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Abstract—This paper summarizes the most important work
conducted in the field of machine learning and artificial in-
telligence applied to communication networks from the Chair
of Communication Networks (LKN), Technical University of
Munich. Furthermore, it gives an overview of current ongoing
work and research projects, which target the vision of digital
network twinning for autonomous network control.

Index Terms—network control, network algorithms, au-
tonomous networking, data-driven, digital twin

I. VISION: TOWARDS DIGITAL NETWORK TWINNING

The vision of LKN at TUM is a fully data-driven approach
to network operation and control. In this vision, network
control algorithms are synthesized from network data (e.g.,
monitoring data, algorithm data), and tailored to the properties
of specific networks. Fig. 1 illustrates LKN’s vision. The basis
forms the high quality data of real systems that is obtained,
e.g., through measurements. The measurements enable the
creation of Digital Twins (DTs) of the network systems. The
DTs serve as unified interfaces to the networks, represent the
networks’ state, and allow what-if-analysis, i.e., show how
networks could behave for specific control decisions. The
Algo-College uses the DT’s capabilities to evaluate the effect
of control decisions, enabling the training of control algorithms
that are tailored towards the network.

Our vision is enabled through the thorough application of
Machine Learning (ML) at every stage: Network Measuring,
Network Modeling, and Control Algorithm Training. Sec. II
gives an overview of the chair’s work. Sec. III informs about
our current projects.

II. PAST UNTIL PRESENT

In the past, the chair focused on the data-driven design of
network control algorithms, and methods to generate high-
quality data for effective DT creation.

A. Data-Driven Network Optimization

At the heart of network control often lies the solving of
combinatorial optimization problems. Fig. 2 illustrates three
ways towards solving such problems. Fig. 2a shows that
traditional optimization algorithm, e.g., heuristic or Integer
Linear Program (ILP), receives problem instances and solves
them. This neglects the wealth of data that is generated in the
process, i.e., the problem instances and solution pairs.

Fig. 2b shows a straightforward way to use the prob-
lem/solution pairs. ML uses the pairs to improve traditional
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Fig. 1: Continuous system monitoring enables a Digital Twin
of the system that ML uses to train control algorithms that
control the system through the DT.

optimization algorithms. In Blenk et al. [1], and ISMAEL [2]
we use ML to learn the rejection behavior of compute intensive
optimization algorithms. Here, ML serves as a cheap filter
to avoid compute intensive executions of the algorithm on
infeasible requests. In He et al. [3], and o’zapft is [4], we use
ML to predict properties of optimization algorithms’ solutions,
such as the cost of virtual network embeddings, and if a node
is likely to host an SDN controller. The predictions enable
admission control, or a reduction of the solution space. While
we show performance improvements with this approach, it
is fundamentally limited by the performance and the quality
of the actual optimization algorithm. However, even without
explicitly learning from data, LKN demonstrates how Neu-
roViNE [5] uses Hopfield Networks to prune the solution space
for Virtual Network Embedding (VNE) problems. As a result,
NeuroViNE reduces the run-time of subsequent optimization
algorithms, and improves its performance through eliminating
bad local optima.

To overcome the traditional algorithms’ limitations, Fig. 2c
uses a learned algorithm instead. In addition to the prob-
lem/solution pairs, the learned algorithm takes the network’s
feedback into account, allowing ML to tailor algorithms to the
properties and requirements of a specific network. Currently,
we rely on simple abstractions of the network’s behavior
to achieve this. For example, AHAB [6] uses a high-level
data-center network abstraction to learn admission control for
distributed jobs. AHAB uses the model to simulate future
developments and then decides whether to accept a job in the
current state. Kalmbach et al. [7], uses an abstract routing
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(a) Optimization algorithms solve problems and do not use the
generated data.

(b) ML uses the generated data to provide information that helps to
optimize the performance of optimization algorithms.
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(c) ML learns an optimization algorithm from data and replaces
traditional algorithms.

Fig. 2: Traditional and ML augmented network control.

model to learn network topologies that provide high path-
diversity for one specific request pattern. COMNAV [8], uses
a packet-level simulation and Deep Reinforcement Learning
(DRL) to learn a Neural Network-based protocol that in-
corporates network specific properties automatically. Kalm-
bach et al. [9] uses an Evolutionary Algorithm to optimize
large placement problems using a simple model for edge-
cloud infrastructure. sfc2cpu [10] optimizes the allocation
of Virtual Network Functions (VNFs) to CPU cores with
DRL. sfc2cpu improves the performance by learning how
to avoid interference between VNFs from a simple model of
the compute platform. Yet, our previous works in this area
share the reliance on high-level, often hand-crafted models or
simulations. In future work, a direct connection between real
systems and DTs (or abstractions) should be established.

B. Adversarial Benchmarking for Networks and Network Rep-
resentations

Our existing work often relies on abstract models that
capture a network’s high-level behavior and are oblivious to
low-level effects that can have a strong performance impact.
To learn control algorithms that are aware of low-level effects,
we envision DTs that accurately reflect them. To get a DT
that reflects a large range of the system’s behavior, observing
the system during operation might not be enough. Instead,
deliberate measurements that trigger a wide range of system
behaviors are necessary. To automate this process, TOXIN [11]
and NETBOA [12] show that it is possible to use AI/ML
to obtain configurations that result in new experience. This
avoids measurements with similar results, and can reduce the
effort to obtain the necessary data for high-quality system
models. To guide the automated design of experiments, the
representation of a network state is important to capture the
changes that a specific configuration triggers. Here, we used
ML to automatically extract and visualize the behavior of a
network from packet-level traces [13]–[15].

III. ONGOING WORK

We work on the different aspects of our vision, and strive
towards integrating them in first small use-cases. Our re-

search is supported through three projects. The goal of the
Adversarial Design Framework for Self-Driving Networks
(ADVISE) project is to investigate how predictable networks
behave, design data-driven algorithms, and benchmark these
algorithms with ML in an automated fashion. In the AI-NET
Protect project, we are working towards the comprehensive
monitoring, representation, and visualization of communica-
tion networks. In an industry cooperation with Rakuten Mobile
we work on methods to obtain DTs from measurement data
to use them to improve network controllers. We work towards
culminating the projects into a system that allows a network
to continuously improve itself in an automated fashion.
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