges to zero.

(iii) min1≤k≤nDh (xk−1, xk) ≤
Gh
L̄(x1,x0,x−1,γ0,τ0,L̄0)

(εn) .

Proof. (i) This follows trivially from Proposition 10.4.1.1, since ε > 0.

(ii) Let n be a positive integer. Summing (10.4.2) from k = 1 to n we get

n∑
k=1

Dh (xk−1, xk) ≤
1

ε

(
GhL̄
(
x1, x0, x−1, γ0, τ0, L̄0

)
−GhL̄

(
xn+1, xn, xn−1, γn, τn, L̄n

))
≤ 1

ε
GhL̄
(
x1, x0, x−1, γ0, τ0, L̄0

)
,

since Gh
L̄

(
xn+1, xn, xn−1, γn, τn, L̄n

)
≥ 0. Taking the limit as n → ∞, we obtain the first desired

assertion, from which we immediately deduce that {Dh (xk−1, xk)}k∈N converges to zero.

Chapter 10. Inertial Model BPG 153

(iii) From (B.4.1) we also obtain,

n min
1≤k≤n

Dh (xk−1, xk) ≤
n∑
k=1

Dh (xk−1, xk) ≤
1

ε
GhL̄
(
x1, x0, x−1, γ0, τ0, L̄0

)
,

which after division by n yields the desired result.

Note that there is a finite increase of L̄k in each iteration. This implies that after a finite number of iterations
there is no increase in the value of L̄k, resulting in stagnant value of τk. This means, there exists a K > 1,
such that for all k ≥ K, we set τk = τ .

For a comprehensive discussion, please see Section 5.6.2. Thus, for k ≥ K, we use the Lyapunov function
Gh
L̄

: RN × RN × RN × R→ R that is given by

GhL̄(x, y, z, γ) := f(x; y1) + L̄Dh(x, y1) + δ1Dh (y, x)

where δ1 = δ
τ , x, y, z ∈ dom f ∩ int domh, γ ∈ [0, 1] satisfying y1 := y + γ(y − z) ∈ dom f ∩ int domh and

∞ otherwise. Without loss of generality, we denote k ≥ K as k ≥ 1, as the subsequent analysis relies only
on Gh

L̄
defined above. Note that we removed the dependency on τk, L̄k in the Lyapunov function, as L̄k, τk

become constant.

Proposition 10.4.1.3. Let (xk)k∈N be a sequence generated by Model CoCaIn BPG. Then, the following
assertions hold for k ≥ 1 :

(i) The sequence
{
Gh
L̄

(xk, xk−1, xk−2, γk−1)
}
k∈N is nonincreasing.

(ii)
∑∞

k=1Dh (xk−1, xk) <∞, and hence the sequence {Dh (xk−1, xk)}k∈N converges to zero.

(iii) min1≤k≤nDh (xk−1, xk) ≤
Gh
L̄

(x1,x0,x−1,γ0)−v(PM)

(εn) .

Proof. The proof is similar to the proof of Proposition 10.4.1.2, thus we skip it.

10.4.2 Relative error condition

We now consider the relative error condition, that is crucial for the global convergence analysis of Model
CoCaIn BPG.

Lemma 10.4.2.1. Let Assumptions F, G, I hold and let h ∈ C2. Then, there exists a constant D1, D2, B1, B2 >

0 such that the following holds:

‖∂GhL̄ (xk+1, xk, xk−1, γk) ‖− ≤ D1‖xk+1 − xk‖2 +D2‖xk − xk−1‖2 +B1‖(xk+1 − xk)‖22 +B2‖(xk − xk−1)‖22 ,
(10.4.3)

where ‖∂Gh
L̄

(xk+1, xk, xk−1, γk) ‖− := infζ∈∂Gh
L̄

(xk+1,xk,xk−1,γk) ‖ζ‖.

The proof of the above lemma is provided in Section G.3 in the appendix.

10.4.3 Subsequential convergence

We now show that the sequence generated by Model CoCaIn BPG (xk)k∈N indeed attains ‖xk+1−xk‖ → 0 as
k →∞, which in turn enables the application of Proposition 9.5.4.1 to deduce the properties of the sequence
generated by Model BPG, which later proves to be crucial for the proof of global convergence.

154 10.4. Global convergence analysis of Model CoCaIn BPG

Proposition 10.4.3.1. Let Assumption F, G, I hold. Let (xk)k∈N be a sequence generated by Model CoCaIn
BPG. Then, we have

εDh(xk+1, xk)→ 0 , as k →∞ . (10.4.4)

The condition ε > 0 implies that xk+1 − xk → 0 as k →∞.

Proof. Note that the sequence (xk)k∈N is a bounded sequence (see Remark 9.3.0.2). By the descent property
(Proposition 10.4.2) we have

GhL̄ (xk, xk−1, xk−2, γk−1) ≥ GhL̄ (xk+1, xk, xk−1, γk) + εDh (xk−1, xk) .

Summing on both sides and due to the convergence of Lyapunov function, using Proposition 10.4.2, we obtain

∞∑
k=1

(
εDh(xk+1, xk)

)
≤ GhL̄(x0, x−1, x−2, γ−1)− lim

k→∞
GhL̄ (xk+1, xk, xk−1, γk) <∞ ,

which implies (10.4.4). For ε > 0, Assumption I(iii) together with (10.4.4) imply xk+1−xk → 0 as k →∞.

Analyzing the full set of limit points of the sequence generated by Model CoCaIn BPG is difficult, as illustrated
in [139]. Obtaining the global convergence is still an open problem. Moreover, the work in [139] relies on
convex model functions.

In order to simplify slightly the setting, we restrict the set of limit points to the set int domh. Such a choice
may appear to be restrictive, however, Model BPG when applied to many practical problems results in
sequences that have this property as illustrated in Section 9.7.

The subset of Gh
L̄
-attentive (similar to f -attentive) limit points is

ωGh
L̄
(x0) :=

{
(x, y, z, γ) ∈ RN × RN × RN × [0, 1]

| ∃K ⊂ N : (xk, xk−1, xk−2, γk, G
h
L̄(xk, xk−1, xk−2, γk−1))→

K
(x, y, z, γ,GhL̄(x, y, z, γ))

}
.

Also, we define ω(int domh)3×[0,1]

Gh
L̄

:= ωGh
L̄
∩ (int domh× int domh× int domh× [0, 1]).

Proposition 10.4.3.2. Let Assumptions F, G, I hold. Let (xk)k∈N be a sequence generated by Model CoCaIn
BPG with γk → γ. Then, the following holds:

(i) ωint domh(x0) = ωint domh
f (x0),

(ii) x ∈ ωint domh
f (x0) if and only if (x, x, x, γ) ∈ ω(int domh)3×[0,1]

Gh
L̄

(x0).

(iii) Gh
L̄
is constant and finite on ω

(int domh)3×[0,1]

Gh
L̄

(x0) and f is constant and finite on ωint domh
f (x0) with

same value.

The proof is provided in Section G.4 in the appendix. The set of critical points of Gh
L̄
is denoted as

crit (GhL̄) :=
{

(x, y, z, γ) ∈ RN × RN × RN × [0, 1] : (0, 0, 0, 0) ∈ ∂GhL̄(x, y, z, γ)
}
.

Chapter 10. Inertial Model BPG 155

Theorem 10.4.3.1 (Sub-sequential convergence to a stationary point). Let Assumptions F, G, I hold and
let ε > 0. If the sequence (xk)k∈N generated by Model CoCaIn BPG is bounded then

ω
(int domh)3×[0,1]

Gh
L̄

(x0) ⊂ crit (GhL̄) . (10.4.5)

Proof. From (10.4.3), we have

‖∂GhL̄(xk+1, xk, xk−1, γk)‖− ≤D1‖xk+1 − xk‖2 +D2‖xk − xk−1‖2
+B1‖xk+1 − xk‖22 +B2‖xk − xk−1‖22

(10.4.6)

for some constants D1, D2, B1, B2 > 0. Using ‖xk+1 − xk‖2 → 0 and ‖xk − xk−1‖2 → 0 and Proposi-
tion 10.4.3.2(i) yields (10.4.5), by the closedness property of the limiting subdifferential .

10.4.4 Global convergence

Using the similar strategy as in Lemma 9.5.5.1, under Assumption J it is straightforward to deduce that the
Lyapunov function Gh

L̄
is definable in O, and satisfies KL property at any point of dom ∂Gh

L̄
. Based on the

strategy used in the proof of Theorem 9.5.5.2, we arrive at the following global convergence result of Model
CoCaIn BPG.

Theorem 10.4.4.1 (Global convergence to a stationary point under KL property). Let Assumptions F, G, I,
J, K hold. Let the sequence (xk)k∈N be generated by Model CoCaIn BPG (Algorithm 8) with τk = τ for certain
τ > 0, γk → γ for certain γ > 0, and the condition ωint domh(x0) = ω(x0) holds true. Then, convergent
subsequences are Gh

L̄
-attentive convergent, and

∞∑
k=0

‖xk+1 − xk‖ < +∞ (finite length property) .

Moreover, the sequence (xk)k∈N converges to x such that (x, x, x, γ) is a critical point of Gh
L̄
. Additionally,

the point x is a critical point of f .

The proof is provided in Section G.5 in the appendix.

10.4.5 Convergence rates

It is possible to deduce the following convergence rates for Model CoCaIn BPG for a certain class of
desingularizing functions.

Theorem 10.4.5.1 (Convergence rates). Under the conditions of Theorem 10.4.4.1, let the sequence (xk)k∈N
generated by Model CoCaIn BPG converge to x ∈ dom f ∩ int domh, and let the Lyapunov function Gh

L̄
satisfy

Kurdyka–Łojasiewicz property with the following desingularizing function:

ϕ(s) = cs1−θ ,

for certain c > 0 and θ ∈ [0, 1). Then, we have the following:

• If θ = 0, then (xk)k∈N converges in finite number of steps.

156 10.5. Examples

• If θ ∈ (0, 1
2], then there exists ρ ∈ [0, 1) and G > 0 such that for all k ≥ 0 we have

‖xk − x‖ ≤ Gρk .

• If θ ∈ (1
2 , 1), then there exists G > 0 such that for all k ≥ 0 we have

‖xk − x‖ ≤ Gk−
1−θ
2θ−1 .

The proof technique remains the same as that of Theorem 9.5.7.1, hence we skip it for brevity.

10.5 Examples

Similar to the Chapter 9, we consider examples suitable for Model CoCaIn BPG. In particular, we consider
the additive composite problems and the generic composite problems.

10.5.1 Additive composite problems

We consider the same setting as in 9.6.1. We require the following assumption, apart from the assumptions
mentioned in 9.6.1.

(C̃1) f0 is semi-convex with modulus α ∈ R.

(C̃2) For all x1, x2 ∈ dom f ∩ int domh, there exists γ ∈ [0, 1] such that y := x1 + γ(x1 − x2) lies in
dom f ∩ int domh.

The adaptation of Model CoCaIn BPG to additive composite setting is provided below.

CoCaIn BPG is Model CoCaIn BPG (Algorithm 8) with

f(x; yk) := f0(x) + f1(yk) + 〈∇f1(yk), x− yk〉 . (10.5.1)

Clearly, the Assumption (C̃1) implies the Assumption L(i) and Assumption (C̃2) implies the Assumption L(ii).
As discussed above and in Section 9.6.1, Assumptions (C1), (C̃1), (C̃2), (C2), (B1), (B2), (B3) imply
Assumptions F, G, I, J, K. Thus, as a consequence of Theorem 10.4.4.1 we obtain the following result which
provides the global convergence of the sequence generated by CoCaIn BPG to a stationary point.

Theorem 10.5.1.1 (Global convergence of CoCaIn BPG sequence). Let Assumptions (C1), (C̃1), (C̃2),
(C2), (B1), (B2), (B3) hold. Let the sequence (xk)k∈N be generated by CoCaIn BPG and the condition
ωint domh(x0) = ω(x0) holds true. Let τk → τ for certain τ > 0. Then, the sequence (xk)k∈N has finite length,
that is ∞∑

k=0

‖xk+1 − xk‖ < +∞ ,

and the sequence (xk)k∈N converges to x, which is a critical point of f .

The conclusion we obtained in Chapter 5 matches with the above theorem.

Chapter 10. Inertial Model BPG 157

10.5.2 Composite problems

We consider the same setting as in 9.6.2. We require the following assumption, apart from the assumptions
mentioned in 9.6.2.

(D̃1) f0 is semi-convex with modulus α1 ∈ R.

(D̃2) Let x̄ ∈ RN , then g(F (x̄) + ∇F (x̄)(· − x̄) is semi-convex with modulus α2(x̄) ≤ 0. Additionally,
supx̄∈RN (−α2(x̄)) < +∞.

(D̃3) For all x1, x2 ∈ dom f ∩ int domh, there exists γ ∈ [0, 1] such that y := x1 + γ(x1 − x2) lies in
dom f ∩ int domh.

Prox-Linear CoCaIn BPG is Model CoCaIn BPG (Algorithm 8) with

f(x; yk) := f0(x) + g(F (yk) +∇F (yk)(x− yk)) . (10.5.2)

Using the Assumption (D̃1) and (D̃2), at x̄ ∈ dom f ∩ int domh, we deduce that the semi-convexity modulus
of f(· ; x̄) is α1 + α2(x̄). Thus, the Assumption L(i) holds true. Clearly, the Assumption (C̃2) implies the
Assumption L(ii).

As discussed above and in Section 9.6.2, Assumptions (D1), (D2), (D3), (D̃1), (D̃2), (D̃3), (B1), (B2), (B3)
imply Assumptions F, G, I, J, K. Thus, as a consequence of Theorem 10.4.4.1 we obtain the following result
which provides the global convergence of the sequence generated by Prox-Linear CoCaIn BPG to a stationary
point.

Theorem 10.5.2.1 (Global convergence of Prox-Linear CoCaIn BPG sequence). Let Assumptions (D1),
(D2), (D3), (D̃1), (D̃2), (D̃3), (B1), (B2), (B3) hold. Let the sequence (xk)k∈N be generated by Prox-Linear
CoCaIn BPG and the condition ωint domh(x0) = ω(x0) holds true. Let τk → τ for certain τ > 0. Then, the
sequence (xk)k∈N has finite length, that is

∞∑
k=0

‖xk+1 − xk‖ < +∞ ,

and the sequence (xk)k∈N converges to x, which is a critical point of f .

10.6 Experiments

For the additive composite problems, the experiments in Chapter 5 illustrate that CoCaIn BPG is competitive
to several existing state of the art optimization methods. For generic composite problems, we consider the
same experiment as in Section 9.7.2 where we considered the robust phase retrieval problem. However, we
additionally use Model CoCaIn BPG to the comparisons, and as evident from Figures 10.1, Model CoCaIn
BPG outperforms Model BPG, Model BPG-WB and IBPM-LS methods, when function values vs iterations
are considered.

158 10.7. Chapter conclusion

(a) L1 reg (b) Squared L2 reg

(c) L1 reg (d) Squared L2 reg

Figure 10.1: In this experiment we consider the performance of Model CoCaIn BPG vs Model BPG vs
Model BPG with Backtracking (denoted as Model BPG-WB) vs IBPM-LS [138] on robust phase retrieval
problem setting given in Section 9.7.2, with both L1 and squared L2 regularization. We illustrate that Model
CoCaIn BPG outperforms IBPM-LS by a significant margin and other methods by a small margin, in terms
of function value vs iterations. However, when function value vs time plots are considered, Model BPG is
faster compared to Model CoCaIn BPG.

10.7 Chapter conclusion

In this chapter, we propose an inertial variant of Model BPG algorithm, namely, Model CoCaIn BPG. The
inertial strategy used is the same as that of CoCaIn BPG. For the purpose of global convergence analysis
of Model CoCaIn BPG, a novel Lyapunov function is proposed and the global convergence guarantees are
obtained. As a special case of Model CoCaIn BPG, in the context of generic composite problems we obtain
a novel algorithm, namely, Prox-Linear CoCaIn BPG. We supplement our theoretical developments with
appropriate experiments and show that Model CoCaIn BPG is competitive to Model BPG and other state of
the art optimization methods. As a future work, extensions of Model BPG based on the popular inertial
technique of Polyak’s Heavy-ball method [145] can be explored.

Chapter 11

Conclusion and outlook

11.1 Conclusion . 159
11.2 Outlook . 160

11.1 Conclusion

In this thesis, we focussed on non-convex and non-smooth optimization. Based on the L-smad property, a
generalization of the Lipschitz continuous gradient property, we propose an inertial variant of the popular
BPG algorithm, namely the CoCaIn BPG algorithm. We also show that the sequence generated by CoCaIn
BPG is globally convergent. The applicability of the L-smad property is restricted to additive composite
problems. In order to tackle composite problems, we develop an extension of the L-smad property, namely
the MAP property. The transition from the L-smad property to the MAP property has many important
consequences. In particular, one can design algorithms for generic composite problems using just the MAP
property via the so-called model framework. We developed the relevant theory and propose the Model BPG
algorithm based on the MAP property. We also show that under certain assumptions such that the Model
BPG sequence is globally convergent to a critical point of the function. Later on, incorporating the ideas
of CoCaIn BPG and Model BPG, we develop Model CoCaIn BPG that is essentially an inertial variant of
Model BPG algorithm. Considering the practical component of the thesis, a major part of the thesis has
been dedicated to the optimization of the objectives that arise in the context of matrix factorization, deep
matrix factorization and deep non-linear neural networks. Other practical applications such Poisson linear
inverse problems, standard phase retrieval, robust phase retrieval, image deblurring etc were also considered.
For most of the above mentioned problems, we develop the relevant Bregman distances such that either
the L-smad property or the MAP property holds true. Developing such Bregman distances entails further
technical issues, such as developing closed form solutions for the sub-problems that arise in BPG based
methods and developing closed form inertia for CoCaIn BPG. All such issues were successfully tackled. The
Bregman distances proposed in this thesis have far reaching implications as they provide various insights into
designing new Bregman distances to problems similar to what we have considered in this thesis. For example,
Bregman distances for tensor factorization or tensor completion problems can be designed using similar ideas
of Section 4.5, 4.6. We analysed the Model BPG algorithm via a Lyapunov function contrary to the usual
technique of using the objective function as measure of progress. The exact implications of this technique need

159

160 11.2. Outlook

to be explored further and possibly several insights can be obtained for already known algorithms. We believe
our work has several important consequences for the fields of Machine Learning, Computer Vision, Statistics,
Natural Language Processing and many others. In particular, it would be interesting if certain future works
in these fields use our algorithms and benchmark with already known state of the art problem-dependent
algorithms.

11.2 Outlook

Our research can give rise to several new research problems. We list below a few of the them.

• Non-linear inertia: The inertial strategy that is used in CoCaIn BPG and Model CoCaIn BPG
is based on the linear extrapolation due to Nesterov. However, it is relevant to consider any other
strategies, where non-linear extrapolation can be incorporated. In particular, for the CoCaIn BPG
algorithm in Chapter 5, the extrapolation parameter is found such that the following inequality is
satisfied:

Dh(xk, yk) ≤ κDh(xk−1, xk) . (11.2.1)

for a constant κ > 0. However, for most of the proof of the global convergence of CoCaIn BPG, there
is no requirement that yk has to be a linear extrapolation. In principle, yk can possibly obtained via
some other strategy, such as non-linear extrapolation. Such strategies need to be explored in detail and
possible implications need to be deduced.

• Matrix factorization: The Bregman distances we proposed in the context of matrix factorization
in Section 4.5 arises after a lot of technical calculations. However, it is interesting to consider other
approaches where such long calculations can be avoided. We relied on comparing the second order
forms that arise in the Taylor expansion of the function in order to verify the L-smad property. In this
regard, it would be interesting to explore if there are any other alternative techniques.

• Deep non-linear neural networks: We considered the objectives that arise in the context of deep
non-linear neural networks and developed the relevant Bregman distances in Sections 4.7, 4.8. Our
empirical observations in Chapter 8 are only preliminary, and it would be interesting to conduct a
thorough comparisons of the algorithms on various deep neural networks, in particular using large scale
datasets. In such a case, the numerical issues that arise in BPG methods might prove to be a challenge
and novel techniques to resolves these issues must be sought. There are many other classes of deep
non-linear neural networks, such as residual networks for which our theory is not valid. Hence, such
extensions would be interesting and possibly a unified theory can be sought. Moreover, our analysis
does not consider the effect of bias terms in the linear layers, and appropriate Bregman distances in such
a realistic setting is interesting to be explored. The calculation of coefficients involved in the Legendre
functions proposed in Sections 4.7, 4.8 is quite cumbersome and in this regard efficient techniques must
be developed.

• Stochastic and adaptive variants of BPG for deep neural networks: It is well-established that
the stochastic gradient methods are suitable for large-scale machine learning problems [32]. Several
algorithms that rely on the so-called adaptive gradient technique, as in Adam [93], Adagrad [63],
SC-Adagrad [119] are popular when used in conjunction with stochastic gradients. It is interesting
to explore such a setting within the context of Bregman Proximal Gradient algorithms. Solving the
subproblems can be challenging here as the stochastic gradient obtained is used along with a rotation

Chapter 11. Conclusion and outlook 161

matrix. Recently, a variant of stochastic BPG was proposed in [55]. It would be interesting to see if
the Bregman distances proposed in this thesis are applicable in [55] setting. If not, suitable Bregman
distances needs to be developed.

Appendix A

Appendix for Bregman distances - Chapter 4

A.1 Technical lemmas and proofs

Before we proceed to the proof of Proposition 4.5.0.1 we require the following technical lemma.

Lemma A.1.0.1. Let f1 := 1
2 ‖A− UZ‖

2
F , then we have the following

∇f1(A,UZ) =
(
−(A− UZ)ZT ,−UT (A− UZ)

)
〈
(H1, H2),∇2f1(A,UZ)(H1, H2)

〉
= −2 〈A− UZ,H1H2〉+ 〈UH2 +H1Z,UH2 +H1Z〉 .

Proof. With the Forbenius dot product, we have

‖A− UZ‖2F = 〈A− UZ,A− UZ〉 .

In the above expression by substituting U with U +H1 and Z with Z +H2, we obtain

〈A− (U +H1)(Z +H2), A− (U +H1)(Z +H2)〉 ,
= 〈A− UZ − UH2 −H1Z −H1H2, A− UZ − UH2 −H1Z −H1H2〉 ,
= 〈A,A〉 − 〈A,UZ〉 − 〈A,UH2〉 − 〈A,H1Z〉 − 〈A,H1H2〉 ,
− 〈UZ,A〉+ 〈UZ,UZ〉+ 〈UZ,UH2〉+ 〈UZ,H1Z〉+ 〈UZ,H1H2〉
− 〈UH2, A〉+ 〈UH2, UZ〉+ 〈UH2, UH2〉+ 〈UH2, H1Z〉+ 〈UH2, H1H2〉
− 〈H1Z,A〉+ 〈H1Z,UZ〉+ 〈H1Z,UH2〉+ 〈H1Z,H1Z〉+ 〈H1Z,H1H2〉
− 〈H1H2, A〉+ 〈H1H2, UZ〉+ 〈H1H2, UH2〉+ 〈H1H2, H1Z〉+ 〈H1H2, H1H2〉 .

163

164 A.1. Technical lemmas and proofs

Collecting all the first order terms we have

− 〈A,UH2〉 − 〈A,H1Z〉+ 〈UZ,UH2〉+ 〈UZ,H1Z〉
− 〈UH2, A〉+ 〈UH2, UZ〉 − 〈H1Z,A〉+ 〈H1Z,UZ〉
= −〈A,H1Z〉+ 〈UZ,H1Z〉 − 〈H1Z,A〉+ 〈H1Z,UZ〉
− 〈A,UH2〉+ 〈UZ,UH2〉 − 〈UH2, A〉+ 〈UH2, UZ〉 ,
= −2 〈A,H1Z〉 − 2 〈A,UH2〉+ 2 〈UZ,H1Z〉+ 2 〈UZ,UH2〉 ,
= −2tr((A− UZ)ZTHT

1)− 2tr((A− UZ)HT
2 U

T) ,

= −2tr((A− UZ)ZTHT
1)− 2tr(UT (A− UZ)HT

2) ,

and similarly collecting all the second order terms we have

− 〈A,H1H2〉+ 〈UZ,H1H2〉+ 〈UH2, UH2〉+ 〈UH2, H1Z〉
+ 〈H1Z,UH2〉+ 〈H1Z,H1Z〉 − 〈H1H2, A〉+ 〈H1H2, UZ〉
= −2 〈A− UZ,H1H2〉+ 〈UH2 +H1Z,UH2 +H1Z〉 .

Thus the statement follows using the second order Taylor expansion.

Lemma A.1.0.2. Given h1 :=
(
‖U‖2F+‖Z‖2F

2

)2

, then we have the following

∇h1(U,Z) =
((
‖U‖2F + ‖Z‖2F

)
U,
(
‖U‖2F + ‖Z‖2F

)
Z
)
,

〈
(H1, H2),∇2h1(U,Z)(H1, H2)

〉
= (‖H1‖2F + ‖H2‖2F)(‖U‖2F + ‖Z‖2F) + 2

∥∥H1U
T + ZHT

2

∥∥2

F

Proof. By the definition of Forbenius dot product, we have

1

4
‖U‖4F +

1

4
‖Z‖4F +

1

2
‖U‖2F ‖Z‖2F =

1

4
〈U,U〉2 +

1

4
〈Z,Z〉2 +

1

2
〈U,U〉 〈Z,Z〉

Appendix A. Appendix for Bregman distances - Chapter 4 165

Now, considering h1(U +H1, Z +H2) we have

1

4
〈U +H1, U +H1〉2 +

1

4
〈Z +H2, Z +H2〉2 +

1

2
〈U +H1, U +H1〉 〈Z +H2, Z +H2〉

=
1

4
(〈U,U〉+ 2 〈H1, U〉+ 〈H1, H1〉)2 +

1

4
(〈Z,Z〉+ 2 〈Z,H2〉+ 〈H2, H2〉)2

+
1

2
(〈U,U〉+ 2 〈H1, U〉+ 〈H1, H1〉) (〈Z,Z〉+ 2 〈Z,H2〉+ 〈H2, H2〉)

=
1

4

(
〈U,U〉2 + 4 〈H1, U〉2 + 〈H1, H1〉2 + 2 〈H1, H1〉 〈U,U〉

+4 〈U,U〉 〈H1, U〉+ 4 〈H1, U〉 〈H1, H1〉)

+
1

4

(
〈Z,Z〉2 + 4 〈Z,H2〉2 + 〈H2, H2〉2 + 2 〈H2, H2〉 〈Z,Z〉

+4 〈Z,H2〉 〈Z,Z〉+ 4 〈Z,H2〉 〈H2, H2〉)

+
1

2
(〈U,U〉 〈Z,Z〉+ 2 〈U,U〉 〈Z,H2〉+ 〈U,U〉 〈H2, H2〉)

+
1

2
(2 〈H1, U〉 〈Z,Z〉+ 4 〈H1, U〉 〈Z,H2〉+ 2 〈H1, U〉 〈H2, H2〉)

+
1

2
(〈H1, H1〉 〈Z,Z〉+ 2 〈H1, H1〉 〈Z,H2〉+ 〈H1, H1〉 〈H2, H2〉)

Collecting all the first order terms, we have

〈U,U〉 〈H1, U〉+ 〈Z,H2〉 〈Z,Z〉+ 〈U,U〉 〈Z,H2〉+ 〈H1, U〉 〈Z,Z〉 ,

and similarly collecting all the second order terms we have

1

4

(
4 〈H1, U〉2 + 2 〈H1, H1〉 〈U,U〉+ 4 〈Z,H2〉2 + 2 〈H2, H2〉 〈Z,Z〉

)
+

1

2
(〈U,U〉 〈H2, H2〉+ 4 〈H1, U〉 〈Z,H2〉+ 〈H1, H1〉 〈Z,Z〉) ,

=
1

2

(
2 〈H1, U〉2 + (〈H1, H1〉+ 〈H2, H2〉)(〈U,U〉+ 〈Z,Z〉)

+2 〈Z,H2〉2 + 4 〈H1, U〉 〈Z,H2〉
)
,

=
1

2

(
(〈H1, H1〉+ 〈H2, H2〉)(〈U,U〉+ 〈Z,Z〉) + 2(〈H1, U〉+ 〈Z,H2〉)2

)
.

Thus the statement follows.

Lemma A.1.0.3. Given h2(U,Z) :=
‖U‖2F+‖Z‖2F

2 , then we have the following

∇h2(U,Z) = (U,Z) ,〈
(H1, H2),∇2h2(U,Z)(H1, H2)

〉
= ‖H1‖2F + ‖H2‖2F .

Proof. Considering h2(U +H1, Z +H2), we have

1

2
〈U +H1, U +H1〉+

1

2
〈Z +H2, Z +H2〉

=
1

2
(〈U,U〉+ 2 〈U,H1〉+ 〈H1, H1〉) +

1

2
(〈Z,Z〉+ 2 〈Z,H2〉+ 〈H2, H2〉) .

166 A.2. Proof of Proposition 4.5.0.1

Collecting all the first order terms we have

〈U,H1〉+ 〈Z,H2〉 ,

and similarly collecting all the second order terms we have

1

2
(〈H1, H1〉+ 〈H2, H2〉) .

Thus the statement holds.

A.2 Proof of Proposition 4.5.0.1

Proof. We prove here the convexity of Lha− f1 for a certain constant L ≥ 1. With Lemma C.4.0.1 we obtain〈
(H1, H2),∇2f1(A,UZ)(H1, H2)

〉
= ‖H1Z + UH2‖2F − 2 〈A− UZ,H1H2〉 ,
≤ 2 ‖H1Z‖2F + 2 ‖UH2‖2F + 2 ‖A‖F ‖H1H2‖F + 2 ‖UZ‖F ‖H1H2‖F ,

≤ 2 ‖H1‖2F ‖Z‖2F + 2 ‖U‖2F ‖H2‖2F + 2 ‖A‖F ‖H1‖F ‖H2‖F + 2 ‖U‖F ‖Z‖F ‖H1‖F ‖H2‖F .

With AM-GM inequality, for non-negative real numbers a, b we have 2
√
ab ≤ a+ b, we have

2 ‖U‖F ‖Z‖F ‖H1‖F ‖H2‖F ≤ ‖H1‖2F ‖Z‖2F + ‖U‖2F ‖H2‖2F ,

and similarly we have

2 ‖A‖F ‖H1‖F ‖H2‖F ≤ ‖A‖F ‖H1‖2F + ‖A‖F ‖H2‖2F .

Using the above two inequalities, we obtain〈
(H1, H2),∇2f1(A,UZ)(H1, H2)

〉
≤ (3 ‖Z‖2F + ‖A‖F) ‖H1‖2F + (3 ‖U‖2F + ‖A‖F) ‖H2‖2F . (A.2.1)

Now, considering the kernel generating distances, via Lemma D.3.2.1 and A.1.0.3 we obtain〈
(H1, H2),∇2h1(U,Z)(H1, H2)

〉
= 2 ‖H1U +H2Z‖2F + (‖U‖2F + ‖Z‖2F) ‖H1‖2F + (‖U‖2F + ‖Z‖2F) ‖H2‖2F
≥ ‖Z‖2F ‖H1‖2F + ‖U‖2F ‖H2‖2F ,

〈
(H1, H2),∇2h2(U,Z)(H1, H2)

〉
= ‖H1‖2F + ‖H2‖2F .

Now, it is easy to see that〈
(H1, H2),∇2ha(U,Z)(H1, H2)

〉
≥
〈
(H1, H2),∇2f1(A,UZ)(H1, H2)

〉
.

A similar proof holds for the convexity of Lha + f1, however the choice of L here need not be the same as it
is for Lha − f1 (see [28, Remark 2.1]).

Appendix A. Appendix for Bregman distances - Chapter 4 167

A.3 Bregman distance and L-smad property

Proposition A.3.0.1. Denote f1(W1, . . . ,WN) := 1
2 ‖W1W2 . . .WNX − Y ‖2F as in the setting of (4.6.1).

Then the gradient with respect to weights Wi is given by

∇Wif1(W1, . . . ,WN) =
(

Πi−1
j=1Wj

)T
(W1W2 . . .WNX − Y)

((
ΠN
j=i+1Wj

)
X
)T

.

We have for N = 2,〈
(H1, . . . ,HN),∇2f1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤ 3 ‖X‖2F

N∑
i=1

‖Hi‖2F ΠN
j=1,j 6=i ‖Wj‖2F + ‖Y ‖F ‖X‖F

(
‖H1‖2F + ‖H2‖2F

)
If N > 2 and even, we have〈

(H1, . . . ,HN),∇2f1(W1, . . . ,WN)(H1, . . . ,HN)
〉

≤ (2N − 1)

N∑
i=1

‖Hi‖2F ΠN
j=1,j 6=i ‖Wj‖2F ‖X‖

2
F +
‖Y ‖F ‖X‖F (N − 1)

(N − 2)
N−2

2

(
N∑
i=1

‖Hi‖2F

)(
N∑
k=1

‖Wk‖2F

)N−2
2

If N > 2 and odd, we have〈
(H1, . . . ,HN),∇2f1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤ (2N − 1)

N∑
i=1

‖Hi‖2F ΠN
j=1,j 6=i ‖Wj‖2F ‖X‖

2
F

+
‖Y ‖F ‖X‖F (N − 1)

(N − 1)
N−1

2

(
N∑
i=1

‖Hi‖2F

) N∑
k=1,k /∈{i,j}

‖Wk‖2F

+ 1

N−1
2

Proof. Consider the following

1

2
‖(W1 +H1)(W2 +H2) . . . (WN +HN)X − Y ‖2F . (A.3.1)

We are only interested in terms till second order, thus we have

(W1 +H1)(W2 +H2) . . . (WN +HN)X = W1W2 . . .WNX +

N∑
i=1

(
Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1WjX

)
+

N−1∑
i=1

N∑
j>i

(
Πi−1
k=1Wk

)
Hi

(
Πj−1
k=i+1Wk

)
Hj

(
ΠN
k=j+1WkX

)
.

168 A.3. Bregman distance and L-smad property

Now expanding (A.3.1), we have terms upto second order as following

1

2
‖W1W2 . . .WNX − Y ‖2F

+

〈
W1W2 . . .WNX − Y,

N∑
i=1

(
Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1Wj

)
X

〉

+
1

2

∥∥∥∥∥
N∑
i=1

(
Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1Wj

)
X

∥∥∥∥∥
2

F

−
〈
Y,

N−1∑
i=1

N∑
j>i

(
Πi−1
k=1Wk

)
Hi

(
Πj−1
k=i+1Wk

)
Hj

(
ΠN
k=j+1Wk

)
X

〉

+

〈
W1W2 . . .WNX,

N−1∑
i=1

N∑
j>i

(
Πi−1
k=1Wk

)
Hi

(
Πj−1
k=i+1Wk

)
Hj

(
ΠN
k=j+1Wk

)
X

〉
.

Consider the first order terms, we have〈
W1W2 . . .WNX − Y,

N∑
i=1

(
Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1Wj

)
X

〉

=

N∑
i=1

〈
W1W2 . . .WNX − Y,

(
Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1Wj

)
X
〉
,

thus, the gradient is

∇Wif1(W1, . . . ,WN) =
(

Πi−1
j=1Wj

)T
(W1W2 . . .WNX − Y)

((
ΠN
j=i+1Wj

)
X
)T

.

Now, considering second order terms we have with repetitive application of Cauchy-Schwarz inequality, the
following

1

2

∥∥∥∥∥
N∑
i=1

(
Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1Wj

)
X

∥∥∥∥∥
2

F

≤ N

2

N∑
i=1

∥∥∥(Πi−1
j=1Wj

)
Hi

(
ΠN
j=i+1Wj

)
X
∥∥∥2

F

≤ N

2

N∑
i=1

‖Hi‖2F ΠN
j=1,j 6=i ‖Wj‖2F ‖X‖

2
F

Appendix A. Appendix for Bregman distances - Chapter 4 169

and 〈
W1W2 . . .WNX,

N−1∑
i=1

N∑
j>i

(
Πi−1
k=1Wk

)
Hi

(
Πj−1
k=i+1Wk

)
Hj

(
ΠN
k=j+1Wk

)
X

〉

≤
N−1∑
i=1

N∑
j>i

‖X‖2F ‖Hi‖F ‖Hj‖F ‖Wi‖F ‖Wj‖F ΠN
k=1,k /∈{i,j} ‖Wk‖2F

≤
N−1∑
i=1

N∑
j>i

‖X‖2F

(
‖Hi‖2F ‖Wj‖2F + ‖Hj‖2F ‖Wi‖2F

2

)
ΠN
k=1,k /∈{i,j} ‖Wk‖2F

≤ ‖X‖2F
(
N − 1

2

) N∑
i=1

‖Hi‖2F ΠN
k=1,k /∈{i} ‖Wk‖2F

and we have

−
〈
Y,

N−1∑
i=1

N∑
j>i

(
Πi−1
k=1Wk

)
Hi

(
Πj−1
k=i+1Wk

)
Hj

(
ΠN
k=j+1Wk

)
X

〉

≤ ‖Y ‖F
N−1∑
i=1

N∑
j>i

‖Hi‖F ‖Hj‖F ΠN
k=1,k /∈{i,j} ‖Wk‖F ‖X‖F (A.3.2)

Now with the application of Generalized AM-GM inequality, we have the following three cases:

• When N = 2 then we have

‖Hi‖F ‖Hj‖F ‖X‖F ≤ ‖X‖F

(
‖Hj‖2F + ‖Hi‖2F

2

)
,

• When N is even and N > 2.

‖Hi‖F ‖Hj‖F ΠN
k=1,k /∈{i,j} ‖Wk‖F ‖X‖F ≤ ‖X‖F

(
‖Hj‖2F + ‖Hi‖2F

2

)(∑N
k=1,k /∈{i,j} ‖Wk‖2F

N − 2

)N−2
2

,

• If N is odd and N > 2 we have

‖Hi‖F ‖Hj‖F ΠN
k=1,k /∈{i,j} ‖Wk‖F ‖X‖F ≤ ‖X‖F

(
‖Hj‖2F + ‖Hi‖2F

2

)
(∑N

k=1,k /∈{i,j} ‖Wk‖2F
)

+ 1

N − 1


N−1

2

.

170 A.3. Bregman distance and L-smad property

Now using the above given results, on extending the calculation of (A.3.2), for even N and N ≥ 2, we have

‖Y ‖F
N−1∑
i=1

N∑
j>i

‖Hi‖F ‖Hj‖F ΠN
k=1,k /∈{i,j} ‖Wk‖F ‖X‖F

≤ ‖Y ‖F ‖X‖F
N−1∑
i=1

N∑
j>i

(
‖Hj‖2F + ‖Hi‖2F

2

)(∑N
k=1,k /∈{i,j} ‖Wk‖2F

N − 2

)N−2
2

≤ ‖Y ‖F ‖X‖F (N − 1)

2(N − 2)
N−2

2

(
N∑
i=1

‖Hi‖2F

)(
N∑
k=1

‖Wk‖2F

)N−2
2

,

where in the first step we used Cauchy-Schwarz inequality. Similarly, we have for N > 2 and odd,

‖Y ‖F
N−1∑
i=1

N∑
j>i

‖Hi‖F ‖Hj‖F ΠN
k=1,k /∈{i,j} ‖Wk‖F ‖X‖F

≤ ‖Y ‖F ‖X‖F
N−1∑
i=1

N∑
j>i

(
‖Hj‖2F + ‖Hi‖2F

2

)
(∑N

k=1,k /∈{i,j} ‖Wk‖2F
)

+ 1

N − 1


N−1

2

≤ ‖Y ‖F ‖X‖F (N − 1)

2(N − 1)
N−1

2

(
N∑
i=1

‖Hi‖2F

)((
N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

.

Before we start with the proof of Proposition 4.6.0.1, we require the following technical results.

Lemma A.3.0.1. Let h ∈ G(C) be twice continuously differentiable on C. Then, the following identity holds

Dh(xk, yk) =

∫ 1

0
(1− t)

∫ 1

0

〈
∇2h

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − yk), xk − yk

〉
dt1dt .

Proof. With repetitive application of fundamental theorem of calculus we have

h(xk)− h(yk)−
〈
∇h(yk), xk − yk

〉
=

∫ 1

0

〈
∇h(xk + t(yk − xk))−∇h(yk), xk − yk

〉
dt ,

=

∫ 1

0

〈∫ 1

0
∇2h

(
(1− t1)(xk + t(yk − xk)) + t1y

k
)

(1− t) (xk − yk)dt1, xk − yk
〉
dt ,

=

∫ 1

0

〈∫ 1

0
∇2h

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(1− t) (xk − yk)dt1, xk − yk

〉
dt ,

=

∫ 1

0
(1− t)

∫ 1

0

〈
∇2h

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − yk), xk − yk

〉
dt1dt .

Appendix A. Appendix for Bregman distances - Chapter 4 171

Henceforth, we use the following notation. Let n be a positive integer and let ki be a non-negative integer for
i ∈ {1, . . . ,m} satisfying k1 + . . .+ km = n, then we denote(

n

k1, k2, . . . , km

)
:=

n!

k1!k2! . . . km!
,

which is also known as multinomial coefficient.

Lemma A.3.0.2. With the following kernel generating distance

H1(W1, . . . ,WN) =

(
‖W1‖2F + . . . ‖WN‖2F

N

)N
,

the gradient with respect for Wi, for any i ∈ {1, . . . , N}, is given by

∇WiH1(W1, . . . ,WN) =
2

NN

(
N

N − 1, 1

)(
‖W1‖2F + . . .+ ‖WN‖2F

)N−1
Wi ,

and the following lower bound holds true

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥ 2N !

NN

N∑
i=1

‖Hi‖2F ΠN
k=1,k /∈{i} ‖Wk‖2F ,

and the following upper bound holds true

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤
(

2(2N − 1)

NN−1

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−1

.

Proof. Consider the following(
‖W1 +H1‖2F + . . . ‖WN +HN‖2F

N

)N
=

(
‖W1‖2F + ‖H1‖2F + 2 〈W1, H1〉+ . . . ‖WN‖2F + ‖HN‖2F

N
+ . . .

)N
.

Consider only the first order terms in the expansion, from which the following gradient with respect for Wi,
for any i ∈ {1, . . . , N}, is obtained

∇WiH1(W1, . . . ,WN) =
2

NN

(
N

N − 1, 1

)(
‖W1‖2F + . . .+ ‖WN‖2F

)N−1
Wi .

Now considering only the second order terms, we have

1

2

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
=

1

2

2

NN

N∑
i=1

(
N

1, N − 1

)
‖Hi‖2F

(
N∑
k=1

‖Wk‖2F

)N−1

+
1

2

23

NN

(
N

2, N − 2

)
(〈W1, H1〉+ . . .+ 〈WN , HN 〉)2

(
N∑
k=1

‖Wk‖2F

)N−2

.

172 A.3. Bregman distance and L-smad property

Since, the second term in the right hand side is always non-negative, the following result holds

1

2

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥ 1

2

2N !

NN

N∑
i=1

‖Hi‖2F ΠN
k=1,k /∈{i} ‖Wk‖2F .

This proves the lower bound. Now, we prove the upper bound. With application of Cauchy-Schwarz inequality,
we have

1

2

23

NN

(
N

2, N − 2

)
(〈W1, H1〉+ . . .+ 〈WN , HN 〉)2

(
N∑
k=1

‖Wk‖2F

)N−2

≤ 1

2

23

NN

(
N

2, N − 2

)(N∑
k=1

‖Wk‖2F

)(
N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−2

=
1

2

23

NN

(
N

2, N − 2

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−1

.

Now we finally have

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤ 2

NN

(
N

1, N − 1

)(N∑
i=1

‖Hi‖2F

)(
N∑
k=1

‖Wk‖2F

)N−1

+
23

NN

(
N

2, N − 2

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−1

=

(
2(2N − 1)

NN−1

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−1

.

Lemma A.3.0.3. Denote for any k ≥ 1, xk = (W k
1 , . . . ,W

k
N), ∆k := xk − xk−1 and the following

Bk :=

(
(2N − 1)

NN−1

)
‖∆k‖2

(
2
∥∥∥xk∥∥∥2

+ 2 ‖∆k‖2
)(N−1)

.

The following upper bound holds true
DH1(xk, yk) ≤ γ2

kBk .

Proof. From Lemma A.3.0.1, we have∫ 1

0
(1− t)

∫ 1

0

〈
∇2H1

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − yk), xk − yk

〉
dt1dt

=γ2
k

∫ 1

0
(1− t)

∫ 1

0

〈
∇2H1

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − xk−1), xk − xk−1

〉
dt1dt ,

≤γ2
k

∫ 1

0
(1− t)

∫ 1

0

2(2N − 1)

NN−1

∥∥∥xk − xk−1
∥∥∥2 ∥∥∥xk + (t1 + (1− t1)t)(yk − xk)

∥∥∥(2N−2)
dt1dt ,

where in the last step we used the upper bound from Lemma A.3.0.2. Using the following inequality∥∥∥xk + (t1 + (1− t1)t)(yk − xk)
∥∥∥2
≤ 2

∥∥∥xk∥∥∥2
+ 2(t1 + (1− t1)t)2γ2

k

∥∥∥xk − xk−1
∥∥∥2
≤ 2

∥∥∥xk∥∥∥2
+ 2

∥∥∥xk − xk−1
∥∥∥2

Appendix A. Appendix for Bregman distances - Chapter 4 173

where in the last step we used γ2
k ≤ 1 and (t1 + (1− t1)t)2 ≤ 1. With

∫ 1
0 (1− t)dt = 1

2 the result follows.

Lemma A.3.0.4. With the following kernel generating distance

H2(W1, . . . ,WN) =

(
‖W1‖2F + ‖W2‖2F + . . . ‖WN‖2F

N

)N
2

,

the gradient with respect for Wi, for any i ∈ {1, . . . , N}, is given by

∇WiH2(W1, . . . ,WN) =
1

N
N
2
−1

(
‖W1‖2F + . . .+ ‖WN‖2F

)N
2
−1
Wi ,

and the following lower bound holds true

〈
(H1, . . . ,HN),∇2H2(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥ 1

N
N
2
−1

(
‖H1‖2F + . . .+ ‖HN‖2F

)(N∑
k=1

‖Wk‖2F

)N−2
2

,

and the following upper bound holds true

〈
(H1, . . . ,HN),∇2H2(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤
(
N − 1

N
N
2
−1

)(N∑
k=1

‖Hk‖2F

)(
N∑
k=1

‖Wk‖2F

)N−2
2

.

The proof of Lemma A.3.0.4 is similar to the proof of Lemma A.3.0.2, thus we skip the details for brevity.

Lemma A.3.0.5. Denote for any k ≥ 1, xk = (W k
1 , . . . ,W

k
N), ∆k := xk − xk−1 and the following

Ck :=

(
N − 1

N
N
2
−1

)
‖∆k‖2

(
2
∥∥∥xk∥∥∥2

+ 2 ‖∆‖2
)N−2

2

.

The following holds
DH2(xk, yk) ≤ γ2

kCk .

The proof of Lemma A.3.0.5 is similar to the proof of Lemma A.3.0.3, thus we skip the details for brevity.

A.3.1 Proof of Proposition 4.6.0.1

We need to prove the convexity of LHa − g. From Lemma A.3.0.2 we obtain

NN

2N !

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥

N∑
i=1

‖Hi‖2F ΠN
k=1,k /∈{i,j} ‖Wk‖2F

Similarly from Lemma A.3.0.4 we obtain

N
N
2

2
(N

2
N−2

2
,1

) 〈(H1, . . . ,HN),∇2H2(W1, . . . ,WN)(H1, . . . ,HN)
〉
≥
(
‖H1‖2F + . . .+ ‖HN‖2F

)(N∑
k=1

‖Wk‖2F

)N−2
2

Thus, now invoking Proposition A.3.0.1, we obtain the result.

174 A.3. Bregman distance and L-smad property

A.3.2 Results for H3.

Lemma A.3.2.1. With the following kernel generating distance

H3(W1, . . . ,WN) =

(
‖W1‖2F + ‖W2‖2F + . . . ‖WN‖2F + 1

N + 1

)N+1
2

,

the gradient with respect for Wi, for any i ∈ {1, . . . , N}, is given by

∇WiH3(W1, . . . ,WN) =
2
(N+1

2
N−1

2
,1

)
(N + 1)

N+1
2

(
‖W1‖2F + . . .+ ‖WN‖2F + 1

)N−1
2
Wi ,

and the following lower bound holds true〈
(H1, . . . ,HN),∇2H3(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥ 2

(N + 1)
N+1

2

(N+1
2

N−1
2 , 1

)(
‖H1‖2F + . . .+ ‖HN‖2F

)((N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

,

and the following upper bound holds true〈
(H1, . . . ,HN),∇2H3(W1, . . . ,WN)(H1, . . . ,HN)

〉
≤ N

(N + 1)
N−1

2

(
N∑
k=1

‖Hk‖2F

)2((N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

.

The proof of Lemma A.3.2.1 is similar to the proof of Lemma A.3.0.2, thus we skip the details for brevity.

Lemma A.3.2.2. Denote for any k ≥ 1, xk = (W k
1 , . . . ,W

k
N), ∆k := xk − xk−1 and the following

Dk :=
N

(N + 1)
N−1

2

‖∆k‖2
(

2
∥∥∥xk∥∥∥2

+ 2 ‖∆‖2 + 1

)N−1
2

.

Then, the condition DH3(xk, yk) ≤ γ2
kDk holds true.

The proof of Lemma A.3.2.2 is similar to the proof of Lemma A.3.0.3, thus we skip the details for brevity.

A.3.3 Proof of Proposition 4.6.0.2.

We need to prove the convexity of LHb − g. From Lemma A.3.0.2 we obtain

NN

2N !

〈
(H1, . . . ,HN),∇2H1(W1, . . . ,WN)(H1, . . . ,HN)

〉
≥

N∑
i=1

‖Hi‖2F ΠN
k=1,k /∈{i,j} ‖Wk‖2F

Similarly, from Lemma A.3.2.1 we obtain

(N + 1)
N−1

2
〈
(H1, . . . ,HN),∇2H3(W1, . . . ,WN)(H1, . . . ,HN)

〉(N∑
i=1

‖Hi‖2F

)((
N∑
k=1

‖Wk‖2F

)
+ 1

)N−1
2

Appendix A. Appendix for Bregman distances - Chapter 4 175

and invoking Proposition A.3.0.1, we obtain the result. The proof of LHb + g is similar (see Remark 2.1 of
[28]).

A.4 Proof of Lemma 4.7.2.2

Proof. In the expansion SN (W1 +H1, . . . ,WN +HN), in order to obtain the first order term containing Hi,
we can set the other Hi terms to zero and perform the expansion. In that case, we obtain the following first
order term containing Hi:

∆i,N = σ′N (WNSN−1) ◦WN∆i,N−1 , (A.4.1)

∆i,N−1 = σ′N−1(WN−1SN−2) ◦WN−1∆i,N−2 ,

. . . ,

∆i,i = σ′i(WiSi−1) ◦HiSi−1 .

Here, the only technique we have applied is the first order Taylor expansion as in Lemma 4.7.2.1. Similarly,
for the second order term which couples Hi, Hj where i 6= j is the following:

∆i,j,N = σ′N (WNSN−1) ◦WN∆i,j,N−1 , (A.4.2)

∆i,j,N−1 = σ′N−1(WN−1SN−2) ◦WN−1∆i,j,N−2 ,

. . . ,

∆i,j,i+1 = σ′i+1(Wi+1Si) ◦Wi+1Ωi,j,i ,

Ωi,j,i = σ′i(WiSi−1) ◦Hi∆i,j,i−1 ,

∆i,j,i−1 = σ′i−1(Wi−1Si−2) ◦Wi−1∆i,j,i−2 ,

∆i,j,i−2 = σ′i−2(Wi−2Si−3) ◦Wi−2∆i,j,i−3 ,

. . . ,

∆i,j,j = σ′j(WjSj−1) ◦HjSj−1 .

Using the second order Taylor expansion and first order Taylor expansion, the second order term containing
just Hi is the following:

∆i,i,N = σ′N (WNSN−1) ◦WN∆i,i,N−1 , (A.4.3)

∆i,i,N−1 = σ′N−1(WN−1SN−2) ◦WN−1∆i,i,N−2 ,

. . . ,

∆i,i,i+1 = σ′i+1(Wi+1Si) ◦Wi+1∆i,i,i ,

∆i,i,i =
1

2
σ′′i (WiSi−1) ◦HiSi−1 ◦HiSi−1 .

176 A.5. Proof of Lemma 4.7.2.3

A.5 Proof of Lemma 4.7.2.3

Proof. Considering f1(W1 +H1, . . . ,WN +HN) we obtain

1

2

∥∥∥∥∥∥Y − SN −
N∑
i=1

∆i,N −
1

2

N∑
i=1

N∑
j=1

∆i,j,N

∥∥∥∥∥∥
2

=
1

2

∥∥∥∥∥∥Y − SN −
N∑
i=1

∆i,N −
1

2

N∑
i=1

∆i,i,N −
N∑
i=1

N∑
j=1,j>i

∆i,j,N

∥∥∥∥∥∥
2

.

Considering upto second order terms we obtain

1

2
‖Y − SN‖2 −

N∑
i=1

〈∆i,N , Y − SN 〉+
1

2

∥∥∥∥∥
N∑
i=1

∆i,N

∥∥∥∥∥
2

− 1

2

N∑
i=1

〈∆i,i,N , Y − SN 〉 −
N∑
i=1

N∑
j=1,j>i

〈∆i,j,N , Y − SN 〉 .

Note that the first order term is the following:

−
N∑
i=1

〈∆i,N , Y − SN 〉 ,

and the second order term is the following:

1

2

∥∥∥∥∥
N∑
i=1

∆i,N

∥∥∥∥∥
2

− 1

2

N∑
i=1

〈∆i,i,N , Y − SN 〉 −
N∑
i=1

N∑
j=1,j>i

〈∆i,j,N , Y − SN 〉 .

The goal is to obtain an upper bound on the second order term. Note that the following holds true:

1

2

∥∥∥∥∥
N∑
i=1

∆i,N

∥∥∥∥∥
2

≤ N

2

N∑
i=1

‖∆i,N‖2 .

For certain i ∈ {1, . . . , N}, consider the following calculation using the Assumption B:

‖Si‖2 = ‖σi(Wi . . . σ1(W1X))‖2

≤ 2C2
i ‖Wiσi−1(. . .)‖2 + 2D2

i did0

≤ 2C2
i ‖Wi‖2 ‖σi−1(. . . σ1(W1X))‖2 + 2D2

i did0

≤ 2C2
i ‖Wi‖2 ‖Si−1‖2 + 2D2

i did0

On recursive application of the above result, for certain i ∈ {1, . . . , N}, we have:

‖Si‖2 ≤

 i∏
j=1

2C2
j ‖Wj‖2

 ‖X‖2 + 2D2
i (did0) +

i−1∑
j=1

2D2
j (djd0)

 i∏
p=j+1

2C2
p ‖Wp‖2

 =
i∑

j=0

δi,j

 i∏
p=j+1

‖Wp‖2
 ,

where we denoted coefficients of the second term with δi,j in the third term. Using Generalized AM-GM
inequality we obtain the following:

i∑
j=0

δi,j

 i∏
p=j+1

‖Wp‖2
 ≤ i∑

j=0

δi,j

(∑i
p=j+1 ‖Wp‖2

i− j

)i−j
=

i∑
j=0

ωi,j

 i∑
p=1

‖Wp‖2
i−j

,

Appendix A. Appendix for Bregman distances - Chapter 4 177

where ωi,j :=
δi,j

(i−j)i−j for i > j. Thus, the following holds true:

‖Si‖2 ≤
i∑

j=0

δi,j

 i∏
p=j+1

‖Wp‖2
 ≤ i∑

j=0

ωi,j

 i∑
p=1

‖Wp‖2
i−j

. (A.5.1)

For certain i ∈ {1, . . . , N}, considering the second order term ‖∆i,N‖2, using the previously calculation of
‖Si‖2 and Generalized AM-GM inequality we obtain the following:

‖∆i,N‖2 ≤

 N∏
j=(i+1)

E2
j ‖Wj‖2

E2
i ‖Hi‖2 ‖Si−1‖2 ,

≤ (E2)N−i+1

 N∏
j=(i+1)

‖Wj‖2
 ‖Hi‖2 ‖Si−1‖2 ,

≤ (E2)N−i+1
i−1∑
j=0

δi−1,j

 N∏
p=(j+1),p 6=i

‖Wj‖2
 ‖Hi‖2 ,

≤ (E2)N−i+1
i−1∑
j=0

θ̃i,j

 N∑
p=j+1,p 6=i

‖Wp‖2
N−j−1

‖Hi‖2 ,

≤ (E2)N−i+1
i−1∑
j=0

θ̃i,j

 N∑
p=1

‖Wp‖2
N−j−1

‖Hi‖2 ,

where θ̃i,j =
δi−1,j

(N−j−1)N−j−1 .
For certain i ∈ {1, . . . , N}, considering the second order term ‖∆i,i,N‖, using the previously calculation of
‖Si‖2 and Generalized AM-GM inequality we obtain the following:

‖∆i,i,N‖

≤ 1

2

 N∏
j=(i+1)

Ej ‖Wj‖

Fi ‖Hi‖2 ‖Si−1‖2 ,

≤ 1

4
F (E)N−i

 N∏
j=(i+1)

‖Wj‖2
 ‖Hi‖2 ‖Si−1‖2

+
1

4
F (E)N−i ‖Hi‖2 ‖Si−1‖2 ,

≤ 1

4
F (E)N−i

 N∏
j=(i+1)

‖Wj‖2
 ‖Hi‖2 ‖Si−1‖2

+
1

4
F (E)N−i

i−1∑
j=0

ωi−1,j

 i∑
p=1

‖Wp‖2
i−j−1

‖Hi‖2 ,

≤ 1

4
F (E)N−i

i−1∑
j=0

θ̃i,j

 N∑
p=1

‖Wp‖2
N−j−1

‖Hi‖2 +
1

4
F (E)N−i

i−1∑
j=0

ωi−1,j

 i∑
p=1

‖Wp‖2
i−j−1

‖Hi‖2 ,

178 A.5. Proof of Lemma 4.7.2.3

Similarly, we obtain the following upper bound on ‖∆i,i,N‖ ‖SN‖:

‖∆i,i,N‖ ‖SN‖ ≤
1

2

 N∏
j=(i+1)

Ej ‖Wj‖

Fi ‖Hi‖2 ‖Si−1‖2 ‖SN‖ ,

≤ 1

4
EN−iF

 N∏
j=(i+1)

‖Wj‖2
 ‖Hi‖2 ‖Si−1‖2 + ‖Hi‖2 ‖Si−1‖2 ‖SN‖2

 ,

≤ 1

4
EN−iF

i−1∑
j=0

θ̃i,j

 N∑
p=1

‖Wp‖2
N−j−1

‖Hi‖2

+
1

4
EN−iF

 i−1∑
ĵ=0

N∑
j=0

ωi−1,̂j ωN,j

 N∑
p=1

‖Wp‖2
N−j+i−ĵ−1

 ‖Hi‖2 .

where we use the following bound to bound the second term:

‖Hi‖2 ‖Si−1‖2 ‖SN‖2

≤

 i−1∑
ĵ=0

ωi−ĵ

 N∑
p=1

‖Wp‖2
i−ĵ−1


 N∑
j=0

ωN,j

 N∑
p=1

‖Wp‖2
N−j ‖Hi‖2 ,

=

 i−1∑
ĵ=0

N∑
j=0

ωi−ĵ ωN,j

 N∑
p=1

‖Wp‖2
N−j+i−ĵ−1

 ‖Hi‖2 .

Using similar techniques as above, we obtain the following upper bound on ‖∆i,j,N‖:

‖∆i,j,N‖

=

 N∏
p=i

Ep

 N∏
p=i+1,p 6=j

‖Wp‖

 ‖Hj‖ ‖Hi‖ ‖Si−1‖ ,

≤

 N∏
p=i

Ep

(‖Hj‖2 + ‖Hi‖2
2

)
(∏N

p=i+1,p 6=j ‖Wp‖2
)

+ ‖Si−1‖2

2

 ,

≤ EN−i+1

(
‖Hj‖2 + ‖Hi‖2

4

) N∏
p=i+1,p 6=j

‖Wp‖2
+ EN−i+1

(
‖Hj‖2 + ‖Hi‖2

4

)
‖Si−1‖2 ,

≤ EN−i+1

(N − i− 1)N−i−1

(
‖Hj‖2 + ‖Hi‖2

4

) N∑
p=i+1,p 6=j

‖Wp‖2
N−i−1

+ EN−i+1

(
‖Hj‖2 + ‖Hi‖2

4

)
‖Si−1‖2 ,

≤ EN−i+1

(
‖Hj‖2 + ‖Hi‖2

4

)
(∑N

p=1 ‖Wp‖2
)N−i−1

(N − i− 1)N−i−1
+

i−1∑
q=0

ωi−1,q

 i−1∑
p=1

‖Wp‖2
i−1−q ,

Appendix A. Appendix for Bregman distances - Chapter 4 179

where we used N∑
p=i+1, p 6=j

‖Wp‖2
N−i−1

≤

 N∑
p=1

‖Wp‖2
N−i−1

and ‖Si−1‖2 ≤
i−1∑
q=0

ωi−1,q

 i−1∑
p=1

‖Wp‖2
i−1−q

.

Based on the previously calculated terms and using similar techniques we obtain the following:

‖∆i,j,N‖ ‖SN‖ ≤

 N∏
p=(j+1)

Ep ‖Wp‖

Ej ‖Hj‖

 j−1∏
q=(i+1)

Eq ‖Wq‖

Ei ‖Hi‖ ‖Si−1‖ ‖SN‖ ,

≤ EN−i+1

(
‖Hj‖2 + ‖Hi‖2

2

) (∏N
p=(j+1) ‖Wp‖2

)(∏j−1
q=(i+1) ‖Wq‖2

)
‖Si−1‖2 + ‖SN‖2

2
,

≤ EN−i+1

(
‖Hj‖2 + ‖Hi‖2

4

) i−1∑
u=0

δ̃i−1,u

 N∑
p=1

‖Wp‖2
N−u−2

+
N∑
p=0

ωN,p

 N∑
p=1

‖Wp‖2
N−p ,

where with δ̃i−1,u =
δi−1,u

(N−u−2)N−u−2 , we used

 N∏
p=(i+1), p 6=j

‖Wp‖2
 ‖Si−1‖2 ≤

i−1∑
u=0

δi−1,u

 N∏
p=(u+1),p 6=j,i

‖Wp‖2
 ≤ i−1∑

u=0

δ̃i−1,u

 N∑
p=1

‖Wp‖2
N−u−2

,

‖SN‖2 ≤
N∑
p=0

ωN,p

 N∑
p=1

‖Wp‖2
N−p

.

Using the previously calculated entities, we obtain the following upper bound on the second order term:

1

2

∥∥∥∥∥
N∑
i=1

∆i,N

∥∥∥∥∥
2

≤ N

2

N∑
i=1

‖∆i,N‖2 ≤
N

2

N∑
i=1

i−1∑
j=0

(E2)N−i+1θ̃i,j

 N∑
p=1

‖Wp‖2
N−j−1

‖Hi‖2 .

180 A.5. Proof of Lemma 4.7.2.3

Consider the other second terms containing ∆i,i,N , we obtain the following result:〈
1

2

N∑
i=1

∆i,i,N , Y − SN
〉
≤ 1

2

N∑
i=1

‖∆i,i,N‖ ‖Y ‖+
1

2

N∑
i=1

‖∆i,i,N‖ ‖SN‖ ,

≤ ‖Y ‖F
8

N∑
i=1

i−1∑
j=0

EN−iθ̃i,j

 N∑
p=1

‖Wp‖2
N−j−1

‖Hi‖2 +
‖Y ‖F

8

N∑
i=1

i−1∑
j=0

EN−iωi,j

 i∑
p=1

‖Wp‖2
i−j−1

‖Hi‖2 ,

+
N∑
i=1

i−1∑
j=0

F

8
(E2)N−iθ̃i,j

 N∑
p=1

‖Wp‖2
N−j−1

‖Hi‖2

+
F

8

N∑
i=1

EN−i

 i−1∑
ĵ=0

N∑
j=0

ωi−1,̂j ωN,j

 N∑
p=1

‖Wp‖2
N−j+i−ĵ−1

 ‖Hi‖2

Using the notation that 00 := 1 and considering the other second terms containing ∆i,j,N , we obtain the
following result:〈

N∑
i=1

N∑
j=1,j>i

∆i,j,N , Y − SN
〉
≤

N∑
i=1

N∑
j=1,j>i

‖∆i,j,N‖ ‖Y ‖+
N∑
i=1

N∑
j=1,j>i

‖∆i,j,N‖ ‖SN‖ ,

≤
N∑
i=1

N∑
j=1,j>i

‖Y ‖EN−i+1

(
‖Hj‖2 + ‖Hi‖2

4

)
(∑N

p=1 ‖Wp‖2
)N−i−1

(N − i− 1)N−i−1
+

i−1∑
q=0

ωi−1,q

 i−1∑
p=1

‖Wp‖2
i−1−q ,

+
N∑
i=1

N∑
j=1,j>i

EN−i+1

(
‖Hj‖2 + ‖Hi‖2

4

) i−1∑
u=0

δ̃i−1,u

 N∑
p=1

‖Wp‖2
N−u−2

+
N∑
p=0

ωN,p

 N∑
p=1

‖Wp‖2
N−p .

Now, we consider all the terms we obtain in the second order terms to upper bound them even further such
that they become manageable for further calculation. Simple manipulations provide the following term:

N

2

N∑
i=1

i−1∑
j=0

(E2)N−i+1θ̃i,j

 N∑
p=1

‖Wp‖2
N−j−1

‖Hi‖2

≤ N

2

(
max

i∈{1,...,N}
max

j∈{0,...,i−1}
(E2)N−i+1θ̃i,j

) N∑
i=1

i−1∑
j=0

 N∑
p=1

‖Wp‖2
N−j−1

‖Hi‖2 ,

≤ Θ1

N−1∑
j=0

 N∑
p=1

‖Wp‖2
N−j−1

 N∑
i=1

‖Hi‖2 ,

where
Θ1 :=

N

2

(
max

i∈{1,...,N}
max

j∈{0,...,i−1}
(E2)N−i+1θ̃i,j

)
. (A.5.2)

Appendix A. Appendix for Bregman distances - Chapter 4 181

Similarly, the following calculation considers all the other remaining terms obtained in the upper bounds of
the second order terms:

‖Y ‖F
8

N∑
i=1

i−1∑
j=0

EN−iθ̃i,j

 N∑
p=1

‖Wp‖2
N−j−1

‖Hi‖2

≤ ‖Y ‖F
8

(
max

i∈{1,...,N}
max

j∈{0,...,i−1}
θ̃i,j

)N−1∑
j=0

 N∑
p=1

‖Wp‖2
N−j−1

(N∑
i=1

‖Hi‖2
)
,

= Θ2

N−1∑
j=0

 N∑
p=1

‖Wp‖2
N−j−1

(N∑
i=1

‖Hi‖2
)
,

where Θ2 :=
‖Y ‖F

8

(
maxi∈{1,...,N}maxj∈{0,...,i−1}EN−iθ̃i,j

)
.

Simple manipulations result in the following:

‖Y ‖
8

N∑
i=1

i−1∑
j=0

EN−iωi,j

 N∑
p=1

‖Wp‖2
i−j−1

‖Hi‖2

≤ ‖Y ‖
8

(
max

i∈{1,...,N}
max

j∈{0,...,i−1}
EN−iωi,j

) N∑
i=1

i−1∑
j=0

 N∑
p=1

‖Wp‖2
i−j−1

‖Hi‖2 ,

≤ Θ3

N−1∑
j=0

 N∑
p=1

‖Wp‖2
N−j−1

 N∑
i=1

‖Hi‖2 .

where Θ3 :=
‖Y ‖F

8

(
maxi∈{1,...,N}maxj∈{0,...,i−1} ωi,jEN−i

)
.

Simple manipulations result in the following:

N∑
i=1

i−1∑
j=0

F

8
(E)N−iθ̃i,j

 N∑
p=1

‖Wp‖2
N−j−1

‖Hi‖2

≤
(

max
i∈{1,...,N}

max
j∈{0,...,i−1}

F

8
(E)N−iθ̃i,j

) N∑
i=1

i−1∑
j=0

 N∑
p=1

‖Wp‖2
N−j−1

‖Hi‖2 ,

≤ Θ4

N−1∑
j=0

 N∑
p=1

‖Wp‖2
N−j−1

 N∑
i=1

‖Hi‖2 ,

where Θ4 :=
(

maxi∈{1,...,N}maxj∈{0,...,i−1}
F
8 (E)N−iθ̃i,j

)
.

182 A.5. Proof of Lemma 4.7.2.3

Simple manipulations result in the following:

N∑
i=1

1

8
EN−iF

 i−1∑
ĵ=0

N∑
j=0

ωi−ĵ ωN,j

 N∑
p=1

‖Wp‖2
N−j+i−ĵ−1

 ‖Hi‖2

≤ Θ5

N−1∑
ĵ=0

N∑
j=0

 N∑
p=1

‖Wp‖2
N−j+N−ĵ−1

(N∑
i=1

‖Hi‖2
)

≤ Θ5

2N−1∑
j=0

 N∑
p=1

‖Wp‖2
j(N∑

i=1

‖Hi‖2
)

where Θ5 =
(

maxi={1,...,N}maxĵ={0,...,i−1}maxj={0,...,N}
F
8E

N−iωi−1,̂jωN,j

)
.

Simple manipulations result in the following:

N−1∑
i=1

N∑
j=1,j>i

EN−i+1 ‖Y ‖
(N − i− 1)N−i−1

(
‖Hj‖2 + ‖Hi‖2

4

) N∑
p=1

‖Wp‖2
N−i−1

≤
(

max
i∈{1,...,N−1}

EN−i+1 ‖Y ‖
(N − i− 1)N−i−1

)N−1∑
i=1

 N∑
p=1

‖Wp‖2
N−i−1

 N∑
i=1

N∑
j=1,j>i

(
‖Hj‖2 + ‖Hi‖2

4

)
,

≤ Θ6

N−1∑
i=1

 N∑
p=1

‖Wp‖2
N−i−1

(N∑
i=1

‖Hi‖2
)
,

where Θ6 = N−1
4

(
maxi∈{1,...,N−1}

EN−i+1‖Y ‖
(N−i−1)N−i−1

)
.

Simple manipulations result in the following:

N−1∑
i=1

N∑
j=1,j>i

‖Y ‖EN−i+1

(
‖Hj‖2 + ‖Hi‖2

4

)
i−1∑
q=0

ωi−1,q

 i−1∑
p=1

‖Wp‖2
i−1−q

≤
(

max
i∈{1,...,N−1}

max
q∈{0,...,i−1}

‖Y ‖EN−i+1ωi−1,q

)N−1∑
i=1

N∑
j=1,j>i

(
‖Hj‖2 + ‖Hi‖2

4

)
i−1∑
q=0

 i−1∑
p=1

‖Wp‖2
q

,

≤
(

max
i∈{1,...,N−1}

max
q∈{0,...,i−1}

‖Y ‖EN−i+1ωi−1,q

)N−2∑
q=0

 N∑
p=1

‖Wp‖2
qN−1∑

i=1

N∑
j=1,j>i

(
‖Hj‖2 + ‖Hi‖2

4

)
,

≤ Θ7

N−2∑
q=0

 N∑
p=1

‖Wp‖2
q(N−1∑

i=1

‖Hi‖2
)
,

where Θ7 = N−1
4

(
maxi∈{1,...,N−1}maxq∈{0,...,i−1} ‖Y ‖EN−i+1ωi−1,q

)
.

Appendix A. Appendix for Bregman distances - Chapter 4 183

Simple manipulations result in the following:

N−1∑
i=1

N∑
j=1,j>i

EN−i+1

(
‖Hj‖2 + ‖Hi‖2

4

)
i−1∑
u=0

δ̃i−1,u

 N∑
p=1

‖Wp‖2
N−u−2

≤
(

max
i∈{1,...,N−1}

max
u∈{0,...,i−1}

EN−i+1δ̃i−1,u

)N−1∑
i=1

N∑
j=1,j>i

(
‖Hj‖2 + ‖Hi‖2

4

)
i−1∑
u=0

 N∑
p=1

‖Wp‖2
N−u−2

,

≤
(

max
i∈{1,...,N−1}

max
u∈{0,...,i−1}

EN−i+1δ̃i−1,u

)N−2∑
u=0

 N∑
p=1

‖Wp‖2
N−u−2

N−1∑
i=1

N∑
j=1,j>i

(
‖Hj‖2 + ‖Hi‖2

4

)
,

≤ Θ8

N−2∑
u=0

 N∑
p=1

‖Wp‖2
N−u−2

(N∑
i=1

‖Hi‖2
)
,

where Θ8 = N−1
4

(
maxi∈{1,...,N−1}maxu∈{0,...,i−1}EN−i+1δ̃i−1,u

)
.

Simple manipulations result in the following:

N−1∑
i=1

N∑
j=1,j>i

EN−i+1

(
‖Hj‖2 + ‖Hi‖2

4

)
N∑
q=0

ωN,q

 N∑
p=1

‖Wp‖2
N−q

≤
(

max
i={1,...,N−1}

max
q={0,...,N}

EN−i+1ωN,q

)N−1∑
i=1

N∑
j=1,j>i

(
‖Hj‖2 + ‖Hi‖2

4

)
N∑
q=0

 N∑
p=1

‖Wp‖2
N−q

,

≤ Θ9

 N∑
q=0

 N∑
p=1

‖Wp‖2
q(N∑

i=1

‖Hi‖2
)
,

where Θ9 = N−1
4

(
maxi={1,...,N−1}maxq={0,...,N}EN−i+1ωN,q

)
.

Combining all the previously calculated terms, we obtain the following upper bound:

〈(H1, . . . ,HN),∇2f1(W)(H1, . . . ,HN)〉 ,

≤ 1

2

∥∥∥∥∥
N∑
i=1

∆i,N

∥∥∥∥∥
2

+
1

2

N∑
i=1

‖∆i,i,N‖ ‖Y ‖+
1

2

N∑
i=1

‖∆i,i,N‖ ‖SN‖+

N∑
i=1

N∑
j=1,j>i

‖∆i,j,N‖ ‖Y ‖+

N∑
i=1

N∑
j=1,j>i

‖∆i,j,N‖ ‖SN‖ ,

≤
(

9∑
i=1

Θi

)
N−2∑
u=0

 N∑
p=1

‖Wp‖2
u(

N∑
i=1

‖Hi‖2
)

+ (Θ1 + Θ2 + Θ3 + Θ4 + Θ6)

 N∑
p=1

‖Wp‖2
N−1(

N∑
i=1

‖Hi‖2
)

+ Θ9

 N∑
p=1

‖Wp‖2
N (

N∑
i=1

‖Hi‖2
)

+ Θ5

2N−1∑
j=0

 N∑
p=1

‖Wp‖2
j(N∑

i=1

‖Hi‖2
)
.

Appendix B

Appendix for CoCaIn BPG - Chapter 5

B.1 Proof of Lemma 5.5.0.1

Proof. From the three points identity (see (4.3.2)) we have

Dh (y, x2) = Dh (y, x1) +Dh (x1, x2) + 〈∇h (x1)−∇h (x2) , y − x1〉
= Dh (y, x1) +Dh (x1, x2) + γ 〈∇h (x1)−∇h (x2) , x1 − x2〉
= Dh (y, x1) +Dh (x1, x2) + γ (Dh (x1, x2) +Dh (x2, x1)) .

Now, from (5.5.1), we obtain that

Dh (y, x2) ≤ 1

α (h)
[Dh (x1, y) + (γα (h) + 1 + γ)Dh (x2, x1)] .

On the other hand, since x1 = (y + γx2) / (1 + γ), we can use the fact that u → Dh (u, v), for a fixed
v ∈ int domh, is a convex function and therefore

Dh (x1, y) ≤ γ

1 + γ
Dh (x2, y) ≤ γ

α (h) (1 + γ)
Dh (y, x2) ,

where the last inequality follows from (5.5.1). By combining the last two inequalities we derive that

Dh (x1, y) ≤ γ

α (h)2 (1 + γ)
[Dh (x1, y) + (γα (h) + 1 + γ)Dh (x2, x1)] ,

and, by re-arranging we have

Dh (x1, y) ≤ γ (γα (h) + 1 + γ)

α (h)2 (1 + γ)− γ
Dh (x2, x1) .

First, it is easy to verify that for γ < α (h)2 /
(

1− α (h)2
)
, the denominator is positive. In addition, to find

γ such that
γ (γα (h) + 1 + γ)

α (h)2 (1 + γ)− γ
≤ κ,

185

186 B.2. Proof of Lemma 5.6.0.1

we will use simple algebraic manipulations. Indeed, by re-arranging we have

γ2 (α (h) + 1)︸ ︷︷ ︸
a

+γ
(

1 + κ− α (h)2 κ
)

︸ ︷︷ ︸
b

−α (h)2 κ ≤ 0.

Since α (h)2 ≤ 1, it follows that b > 0. We also have that ∆ = b2 + 4aα (h)2 κ > 0, and thus there exists a
positive root denoted by γ∗. Therefore, for any γ ∈ [0, γ∗], the desired result follows.

B.2 Proof of Lemma 5.6.0.1

Proof. Fix k ≥ 1. From the convexity of f (·)− (α/2) ‖ · ‖2, which holds thanks to Assumption D(iii), we
obtain from the sub-gradient inequality [150, Example 8.8 and Proposition 8.12] that

f0

(
xk
)
− α

2

∥∥∥xk∥∥∥2
≥ f0

(
xk+1

)
− α

2

∥∥∥xk+1
∥∥∥2

+
〈
ξk+1 − αxk+1, xk − xk+1

〉
,

where ξk+1 ∈ ∂f0

(
xk+1

)
. By rearranging the inequality we obtain

f0

(
xk
)
≥ f0

(
xk+1

)
+
α

2

∥∥∥xk+1 − xk
∥∥∥2

+
〈
ξk+1, xk − xk+1

〉
. (B.2.1)

From the optimality condition of step (5.4.5), we have that

ξk+1 +∇f1

(
yk
)

+
1

τk

(
∇h
(
xk+1

)
−∇h

(
yk
))

= 0 ,

which combined with (B.2.1) yields that

f0

(
xk
)

≥ f0

(
xk+1

)
+
α

2

∥∥∥xk+1 − xk
∥∥∥2
−
〈
∇f1

(
yk
)
, xk − xk+1

〉
+

1

τk

〈
∇h
(
yk
)
−∇h

(
xk+1

)
, xk − xk+1

〉
= f0

(
xk+1

)
+
α

2

∥∥∥xk+1 − xk
∥∥∥2
−
〈
∇f1

(
yk
)
, xk − xk+1

〉
+

1

τk

(
Dh

(
xk, xk+1

)
+Dh

(
xk+1, yk

)
−Dh

(
xk, yk

))
,

where the last equality follows from the three-points identity (see (4.3.2)). On the other hand, using the
lower approximation given in (5.4.4) and the upper approximation given in (5.4.6), we have that

f1

(
xk
)
≥ f1

(
xk+1

)
+
〈
∇f1

(
yk
)
, xk − xk+1

〉
− LkDh

(
xk, yk

)
− L̄kDh

(
xk+1, yk

)
.

Combining the last two inequalities and using the fact that τ−1
k ≥ L̄k, implies that

f
(
xk
)
≥ f

(
xk+1

)
+
α

2

∥∥∥xk+1 − xk
∥∥∥2

+
1

τk
Dh

(
xk, xk+1

)
−
(

1

τk
+ Lk

)
Dh

(
xk, yk

)
,

which completes the proof.

Appendix B. Appendix for CoCaIn BPG - Chapter 5 187

B.3 Proof of Proposition 5.6.1.1

Proof. Multiplying (5.6.1) with τk, we obtain

τk

(
f
(
xk
)
− v(P)

)
≥ τk

(
f
(
xk+1

)
− v(P)

)
+
ατk
2

∥∥∥xk+1 − xk
∥∥∥2

+Dh

(
xk, xk+1

)
− (1 + Lkτk)Dh

(
xk, yk

)
.

By the definition of the Lyapunov function fkδ and the fact that τk ≤ τk−1 we have

fkδ

(
xk, xk−1

)
≥ fk+1

δ

(
xk+1, xk

)
+
ατk
2

∥∥∥xk+1 − xk
∥∥∥2

+ (1− δ)Dh

(
xk, xk+1

)
+ δDh

(
xk−1, xk

)
− (1 + Lkτk)Dh

(
xk, yk

)
.

With 1− δ > 0 and the strong convexity of h (·), that follows from Assumption D(i), we obtain

ατk
2

∥∥∥xk+1 − xk
∥∥∥2

+ (1− δ)Dh

(
xk, xk+1

)
≥
(ατk

2
+ (1− δ) σ

2

)∥∥∥xk+1 − xk
∥∥∥2
≥ 0,

where the last inequality holds, since τ−1
k ≥ L̄k and L̄k ≥ −α/ (1− δ)σ. Next, we observe that

Dh

(
xk, yk

)
≤ δ − ε

(1 + Lkτk−1)
Dh

(
xk−1, xk

)
≤ δ − ε

(1 + Lkτk)
Dh

(
xk−1, xk

)
,

where the first inequality is due to the step (5.4.3) of the algorithm and the second inequality is due to fact
that τk ≤ τk−1. By rearranging we obtain,

δDh

(
xk−1, xk

)
− (1 + Lkτk)Dh

(
xk, yk

)
≥ εDh

(
xk−1, xk

)
thus completing the proof.

B.4 Proof of Proposition 10.4.1.2

Proof. (i) This follows trivially from Proposition 5.6.1.1, since ε > 0.

(ii) Let n be a positive integer. Summing (5.6.3) from k = 1 to n we get

n∑
k=1

Dh

(
xk−1, xk

)
≤ 1

ε

(
f1
δ

(
x1, x0

)
− fn+1

δ

(
xn+1, xn

))
≤ 1

ε
f1
δ

(
x1, x0

)
, (B.4.1)

since fn+1
δ

(
xn+1, xn

)
≥ 0. Taking the limit as n→∞, we obtain the first desired assertion, from which

we immediately deduce that
{
Dh

(
xk−1, xk

)}
k∈N converges to zero.

(iii) From (B.4.1) we also obtain,

n min
1≤k≤n

Dh

(
xk−1, xk

)
≤

n∑
k=1

Dh

(
xk−1, xk

)
≤ 1

ε
f1
δ

(
x1, x0

)
,

which after division by n yields the desired result.

188 B.5. Proof of Theorem 5.6.2.1

B.5 Proof of Theorem 5.6.2.1

The set of all limit points of {xk}k∈N is defined by

ω
(
x0
)

:=
{
x ∈ RN : ∃ an increasing sequence of integers {kl}l∈N s.t. xkl → x as l→∞

}
.

We first prove the following result.

Lemma B.5.0.1. Let {xk}k∈N be a bounded gradient-like descent sequence for minimizing fδ1 . Then, ω
(
x0
)

is a nonempty and compact subset of crit f , and we have

lim
k→∞

dist
(
xk, ω

(
x0
))

= 0. (B.5.1)

In addition, the objective function f is finite and constant on ω
(
x0
)
.

Proof. Since {xk}k∈N is bounded there is x∗ ∈ RN and a subsequence
{
xkq
}
q∈N such that xkq → x∗ as q →∞

and hence ω
(
x0
)
is nonempty. Moreover, the set ω

(
x0
)
is compact since it can be viewed as an intersection

of compact sets. Now, from conditions (C1) and (C3), and the lower semicontinuity of f (which follows from
the lower semi-continuity of f0 and f1, see Assumption A), we obtain

lim
k→∞

Dh

(
xk−1, xk

)
≤ lim

k→∞

∥∥∥xk − xk−1
∥∥∥2

= 0

and therefore
lim
q→∞

fδ1

(
xkq+1, xkq

)
= lim

q→∞
f
(
xkq
)

= f (x∗) . (B.5.2)

On the other hand, from conditions (C1) and (C2), there is wk+1 ∈ ∂fδ1
(
xk+1, xk

)
, k ∈ N, such that

wk+1 → 0 as k →∞. The closedness property of ∂fδ1 implies thus that 0 ∈ ∂fδ1 (x∗, x∗) = (∂f (x∗) , 0). This
proves that x∗ is a critical point of f , and hence (B.5.1) is valid.
To complete the proof, let limk→∞ fδ1

(
xk+1, xk

)
= l ∈ R. Then

{
fδ1
(
xkq+1, xkq

)}
q∈N converges to l and

from (B.5.2) we have f (x∗) = l. Hence the restriction of fδ1 to ω
(
x0
)
equals l.

We can now restate and prove Theorem 5.6.2.1.

Theorem B.5.0.2. Let {xk}k∈N be a bounded gradient-like descent sequence for minimizing fδ1. If f and
h satisfy the KL property, then the sequence {xk}k∈N has finite length, i.e.,

∑∞
k=1

∥∥xk+1 − xk
∥∥ <∞ and it

converges to x∗ ∈ crit f .

Proof. Since {xk}k∈N is bounded there exists a subsequence
{
xkq
}
q∈N such that xkq → x as q → ∞. In a

similar way as in Lemma B.5.0.1 we get that

lim
k→∞

fδ1

(
xk+1, xk

)
= lim

k→∞
f
(
xk
)

= f (x) . (B.5.3)

If there exists an integer k̄ for which fδ1
(
xk̄+1, xk̄

)
= f (x) then condition (C1) would imply that xk̄+1 = xk̄.

A trivial induction show then that the sequence {xk}k∈N is stationary and the announced results are obvious.
Since

{
fδ1
(
xk+1, xk

)}
k∈N is a nonincreasing sequence, it is clear from (B.5.3) that f (x) < fδ1

(
xk+1, xk

)
for

all k > 0. Again from (B.5.3) for any η > 0 there exists a nonnegative integer k0 such that fδ1
(
xk+1, xk

)
<

f (x) + η for all k > k0. From Lemma B.5.0.1 we know that limk→∞ dist
(
xk, ω

(
x0
))

= 0. This means that
for any ε̃ > 0 there exists a positive integer k1 such that dist

(
xk, ω

(
x0
))
< ε̃ for all k > k1.

Appendix B. Appendix for CoCaIn BPG - Chapter 5 189

From Lemma B.5.0.1 applied to fδ1 , we know that ω
(
x0
)
is nonempty and compact and that the function f

is finite and constant on ω
(
x0
)
. Hence, we can apply the Uniformization Lemma 3.7.0.1 applied to fδ1 , which

satisfies the KL property since f and h do, with Ω = ω
(
x0
)
. Therefore, for any k ≥ l := max {k0, k1}+ 1,

we have
φ′
(
fδ1

(
xk, xk−1

)
− f(x)

)
dist

(
0, ∂fδ1

(
xk, xk−1

))
≥ 1. (B.5.4)

This makes sense since we know that fδ1
(
xk, xk−1

)
> f (x) for any k > l. Combining (B.5.4) with condition

(C2), see Proposition 5.6.2.2, we get that

φ′
(
fδ1

(
xk, xk−1

)
− f (x)

)
≥ ρ−1

2

(∥∥∥xk−1 − xk−2
∥∥∥+

∥∥∥xk − xk−1
∥∥∥)−1

. (B.5.5)

For convenience, we define for all p, q ∈ N and x the following quantity

∆p,q := φ
(
fδ1
(
xp, xp−1

)
− f (x)

)
− φ

(
fδ1
(
xq, xq−1

)
− f (x)

)
.

From the concavity of φ we get that

∆k,k+1 ≥ φ′
(
fδ1

(
xk, xk−1

)
− f (x)

)(
fδ1

(
xk, xk−1

)
− fδ1

(
xk+1, xk

))
. (B.5.6)

Combining condition (C1) with (B.5.5) and (B.5.6) yields, for any k > l, that

∆k,k+1 ≥
∥∥xk − xk−1

∥∥2

ρ (‖xk−1 − xk−2‖+ ‖xk − xk−1‖) , where ρ := ρ2/ρ1.

Using the fact that 2
√
αβ ≤ α+ β for all α, β ≥ 0, we infer from the later inequality that

4
∥∥∥xk − xk−1

∥∥∥ ≤ ∥∥∥xk−1 − xk−2
∥∥∥+

∥∥∥xk − xk−1
∥∥∥+ 4ρ∆k,k+1,

and thus
3
∥∥∥xk − xk−1

∥∥∥ ≤ ∥∥∥xk−1 − xk−2
∥∥∥+ 4ρ∆k,k+1. (B.5.7)

Summing up (B.5.7) for i = l + 2, . . . , k yields

3

k∑
i=l+2

∥∥xi − xi−1
∥∥ ≤ k∑

i=l+2

∥∥xi−1 − xi−2
∥∥+ 4ρ

k∑
i=l+2

∆i,i+1

≤
k∑

i=l+2

∥∥xi − xi−1
∥∥+

∥∥∥xl+1 − xl
∥∥∥+ 4ρ

k∑
i=l+2

∆i,i+1

=

k∑
i=l+2

∥∥xi − xi−1
∥∥+

∥∥∥xl+1 − xl
∥∥∥+ 4ρ∆l+2,k+1,

where the last equality follows from the fact that ∆p,q + ∆q,r = ∆p,r for all p, q, r ∈ N. Since φ ≥ 0, recalling
the definition of ∆l+2,k+1, we thus have for any k > l that

2
k∑

i=l+2

∥∥xi − xi−1
∥∥ ≤ ∥∥∥xl+1 − xl

∥∥∥+ 4ρφ
(
fδ1

(
xl+2, xl+1

)
− f (x)

)
,

190 B.6. Proof of Proposition 5.6.2.2

which implies that
∑∞

k=1

∥∥xk+1 − xk
∥∥ < ∞, i.e., {xk}k∈N is a Cauchy sequence and hence together with

Lemma B.5.0.1, we obtain the global convergence to a critical point.

B.6 Proof of Proposition 5.6.2.2

Proof. Fix k ≥ K. By the definition of the Lyapunov function fδ1 (· , ·) we obtain that

∂fδ1

(
xk+1, xk

)
=
(
∂f
(
xk+1

)
+ δ1∇2h

(
xk+1

)(
xk+1 − xk

)
, δ1

(
∇h
(
xk
)
−∇h

(
xk+1

)))
.

Writing the optimality condition of the optimization problem which defines xk+1 (see (5.4.5) and recall that
for k ≥ K, we have that τk = τ) yields that

0 ∈ ∂f0

(
xk+1

)
+∇f1

(
yk
)

+
1

τ

(
∇h
(
xk+1

)
−∇h

(
yk
))

.

Therefore
∇f1

(
xk+1

)
−∇f1

(
yk
)

+
1

τ

(
∇h
(
yk
)
−∇h

(
xk+1

))
∈ ∂f

(
xk+1

)
,

and by defining

wk+1
1 ≡ ∇f1

(
xk+1

)
−∇f1

(
yk
)

+
1

τ

(
∇h
(
yk
)
−∇h

(
xk+1

))
+ δ1∇2h

(
xk+1

)(
xk+1 − xk

)
,

and wk+1
2 ≡ δ1

(
∇h
(
xk
)
−∇h

(
xk+1

))
we obviously obtain that wk+1 ∈ ∂fδ1

(
xk+1, xk

)
where wk+1 =(

wk+1
1 , wk+1

2

)
. Since {xk}k∈N is a bounded sequence and both ∇h and ∇g are Lipschitz continuous on

bounded subsets of RN (see Assumption E(ii)), there exists M > 0 such that∥∥∥wk+1
1

∥∥∥ ≤ ∥∥∥∇f1

(
xk+1

)
−∇f1

(
yk
)∥∥∥+

1

τ

∥∥∥∇h(yk)−∇h(xk+1
)∥∥∥+ δ1

∥∥∥∇2h
(
xk+1

)∥∥∥∥∥∥xk+1 − xk
∥∥∥

≤M
(

1 +
1

τ

)∥∥∥xk+1 − yk
∥∥∥+ δ1M

∥∥∥xk+1 − xk
∥∥∥ ,

where the last inequality follows also from the fact that
∥∥∇2h

(
xk+1

)∥∥ ≤M , since ∇h is Lipschitz continuous
on bounded subsets of RN . Using step (5.4.2) we obtain that∥∥∥wk+1

1

∥∥∥ ≤M (
1 +

1

τ

)(∥∥∥xk+1 − xk
∥∥∥+ γk

∥∥∥xk − xk−1
∥∥∥)+ δ1M

∥∥∥xk+1 − xk
∥∥∥

≤M
(

1 + δ1 +
1

τ

)∥∥∥xk+1 − xk
∥∥∥+M

(
1 +

1

τ

)∥∥∥xk − xk−1
∥∥∥ ,

where we have used the fact that γk ≤ 1, k ∈ N. Since, we also have that∥∥∥wk+1
2

∥∥∥ = δ1

∥∥∥∇h(xk)−∇h(xk+1
)∥∥∥ ≤ δ1M

∥∥∥xk+1 − xk
∥∥∥ ,

the desired result is proved and condition (C2) also holds true.

Appendix B. Appendix for CoCaIn BPG - Chapter 5 191

B.7 Proof of Proposition 5.6.2.3

Proof. Consider a subsequence {xnk}k∈N which converges to x∗ (there exists such a subsequence since the
sequence {xk}k∈N is assumed to be bounded). Using Proposition 5.6.2.1(ii) and the strong convexity of h (·),
we obtain that limk→∞

∥∥xk − xk−1
∥∥ = 0. Therefore, the sequence

{
xnk−1

}
k∈N also converges to x∗. From

the definition of yk, see (5.4.2), it also follows that
{
ynk−1

}
k∈N also converges to x∗. In addition, since h

is continuously differentiable on RN we have that limk→∞Dh

(
x∗, ynk−1

)
= 0. Now, from (5.4.5), it follows

(after some simplifications), for all k ≥ K, that

f
(
xk
)
≤ f0 (x∗) +

〈
x∗ − xk,∇f1

(
yk−1

)〉
+

1

τ
Dh

(
x∗, yk−1

)
− 1

τ
Dh

(
xk, yk−1

)
.

Substituting k by nk and letting k →∞, we obtain from the fact that f1 is continuously differentiable on
RN , that

lim sup
k→∞

f0 (xnk) ≤ f0 (x∗) .

Using this, and recalling that here f1 is continuous, we obtain that lim supk∈K⊂N f (xnk) ≤ f (x∗), where
K = {nk : k ≥ K}.

B.8 Proof of Lemma B.8.0.1

Lemma B.8.0.1 (Closed form inertia). For h defined in (5.7.6), we obtain the following gradient

∇h(x) = (‖x‖22 + 1)x , (B.8.1)

and for any a ∈ RN , we have

1

2

〈
a,∇2h(x)a

〉
≤ 3

2
‖x‖22 ‖a‖22 +

1

2
‖a‖22 . (B.8.2)

Proof. Consider the expansion at x+ a till second order terms, we thus have

h(x+ a) =
1

4
‖x+ a‖42 +

1

2
‖x+ a‖22 ,

=
1

4

(
‖x‖22 + ‖a‖22 + 2 〈a, x〉

)2
+

1

2
‖x+ a‖22 ,

=
1

4

(
‖x‖42 + 4(〈a, x〉)2 + 4 ‖x‖22 〈a, x〉+ 2 ‖x‖22 ‖a‖22

)
+

1

2

(
‖x‖22 + ‖a‖22 + 2 〈a, x〉

)
.

The first order terms result in (B.8.1) and we also have

1

2

〈
a,∇2h(x)a

〉
= 〈a, x〉2 +

1

2
‖x‖22 ‖a‖22 +

1

2
‖a‖22 ≤

3

2
‖x‖22 ‖a‖22 +

1

2
‖a‖22 ,

where the inequality follows due to Cauchy-Schwarz inequality.

192 B.9. Proof of Proposition 5.7.3.1

B.9 Proof of Proposition 5.7.3.1

Proof. We use the strategy of Lemma A.3.0.3. From Lemma A.3.0.1, we have∫ 1

0
(1− t)

∫ 1

0

〈
∇2h

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − yk), xk − yk

〉
dt1dt

=γ2
k

∫ 1

0
(1− t)

∫ 1

0

〈
∇2h

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − xk−1), xk − xk−1

〉
dt1dt ,

≤ 2γ2
k

∫ 1

0
(1− t)

∫ 1

0

3

2

∥∥∥xk − xk−1
∥∥∥2 ∥∥∥xk + (t1 + (1− t1)t)(yk − xk)

∥∥∥2
dt1dt+ 2γ2

k

∫ 1

0
(1− t) 1

2

∥∥∥xk − xk−1
∥∥∥2
dt1dt ,

≤ 2γ2
k

∫ 1

0
(1− t)

∫ 1

0

(
3
∥∥∥xk − xk−1

∥∥∥2 ∥∥∥xk∥∥∥2
+ 3

∥∥∥xk − xk−1
∥∥∥2
)
dt1dt+ 2γ2

k

∫ 1

0
(1− t) 1

2

∥∥∥xk − xk−1
∥∥∥2
dt1dt ,

≤ 3γ2
k

(∥∥∥xk − xk−1
∥∥∥2 ∥∥∥xk∥∥∥2

+
∥∥∥xk − xk−1

∥∥∥2
)

+
γ2
k

2

∥∥∥xk − xk−1
∥∥∥2

,

where in the last step we used the upper bound (B.8.2) from Lemma B.8.0.1. Also, we used the following
inequality ∥∥∥xk + (t1 + (1− t1)t)(yk − xk)

∥∥∥2
≤ 2

∥∥∥xk∥∥∥2
+ 2(t1 + (1− t1)t)2γ2

k

∥∥∥xk − xk−1
∥∥∥2

,

≤ 2
∥∥∥xk∥∥∥2

+ 2
∥∥∥xk − xk−1

∥∥∥2
,

where in the last step we used γ2
k ≤ 1 and (t1 + (1− t1)t)2 ≤ 1. With

∫ 1
0 (1− t)dt = 1

2 the result follows.

Appendix C

Appendix for matrix factorization -
Chapter 6

C.1 Overview of the results

Below, we provide a table with the problem or content description and corresponding section where the
results are presented.

Matrix factorization problem Section

Standard matrix factorization Section C.2
L2-regularized matrix factorization Section C.2.1

Graph regularized matrix factorization Section C.2.2
L1-regularized matrix factorization Section C.2.3

Nuclear norm regularized matrix factorization Section C.2.4
Non-negative matrix factorization (NMF) Section C.3

L2-regularized NMF Section C.3.1
L1-regularized NMF Section C.3.2

Graph Regularized NMF Section C.3.3
Symmetric NMF via non-symmetric relaxation Section C.3.4

Sparse NMF Section C.3.5
Matrix completion Section C.4

Closed form solution with 5th-order polynomials Section C.5
Conversion to cubic equation Section C.5.1

Extensions to mixed regularization terms Section C.5.2
Technical proofs Section A.1

C.2 Closed form solutions: Part I for matrix factorization

Since, the update steps of BPG-MF and CoCaIn BPG-MF have same structure, we provide the closed form
expressions to just BPG-MF. We start with the following technical lemma.

Lemma C.2.0.1. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2

}
≡ min

X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2

}
= −t ‖Q‖F ,

193

194 C.2. Closed form solutions: Part I for matrix factorization

with the minimizer at X∗ = −tQ/ ‖Q‖F .

Proof. The proof is inspired from [111, Lemma 9]. On rewriting we have the following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2

}
≡ − max

X∈RA×B

{
〈−Q,X〉 : ‖X‖2F ≤ t2

}
.

The expression 〈−Q,X〉 is maximized at X∗ = c(−Q) for certain constant c. On substituting we have

〈−Q,X∗〉 = c ‖Q‖2F .

Since, the dependence on c is linear and we additionally require ‖X‖2F ≤ t2, we can set c = t
‖Q‖F

if ‖Q‖F 6= 0

else c = 0. Hence, the minimizer to

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2

}
is attained at X∗ = −t Q

‖Q‖F
for ‖Q‖F 6= 0 else X∗ = 0. The equivalence in the statement follows as

‖X∗‖2F = t2.

Consider the following non-convex matrix factorization problem

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖A− UZ‖2F

}
. (C.2.1)

Denote f1 = f , f0 := 0, h = ha.

Proposition C.2.0.1. In BPG-MF, with above defined f1, f0, h the update steps in each iteration are given
by Uk+1 = −r P k, Zk+1 = −r Qk where r is the non-negative real root of

c1

(∥∥∥Qk∥∥∥2

F
+
∥∥∥P k∥∥∥2

F

)
r3 + c2r − 1 = 0 , (C.2.2)

with c1 = 3 and c2 = ‖A‖F . Another equivalent formulation of the update steps in each iteration is given by
Uk+1 = −r

√
2Pk√

‖Pk‖2

F
+‖Qk‖2

F

and Zk+1 = −r
√

2Qk√
‖Pk‖2

F
+‖Qk‖2

F

for some r ≥ 0 such that r satisfies the following

cubic equation

2c1r
3 + c2r −

√
‖P k‖2F + ‖Qk‖2F√

2
= 0 .

Proof. Consider the following subproblem

(Uk+1, Zk+1) ∈ argmin
(U,Z)∈RM×K×RK×N

〈P k, U〉+
〈
Qk, Z

〉
+ c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

) .

Denote the objective in the above minimization problem as O(U‖,Z‖). Now, the following holds

min
(U,Z)∈RM×K×RK×N

(
O(U‖,Z‖)

)
≡ min

t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F=t1,‖Z‖F=t2

(
O(U‖,Z‖)

)}
, (C.2.3)

≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F≤t1,‖Z‖F≤t2

(
O(U‖,Z‖)

)}
, (C.2.4)

Appendix C. Appendix for matrix factorization - Chapter 6 195

where the first step is a simple rewriting of the objective. The second step is non-trivial. In order to prove
(C.2.4) we rewrite (C.2.3) as

min
t1≥0,t2≥0

{
min

U1∈RM×K

{〈
P k, U1

〉
: ‖U1‖2F = t21

}
+ min
Z1∈RK×N

{〈
Qk, Z1

〉
: ‖Z1‖2F = t22

}
+c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Now, note the following equivalence due to Lemma D.2.0.1

min
U1∈RM×K

{〈
P k, U1

〉
: ‖U1‖2F = t21

}
≡ min

U1∈RM×K

{〈
P k, U1

〉
: ‖U1‖2F ≤ t21

}
,

min
Z1∈RK×N

{〈
Qk, Z1

〉
: ‖Z1‖2F = t22

}
≡ min

Z1∈RK×N

{〈
Qk, Z1

〉
: ‖Z1‖2F ≤ t22

}
.

This proves (C.2.4). Now, we solve for (Uk+1, Zk+1) via the following strategy. Denote

U∗1 (t1) ∈ argmin
{〈
P k, U1

〉
: U1 ∈ RM×K , ‖U1‖2F ≤ t21

}
,

Z∗1 (t2) ∈ argmin
{〈
Qk, Z1

〉
: Z1 ∈ RK×N , ‖Z1‖2F ≤ t22

}
.

Then we obtain (Uk+1, Zk+1) = (U∗1 (t∗1), Z∗1(t∗2)), where t∗1 and t∗2 are obtained by solving the following two
dimensional subproblem

(t∗1, t
∗
2) ∈ argmin

t1≥0,t2≥0

{
min

U1∈RM×K

{〈
P k, U1

〉
: ‖U1‖2F ≤ t21

}
+ min
Z1∈RK×N

{〈
Qk, Z1

〉
: ‖Z1‖2F ≤ t22

}
+c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Note that inner minimization subproblems can be trivially solved once we obtain U∗1 (t1) and Z∗1(t2) via
Lemma D.2.0.1. Then the solution to the subproblem in each iteration is as follows:

Uk+1 =

t
∗
1
−Pk
‖Pk‖

F

, for
∥∥P k∥∥

F
6= 0 ,

0 otherwise .

Zk+1 =

t
∗
2
−Qk
‖Qk‖

F

, for
∥∥Qk∥∥

F
6= 0 ,

0 otherwise .

We solve for t∗1 and t∗2 with the following two dimensional minimization problem

argmin
t1≥0,t2≥0

{
−t1

∥∥∥P k∥∥∥
F
− t2

∥∥∥Qk∥∥∥
F

+ c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Thus, the solutions t∗1 and t∗2 are the non-negative real roots of the following equations

−
∥∥∥P k∥∥∥

F
+ c1(t21 + t22)t1 + c2t1 = 0 , −

∥∥∥Qk∥∥∥
F

+ c1(t21 + t22)t2 + c2t2 = 0 .

196 C.2. Closed form solutions: Part I for matrix factorization

Now, there are two methods to solve the above equations.

Method 1: Further simplifications lead to t1 = r
∥∥P k∥∥

F
and t2 = r

∥∥Qk∥∥
F

for some r ≥ 0 such that r
satisfies the following cubic equation

c1

(∥∥∥Qk∥∥∥2

F
+
∥∥∥P k∥∥∥2

F

)
r3 + c2r − 1 = 0 .

Method 2: Further simplifications lead to t1 = r

√
2‖Pk‖

F√
‖Pk‖2

F
+‖Qk‖2

F

and t2 = r

√
2‖Qk‖

F√
‖Pk‖2

F
+‖Qk‖2

F

for some r ≥ 0

such that r satisfies the following cubic equation

2c1r
3 + c2r −

√
‖P k‖2F + ‖Qk‖2F√

2
= 0 .

C.2.1 Extensions to L2-regularized matrix factorization

We consider the following L2-regularized matrix factorization problem [104].

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖A− UZ‖2F +

λ0

2

(
‖U‖2F + ‖Z‖2F

)}
. (C.2.5)

Denote f1 := 1
2 ‖A− UZ‖

2
F , f0 := λ0

2

(
‖U‖2F + ‖Z‖2F

)
and h = ha.

Proposition C.2.1.1. In BPG-MF, with the above defined f1, f0, h the update steps in each iteration are
given by Uk+1 = −r P k, Zk+1 = −r Qk where r is the non-negative real root of

c1

(∥∥∥Qk∥∥∥2

F
+
∥∥∥P k∥∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 , (C.2.6)

with c1 = 3 and c2 = ‖A‖F .

We skip the proof as it is very similar to Proposition C.2.0.1 and only change is in c2.

C.2.2 Extensions to graph regularized matrix factorization

Graph regularized matrix factorization was proposed in [38]. However, they used non-negativity constraints.
We simplify the problem here by not considering the non-negativity constraints. We later show in Section C.3.3,
how the non-negativity constraints are handled. Here, given L ∈ RM×M we are interested to solve

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖A− UZ‖2F +

µ0

2
tr(UTLU) +

λ0

2

(
‖U‖2F + ‖Z‖2F

)}
.

In such a case, it is easy to extend the following ideas to Graph regularized non-negative matrix factorization.
We show here L-smad property. We first need the following technical lemma.

Lemma C.2.2.1. Let g1(U) = tr(UTLU), then for any H ∈ RM×K we have ∇g1(U) = LU + LTU ,〈
H,∇2g1(U)H

〉
= 2 〈LH,H〉 .

Appendix C. Appendix for matrix factorization - Chapter 6 197

Proof. Note that tr(UTLU) = 〈LU,U〉, now we obtain for H ∈ RM×K the following

〈L(U +H), U +H〉 = 〈L(U +H), U +H〉
= 〈LU,U〉+ 〈LU,H〉+ 〈LH,U〉+ 〈LH,H〉 ,
= 〈LU,U〉+ 〈LU,H〉+

〈
LTU,H

〉
+ 〈LH,H〉 .

Thus the statement holds, by collecting the first and second order terms.

Now, we prove the L-smad property.

Proposition C.2.2.1. Let f1(U,Z) = 1
2 ‖A− UZ‖

2
F + µ0

2 tr(U
TLU). Then, for a certain constant L ≥ 1,

the function f1 satisfies L-smad property with respect to the following kernel generating distance,

hc(U,Z) = 3h1(U,Z) + (‖A‖F + µ0 ‖L‖F)h2(U,Z) .

Proof. The proof is similar to Proposition 4.5.0.1 and Lemma C.2.2.1 must be applied for the result.

Denote f1 := 1
2 ‖A− UZ‖

2
F + µ0

2 tr(U
TLU), f0 := λ0

2

(
‖U‖2F + ‖Z‖2F

)
and h = hc.

Proposition C.2.2.2. In BPG-MF, with the above defined f0, f1, h the update steps in each iteration are
given by Uk+1 = −r P k, Zk+1 = −r Qk where r ≥ 0 and satisfies

c1

(∥∥∥Qk∥∥∥2

F
+
∥∥∥P k∥∥∥2

F

)
r3 + (c2 + µ0 ‖L‖F + λ0)r − 1 = 0 , (C.2.7)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.2.0.1 and only c2 changes.

C.2.3 Extensions to L1-regularized matrix factorization

Now consider the following matrix factorization problem with L1-regularization

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖A− UZ‖2F + λ1 (‖U‖1 + ‖Z‖1)

}
. (C.2.8)

Recall that soft-thresholding operator is defined for any y ∈ RN by

Sθ (y) = argminx∈RN

{
θ ‖x‖1 +

1

2
‖x− y‖2

}
= max {|y| − θ, 0} sgn (y) , (C.2.9)

where θ > 0 and the operations are applied element-wise. We require the following technical result.

Lemma C.2.3.1. Let Q ∈ RA×B for some positive integers A and B. Let t0 > 0 and let t ≥ 0 then

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2

}
= −t ‖St0(−Q)‖F .

with the minimizer at X∗ = t
St0 (−Q)

‖St0 (−Q)‖
F

for ‖St0(−Q)‖F 6= 0 and otherwise all X such that ‖X‖2F ≤ t2 are

minimizers. Moreover we have the following equivalence,

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2

}
≡ min

X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F = t2

}
. (C.2.10)

198 C.2. Closed form solutions: Part I for matrix factorization

Proof. We have the following equivalence

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2

}
≡ − max

X∈RA×B

{
〈−Q,X〉 − t0 ‖X‖1 : ‖X‖2F ≤ t2

}
.

Then the result follows due to [111, Proposition 14] with the minimizer atX∗ = t
St0 (−Q)

‖St0 (−Q)‖
F

for ‖St0(−Q)‖F 6=
0 and 0 otherwise. The equivalence statement in (C.2.10) follows as ‖X∗‖2F = t2 for ‖St0(−Q)‖F 6= 0 and
otherwise all the points satisfying ‖X‖2F = t2 are minimizers.

Denote f1 := 1
2 ‖A− UZ‖

2
F , f0 := λ1 (‖U‖1 + ‖Z‖1) and h = ha.

Proposition C.2.3.1. In BPG-MF, with the above defined f1, f0, h the update steps in each iteration are
given by Uk+1 = rSλ1λ(−P k), Zk+1 = rSλ1λ(−Qk) where r ≥ 0 and satisfies

c1

(∥∥∥Sλ1λ

(
−Qk

)∥∥∥2

F
+
∥∥∥Sλ1λ

(
−P k

)∥∥∥2

F

)
r3 + c2r − 1 = 0 , (C.2.11)

with c1 = 3 and c2 = ‖A‖F .

Proof. The proof is similar to that of Proposition C.2.0.1, however with certain changes due to the L1 norm
in the objective. Consider the following subproblem

(Uk+1, Zk+1) ∈ argmin
(U,Z)∈RM×K×RK×N

{
λλ1 (‖U‖1 + ‖Z‖1) +

〈
P k, U

〉
+
〈
Qk, Z

〉

+c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

) ,

Denote the objective in the above minimization problem as O(U‖,Z‖). Now, we show that the following
holds

min
(U,Z)∈RM×K×RK×N

(
O(U‖,Z‖)

)
≡ min

t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F=t1,‖Z‖F=t2

(
O(U‖,Z‖)

)}
, (C.2.12)

≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F≤t1,‖Z‖F≤t2

(
O(U‖,Z‖)

)}
. (C.2.13)

where the first step is a simple rewriting of the objective. The second step is non-trivial. In order to prove
(C.2.13) we rewrite (C.2.12) as

min
t1≥0,t2≥0

{
min

U1∈RM×K

{〈
P k, U1

〉
+ λλ1 ‖U‖1 : ‖U1‖2F = t21

}
+ min
Z1∈RK×N

{〈
Qk, Z1

〉
+ λλ1 ‖Z‖1 : ‖Z1‖2F = t22

}
+c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

where the second step (C.2.13) uses Lemma C.2.3.1 and strong convexity of h. Now, note the following
equivalence due to Lemma C.2.3.1

min
U1∈RM×K

{〈
P k, U1

〉
+ λλ1 ‖U‖1 : ‖U1‖2F = t21

}
≡ min

U1∈RM×K

{〈
P k, U1

〉
+ λλ1 ‖U‖1 : ‖U1‖2F ≤ t21

}
,

(C.2.14)

Appendix C. Appendix for matrix factorization - Chapter 6 199

min
Z1∈RK×N

{〈
Qk, Z1

〉
+ λλ1 ‖Z‖1 : ‖Z1‖2F = t22

}
≡ min

Z1∈RK×N

{〈
Qk, Z1

〉
+ λλ1 ‖Z‖1 : ‖Z1‖2F ≤ t22

}
.

(C.2.15)

We solve the subproblems via the following strategy. Denote

U∗1 (t1) ∈ argmin
{〈
P k, U1

〉
+ λλ1 ‖U‖1 : U1 ∈ RM×K , ‖U1‖2F ≤ t21

}
Z∗1 (t2) ∈ argmin

{〈
Qk, Z1

〉
+ λλ1 ‖Z‖1 : Z1 ∈ RK×N , ‖Z1‖2F ≤ t22

}
Then we obtain (Uk+1, Zk+1) = (U∗1 (t∗1), Z∗1(t∗2)), where t∗1 and t∗2 are obtained by solving the following two
dimensional subproblem

(t∗1, t
∗
2) ∈ argmin

t1≥0,t2≥0

{
min

U1∈RM×K

{〈
P k, U1

〉
+ λλ1 ‖U‖1 : ‖U1‖2F ≤ t21

}
+ min
Z1∈RK×N

{〈
Qk, Z1

〉
+ λλ1 ‖Z‖1 : ‖Z1‖2F ≤ t22

}
+ c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Note that inner minimization subproblems can be trivially solved once we obtain U∗1 (t1) and Z∗1 (t2). Due to
Lemma C.2.3.1 we obtain the solution to the subproblem in each iteration as follows

Uk+1 =

t
∗
1

Sλλ1
(−Pk)

‖Sλλ1
(−Pk)‖

F

, for
∥∥Sλλ1(−P k)

∥∥
F
6= 0 ,

0 otherwise .

Zk+1 =

t
∗
2

Sλλ1
(−Qk)

‖Sλλ1
(−Qk)‖

F

, for
∥∥Sλλ1(−Qk)

∥∥
F
6= 0 ,

0 otherwise .

We solve for t∗1 and t∗2 with the following two dimensional minimization problem

argmin
t1≥0,t2≥0

{
−t1

∥∥∥Sλλ1(−P k)
∥∥∥
F
− t2

∥∥∥Sλλ1(−Qk)
∥∥∥
F

+ c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Thus, the solutions t∗1 and t∗2 are the non-negative real roots of the following equations

−
∥∥∥Sλλ1(−P k)

∥∥∥
F

+ c1(t21 + t22)t1 + c2t1 = 0 , −
∥∥∥Sλλ1(−Qk)

∥∥∥
F

+ c1(t21 + t22)t2 + c2t2 = 0 .

Set t1 = r
∥∥Sλλ1(−P k)

∥∥
F

and t2 = r
∥∥Sλλ1(−Qk)

∥∥
F

for some r ≥ 0. This results in the following cubic
equation,

c1

(∥∥∥Sλλ1(−Qk)
∥∥∥2

F
+
∥∥∥Sλλ1(−P k)

∥∥∥2

F

)
r3 + c2r − 1 = 0 ,

where the solution is the non-negative real root.

C.2.4 Extensions with nuclear norm regularization

We start with the notion of Singular Value Shrinkage Operator [39], where given a matrix Q ∈ RA×B of rank
K with Singular Value Decomposition given by UΣV T with U ∈ RA×K , Σ ∈ RK×K and V ∈ RK×N for t ≥ 0

200 C.2. Closed form solutions: Part I for matrix factorization

the output is
Dt(Q) = USt(Σ)V T , (C.2.16)

where the soft-thresholding operator is applied only to the singular values. Before we proceed, we require the
following technical lemma.

Lemma C.2.4.1. Let Q ∈ RA×B of rank K with Singular Value Decomposition given by UΣV T with
U ∈ RA×K , Σ ∈ RK×K and Z ∈ RK×N . Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖∗ : ‖X‖2F ≤ t2

}
= −t ‖St0(−Σ)‖ .

with X∗ = t
Dt0 (−Q)

‖Dt(−Q)‖F
if ‖Dt0(−Q)‖ 6= 0 else any X such that ‖X‖2F ≤ t2 is a minimizer. Moreover we have

the following equivalence

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖∗ : ‖X‖2F ≤ t2

}
= min

X∈RA×B

{
〈Q,X〉+ t0 ‖X‖∗ : ‖X‖2F = t2

}
. (C.2.17)

Proof. The sub-differential of the nuclear norm [39] is given by

∂ ‖X‖∗ =
{
UV T +W : W ∈ RA×B, UTW = 0,WV = 0, ‖W‖2 ≤ 1

}
. (C.2.18)

The normal cone for the set C1 =
{
X : ‖X‖2F ≤ t2

}
is given by

NC1(X̄) =
{
V ∈ RA×B :

〈
V,X − X̄

〉
≤ 0 for all X ∈ C1

}
≡
{
θX̄ : θ ≥ 0

}
.

We consider the following problem

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖∗ : ‖X‖2F ≤ t2

}
.

and the optimality condition [150, Theorem 10.1, p. 422] results in

0 ∈ Q+ t0∂ ‖X‖∗ +NC1(X) .

We follow the strategy from [39, Theorem 2.1]. One can decompose −Q as

−Q = U0Σ0V
T

0 + U1Σ1V
T

1 .

where U0, V0 contain the singular vectors for singular values greater than t0 and U1, V1 for less than equal to
t0. Then with X = U0ΣV T

0 , the optimality condition becomes

0 = Q+ t0(U0V
T

0 +W) + θU0ΣV T
0 , (C.2.19)

and thus we obtain
U0Σ0V

T
0 + U1Σ1V

T
1 = t0

(
U0V

T
0 +W

)
+ θU0ΣV T

0 .

With W = t−1
0 U1Σ1V

T
1 all the conditions in (C.2.18) are satisfied. For some unknown θ ≥ 0 we have

θΣ = Σ0 − t0I .

Appendix C. Appendix for matrix factorization - Chapter 6 201

The objective 〈Q,X〉+t0 ‖X‖∗ is now monotonically decreasing with θ after substituting. Thus, we obtain the
solution X = t

‖Σ0−t0I‖U0 (Σ0 − t0I)V T
0 for ‖Σ0 − t0I‖ 6= 0 else the solution is 0. The equivalence statement

in (C.2.17) follows trivially because if ‖Σ0 − t0I‖ 6= 0 we have ‖X‖2F = t2 otherwise all the points satisfying
‖X‖2F ≤ t2 are minimizers.

Here, we want to solve matrix factorization problem with nuclear norm regularization, where for certain
constant λ2 > 0 we want to solve

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖A− UZ‖2F + λ2 (‖U‖∗ + ‖Z‖∗)

}
. (C.2.20)

Denote f1 := 1
2 ‖A− UZ‖

2
F , f0 := λ2 (‖U‖∗ + ‖Z‖∗) and h = ha.

Proposition C.2.4.1. In BPG-MF, with the above defined f1, f0, h the update steps in each iteration are
given by Uk+1 = rDλ1λ(−P k), Zk+1 = rDλ1λ(−Qk) where r ≥ 0 and satisfies

c1

(∥∥∥Dλ1λ

(
−Qk

)∥∥∥2

F
+
∥∥∥Dλ1λ

(
−P k

)∥∥∥2

F

)
r3 + c2r − 1 = 0 , (C.2.21)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.2.3.1, however Lemma C.2.4.1 must be used instead of Lemma C.2.3.1.

C.2.5 Extensions with non-convex sparsity constraints

We want to solve the matrix factorization problem with non-convex sparsity constraints [26]

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖A− UZ‖2F : ‖U‖0 ≤ s1, ‖Z‖0 ≤ s2,

}
. (C.2.22)

The problem with additional non-negativity constraints, the so called Sparse NMF is considered in Section C.3.5.
Now, denote f1 := 1

2 ‖A− UZ‖
2
F , f0 := I‖U‖0≤s1 + I‖Z‖0≤s2 and h = ha. Note that the Assumption D(iii)

is not valid here, hence CoCaIn BPG-MF theory does not hold and hints at possible extensions of CoCaIn
BPG-MF, which is an interesting open question. Before, we proceed, we require the following concept. Let
y ∈ RN and without loss of generality we can assume that |y1| ≥ |y2| ≥ . . . ≥ |yd|, then the hard-thresholding
operator [111] is given by

Hs (y) = argminx∈RN
{
‖x− y‖2 : ‖x‖0 ≤ s

}
=

{
yi, i ≤ s,
0, otherwise,

(C.2.23)

where s > 0 and the operations are applied element-wise. We require the following technical lemma.

Lemma C.2.5.1. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
= −t ‖Hs(−Q)‖ .

with the minimizer X∗ = tHs(−Q)
‖Hs(−Q)‖ if ‖Hs(−Q)‖ 6= 0 else X∗ = 0 . Moreover we have the following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
= min

X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2, ‖X‖0 ≤ s

}
.

202 C.3. Closed form solutions: Part II for NMF variants

Proof. The proof is similar to [111, Proposition 11]. We have

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
= − max

X∈RA×B

{
〈−Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
,

= − max
X∈RA×B

{
〈Hs(−Q), X〉 : ‖X‖2F ≤ t2

}
.

The first equality is a simple rewriting of the objective. Then, the corresponding objective 〈−Q,X〉 can
be maximized with

∑A
i=1

∑B
j=1 I(i,j)∈Ω0

(−QijXij) where Ω0 is set of index pairs and I(i,j)∈Ω0
is 1 if the

index pair if (i, j) ∈ Ω0 and zero otherwise. Note that the objective 〈−Q,X〉 is maximized if Ω0 contains
all the index pairs corresponding to the elements of −Q with highest absolute value which is captured by
Hard-thresholding operator. Thus, the second equality follows and the solution follows due to Lemma D.2.0.1.
The equivalence statement follows as ‖X∗‖2F = t2 for ‖Hs(−Q)‖ 6= 0 else the function value is zero and is
attained by all the points in the set

{
X : ‖X‖2F ≤ t2

}
are minimizers, hence the equivalence.

Proposition C.2.5.1. In BPG-MF, with the above defined f1, f0, h the update steps in each iteration are
given by Uk+1 = rHs1(−P k), Zk+1 = rHs2(−Qk) where r ≥ 0 and satisfies

c1

(∥∥∥Hs1 (−Qk)∥∥∥2

F
+
∥∥∥Hs2 (−P k)∥∥∥2

F

)
r3 + c2r − 1 = 0 , (C.2.24)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.2.3.1, however Lemma C.2.5.1 must be used instead of Lemma C.2.3.1.

C.3 Closed form solutions: Part II for NMF variants

For simplicity we consider the following problem [100, 101]

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖A− UZ‖2F + IU≥0 + IZ≥0

}
. (C.3.1)

We set R1(U) = 0, R2(Z) = 0, f1 = f and f = IU≥0 + IZ≥0 where I is the indicator operator. We start with
the following technical lemma.

Lemma C.3.0.1. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, X ≥ 0

}
= −t ‖Π+(−Q)‖F ,

with the minimizer X∗ = t Π+(−Q)
‖Π+(−Q)‖F

if ‖Π+(−Q)‖F 6= 0 else X∗ = 0. For ‖Π+(−Q)‖F 6= 0, we have the
following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, X ≥ 0

}
≡ min

X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2, X ≥ 0

}
. (C.3.2)

Proof. On rewriting we have the following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, X ≥ 0

}
≡ − max

X∈RA×B

{
〈−Q,X〉 : ‖X‖2F ≤ t2, X ≥ 0

}
.

Appendix C. Appendix for matrix factorization - Chapter 6 203

The expression 〈−Q,X〉 is maximized at X∗ = cΠ+(−Q) for certain constant c. On substituting we have

〈−Q,X∗〉 = c ‖Π+(−Q)‖2F .

Since, the dependence on c is linear and we additionally require ‖X‖2F ≤ t2, we can set c = t
‖Π+(−Q)‖F

if
‖Π+(−Q)‖F 6= 0 else c = 0. Hence, the minimizer to

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2

}
is attained at X∗ = −t Π+(−Q)

‖Π+(−Q)‖F
for ‖Π+(−Q)‖F 6= 0 else X∗ = 0. The equivalence in the statement follows

as ‖X∗‖2F = t2.

Denote f1 = f , f0 = IU≥0 + IZ≥0 and h = ha.

Proposition C.3.0.1. In BPG-MF, when f1 = f in (C.3.1) the update step in each iteration are given by
Uk+1 = Π+(−P k), Zk+1 = Π+(−Qk) where r ≥ 0 and satisfies

c1

(∥∥∥Π+(−Qk)
∥∥∥2

F
+
∥∥∥Π+(−P k)

∥∥∥2

F

)
r3 + c2r − 1 = 0 . , (C.3.3)

with c1 = 3 and c2 = ‖A‖F .

Proof. The proof is similar to that of Proposition C.2.0.1, however with certain changes due to the involved
non-negativity constraints for the objective. Consider the following subproblem

(Uk+1, Zk+1) ∈ argmin
(U,Z)∈RM×K+ ×RK×N+

〈P k, U〉+
〈
Qk, Z

〉
+ c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

) .

Denote the objective in the above minimization problem as O(U‖,Z‖). Now, we show that the following
holds

min
(U,Z)∈RM×K×RK×N

(
O(U‖,Z‖)

)
≡ min

t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F=t1,‖Z‖F=t2

(
O(U‖,Z‖)

)}
, (C.3.4)

≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F≤t1,‖Z‖F≤t2

(
O(U‖,Z‖)

)}
, (C.3.5)

where the first step is a simple rewriting of the objective and involved variables and the second equivalence
proof is similar to that equivalence of (C.2.13) and (C.2.12) in Proposition C.2.3.1, which we describe now.
The second step is non-trivial. In order to prove (C.3.5) we rewrite (C.3.4) as

min
t1≥0,t2≥0

{
min

U1∈RM×K

{〈
P k, U1

〉
: ‖U1‖2F = t21, U1 ≥ 0

}
+ min
Z1∈RK×N

{〈
Qk, Z1

〉
: ‖Z1‖2F = t22, Z1 ≥ 0

}
+c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

204 C.3. Closed form solutions: Part II for NMF variants

where the second step uses Lemma C.3.0.1 and strong convexity of h. Now, due to Lemma C.2.3.1, if∥∥Π+(−P k)
∥∥
F
6= 0 we have

min
U1∈RM×K

{〈
P k, U1

〉
: ‖U1‖2F = t21 , U1 ≥ 0

}
≡ min

U1∈RM×K

{〈
P k, U1

〉
: ‖U1‖2F ≤ t21 , U1 ≥ 0

}
, (C.3.6)

and similarly if
∥∥Π+(−Qk)

∥∥
F
6= 0 we have

min
Z1∈RK×N

{〈
Qk, Z1

〉
: ‖Z1‖2F = t22 , Z1 ≥ 0

}
≡ min

Z1∈RK×N

{〈
Qk, Z1

〉
: ‖Z1‖2F ≤ t22 , Z1 ≥ 0

}
. (C.3.7)

Note that if
∥∥Π+(−P k)

∥∥
F

= 0 and
∥∥P k∥∥

F
6= 0 then the objective

min
U1∈RM×K

{〈
P k, U1

〉
: ‖U1‖2F = t21 , U1 ≥ 0

}
with minimum function value of a positive value t1 min

i∈[M], j∈[K]
{(P k)i,j} where we have [A] = {1, 2, . . . , A} for

a positive integer A. Similarly if
∥∥Π+(−Qk)

∥∥
F

= 0 and
∥∥Qk∥∥

F
6= 0 the minimum function value for

min
Z1∈RK×N

{〈
Qk, Z1

〉
: ‖Z1‖2F = t22 , Z1 ≥ 0

}
is a positive value t2 min

i∈[K], j∈[N]
{(Qk)i,j}. Thus for

∥∥P k∥∥
F
6= 0 with

∥∥Π+(−P k)
∥∥
F

= 0 (or
∥∥Qk∥∥

F
6= 0 with∥∥Π+(−Qk)

∥∥
F

= 0) the final objective (C.3.4) is monotonically increasing in t1 (or t2) which will drive
t1 (or t2) to 0 due to the constraint t1 ≥ 0 (or t2 ≥ 0). So, without loss of generality we can consider∥∥Π+(−Qk)

∥∥
F
6= 0 and

∥∥Π+(−Qk)
∥∥
F

= 0. Now, we obtain the solutions via the following strategy. Denote

U∗1 (t1) ∈ argmin
{〈
P k, U1

〉
: U1 ∈ RM×K+ , ‖U1‖2F ≤ t21

}
,

Z∗1 (t2) ∈ argmin
{〈
Qk, Z1

〉
: Z1 ∈ RK×N+ , ‖Z1‖2F ≤ t22

}
.

Then we obtain (Uk+1, Zk+1) = (U∗1 (t∗1), Z∗1(t∗2)), where t∗1 and t∗2 are obtained by solving the following two
dimensional subproblem

(t∗1, t
∗
2) ∈ argmin

t1≥0,t2≥0

{
min

U1∈RM×K+

{〈
P k, U1

〉
: ‖U1‖2F ≤ t21

}
+ min
Z1∈RK×N+

{〈
Qk, Z1

〉
: ‖Z1‖2F ≤ t22

}
+c1

(
t1 + t2

2

)2

+ c2

(
t1 + t2

2

)}
.

Appendix C. Appendix for matrix factorization - Chapter 6 205

Note that inner minimization subproblems can be trivially solved once we obtain U∗1 (t1) and Z∗1 (t2). Due to
Lemma C.3.0.1 we obtain the solution to the subproblem in each iteration as follows

Uk+1 =

t
∗
1

Π+(−Pk)

‖Π+(−Pk)‖
F

, for
∥∥Π+(−P k)

∥∥
F
6= 0 ,

0, otherwise .

Zk+1 =

t
∗
2

Π+(−Qk)

‖Π+(−Qk)‖
F

, for
∥∥Π+(−Qk)

∥∥
F
6= 0 ,

0, otherwise .

We solve for t∗1 and t∗2 with the following two dimensional minimization problem

argmin
t1≥0,t2≥0

{
−t1

∥∥∥Π+(−P k)
∥∥∥
F
− t2

∥∥∥Π+(−Qk)
∥∥∥
F

+ c1

(
t21 + t22

2

)2

+ c2

(
t21 + t22

2

)}
.

Thus, the solutions t∗1 and t∗2 are the non-negative real roots of the following equations

−
∥∥∥Π+(−P k)

∥∥∥
F

+ c1(t21 + t22)t1 + c2t1 = 0 , −
∥∥∥Π+(−Qk)

∥∥∥
F

+ c1(t21 + t22)t2 + c2t2 = 0 .

Further simplifications lead to t1 = r
∥∥Π+(−P k)

∥∥
F
and t2 = r

∥∥Π+(−Qk)
∥∥
F
for some r ≥ 0. This results in

the following cubic equation,

c1

(∥∥∥Π+(−Qk)
∥∥∥2

F
+
∥∥∥Π+(−P k)

∥∥∥2

F

)
r3 + c2r − 1 = 0 ,

where the solution is the non-negative real root.

C.3.1 Extensions to L2-regularized NMF

Here, the goal is solve the following minimization problem

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖A− UZ‖2F +

λ0

2

(
‖U‖2F + ‖Z‖2F

)
+ IU≥0 + IZ≥0

}
.

Denote f1 := 1
2 ‖A− UZ‖

2
F + λ0

2

(
‖U‖2F + ‖Z‖2F

)
, f0 := IU≥0 + IZ≥0 and h = hb.

Proposition C.3.1.1. In BPG-MF, with above defined f1, f0, h the update step in each iteration are given
by Uk+1 = Π+(−P k), Zk+1 = Π+(−Qk) where r ≥ 0 and satisfies

c1

(∥∥∥Π+(−Qk)
∥∥∥2

F
+
∥∥∥Π+(−P k)

∥∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 ,

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.3.0.1 with only change in c2.

206 C.3. Closed form solutions: Part II for NMF variants

C.3.2 Extensions to L1-regularized NMF

Here, the goal is solve the following minimization problem

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖A− UZ‖2F + λ1 (‖U‖1 + ‖Z‖1) + IU≥0 + IZ≥0

}
.

We denote eD to be a vector of dimension D with all its elements set to 1.

Lemma C.3.2.1. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2, X ≥ 0

}
= −t

∥∥Π+(−
(
Q+ t0eAeB

T
)
)
∥∥
F

with the minimizer X∗ = t
Π+(−(Q+t0eAeB

T))

‖Π+(−(Q+t0eAeBT))‖F
if the condition

∥∥Π+(−
(
Q+ t0eAeB

T
)
)
∥∥
F
6= 0 holds .

Proof. By using X ≥ 0 and the basic trace properties we have the following equivalence

‖X‖1 =
∑
i,j

Xij = eA
TXeB = tr

(
eA

TXeB
)

= tr
(
eBeA

TX
)

=
〈
eAeB

T , X
〉
,

hence we have the following equivalence

min
X∈RA×B

{
〈Q,X〉+ t0 ‖X‖1 : ‖X‖2F ≤ t2, X ≥ 0

}
≡ min

X∈RA×B

{〈
Q+ t0eAeB

T , X
〉

: ‖X‖2F ≤ t2, X ≥ 0
}

Now, the solution follows due to Lemma C.3.0.1.

Denote f1 := 1
2 ‖A− UZ‖

2
F , f0 := λ1 (‖U‖1 + ‖Z‖1) + IU≥0 + IZ≥0 and h = ha.

Proposition C.3.2.1. In BPG-MF, with the above defined f1, f0, h the update steps in each iteration are
given by Uk+1 = rΠ+(−

(
P k + t0eMe

T
K

)
), Zk+1 = rΠ+(−

(
Qk + t0eKe

T
N

)
) where r ≥ 0 and satisfies

c1

(∥∥∥Π+(−
(
P k + t0eMe

T
K

)
)
∥∥∥2

F
+
∥∥∥Π+(−

(
Qk + t0eKe

T
N

)
)
∥∥∥2

F

)
r3 + c2r − 1 = 0 ,

with c1 = 3, c2 = ‖A‖F and t0 = λλ1.

We skip the proof as it is similar to Proposition C.3.0.1.

C.3.3 Extensions to graph regularized non-negative matrix factorization

Graph regularized non-negative matrix factorization was proposed in [38]. Here, given L ∈ RM×M we are
interested to solve

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) =

1

2
‖A− UZ‖2F +

µ0

2
tr(UTLU) +

λ0

2

(
‖U‖2F + ‖Z‖2F

)
+ IU≥0 + IZ≥0

}
.

Recall that
hc(U,Z) = 3h1(U,Z) + (‖A‖F + µ0 ‖L‖F)h2(U,Z) .

Denote f1 := 1
2 ‖A− UZ‖

2
F + µ0

2 tr(U
TLU), f0 := λ0

2

(
‖U‖2F + ‖Z‖2F

)
+ IU≥0 + IZ≥0 and h = hc.

Appendix C. Appendix for matrix factorization - Chapter 6 207

Proposition C.3.3.1. In BPG-MF, with the above defined f0, f1, h the update steps in each iteration are
given by Uk+1 = rΠ+(−P k), Zk+1 = rΠ+(−Qk) where r ≥ 0 and satisfies

c1

(∥∥∥Π+(−Qk)
∥∥∥2

F
+
∥∥∥Π+(−P k)

∥∥∥2

F

)
r3 + (c2 + µ0 ‖L‖F + λ0)r − 1 = 0 , (C.3.8)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.3.0.1 and only c2 changes.

C.3.4 Extensions to symmetric NMF via non-symmetric relaxation.

In [177], the following optimization problem was proposed in the context of Symmetric NMF where the factors
U and ZT are equal. The symmetricity of the factors was lifted via a quadratic penalty terms resulting in
the following problem

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖A− UZ‖2F +

λ0

2

∥∥U − ZT∥∥2

F
+ IU≥0 + IZ≥0

}
.

Now, we prove the L-smad property. We need the following technical lemma.

Lemma C.3.4.1. Let f1(U,Z) = 1
2 ‖A− UZ‖

2
F + λ0

2

∥∥U − ZT∥∥2

F
be as defined above, we have the following

∇Uf1(A,UZ) = λ0

(
U − ZT

)
− (A− UZ)ZT , ∇Zf1(A,UZ) = λ0

(
U − ZT

)
+ UT (A− UZ)

and 〈
(H1, H2),∇2f1(A,UZ)(H1, H2)

〉
= −2 〈A− UZ,H1H2〉+ ‖UH2 +H1Z‖2F + λ0

∥∥H1 −H2
T
∥∥2

F
.

Proof. The first part of proof for function 1
2 ‖A− UZ‖

2
F follows from Proposition 4.5.0.1. For the other term,

with the Forbenius dot product, we obtain

λ0

2

∥∥U +H1 − ZT −H2
T
∥∥2

F
=
λ0

2

(∥∥U − ZT∥∥2

F
+ 2

〈
U − ZT , H1 −H2

T
〉

+
∥∥H1 −H2

T
∥∥2

F

)
.

Combining with Lemma C.4.0.1, the statement follows from the collecting the first order and second order
terms.

Proposition C.3.4.1. Let f1(U,Z) = 1
2 ‖A− UZ‖

2
F + λ0

2 ‖U − Z‖
2
F . Then, for a certain constant L ≥ 1,

the function f1 satisfies L-smad property with respect to the following kernel generating distance,

hd(U,Z) = 3h1(U,Z) + (‖A‖F + 2λ0)h2(U,Z) .

Proof. The proof is similar to Proposition 4.5.0.1 and Lemma C.3.4.1 must be applied for the result.

Denote f1 := 1
2 ‖A− UZ‖

2
F + λ0

2 ‖U − Z‖
2
F , f0 := IU≥0 + IZ≥0 and h = hd.

Proposition C.3.4.2. In BPG-MF, with the above defined update steps in each iteration are given by
Uk+1 = rΠ+

(
−P k

)
, Zk+1 = rΠ+

(
−Qk

)
where r ≥ 0 and satisfies

c1

(∥∥∥Π+

(
−P k

)∥∥∥2

F
+
∥∥∥Π+

(
−Qk

)∥∥∥2

F

)
r3 + (c2 + 2λ0)r − 1 = 0 , (C.3.9)

208 C.3. Closed form solutions: Part II for NMF variants

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.3.0.1 and only c2 changes.

C.3.5 Extensions to NMF with non-convex sparsity constraints (Sparse NMF)

Consider the following problem from [26]

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖A− UZ‖2F : U ≥ 0, ‖U‖0 ≤ s1, Z ≥ 0, ‖Z‖0 ≤ s2,

}
,

where s1 and s2 are two known positive integers. Denote f1 := 1
2 ‖A− UZ‖

2
F , f0 := IU≥0 + I‖U‖0≤s1 + IZ≥0 +

I‖Z‖0≤s2 and h = ha. Note that the Assumption D(iii) is not valid here, hence CoCaIn BPG-MF theory does
not hold and hints at possible extensions of CoCaIn BPG-MF, which is an interesting open question. We
start with the following technical lemma.

Proposition C.3.5.1. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s,X ≥ 0

}
= −t ‖Hs(Π+(−Q))‖F .

with the minimizer X∗ = t Hs(Π+(−Q))
‖Hs(Π+(−Q))‖F

if ‖Hs(Π+(−Q))‖F 6= 0 else X∗ = 0. If ‖Hs(Π+(−Q))‖F 6= 0 we
have the following equivalence

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s,X ≥ 0

}
≡ min

X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2, ‖X‖0 ≤ s,X ≥ 0

}
Proof. We have

min
X

{
〈Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s,X ≥ 0

}
= −max

X

{
〈−Q,X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s,X ≥ 0

}
,

= −max
X

{
〈Π+(−Q), X〉 : ‖X‖2F ≤ t2, ‖X‖0 ≤ s

}
,

= −max
X

{
〈Hs(Π+(−Q)), X〉 : ‖X‖2F ≤ t2

}
.

The first equality is a simple rewriting of the objective. Then, the corresponding objective 〈−Q,X〉 can be
maximized with

∑A
i=1

∑B
j=1 I(i,j)∈Ω0

(−QijXij) where Ω0 is set of index pairs and I(i,j)∈Ω0
is 1 if the index

pair if (i, j) ∈ Ω0 and zero otherwise. It is easy to see that the objective 〈−Q,X〉 is maximized if Ω0 contains
all the index pairs corresponding to the elements of −Q with highest absolute value which is captured by
Hard-thresholding operator. However due to the non-negativity constraint if there is any −Qij such that
it is negative, then since Xij will be driven to zero. So, before we use the Hard-thresholding operator, we
need to use Π+(.) = max{0, .} in second equality. The third equality follows as a consequence of hard
sparsity constraint similar to Lemma C.2.5.1 and the solution follows due to Lemma D.2.0.1. The equivalence
statement follows as ‖X∗‖2F = t2.

Proposition C.3.5.2. In BPG-MF, with the above defined f1, f0, h the update steps in each iteration are
Uk+1 = rHs1(Π+(−P k)), Zk+1 = rHs2(Π+(−Qk)) where r ≥ 0 and satisfies

c1

(∥∥∥Hs1 (Π+(−Qk)
)∥∥∥2

F
+
∥∥∥Hs2 (Π+(−P k)

)∥∥∥2

F

)
r3 + c2r − 1 = 0 ,

Appendix C. Appendix for matrix factorization - Chapter 6 209

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.3.0.1.

C.4 Matrix completion problem

Matrix completion is an important non-convex optimization problem, which arises in practical real world
applications, such as recommender systems [41, 68, 95]. Give a matrix A where only the values at the index
set given by Ω are given. The goal is obtain the rest of the values. One of the popular strategy is to obtain
the factors U ∈ RM×K and Z ∈ RK×N for a small positive integer K. This is cast into the following problem,

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖PΩ (A− UZ)‖2F +

λ0

2

(
‖U‖2F + ‖Z‖2F

)}
, (C.4.1)

where PΩ is an masking operator over index set Ω which preserves the given matrix entries and sets others to
zero.. We require the following technical lemma.

Lemma C.4.0.1. Let f1 := 1
2 ‖PΩ (A− UZ)‖2F be as defined above, we have the following

∇Uf1(A,UZ) = −PΩ(A− UZ)ZT , ∇Zf1(A,UZ) = −UTPΩ(A− UZ)〈
(H1, H2),∇2f1(A,UZ)(H1, H2)

〉
= ‖PΩ(UH2 +H1Z)‖2F − 2 〈PΩ(A− UZ), H1H2〉 .

Proof. With the Forbenius dot product, we have

‖PΩ(A− UZ)‖2F = 〈PΩ(A− UZ), PΩ(A− UZ)〉 .

In the above expression by substituting U with U +H1 and Z with Z +H2, we obtain

〈PΩ(A− (U +H1)(Z +H2)), PΩ(A− (U +H1)(Z +H2))〉 ,
= ‖PΩ(A− UZ)‖2F + ‖PΩ(UH2 +H1Z)‖2F
− 2 〈PΩ(A− UZ), PΩ(UH2 +H1Z)〉 − 2 〈PΩ(A− UZ), PΩ(H1H2)〉

where in the last term we ignored the terms higher than second order. Collecting all the first order terms we
have

−2 〈PΩ(A− UZ), PΩ(UH2 +H1Z)〉 = −2 〈PΩ(A− UZ), UH2 +H1Z〉
= −2

〈
PΩ(A− UZ)ZT , H1

〉
− 2

〈
UTPΩ(A− UZ), H2

〉
and similarly collecting all the second order terms we have

‖PΩ(UH2 +H1Z)‖2F − 2 〈PΩ(A− UZ), PΩ(H1H2)〉 = ‖PΩ(UH2 +H1Z)‖2F − 2 〈PΩ(A− UZ), H1H2〉

Thus the statement follows using the second order Taylor expansion.

Proposition C.4.0.1. Let f1 := 1
2 ‖PΩ (A− UZ)‖2F and h1, h2 be as defined as in (4.5.2). Then, for a certain

constant L ≥ 1, the function f1 satisfies L-smad property with respect to the following kernel generating
distance,

ha(U,Z) = 3h1(U,Z) + ‖PΩ(A)‖F h2(U,Z) .

210 C.5. Closed form solution with 5th-order polynomial

Proof. With Lemma C.4.0.1 we obtain〈
(H1, H2),∇2f1(A,UZ)(H1, H2)

〉
= ‖PΩ(UH2 +H1Z)‖2F − 2 〈PΩ(A− UZ), H1H2〉
≤ ‖H1Z + UH2‖2F − 2 〈PΩ(A− UZ), H1H2〉
≤ 2 ‖H1Z‖2F + 2 ‖UH2‖2F + 2 ‖PΩ(A)‖F ‖H1H2‖F + 2 ‖PΩ(UZ)‖F ‖H1H2‖F ,

≤ 2 ‖H1Z‖2F + 2 ‖UH2‖2F + 2 ‖PΩ(A)‖F ‖H1H2‖F + 2 ‖UZ‖F ‖H1H2‖F .

The rest of the proof is similar to Proposition 4.5.0.1.

Proposition C.4.0.2. Let f1 := 1
2 ‖PΩ (A− UZ)‖2F + λ0

2

(
‖U‖2F + ‖Z‖2F

)
and h1, h2 be as defined as in

(4.5.2). Then, for a certain constant L ≥ 1, the function f1 satisfies L-smad property with respect to the
following kernel generating distance,

ha(U,Z) = 3h1(U,Z) + (‖PΩ(A)‖F + λ0)h2(U,Z) .

The update steps are very similar as what we described earlier in Section C.2 and C.3.

C.5 Closed form solution with 5th-order polynomial

The goal of this section is to consider a setting, where the update step of BPG-MF involves a 5th order
polynomial equation. In such a case, Newton based method solvers can be used to find the roots. We later
show that we can obtain a cubic equation by slightly modifying the kernel generating distance. Let λ0 > 0

and we consider the following problem

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖A− UZ‖2F +

λ0

2
‖U‖2F

}
. (C.5.1)

We set R1(U) = λ0
2 ‖U‖

2
F , R2(Z) = 0, f1 = 1

2 ‖A− UZ‖
2
F , f0(U,Z) = λ0

2 ‖U‖
2
F and h = ha.

Proposition C.5.0.1. In BPG-MF, with above defined f1, f0, h the update steps in each iteration are given
by Uk+1 = − Pk

r1+λ0
, Zk+1 = −Qk

r1
where r1 ≥ 0 and satisfies

c1

(∥∥∥Qk∥∥∥2

F
(r1 + λ0)2 +

∥∥∥P k∥∥∥2

F
r2

1

)
+ c2r

2
1(r1 + λ0)2 − r3

1(r1 + λ0)2 = 0 , (C.5.2)

with c1 = 3 and c2 = ‖A‖F .

Proof. The proof is similar to that of Proposition C.2.0.1. Consider the following subproblem

(Uk+1, Zk+1) ∈ argmin
(U,Z)∈RM×K×RK×N

{
λ0

2
‖U‖2F +

〈
P k, U

〉
+
〈
Qk, Z

〉

+c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ c2

(
‖U‖2F + ‖Z‖2F

2

) ,

Appendix C. Appendix for matrix factorization - Chapter 6 211

Denote the objective in the above minimization problem as O(U‖,Z‖). Now, we show that the following
holds

min
(U,Z)∈RM×K×RK×N

(
O(U‖,Z‖)

)
≡ min

t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F=t1,‖Z‖F=t2

(
O(U‖,Z‖)

)}
,

≡ min
t1≥0,t2≥0

{
min

(U,Z)∈RM×K×RK×N ,‖U‖F≤t1,‖Z‖F≤t2

(
O(U‖,Z‖)

)}
.

where the first step is a simple rewriting of the objective and the second step follows as there is no change
in the constraint set and due to Lemma D.2.0.1, which is given precisely in Proposition C.2.0.1 where the
equivalence argument used for (C.2.4) and (C.2.3) holds here. Note that in the first step, we used ‖U‖F = t1
this results in deviation of value of c2 to c2 + λ0, corresponding to U (see below). We solve for (Uk+1, Zk+1)

via the following strategy. Denote

U∗1 (t1) ∈ argmin
{〈
P k, U1

〉
: U1 ∈ RM×K , ‖U1‖2F ≤ t21

}
,

Z∗1 (t2) ∈ argmin
{〈
Qk, Z1

〉
: Z1 ∈ RK×N , ‖Z1‖2F ≤ t22

}
.

Then we obtain (Uk+1, Zk+1) = (U∗1 (t∗1), Z∗1(t∗2)), where t∗1 and t∗2 are obtained by solving the following two
dimensional subproblem

(t∗1, t
∗
2) ∈ argmin

t1≥0,t2≥0

{
min

U1∈RM×K

{〈
P k, U1

〉
: ‖U1‖2F ≤ t21

}
+ min
Z1∈RK×N

{〈
Qk, Z1

〉
: ‖Z1‖2F ≤ t22

}
+c1

(
t21 + t22

2

)2

+ c2
t22
2

+ (c2 + λ0)
t21
2

}
.

Note that inner minimization subproblems can be trivially solved once we obtain U∗1 (t1) and Z∗1(t2) via
Lemma D.2.0.1. Then the solution to the subproblem in each iteration as follows:

Uk+1 =

t
∗
1
−Pk
‖Pk‖

F

, for
∥∥P k∥∥

F
6= 0 ,

0 otherwise .

Zk+1 =

t
∗
2
−Qk
‖Qk‖

F

, for
∥∥Qk∥∥

F
6= 0 ,

0 otherwise .

We solve for t∗1 and t∗2 with the following two dimensional minimization problem

argmin
t1≥0,t2≥0

{
−t1

∥∥∥P k∥∥∥
F
− t2

∥∥∥Qk∥∥∥
F

+ c1

(
t21 + t22

2

)2

+ c2
t22
2

+ (c2 + λ0)
t21
2

}
.

Thus, the solutions t∗1 and t∗2 are the non-negative real roots of the following equations

−
∥∥∥P k∥∥∥

F
+ c1(t21 + t22)t1 + (c2 + λ0)t1 = 0 , (C.5.3)

−
∥∥∥Qk∥∥∥

F
+ c1(t21 + t22)t2 + c2t2 = 0 . (C.5.4)

212 C.5. Closed form solution with 5th-order polynomial

Further simplifications with t1 =
‖Pk‖

F
r1+λ0

and t2 =
‖Qk‖

F
r1

denoting r1 = c1(t21 + t22) + c2, then we have

r1 = c1

(∥∥P k∥∥F
r1 + λ0

)2

+

(∥∥Qk∥∥
F

r1

)2
+ c2

This will result in following 5th order equation,

c1

(∥∥∥P k∥∥∥2

F
r2

1 +
∥∥∥Qk∥∥∥2

F
(r1 + λ0)2

)
+ c2r

2
1(r1 + λ0)2 − r3

1(r1 + λ0)2 = 0 .

C.5.1 Conversion to cubic equation

We set R1(U) = λ0
2 ‖U‖

2
F , R2(Z) = 0 and f1 = 1

2 ‖A− UZ‖
2
F . Denote f0(U,Z) = λ0

2 ‖U‖
2
F , h(U,Z) =

ha(U,Z) + λ0
2 ‖Z‖

2
F . Note that such a f1 satisfies L-smad property with respect to h satisfies L-smad trivially

since only a quadratic term is added to ha.

Proposition C.5.1.1. In BPG-MF, with the above defined f1, f0, h the update steps in each iteration are
given by Uk+1 = −r P k, Zk+1 = −r Qk where r is the non-negative real root of

c1

(∥∥∥Qk∥∥∥2

F
+
∥∥∥P k∥∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 , (C.5.5)

with c1 = 3 and c2 = ‖A‖F .

Proof. The resulting subproblem is

(Uk+1, Zk+1) ∈ argmin
(U,Z)∈RM×K×RK×N

{〈
P k, U

〉
+
〈
Qk, Z

〉

+c1

(
‖U‖2F + ‖Z‖2F

2

)2

+ (c2 + λ0)

(
‖U‖2F + ‖Z‖2F

2

) .

The rest of the proof is similar to Proposition C.2.0.1.

C.5.2 Extensions to mixed regularization terms

Let λ0 > 0 and we consider the following problem

min
U∈RM×K ,Z∈RK×N

{
f(U,Z) :=

1

2
‖A− UZ‖2F +

λ0

2
‖U‖2F + λ1 ‖Z‖1

}
. (C.5.6)

Note that the regularizer is a mixture of L1 and L2 regularization. The usual strategy with h = ha would
result in a fifth order polynomial. In order to generate a cubic equation, we use the same strategy as given
Section C.5.1. We set h(U,Z) = ha(U,Z) + λ0

2 ‖Z‖
2
F , f1 = 1

2 ‖A− UZ‖
2
F and f0(U,Z) = λ0

2 ‖U‖
2
F + λ1 ‖Z‖1.

Appendix C. Appendix for matrix factorization - Chapter 6 213

Proposition C.5.2.1. In BPG-MF, with the above defined f1, f0, h the update steps in each iteration are
given by Uk+1 = −r P k, Zk+1 = rSλλ1

(
−Qk

)
where r is the non-negative real root of

c1

(∥∥∥P k∥∥∥2

F
+
∥∥∥Sλλ1

(
−Qk

)∥∥∥2

F

)
r3 + (c2 + λ0)r − 1 = 0 , (C.5.7)

with c1 = 3 and c2 = ‖A‖F .

The proof is similar to Proposition C.2.0.1 and Proposition C.2.3.1.

Appendix D

Appendix for deep matrix factorization -
Chapter 7

D.1 Proof of Theorem 7.3.2.1

Proof. The kernel generating distances h in Section 4.6 are continuously differentiable (also proper, lsc, convex
with full domain). The function f1 in (4.6.1) is continuously differentiable and for L1 or L2 regularization,
the function f0 is proper, lsc, convex, and bounded from below by the zero function. As both f0 and f1 are
non-negative, the objective is bounded from below. The function f is obviously semi-algebraic, which assures
the KL property. Supercoercivity of h+λf0 is true, as h is a polynomial of degree greater than 1 with positive
coefficients in terms of ‖W‖F , and f0 is either L1 or squared L2 regularizer. Strong convexity of h and the
L-smad property are verified in Section 4.6. Lipschitz continuity of ∇f1 and ∇h on bounded sets follows from
boundedness of second order derivative of f1 and h, as ‖X‖F and ‖Y ‖F are constant (see Section A.3). Thus,
Assumptions A,C,D are verified. Moreover, BPG satisfies the descent property with respect to objective
value, i.e., f is monotonically non-increasing (cf. [28, Lemma 4.1]). The regularization terms guarantee that
the objective f is coercive, which implies that the level sets are bounded. The descent property ensures that
all BPG iterates lie in the set {W : f(W) ≤ f(W 0)}. Combining this with the boundedness of the level-sets
shows that the entire sequence generated by BPG is bounded. It remains to apply [28, Theorem 4.1] to
conclude the statement.

D.2 Closed form update steps

Lemma D.2.0.1. Let Q ∈ RA×B for some positive integers A and B. Let t ≥ 0 and ‖Q‖F 6= 0 then

min
X∈RA×B

{
〈Q,X〉 : ‖X‖2F = t2

}
≡ min

X∈RA×B

{
〈Q,X〉 : ‖X‖2F ≤ t2

}
= −t ‖Q‖F ,

with the minimizer at X∗ = −tQ/ ‖Q‖F .

Consider the following non-convex optimization problem

min
Wi∈Wi ∀i∈{1,...,K}

{
f(W1, . . . ,WN) :=

1

2
‖W1W2 . . .WNX − Y ‖2F

}
, (D.2.1)

Recall that f1 = 1
2 ‖W1W2 . . .WNX − Y ‖2F , f0 := 0 and h as explained in Section 7.3.1.

215

216 D.2. Closed form update steps

D.2.1 Proof of Proposition 7.3.1.1

We use the same proof strategy as Proposition C.2.0.1. Consider the following subproblem, involved in the
update step

(W k+1
1 , . . . ,W k+1

N) ∈ argmin
(W1,...,WN)∈C


(

N∑
i=1

〈
P ki ,Wi

〉)
+ c1(N)

(
‖W‖2F
N

)N
+ c2(N)

(
‖W‖2F
N

)N
2

+ ρ

(
‖W‖2F
N

) .

In order to solve the above minimization problem, we introduce additional optimization variables t1, . . . , tN ≥ 0

and the constraint ‖Wi‖F = ti for all i. This splits the optimization problem, where the constraints of the
inner problem with respect to W1, . . . ,WN can be relaxed to ‖Wi‖F ≤ ti without changing the minimal value
thanks to Lemma D.2.0.1 . We arrive at

min
ti≥0,∀i∈{1,...,N}

{
N∑
i=1

min
Wi∈Wi

{〈
P ki ,Wi

〉
: ‖Wi‖2F ≤ t2i

}

+c1(N)

(∑N
i=1 t

2
i

N

)N
+ c2(N)

(∑N
i=1 t

2
i

N

)N
2

+ ρ

(∑N
i=1 t

2
i

N

) .

Then the solution to the subproblem for the i-th block due to Lemma D.2.0.1, in each iteration is as follows

W k+1
i =

t
∗
i
−Pki
‖Pki ‖F

, for
∥∥P ki ∥∥F 6= 0 ,

0 otherwise .

We solve for t∗i with the following minimization problem

argmin
ti≥0,∀i∈{1,...,N}

−
N∑
i=1

ti

∥∥∥P ki ∥∥∥
F

+ c1(N)

(∑N
i=1 t

2
i

N

)N
+ c2(N)

(∑N
i=1 t

2
i

N

)N
2

+ ρ

(∑N
i=1 t

2
i

N

) .

Thus, the solutions t∗i are the non-negative real roots of the following equations

−
∥∥∥P ki ∥∥∥

F
+ 2c1(N)

(∑N
i=1 t

2
i

N

)N−1

ti + c2(N)

(∑N
i=1 t

2
i

N

)N
2
−1

ti +
2ρ

N
ti = 0 , ∀i ∈ {1, . . . , N} (D.2.2)

Substitute the following

ti = r

√
N
∥∥P ki ∥∥F√∑N

i=1

∥∥P ki ∥∥2

F

,

which implies that
∑N
i=1 t

2
i

N = r2 for certain r > 0. Now, we find r via substituting ti in (D.2.2), which results
in

2c1(N)r2N−1 + c2(N)rN−1 +
2ρ

N
r −

√∑N
i=1

∥∥P ki ∥∥2

F√
N

= 0 . (D.2.3)

The proof is similar for N > 2 and N being odd.

Appendix D. Appendix for deep matrix factorization - Chapter 7 217

D.2.2 L2-regularization

Consider the following non-convex optimization problem

min
Wi∈Wi ∀i∈{1,...,K}

{
f(W1, . . . ,WN) :=

1

2
‖W1W2 . . .WNX − Y ‖2F +

λ0

2

(
N∑
i=1

‖Wi‖2F

)}
. (D.2.4)

Denote f1 := 1
2 ‖W1W2 . . .WNX − Y ‖2F , f0 := λ0

2

(∑N
i=1 ‖Wi‖2F

)
and h as explained in Section 7.3.1.

Proposition D.2.2.1. In BPG, with above defined f1, f0, h, using the notation P ki = P ki
(
W1

k, . . . ,WN
k
)

=

λ∇Wif1

(
W1

k, . . . ,WN
k
)
−∇Wih(W1

k, . . . ,WN
k) . the update steps in each iteration are given by W k+1

i =

−r
√
N Pki
‖P‖F

for all i ∈ {1, . . . , N} where r is the non-negative real root of for N = 2

2c1(2)r3 + (c2(2) + λλ0)r −

√∑2
i=1

∥∥P ki ∥∥2

F√
2

= 0 , (D.2.5)

If N > 2 and even, we have

2c1(N)r2N−1 + c2(N)rN−1 +

(
2ρ

N
+ λλ0

)
r −

√∑N
i=1

∥∥P ki ∥∥2

F√
N

= 0 , (D.2.6)

and if N > 2 and odd, then

2c1(N)r2N−1 + c3(N)

(
Nr2 + 1

N + 1

)N−1
2

r +

(
2ρ

N
+ λλ0

)
r −

√∑N
i=1

∥∥P ki ∥∥2

F√
N

= 0 . (D.2.7)

Proof. The proof is exactly the same as Proposition 7.3.1.1 and the only change is in the value ρ for N > 2

and c2 for N = 2. For N = 2, the results coincide results from Chapter 6.

D.2.3 Closed form updates for L1 Regularization

Recall that the soft-thresholding operator is defined as follows Sθ(x) = max{|x| − θ, 0}sgn(x) , where the
operations are performed coordinate-wise. We consider below an extension of (4.6.1),

min
Wi∈Wi ∀i∈{1,...,K}

{
f(W1, . . . ,WN) :=

1

2
‖W1W2 . . .WNX − Y ‖2F +

N∑
i=1

µi ‖Wi‖1

}
, (D.2.8)

where µi > 0 for all i ∈ {1, . . . , N} and ‖Wi‖1 is the standard L1-norm, which denotes the sum of absolute of
values of the all the elements in Wi.

Denote f1 := 1
2 ‖W1W2 . . .WNX − Y ‖2F , f0 :=

∑N
i=1 µi ‖Wi‖1 and h as explained in Section 7.3.1.

Proposition D.2.3.1. In BPG, with above defined f1, f0, h, with the notation P ki = P ki
(
W1

k, . . . ,WN
k
)

=

λ∇Wif1

(
W1

k, . . . ,WN
k
)
−∇Wih(W1

k, . . . ,WN
k) , the update steps in each iteration are given by W k+1

i =

218 D.3. Closed form inertia

r
√
N Sλµi (−Pki)√∑N

i=1‖Sλµi (−Pki)‖2

F

for all i ∈ {1, . . . , N} where for N = 2, r is the non-negative real root of

2c1(2)r3 + c2(2)r −

√∑2
i=1

∥∥Sλµi(−P ki)
∥∥2

F√
2

= 0 . (D.2.9)

If N > 2 and even, we have

2c1(N)r2N−1 + c2(N)rN−1 +
2ρ

N
r −

√∑N
i=1

∥∥Sλµi(−P ki)
∥∥2

F√
N

= 0 , (D.2.10)

and if N > 2 and odd, then

2c1(N)r2N−1 + c3(N)

(
Nr2 + 1

N + 1

)N−1
2

r +
2ρ

N
r −

√∑N
i=1

∥∥Sλµi(−P ki)
∥∥2

F√
N

= 0 . (D.2.11)

Proof. We use the same proof strategy as Proposition C.2.0.1.The subproblem is

W k+1 ∈ argmin
(W1,...,WN)∈C

{
N∑
i=1

(
λµi ‖Wi‖1 +

〈
P ki ,Wi

〉)

+c1(N)

(
‖W‖2F
N

)N
+ c2(N)

(
‖W‖2F
N

)N
2

+ ρ

(
‖W‖2F
N

) .

The rest of the proof is only a minor modification to the proof of Proposition 7.3.1.1 and Lemma C.2.3.1 is
used instead of Lemma D.2.0.1.

D.3 Closed form inertia

D.3.1 Proof of Proposition 7.4.1.1

We use
h(W1, . . . ,WN) = Ha(W1, . . . ,WN) + ρH4(W1, . . . ,WN) ,

where
Ha(W1, . . . ,WN) = c1(N)H1(W1, . . . ,WN) + c2(N)H2(W1, . . . ,WN) .

Now for any x ∈ C, y ∈ C, we have Dh1+h2(x, y) = Dh1(x, y) +Dh2(x, y) for any h1, h2 ∈ G(C). Thus,

Dh(x, y) = c1(N)DH1(x, y) + c2(N)DH2(x, y) + ρDH4(x, y) .

We solve Dh

(
xk, yk

)
≤ κDh

(
xk−1, xk

)
using the results from Lemma A.3.0.3 ,A.3.0.5, to obtain

Dh

(
xk, yk

)
≤ γ2

k

(
c1(N)Bk + c2(N)Ck + ρ ‖∆k‖2

)
≤ κDh

(
xk−1, xk

)
.

The proof for N > 2 and N being odd is similar.

Appendix D. Appendix for deep matrix factorization - Chapter 7 219

D.3.2 Closed form inertia for matrix factorization

Lemma D.3.2.1. Given h1(W1,W2) :=
(
‖W1‖2F+‖W2‖2F

2

)2

, then we have the following

〈
(H1, H2),∇2h1(W1,W2)(H1, H2)

〉
≤ 3

(
‖H1‖2F + ‖H2‖2F

)(
‖W1‖2F + ‖W2‖2F

)
.

Given h2 :=
(
‖W1‖2F+‖W2‖2F

2

)
, then we have the following

〈
(H1, H2),∇2h2(W1,W2)(H1, H2)

〉
= ‖H1‖2F + ‖H2‖2F .

Then, with ha(W1,W2) = 3h1(W1,W2) + ‖Y ‖F h2(W1,W2) we have the following〈
(H1, H2),∇2ha(W1,W2)(H1, H2)

〉
≤ 9

(
‖H1‖2F + ‖H2‖2F

)(
‖W1‖2F + ‖W2‖2F

)
+ ‖Y ‖F

(
‖H1‖2F + ‖H2‖2F

)
.

Proof. The result regarding h1 is from Lemma A.3.0.2 with N = 2. The results for h2 follows trivially (see
for example Section 4.5). The statement for ha holds trivially.

In the context of matrix factorization problem, where N = 2, X = 1, ‖X‖F = 1, we obtain the following
result on the extrapolation parameter.

Lemma D.3.2.2. Denote xk = (W k
1 , . . . ,W

k
N). For κ > 0, yk := xk + γk(x

k − xk−1) and xk 6= xk−1, the
parameter γk ∈ [0, 1] such that

0 ≤ γk ≤
√

κ(
ξk1 + ξk2

)Dh(xk−1, xk) ,

satisfies the condition (7.4.1), where ξk1 = 42
∥∥xk − xk−1

∥∥4 and ξk2 = 15
(∥∥xk∥∥2

+
‖Y ‖F

30

)∥∥xk − xk−1
∥∥2.

Proof. From Lemma A.3.0.1 we obtain∫ 1

0
(1− t)

∫ 1

0

〈
∇2h

(
xk + (t1 + (1− t1)t)(yk − xk)

)
(xk − yk), xk − yk

〉
dt1dt

≤
∫ 1

0
(1− t)

∫ 1

0
9
∥∥∥xk − yk∥∥∥2 ∥∥∥xk + (t1 + (1− t1)t)(yk − xk)

∥∥∥2
+ ‖Y ‖F

∥∥∥xk − yk∥∥∥2
dt1dt

≤
∫ 1

0

∫ 1

0
18 (1− t)

(∥∥∥xk∥∥∥2
+
‖Y ‖F

18

)∥∥∥xk − yk∥∥∥2
dt1dt

+

∫ 1

0

∫ 1

0
18 (1− t) (t1 + (1− t1)t)2

∥∥∥xk − yk∥∥∥4
dt1dt

= 9

(∥∥∥xk∥∥∥2
+
‖Y ‖F

18

)∥∥∥xk − yk∥∥∥2
+

∫ 1

0
18 (1− t) (2t2 +

1

3
)
∥∥∥xk − yk∥∥∥4

dt

= 9

(∥∥∥xk∥∥∥2
+
‖Y ‖F

18

)∥∥∥xk − yk∥∥∥2
+ 6

∥∥∥xk − yk∥∥∥4

= 9γ2
k

(∥∥∥xk∥∥∥2
+
‖Y ‖F

18

)∥∥∥xk − xk−1
∥∥∥2

+ 6γ4
k

∥∥∥xk − xk−1
∥∥∥4

,

220 D.3. Closed form inertia

where in the first inequality we used Lemma D.3.2.1 and the second inequality is due to the following∥∥∥xk + (t1 + (1− t1)t)(yk − xk)
∥∥∥2
≤ 2

∥∥∥xk∥∥∥2
+ 2(t1 + (1− t1)t)2

∥∥∥xk − yk∥∥∥2
.

Denote ξk2 = 9
(∥∥xk∥∥2

+
‖Y ‖F

18

)∥∥xk − xk−1
∥∥2 and ξk1 = 6

∥∥xk − xk−1
∥∥4 we have

ξk1γ
4
k + ξk2γ

2
k ≤ κDh(xk−1, xk) ,

and the result follows due to the condition 0 ≤ γ ≤ 1.

Note that for a general X, we need to set ξk2 := 15
(∥∥xk∥∥2

+
‖Y ‖F ‖X‖F

30

)∥∥xk − xk−1
∥∥2.

Appendix E

Appendix for deep neural networks -
Chapter 8

E.1 Proof of Proposition 8.3.0.1

Proof. We use the same proof strategy as Proposition C.2.0.1. Consider the following subproblem, involved
in the update step

(W k+1
1 , . . . ,W k+1

N) ∈ argmin
(W1,...,WN)∈C

{(
N∑
i=1

〈
P ki ,Wi

〉)
+

2N∑
u=1

Cu
(∑N

p=1 ‖Wp‖2

N

)u}
.

In order to solve the above minimization problem, we introduce additional optimization variables t1, . . . , tN ≥ 0

and the constraint ‖Wi‖F = ti for all i. This splits the optimization problem, where the constraints of the
inner problem with respect to W1, . . . ,WN can be relaxed to ‖Wi‖F ≤ ti without changing the minimal value
thanks to Lemma D.2.0.1 . We arrive at

min
ti≥0,∀i∈{1,...,N}

{
N∑
i=1

min
Wi∈Wi

{〈
P ki ,Wi

〉
: ‖Wi‖2F ≤ t2i

}
+

2N∑
u=1

Cu
(∑N

p=1 t
2
p

N

)u}
.

Then the solution to the subproblem for the i-th block due to Lemma D.2.0.1, in each iteration is as follows

W k+1
i =

t
∗
i
−Pki
‖Pki ‖F

, for
∥∥P ki ∥∥F 6= 0 ,

0 otherwise .

We solve for t∗i with the following minimization problem

argmin
ti≥0,∀i∈{1,...,N}

{
−

N∑
i=1

ti

∥∥∥P ki ∥∥∥
F

+

2N∑
u=1

Cu
(∑N

p=1 t
2
p

N

)u}
.

Thus, the solutions t∗i are the non-negative real roots of the following equations

−
∥∥∥P ki ∥∥∥

F
+

2N∑
u=1

2Cu
(u
N

)(∑N
p=1 t

2
p

N

)u−1

ti = 0 , ∀i ∈ {1, . . . , N} . (E.1.1)

221

222 E.1. Proof of Proposition 8.3.0.1

Substitute the following

ti = r

√
N
∥∥P ki ∥∥F√∑N

i=1

∥∥P ki ∥∥2

F

,

which implies that
∑N
i=1 t

2
i

N = r2 for certain r > 0. Now, we find r via substituting ti in (E.1.1), which results
in

2N∑
u=1

2Cu
(u
N

)
r2u−1 −

√∑N
i=1

∥∥P ki ∥∥2

F√
N

= 0. (E.1.2)

Appendix F

Appendix for Model BPG - Chapter 9

F.1 Proof of Example 9.3.0.1

The model error is given by

|f(x)− f(x; x̄)| ≤ |g(x)− g(x̄)− 〈∇g(x̄), x− x̄〉| ,
≤ |〈∇g(x̄+ s(x− x̄))−∇g(x̄), x− x̄〉| ,
≤ ‖∇g(x̄+ s(x− x̄))−∇g(x̄)‖‖x− x̄‖ .

where in the second inequality we use mean value theorem with s ∈ [0, 1], the third inequality is a simple
application of Cauchy-Schwarz rule. On further application of the fundamental theorem of calculus, we have

‖∇g(x̄+ s(x− x̄))−∇g(x̄)‖ = ‖
∫ 1

0
∇2g(x̄+ s(x− x̄))(x− x̄)ds‖ ,

≤
∫ 1

0
‖∇2g(x̄+ s(x− x̄))‖‖x− x̄‖ds .

Using the fact that ∇2g(x) = 4‖x‖2I + 8xxT , and ‖∇2g(x)‖ ≤ 12‖x‖2 we obtain

‖∇g(x̄+ s(x− x̄))−∇g(x̄)‖ ≤ 12

∫ 1

0
‖x̄+ s(x− x̄)‖2‖x− x̄‖ds ,

≤ 12

∫ 1

0

(
2‖x̄‖2 + 2s2‖(x− x̄)‖2

)
‖x− x̄‖ds ,

≤ 24‖x̄‖2‖x− x̄‖ + 8‖x− x̄‖3 ,

where in the second step we used the inequality ‖A+ b‖2 ≤ 2‖A‖2 + 2‖b‖2 for any A, b ∈ RN . For any model
center x̄ ∈ RN , the growth function is then given by ςx̄(t) = 24‖x̄‖2t2 + 8t4.

F.2 Model function preserves first order information

Lemma F.2.0.1. Let Assumption F, G hold true. For any x ∈ dom f , the following condition holds true:

∂yf(y;x)|y=x = ∂̂f(x) .

223

224 F.3. Proof of Proposition 9.3.0.1

Proof. We follow the proof strategy of [140, Lemma 14]. Let x̃ ∈ dom f and let v ∈ ∂̂f(x̃), then, by definition
we have

f(x) ≥ f(x̃) + 〈v, x− x̃〉+ o(‖x− x̃‖) ∀x ∈ dom f.

Using the Definition 9.3.0.2, with f(x̃; x̃) = f(x̃) we have the following

f(x; x̃) + ςx̃(‖x− x̃‖) ≥ f(x̃; x̃) + 〈v, x− x̃〉+ o(‖x− x̃‖) .

For any t > 0, note that ςx̃(t) = o(t) as ςx̃ is a growth function, using which we obtain

f(x; x̃) ≥ f(x̃; x̃) + 〈v, x− x̃〉+ o(‖x− x̃‖) .

This implies that v ∈ ∂̂f(x̃; x̃) and by regularity of f(· ; x̃) we also obtain that v ∈ ∂f(x̃; x̃). For the second
part of the proof, let v ∈ ∂f(x̃; x̃) with x̃ ∈ dom f , thus satisfying:

f(x̄; x̃) ≥ f(x̃; x̃) + 〈v, x̄− x̃〉+ o(‖x̄− x̃‖) , ∀ x̄ ∈ dom f .

Using the definition of model function (Definition 9.3.0.2), we obtain

f(x̄) + ςx̃(‖x̄− x̃‖) ≥ f(x̃; x̃) + 〈v, x̄− x̃〉+ o(‖x̄− x̃‖) , ∀ x̄ ∈ dom f ,

which on using the fact that ςx̃(t) = o(t) results in

f(x̄) ≥ f(x̃) + 〈v, x̄− x̃〉+ o(‖x̄− x̃‖) , ∀ x̄ ∈ dom f .

F.3 Proof of Proposition 9.3.0.1

By global optimality of xk+1 as in (9.3.4), we have

f(xk+1;xk) +
1

τk
Dh(xk+1, xk) ≤ f(xk;xk) = f(xk) . (F.3.1)

We have the following inequality from MAP property

f(xk+1) ≤ f(xk+1;xk) + L̄Dh(xk+1, xk) . (F.3.2)

Thus, the result follows by combining (F.3.1) and (F.3.2).

Appendix G

Appendix for Inertial Model BPG -
Chapter 10

G.1 Proof of Lemma 10.4.1.1

Proof. Fix k ≥ 1. With x̄ ∈ dom f ∩ int domh, from the convexity of f (· ; x̄)− (α/2) ‖ · ‖22, we obtain from
the subgradient inequality [150, Example 8.8 and Proposition 8.12] that

f (xk; yk)−
α(yk)

2
‖xk‖22 ≥ f (xk+1; yk)−

α(yk)

2
‖xk+1‖22 +

〈
ξk+1 − α(yk)xk+1, xk − xk+1

〉
,

where ξk+1 ∈ ∂f (xk+1;xk). With f(xk;xk) = f(xk), by rearranging the inequality we obtain

f (xk; yk) ≥ f (xk+1; yk) +
α(yk)

2
‖xk+1 − xk‖22 +

〈
ξk+1, xk − xk+1

〉
. (G.1.1)

Now using the following inequality from MAP property

f(xk; yk)− f(xk) ≤ LkDh(xk, yk) ,

and thus we have

f(xk) + LkDh(xk, yk) ≥ f (xk+1; yk) +
α(yk)

2
‖xk+1 − xk‖22 +

〈
ξk+1, xk − xk+1

〉
.

Now employing the following inequality from MAP property

f(xk) ≤ f(xk; yk−1) + L̄k−1Dh(xk, yk−1) ,

we have

f(xk; yk−1) + L̄k−1Dh(xk, yk−1) ≥ f (xk+1; yk) + L̄kDh(xk+1, yk) +
α(yk)

2
‖xk+1 − xk‖22

+
〈
ξk+1, xk − xk+1

〉
− LkDh(xk, yk)− L̄kDh(xk+1, yk) .

225

226 G.2. Proof of Proposition 10.4.1.1

From the optimality condition of step (10.3.4), we have that

ξk+1 +
1

τk
(∇h (xk+1)−∇h (yk)) = 0 ,

which yields that

f(xk; yk−1) + L̄k−1Dh(xk, yk−1) ≥ f (xk+1; yk) + L̄kDh(xk+1, yk) +
α(yk)

2
‖xk+1 − xk‖22

+
1

τk
〈∇h (yk)−∇h (xk+1) , xk − xk+1〉

− LkDh(xk, yk)− L̄kDh(xk+1, yk) ,

≥ f (xk+1; yk) + L̄kDh(xk+1, yk) +
α(yk)

2
‖xk+1 − xk‖22

+
1

τk
(Dh (xk, xk+1) +Dh (xk+1, yk)−Dh (xk, yk))

− LkDh(xk, yk)− L̄kDh(xk+1, yk) ,

where the last equality follows from the three point identity of Bregman distances. Using the fact that
τ−1
k ≥ L̄k, implies that

f(xk; yk−1) + L̄k−1Dh(xk, yk−1) ≥ f (xk+1; yk) + L̄kDh(xk+1, yk) +
α(yk)

2
‖xk+1 − xk‖22

+
1

τk
Dh (xk, xk+1)−

(
1

τk
+ Lk

)
Dh (xk, yk) ,

which completes the proof.

G.2 Proof of Proposition 10.4.1.1

Proof. Multiplying (10.4.1) with τk and by the definition of the Lyapunov function Gh
L̄
and the fact that

τk ≤ τk−1 we have

GhL̄
(
xk, xk−1, xk−1, γk−1, τk−1, L̄k−1

)
≥ GhL̄

(
xk+1, xk, xk−1, γk, τk, L̄k

)
+
α(yk)τk

2
‖xk+1 − xk‖22 + (1− δ)Dh (xk, xk+1)

+ δDh (xk−1, xk)− (1 + Lkτk)Dh (xk, yk) .

With 1− δ > 0 and the σ-strong convexity of h we obtain

α(yk)τk
2

‖xk+1 − xk‖22 + (1− δ)Dh (xk, xk+1) ≥
(
α(yk)τk

2
+ (1− δ) σ

2

)
‖xk+1 − xk‖22 ≥ 0,

where the last inequality holds, since τ−1
k ≥ L̄k and L̄k ≥ −α(yk)

(1−δ)σ . Next, we observe that

Dh (xk, yk) ≤
δ − ε

(1 + Lkτk−1)
Dh (xk−1, xk) ≤

δ − ε
(1 + Lkτk)

Dh (xk−1, xk) ,

Appendix G. Appendix for Inertial Model BPG - Chapter 10 227

where the first inequality is due to the step (10.3.2) of the algorithm and the second inequality is due to fact
that τk ≤ τk−1. By rearranging we obtain,

δDh (xk−1, xk)− (1 + Lkτk)Dh (xk, yk) ≥ εDh (xk−1, xk)

thus completing the proof.

G.3 Proof of Lemma 10.4.2.1

Proof. Combining the sum rule for the limiting subdifferential in [150, Prop. 10.5], we obtain

∂GhL̄(xk+1, xk, xk−1, γk)

=
(
∂xk+1

f(xk+1; yk) + L̄
(
∇h(xk+1)−∇h(yk)

)
+ δ1 (∇h(xk)−∇h(xk+1)) , (G.3.1)

(1 + γk)∂ykf(xk+1; yk)− (1 + γk)L̄∇2h(yk)(xk+1 − yk) + δ1(∇h(xk)−∇h(xk+1)) ,

(−γk)∂ykf(xk+1; yk)− (−γk)L̄∇2h(yk)(xk+1 − yk) ,
(xk − xk−1)T∂ykf(xk+1; yk)− L̄(xk − xk−1)T∇2h(yk)(xk+1 − yk)

)
.

Using Fermat’s rule, optimality of xk+1 in (10.3.4) and [150, Prop. 10.5] imply the existence of ξk+1
xk+1

∈
∂xk+1

f(xk+1;xk) such that (10.3.4) holds. The first block coordinate in (G.3.1) satisfies

ξk+1
xk+1

+ L̄
(
∇h(xk+1)−∇h(yk)

)
+ δ1 (∇h(xk)−∇h(xk+1))

=

(
L̄− 1

τk

)(
∇h(xk+1)−∇h(xk)

)
+ δ1 (∇h(xk)−∇h(xk+1)) .

In the subsequent calculation, we use the fact that the bounded second order derivatives of bounded subsets
of int domh and also for some C1 > 0 the following condition holds true

inf
v∈∂ykf(xk+1;yk)

‖v‖2 ≤ C1‖xk+1 − yk‖2 .

For any w1 ∈ ∂ykf(xk+1; yk), we have

∣∣(xk − xk−1)Tw1

∣∣ ≤ ‖w1‖22 + ‖(xk − xk−1)‖22
2

,

≤ c2‖(xk+1 − yk)‖22 + ‖(xk − xk−1)‖22
2

,

≤ c2‖(xk+1 − xk)‖22 +

(
2c2γ2

k + 1

2

)
‖(xk − xk−1)‖22 .

Thus, there exists B1, B2 > 0 such that for any w1 ∈ ∂ykf(xk+1; yk) we have∣∣(xk − xk−1)Tw1

∣∣ ≤ B1‖(xk+1 − xk)‖22 +B2‖(xk − xk−1)‖22 .

There exists ζk+1 ∈ ∂GhL̄(xk+1, xk, xk−1) such that

‖ζk+1‖2 ≤ D1‖xk+1 − xk‖2 +D2‖xk − xk−1‖2 +B1‖(xk+1 − xk)‖22 +B2‖(xk − xk−1)‖22 ,

228 G.4. Proof of Proposition 10.4.3.2

holds true for some D1, D2, B1, B2 > 0 where in the last step, we used the boundedness of ∇2h by Lh, and
Assumption I. Using a similar strategy as in (9.5.3.1), the stated result follows.

G.4 Proof of Proposition 10.4.3.2

Proof. (i) We show the inclusion ωint domh(x0) ⊂ ωint domh
f (x0) and ωint domh

f (x0) ⊂ ωint domh(x0) is clear by
definition. Let x? ∈ ωint domh(x0), then we obtain the following

f(x?) +

(
L+

1

τk

)
Dh(x?, yk)

(9.3.3)
≥ f(x?; yk) +

1

τk
Dh(x?, yk)

(10.3.4)
≥ f(xk+1; yk) +

1

τk
Dh(xk+1, yk)

(9.3.3)
≥ f(xk+1)−

(
L̄− 1

τk

)
Dh(xk+1, yk)

εk>0
≥ f(xk+1) .

Obviously, by Assumption I(iii) combined with the fact that yk→
K
x?, we have Dh(x?, yk) → 0 as k→

K
∞,

which, together with the lower semicontinuity of f , implies

f(x?) ≥ lim inf
k→
K
∞
f(xk+1) ≥ f(x?) ,

thus x? ∈ ωint domh
f (x0).

(ii) If x ∈ ωint domh
f (x0) and xk→

K
x for K ⊂ N, then we have that Dh(xk+1, xk) → 0 as k→

K
∞ and

f(xk)→
K
f(x). As Dh(xk+1, xk) → 0 as k → ∞, we have xk−1→

K
x. The first part of the proof implies

f(xk−1)→
K
f(x). We also have Gh

L̄
(xk, xk−1, xk−2, γk−1)→

K
f(x) which we prove below, which implies that

(x, x, x, γ) ∈ ω
(int domh)3×[0,1]

Gh
L̄

(x0). We now describe why Gh
L̄

(xk, xk−1, xk−2, γk−1)→
K
f(x). Note that by

definition of the Gh
L̄
we have the following

GhL̄(xk, xk−1, xk−2, γk−1) = f(xk; yk−1) + L̄Dh(xk, yk−1) + δ1Dh (xk−1, xk) ,

= f(xk) + (f(xk; yk−1)− f(xk)) + L̄Dh(xk, yk−1) + δ1Dh (xk−1, xk) ,

and with MAP property we have

f(xk) + δ1Dh (xk−1, xk) ≤ GhL̄(xk, xk−1, xk−2, γk−1) ≤ f(xk) + (L̄+ L)Dh(xk, yk−1) + δ1Dh (xk−1, xk) .

(G.4.1)
Thus, we have that Gh

L̄
(xk, xk−1, xk−2, γk−1)→

K
f(x) as Dh(xk, xk−1)→

K
0 and Dh(xk, yk−1)→

K
0.

Conversely, suppose (x, x, x, γ) ∈ ω(int domh)3×[0,1]

Gh
L̄

(x0) and xk→
K
x forK ⊂ N. This, together withDh(xk, xk−1)→

0 as k→
K
∞, induces Gh

L̄
(xk, xk−1, xk−2, γk−1)→

K
f(x), hence f(xk)→

K
f(x) due to the following. Note that we

have

f(xk) = GhL̄(xk, xk−1, xk−2, γk−1) + (f(xk)− f(xk; yk−1))− L̄Dh(xk, yk−1)− δ1Dh (xk−1, xk) ,

≥ GhL̄(xk, xk−1, xk−2, γk−1)− (L̄+ L)Dh(xk, yk−1)− δ1Dh (xk−1, xk) .

Appendix G. Appendix for Inertial Model BPG - Chapter 10 229

Finally we have

GhL̄(xk, xk−1, xk−2, γk−1)− (L̄+ L)Dh(xk, yk−1)− δ1Dh (xk−1, xk)

≤ f(xk) ≤ GhL̄(xk, xk−1, xk−2, γk−1)− δ1Dh (xk−1, xk) .

Thus, with Dh(xk, yk−1) →
k∈K

0 and Gh
L̄

(xk, xk−1, xk−2, γk−1)→
K
f(x), we deduce that f(xk)→

K
f(x). And

therefore x ∈ ωint domh
f (x0).

(iii) By Proposition 10.4.1.3, the sequence (Gh
L̄

(xk, xk−1, xk−2, γk−1))k∈N converges to some −∞ < G <∞.

Note that Dh(xk, xk−1)→
K

0 by simple application of (10.4.4). For (x?, x?, x?, γ) ∈ ω(int domh)3×[0,1]

Gh
L̄

(x0) there

exists K ⊂ N such that xk→
K
x?, xk−1→

K
x?, xk−2→

K
x? and Gh

L̄
(xk, xk−1, xk−2, γk−1)→

K
Gh
L̄

(x?, x?, x?, γ) =

f(x?), i.e., the value of the limit point is independent of the choice of the subsequence. The result follows
directly and by using (i).

G.5 Proof of Theorem 10.4.4.1

Proof. Note that the sequence (xk)k∈N generated by Model CoCaIn BPG is a bounded sequence (using a
similar argument as in Remark 9.3.0.2). The proof relies on Theorem 9.4.0.1 provided in Section 9.4 in
the appendix, for which we need to verify the conditions (i)–(v). Similar to Lemma 9.5.5.1, Gh

L̄
satisfies

Kurdyka–Łojasiewicz property at each point of dom ∂Gh
L̄
.

Note that as ωint domh(x0) = ω(x0) holds true, there exists a sufficiently small ε > 0 such that B̃ := {x :

dist(x, ω(x0)) ≤ ε} ⊂ int domh. As ω(x0) is compact due to Proposition 9.5.4.1(i), the set B̃ is also compact.
Moreover, the convex hull of the set B̃ denoted by B := conv B̃ is also compact, as the convex hull of a
compact set is also compact in finite dimensional setting. A simple calculation reveals that the set B lies
in the set int domh. Thus, due to Proposition 10.4.3.1 along with Proposition 9.5.4.1(ii), without loss of
generality, we assume that the sequence (xk)k∈N generated by Model BPG lies in the set B. By definition of
σB as per Assumption K we have

Dh(xk+1, xk) ≥
σB
2
‖xk+1 − xk‖2 , (G.5.1)

through which we obtain

GhL̄(xk+1, xk, xk−1, γk) ≤ GhL̄(xk, xk−1, xk−2, γk−1)− εσB
2
‖xk−1 − xk‖22 ,

which is (i) with dn = εσB
2 ‖xk−1 − xk‖22 and an = 1. Using (10.4.6) from the proof of Theorem 9.5.4.1, we

deduce existence of wk+1 ∈ ∂GhL̄(xk+1, xk, xk−1, γk) such that we have

‖wk+1‖2 ≤D1‖xk+1 − xk‖2 +D2‖xk − xk−1‖2 +B1‖(xk+1 − xk)‖22 +B2‖(xk − xk−1)‖22

for some D1, D2, B1, B2 > 0 which is (ii) with b = 1
D1+D2

, θ1 = D1
D1+D2

and θ2 = D2
D1+D2

, since the coefficients
for both Euclidean distances are bounded from above. Denote εk+1 := B1

D1+D2
‖(xk+1 − xk)‖22 + B2

D1+D2
‖(xk −

230 G.5. Proof of Theorem 10.4.4.1

xk−1)‖22. Note that from Proposition 10.4.1.3(ii) we have

σB
2

∞∑
k=1

‖xk+1 − xk‖22 ≤
∞∑
k=1

Dh(xk+1, xk) <∞ , (G.5.2)

which implies εk+1 is `1-summable.

The continuity condition (iii) is deduced from a converging subsequence, whose existence is guaranteed by
boundedness of (xk)k∈N, and Proposition 10.4.3.2. The distance condition (iv) holds trivially as ε > 0 and
µ > 0. The parameter condition (v), holds because bn = 1 in this setting, hence (bn)n∈N 6∈ `1 and also, we
have

sup
n∈N

1

bnan
= 1 <∞ , inf

n
an =: 1 > 0 .

The last statement of the theorem follows using the same technique as Theorem 9.5.6.3.

Bibliography

[1] P. Ablin, D. Fagot, H. Wendt, A. Gramfort, and C. Févotte. A quasi-Newton algorithm on the
orthogonal manifold for NMF with transform learning. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 700–704, 2019. 82

[2] M. Ahookhosh, A. Themelis, and P. Patrinos. A Bregman forward-backward linesearch algorithm for
nonconvex composite optimization: superlinear convergence to nonisolated local minima. SIAM Journal
on Optimization, 31(1):653–685, 2021. 123

[3] S. Arora, N. Cohen, W. Hu, and Y. Luo. Implicit regularization in deep matrix factorization. In
Advances in Neural Information Processing Systems, pages 7413–7424, 2019. 92, 93

[4] S. Arora, R. Ge, R. Kannan, and A. Moitra. Computing a nonnegative matrix factorization–provably.
In Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages 145–162.
ACM, 2012. 83

[5] H. Asi and J. C. Duchi. The importance of better models in stochastic optimization. Proceedings of the
National Academy of Sciences, 116(46):22924–22930, 2019. 140

[6] H. Attouch and J. Bolte. On the convergence of the proximal algorithm for nonsmooth functions
involving analytic features. Mathematical Programming, 116(1-2):5–16, 2009. 69, 133, 134, 147

[7] H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-algebraic and tame
problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods.
Mathematical Programming, 137(1-2):91–129, 2013. 17, 30, 33, 147

[8] A. Auslender and M. Teboulle. Interior gradient and proximal methods for convex and conic optimization.
SIAM Journal on Optimization, 16(3):697–725, 2006. 39

[9] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties.
Foundations and Trends® in Machine Learning, 4(1):1–106, 2012. 3

[10] H. H. Bauschke, J. Bolte, and M. Teboulle. A descent lemma beyond Lipschitz gradient continuity:
first-order methods revisited and applications. Mathematics of Operations Research, 42(2):330–348,
2017. 9, 38, 40, 42, 65, 115, 117, 118, 143, 144, 145, 146

[11] H. H. Bauschke and J. M. Borwein. Legendre functions and the method of random Bregman projections.
Journal of Convex Analysis, 4(1):27–67, 1997. 39, 40

[12] H.H. Bauschke, J.M. Borwein, and P.L. Combettes. Bregman monotone optimization algorithms. SIAM
Journal on control and optimization, 42(2):596–636, 2003. 40

[13] A. Beck. First-order methods in optimization. SIAM, 2017. 2, 3, 9, 17, 18, 19, 20

231

232 BIBLIOGRAPHY

[14] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31(3):167–175, 2003. 5, 38, 41, 116

[15] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, 2009. 60, 150

[16] M. Benning, M. M. Betcke, M. J. Ehrhardt, and C. B. Schönlieb. Choose your path wisely: gradient
descent in a Bregman distance framework. arXiv preprint arXiv:1712.04045, 2017. 38

[17] R. V. D. Berg, T. N. Kipf, and M. Welling. Graph convolutional matrix completion. arXiv preprint
arXiv:1706.02263, 2017. 92

[18] M. Bertero, P. Boccacci, G. Desiderà, and G. Vicidomini. Image deblurring with Poisson data: from
cells to galaxies. Inverse Problems, 25(12):123006, 2009. 8, 143

[19] D. P. Bertsekas. Convex optimization theory. Athena Scientific Belmont, 2009. 11

[20] B. Birnbaum, N. R. Devanur, and L. Xiao. Distributed algorithms via gradient descent for Fisher
markets. In Proceedings of the 12th ACM conference on Electronic commerce, pages 127–136. ACM,
2011. 38

[21] J. Bochnak, M. Coste, and M-F. Roy. Real algebraic geometry. Springer, 1998. 31, 32

[22] J. Bolte, A. Daniilidis, and A. Lewis. The Łojasiewicz inequality for nonsmooth subanalytic functions
with applications to subgradient dynamical systems. SIAM Journal on Optimization, 17:1205–1223,
2006. 30, 32, 69

[23] J. Bolte, A. Daniilidis, A.S. Lewis, and M. Shiota. Clarke subgradients of stratifiable functions. SIAM
Journal on Optimization, 18(2):556–572, 2007. 30, 31, 32, 33

[24] J. Bolte, A. Daniilidis, O. Ley, and L. Mazet. Characterizations of Łojasiewicz inequalities: subgradient
flows, talweg, convexity. Transactions of the American Mathematical Society, 362(6):3319–3363, 2010.
32

[25] J. Bolte and E. Pauwels. Majorization-minimization procedures and convergence of SQP methods for
semi-algebraic and tame programs. Mathematics of Operations Research, 41(2):442–465, 2016. 123

[26] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and
nonsmooth problems. Mathematical Programming, 146(1-2):459–494, 2014. 7, 8, 30, 31, 32, 33, 69, 82,
83, 84, 86, 96, 105, 128, 133, 134, 147, 201, 208

[27] J. Bolte, S. Sabach, and M. Teboulle. Nonconvex Lagrangian-based optimization: monitoring schemes
and global convergence. Mathematics of Operations Research, 43(4):1210–1232, 2018. 116

[28] J. Bolte, S. Sabach, M. Teboulle, and Y. Vaisbourd. First order methods beyond convexity and Lipschitz
gradient continuity with applications to quadratic inverse problems. SIAM Journal on Optimization,
28(3):2131–2151, 2018. xxv, 4, 5, 6, 9, 31, 33, 37, 38, 39, 41, 42, 43, 46, 63, 64, 65, 69, 74, 75, 76, 82, 89,
94, 95, 104, 114, 115, 116, 117, 118, 119, 121, 122, 123, 126, 131, 135, 136, 140, 141, 147, 166, 175, 215

[29] R. I. BoŢ, E. R. Csetnek, and S. C. László. An inertial forward–backward algorithm for the minimization
of the sum of two nonconvex functions. EURO Journal on Computational Optimization, 4(1):3–25,
2016. 63

[30] L. Bottou. Stochastic gradient learning in neural networks. Proceedings of Neuro-Nımes, 91(8):12, 1991.
105

BIBLIOGRAPHY 233

[31] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-
STAT’2010, pages 177–186. Springer, 2010. 105

[32] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning. Siam
Review, 60(2):223–311, 2018. 105, 160

[33] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004. 12, 13, 15

[34] L. M. Bregman. The relaxation method of finding the common point of convex sets and its application to
the solution of problems in convex programming. USSR computational mathematics and mathematical
physics, 7(3):200–217, 1967. 36, 38

[35] J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov. Metagenes and molecular pattern discovery
using matrix factorization. Proceedings of the National Academy of Sciences, 101(12):4164–4169, 2004.
xxiv, 7, 43, 88, 89

[36] A. Buades, B. Coll, and J. M. Morel. A review of image denoising algorithms, with a new one. Multiscale
Modeling & Simulation, 4(2):490–530, 2005. 7

[37] S. Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends® in
Machine Learning, 8(3-4):231–357, 2015. 38

[38] D. Cai, X. He, J. Han, and T. S. Huang. Graph regularized nonnegative matrix factorization for data
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8):1548–1560,
2011. 83, 84, 196, 206

[39] J. F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion.
SIAM Journal on Optimization, 20(4):1956–1982, 2010. 83, 84, 199, 200

[40] E. J. Candes, X. Li, and M. Soltanolkotabi. Phase retrieval via Wirtinger flow: theory and algorithms.
IEEE Transactions on Information Theory, 61(4):1985–2007, 2015. 6, 74, 140

[41] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of
Computational mathematics, 9(6):717, 2009. 83, 209

[42] E. J. Candes, M. B. Wakin, and S. Boyd. Enhancing sparsity by reweighted `1 minimization. Journal
of Fourier analysis and applications, 14(5-6):877–905, 2008. 73

[43] C. Cartis, N. I. M. Gould, and P. L. Toint. On the evaluation complexity of composite function
minimization with applications to nonconvex nonlinear programming. SIAM Journal on Optimization,
21(4):1721–1739, 2011. 9

[44] Y. Censor and T. Elfving. A multiprojection algorithm using Bregman projections in a product space.
Numerical Algorithms, 8(2):221–239, 1994. 38

[45] Y. Censor and A. Lent. An iterative row-action method for interval convex programming. Journal of
Optimization Theory and Applications, 34(3):321–353, 1981. 38

[46] Y. Censor and S. A. Zenios. Proximal minimization algorithm with D-functions. Journal of Optimization
Theory and Applications, 73(3):451–464, 1992. 38, 40

[47] H. Chang, S. Marchesini, Y. Lou, and T. Zeng. Variational phase retrieval with globally convergent
preconditioned proximal algorithm. SIAM Journal on Imaging Sciences, 11(1):56–93, 2018. 6, 74, 75

[48] S. Chaudhuri, R. Velmurugan, and R. M. Rameshan. Blind image deconvolution. Springer, 2016. 7, 43

234 BIBLIOGRAPHY

[49] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The loss
surfaces of multilayer networks. In Artificial Intelligence and Statistics, pages 192–204, 2015. 45, 92

[50] E. Chouzenoux, J. C. Pesquet, and A. Repetti. A block coordinate variable metric forward–backward
algorithm. Journal of Global Optimization, 66(3):457–485, 2016. 82, 105

[51] A. Cichocki, R. Zdunek, and S. Amari. Hierarchical ALS algorithms for nonnegative matrix and 3D
tensor factorization. In International Conference on Independent Component Analysis and Signal
Separation, pages 169–176. Springer, 2007. 82, 105

[52] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In H.H. Bauschke,
R.S. Burachik, P.L. Combettes, V. Elser, D.R. Luke, and H. Wolkowicz, editors, Fixed-Point Algorithms
for Inverse Problems in Science and Engineering, pages 185–212. Springer, 2011. 116

[53] V. Corona, M. Benning, M. J. Ehrhardt, L. F. Gladden, R. Mair, A. Reci, A. J. Sederman, S. Reichelt,
and C. B. Schönlieb. Enhancing joint reconstruction and segmentation with non-convex Bregman
iteration. Inverse Problems, 35(5):055001, 2019. 38

[54] M. Coste. An introduction to semialgebraic geometry, 2000. 32

[55] D. Davis, D. Drusvyatskiy, and K. J. MacPhee. Stochastic model-based minimization under high-order
growth. ArXiv preprint arXiv:1807.00255, 2018. 9, 38, 85, 89, 93, 96, 112, 115, 116, 118, 119, 161

[56] D. Davis, D. Drusvyatskiy, and C. Paquette. The nonsmooth landscape of phase retrieval. IMA Journal
of Numerical Analysis, 40(4):2652–2695, 2020. 10

[57] L. Van den Dries and C. Miller. Geometric categories and o-minimal structures. Duke Math. J,
84(2):497–540, 1996. 31

[58] R. A. Dragomir, A. d’Aspremont, and J. Bolte. Quartic first-order methods for low-rank minimization.
Journal of Optimization Theory and Applications, pages 1–23, 2021. 38, 83, 85, 86, 92, 96

[59] D. Drusvyatskiy. The proximal point method revisited. arXiv preprint arXiv:1712.06038, 2017. 137

[60] D. Drusvyatskiy, A. D Ioffe, and A. S. Lewis. Nonsmooth optimization using Taylor-like models: error
bounds, convergence, and termination criteria. Mathematical Programming, pages 1–27, 2019. 116, 117,
118, 130, 147

[61] D. Drusvyatskiy and A. S. Lewis. Error bounds, quadratic growth, and linear convergence of proximal
methods. Mathematics of Operations Research, 2018. 137, 138

[62] D. Drusvyatskiy and C. Paquette. Efficiency of minimizing compositions of convex functions and
smooth maps. Mathematical Programming, 178(1-2):503–558, 2019. 9, 116, 137

[63] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011. 96, 105, 160

[64] J.C. Duchi and F. Ruan. Solving (most) of a set of quadratic equalities: Composite optimization for
robust phase retrieval. Information and Inference: A Journal of the IMA, 8(3):471–529, 2019. 6, 10, 74

[65] J. Eckstein. Nonlinear proximal point algorithms using Bregman functions, with applications to convex
programming. Mathematics of Operations Research, 18(1):202–226, 1993. 38, 40

[66] G. Z. Eskandani, M. Raeisi, and T. M. Rassias. A hybrid extragradient method for solving pseudomono-
tone equilibrium problems using Bregman distance. Journal of Fixed Point Theory and Applications,
20(3):132, 2018. 38

BIBLIOGRAPHY 235

[67] F. Esposito, N. Gillis, and N. D. Buono. Orthogonal joint sparse NMF for microarray data analysis.
Journal of Mathematical Biology, pages 1–25, 2019. 83

[68] H. Fang, Z. Zhang, Y. Shao, and C. J. Hsieh. Improved bounded matrix completion for large-scale
recommender systems. In International Joint Conference on Artificial Intelligence (IJCAI), pages
1654–1660. AAAI Press, 2017. 83, 209

[69] P. Frankel, G. Garrigos, and J. Peypouquet. Splitting methods with variable metric for Kurdyka–
Łojasiewicz functions and general convergence rates. 165(3):874–900, September 2014. 133

[70] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning. Springer series in
statistics New York, 2001. 73, 142

[71] J. Geiping and M. Moeller. Composite optimization by nonconvex majorization-minimization. SIAM
Journal on Imaging Sciences, 11(4):2494–2528, 2018. 38

[72] G. Gidel, F. Bach, and S. Lacoste-Julien. Implicit regularization of discrete gradient dynamics in deep
linear neural networks. arXiv preprint arXiv:1904.13262, 2019. 93

[73] N. Gillis. The why and how of nonnegative matrix factorization. Regularization, Optimization, Kernels,
and Support Vector Machines, 12(257), 2014. 82, 83

[74] N. Gillis and S. A. Vavasis. Fast and robust recursive algorithms for separable nonnegative matrix
factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(4):698–714, 2014.
83

[75] G. H. Golub and C. F.V. Loan. Matrix computations, volume 3. John Hopkins University Press, 2012.
82, 105

[76] P. Gong, C. Zhang, L. Zhaosong, J. Z. Huang, and J. Ye. A general iterative shrinkage and thresholding
algorithm for non-convex regularized optimization problems. In S. Dasgupta and D. McAllester, editors,
Proceedings of the 30th International Conference on Machine Learning, volume 28, pages 37–45. PMLR,
2013. 74

[77] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. 7, 8, 45, 47, 52, 92, 103,
105

[78] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtarik. SGD: General analysis
and improved rates. ArXiv preprint arXiv:1901.09401, 2019. 89

[79] S. Gunasekar, J. Lee, D. Soudry, and N. Srebro. Characterizing implicit bias in terms of optimization
geometry. In International Conference on Machine Learning, pages 1832–1841. PMLR, 2018. 93

[80] S. Gunasekar, B. E. Woodworth, S. Bhojanapalli, B. Neyshabur, and N. Srebro. Implicit regularization
in matrix factorization. In Advances in Neural Information Processing Systems, pages 6151–6159, 2017.
93

[81] W. M. Haddad and V. Chellaboina. Nonlinear dynamical systems and control: a Lyapunov-based
approach. Princeton university press, 2011. 123

[82] B. D. Haeffele and R. Vidal. Structured low-rank matrix factorization: global optimality, algorithms,
and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019. 7, 43

[83] F. M. Harper and J. A. Konstan. The movielens datasets: history and context. Transactions on
Interactive Intelligent Systems (TIIS), 5(4):19, 2016. xxiv, 86, 88, 90, 97

236 BIBLIOGRAPHY

[84] L. T. K. Hien and N. Gillis. Algorithms for nonnegative matrix factorization with the Kullback-Leibler
divergence. arXiv preprint arXiv:2010.01935, 2020. 38

[85] L. T. K. Hien, N. Gillis, and P. Patrinos. Inertial block mirror descent method for non-convex non-smooth
optimization. ArXiv preprint arXiv:1903.01818, 2019. 96

[86] J.-B. Hiriart-Urruty and C. Lemarechal. Fundamentals of Convex Analysis. Springer Science & Business
Media, 2012. 77

[87] C. J. Hsieh and I. S. Dhillon. Fast coordinate descent methods with variable selection for non-negative
matrix factorization. In International Conference on Knowledge Discovery and Data Mining (ICKDDM),
pages 1064–1072. ACM, 2011. 83

[88] C. J. Hsieh and P. Olsen. Nuclear norm minimization via active subspace selection. In International
Conference on Machine Learning, pages 575–583, 2014. 83, 84

[89] P. Jawanpuria and B. Mishra. A unified framework for structured low-rank matrix learning. In J. Dy and
A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning, volume 80,
pages 2254–2263. PMLR, 2018. 83, 85, 90

[90] D. Harrison Jr and D. L. Rubinfeld. Hedonic housing prices and the demand for clean air. Journal of
environmental economics and management, 5(1):81–102, 1978. 108

[91] A. Juditsky, A. Nemirovski, et al. First order methods for nonsmooth convex large-scale optimization,
ii: utilizing problems structure. Optimization for Machine Learning, pages 149–183, 2011. 38

[92] K. Kawaguchi. Deep learning without poor local minima. In Advances in neural information processing
systems, pages 586–594, 2016. 45, 92

[93] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 96, 105, 160

[94] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review, 51(3):455–500,
2009. 85, 89, 92

[95] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer,
42(8):30–37, 2009. 83, 84, 86, 97, 209

[96] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. Advances in neural information processing systems, 25:1097–1105, 2012. 8, 47, 52, 103, 105

[97] K. Kurdyka. On gradients of functions definable in o-minimal structures. Université de Grenoble.
Annales de l’Institut Fourier, 48(3):769–783, 1998. 30, 69

[98] E. Laude, P. Ochs, and D. Cremers. Bregman proximal mappings and Bregman-Moreau envelopes
under relative prox-regularity. Journal of Optimization Theory and Applications, 184(3):724–761, 2020.
38, 121, 123

[99] Y. LeCun, L. D. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, U. A.
Muller, E. Sackinger, et al. Comparison of learning algorithms for handwritten digit recognition. In
International conference on artificial neural networks, volume 60, pages 53–60. Perth, Australia, 1995.
52

[100] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature,
401(6755):788, 1999. 202

BIBLIOGRAPHY 237

[101] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In Advances in Neural
Information Processing Systems, pages 556–562, 2001. 83, 202

[102] A. S. Lewis and S. J. Wright. A proximal method for composite minimization. Mathematical Program-
ming, 158(1-2):501–546, 2016. 137, 138

[103] Q. Li, Z. Zhu, G. Tang, and M. B. Wakin. Provable Bregman-divergence based methods for nonconvex
and non-lipschitz problems. arXiv preprint arXiv:1904.09712, 2019. 38, 43, 44, 96

[104] W. Li and D.-Y. Yeung. Relation regularized matrix factorization. In International Joint Conference
on Artifical Intelligence (IJCAI), pages 1126–1131, 2009. 196

[105] X. Li and X. Wu. Constructing long short-term memory based deep recurrent neural networks for large
vocabulary speech recognition. In 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4520–4524. IEEE, 2015. 8, 47, 103, 105

[106] S. Łojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. In Les Équations aux
Dérivées Partielles (Paris, 1962), pages 87–89. Éditions du Centre National de la Recherche Scientifique,
Paris, 1963. 69

[107] C. Lu, M. Yang, F. Luo, F. X. Wu, M. Li, Y. Pan, Y. Li, and J. Wang. Prediction of lncRNA–disease
associations based on inductive matrix completion. Bioinformatics, 34(19):3357–3364, 2018. 83

[108] H. Lu. "Relative-Continuity" for non-Lipschitz non-smooth convex optimization using stochastic (or
deterministic) mirror descent. INFORMS Journal on Optimization, 1(4):288–303, 2019. 38

[109] H. Lu, R. M. Freund, and Y. Nesterov. Relatively smooth convex optimization by first-order methods,
and applications. SIAM Journal on Optimization, 28(1):333–354, 2018. 38, 39, 118, 119

[110] D. R. Luke. Phase retrieval, What’s new? SIAG/OPT Views and News, 25(1):1–6, 2017. 6, 74, 140

[111] R. Luss and M. Teboulle. Conditional gradient algorithms for rank-one matrix approximations with a
sparsity constraint. SIAM Review, 55(1):65–98, 2013. 194, 198, 201, 202

[112] A. Mnih and R. R. Salakhutdinov. Probabilistic matrix factorization. In Advances in Neural Information
Processing Systems, pages 1257–1264, 2008. 7, 43

[113] A. Moitra. An almost optimal algorithm for computing nonnegative rank. SIAM Journal on Computing,
45(1):156–173, 2016. 83

[114] C. Molinari, J. Liang, and J. Fadili. Convergence rates of Forward–Douglas–Rachford splitting method.
Journal of Optimization Theory and Applications, 182(2):606–639, 2019. 123

[115] F. Monti, M. M. Bronstein, and X. Bresson. Geometric matrix completion with recurrent multi-graph
neural networks. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 3700–3710, 2017. 92

[116] B. S. Mordukhovich. Variational analysis and applications. Springer, 2018. 21, 126

[117] J. J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique de
France, 93:273–299, 1965. 63

[118] M. C. Mukkamala, J. Fadili, and P. Ochs. Global convergence of model function based Bregman
proximal minimization algorithms. arXiv preprint arXiv:2012.13161, 2020. 10

238 BIBLIOGRAPHY

[119] M. C. Mukkamala and M. Hein. Variants of rmsprop and adagrad with logarithmic regret bounds. In
International Conference on Machine Learning (ICML), pages 2545–2553, 2017. 89, 96, 105, 160

[120] M. C. Mukkamala and P. Ochs. Beyond alternating updates for matrix factorization with inertial
Bregman proximal gradient algorithms. In Advances in Neural Information Processing Systems, pages
4266–4276, 2019. 10

[121] M. C. Mukkamala, P. Ochs, T. Pock, and S. Sabach. Convex-Concave backtracking for inertial Bregman
proximal gradient algorithms in nonconvex optimization. SIAM Journal on Mathematics of Data
Science, 2(3):658–682, 2020. 10

[122] M. C. Mukkamala, F. Westerkamp, E. Laude, D. Cremers, and P. Ochs. Bregman proximal framework
for deep linear neural networks. arXiv preprint arXiv:1910.03638, 2019. 10

[123] M. C. Mukkamala, F. Westerkamp, E. Laude, D. Cremers, and P. Ochs. Bregman proximal gradient
algorithms for deep matrix factorization. In Scale Space and Variational Methods in Computer Vision:
8th International Conference, SSVM 2021, Virtual Event, May 16–20, 2021, Proceedings, page 204.
Springer, 2021. 10

[124] Y. Nesterov. Introductory lectures on convex optimization: a basic course, 2004. 3, 20, 114

[125] Y. Nesterov. Modified Gauss–Newton scheme with worst case guarantees for global performance.
Optimisation methods and software, 22(3):469–483, 2007. 137

[126] Y. E. Nesterov. A method for solving the convex programming problem with convergence rate O(1/k2).
Doklady Akademii Nauk SSSR, 269(3):543–547, 1983. 19, 60, 150

[127] B. Neyshabur, R. Tomioka, R. Salakhutdinov, and N. Srebro. Geometry of optimization and implicit
regularization in deep learning. arXiv preprint arXiv:1705.03071, 2017. 93

[128] L. M. Nguyen, P. H. Nguyen, M. V. Dijk, P. Richtárik, K. Scheinberg, and M. Takáč. SGD and Hogwild!
convergence without the bounded gradients assumption. arXiv preprint arXiv:1802.03801, 2018. 89

[129] Q. Nguyen and M. Hein. The loss surface of deep and wide neural networks. volume 70 of Proceedings
of Machine Learning Research, pages 2603–2612, International Convention Centre, Sydney, Australia,
06–11 Aug 2017. PMLR. 48

[130] Q. V. Nguyen. Forward–Backward splitting with Bregman distances. Vietnam Journal of Mathematics,
45(3):519–539, 2017. 38

[131] M. Nikolova. Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized
least-squares. Multiscale Modeling & Simulation, 4(3):960–991, 2005. 73, 77, 143

[132] D. Noll. Convergence of non-smooth descent methods using the Kurdyka–Łojasiewicz inequality. Journal
of Optimization Theory and Applications, 160(2):553–572, September 2013. 117

[133] D. Noll, O. Prot, and P. Apkarian. A proximity control algorithm to minimize nonsmooth and nonconvex
functions. Pacific Journal of Optimization, 4(3):571–604, 2008. 117

[134] P. Ochs. Long term motion analysis for object level grouping and nonsmooth optimization methods.
PhD thesis, Albert-Ludwigs-Universität Freiburg, Mar 2015. 22, 31, 32, 33, 63, 65

[135] P. Ochs. Local convergence of the heavy-ball method and ipiano for non-convex optimization. Journal
of Optimization Theory and Applications, 177(1):153–180, 2018. 65

BIBLIOGRAPHY 239

[136] P. Ochs. Unifying abstract inexact convergence theorems and block coordinate variable metric ipiano.
SIAM Journal on Optimization, 29(1):541–570, 2019. 63, 69, 121, 122, 150

[137] P. Ochs, Y. Chen, T. Brox, and T. Pock. iPiano: inertial proximal algorithm for nonconvex optimization.
SIAM Journal on Imaging Sciences, 7(2):1388–1419, 2014. 2, 8, 62, 67, 72, 96, 116, 123, 135

[138] P. Ochs, A. Dosovitskiy, T. Pock, and T. Brox. An iterated `1 algorithm for non-smooth non-convex
optimization in computer vision. In CVPR, 2013. xxv, 116, 139, 141, 143, 146, 147, 158

[139] P. Ochs, J. Fadili, and T. Brox. Non-smooth non-convex Bregman minimization: unification and new
algorithms. Journal of Optimization Theory and Applications, 181(1):244–278, 2019. xxiv, 9, 38, 40, 76,
78, 79, 116, 117, 118, 121, 126, 128, 130, 143, 147, 154

[140] P. Ochs and Y. Malitsky. Model function based conditional gradient method with Armijo-like line
search. In International Conference on Machine Learning, pages 4891–4900, 2019. 117, 118, 224

[141] J. S. Pang and M. Tao. Decomposition methods for computing directional stationary solutions of a
class of nonsmooth nonconvex optimization problems. SIAM Journal on Optimization, 28(2):1640–1669,
2018. 38

[142] E. Pauwels. The value function approach to convergence analysis in composite optimization. Operations
Research Letters, 44(6):790–795, 2016. 116, 123

[143] T. Pock and A. Chambolle. Diagonal preconditioning for first order primal-dual algorithms in convex
optimization. In International Conference on Computer Vision, pages 1762–1769, 2011. 141, 143

[144] T. Pock and S. Sabach. Inertial proximal alternating linearized minimization (iPALM) for nonconvex
and nonsmooth problems. SIAM Journal on Imaging Sciences, 9(4):1756–1787, 2016. 7, 8, 31, 33, 63,
82, 86, 96, 105

[145] B. T. Polyak. Some methods of speeding up the convergence of iterative methods. Akademija Nauk
SSSR. Žurnal Vyčislitel′nŏı Matematiki i Matematičeskŏı Fiziki, 4:791–803, 1964. 62, 72, 150, 158

[146] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M. L. Shyu, S. C. Chen, and S. S.
Iyengar. A survey on deep learning: algorithms, techniques, and applications. ACM Computing Surveys
(CSUR), 51(5):1–36, 2018. 47

[147] M. Powell. On search directions for minimization algorithms. Mathematical programming, 4(1):193–201,
1973. 85

[148] R. T. Rockafellar. Convex analysis, volume 36. Princeton university press, 1970. 13, 39

[149] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970. 39

[150] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317 of Fundamental Principles of
Mathematical Sciences. Springer-Verlag, Berlin, 1998. 11, 21, 22, 23, 25, 26, 27, 28, 29, 30, 68, 117, 120,
121, 126, 136, 138, 186, 200, 225, 227

[151] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,
2016. 105

[152] S. Sabach. Iterative methods for solving optimization problems. Technion-Israel Institute of Technology,
Faculty of Mathematics, 2012. 27

[153] D. Scieur, A. d’Aspremont, and F. Bach. Regularized nonlinear acceleration. Mathematical Programming,
179(1):47–83, 2020. 150

240 BIBLIOGRAPHY

[154] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro. Megatron-lm: Training
multi-billion parameter language models using model parallelism. arXiv preprint arXiv:1909.08053,
2019. 8, 103, 105

[155] S. Sra and I. S. Dhillon. Generalized nonnegative matrix approximations with Bregman divergences. In
Advances in Neural Information Processing Systems, pages 283–290, 2006. 7, 43

[156] N. Srebro, J. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In Advances in
Neural Information Processing Systems, pages 1329–1336, 2005. 7, 43

[157] J.-L. Starck, F. Murtagh, and J. Fadili. Sparse image and signal processing: wavelets, curvelets,
morphological diversity. Cambridge University Press, 2010. 7, 43

[158] L. Stella, A. Themelis, and P. Patrinos. Forward–backward quasi-Newton methods for nonsmooth
optimization problems. Computational Optimization and Applications, 67(3):443–487, 2017. 123

[159] W. Su, S. Boyd, and E. Candes. A differential equation for modeling Nesterov’s accelerated gradient
method: theory and insights. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 2510–2518. Curran
Associates, Inc., 2014. 67

[160] M. Teboulle. Entropic proximal mappings with application to nonlinear programming. Mathematics of
Operations Research, 17(3):670–690, 1992. 38, 40, 63

[161] M. Teboulle. A simplified view of first order methods for optimization. Mathematical Programming,
170(1):67–96, 2018. 38, 40, 63, 65

[162] M. Teboulle and Y. Vaisbourd. Novel proximal gradient methods for nonnegative matrix factorization
with sparsity constraints. SIAM Journal on Imaging Sciences, 13(1):381–421, 2020. 38, 96

[163] K. Thung, P. T. Yap, E. Adeli, S. W. Lee, D. Shen, and Alzheimer’s Disease Neuroimaging Initiative.
Conversion and time-to-conversion predictions of mild cognitive impairment using low-rank affinity
pursuit denoising and matrix completion. Medical image analysis, 45:68–82, 2018. 83

[164] G. Wang, G. B. Giannakis, and Y. C. Eldar. Solving systems of random quadratic equations via
truncated amplitude flow. IEEE Transactions on Information Theory, 64(2):773–794, 2018. 6, 74, 140

[165] X. Wang, X. He, M. Wang, F. Feng, and T. S. Chua. Neural graph collaborative filtering. In Proceedings
of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval,
pages 165–174, 2019. 92

[166] B. Wen, X. Chen, and T. K. Pong. Linear convergence of proximal gradient algorithm with extrapolation
for a class of nonconvex nonsmooth minimization problems. SIAM Journal on Optimization, 27(1):124–
145, 2017. 61, 63, 67

[167] F. Wen, L. Chu, P. Liu, and R. C. Qiu. A survey on nonconvex regularization-based sparse and low-rank
recovery in signal processing, statistics, and machine learning. IEEE Access, 6:69883–69906, 2018. 77

[168] T. Wu, S. Liu, J. Zhang, and Y. Xiang. Twitter spam detection based on deep learning. In Proceedings
of the Australasian Computer Science Week Multiconference, pages 1–8. ACM, 2017. 52

[169] Y. Wu, B. Poczos, and A. Singh. Towards understanding the generalization bias of two layer convolutional
linear classifiers with gradient descent. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 1070–1078. PMLR, 2019. 45, 92

BIBLIOGRAPHY 241

[170] Y. Xu, Z. Li, J. Yang, and D. Zhang. A survey of dictionary learning algorithms for face recognition.
IEEE access, 5:8502–8514, 2017. 7, 43

[171] Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex optimization with
applications to nonnegative tensor factorization and completion. SIAM Journal on imaging sciences,
6(3):1758–1789, 2013. 82, 105

[172] Lei Yang, Ting Kei Pong, and Xiaojun Chen. A nonmonotone alternating updating method for a class
of matrix factorization problems. SIAM Journal on Optimization, 28(4):3402–3430, 2018. 82

[173] Q. Yao and J. Kwok. Scalable robust matrix factorization with nonconvex loss. In Advances in Neural
Information Processing Systems, pages 5061–5070, 2018. 83, 89

[174] A. W. Yu, W. Ma, Y. Yu, J. Carbonell, and S. Sra. Efficient structured matrix rank minimization. In
Advances in Neural Information Processing Systems, pages 1350–1358, 2014. 83

[175] C. Yun, S. Sra, and A. Jadbabaie. Global optimality conditions for deep neural networks. In International
Conference on Learning Representations, 2018. 7, 45, 92

[176] R. Zanella, P. Boccacci, L. Zanni, and M. Bertero. Efficient gradient projection methods for edge-
preserving removal of Poisson noise. Inverse Problems, 25(4), 2009. 8

[177] Z. Zhu, X. Li, K. Liu, and Q. Li. Dropping symmetry for fast symmetric nonnegative matrix factorization.
In Advances in Neural Information Processing Systems, pages 5154–5164, 2018. 83, 84, 207

	Acknowledgements
	Abstract
	Zusammenfassung
	List of Figures
	1 Introduction
	1.1 Introduction
	1.2 Overview
	1.2.1 Part I: additive composite setting
	1.2.1.1 Practical applications

	1.2.2 Part II: generic composite setting
	1.2.2.1 Practical applications

	1.3 Publications

	2 Convex analysis
	2.1 Affine sets
	2.2 Convex sets
	2.2.1 Operations preserving convexity of sets
	2.2.2 Properties of convex sets

	2.3 Convex functions
	2.3.1 Operations preserving convexity of functions
	2.3.2 Convexity tests
	2.3.3 Conjugate function
	2.3.4 Subgradient and subdifferential

	2.4 Convex optimization
	2.4.1 Lipschitz continuous gradient
	2.4.2 Proximal Gradient Method
	2.4.3 Backtracking
	2.4.4 Accelerated Proximal Gradient Method
	2.4.5 Strong convexity

	3 Variational analysis
	3.1 Variational analysis
	3.2 Subgradients and subdifferentials
	3.3 Set convergence
	3.3.1 Subdifferentials with set convergence

	3.4 Normal cone and tangent cone
	3.5 Lipschitz continuity and strict continuity
	3.5.1 Coercivity

	3.6 Subdifferentials based on the function structure
	3.6.1 Results on separable functions
	3.6.2 Results on additive functions
	3.6.3 Chain rule
	3.6.4 Results on parametric functions

	3.7 KL framework
	3.7.1 Discussion

	4 Bregman distances
	4.1 Abstract
	4.2 Introduction
	4.2.1 Contributions
	4.2.2 Related work

	4.3 Bregman distances
	4.3.1 Properties
	4.3.2 Examples

	4.4 The Bregman framework
	4.4.1 Smooth adaptable functions

	4.5 Bregman distance for matrix factorization
	4.5.1 Connection to related work in 2D setting

	4.6 Bregman distances for deep matrix factorization
	4.7 Bregman distances for deep neural networks - Regression setting
	4.7.1 Activation functions
	4.7.2 Regression setting

	4.8 Bregman distances for deep neural networks - Classification setting
	4.8.1 Deep linear neural networks
	4.8.2 Deep non-linear neural networks

	4.9 Chapter conclusion

	5 CoCaIn BPG
	5.1 Abstract
	5.2 Introduction
	5.2.1 Contributions
	5.2.2 Related work

	5.3 The Bregman Proximal Gradient algorithm
	5.4 The inertial Bregman Proximal Gradient method
	5.4.1 The convex-concave backtracking procedure

	5.5 Well-posedness of CoCaIn BPG
	5.6 Convergence analysis of CoCaIn BPG
	5.6.1 Lyapunov function descent property of CoCaIn BPG
	5.6.2 Global convergence for CoCaIn BPG
	5.6.3 CoCaIn BPG without backtracking
	5.6.4 Implementing the double backtracking procedure

	5.7 Numerical experiments
	5.7.1 Finding global minima of univariate functions
	5.7.2 Escaping spurious stationary points
	5.7.3 Quadratic inverse problems in phase retrieval
	5.7.4 Non-convex robust denoising with non-convex TV regularization

	5.8 Chapter conclusion

	6 Matrix factorization
	6.1 Abstract
	6.2 Introduction
	6.2.1 Contributions
	6.2.2 Related work

	6.3 Closed form update steps for BPG-MF and CoCaIn BPG-MF
	6.4 Discussion
	6.5 Experiments
	6.6 Chapter conclusion

	7 Deep matrix factorization
	7.1 Abstract
	7.2 Introduction
	7.2.1 Contributions
	7.2.2 Related work

	7.3 BPG for deep matrix factorization
	7.3.1 Closed form updates for BPG
	7.3.2 Global convergence of BPG for regularized DLNN

	7.4 CoCaIn BPG for deep matrix factorization
	7.4.1 Closed form inertia
	7.4.2 Global convergence of CoCaIn BPG for regularized DLNN

	7.5 Discussion of BPG variants
	7.6 Experiments
	7.7 Chapter conclusion

	8 Deep neural networks
	8.1 Abstract
	8.2 Introduction
	8.2.1 Contributions
	8.2.2 Related work

	8.3 Closed form updates
	8.3.1 Regularization

	8.4 Closed form inertia
	8.4.1 Closed form inertia - Regression setting
	8.4.2 Closed form inertia - DLNN - Classification setting
	8.4.3 Closed form inertia - DNN - Classification setting

	8.5 Experiments
	8.6 Chapter conclusion

	9 Model BPG
	9.1 Abstract
	9.2 Introduction
	9.2.1 Contributions
	9.2.2 Related work

	9.3 Problem setting and Model BPG algorithm
	9.4 Gradient-like Descent sequence
	9.5 Global convergence analysis of Model BPG algorithm
	9.5.1 New Lyapunov function
	9.5.2 Sufficient descent property
	9.5.3 Relative error condition
	9.5.4 Subsequential convergence
	9.5.5 Global convergence to a stationary point of the Lyapunov function
	9.5.6 Global convergence to a stationary point of the objective function
	9.5.7 Convergence rates

	9.6 Examples
	9.6.1 Additive composite problems
	9.6.2 Composite problems

	9.7 Experiments
	9.7.1 Standard phase retrieval
	9.7.2 Robust phase retrieval
	9.7.3 Poisson linear inverse problems

	9.8 Chapter conclusion

	10 Inertial Model BPG
	10.1 Abstract
	10.2 Introduction
	10.2.1 Contributions
	10.2.2 Related work

	10.3 Model CoCaIn BPG
	10.3.1 Implementation and double backtracking

	10.4 Global convergence analysis of Model CoCaIn BPG
	10.4.1 Descent property
	10.4.2 Relative error condition
	10.4.3 Subsequential convergence
	10.4.4 Global convergence
	10.4.5 Convergence rates

	10.5 Examples
	10.5.1 Additive composite problems
	10.5.2 Composite problems

	10.6 Experiments
	10.7 Chapter conclusion

	11 Conclusion and outlook
	11.1 Conclusion
	11.2 Outlook

	A Appendix for Bregman distances - Chapter 4
	A.1 Technical lemmas and proofs
	A.2 Proof of Proposition 4.5.0.1
	A.3 Bregman distance and L-smad property
	A.3.1 Proof of Proposition 4.6.0.1
	A.3.2 Results for H3.
	A.3.3 Proof of Proposition 4.6.0.2.

	A.4 Proof of Lemma 4.7.2.2
	A.5 Proof of Lemma 4.7.2.3

	B Appendix for CoCaIn BPG - Chapter 5
	B.1 Proof of Lemma 5.5.0.1
	B.2 Proof of Lemma 5.6.0.1
	B.3 Proof of Proposition 5.6.1.1
	B.4 Proof of Proposition 10.4.1.2
	B.5 Proof of Theorem 5.6.2.1
	B.6 Proof of Proposition 5.6.2.2
	B.7 Proof of Proposition 5.6.2.3
	B.8 Proof of Lemma B.8.0.1
	B.9 Proof of Proposition 5.7.3.1

	C Appendix for matrix factorization - Chapter 6
	C.1 Overview of the results
	C.2 Closed form solutions: Part I for matrix factorization
	C.2.1 Extensions to L2-regularized matrix factorization
	C.2.2 Extensions to graph regularized matrix factorization
	C.2.3 Extensions to L1-regularized matrix factorization
	C.2.4 Extensions with nuclear norm regularization
	C.2.5 Extensions with non-convex sparsity constraints

	C.3 Closed form solutions: Part II for NMF variants
	C.3.1 Extensions to L2-regularized NMF
	C.3.2 Extensions to L1-regularized NMF
	C.3.3 Extensions to graph regularized non-negative matrix factorization
	C.3.4 Extensions to symmetric NMF via non-symmetric relaxation.
	C.3.5 Extensions to NMF with non-convex sparsity constraints (Sparse NMF)

	C.4 Matrix completion problem
	C.5 Closed form solution with 5th-order polynomial
	C.5.1 Conversion to cubic equation
	C.5.2 Extensions to mixed regularization terms

	D Appendix for deep matrix factorization - Chapter 7
	D.1 Proof of Theorem 7.3.2.1
	D.2 Closed form update steps
	D.2.1 Proof of Proposition 7.3.1.1
	D.2.2 L2-regularization
	D.2.3 Closed form updates for L1 Regularization

	D.3 Closed form inertia
	D.3.1 Proof of Proposition 7.4.1.1
	D.3.2 Closed form inertia for matrix factorization

	E Appendix for deep neural networks - Chapter 8
	E.1 Proof of Proposition 8.3.0.1

	F Appendix for Model BPG - Chapter 9
	F.1 Proof of Example 9.3.0.1
	F.2 Model function preserves first order information
	F.3 Proof of Proposition 9.3.0.1

	G Appendix for Inertial Model BPG - Chapter 10
	G.1 Proof of Lemma 10.4.1.1
	G.2 Proof of Proposition 10.4.1.1
	G.3 Proof of Lemma 10.4.2.1
	G.4 Proof of Proposition 10.4.3.2
	G.5 Proof of Theorem 10.4.4.1

