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“Possibly, but my concern is that there not be more things in my

philosophy than are in heaven and earth.”
- Willard van Orman Quine (1908 – 2000)

in response to being quoted William Shakespeare’s statement from Hamlet:

"There are more things in heaven and earth. . . than are dreamt of in your philosophy."
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Abstract

The increase in the use of high-throughput methods to gain insights into biological
systems has come with new challenges. Genomics, transcriptomics, proteomics, and
metabolomics lead to a massive amount of data and metadata. While this wealth
of information has resulted in many scientific discoveries, new strategies are needed
to cope with the ever-growing variety and volume of metadata. Despite efforts to
standardize the collection of study metadata, many experiments cannot be reproduced
or replicated. One reason for this is the difficulty to provide the necessary metadata.
The large sample sizes that modern omics experiments enable, also make it increasingly
complicated for scientists to keep track of every sample and the needed annotations.
The many data transformations that are often needed to normalize and analyze omics
data require a further collection of all parameters and tools involved. A second possible
cause is missing knowledge about statistical design of studies, both related to study
factors as well as the required sample size to make significant discoveries.

In this thesis, we develop a multi-tier model for experimental design and a portlet
for interactive web-based study design. Through the input of experimental factors and
the number of replicates, users can easily create large, factorial experimental designs.
Changes or additional metadata can be quickly uploaded via user-defined spreadsheets
including sample identifiers. In order to comply with existing standards and provide
users with a quick way to import existing studies, we provide full interoperability with
the ISA-Tab format. We show that both data model and portlet are easily extensible to
create additional tiers of samples annotated with technology-specific metadata.

We tackle the problem of unwieldy experimental designs by creating an aggregation
graph. Based on our multi-tier experimental design model, similar samples, their
sources, and analytes are summarized, creating an interactive summary graph that
focuses on study factors and replicates. Thus, we give researchers a quick overview
of sample sizes and the aim of different studies. This graph can be included in our
portlets or used as a stand alone application and is compatible with the ISA-Tab format.
We show that this approach can be used to explore the quality of publicly available
experimental designs and metadata annotation.

The third part of this thesis contributes to a more statistically sound experiment
planning for differential gene expression experiments. We integrate two tools for the
prediction of statistical power and sample size estimation into our portal. This integra-
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tion enables the use of existing data, in order to arrive at more accurate calculation for
sample variability. Additionally, the statistical power of existing experimental designs
of certain sample sizes can be analyzed. All results and parameters are stored and can
be used for later comparison.

Even perfectly planned and annotated experiments cannot eliminate human error.
Based on our model we develop an automated workflow for microarray quality control,
enabling users to inspect the quality of normalization and cluster samples by study factor
levels. We import a publicly available microarray dataset to assess our contributions
to reproducibility and explore alternative analysis methods based on statistical power
analysis.
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Kurzfassung

Die verstärkte Nutzung von Hochdurchsatz-Methoden, um Erkenntnisse über biologi-
sche Systeme zu gewinnen, hat zu neuen Herausforderung geführt. Genomik, Tran-
skriptomik, Proteomik und Metabolomik erzeugen gewaltige Mengen an Daten und
Metadaten. Während dieser Datenreichtum zu vielen wissenschaftlichen Entdeckungen
geführt hat, werden neue Strategien benötigt, um die stetig wachsende Vielfalt und
das Volumen an Metadaten zu bewältigen.

Trotz Anstrengungen die Sammlung von Metadaten zu standardisieren, können
viele Experimente nicht reproduziert oder repliziert werden. Eine Ursache hierfür ist
die Schwierigkeit die nötigen Metadaten bereitzustellen. Die große Anzahl an Proben,
die moderne Omics-Experimente ermöglichen, macht es gleichzeitig immer schwieriger
für Wissenschaftler die Übersicht über jede einzelne Probe und die nötige Annotation
zu behalten. Die vielen Daten-Transformationen, die oft nötig sind, um Omics-Daten
zu normalisieren und analysieren, machen die Erfassung aller verwendeten Parameter
und Tools nötig. Eine zweite mögliche Ursache ist fehlendes Wissen über statistisches
Design von Studien, sowohl was Studien-Faktoren als auch die für aussagekräftige
Entdeckungen benötigte Stichprobengröße betrifft.

In dieser Arbeit entwickeln wir ein mehrschichtiges Modell für experimentelles
Design und ein Portlet für interaktives web-basiertes Studiendesign. Durch die Eingabe
von experimentellen Faktoren und der Zahl von Replikaten können Nutzer leicht große,
faktorielle Experimental-Designs erstellen. Änderungen oder zusätzliche Metadaten
können schnell über ein von Nutzern definiertes Tabellen-Format hochgeladen werden,
welches Proben-Identifikatoren enthält. Um die Nutzung existierender Standards zu
gewährleisten und Nutzern eine schnelle Möglichkeit zum Import existierender Studien
zu geben, stellt unser Ansatz komplette Interoperabilität mit dem ISA-Tab-Format bereit.
Wir zeigen, dass sowohl unser Datenmodell, als auch unser Portlet leicht erweiterbar
sind, um zusätzliche Level aus Proben zu beschreiben, die mit technologie-spezifischen
Metadaten annotiert sind.

Wir überkommen das Problem von Experimental-Designs hinderlicher Größe, indem
wir einen Aggregations-Graphen entwickeln. Basierend auf unserem mehrschichtigen
Modell für experimentelles Designs, fassen wir ähnliche Proben, deren Ursprungs-
Organismen, und die gemessenen Analyte zusammen, um einen interaktiven Graph
zu erzeugen, dessen Fokus auf experimentellen Faktoren der Studie und auf der Zahl
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von Replikaten liegt. Damit geben wir Forschern einen schnellen Überblick über die
Stichprobengröße und das Ziel einer Studie. Der Graph kann in unsere Portlets integriert
oder als eigenständige Anwendung genutzt werden und ist kompatibel mit dem ISA-Tab-
Format. Wir zeigen, dass unser Ansatz genutzt werden kann, um öffentlich abrufbare
experimentelle Designs auf ihre Qualität und die Vollständigkeit ihrer Annotation zu
untersuchen.

Der dritte Teil dieser Arbeit leistet einen Beitrag zu einer statistisch standfeste-
ren Planung von Experimenten zur differentiellen Analyse von Genexpression. Wir
integrieren zwei Tools für die Vorhersage von Teststärke und für die Abschätzung der
benötigten Stichprobengröße in unser Portal. Diese Integration ermöglicht es bestehen-
de Daten zu nutzen, um akkuratere Berechnungen für Proben-Variabilität zu erhalten.
Zusätzlich kann die Teststärke bestehender experimenteller Designs mit bestimmten
Probengrößen analysiert werden. Alle Resultate und Parameter werden gespeichert
und können für spätere Vergleiche genutzt werden.

Sogar perfekt geplante und annotierte Experimente können menschliche Fehler
nicht beseitigen. Basierend auf unserem Modell entwickeln wir einen automatisier-
ten Workflow für die Qualitätskontrolle von Microarray-Messungen. Wir ermöglichen
Nutzern die Qualität der Normalisierung zu untersuchen und Proben nach den Le-
veln der Studien-Faktoren zu clustern. Wir importieren eine öffentlich zugängliche
Microarray-Studie, um unseren Beitrag zur Reproduzierbarkeit zu bewerten und er-
forschen alternative Analyse-Methoden basierend auf unserer Analyse der Teststärke.
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Chapter 1

Introduction

1.1 Motivation

Over the past two decades, the amount of data produced by the research of different parts

of biomolecular systems has become increasingly massive. Repositories like the European

Nucleotide Archive (ENA) administrated by the European Bioinformatics Institute (EBI) store

petabytes of data, highlighting that biology has entered the big data age1–3. Most prominently,

this data is related to efforts to analyze DNA sequences of different organisms in order to pin-

point genetic mutations causal to disease states or other phenotypes. In addition, the analysis

of mRNA and protein differential abundance to learn more about the interplay of certain genes

has been performed using microarray experiments, RNA-sequencing or through computational

proteomics4,5.

Automation and more precise systems have empowered researchers to produce these data

in an increasingly high-throughput fashion. Additional fields of study capitalizing on these

developments are metabolomics, aimed at presenting an overview of the biological processing

of different metabolites6, for example, given different environmental factors. In MHC ligan-

domics, computational proteomics methods are used to identify the small peptides presented

by different cells of the immune system, allowing for new approaches for personalized cancer

therapies7,8.

However, the dawn of the age of big data in life sciences has led to a number of open

questions. Apart from storage issues, the large volume of data makes correct annotation critical

if it is to be analyzed correctly and scientific standards of reproducibility are to be adhered to.

Although the concept of metadata as data about data has been around since humans have begun

organizing information, this construct has become increasingly important with the advent of

the World Wide Web, and its collection and use has moved away from information professionals

towards the general public9.

With respect to big biomedical data, annotation and analysis solutions need to scale well,

as not only the volume of data is increasing, but the time it takes to generate it is steadily

decreasing. Here, so-called context metadata—explaining what data, why and how it has been

measured9—is crucial to facilitate automated data analysis steps. The variety of data make
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comprehensive and adaptable data models necessary. Moreover, if different omics levels are

to be integrated to utilize additional information, integration concepts are needed. In order

to tackle these problems, there have been efforts to create standards for different types of

experiments. MIAME, the Minimum Information About a Microarray Experiment10,11 standard,

and the microarray gene expression markup language MAGE-ML12 aim at annotating experi-

ments for sharing among researchers so they can be independently verified. Similarly, MIAPE,

a standard describing the Minimum Information About a Proteomics Experiment tries to specify

all the information necessary for interpreting proteomics experiments13. These standards are

used to store experiment metadata in databases like PRIDE (PRoteomics IDEntifications14).

One of the latest approaches trying to incorporate these earlier solutions for different fields of

study into an interoperable format for multi-omics is ISA-Tab, a spreadsheet format connecting

meta information about research aims, different studies of an investigation and their assays15,16.

Different efforts have been undertaken to provide users with software tools based on the ISA

standard17, to leverage additional information from study factors and ontology information

implicitly encoded in ISA-Tab and to connect it to different XML-based experiment formats18.

Despite these efforts to standardize metadata collection, many recent articles have revealed

large problems with both the reproducibility as well as the replicability of scientific studies19–22.

Reproducibility can be defined as the ability to recompute results from existing data23. Issues

to do so reliably can be caused by missing information about analysis parameters24 or software

tools used and success might be highly dependent on domain knowledge of the experimenter25.

It can also be a problem of different software versions and the way they are installed or exe-

cuted. Containerization of software pipelines and similar solutions try to tackle this problem26.

However, using data from an existing study to come to the same conclusion is only part of the

problem. To increase confidence in a scientific hypothesis, studies must be replicable, where

replicability is defined as using the same experimental setup to generate new data23. Similar

to the problem of missing annotation of analysis parameters, missing information about lab

environments or the exact study protocol used can make this impossible. Principles like FAIR

(Findable, Accessible, Interoperable and Reusable) have been developed to present guidelines

on data and metadata collection and scientific data sharing27, but they have not yet been

implemented widely by the community.

Other serious causes can be found in the experimental design approach itself. Blind studies

and randomization are important tools to reduce biases. Power estimation and sample-size

calculation are often overlooked, but crucial to put an experiment on a firm statistical footing28.

Encouraging these standards is expected to help make research replicable29. This can also

involve scrutiny of so-called “gold standards” on statistical approaches and suggestions for

methods that might be more robust for high-throughput biomedical studies30.

Guidelines that help tackle problems with both reproducibility, as well as replicability are

needed to make data sharing feasible31,32.
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In general, the new speed of biomedical data generation provides new opportunities for

research, particularly with regard to experimental design. Since complex diseases are multi-

causal and no perfect prediction of many disease states exists, genetic risk factors, as obtained

from genetic loci in genome-wide association studies (GWAS33), can only predict a certain

susceptibility to disease, pointing to other causes still to be determined. Owing to these cir-

cumstances, the paradigm of data-driven hypothesis-generation has suffered some setbacks.

Results of many genetic variants initially reported to be related to disease states could not

be reliably reproduced34 and explanations for many heritable diseases are still incomplete35.

Instances like this make it obvious that more data and robust experimental design is crucial to

increase statistical significance. Apart from GWAS, full-factorial experiment designs can be used

to further investigate interactions between multiple genes, environmental factors or both36,

taking advantage of the large amount of available data that can now be generated relatively fast.

While the increasing wealth of big data in itself can help with better discriminating between

signal and noise, it is important to ascertain the statistical power of a high-throughput experi-

ment before performing it. Studies with too few individuals can lack statistical significance. At

the same time, studies that investigate many more individuals than necessary can be costly in

both time and money. Additionally, in the case of animal models, ethical concerns can arise.

In the field of RNA sequencing, the choice between more replicates and deeper sequencing

of samples has been widely discussed37–39, but is ultimately also dependent on the aim of a study.

To facilitate the planning phase of a study and be able to use data about the experiment for

power estimation, data analysis or data sharing, researchers have to be persuaded to collect this

information in a standardized form. In many cases, Excel spreadsheets are still the most widely

used tool for research notes pertaining to assays and samples40. Most aforementioned stan-

dardization projects take this into account by providing spreadsheet-like metadata collection or

experiment design formats. Despite this advantage in intuitiveness, spreadsheets are hard to

curate and read by people unfamiliar with the study at hand. This is all the more problematic

for large studies. Inconsistencies in the collected metadata are often not immediately obvious,

especially since many standards allow missing entries or free text. In addition, conforming to

these standards without guidance by software tools is hard. Installing the provided software is

often hindered by different operating systems, versioning problems or simply convenience.

One solution that has become popular in recent years is the use of science gateways providing

these services platform agnostic through a web browser. Such portals try to overcome the

disconnect between the different fields and parties involved in scientific projects and exper-

iments. These research platforms are now an established approach and provide scientists

with centralized interfaces to data, annotation, quality control and analysis tools that bring

additional value to the project. To facilitate this, these portals must include intuitive and
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well-documented integrated services that support researchers from experimental design to

metadata collection and sample-size and power estimation. Here, we can define intuitiveness

as enabling researchers to complete their tasks without extensive additional work in order

to understand the software they are using. For the large studies of today’s high-throughput

medical science, this is all the more important, as the number of involved entities often prevents

a naive approach to the representation or visualization of studies. This aspect also sets certain

requirements for the speed of the involved tools.

1.2 Contributions of this Thesis

In this thesis, we present a web-based experiment design wizard, guiding researchers through

the setup of biomedical experiments in order to create large omics studies with ease. Created

study designs can be used to automate quality control and visualized using an aggregation

graph based on study factors and the number of replicates. We further use registered study

designs to analyze and visualize statistical power. For study planning, this approach is useful to

estimate the needed sample size, dependent on the desired power. Pilot data can be used to

estimate biological variation more accurately.

Chapter 2 covers the relevant technical, biological and statistical background. In Chapter 3-

6 of this thesis, we describe contributions to the field of interactive study design, reproducibility,

and automation of differential abundance analysis in computational biology.

1. We develop a model for experiment design and analysis, as well as an interactive interface

for study design and integrate it into the science gateway qPortal. We implement import

and update options for large and varied studies and provide interoperability with a

widely-used metadata format, making our method a significant contribution to handle

biomedical high-throughput experiments. We show the extensibility of our approaches

using the example of proteomics and MHC ligandomics experiments.

2. We develop a visualization method for large study designs that aggregates samples based

on their experimental factors. We explore the usefulness of this approach for our own,

and for publically available studies.

3. We develop interactive interfaces to power analysis and sample size estimation methods

for differential gene expression analysis that help researchers design their studies. The

connection to our data model enriches these methods by providing users with stored pilot

data and meta information about their experiment. This integration with our platform

overcomes issues of other publically available web-tools and allows us to store analysis

results in a way that conforms to FAIR data standards.
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4. We apply the work of previous chapters by reproducing a microarray study on aspirin

resistance. Building on our model for experimental designs, we create a quality control

workflow that enables users to explore their raw data in relation to different experimental

factors and view these results in the web browser. We compare the study’s approach with

knowledge gained from our interactive power analysis portlet.
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Chapter 2

Background

This chapter outlines the biological, technological and statistical background of this thesis.

Section 2.1 provides a brief overview of current technologies used to produce high-throughput

biomedical data, putting a special focus on methods to measure differential gene expression. The

related topic of experimental design and the statistical background is addressed in Section 2.2.

In Section 2.3 we talk about the necessary characteristics of replicable science and about

existing approaches to facilitate these needs.

2.1 Big Data and High-Throughput Omics Experiments

In recent years, technologies to measure and collect data about different aspects of biological

systems have become increasingly faster, cheaper and more diverse. Perhaps the most prominent

example of this process is the field of nucleotide sequencing, where the use of novel approaches

made it possible to assemble a complete human genome at the turn of the millennium41.

Shotgun sequencing, the sequencing of many random small fragments of DNA from a longer

strand42, allowed to the Sanger chain-termination method to be used in a massively parallel

manner. Paired-end sequencing, the practice of sequencing a fragment from both ends, provided

more positional information of the fragments in order to help assemble the original genome with

higher confidence43,44. While the cost of sequencing whole organisms, especially eukaryotes,

was still prohibitive for wide application, the human genome project helped pinpoint the

bottlenecks of the approach, soon leading to the development of Next-Generation Sequencing

(NGS) technologies45,46. These high-throughput sequencing methods can be categorized by

different library preparations, length of reads and concept of sequencing. The earliest and

most common methods use a massively parallel approach of sequencing by synthesis. 454

pyrosequencing used emulsion PCR to amplify DNA into clonal clusters47. Each cluster was

sequenced in its own sequencing well by triggering a reaction of the bioluminescent enzyme

luciferase, once a nucleotide was added to the template sequence. Illumina sequencing follows

a similar principle by sequencing amplified clonal DNA clusters on a flow cell48,49. Reversible

terminator bases, that are labeled with different fluorescent dyes are added to determine the

next complimentary base. Afterward, unbound nucleotides and bound terminator bases are

removed and the process repeats for the next position. Ion Torrent sequencing uses a similar
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synthesis approach but takes advantage of the release of hydrogen ions when nucleotides are

incorporated into the DNA strand. A semiconductor is used to detect the resulting pH shifts50.

Nanopore sequencing takes a fundamentally different approach by sequencing a single long

molecule directly. By passing DNA through a narrow nanopore, different currents are induced

by blocking ion flow51. The length of time of this blockage is dependent on the shape and size

of the nucleotide, making sequencing possible.

Not only do these technologies lead to different read lengths, error rates and types, and the

need for different analysis approaches, the number of protocols and applications is growing52.

Apart from genome assembly using whole genome DNA sequencing, NGS today is used for

variant analysis, transcriptomics (see Section 2.1.1), metagenomics and epigenomics through

the study of DNA methylation (using Methyl-Seq or bisulfite sequencing)53. Chromatin im-

munoprecipitation sequencing (ChIP-Seq) can be used to explore DNA-protein interactions by

identifying binding sites of DNA-associated proteins54.

The revolutionary advances of high-throughput methods in bioinformatics have not been

limited to nucleotide sequencing and its applications. Besides NGS, one of the most notable

technologies for biomedical experiments is the use of mass spectrometry for proteomics55. As

with other analytical disciplines using spectrometry to disperse radiation or matter based on

their properties, the aim of MS is to identify or quantify different spectrum components56.

MS outperforms the preceding methods, such as two-dimensional gel electrophoresis, in

specificity and sensitivity, allowing not only the identification of different proteins, but even

the standardised quantification of complete proteomes of simple organisms in a short time57

and improved study of protein-protein interactions5.

Modern mass spectrometers ionize samples using one of a variety of methods58–60. For

the field of proteomics, so-called “soft” ionization techniques are the methods of choice, as

they impart less energy on the molecules in the sample, thus leading to fewer fragments.

Matrix-assisted laser desorption/ionization (MALDI) accomplishes this by embedding the

molecules of interest in a matrix, which is applied to a metal plate and absorbs energy from

the laser61. For electrospray ionization (ESI), high voltage is applied to a liquid solvent to

ionize the solute molecules. The ionized solution is accelerated towards an electrode. The

repulsion between like-charged ions and the evaporation of the solvent causes a fine spray of

gaseous ions62,63. This ionization step allows a mass analyzer in the spectrometer to separate

different ionized molecules in the sample. Different mass analyzers have been developed64,

with time-of-flight (TOF), quadrupoles and orbitraps being among the most prominently used

techniques59. TOF MS uses an electric field of defined strength in order to accelerate molecules

and measure the time until they reach a detector65. With molecules of larger mass being

accelerated slower than lighter molecules, and highly charged ions accelerated faster than

low charged molecules, the measurable mass-to-charge ratio (m/z) provides a distinguishing

quantity for characterization66. In a quadrupole mass analyzer, four metal rods are arranged
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equidistant and parallel to each other. Ionized molecules are sent through the middle of the

quadrupole. Through the application of voltage consisting of different parts of direct and

alternating current, their trajectory can be changed so only ions with a specified m/z are able

to pass the mass analyzer, while others collide with one of the quadrupole rods67. A detector

then quantifies the number of ions leaving the mass analyzer, converting them into electrical

signals. The abundances and unique mass-to-charge ratios of different ions lead to multiple

peaks on the resulting mass spectrum, which is often represented in the form of a graph68.

For proteomics, a bottom-up approach is commonly used55 to identify different proteins in

a complex mixture. This strategy is also called shotgun proteomics69, referencing the shotgun

sequencing approach discussed earlier. First, proteins are enzymatically digested into shorter

peptides. In addition, liquid chromatography methods are often coupled with the spectrometer

(LC-MS) to separate the resulting peptide mixture by hydrophobicity and charge70. After a first

separation by m/z, ionized peptides are fragmented in a follow-up step, using an additional

mass analyzer to separate and detect these fragments - a technique known as tandem mass

spectrometry or MS/MS71. Here, mass analyzers such as the triple-quadrupole72, or hybrid

methods like quadrupole time-of-flight (QTOF) can be applied73. The use of sequence databases

then permits the search of resulting peptide mass spectra to match them to peptide sequences

and subsequently infer the corresponding protein identifiers69,71. Besides preparatory steps

including chromatography, methods like the previously mentioned gel electrophoresis also

can be applied to reduce complexity and further increase resolution74,75. Other experimental

approaches are available to determine the relative or absolute abundance of proteins or peptides:

isotope and chemical labels like stable isotope labeling by/with amino acids in cell culture

(SILAC)76,77, isobaric Tags for Relative and Absolute Quantitation (iTRAQ)78,79, Tandem Mass

Tag (TMT)80, and others81,82 are available to allow multiplexed measurements for quantitative

proteomics.

As is the case for DNA and RNA modifications and the sequencing methods used to elucidate

them, modern MS experiments also enable the study of posttranslational modifications (PTM)

of proteins55,83,84. Studies of this type have focused on phosphorylation85,86, glycosylation87,

methylation88 and other modifications83,89,90. Some of these methods employ immunoaffinity

purification, which uses antibodies recognizing the respective PTM in order to enrich proteins

or peptides with that modification83. Notably, this strategy can also be used to enrich the

processed peptides presented by different cells of the immune system, which vary by person,

tissue, and in cases of various illnesses91,92. Named after the highly variable human leukocyte

antigen (HLA), this field of HLA ligandomics enables new approaches in personalized medicine,

cancer therapies or the creation of vaccines7,8.

It is easy to see that omics data share all the hallmarks of Big Data93. These characteristics

are summarized using four (sometimes fivei) V’s. Volume refers to the amount of data that is

ithe fifth V, business value is not a focus of this thesis
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generated. Velocity refers to the speed at which data is generated and its mobility between

different locations. As described, both the volume as well as the speed of data generation

has massively increased. A single Illumina NovaSeq 6000 sequencing platform can produce

data in the magnitude of around 1 terabase (Tb) per day94. It has been estimated that by

2025, between two and 40 exabytes of storage space will be needed for human genomes

alone, eclipsing data generated in the field of astronomy, as well as on different social media

platforms95. This leads to new and growing requirements for data transfer and analysis.

Another characteristic of big data, variety, refers to the different types of data that are

generated. The variety of methods used to generate NGS or MS data and their numerous

applications show the need for elaborate methods to handle the data52,53. Especially if we want

to make assertions based on different approaches, as is often the case in research, information

about the protocols and technologies our data was generated with must be readily available.

This is all the more important since different approaches bring with them different types

of errors. For Illumina approaches, errors commonly lead to single nucleotide substitutions,

while other methods can favor different nucleobases or lead to deletions96. Especially if we

want to integrate information from different omics levels, different sources of errors can be

problematic. Accordingly, the fourth V - veracity - refers to the quality or trustworthiness of

the generated data. In this respect, quality control and repetition of our experiment are useful

tools to make use of the wealth of big data in order to generate valuable knowledge.

As we will discuss later, there are methods that can help us find the number of samples

necessary to make significant statements about the outcome of our experiment. In order to

do so, we first have to learn more about how our data is produced. Since our focus later will

be on differential gene expression analysis, the focus of the following section will be on DNA

microarrays and RNA sequencing (RNA-Seq).

2.1.1 Methods for Differential Gene Expression Analysis

Gene expression analysis has been an important topic of biomedical research for a long time97.

While the genome itself can often help us understand variations between healthy phenotypes

or mechanisms of disease, it is not always clear if these variants actually play a significant

role in biological processes. Many genes are not expressed or only expressed in specific

tissues98, which might not be related to the phenotype in question. Furthermore, the results of

causative mutations can be better understood, if we can observe their effects on other parts of

cellular processes99. Whereas mass spectrometry can elucidate expression changes in important

protein families or the metabolism, DNA microarrays and RNA-Seq help explore such effects

for messenger RNA (mRNA) before its translation into proteins.

Ease of sample preparation, relatively low cost and a general consensus on their analysis

has made microarrays the platform of choice for many years, despite limitations like the difficult
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detection of alternative splicing100. However, cheaper methods and a deeper understanding

of RNA-Seq and its analysis have led to an explosion in the use of sequencing approaches.

The number of publically available datasets in the Gene Expression Omnibus101 database of

each method (see Fig. 2.1) suggests that RNA-Seq has overtaken the use of microarrays for

gene expression analysis in recent years. Nevertheless, both methods are still used to perform

high-throughput experiments.

2006 2008 2010 2012 2014 2016 2018 2020

Number of gene expression datasets on GEO by type and year
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Figure 2.1: Number of datasets published each year to Gene Expression Omnibus (GEO).
Search terms were the respective year and expression profiling by array or expression
profiling by high throughput sequencing for the two respective dataset types. One dataset is
defined as all available data for one study.

Both microarray and RNA-Seq experiments generally begin with the creation of a cDNA

library102,103. For this purpose, mature mRNA containing a poly-A tail is extracted from cells.

A poly-T primer is added along with free nucleotides and the enzyme reverse transcriptase

(RT), which hybridizes the complementary DNA strand to the target mRNA. Afterward, the

RNA strand is digested and DNA polymerase can be used to produce double-stranded cDNA,
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that can then be optionally amplified using methods like PCR (polymerase chain reaction)104.

The resulting cDNA is then fragmented using enzymes.

In the case of microarrays (see Fig. 2.2), each fragment is labeled using a fluorescent dye105.

cDNA fragments are then applied to the microarray chip. This platform consists of so-called

probes, a set of oligonucleotides (in spotted microarrays) fixed to a solid surface that correspond

to different, unique parts of genes.

AAAAAAAA

Fluorescent labelling of fragments

cDNA with Poly-T Primer

mRNA

Tissue/Cell Samples

Condition
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Expression

genes
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Statistical testing

Binding to cDNA on Microarray

Laser excitation
of fluorescence

Figure 2.2: Schematic of the steps of a DNA microarray experiment. mRNA is extracted
from cells under different experimental conditions and transcribed into cDNA. Fragmented
cDNA is labeled with fluorescent markers. Known DNA probes on the microarray capture
and hybridize complementary cDNA fragments of the experiment. Fluorescent light
intensity is measured after excitation via laser and is stronger the more fragments are
bound. After background correction and normalization, statistical testing is performed to
identify significant differential expression between the testing conditions.

The target cDNA hybridizes with their complementary probes and all unspecific binders

or non-binders are washed off. Excitation of the bound, labeled targets using a laser leads

to a fluorescence effect. The light intensity corresponds to the amount of cDNA bound to a

certain spot, thus enabling quantitative measurement of gene expression. The analog signal

of light intensity is generally converted into a digital value. To compare different genes and
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arrays, background correction and inter-array normalization are performed. Statistical testing

can then pinpoint transcripts that are significantly differentially expressed between groups of

experiments102,106.

For RNA-Seq using shotgun sequencing (see Fig. 2.3), index primers can be added to

the cDNA fragments to allow for multiplexing, i.e. measuring multiple samples on the same

sequencing machine107. Fragments are then sequenced using one of the methods mentioned in

Section 2.1, typically resulting in millions of sequencing reads. These sequences are mapped to

reference genomes using specialized alignment algorithms that can map the different transcript

variants created by RNA splicing in eukaryotes108,109. Genome annotation makes it possible to

count all reads mapped to a certain transcript or another region of interest.

AAAAAAAA

GGCCTGGGCGGCGGCACGTCCTAAGGTAGCGGCTGCCTGAGGTGACAGCGGCCCGT
GGATTCGGGCCCCGGAACGAGCCGCGCTGGCGGCGGCGGCGGTAGCCGCGATGATG
GAGATCCAGATGGACGAGGGAGGAGGAGTGGTGGTGTACCAAGACGACTACTGCTC

Annotated region

Mapping to reference genome

Sequencing of reads

Library with adapters

cDNA with Poly-T Primer

mRNA

Tissue/Cell Samples
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Expression

genes
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Figure 2.3: Schematic of the steps of an RNA-Seq experiment. mRNA is extracted from
cells under different experimental conditions and transcribed into cDNA. Adapters for
sequencing and multiplexing can be added to cDNA fragments. The sequence of millions
of fragments is determined in the sequencer and these reads are mapped to a reference
genome sequence using software. Reads mapping to regions of interest on the genome are
counted and can be normalized by gene size and the overall number of reads, depending on
the application, before statistical testing can be performed to identify significant differential
expression between the testing conditions.
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Different from the probes for DNA microarrays, which are standardized to the same length,

RNA-Seq results are affected by transcript length and the overall number of reads. Widely used

measures like the reads per kilobase per million mapped reads (RPKM, see Eq. 2.1110) — and

the related fragments per kilobase per million mapped reads (FPKM) for paired-end sequencing

— normalize the counted number of reads C mapped to a genomic feature by the total number

of reads for a sample N and the length L in base pairs of the feature in question. This removes

bias induced by transcript length and sequencing depth.

RPKM =
109 × C
N × L

(2.1)

While RPKM and FPKM enable a relative comparison of expressed genes in one sample,

normalizing by the number of reads of a sequencing run has the disadvantage of introducing a

different bias between samples. Wagner et al. 111 show that since the number of transcripts

can depend on the size distribution of RNA in the cell, samples of different tissues can lead to

significant differences in RPKM despite similar expression. This is why measures incorporating

read length and a better approximation of the number of samples transcripts have been proposed
111. Many of the current tools for differential expression analysis of RNA-Seq data can, however,

be used independently of these normalizations. DESeq 2112 and edgeR113 use underlying

statistical models based on the raw read counts for each transcript.

2.2 Experimental Design

Based on Glass 114 , we can define scientific research as the process of determining some property

A about some thing R, to a degree of accuracy sufficient to be replicable by another person. This is

a broad definition that includes research like the description of a process, a species or an organ.

As can be inferred from the beginning of this chapter, descriptive science plays a large role in high-

throughput omics experiments, as it is often the foundation for many other experiment types.

Without the determination of a reference genome or its annotation, there can be no experiment

about causal variants or differential gene expression. Without an accurate description of the

symptoms of a disease, it is hard to come up with a hypothesis about related cellular processes.

Here, we will instead focus on the determination of cause and effect. This research type could

be described as the process of determining, if some property A leads to some outcome R, to a degree

of accuracy sufficient to be replicable by another person. This definition gives us two crucial

aspects of experimental design: we need to observe the property we are interested in, as well

as the outcome of the experiment. And we must make sure that our experiment can be verified

by other researchers.

In the following, we will first describe how and why to incorporate multiple independent

variables into one single experiment. Then we will discuss possibilities to predict how large our
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experiment should be, in order to satisfy the second part of our definition. As before, we will

explain this process in more detail using the example of differential gene expression methods.

2.2.1 Factorial Design

Our definition of scientific research defines two variables. We call the outcome R of the

experiment the dependent or response variable and A the independent variable, which is the

focus of the study. In reality, A can be a highly complex mixture of traits and circumstances

of our experiment. This means that a focus on a single variable that we want to investigate

might lead to wildly varying results for us and anyone else trying to replicate our research. To

counter this effect, multiple likely variables should be controlled for in a study. Ideally, this is

done in a joint factorial experimental design instead of multiple designs.

The concept of factorial experimental designs, investigating multiple independent variables

at once, was popularized in crop research36,115,116. Here, a factor is defined as one independent

variable that is being studied. As previously described117, a level is one possible variation of a

factor. The number of levels denotes the total number of different variations for a single factor

that was used in an experiment.

Factorial designs are called full-factorial designs (fully cross-factored designs) if every possible

combination of levels is tested118. Otherwise, they are incomplete, or unbalanced, factorial

designs. Representations of complete factorial designs are shown in Figure 2.4 and Table 2.1.

A = +  

B = + 

B = - 

A = -  

(+,-) (-,-) 

(-,+) (+,+) 

A = +  

B = + 

B = - 

A = -  

(+,-,-) 

C = + 

C = - 

Figure 2.4: Visual representations of full-factorial experimental designs with two levels (-
and +) for each independent variable. Left: experimental design testing two independent
variables A and B, leading to four unique testing conditions, shown as circles. Right:
experimental design testing three independent variables A, B and C. The eight unique
testing conditions, of which one is shown as a red circle, can be located at the vertices of a
cube.

A quantitative variable can be measured as an ordinal or interval (e.g., age), while qualitative

or categorical variables are measured on a nominal scale, for example as a disease state.
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Table 2.1: Example of a 3x2 full-factorial experimental design. Two variables a1 and a2
containing three levels each (−, +, 0) are tested, leading to nine different experiments.

Variables
Experiment no.

1 2 3 4 5 6 7 8 9

a1 − − − + + + 0 0 0
a2 − + 0 − + 0 − + 0

One benefit of performing factorial design experiments is that they save resources118,119. More

importantly, testing multiple factors at once allows experimenters to detect interactions, which

is not possible in one-factor-at-a-time (OFAAT) experiments.

2.2.2 Statistical Power

While the type of experimental design is crucial in order to obtain a significant result, consider-

ations about sample sizes and statistical power have to be taken into account before measuring

data, as well. There is often no statistical fix for errors in planning, once an experiment has

been performed.

In essence, any study comparing the outcome of experiments based on a factorial design

tries to solve the problem of finding a significant correlation between one or more factors An

and a response variable R, data of which is collected by observing different levels of the factor.

This is complicated by known or unknown confounding factors C , which also have an effect on

the response variable118:

R= A1 + A2 + C (2.2)

The (statistical) power of an experiment to show that one or more factors are indeed corre-

lated with the response (i.e. the probability to reject the null hypothesis H0 if the alternative

hypothesis H1 is true (see Table 2.2)), is itself dependent on multiple factors: the effect size of

A on R, the amount of random variation introduced by confounding factors and the number of

replicates observed for each level of A.

There are multiple strategies that make use of this knowledge118. In order to limit noise,

researchers can try to control for known confounding factors, which is one reason for the use

of multi-factorial designs. Other approaches include blocking or matching. Here subjects are

split into groups while keeping confounding factors like the age of subjects similar between the

groups. To control for unknown confounding factors introduced by the observation process of

subjects or samples itself, experiments are often measured in a randomized order and treated

in the same manner, apart from the variation of study factor levels.

Increasing the number of replicates can have a large effect on statistical power since life scien-
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Table 2.2: The null hypothesis is the default hypothesis stating that no effect has been
observed in an experiment, here in respect to the study of factor A and response R.
Dependent on the true effect of A on R and the outcome of a study, two different types of
errors can be made. The probability of type II errors decreases with the statistical power
of a study design.

Reality
Study Result

Relationship No relationship
between A and R between A and R

H0: There is no rela- Type I Error Correct
tionship between A and R

H1: There is a rela- Correct Type II Error
tionship between A and R

tists study highly complex systems with many confounding factors they have little control over.

Here, pseudo-replication, like the observation of closely-related subjects, should be avoided, as

genetic similarity introduces bias, which can lead to type I errors120.

While the effect size of a factor cannot be manipulated in a planned fashion, researchers can

use it to specify a lower bound of the effect that they wish to predict118. Reasons for this can

be cost or health considerations. For example, a new drug being developed in drug discovery

needs a to show a minimum effect size in order to be approved, especially if there are existing

treatments available. Thus it would not make sense to increase the number of replicates to

detect smaller effect sizes.

Knowledge or estimations of the respective parameters can be used to compute either the

statistical power or the needed number of replicates before an experiment is performed. Both

effect size and biological variation can be found or estimated if the system being studied is

well-known118. For example, natural variation in the lifespan of mice can be easily computed

and the magnitude of a drug’s effect on longevity might be known. In the case of more complex

types of experiments, more elaborate mathematical models are often used to predict variation

based on the data of a pilot experiment or on domain knowledge collected from similar experi-

ments.

Differential expression analysis is one typical example of modern high-throughput experi-

ments used to discover genes related to disease or other phenotypes. Raw data of the abundance

of genetic transcripts can be measured by both DNA microarrays as well as RNA sequencing

(RNA-Seq). These methods follow different protocols and statistical assumptions and thus

different approaches are needed in order to compute statistical power. These differences are

described in more detail in the following sections.
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2.2.3 Statistical Power of Microarray experiments

Microarray analysis to measure differential expression of genes typically follows a hypothesis-

driven statistical analysis121,122. Gene expression changes are declared to be statistically

significant between two groups if a test-statistic shows that their means are not equal123. Since

microarray data is continuously distributed, it is usually fit to the normal distribution or related

probability distributions, often using the standard or student’s t-test to detect significant differ-

ential expression121,122. This procedure is based on selecting a critical value, which corresponds

to the type I error rate α of declaring one non-DE gene as differentially expressed. α is also

known as the significance level123. However, since the common use case for DNA microarrays

is to measure thousands of genes, this approach leads to the multiple testing problem124. While

α may be adequate for single statistical tests, the expected number of type I errors, as described

by the false discovery rate (FDR), can become prohibitive when studying whole genomes. The

family-wise error rate (FWER) α (see Equation 2.3) indicates the probability of rejection of at

least one true null hypothesis. For the typical threshold of α= 0.05 and only m= 50 tested

genes, the chance for one such false positive is already 0.92.

α= 1− (1−α)m (2.3)

There are multiple procedures to correct for multiple testing. The Bonferroni correc-

tion125,126 tightens the significance level by dividing α by the number of performed tests,

guaranteeing an FWER ≤ α. A less strict modification is the Holm-Bonferroni method127, for

which p-values P1<k<m of m hypothesis tests are ranked and the tests with lowest p-values are

rejected until

Pk >
α

m+ 1− k
(2.4)

While all of these methods try to minimize type I errors, they can be problematic with

respect to type II errors. This means they might not reject the null hypothesis for genes that are

in fact differentially expressed, increasing the false negative rate (FNR). For this reason, Pawitan

et al. 128 argue that the question of statistical power in Microarray analysis should rather be

considered a classification problem. Controlling for FDR and FNR has the advantage of taking

into account factors such as the ratio of expected DE genes to all genes as well as the effect

size that researchers want to be able to detect in their experiments. In fact, using the correct

model, we can control for both types of errors at the same time when declaring a percentage of

genes as DE. In the following, we illustrate in more detail how this has been done using the

mixture model approach of Pawitan et al. 128 .
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Figure 2.5 shows an example of the mixture Student’s t-distribution defined by

F(t) = p0F0(t) + p1F1(t) (2.5)

where p0F0(t) is the central t-distribution scaled by the proportion of truly non-DE genes

p0 in the dataset and p1F1(t) is the sum of non-central t-distributions signifying positive and

negative fold change of truly DE genes in the dataset, whose proportion is p1 = 1− p0.
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Figure 2.5: Mixture model t-distribution consisting of a central t-distribution scaled by 0.7
and two non-central t-distributions scaled by 0.15, each, which signify a log-fold change
of -1 and 1, respectively.

For a critical value c > 0 we can compute a number of statistical measures for tests on the

whole dataset:

• Proportion of declared DE genes:

2(1− F(c)) = 2F(−c) (2.6)

• False discovery rate:

F DR=
p0(1− F0(c))

1− F(c)
=

p0F0(−c)
F(−c)

(2.7)

19



2. Background

• Sensitivity, power or true positive rate (TPR):

T PR= 2(1− F1(c)) = 2F1(−c) (2.8)

From Equations 2.7 and 2.5 follows the relationship between FDR and sensitivity:

1− F DR=
F(−c)− p0F0(−c)

F(−c)

(1− F DR)× F(−c) = p1F1(−c)

(1− F DR)× 2F(−c)
p1

= 2F1(−c) = T PR

If we declare a ratio of p1 = 2F(−c) genes as DE, we can control for both FNR as well as

FDR of our test at the same time:

T PR= 1− F DR⇒ F DR= 1− T PR= FNR (2.9)

This means that the resulting statistical measures depend only on the mixture of distributions

we are observing, which are defined by their degrees of freedom d f and the non-central

distributions. The degrees of freedom of the t-distribution are based on our sample size. The

non-centrality parameter is based on sample size and the log fold change we want to detect.

2.2.4 Statistical Power of RNA-Seq experiments

As a count-based measure, RNA-Seq expression cannot be modelled using the continuous

normal distribution. Instead, analysis tools like DESeq112 and edgeR113 use the discrete

negative binomial distribution (also known as gamma-Poisson distribution). Here, within-

group variablity of the experiment is described as the variance of read counts for gene i and

replicate j, which is dependent on the mean of read counts µi j and the dispersion αi
112:

Vari j = µi j +αiµ
2
i j (2.10)

Since variance is an absolute measure, it is unsuitable for comparisons between genes with

different magnitudes of read counts. The coefficient of variation CV = σ
µ measures the relative

standard deviation and can be derived as follows:
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σ2 = µ+αµ2

σ2

µ2
= CV 2 =

1
µ
+α

The CV is dependent on both the mean and dispersion. Since the mean read counts increase

with sequencing depth of a study’s samples, dispersion α reflects the true biological variation

between replicates as well as any errors in library preparation129.

This makes the estimation of α a crucial step in reporting differential expression as well as

determining the needed sample size of an RNA-Seq experiment before it is performed. Depen-

dent on the method and aim of a study, the dispersion can be approximated for each gene or as

a single parameter describing in-group variability of all genes in a study. It is common for most

methods to pool information across many genes in order to estimate dispersion112,113,130,131.

For DESeq2, Love et al. 112 use a maximum likelihood estimation to produce raw dispersion

values for each individual gene. A smooth curve is fitted to describe this population of different

dispersion values with respect to the mean of normalized counts. Finally, a shrinkage estimator

is used to compute the maximum a posteriori (MAP) estimation for each gene i, moving raw

dispersion values closer to the curve:

αMAP
i = ar gmaxα(α

gw
i +Λi(α)),

with the penalty term:

Λi(α) =
−(log(α)− log(αt r(µi)))2

2σ2
d

Here, the gene-wise dispersion estimate αgw
i is obtained by maximizing the Cox-Reid-

adjusted likelihood132 of the dispersion. The penality term compares prospective dispersion

values α with the trend line (fitted curve) of dispersion estimates over the means of the

normalized counts αt r(µi).

σ2
d is the prior variance, which is dependent on the degrees of freedom of the sampling

distribution, i.e. the number of replicates and conditions used in the experiment. Resulting,

dispersion values are moved further in direction of the fitted curve, the less evidence, in the form

of the amount of samples, is provided112. Additionally, outliers with low predicted gene-wise

dispersion are moved closer to the curve, while outliers with very large predicted dispersion

are not altered in order to prevent false positives.
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2.3 Reproducibility and Replicability

Reproducibility and replicability have been discussed in the past decades in the context of a

number of different scientific fields such as geophysics133, epidemiology134 and psychology135;

sometimes using varying definitions23.

In the following, we will use the older and more common notion23 of defining reproducibility

as the ability to recompute existing data analysis results22.

To guarantee reproducibility, certain information must be available to investigators:

• Raw data from the experiment

• Algorithms that have been run on the data and their respective versions

• Used parameters, including a correct mapping for input files

• The same execution environment

The basis of reproducing experimental results of an earlier study is the complete data that

has been measured. Raw data is defined as the data that has been derived directly from the

measurement apparatus, be it a DNA sequencer or manual measurements written down by

a scientist32. Data that has been modified in any way is not raw data and can slow down

processing or even make reproducing a study impossible if intermediary steps are not provided.

In this respect, accompanying metadata is also crucial to reuse raw data, as it is necessary to

know how data has been generated. In addition, files have to be uniquely relatable to their

study variables, and often even to individual replicates.

Similarly, the used analysis algorithms, their versions, and their input parameters are important.

Results of data preprocessing steps, like normalization or genome mapping are dependent on

the used software and parameters. Genomic variant calling pipelines lead to vastly different

results dependent on the type of sequence data used and on the variant calling tool136.

The execution environment is important, as running data analysis on different computational

platforms can lead to numerical instability137. While the resulting differences are typically

small, they can be a major problem for result verification.

Reproducibility, however, is only one part of good research. Since raw data is inevitably

biased towards the circumstances of its creation, completely independent verification of experi-

ments is required. Ultimately, science needs to be replicable to find out if any predicted effect

size is larger than any introduced bias. Here, replicability is defined as the ability to produce a

consistent result when performing an independent experiment targeting the same scientific

question.

To guarantee full replicability all reproducibility criteria must be fulfilled. Additionally, the
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experiment must be statistically sound, as insignificant results are by definition unlikely to be

replicable.

Current approaches that try to solve these problems to facilitate efficient data sharing,

reproducibility and replicability are described below.

2.3.1 Standards for Experiment Reporting

The key to successfully communicate the necessary experimental design information and addi-

tional study metadata is using a language that everyone involved in this research understands.

Multi-omics experiments have complicated this task in the regard that experimental designs

have become more diverse and the analytical techniques used are more complex15.

Early initiatives for standardized experiment reporting were either driven by regulatory frame-

works and agencies like the FDA (Food and Drug Administration)138,139, by scientific journals140

or by consortia focusing on particular technologies141. In the latter case, the focus was on pro-

viding tool interoperability and data exchange by demanding common minimal requirements.

Some of these established checklists are the MIAME10,11 standard for microarray experiments,

the MIAPE standard for proteomics experiments13, the MIMIx standard for molecular interac-

tion experiments142 and the MIRAGE standard for glycomics experiments143. Many journals

require that authors comply with these standards when sharing their experimental data, but the

isolated development of these minimum information checklists has led to various problems and

made it difficult to establish the full range of minimum information standards. The Minimum

Information for Biological and Biomedical Investigations (MIBBI) project aims to facilitate

coordination in order to develop an integrated checklist resource for the wider bioscience

community144.

While information checklists define the minimum requirements for reporting experiment meta-

data, other initiatives have been focused on developing common data models and syntax

to make studies interoperable on all levels. Many approaches are again driven by different

omics technologies as well as the intended use of the format. XML-based models enable easy

specification and verification of complex metadata objects. MAGE-ML12, which is based on the

MIAME standard for microarrays, and mzML145, which supports the MIAPE standard, enables

interoperability with different software tools, while still maintaining basic human readability of

the described information. Their tabular format counterparts like MAGE-TAB40 and mzTab146

often target researchers who are most familiar working with Microsoft Excel or who want to

perform downstream analysis on sets of genes, transcripts or proteins using software like R.

While these formats can support minimum information standards, they are often additions to

the more complete XML-based formats and primarily serve as an easily accessible summary of

the most important data and metadata.
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A common problem of these technology-based data standards becoming obvious once multiple

omics levels are measured for the same study is redundancy. Since biological source material,

sample processing, and experimental factors are common and important parts of the exper-

imental design, they would need to be reported for each of the different standards of each

of the technologies used to study a sample. This is why efforts like the Functional Genomics

Experiment data model (FuGE) have been undertaken to facilitate convergence of different

standards for high-throughput experiments in biology147.

While FuGE goes the way of providing a complex data model, the ISA-Tab standard tries to gen-

eralize the user-friendly MAGE-TAB format and use its syntax for a wide variety of biomedical

experiments15,16. ISA-Tab splits information about a project into the sub-parts investigation,

study, and assay. Studies, so-called units of research, contain information about subjects, their

sources, characteristics, and treatments. Subjects of each study can be analyzed using different

assays to perform analytical measurements that lead to different types of data, for example gene

expression. The assay part also connects each file of a project to the relevant meta information.

The investigation file defines the project context: declarative information used in studies and

assays and connects these files. Despite being based on the MAGE-TAB standard, ISA-Tab

does neither enforce the MIAME checklist for microarray experiments nor any other minimum

information requirements, letting users implementing the standard decide on how to regulate

its use. ISA-Tab has become the basis for several further developments: the ISA software suite

assists users with metadata annotation, enabling the use of checklists and ontologies, and

facilitates submission of experiments to public repositiories17. linkedISA provides a translation

into a more complex data model in the form of a semantic web representation of the ISA-Tab

syntax. This also allows extraction of additional implicit information like experimental factors

from the format18.

The growing number and sophistication of different reporting standards has raised questions

about the most important characteristics needed to enable scientific reproducibility and repli-

cability. The FAIR (Findable, Accessible, Interoperable and Reusable) principles for scientific

data management and stewardship have the intent to act as guidelines on data and metadata

collection and sharing, in order to facilitate scientific data sharing27.

The guiding principles state that data and metadata must be findable27. A prerequisite

for this is the use of unique and persistent identifiers. Of course, searchability must also be

applicable to any attributes of the data in question. It is therefore important that data are

described with rich metadata. To facilitate efficient searching, data should be indexed or

registered.

Data must also be accessible27. This means standardized communications protocols need

to be used to not make data access needlessly complicated. Open and free protocols that

can be implemented as part of different tools are needed. Depending on the type of data,
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authentication and authorization procedures must be available. While data does not have to

be stored indefinitely, metadata must stay available.

The third guiding principle, interoperability27, specifies that metadata must use a formal,

accessible, shared, and broadly applicable language. To this end, the vocabularies to annotated

data should also follow FAIR principles and metadata should reference other metadata.

The FAIR principles also define rules for data reusability27, such as the inclusion of a well-

defined license for data usage. The data provenance, which specifies in detail which steps were

used to transform the raw data, must be available and associated with data and metadata. Last

but not least, data and metadata must meet the domain-relevant community standards, in

order to enable true reusability.

Standardizing experiment reporting the correct way does not only enable reproducibility

and replicability, but it can also allow for the automation of different steps of the study, speeding

up the overall analysis and eliminating human error. In order to evaluate the FAIRness of

processes and systems, there have been efforts to define metrics for compliance with the FAIR

principles148–150.

2.3.2 Science Gateways and Workflows

Some content of this subsection is part of the manuscript:

qPortal: A platform for data-driven biomedical research

Christopher Mohr+, Andreas Friedrich+, David Wojnar, Erhan Kenar, Aydin Can Polatkan, Marius Cosmin Codrea,

Stefan Czemmel, Oliver Kohlbacher, Sven Nahnsen PloS ONE 13.1 (2018)

+ These authors contributed equally

Whereas standardized experiment reporting can provide important guidelines for data

sharing, the means of metadata collection for experiments and analysis in itself cannot be over-

looked. The complexity of modern biomedical experiments often necessitates the involvement

of multiple collaboration partners from different fields, working at different locations. All of

them must have access to their project data in order to annotate it.

In addition, centralized solutions, which are becoming more common as research consortia

collect data on a large scale, introduce hurdles on the infrastructure and computational side.

Examples are ensuring data access, availability of analysis pipelines for specific omics data, and

data security, especially with respect to clinical data. Web-based science gateways can bridge

the gap between the different parties involved in scientific projects. Such platforms are an
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established approach to provide scientists with a centralized interface to data, metadata and

analysis tools that bring additional value to the project.

In recent years, efforts that try to tackle these problems by developing portal-based solutions

have been undertaken for specific biomedical research fields. These range from solutions for

proteomics151, genomics152 to portals providing analytical tools for the analysis of multiple

omics levels153. Other web-based solutions focus on specific areas like cancer research154,

neuroscience155 or phylogenetic analyses156 and can even include a complete Laboratory

Information Management System (LIMS)157,158.

Prerequisites for successful science gateways are standardized web-frameworks like VAADIN

that support a wide range of browsers159. Furthermore, many science gateways are based

on different web portals like Liferay or JBoss that offer basic functionality to handle users

and security160. On top of these portals, different tools can be run as portlets. Portals that

implement the Java Portlet Specification (JSR 168) enable compatibility of these portlets across

different platforms161, making collaboration easier.

Typically, these portal solutions contain interfaces to workflows systems, enabling users to

analyze or transform data in predefined ways, each step symbolized by one workflow node.

Since workflows handle input, output, and communication between different nodes, they can be

useful for researchers not familiar with command line tools or even certain steps in a processing

pipeline, given that an intuitive interface to the respective workflow is provided. Furthermore,

distributed resource managers (also known as job schedulers) like Moab162, TORQUE163 or

Slurm164 queue workflow instances and distribute the workload to different compute resources.

Science gateways and workflow systems are important tools to facilitate reproducibility, as

they often provide easier ways to investigate data provenance, than when individual tasks of

data transformation are performed by researchers. However, they cannot provide a perfectly

reproducible environment on their own, especially if they are set up at different facilities where

different versions of software dependencies or even of the analysis tools themselves might be

installed.

2.3.3 Virtual Machines and Containers

To truly standardize data analysis and enable data sharing between different facilities, additional

steps have to be taken. Virtualization is a concept that was first adopted on a large scale when

servers became powerful enough to run multiple applications, making it possible to consolidate

many specific servers into a single system165. Here, a hypervisor, an interface that is running

directly on the server hardware, divides the physical hardware for multiple virtual machines

(VM). Each VM consists of its own operating systems (OS) as well as specific applications. The

hypervisor translates each I/O request from a VM operating system to the real-world storage

and provides the response to the virtual OS. Memory or CPU processing is handled accordingly.
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This enables more efficient use of resources, while at the same time providing security for the

host system and the different virtual machines since the latter are not aware of each other and

the hypervisor controls all interactions with real physical hardware.

Containers are a similar concept that represents a lightweight, more efficient version

of virtualization166. Unlike virtual machines, containers share a common OS kernel and

other components. This makes size, startup time and maintenance of containers more easily

manageable. For these reasons, container solutions like Docker167 and Singularity168 have

been proposed for fast prototyping and sharing of high-throughput analysis pipelines.

While the shared components of the operating system cannot be changed by the container,

several container solutions have security drawbacks, since direct interaction with the host

system is not controlled via hypervisor169.

Where containers can provide speed and convenient sizes for sharing, virtual machines

can provide a second layer of safety and standardized runtime environment. This makes both

technologies a good match in order to further increase security and reproducibility of workflow

systems as they are used as part of biomedical research platforms137.
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Chapter 3

Modeling of Experimental Designs

Some content of this chapter is part of the manuscript:

qPortal: A platform for data-driven biomedical research

Christopher Mohr+, Andreas Friedrich+, David Wojnar, Erhan Kenar, Aydin Can Polatkan, Marius Cosmin Codrea,

Stefan Czemmel, Oliver Kohlbacher, Sven Nahnsen PloS ONE 13.1 (2018)

+ These authors contributed equally

3.1 Introduction

Subpar experimental design and missing metadata annotation are seen as prime reasons for

the so-called reproducibility crisis in science170. Community efforts have been taken to simplify

metadata acquisition and re-use by providing standardized formats11,13,16. In order to involve

a broader scientific audience, these standards often build on storing experiment and sample

information in spreadsheet formats, as they are commonly used by experimenters in the lab.

While generally being easy to understand and work with, the size and complexity of modern

biomedical experiments call for methods that help researchers collect and check the necessary

information. Different efforts have been undertaken to provide users with software based on

the ISA standard17,18 in order to enable ontology support and sanity checks. These tools mostly

take the approach of displaying sample and essay information in tables, which provides a

complete overview of all available information, but does seldom simplify the common problems

of large studies. Web-based science gateways enable automatic metadata collection or provide

users with intuitive, platform-agnostic means of creating and analyzing experiments151–153.

Nonetheless, some of the most widespread solutions often focus on workflow annotation

— a necessary, but not sufficient step of performing reproducible experiments. While many

web platforms offer a wide variety of additional annotation features, it is often assumed

that researchers have already planned a well-defined experiment, or — in the worst case —

even collected data. Another assumption is that they will know what meta information to
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add to guarantee a reproducible or replicable experiment. Creation of projects online or of

shareable study formats is consequently seen as mere metadata collection. This uncoupling of

experimental design and experiment creation presents a missed opportunity to guide researchers

to statistically sound study design. Starting with extensive metadata collection before the

experiment has numerous advantages for scientific studies: mistakes in study design or sample

handling can be traced back more easily and with higher confidence. Time and money can

also be saved because the study design allows for the estimation of statistical power before

experiments are performed. In addition, well annotated experimental data is much more likely

to be reused in future research. Studies supporting this approach note that without sound

experimental design even computationally reproducible results have to be used with caution22.

To increase confidence in a scientific hypothesis, studies must also be replicable when using the

same experimental setup to generate new data.

While guiding users through the process of experimental design and collecting metadata

before the experiment provides clear benefits, it can pose new problems that must not be

overlooked. Not all information about a study can be known before its inception. Methods that

allow metadata annotation must present easy means of adding information that is collected

during or after the measurement of samples, or they risk losing annotation due to missing

usability. Especially for projects with many replicates and independent variables, factorial

designs can lead to a large number of cases that can make it hard for researchers to keep the

stored information consistent with their experiments. Methods are needed to conveniently

manage and update these large studies.

Here, we present our work on a data model to describe experimental designs and related

meta information. We developed a web-based wizard to guide researchers through the process

of creating a full factorial experimental design. We implemented different entry-points to

enable a heterogeneous user group to interact with existing designs to add more metadata

or samples. Our solution provides options to import large studies and interoperability with

the ISA-Tab format. We show the extensibility of our model and software tool for different

technologies and investigate its compliance with principles of reproducibility.

3.2 Requirements

The purpose of our web application is to enable researchers in high-throughput biomedical

science to easily plan their experiments online and to collect all related metadata in a database

system. The focus is on full factorial experimental designs, but the creation of other experiments

is supported. Information storage needs to be implemented in a manner that enables and

facilitates re-use of data, either to update it, to use it as input for data analysis, or to share it with

collaborators. In order to do so, the existing language of experimenters of these fields needs to

be used. Interoperability with respect to existing study exchange formats for biomedical science

30



Requirements

needs to be provided. Furthermore, where large studies are concerned, suitable functionality to

view metadata is required. In the following, we loosely follow the IEEE Recommended Practice

for Software Requirements Specifications171 to specify the requirements in greater detail.

3.2.1 Software Interfaces

The web application is a part of qPortal, a Liferay portal that provides the user authentication. To

retrieve or create new projects, experiments, and their biological meta-information, the software

is required to communicate with the Open Source Biology Information System (openBIS)172

via an Application Programming Interface (API). The openBIS application server contains the

data model used for experimental design and metadata, including controlled vocabularies that

are presented to the user. An interface to an administrative database (User DB) shall be used

in order to store administrative information about project investigators, project managers, and

any other persons involved in a project. Their respective affiliations are stored in this database

as well. Since it must be possible to attach small files related to experimental design to a project,

the WebDAV protocol should be used to enable uploads to the data store server. Figure 3.1

gives an overview of the software interfaces and the interconnection of related components.

Figure 3.1: Connections between different components of qPortal. Edges to the Experi-
mental Design Wizard portlet denote interfaces to software (blue) and protocols (yellow)
the portlet needs to implement.
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3.2.2 Definitions and Terminology

Table 3.1 gives an overview of the definitions used in the following sections. In order to adapt

our user interface for different researchers, we translate parts of the openBIS terminology

into more intuitive terms for the use in qPortal. Table 3.2 lists the most important changes.

In the following, we will use the qPortal terminology when explaining processes from a user

perspective.

Table 3.1: Definitions of concepts and terms used in the design of data model and user
interface.

Term Definitions
(User) Space Spaces are used to define access permissions. Projects, experiments,

and samples are part of one space.
Project Projects are used to group related experiments. Many projects can

be part of one space.
Experiment An experiment describes one step of a study. Multiple samples can

be part of one experiment.
Sample A sample describes one entity that is part of an experiment. Those

can be the typical samples used in labs, but also includes the sample
source: patients, plants, or cell cultures. Samples can be extracted
from other samples in an experiment.

Entity Umbrella term for instances of openBIS objects. There are differ-
ent entity types that can be used to distinguish different types of
samples and experiments.

Property openBIS properties are defined categories for a specific kind of
metadata. Different property types that can be connected to differ-
ent entity types.

Sample code Identifier used by openBIS to uniquely identify every sample object.
User DB A relational database for storing persons, affiliations, and other

general information about a project.

Table 3.2: Mapping of openBIS terminology to the qPortal user interface.

openBIS Terminology qPortal Terminology
(User) space Project (space)
Project Sub-Project
Biological Entity Sample Source
Biological Sample Sample Extracts
Test Sample Sample Preparations/Analyte (sample)
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3.2.3 User Characteristics and User Interface

Main users of the web application are researchers involved in high-throughput biomedical

science. Since biologists, lab technicians, as well as bioinformaticians, are often involved in

studies, implementation needs to take the differences of perspective and knowledge of this user

base into account. Dependent on lab-internal functions, some users may have different authority

on creating new sub-projects or changing existing metadata. In addition, administrators of the

portal must be able to create new projects and give other users access.

When logged into the system, a user must be provided with the options to add sub-projects

and experiments, import a sub-project using different formats, or update metadata of existing

samples. When adding experiments without the upload functionality, users shall be able to

input new data based on the context of an existing sub-project, to complete data that has

previously been input or start a new sub-project. They should be guided through this process.

The import functionality should provide information about the different formats that can be

uploaded. Uploads shall be processed in order to create new sub-projects or add samples and

experiments to existing sub-projects. A third user interface must be provided to enable users to

upload a metadata spreadsheet in order to update meta information of samples that already

exist in the system.

3.2.4 Functional Requirements

This section lists the functionality that is needed for users of the portlet interface in more detail.

An overview of the main interactions based on the data model is depicted in Figure 3.2.

There are four main use cases that our portlet should facilitate: first, creating a new sub-

project with experiments and samples. Second, adding this information in the context of an

existing sub-project, for example sample preparations of a second omics layer in a multi-omics

study. Third, the creation of new experiments, samples, and their metadata via the upload of

a spreadsheet, for example, to import existing experimental designs from external databases.

Finally, the editing of existing metadata that has been previously registered, makes up the

fourth use case.
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Figure 3.2: Overview of the interplay between the data model and the main functional
requirements of the Experimental Design Wizard. The most important parts of a sub-project
(openBIS project) and its metadata are displayed. Different functions are colored in blue.
Parts of the model that can be updated or created by the respective function are colored in
yellow. Other parts are not colored. A: Users shall be able to create a complete sub-project
containing experimental factors, experiments, samples and different types of metadata. B:
Users shall be able to add new experiments and samples, including experimental factors,
to an existing sub-project. C: Users shall be able to add new experiments and samples
describing the analyte preparation from existing samples in the system. The experimental
design must not be changed by this process. D: Users shall be able to upload metadata in
order to update experimental factors and other attributes of samples.
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Creation of new experiments for new and existing projects via a wizard process represents

the two main, and most complex, use cases. The main requirements of these processes are

depicted using Business Process Model and Notation (BPMN173) in Figure 3.3.
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Figure 3.3: General features of the user interface and its interplay with the backend for
both wizard use cases in BPMN173. First, the project context is established using openBIS
user authorization, as well as selection or creation of project space and sub-project by
the user. Information about study organisms and tissues, as well as optional connected
experimental factors are collected. Depending on the type of experiment, isotope labeling
or pooling can be specified. After selection of analysis types, the experimental design and
related metadata is registered in the openBIS database and a sample sheet with unique
sample codes can be downloaded.

As the system should allow work on many different projects with potentially hundreds or

thousands of samples, it must be possible to easily find and select the current context of the

operations that need to be performed without displaying unrelated information stored in the

system. To accomplish this, the project structure (see Table 3.1) can be leveraged. Only after

selecting a project space, existing sub-projects of that space are to be presented. Accordingly,

users can then either select an existing sub-project to interact with and add new experiments

and samples or create a new sub-project, unrelated to existing data.

After establishing the context through project space and sub-project identifiers, it is desirable

to collect some administrative metadata for the use case of new sub-project creation. This

includes a short descriptive name, a summary of the design, and the selection of different

people involved in the new sub-project. A connection to the user database can be leveraged for

this functionality.

Once the general information has been provided, users can start with the creation of their

experimental design. Data provenance is an important principle of FAIR data management

and this includes knowledge about the biological source of measured data. Accordingly, we
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consider it a requirement to collect information of different experimental steps, from patient or

model organisms to the sample extract type that is measured using high-throughput methods.

For our portlet that means users need to be able to input groups of samples or sample sources

for patients (or other organisms), as well as tissue or organism parts. At each of these levels,

experimental factors like treatments, genotypes or even different tissues can be part of an

experiment and the levels of these factors, as well as the respective number of replicates, must

be collected.

Since many modern biomedical experiments use isotope or other labeling methods or

pooling for multiplexing reasons, it is also important that users have the option to input

information on these steps via the interface. This means assigning labels, for example, different

SILAC isotopes, to samples. For pooling, multiple samples need to be collected and assigned a

pool name.

The process of designing the experiment commonly ends with the input of different analyte

types that are to be measured, such as DNA or proteins extracted from tissues or cell cultures.

To support multi-omics experiments, multiple selections of analyte types need to be possible.

Selecting this third level must be optional in order to support experiment types like medical

imaging that do not depend on the analysis of small molecules. This option also enables users

to complete their experimental design at a later stage of the project. It can also divide the input

of experimental metadata into two parts. These are the planning of the experiment on one

hand and the preparation and measurement of DNA libraries or protein samples done by lab

technicians.

After collection of the experimental design and related metadata, they need to be registered

in the data management system. This process leverages the openBIS API. In order to match the

stored information to the lab processes, unique identifiers - sample codes - created in openBIS

need to be returned to the user. For this purpose, the download of a summary spreadsheet of

the experimental design and metadata, including sample codes, needs to be possible.

The third use case, the upload of existing experimental designs via file, is governed by

both the respective format, as well as the data model of the system. This means that uploaded

metadata needs to be verified with respect to the format specifications, as well as information

necessary to complete the experimental design for registration in openBIS. To enable users to

successfully import the respective format, the different format options need to be presented to

them along with examples or documentation. Verification for openBIS requires the verification

of properties that use controlled vocabularies, as well as any necessary sample or organism

identifiers. As with the wizard process, the project context needs to be established by select-

ing project space and sub-project. Displaying summarized information about the uploaded

experiments and samples helps scientists verify their experimental design was imported and

interpreted correctly. Analogous to the previous use cases, after registration of the experimental

design, the download of metadata with unique sample codes is necessary to map experimental
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design information to the information stored in openBIS. In this case, the uploaded formats

can be used to directly add these identifiers.

These unique identifiers are crucial for the fourth use case, as well. To simplify updating

metadata, and avoid making users get accustomed to yet another import format, the only

requirement for importing metadata are sample codes of existing experiments. These need to

be uploaded in a spreadsheet containing any of the metadata portlet users wish to add or update.

This design choice only includes mapping to the sample entities in openBIS, but not to the

different properties of the data model. Therefore, this information must be collected following

the upload. We choose to do this by displaying the information using the familiar table format

given by the upload. The interface can be used to present users with all available options of

property types respective to the type of sample codes provided. For example, uploads of codes

belonging to the sample source level, will only allow mapping to sample source properties,

like taxonomic information, while different property types will be available for DNA sample

codes. After users have selected property types of all of their metadata columns, a check for

collisions with existing metadata needs to be performed, before users can add or update the

metadata of their experiment. In this respect, the different user roles openBIS provides, can be

leveraged. While some users may be allowed to overwrite existing information, it is often in

the best interest of project management to limit most users to only add missing information.

3.2.5 Performance Requirements

In order to evaluate our implementation further, we propose a number of performance require-

ments that need to be fulfilled by our web application.

Intuitiveness

Since multiple different groups of researchers with various backgrounds are involved in modern

biomedical projects, the experimental design and metadata collection of a project our imple-

mentation must ensure that each of these user groups can effectively work with our web portlet.

This means that the terminology used is shared by users or otherwise sufficiently explained. In

cases where a specific functionality is performed, the user interfaces for these steps must be

easily reachable without detailed knowledge about other, perhaps unknown, procedures.

Response Time

There are typically three guiding ranges regarding the response time of an interface to a user’s

actions174. A response time of 100 ms or fewer guarantees, that users feel they are directly

manipulating objects of the user interface175. Longer response times of up to one second make

users feel the computer is working but does not let them lose the flow in performing their
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task176. Functions with response times in the range of 10 s need to be made clear to the user

to keep their attention. Any functionality that requires longer run times should be clarified to

the user, so they can switch tasks in the meantime. This results in the necessity to re-orient

users to the task at hand once the UI is ready.

Based on this information, our goal is to have response times of 100 ms of the user interface

for all common processes, one second for intermediary, clearly denoted steps handling many

entities, and response times of no more than 10 s for portlet startup, import, and the registration

of projects, experiments, and samples.

Scalability

The size of high-throughput biomedical projects requires that our web portlet must be able to

provide its functionality for experiments with hundreds of samples and other entities. This does

not only pertain to response time but means that manual information input should be minimized.

It also requires that displayed information about experiments is clarified by summarizing it,

sorting it, or visualizing it in a helpful manner.

3.2.6 Software System Attributes

Our portlet needs to fulfill a number of attributes that are independent of the functional

requirements of our user interface.

Security

The application needs to be secure with respect to all use cases, especially due to sensitive

experimental metadata that is sometimes entered and stored in the connected systems. First

of all, access to the system by unauthorized persons, either involved in different projects or

without credentials for the system, must be restricted. This pertains to both the experimental

design and sample information, as well as to administrative metadata like involved groups

and people. Secondly, users with access to the system must not be able to delete or overwrite

metadata or attached data. Power users, while able to overwrite metadata, must be made

aware of the consequences if they choose that option.

Maintainability

The growing diversity of experimental approaches entails the need to make our application easily

extensible in response to a growing data model and different high-throughput technologies. In

order to facilitate extensions of the existing functionality, the code should be well-structured

and openly available (open source) to the community.
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Portability

For the purpose of facilitating the software’s experimental design options and data sharing

capabilities to a significant number of researchers, it needs to be portable to other locations.

This includes a comprehensible versioning system as well as options for customization of

different instances.

3.3 Design and Implementation

3.3.1 Backend and Data Model

The Experimental Design Wizard uses openBIS to store metadata. This data management

system offers mechanisms for storage and management of raw data and its annotations as

well as functionality for managing data access. The software package comprises a raw data

store, metadata management via a PostgreSQL database as well as an application server for

browsing and managing data and metadata. Data models build the basis for handling big

data efficiently. The general openBIS data model comprises five distinct hierarchically ordered

levels. Access rights are managed on the top level (spaces), which can contain multiple projects,

experiments, samples, and datasets. Custom openBIS data models can be defined by creating

specific types for experiments, samples, and datasets. Entities of those types can contain

multiple user-defined properties. The structured storage of metadata is an essential component

of the system; metadata is attached to the representations of both the concrete samples as well

as their intangible experiments.

Experiments measuring biological data typically involve multiple steps, ranging from subject

recruitment, treatment, sample extraction to library preparation. Each of these processes and

process-related entities like cell cultures, samples and analyte preparations is typically associated

with its own set of unique metadata. In order to keep track of all entities and the data generated

from them, we use the openBIS data model to define a multi-tier experiment graph: the first

tier describes patients, model organisms or similar sample sources with associated metadata

like the NCBI Taxonomy177 identifier. The next tier describes sample extraction of cells, tissues

or other material from the aforementioned sample sources. A third tier describing analyte

extraction (e.g., of DNA or proteins), can be attached to sample extractions. On this level, we

collect metadata pertaining to preparation of the samples for actual data collection on NGS

platforms or for mass spectrometry. Since some studies split samples into aliquots or pool

them, for example in isotope labeling experiments, both the tissue and the analyte levels can

be multi-tier steps in our model. One example of the dependency graph representation of this

hierarchical model can be seen in Figure 3.4. Each experimental entity is identifiable by a

unique sample or experiment code.
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Figure 3.4: Simple sample hierarchy graph of a study involving six mice. Liver tissue
extraction was performed, protein samples prepared, and measurements taken. Not shown
are the various properties of each sample.

For easier retrieval and update of experimental designs, we designed an XML schema

definition (XSD) to store all design information related to a single study. Each experimental

factor is listed, differentiating between nominal and continuous factors. In the latter case, the

type of unit is stored. Factor levels, which include a list of entity identifiers that are related to

this factor level, complete the schema.

In addition, the XML format can store information about technology types used for data

generation in the study, specific experimental design decisions, as well as additional, user-

defined properties of samples that are not covered by the openBIS data model. The XSD allows

for validation of input data as well as quick updates.
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3.3.2 ISA-Tab Support

We provide import functionality for the ISA-Tab standard by constructing a mapping to our data

model. The ISA model is based on one investigation file that can link one or multiple study

and assay files to each other178. The core of this model used for translation by our method can

be seen in Figure 3.5.

Figure 3.5: The most important core components of the ISA-Tab data model used to
import ISA studies. Adapted from178. Each investigation file is linked to one or more study
files. Studies can be linked to one or more assay files. Study files can specify information
about sample sources, species and extracted tissue type of samples. Samples are defined
in both studies and assays, implicitly linking sample sources and measurement-related
extracts. The cardinality of this relationship is dependent on the type of experiment. The
type of measurement technology is specified as OBI reference in each assay. Experimental
factors and their levels can be specified in both study and assay files.

Our mapping approach focusses on the study and assay level(s) as can be seen in Table 3.3.

While the investigation level is comparable to user spaces in openBIS, we opt to allow users

to register different studies contained in a single ISA investigation to any of their spaces.

Title, description and protocol of the study level correspond to the general project information

collected in our model. Sources defined on the study level carry information about which

organism and which type of organism part was used in the study.
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Table 3.3: Mapping of the ISA-Tab data model to our data model. Some additional
information is encapsulated in the mentioned objects as seen in Figure 3.5. For example,
the source organism is found in the study file and encapsulated in the Biological Entity
created in openBIS.

ISA Data Model qPortal Data Model Comments
Investigation (Space) Studies can be imported anywhere
Publication -
Person/Organisation -

Study Project
Title Project name optional
Description Project description optional
Protocol Long description optional
Source Biological Entity used for species and tissue mapping
Study Design Exp. design XML
Factor Exp. factor (XML) Hierarchy level of factor is added
Hardware/Software -

Assay Sample Preparation
Sample Biological Sample Used to connect sources to extracts
Extract Test Sample Used to map qPortal identifiers to file names
Measurement Sample Type Measurement endpoint is translated
Technology Exp. design XML Added to Technology section of XML

openBIS entities are created for every unique sample source found in the study. They are

defined by the ISA-Tab source name and organism. If included in the specific file, mapping of

the NCBI taxon is trivial, since our model uses the same ontology. If this information is missing,

this mapping is delegated to the user interface, as shown in Section 3.4.4. The same process is

used if the organism part is missing or does not fit existing information in our vocabularies.

Similar to the source level, entities for biological samples are created from unique sample

names and organism parts found in the file. Hierarchical connections are created between

every source and sample whose names are found in the same row of the study file.

Similarly, each assay file carries information about samples and extracts, enabling the

creation of analyte samples and a mapping between the lower parts of the hierarchy. The

measurement endpoint defined for each assay is mapped to the respective analyte type. For ISA

studies with multiple assay files, as they are commonly encountered in multi-omics projects,

multiple different analyte samples are created for each tissue sample.

Experimental factors can be part of both study and assay files. Since there is no explicit

information in ISA-Tab about which hierarchy level a factor belongs to, we implicitly parse this

information from the context. In order to do this, we check the consistency of factor levels with

entity identifiers (source and sample names) beginning from the highest hierarchy level. In

a study file, the same source ID cannot be related to two different factor levels, but multiple
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samples of this entity can have received different treatments each. The same is true for the

samples and extracts found in assay files. The ISA model also stores information about the

study design. This information is added to our experimental design XML.

3.3.3 Software Interfaces and User Management

The Experimental Design Wizard as well as study import and metadata update are implemented

as a Java portlet integrated into qPortal. This science gateway runs on top of a Liferay 6.2179

portal instance using Tomcat 7180. The portlets are written using Java 8 and the open-source

framework VAADIN 7159, which is based on Ajax and Google Web Toolkit.

In the qPortal system, registered users are stored in an in-house Lightweight Directory

Access Protocol (LDAP) server connected to openBIS and Liferay. Therefore, we are using the

advantages of a single sign-on (SSO) based solution as already implemented for other Grid

web applications and portals181,182. The resource containing user information can be easily

replaced by any comparable protocol (e.g., Crowd183) compatible with openBIS and Liferay.

Access to data and metadata is regulated on different levels. The primary login mechanism

is placed on the Liferay landing page, followed by a delegation mechanism to the back-end

database. Each user or defined user group can be assigned multiple roles, regulating access

to openBIS spaces that might include several projects and the corresponding data. Therefore

users are only able to access data connected to projects in spaces to which they have been

granted access.

3.3.4 Guided Metadata Management

In order to simplify the work with large studies, we implement several methods to help with

the input and integration of metadata from different sources. As described in Section 3.2.4,

we enable users to upload a spreadsheet containing existing sample codes and any additional

metadata. Our portlet automatically queries openBIS to determine the entity type of the related

samples and returns a list of possible metadata properties. Users can select one of these types

for each of the column names in their document and update the selected metadata in openBIS.

After selecting a property type, different types of verification are performed in order to guide

the user. Data in the respective column is checked for consistency with the selected data type.

Inconsistent data can not be updated. Column data is also compared to the metadata already

present in the data management system for the specified sample codes.

Users can also select complex properties like experimental factors. In this case, additional

information like a name for the factor is needed. The number and names of factor levels can

be created from the provided cells in the selected column.

Some of the property types in openBIS are complex types that follow controlled vocabularies

containing keys, which often are ontological identifiers, and a respective humanly-readable
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label. When selecting complex property types that use controlled vocabularies, we search for

similar labels in the respective vocabulary. If no label is found, users are provided with the

option to map the unknown metadata to the available, valid values from the vocabulary.

This functionality is also used for the import of new sub-projects. For example, if species,

tissues or analyte types are not found in the respective openBIS vocabularies, users are able to

select the correct property values corresponding to their respective inputs.

3.3.5 Software Components

In order to facilitate maintainability and portability of our software, the Experimental Design

Wizard is modularized into several libraries as shown in Figure 3.6.

Figure 3.6: Dependencies of the Experimental Design Wizard and its libraries. Grey:
wizard portlet itself. Yellow: libraries used by the portlet. Light blue: third-party libraries
that have been adapted for our use. Third party libraries whose code has not been changed
are not shown.

Functionality that is used by all qPortal portlets is organized in the portal-utils library. This

includes functions that communicate with the Liferay environment to get the username and

similar information. The openbis-client library provides convenient methods to communicate

with the openBIS API in order to fetch information from the data management system or

register new projects, experiments and samples. The core library of the Experimental Design

Wizard is experimental-design-lib. As shown in Figure 3.7 it implements parsers for different

reporting formats that check imports for consistency.
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Figure 3.7: UML class diagram showing the relationships between different classes and
dependencies of the experimental-design library used by the Experimental Design Wizard.
The library is split into the main package responsible for parsing different experimental
design formats and a model package used to produce entities for openBIS and other
applications. Grey: other libraries used by experimental-design-lib classes.

They provide a translation into the openBIS data model, a summary of species and sample

types and the experiment aggregation graph described in the following chapter. Interfaces are

used to make extensions for other formats or data models easier. The library itself depends

on the data-model library, which describes the sample and experiment model and provides

convenience functions for different identifiers and sample sorting. Factors, levels and units of

the experimental design are stored as XML for fast retrieval and update. These functions are

implemented in xml-manager-lib. In order to parse the ISA-Tab standard as described in 3.3.2,

isa-creator-lib was created from the ISAcreator application17. All of our libraries, as well as

several third-party libraries, are included in the Experimental Design Wizard using the build

automation tool Maven184.

The main portlet is structured using the model-view-controller design pattern. Since

most of the openBIS-related data model is accessed via the data-model library, the model

package predominantly includes classes to store complex experimental input related to mass

spectrometry or ligandomics. The view includes the different steps of the Experimental Design

Wizard. Controllers handle both the project import and project creation via wizard steps. An

interface is used since in both cases similar steps have to be performed. Since the creation of

45



3. Modeling of Experimental Designs

entities and metadata in the openBIS system is one of the main tasks required of the portlet,

the functionality of openbis-client-lib is extended in the metadata registration package of the

Experimental Design Wizard. Here, the data collected via project import or wizard steps are

split into parts that can be registered in the system consecutively using a background thread.

In this process a comparison with existing projects, experiments and samples is performed. To

inform users of the progress and status, a progress bar and helpful information are displayed.

3.3.6 Data Transfer

Data transfer from different locations to the central data repository is realized using rsync, as

implemented in the openBIS Datamover172,185. Data is synced from the source, for example,

the genome sequencer to defined folders on remote storage. Identifiers created using the

Experimental Design Wizard are used to tag the files that have been measured for each individual

sample. Checksums allow monitoring of data integrity while transferring data to the final catalog

via openBIS dropboxes according to their source and data type. Every dropbox implements

an Extract Transform Load (ETL) routine. These scripts are based on Jython and handle

the raw data and possibly connected metadata files. Depending on the needed ETL process,

additional external scripts can be called. In some cases, additional information, that has not

been registered via the Experimental Design Wizard, is collected when actually preparing the

samples and measuring the data. ETL scripts complete the annotation task by creating new

data model entities like experiments, samples and datasets and finalize the experimental model

by extracting metadata from incoming files. This information is then stored as content of

defined properties of the new entities. The entities are then connected to existing entities in

the database through identifiers. The raw data and any files are files converted via the ETL

script are then connected to datasets and moved to the data store.

3.4 Results

The different functional requirements of the Experimental Design Wizard are realized by

different tabs in the user interface of the portlet. An administrative tab provides administrators

with the functionality to add new openBIS spaces for specific users. Details of the remaining

tabs of the portlet are explained in the following sections.

3.4.1 Interactive Study Design

The core part of the Experimental Design Wizard is sample creation via different steps that can

be seen in Figure 3.8. In order to start this process, users select the project (corresponds to a

space in openBIS, see Section 3.2) and sub-project under which new experimental steps and

samples will be stored.
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Figure 3.8: Flow diagram of the different steps of the Experimental Design Wizard. Dotted
nodes indicate the optional steps sample pooling and factor level input. Dashed lines
denote transitions that enable users to skip to existing designs in order to add new extracts
to sample sources or prepare new analyte samples from extracts. Technology-specific steps
as they exist for proteomics are denoted by the blue node.

Here, a short name and a description can be added and the persons involved in the project

can be selected from dropdown menus. For existing sub-projects, the stored sample hierarchy

can be used to derive new sample extracts or sample preparations in the following steps.

Figure 3.9 shows the second step of the wizard process. Here, new sample sources can be

input into the system.

Figure 3.9: Sample source selection step of the Experimental Design Wizard. Users have
to select a species and can add optional experimental factors describing their experiment.
Here, the two factors genotype and phenotype have been added.

Users select the studied species from a list taken from the NCBI taxonomy ontology. They

can add multiple common experimental factors from a pre-defined list or define their own

factor name. If there are biological replicates, this can be specified at the bottom of this step.

Selecting one or more factors adds the factor levels step to the wizard.
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As seen in Figure 3.10, users can input multiple levels for each of the factor labels they have

selected in the previous step.

Figure 3.10: Left: Tabs are created from the previously selected factors. A user has added
two factor levels for the categorical factor phenotype. Right: Once the levels for all factors
are completed, a preview of all study group combinations and the number of related
samples is created based on the previously selected number of replicates. Users can adjust
the amount of samples in each group, if their experimental design is unbalanced.

From this information and the chosen replicates, a full factorial design is created. For every

study group, the number of entities - sources or samples - is displayed in a table. Users can

fine-tune their design, by changing the default value, before the actual entities are created. In

the following tailoring step seen in Figure 3.11, these entities are listed in a table.

Figure 3.11: Sample sources are summarized in the tailoring step. Names and identifiers
can be changed by the user.

48



Results

They are automatically named by their factor levels if users choose not to rename them.

Afterward, users follow similar steps for the creation of the next hierarchy level, sample extracts.

Tissues or species themselves can be chosen as an experimental factor for comparative studies.

Subsequently, users select the number of different tissues in their study and can then pick

multiple entries from the controlled vocabulary in question to denote the factor levels, as can

be seen in Figure 3.12.

Figure 3.12: Since tissue was selected as experimental factor, the following factor level
step allows users to select the respective tissues from the tissue vocabulary. Resulting study
groups are created by including the experimental design of the sample source level.

The resulting factor level combinations of the extract tier are combined with any existing

levels of the sample source tier, creating the final full factorial experimental design including

all specified factors of both hierarchy levels. The most notable difference to the sample source

step is that users can select sample pooling and isotope labeling starting with the extract level.

Labeling type and the sample labels themselves are selected in the respective tailoring step.
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Pooling presents the user with a table of their previously created and optionally labeled

samples as seen in Figure 3.13.

Figure 3.13: Pooling step of the Experimental Design Wizard. Available samples are
displayed on the right side. A user has added two SILAC-labeled samples to a new pool
on the left. For every pool, one new sample referencing its respective pooled samples is
created in the next step.

Drag and drop can now be used to place arbitrary groups of samples into a pooling group.

Both samples and completed pools are then transferred to the following step.

In the analysis method step, users can select if and how analyte samples are to be prepared

from their sample extracts. For each selected analyte type like DNA or lipids, a sample is

attached to each sample extract. Additional pooling can be performed for these analytes.

Dependent on the type of analyte, technology-specific steps can follow as described using the

example of proteomics and peptidomics in Section 3.4.5. Otherwise, the resulting entities are

shown in the summary step, as seen in Figure 3.14.

Figure 3.14: Summary and registration step of the Experimental Design Wizard. Organism,
tissues and analytes are summarized with their respective numbers of entities. Users can
start the registration of their sub-project by clicking on the respective button.
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Here, the type of organism, tissue, and measured analytes are highlighted and users can

see the number of entities for each hierarchy level. Data registration can then be started

with the click of a button. Following the registration, the last step allows users to download

different spreadsheets with barcodes and metadata for each hierarchy level. Small attachments

pertaining to the experimental design of the study can be uploaded. A link allows access to

the newly registered project via the project browser portlet of qPortal, as described by Mohr

et al. 186 .

3.4.2 Response Time

We collected data for several use-case scenarios (Tab. 3.4) to evaluate response times of the

Experimental Design Wizard.

Table 3.4: Response times of the Experimental Design Wizard portlet GUI for different
use cases, grouped by test cases that were performed together. Unless otherwise specified,
response times denote the time after specified information has been filled in, the next
button has been clicked, until the UI in the next step has finished loading and is responsive.

Process Response time [ms]

First loading of portlet 2,448
Context displayed after selecting existing sub-project 542
Adding 20 sample extracts to existing sources 233

Selecting 10 replicates for new sample sources 342
Adding 10 extracts (one per source) 317
Adding RNA and DNA samples per extract, showing summary 300

Selecting 100 replicates for new sample sources 583
Adding 100 extracts (one per source) 633

Selecting 1,000 replicates for new sample sources 3,150

Selecting 2 experimental factors and 50 source replicates 383
Creating a 22 design from the factors, resulting in 200 sources 995
Selecting tissue as an experimental factor 183
Selecting two different tissues types, resulting in 400 extracts 1,800
Adding RNA and DNA samples per extract, showing summary 1,567

Importing ISA-Tab study containing 2,160 entities 389

Aside from the first loading of the portlet (2.4 s), which involves the collection of all openBIS

projects and vocabularies, our benchmark shows that interactions with large amounts of objects

lead to the highest delays in the loading of different pages or UI elements. Specifically, creating

1,000 sample source, as well as 400 sample extract objects in a large, multifactorial experiment,

and displaying them in tables, took 3.2 s and 1.8 s, respectively. Further tests reveal that the

largest part of these delays can be allotted to the building of table elements, themselves, while

51



3. Modeling of Experimental Designs

creation, linking, and annotation of the sample source and extract objects take a much shorter

amount of time.

In general, the number of replicates and complexity of experimental design do not lead

to increased loading times of the user interface for the tested experiment sizes. We created a

full-factorial design using two different genotypes, two phenotypes with 50 biological replicates

for each study group. We used two different tissue extracts per each of these 200 sample

sources and selected the preparation of RNA and DNA from each tissue extract, resulting in

1,400 entities. While the response times of the involved steps varied between 0.2 s and 1.8 s,

the slower processes were limited to the clearly denoted transition between the wizard’s steps.

For interactive processes in each step, i.e. displaying project context or adding factor levels,

the UI remained fast and responsive.

One alternative to creating studies with such large sample sizes via the wizard process, is the

import via metadata formats. The time between the import of an ISA-Tab study containing 2,160

entities (E-GEOD-3210 from the Personalized NSAID Therapeutics Consortium (PENTACON,

www.pentaconhq.org)) and the notification of successful import was 0.4 s.

3.4.3 Metadata Management

In order to easily update stored metadata or add new annotations, any tab-delimited file

containing registered entity identifiers and related meta information about samples can be

uploaded. The interface can be seen in Figure 3.15.

Figure 3.15: View of the metadata update tab after uploading a spreadsheet with sample
information. At the top, users can select the property type fitting the metadata of a column
they want to store. Identifiers of registered samples (left column) are automatically found
in the system. For other columns, all data is listed. Red columns denote missing user
input.

It allows to either discard or map user-defined column labels to property types from the

openBIS data model. This selection is context-specific: metadata of sample source identifiers

can only be mapped to sample source-related properties, such as the organism, while metadata
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of RNA samples may be mapped to information like the RNA Integrity Number (RIN). When

selecting properties that are restricted to a specific format, metadata is checked for consistency

with these types and users receive feedback, if those restrictions are not met. For example, only

whole numbers can be stored for a property type that is measured in integers.

For controlled vocabularies as they are used for tissues or the NCBI taxonomy, users can

map unknown metadata values to the vocabularies through a dialog window. Here, valid

vocabulary values are presented in a searchable dropdown menu. Users only need to perform

this mapping once, even if multiple samples or sample sources are to be updated with the

value in question, limiting effort for large studies. The portlet also allows updates of complex

properties outside of the openBIS data model. Any custom property consisting of name, value

and an optional unit can be added to different entities. The experimental design of the study

can be updated as well. If a factor already exists in this experimental design, samples, levels or

both are updated. If the specified factor is new to this experimental design, it is added to the

respective data structure. The dialog option showing this use case can be seen in Figure 3.16.

Figure 3.16: Left: Complex properties like experimental factors can be added via the
metadata upload. After selecting the respective property, a pop-up window enables users
to choose a factor name and unit. Right: After a factor has been specified — in this case
protocol — the system autmatically creates the factor levels from the uploaded data. Levels
for this factor are a and b. As a result of a successful property selection without collisions,
the column changes to a blue color.

Once users have mapped or discarded all unknown column names of their metadata to the

underlying property model, a check for needed annotation updates is performed. Existing data

is ignored while missing data is marked for update. If at least one property value of at least

one existing entity would be changed by an update, users are informed of all of these data

collisions. This pertains also to experimental factors, so the experimental design can not be

changed by accident.

All changes to the annotations can then be committed via the press of a button.

We have implemented the process to be able to utilise pre-defined user privileges. Dependent

on the defined roles, some users may only be able to add new information while changing
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existing metadata can be reserved to principal investigators or similar project leaders. An

example of the warning dialog shown when metadata is about to be overwritten can be seen in

Figure 3.17.

Figure 3.17: After selecting a property for each column to be registered in the system,
collisions with existing values for these samples are displayed to the user.

3.4.4 Study Import and Interoperability

We provide a number of different import options in order to make it easier for researchers to

work with large projects and save time with the input of existing studies and their metadata.

Users can import an openBIS-based format that allows specification of project, space and

experiments. This is primarily used to create projects after users submit a draft using the wizard

process. We also provide a spreadsheet format that allows study creation by specifying a set of

minimum information that is often used in biomedical projects. For each sample, an identifying

name, tissue type, species and sample source identifier has to be provided, in order to identify

biological replicates. If analyte samples are to be created, users also have to provide their IDs

and measurement type. Experimental factors and their levels can be added in a new column.

Most notably, we allow the import of ISA-Tab via our graphical user interface.

Users can preview the aggregated sample graph (as described in Chapter 4) and need to

select the project and sub-project into which the study should be imported. If a new sub-project

is selected, the study name and description are automatically added to the respective fields of

the user interface. Organism, tissue and measurement type are parsed from the uploaded files

and compared to controlled vocabularies. Unique missing entries are marked red and prompt

the user to choose a suitable alternative from the provided list. The graphical user interface

can be seen in Figure 3.18.
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Figure 3.18: User interface for importing of ISA-Tab studies. Any study contained in the
ISA-Tab upload can be selected in order to register it in the system. Mandatory experiment
metadata is mapped to the openBIS data model and missing information is highlighted.
Here, an unspecified tissue could not be found in a controlled vocabulary and the user can
select an alternative via a drop-down.

Once the form has been completed with all the information, the summary table is shown

(Fig. 3.19) and users can register the study in the system.

Figure 3.19: Completion of missing information allows users to register the imported
study. Left: Selecting a new project automatically inserts the ISA study title as project
(short) name. Right: Likewise, the ISA study description is automatically added to the
description field. A summary of the imported samples is shown.

3.4.5 Extensibility

The hierarchical approach of our data model is easily extensible by adding new tiers of samples.

Table 3.5 shows the number of experimental studies and samples created using the Experimental

Design Wizard interface.
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Table 3.5: Number of projects and samples (only analyte level) registered using the
Experimental Design Wizard interface of qPortal as of 03.10.2021. Data is sorted by omics
technologies used. Projects using multiple omics technologies are only counted once in
the summary.

Technology Number of projects Number of measured samples
Microarrays 18 701
NGS 279 19,010
Proteomics 364 19,482
Ligandomics 17 1,739
Imaging 2 172
Summary 651 41,104

Proteomics Studies

Our implementation of a proteomics module shows the adaptability of our data model as well

as the wizard approach. We created two additional steps to empower researchers to further

annotate their proteomics and peptidomics projects. Selecting the proteins entry in the analysis

method step enables users to select different proteomics options like protein purification. This

option also adds a proteomics step to the wizard. If the option measure peptides is selected,

an additional peptidomics step follows. Both steps enable users to annotate the splitting

of previously created samples into fractions using different gels. Enrichment processes like

phosphopeptide enrichment of samples can also be modeled. Mass spectrometers, LC-MS

methods, and other mass spectrometry options can be selected and wash runs added, for which

a reference sample can be specified to indicate the time of the wash run. In the proteomics step,

one or more digestion enzymes can be specified per sample. Only for samples that are treated

with digestion enzymes, peptide samples are derived for the optional peptidomics step. As with

the general wizard process, the summary step concludes study registration. In the data model,

sample fractions and digested samples are modeled as analyte samples and attached to the

parent sample they are derived from. Information related to mass spectrometry measurements

is stored as a new sample type and attached to the respective protein or peptide samples. We

explore these types of more complex sample hierarchies in Chapter 4.

MHC Ligandomics Studies

The Major Histocompatibility Complexes (MHC) I and II are two protein receptors on the cell

surface that are responsible for presenting peptides from intracellular and extracellular proteins

to the immune system. The field of MHC ligandomics uses antibodies to capture a specific type

of MHC. The bound peptide ligands can be measured by mass spectrometry methods to use

them to define the repertoire of peptides presented in healthy or sick individuals. This has

implications for personalized medicine and cancer therapies.
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We adapted our data model by adding a new experiment type, MHC Ligand Extraction and

a respective sample type, MHC Ligand Extract. After input of the basic experimental design,

users can select options to specify the type and mass of antibodies used. The respective ligand

extracts of type I or II are automatically created based on the selected antibodies.

To speed up the creation of larger projects, we also created the possibility to upload a

complete MHC ligandomics experiment spreadsheet. Here, additional metadata like sample

volume or mass, cell types, cancer-related information, the HLA typing of patients and more

information about the mass spectrometry measurements can be directly registered into the

system. As with our other import approaches, users can download a file that provides a mapping

between the identifiers of their data and the newly created samples in our system, simplifying

data upload.

3.5 Discussion

A central issue of reproducibility is missing metadata annotation20,24,25. The creation of

web-platforms for scientific research has created new avenues of metadata collection151–153.

However, the variety of involved fields, as well as the complexity of studies, call for new

approaches. As a contribution to this problem, we have developed an Experimental Design

Wizard, a web-application embedded into qPortal allowing users to create a full factorial

experimental design. In a full factorial design, every independent experimental variable input

by the user is multiplied by the number of replicates, creating the same amount of samples for

each permutation of factor levels. In reality, full factorial designs are rare, so our application

enables users to remove unnecessary samples as well as specify a higher number of replicates

for single factors.

Thanks to the modularity of our tool, the Experimental Design Wizard can be easily adapted

for more complex and technology-specific metadata collection. Extensive functionality for

supporting proteomics and ligandomics experiments has been added.

The approach of starting extensive metadata collection before the experiment is carried out

has numerous advantages. First, time and money can be saved, because the study design allows

for the estimation of statistical power before experiments are performed. Secondly, mistakes in

study design or sample handling can be traced back more easily and with higher confidence.

These aspects are crucial, as one of the issues of reproducibility has been identified as the lack

of good study design.

Our approach to annotate metadata is intuitive, as it allows users to focus on the core

question of their studies, by making the experimental design the heart of study creation.

Wizards, in general, are a proven software tool to break down a longer process for users187, in

order not to overburden them with too much information. This also enables context-dependent

skipping of steps to get to the relevant information, so researchers don’t have to invest time
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in the annotation that does not fit their use case. In the same way, the clear cut between

experimental design input and annotation of further steps is tailored to the different groups of

users involved in modern high-throughput biomedical projects. Examples of this are steps that

allow the collection of proteomics and ligandomics metadata.

We have further shown that, in general, the responsiveness of our application meets

common standards for established use cases. The startup time of the portlet was found to take

a few seconds. In such cases, users are consistently more accepting of waiting times, as they

have not started a process that demands their attention. Additionally, the Vaadin framework

automatically displays loading indicators, which can help clarify to users that the computer is

working176. While response time of GUI elements inside the different steps in the wizard is

almost instantaneous, the computations taking place between steps take considerably longer.

Nonetheless, the large majority of these loading times are smaller or equal to one second, which

is well within the acceptable range174. In cases where many hundreds or thousands of entities

are listed in the portlet, response time decreases. In practice, these cases rarely arise, as we

support large studies by enabling the import of different formats and our metadata update

functionality. Our tests have shown that the import of such experimental designs is simple and

responsive. Nonetheless, since the bottleneck has been shown to be the display of entities itself,

the process could be sped up by splitting the large number of entities in a multi-page table or by

using Lazy Loading strategies188. The registration of completed sub-projects with experimental

designs, experiments and samples via the openBIS API can take a few seconds for very large

studies. In these cases, users are informed of the progress in order to keep their attention.

While the general security of qPortal is realized by a delegation of user management to the

Liferay system, internal security of the Experimental Design Wizard software is provided by

a strict separation of user roles. Only users registered in the openBIS system are allowed to

access metadata. Only power users are able to overwrite metadata after being informed of the

consequences. While data itself is attached to entities via ETL processes, users of the portlet

are not able to delete or edit it.

The Experimental Design Wizard is both modularized into multiple Java libraries managed

by Maven and the model-view-control-based packages of the project itself in order to be

maintainable. The success of this approach can be seen by the extension of the existing

software to include new, extended experiment models for ligandomics as well as new external

import formats like ISA-Tab. This approach also leads to easier portability. Adaptations to other

data models only need to be made in few libraries and specific libraries can be substituted.

The Experimental Design Wizard is being used in different locations as a part of the qPortal

package.

Our approach adheres to the FAIR guiding principles for scientific data management and

stewardship27 in the following ways. First, the Experimental Design Wizard enables users to

generate large study designs including metadata. If additional metadata needs to be added, fast
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methods to update these large designs can be used. Meta information is stored using openBIS,

which provides the connection to raw data. openBIS indexes the data and facilitates efficient

searching based on our metadata, making the data findable.

The second criterium of the FAIR principles is the accessibility of data. We follow these

guidelines by using open and free protocols for data access through our web-portal. Security is

delegated to the Liferay platform, using common authentication processes as described in Mohr

et al. 186 .

Data must also be interoperable, meaning that metadata must use a formal, accessible,

shared, and broadly applicable language. We contribute to this guideline by using controlled

vocabularies, such as the NCBI taxonomy database. We also provide interoperability with the

ISA-Tab format. Export functionality based on our data model, including to further public

databases, like the Gene Expression Omnibus (GEO), is under development.

The last of the FAIR principles is reusability. It is outside of the scope of the Experimental

Design Wizard to track data provenance. However, the same models that enable the storage of

the biological provenance from patient to measurement can and are used for the normalization

and analysis steps that transform raw data to results.
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Chapter 4

Visual Exploration of Experimental De-

signs

Some content of this chapter is part of the manuscript:

Interactive Visualization for Large-Scale Multi-Factorial Research Designs

Andreas Friedrich, Luis de la Garza, Oliver Kohlbacher, Sven Nahnsen International Conference on Data Integration

in the Life Sciences Springer 75–84 (2018)

4.1 Introduction

As described in the last chapter, there are a variety of methods to simplify the creation and

maintenance of high-throughput biomedical studies. Science gateways and data management

systems designed for biological data do not only help with metadata collection. They also present

this information to users, often structured by different projects or analysis types151,153,172 and

often focusing on workflows and their annotation152. However, in order to facilitate real

reproducibility and replicability, it must also become easier to understand and work with this

information after the project has been concluded. Especially for projects with many replicates

and independent variables, factorial designs can lead to a large number of cases that can

already make it difficult for researchers to keep sight of the big picture. These problems are

exacerbated when researchers unfamiliar with a study and its design want to work with the

data.

Public data repositories like PRIDE141 or ENA2 make studies findable for researchers, display

collected metadata, and allow their download along with raw and analyzed scientific data. If

visualization is available, it is often limited to the context of the repository itself, showing how

many datasets or which types of data are stored. Processing of metadata for visualization of

single projects or their experiments is generally not the aim of these approaches.
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Among standards for experiment sharing, ISA-Tab stands out as an important step to

bridge this gap. Different tools have been created to use the experimental information that

they collect17,18. linkedISA leverages the data provided to create a semantic, interoperable

presentation and shows how implicitly defined study groups can be extracted from ISA-Tab.

These groups are summarized and listed in Bio-GraphIIn, a graph-based repository for biological

experimental data189. With the growing complexity of biological experiments and especially

the communication thereof, efficient visualizations are indispensable. However, most of the

previous work has been focused on connecting experiments to ontology frameworks and making

it machine-readable. While Bio-GraphIIn presents a list of study groups, this type of presentation

can become difficult to comprehend for huge experiments involving many experimental factors

and other metadata. More information can only be obtained by displaying huge tables of

samples. It is therefore not only difficult to grasp the complexity of a study, but also to assess

the quality of ISA files created by researchers. While tools can prevent mistakes violating the

format standards, clerical errors that lead to the reporting of a faulty design are not obvious.

Here, we build on our intuitive interface for experiment creation leveraging proven experi-

mental design concepts like full-factorial study design190. To connect experimental designs

with data integration, we provide an interactive visualization tool that can aggregate complex

study designs based on involved species, tissues, analytes and experimental factors into an

intuitive experiment graph. In an effort to comply with existing standards while allowing

easy options to manage high-throughput experiments, we provide interoperability with the

ISA-Tab format. The highly modular structure makes our tool a good starting point for further

developments in the area of quality control and data exploration of biomedical studies.

4.2 Materials and Methods

4.2.1 Generation of Aggregation Graphs

The complete experiment graph as described in 3.3.1 provides a full overview of all entities

involved in a study. We aggregate nodes by identity or similarity of factor levels, tissues or

species to arrive at a simplified, more compact version of the experiment graph defined as

follows:

Let G = (VG , EG) be a sample graph with vertices v ∈ VG denoting each of these entities in

an experiment and edges (v, w) ∈ EG denoting the extraction of entity w from entity v in an

experimental step as seen on the left side of Figure 4.1.
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Figure 4.1: Left: visual representation of the full experiment graph G of an experiment
on four mice constisting of nodes v1...v12. Factor f1 (treatment) consists of two levels
of which each is replicated once. Factor f2 (genotype) consists of three levels, of which
only the wild type is replicated. Inherited factor levels for connected liver and protein
extracts are not shown. Right: aggregation graph H1 on f1 . Factor f2 is ignored. The
two replicates for both treatments are aggregated into single nodes v1 and v3, while the
number of samples n is incremented. Since extracted entities inherit factor levels, they,
too are aggregated.

Let further f1 . . . fn be a set of experimental factors on a subset of these entities with factor

level fiv for factor fi of vertex v and a binary function on factor levels s( fiv , fiw) 7→ {0,1} that

denotes if two levels are similar or not, for example if both fall into a predefined interval Ix :

s( fiv , fiw) =







1 if fiv , fiw ∈ Ix

0 otherwise

where Ix = [xa, xb], xa, xb ∈ R, xb ≤ xa

(4.1)

We define a set of aggregation graphs H1 . . . Hn, one for each factor fi:

Hi = (VH , EH)

∀ v ∈ VG :
∑

w∈VH

s( fiv , fiw) = 0→ v ∈ VH

∀ (v, w) ∈ EG : v ∈ VH ∧w ∈ VH → (v, w) ∈ EH

(4.2)

Each graph H summarizes all entities of G with a similar factor level into a single vertex,

while preserving connections between the hierarchy levels of the experiment. For strings, that

is, nominal factors, we define similarity as the perfect match of both levels (e.g., the same

disease state), while quantitative variables can be summarized using intervals.

Figure 4.1 shows the aggregation of graph G based on factor f1 - two different treatments of

mice - into graph H1. At first, node v1 is added to the aggregation graph, since there is no node

w in H1 with f1w = f1v1
= treatment A. Since f1v2

= treatment A, the second node v2, describing

Mouse 2 is not added to the aggregation graph. Instead, the number of aggregated nodes for v1

is incremented. This process continues until all nodes in G have been visited. Notably, the more
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complex levels of experimental factor f2 - the genotypes wild type and two different knockout

variants - would lead to a more complex aggregation graph H2 consisting of nine nodes.

The principle used for experimental factor levels can be easily extended to aggregate the

study graph based on different aspects of a study or on multiple aspects at once. For example,

when including information about the organism or tissue in the boolean function, only entities

from the same species or samples containing the same tissue types will be aggregated.

4.2.2 Validation on Studies

In addition to our own examples, we use a number of publicly available studies to test our

approach. We selected ten studies to test the consistency of publically shared experimental

designs with their related publications. We especially focused on the description of factor

levels and the number of replicates and compared this information using the aggregation

graph rendered from ISA-Tab. Studies were selected from the front page (latest studies) of

MetaboLights, ignoring studies that were part of a larger publication including many more

datasets as well as those studies belonging to publications that were not publically available.

Data and metadata of the selected studies can be found in the MetaboLights database191.

Information about the selected studies is available in Appendix B.

Additionally, we describe the design of one lipidomics study on the progression to islet

autoimmunity and type 1 diabetes by Lamichhane et al. 192 more closely. It can be found using

its identifier MTBLS620.

4.3 Design and Implementation

The schematic of the integration of our visualization into the portal can be seen in Figure 4.2.

Figure 4.2: Schematic diagram of our implementation: Existing experimental designs and
attached metadata stored in openBIS can be visualized in qPortal using our Java-based
experimental design libraries. Different formats can be imported and visualized, ISA-Tab
being supported through isatools. An independent JavaFX implementation is available.
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Both imported and existing experiments can be translated into the aggregation graph

and displayed using Javascript libraries. For existing experiments, meta information about

attached datasets is leveraged from the data store. When importing ISA-Tab investigations, the

open-source framework isatools is used in the translation process, using source and sample

identifiers of the ISA study format as well as all defined experimental factors as described

in Chapter 3.4.4. The Javascript libraries dagre193 and Data-Driven Documents (D3)194 are

then used to compute graph coordinates and draw the selected graph. Interactions between

Javascript and our portlets are implemented using remote procedure calls (RPC). A stand-alone

version implemented in JavaFX can be used independently of the portal or openBIS.i

4.4 Results

4.4.1 qPortal Integration

Once the experimental design is parsed from a database or translated from a supported ex-

perimental design format, different experiment aggregation graphs can be drawn or redrawn

in real-time by selecting different experimental factors. Factor levels and the type of analyte

measured are the main discrimination criteria for aggregating similar nodes. However, the

experiment graph can be drawn using different species or tissue types or any other property

that is attached to samples or sources via metadata.

Further interaction is possible by clicking on nodes: dependent on the layer, users can

display more information about sample sources, tissues or analytes. If a data store is attached,

information about the status of the project, including which samples have already been measured

and which data is still missing is displayed. This completeness of datasets is also visualized by

a ring around the respective nodes, where the size of the colored arc denotes the fraction of

samples for which data is available. Both of these features are shown in Figure 4.3.

Our implementation is not limited to single-omics experiments. Figure 4.4 shows a complex

multi-omics study available as ISA-tab investigation, that has been imported. The experimental

factor levels only differ between cell cultures, resulting in a graph that is rooted in the source

species level.

ihttps://github.com/qbicsoftware/experiment-graph-gui
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Figure 4.3: Left: experimental design graph representing an experiment on Anabaena
cyanobacteria according to the experimental factor compartments. Two levels of analytes
(proteins and peptides) illustrate proteomics-specific metadata collection of our model.
The incomplete arc (grey part) on one of the nodes belonging to the cell wall level shows
one dataset has not arrived in the database yet. Right: by selecting a graph node, a user
has requested more information about the underlying samples. A popup table shows the
respective identifiers and metadata of samples with and without attached data.
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Figure 4.4: Aggregation graph of one study of an imported ISA-tab investigation. Yeast cul-
tures are grown lacking different nutrients and proteome, transcriptome and metabolome
are measured.
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To compare our aggregation graph to the usual, complete sample hierarchy graph of a study,

we demonstrate both visualizations on a proteomics experiment including 24 mice. All animals

were anesthetized for different periods of time, liver tissue was extracted and proteins from

those tissue samples were measured using mass spectrometry. Figure 3.4 shows a subset of

the full sample graph without any experimental factors or levels displayed. In contrast, the

aggregated experimental design graph of the same experiment seen in Figure 4.5 shows the

condensed factor-independent overview, summarizing nodes by species, extracted tissues, and

proteins.

Figure 4.5: Two experimental design graphs representing the same experiment on 24
mice. Left: no factor is selected, nodes are merged by species, tissue and analyte type.
Right: the 3-level factor anesthesia duration is selected, resulting in three subgraphs and
the related legend explaining them.

Metadata like entity identifiers can be shown by clicking on nodes of the graph. The study

can be explored further by selecting a factor of this experimental design from the drop-down

menu. Selecting the factor anaesthesia_duration, our algorithm splits the graph into three

groups of mice and attaches descendant samples according to the three levels of this factor.

Colors and legend of each aggregation graph are entirely dependent on the graph and inform

users about species, tissues, analytes, and different factor values. Furthermore, the green

outline of the protein nodes shows that data generation has been completed for all samples.

4.4.2 Runtime

To examine the usability of our method for web-based applications, we compared the graph

model creation time for studies of different sizes and experimental complexities. We also

compare the different use cases of study import and displaying studies saved in our data
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management system openBIS. Before studies using external formats can be registered, they

have to be translated to our data model, leading to slightly longer runtimes. Despite this,

Table 4.1 shows that run-time does not exceed 200 ms even for large studies.

Table 4.1: Aggregation graph creation time in milliseconds for studies of different numbers
of entities, attached datasets, experimental complexity, and different formats. All tests
were performed on a notebook using a 2.5 GHz Intel Core i5 processor.

No. of entities No. of datasets No. of factors Runtime [ms]
qPortal studies

424 224 4 30
716 575 4 56

1,076 5,361 1 51
2,202 475 3 85

Imported studies
371 - 5 128
976 - 4 194

2,160 - 0 128

4.4.3 Validation

We evaluated our stand-alone implementation using a recent lipidomics study on the progression

to islet autoimmunity and type 1 diabetes from the MetaboLights database. Our application

shows a description of the imported ISA-study and lists every experimental factor that the

authors have annotated in a drop-down menu. Selecting a study factor as seen in Figure 4.6

reveals more details about the study.

Figure 4.6: View of the stand-alone application after ISA-Tab import. The description of the
selected study is displayed and users can select experimental factors (here: disease status)
from a drop-down menu. Our aggregation graph shows extraction of blood plasma from
120 patients belonging to the three groups control, type 1 diabetes (T1D) and seropositivity
(for islet cell autoantibodies). The metabolome of those samples was measured.
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Selecting disease status shows that data generated from the blood plasma samples of 40

patients of a control group was compared to those of 40 type 1 diabetes (T1D) cases, as well as

40 cases of autoimmunity against islet cells, that had not yet progressed to diabetes. Selecting

the age factor as seen in Figure 4.7 reveals that this is a time series study, where blood was

taken at different subject ages. In this case, the authors failed to include units in their metadata,

so it is only clear from their publication that the ages are measured in months.

Figure 4.7: View of the stand-alone application after selection of the experimental factor
age. The levels of this factor show that blood plasma samples were taken at different ages
of the same patients since the experimental levels are defined at the second level. The
unit (months) is omitted since it was not annotated in the ISA-Tab study.

Using our visualization approach to test study design consistency, we found that for four

studies (MTBLS618, MTBLS654, MTBLS669, MTBLS750), the described experimental factors

and sample sizes found in the uploaded metadata fit the approaches described in the respective

publications. For two additional studies, we found minor mistakes, such as describing biological

replicates on the tissue level, while falsely specifying only one biological source (MTBLS619),

or the ISA-Tab containing more biological sources and derived samples in addition to the

ones specified in the publication (MTBLS780). Other studies are harder to reproduce, as the

sample size in the shared metadata is smaller than described in the publication (MTBLS687),

information about replicates is missing (MTBLS622), or neither factors nor replicates are

described in ISA-Tab (MTBLS640, MTBLS674).

4.5 Discussion

We present tools to visualize large biomedical studies by their most important experimental

aspects. Building on our graphical interface for the creation of factorial experimental designs and
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our hierarchical data model, we create graphs summarizing complex hierarchies of experimental

variables, allowing users to quickly familiarize themselves with the important aspects of a study.

When used in a platform integrating experiment data and metadata, like qPortal, additional

information about datasets can be leveraged, marking missing data or the status of a project.

Our aggregation graph gives a concise and intuitive overview in cases where the representation

of experiments was previously only possible using large tables.

The lack of statistical power and sound experimental design has lead to the so-called

reproducibility crisis. Extensive work has been done to standardize metadata annotation and

storage, leading to public data repositories like PRIDE141 or ENA2 that aim to make proteomic

and genomic studies findable and increase reproducibility and replicability in these fields. Other

repositories, for example MetaboLights191, use multi-omics metadata standards in an attempt

to unify the way scientists share their experimental data. Here, ISA-Tab provides a foundation

to search, display and use the annotations found in its metadata model17. Such methods

are clearly required due to the size of modern biomedical experiments and their metadata: a

simple overview of a study often leads to huge tables or cluttered graphs. Some approaches

are examples of successful, interactive uses of study design visualization, yet they address very

specific questions. Bio-GraphIIn189 focuses on listing the replicates of each study group. By

contrast, our approach provides an interactive visualization of a large number of experiments

and is able to summarize replicates (with respect to one factor) into a single node to display a

concise representation with which users can interact to control the displayed level of detail.

Different approaches for graph aggregation195 have been applied in multiple fields where

information graphs are too large for human comprehension196,197. To our knowledge, these

tools have not been used for the visualization of formats like ISA-Tab or graphs of biomedical

experiments in general.

We have shown that our approach can display current studies including several hundred

entities. Since ISA-Tab is not a minimum information standard, the amount of actual information

beyond the sample hierarchy that can be drawn from its format depends on the annotations

provided by researchers, as our examples show. We have taken the first steps towards a fully

modular solution that will allow the integration of our tool in different contexts, fields of omics,

and experiments. This can help enforce standards for various data models used by researchers.

Nonetheless, enforcing standards does not ensure the absence of annotation errors. Our

comparison of publically available studies with their publications shows that the current

approaches are not sufficient to guarantee the correct collection of meta information or even

just the highly important study design. The majority of ISA studies we explored included at

least minor errors in the definition of the experimental design. For some of these examples,

we assess the metadata as sufficient to easily reproduce the experiments at hand. Multiple

studies were, however, missing information about experimental factors or even the number

of replicates, despite the respective publication stating the study design quite clearly. Many
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discrepancies such as missing samples, study factors that are defined on the wrong level, or

not at all, are much easier to spot using a visual representation of the study instead of large

spreadsheets.

Experimental factors are one of the most important types of study annotation since they are

at the core of the question scientists want to answer. However, our concept is not necessarily

bound to the aggregation of different factor levels. Any property that can split subjects or

samples into different groups, can be useful to find out more about a study. In large studies

involving multiple groups, sharing information about the status of the project and data gener-

ation is often important. Provided this information is available, future work could include a

time-component, displaying the history of a study.
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Chapter 5

Interactive Sample Size Calculation for

Differential Gene Expression Experiments

5.1 Introduction

In order to obtain reproducible results, scientific studies have to be built on a sound statistical

foundation. An important part of this process includes using an adequate number of replicates

as described in Section 2.2.2. For contemporary science, estimating the needed sample size to

detect an effect is even more important, as high-throughput biomedical experiments can be

costly. Time and money are lost if wrong conclusions or none at all can be drawn from data

that is too noisy. On the other hand, an experiment with more subjects than needed might be

unethical, as well as wasteful.

For these reasons, multiple approaches have been developed to estimate the statistical power

of experiments generating biological high-throughput data. For quantitative proteomics, earlier

methods focused on the sharing of methodology to plan powerful experiments198–200 or the

use of generalized software tools, which were not specifically developed for the field198,201,202.

With these approaches, responsibility generally fell to the user to provide the software with a

measure of variance from older experiments, in order to compute the power of a newly planned

experiment. More recently, tools specific to mass spectrometry have been developed. The R

package MSstats enables sample size estimations for MS-based proteomics data203. MSstats

has since been integrated into the OpenMS framework for MS-based analysis and application

development204. For the field of differential gene expression, there have been many approaches

tailored to cDNA microarrays205–207 as well as RNA sequencing208,209.

Nevertheless, especially for the budding field of RNA-Seq, there is yet no accepted standard

on how deep an organism needs to be sequenced or on how to estimate the in-group variance

of gene expression in order to predict these statistics. While the methods based on negative

binomial models, as used by tools like edgeR and DESeq 2, show promising results, they are

often only implemented as scripts to be used on the command line or as packages for statistical

tools or languages. This restricts their reach to scientists familiar with R or other programming

languages with a heavy focus on statistics.
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For these reasons, there have been various efforts to provide researchers with web interfaces

to design differential gene expression experiments210,211. The tool Scotty uses a Poisson model

to enable users to plan their RNA-Seq experiments subject to different criteria like cost and

power212. RnaSeqSampleSize leverages the web technology Shiny to provide a web interface

to the statistical computations performed in the background213. Its users can upload pilot

data to compute the necessary parameters or give their own estimations. The sample size and

power estimations are based on the negative binomial model used by many modern tools for

differential expression analysis.

Unfortunately, some of these tools are no longer available to researchers. Additionally, existing

solutions are more or less decoupled from the experimental process consisting of metadata

and data collection, and data analysis. Users have to choose one model and make do with

the information they have. There is no tool that leverages existing metadata to help users

arrive at a robust experimental design, despite information about the experiment’s organism

and type of study performed being some of the issues at the core of this process. Here, we

present an integrative approach based on the R packages OCplus for DNA microarray power

estimation128 and RnaSeqSampleSize for RNA-Seq power estimation, as well as our own web

portal. The process leverages data sets and experimental design meta information stored in

our system. Users are provided with a straight-forward web interface where they can select

options to estimate different parameters based on literature or publicly available datasets in

order to obtain visualizations for sample size or power of their experiments.

5.2 Material and Methods

In order to predict the required sample size and various statistical power measures for Microarray

experiments, we use the R package OCplus based on the work by Pawitan et al.128. Given

sample size and log fold change, the mixture model approach allows the prediction of false

discovery rate as well as false negative rate based on a percentage of genes that are declared as

differentially expressed. We extend this method by computing the relevant statistical measures

for different parameters for sample size and log fold change, creating different power matrices

that can be displayed to the user.

5.2.1 RNA-Seq Variance Model

For RNA-Seq, we base our estimations on the negative binomial distribution as it is widely used

by tools like edgeR, DESeq 2, and consequently RnaSeqSampleSize. As described in Chapter

2, the relative standard deviation — which is also known as the coefficient of variation CV

— of a gene expression count is solely dependent on the inverse of the mean of counts 1
µ of

the respective gene and on the dispersion α. As read counts are dependent on the sequencing
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depth, α is also known as the biological coefficient of variation129. The deeper samples are

sequenced, the larger the mean and the lower the effect of technical variation on the coefficient

of variation.

Hence, both the average read count and the dispersion must be estimated in order to predict

sample size and power of an experiment. The RnaSeqSampleSize package includes publicly

available datasets from the cancer genome atlas (TCGA)214 and allows estimation for these

and other raw datasets provided by users. Additionally, we include estimations of average read

count and dispersion from literature215,216 and general estimations of square-root-dispersion

for human data, for that of genetically similar model organisms, and for technical replicates as

they are found in the edgeR user guide217.

5.2.2 Parameter Optimization and Sample Size Calculation

RnaSeqSampleSize provides functionality to create and visualize power matrices in R, allowing

the optimization of two parameters in respect to resulting sample size or statistical power. Here,

we focus on two use cases. First, we estimate power for a known experimental design and study

factor. For unbalanced study designs, the smaller number of samples is used. Based on the

known or estimated ratio of DE genes, dispersion and average read count of diagnostic genes,

a power matrix is created using several values for FDR and the minimum fold change between

two groups of the study factor. Our second use case for RNA-Seq is sample size estimation

based on the ratio of DE genes, dispersion, FDR level and an estimate for average read count.

Here, the parameters statistical power and minimum fold change are varied in the optimization

process to create a sample size matrix.

For DNA microarray power analysis and sample size estimation, the OCPlus R package

can plot power or sample size against FDR/FNR. We adapt these methods in order to create

power and sample size matrices for our two use cases. This first approach is based on the

minimum statistical power a researcher wants to reach for a predefined experimental design

containing a study factor including samples of two groups. For this selected sensitivity and

known sample size, we vary log fold change and the ratio of non-DE genes in order to predict the

FDR for this statistical power level. For sample size estimation, we optimize the detectable log

fold change and sample size in order to show FDR/FNR based on declaring a certain ratio of

genes as differentially expressed.

5.3 Implementation

Our Vaadin portlet uses the Java library RVaadin218 to provide interactive R functionality for

DNA microarray statistics. RVaadin allows the connection to a binary R server (Rserve) in

order to communicate function calls and results. We use R scripts to enhance the package
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OCPlus by running multiple estimations for each use case and creating a power or sample size

matrix, displaying the respective measure as a heatmap. For RNA-Seq power estimation, we

additionally provide the option to integrate pilot count data from our system to estimate gene

dispersion or average read counts. A connection to our data management system openBIS

allows for the integration of existing experimental design information and storing of results.

5.3.1 Backend

Unlike the optimizations using OCPlus, the runtime for sample size predictions on RNA-Seq

data is prohibitive for an interactive approach in most cases, as seen in Figure 5.1 and even

larger for parameter-estimation on real data.
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Figure 5.1: Runtime of power and sample size estimation functions using RnaSeqSam-
pleSize without read count data for different input parameter sizes. Two parameters are
optimized in each case, resulting in quadratic growth of the power/sample size matrix.

Therefore, we created a Singularity168 container to perform these computations on a

virtual machine. This enables us to provide multi-parameter optimization using the package

RnaSeqSampleSize to create power and sample size estimation matrices based on TCGA datasets

or other RNA sequencing runs.

Selecting the respective options via the portlet registers meta information about the run

in openBIS and executes the container via a Secure Shell (SSH) call to the virtual machine.

If read count data is used, the respective dataset is downloaded to the VM using qPostmani.

Power matrices are then created using the RnaSeqSampleSize package. A script (attachiii)

ihttps://github.com/qbicsoftware/postman-cli
iihttps://github.com/qbicsoftware/attachi-cli
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creates the necessary information needed to register the data in openBIS. Results are securely

transferred via Dynciii, triggering the data registration process. The selected parameters and

the resulting matrix image are attached to the respective project selected by the user when

starting the computations and can be displayed via multiple of our portlets. Figure 5.2 shows

the interplay between the different tools contained in our Singularity container and the data

storage.

Figure 5.2: Schematic view of the Sample Size portlet backend. Power or sample size
estimation for RNA-Seq is performed using a singularity container on a virtual machine. If
read count data from openBIS is used, the tool qPostman stages the respective datasets.
Results are written back to openBIS using the tools attachi and Dync. Users can then find
the generated information in their project space.

5.4 Results

Our Singularity container and its source code is available on GitHubiv. The graphical user

interface is available on qPortalv.

5.4.1 Graphical User Interface for Power Analysis of Experimental Designs

In order to make use of data and metadata registered via qPortal, we present users with

a project-centric user interface. While sample size estimation for DNA microarrays can be

performed outside of the project context, the extended functionality of the portlet is only

available once a project has been selected. Figure 5.3 shows the presentation of existing read

count and result data related to a selected project.

iiihttps://github.com/qbicsoftware/dync-cli
ivhttps://github.com/qbicsoftware/rnaseq-power-container
vhttps://portal.qbic.uni-tuebingen.de/portal/web/qbic/samplesize
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Figure 5.3: Presentation of project-specific data in the portlet. Left: Gene dispersion and
average read count can be estimated from RNA-Seq data found in openBIS. Right: Previous
sample size or power estimation runs for a project can be displayed or downloaded.

If datasets containing raw count data from RNA-Seq runs are available, for example as

part of a pilot project, they are displayed when selecting the respective prediction option.

Additionally, previous sample size or power estimation runs are displayed in a table. This data

can be downloaded via the click of a button or displayed directly in the browser alongside the

parameters of the prediction.

Figure 5.4 shows some of the available parameter options for RNA-Seq sample size estimation.

Figure 5.4: Parameter selection for RNA-Seq sample size prediction using our portlet.
All parameters can be selected via sliders or input fields. For average read count and
dispersion, several other options are available. Both can be estimated from provided pilot
data, TCGA cancer datasets or based on estimates from literature. In the case shown here,
an average read count of 5 has been selected based on Hart et al. 216 and dispersion was
set to 0.16 based on the square-root-dispersion for human data proposed by Chen et al. 217 .
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All parameters can be chosen via a slider or the respective input field. Additionally, gene

dispersion and the average read count of genes can be selected based on literature, one of the

included TCGA datasets, or data available in openBIS.

5.4.2 Validation

We validated our implementation by comparing our results to the output of the original R

packages. Figure 5.5 shows a comparison of sample size estimation when 95% of genes are

assumed to be non-differentially expressed and the top 5% of genes are reported as differentially

expressed.
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Figure 5.5: Comparison of FDR estimation for selection of the top 5% DE genes, assuming
95% are non-DE. Left: OCPlus plot of FDR as a function of sample size for log FC = 1.
Right: Our portlet creates a matrix displaying the FDR levels as a function of both sample
size and log FC. The left column corresponds to the OCPlus plot.

OCPlus plots FDR against sample size for a specific log fold change detection level. This

corresponds to a single column of our FDR matrix. This is shown in more detail in Table 5.1.

We can see, that five arrays per group produce a high false discovery rate of 75% for genes

with a log fold change of 1 and 38% for genes with a log fold change of 2. 45 arrays per group

would be needed in order to decrease the FDR to 5%.

79



5. Interactive Sample Size Calculation for Differential Gene Expression Experiments

Table 5.1: Complete FDR table for parameter optimization using four different log fold
changes and various arrays per group as considered parameters.

Log Fold Change 1 2 3 4
Arrays/group FDR

5 0.75 0.38 0.15 0.06
10 0.54 0.11 0.01 1.52x10−3

15 0.39 0.03 1.28x10−3 4.34x10−5

20 0.28 9.75x10−3 1.26x10−4 1.30x10−6

25 0.20 2.97x10−3 1.27x10−5 4.01x10−8

30 0.14 9.16x10−4 1.29x10−6 1.26x10−9

35 0.10 2.84x10−4 1.34x10−7 4.00x10−11

40 0.07 8.88x10−5 1.39x10−8 1.28x10−12

45 0.05 2.79x10−5 1.45x10−9 4.22x10−14

50 0.04 8.78x10−6 1.53x10−10 0.00

For validation of our RNA-Seq implementation, we successfully compared the most complex

use case, power estimation based on sequencing data, to the RnaSeqSampleSize implementation.

Table 5.2 shows the resulting statistical power for different combinations of fold changes and

false discovery rate for a sample size of n = 50 and an estimated 5% of differentially expressed

genes.

Table 5.2: Complete power table showing parameter optimization for the breast inva-
sive carcinoma dataset (BRCA) of TCGA using different fold changes and different FDR
thresholds. Sample size was n = 50, p0 = 0.95 and 100 genes were used in the analysis.

Fold Change 1.1 1.5 2 3
FDR Power
0.01 3.50x10−5 0.26 0.70 0.87
0.03 1.21x10−4 0.33 0.73 0.88
0.05 2.14x10−4 0.37 0.74 0.89
0.10 6.92x10−4 0.42 0.76 0.90
0.20 2.37x10−3 0.48 0.78 0.92

100 genes from the TCGA dataset for breast invasive carcinoma (BRCA) were used in the

estimation. For this dataset and sample size, differentially expressed genes with a low fold

change of 1.1 cannot reliably be predicted even for relatively high FDR thresholds (power of

0.002 for 20% FDR). A modest percentage (26-37%) of DE genes with fold changes of at least

1.5 can be found even for strict FDR cutoffs between 0.01 and 0.05 and DE genes with fold

changes of 2 or higher lead to at least 70% sensitivity.
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5.5 Discussion

Sample size estimation and power analysis are an important part of modern omics projects.

Besides general guidelines198–200 or software for statistical estimations201,202, many omics-

specific approaches and tools have been developed in recent years203,205–212. However, the

large majority either lack an intuitive user interface or are not integrated into existing software

systems, where additional experimental data or metadata would be of great help for the

analysis process. Here, we present our integration of two R packages for DNA microarray128

and RNA-Seq213 statistical power estimation into our web portal. This approach allows us

to leverage data sets and meta information that is stored in our system. Users are provided

with a straight-forward web interface with which they can select options to estimate different

parameters based on literature or publicly available datasets in order to obtain visualizations

for sample size or power of their experiments. For microarray experiments, we augment the

existing OCplus package in order to provide power and sample size matrices and display them

directly in our portal. For RnaSeqSampleSize we provide the ability to automatically process

pilot read count data from our system on a virtual machine in order to predict sample size

or statistical power. For both approaches, our data model allows users to explore the power

of existing experimental designs. Study factors of interest can be selected and the number

of biological replicates per factor level is automatically used for predictions. Additionally,

the input parameters of each power analysis are stored, displayed to users of the portlet and

can be downloaded alongside the prediction results. OCplus was chosen as it presents an

interesting alternative to the classical statistical testing paradigm of focussing on the type I

error rate. Depending on the aim of a study, higher sensitivity and therefore less false negatives

might be more promising than keeping the false discovery rate low. Researchers using our

portlet are empowered to select the preferred minimum sensitivity for their planned study

and can then determine the number of needed replicates to stay below a certain FDR and

FNR cutoff value. Similarly, some studies only target genes with very high fold changes (e.g.,

when searching for potential biomarkers), and might not require the power to detect most

of the differentially expressed transcripts. Through visualization of our power matrix, the

influence of different possible log fold changes on sensitivity and FDR can be easily predicted

without performing multiple runs of the basic version of OCplus. Alternatively, the relationship

between power and FDR for existing experimental designs can be discovered by selecting the

two factor levels that are to be compared. Here, the impact of different DE ratios is reported

and can help scientists estimate the power of their respective studies more confidently. In all

of these cases, the information is presented interactively, allowing for fast exploration of the

statistical properties of different designs. One disadvantage of OCplus is the missing modeling

of biological variation. Pawitan et al. 128 base their model on the ratio of truly differentially

expressed genes, which is an implicit measure of this variation. However, this parameter can
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be hard to predict outside of studies using model organisms that typically show high genetic

homogeneity. OCplus does, however, allow the estimation of this parameter from pilot data

and we are working on including this feature.

For RNA-Seq power analysis, we selected the more recently published package RnaSe-

qSampleSize since it is based on the same statistical foundation as commonly used analysis

tools for RNA sequencing. The question of how deep transcriptomes need to be sequenced

in order to maximize statistical power for differential expression experiments has previously

been discussed37,38. Liu et al. 39 have shown that increasing sequencing depth beyond 10

million reads for human samples leads to diminishing returns and money can often be saved

by instead using more biological replicates. However, the correct strategy is also dependent

on specific transcripts of interest and their abundance. While 10 million reads with sufficient

replicates lead to a powerful experiment overall, low-abundant transcripts might very well

be missed in the analysis. RnaSeqSampleSize and our interface enable users to specify their

estimated average read count in order to receive estimations that are more closely tailored to

the experiment at hand.

In contrast to OCplus, RnaSeqSampleSize also takes biological variation in the form of

dispersion estimates into account by building on the negative binomial model for sequenced

reads. The most accurate way to predict dispersion is to generate pilot data using the same

biological system, conditions, and protocols as in the planned experiment. Our interface

provides an easy way to select the correct datasets for this. Unfortunately, this approach is not

yet followed frequently. To enable predictions without pilot data, RnaSeqSampleSize allows

estimating this information from a number of TCGA datasets based on different human cancer

samples. Additionally, we provide estimates for different organisms from studies and the edgeR

guide. The annotated data available on our portal present an opportunity for future research

into tissue- and organism-dependent biological variation. Since technical variation in RNA-Seq

is very low and typically controlled for by sequencing depth129,219, such data could provide

useful benchmarks for future studies without pilot data.

Power estimation of experiments remains a crucial topic in many fields of high-throughput

biomedical research. New methods to generate data faster and more precisely will require

the adaption or the creation of new models and tools to plan statistically sound experiments.

Our data model and the modular structure of our portlet and backend allows the integration

of statistical power analysis tools for additional omics technologies. Our implementation

uses RVaadin for fast, interactive statistical estimations. Power estimation tools for complex

high-throughput technologies often simulate or even partly perform the respective analysis,

potentially leading to long run times. This complicates existing online user interfaces and

can be detrimental to the user experience. Our approach solves this problem in two ways.

First, the complete computation process is handled on a separate server, enabling the user to

perform other tasks in our portal. Secondly, the server’s connection to our data management

82



Discussion

system allows users to end the session and come back later to find their completed results.

Furthermore, the approach makes use of versioned Singularity containers and collects metadata

of the used parameters. Both are freely available to the user, complying with the FAIR data

principles.
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Chapter 6

Using Experimental Design for Data Pro-

cessing and Visualization

6.1 Introduction

Aspirin is the first and one of the most well-known nonsteroidal anti-inflammatory drugs

(NSAIDs). Apart from its analgesic and antipyretic effects, it has become an important drug for

the treatment and prevention of cardiovascular diseases as it inhibits platelet aggregation220,221.

Despite these benefits, its application is complicated by human genetic variation. Thus, effective

doses vary between patients and a significant part of the population shows aspirin resistance,

greatly reducing the efficacy of the drug222,223. This has posed significant problems with

aspirin dosage, especially when considering that the downside of reduced blood coagulation

can be increased susceptibility to and greater severity of bleeding221,224. These effects have led

researchers to develop rapid tests for aspirin susceptibility. The different human phenotypes

also provide an opportunity to study the genetic causes of aspirin resistance and the pathways

involved in platelet function, the so-called aspirin response signature (ARS). As with any

research topic, the ability to reproduce previous work is an important tool to falsify, confirm or

re-use results of aspirin-related studies. As we have argued in the previous chapters, one of

the most important requirements for reproducibility of results is the availability of metadata,

especially of the experimental design a study is based on. It is equally important to provide

raw data to other researchers in order to reproduce the steps of a study as closely as possible

since each of them represents a unique transformation of data, that can change the end results.

Most importantly, raw data enables researchers to perform quality control. For DNA microarray

studies, a large variety of visualization methods exist that can help to assess the quality of

normalization, the clustering of experimental levels, or other effects that may show errors in

array preparation and may have detrimental effects on the data analysis.

Here, we present the application of the work described in the previous chapters, to examine the

reproducibility of existing research on the aspirin response signature. We imported a publicly

available DNA microarray dataset and its metadata into our portal, leveraging our model for

experimental designs described in Section 3.3. We performed interactive statistical power

analysis using information taken from the experimental design and discuss the implications of
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our approach for further analysis. Using the integration of our metadata model and the stored

data, we developed a normalization and quality control workflow for our portal that automates

important steps in the analysis of microarray data, while at the same time allowing users to

select the experimental factor that should be used to display quality measures. Following the

quality control, we use various approaches to detect differential expression in order to compare

our results with the original study.

6.2 Materials and Methods

We make use of a DNA microarray dataset of 26 human patients225 showing varying responses

to aspirin according to their Aspirin Reaction Units (ARU) as measured with the VerifyNow

test226. Subjects were divided into aspirin-resistant (AR, > 550 ARU), high normal (HN, ARU

500-549), and aspirin-sensitive (AS, ARU < 500) groups. Samples were taken from whole

blood after 7-10 days of continuous aspirin administration (∼81 mg/day). RNA expression was

measured on the Affymetrix U133 Plus 2.0 microarray platform. Study metadata in the ISA-Tab

format was imported from the Personalized NSAID Therapeutics Consortium (PENTACON,

www.pentaconhq.org) study E-GEOD-38511. Associated Affymetrix data was downloaded from

the Gene Expression Omnibus dataset GSE38511.

6.2.1 Quality Control Workflow

We implemented an R-based quality control workflow for Affymetrix arrays that makes use

of captured experimental design information. Our workflow computes and visualizes various

quality measures like comparative intensity box plots before and after normalization based on

the experimental factor selected by a user. Group-wise MA plots show bias between arrays

of different factor levels106. Visualization of the principal components can show clustering of

samples by factor levels or indicate outliers. Similarly, hierarchical clustering of expression

values is visualized using the package dendextend227 in order to allow exploration of the data.

Use of the grid and cloud user support environment (gUSE228) as described by Mohr

et al. 186 enables parameter selection, data staging, and execution. Results of our workflow

are transformed to HTML and can be visualized in our Liferay portal or downloaded with

additionally included QC data.

6.2.2 Differential Expression Analysis

Arrays were normalized using the robust multichip average (RMA) method. Differential

expression analysis was performed using two-sided Student t-tests between the samples of

aspirin-resistant (AR) and all other patients (NR), consisting of aspirin-sensitive (AS) and high

normal (HN), as in the original study by Fallahi et al. 225 . Additionally, the limma package229 was
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used to compare results. For both methods, genes were reported as significantly differentially

expressed based on the criteria laid out by the original study. The authors used a fold-change

cut-off of at least 1.5 combined with p-values below the threshold of α = 0.001. In addition to

this comparison with the original study, we performed multiple testing correction using the

Benjamini-Hochberg124 method using a threshold of α = 0.05.

We note, that when the authors state a fold change of 1.5, they refer to the quotient of

the larger group mean divided by the smaller group mean, also including down-regulated

transcripts showing the respective fold change not exceeding ∼0.67. In the rest of this work,

we follow the same terminology when talking about the fold change cut-off value. For our

results, we report log fold changes and denote the direction of differential expression by a sign.

For a direct comparison between the groups of AR and AS patients, we used the same tools,

but a different strategy. We estimated the proportion of non-DE genes by fitting the mixture

t-distribution to the vector of observed t-statistics between the two groups. This was performed

using the tMixture statistic of the OCplus package. Based on the result we selected the top

3.5% genes with the smallest p-values according to our power estimation based on the model

by Pawitan et al. 128 .

All computations relating to differential expression analysis were performed using R version

3.5.1 on the x86_64-apple-darwin15.6.0 platform unless stated otherwise.

Gene set enrichment and functional analysis were performed with the web-platform DAVID

version 6.8230 using Affymetrix probe set identifiers. We added the GAD disease database to

the standard selection but used default settings in every other category.

6.3 Results

6.3.1 Study Import

Study metadata was imported via the ISA-Tab format, creating unique openBIS sample identifiers

in the process. Identifiers were mapped to the GEO identifiers captured from the ISA-Tab assay

file and attached to the file names of the raw data. Files were then uploaded to the data store

and automatically attached to the respective samples. Successful data registration for all three

factor levels can be seen in Figure 6.1.
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Figure 6.1: Graph of the aspirin study using the factor group after data has been registered.
The experimental factor group was automatically imported from ISA-Tab, enabling a
grouping by different levels and an overview of the related sample sizes. Completed green
arcs denote that all raw data has been registered.

6.3.2 Sample Size Estimation

Based on the registered experimental design of the study, we performed an estimation of

FDR for the comparison between samples from AR patients (n = 8) vs. AS patients (n = 9).

Figure 6.2 shows that the false discovery rate is consistently large (≥ 0.50) for differentially

expressed genes with only low effect sizes (log fold change of 1). For the predicted ratio of

non-DE transcripts, FDR is 0.89 for a sensitivity threshold of 0.8. Even if we accept a sensitivity

of only 0.5, the FDR is only marginally lower (0.75).

For transcripts with a log fold change of 2 and a sensitivity of 0.8, the respective FDR

prediction is 0.18. It is 0.04 if we accept that we will miss half of the DE transcripts (sensitivity

of 0.5).
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Figure 6.2: Matrix of FDR estimations for different log fold changes and ratios of DE genes
for aspirin-resistant (n1 = 8) and aspirin-sensitive patients (n2 = 9). Left: Estimations for
a sensitivity of 0.8 Right: Estimations for a sensitivity of 0.5.

6.3.3 Quality Control

We applied our workflow to all 26 datasets of the the aspirin study using the workflow interface

of qPortal186 as seen in Figure 6.3. The factor patient group was selected as a parameter.

Figure 6.3: Input of registered datasets and parameters for the microarray QC workflow.

The results of our workflow suggest a successful data normalization. Figures 6.4 show that

quantiles of different arrays are very similar. MA plots between different groups show that

there is no general bias towards higher signal intensities in any of the groups. Several outliers

can be seen, suggesting differential expression.
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Plots of the first two principal components and the dendrogram created by hierarchical

clustering (Figure 6.5) suggest a similarity between samples taken of patients that show average

ARU (high normal group). Interestingly, some of the aspirin-resistant and aspirin-sensitive
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Figure 6.5: Sample-wise clustering colored by the different levels of aspirin effectiveness.
Left: Plot of the first two principal components of the normalized expression values. Right:
Hierarchical clustering of the normalized expression values.

samples cluster much closer to each other than to samples of the high normal group.
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6.3.4 Differential Expression Analysis

Using the same thresholds as in the study by Fallahi et al. 225 , normal t-tests declared 128

transcripts as differentially expressed, missing one of the reported probes identified by the

authors, but finding five additional transcripts. Using limma, we identified significantly more

transcripts (186) as can be seen in Figure 6.6.

Figure 6.6: Venn diagram of differentially expressed genes according to different ap-
proaches (see Section 6.2.2 for selection criteria). Using limma resulted in the largest
number (186) of reported DE transcripts, including those found by Fallahi et al. 225 and
our own t-tests.

Limma, our t-tests and the results of Fallahi et al. 225 agree on the differential expression of

123 transcripts. Limma was able to identify all of the previously found transcripts. A full list of

all 186 annotated transcripts including fold changes can be found in Appendix D.

Multiple testing using the Benjamini-Hochberg method with a threshold of α = 0.05 resulted

in four significantly DE transcripts using a normal t-test. 14 additional transcripts could be

identified using limma. Two groups of two transcripts had the same gene annotations, resulting

in the 16 genes shown in Table 6.1.
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Table 6.1: Significantly expressed genes found by the limma package using Benjamini-
Hochberg correction. Positive fold change denotes up-regulation in the resistant group.
*Genes also significant using normal t-test with BH correction. † Mean of two significant
transcripts for the same gene annotation. ‡ Affymetrix probe set ID, since no annotation
was available.

Gene symbol Log FC Gene title
POLK* 0.63 polymerase (DNA directed) kappa
CLEC7A* 0.88† C-type lectin domain family 7, member A
CYP3A43* 0.50 cytochrome P450, family 3, subfamily A, polypeptide 43
HNMT* 0.62 histamine N-mthyltransferase
BIN3 1.63 bridging integrator 3
HSPE1-MOB4/ 0.77 HSPE1-MOB4 readthrough, MOB family member 4,
MOB4 phocein HSPE1-MOB4
DPY30 0.67 dpy-30 histone methyltransferase complex regulatory subunit
222316_at‡ -0.75 —
COMMD6 0.84 COMM domain containing 6
MMP25-AS1 -0.86 MMP25 antisense RNA 1
MYOT -0.79 myotilin
ZNF34 0.47 zinc finger protein 34
NF1 -0.71 neurofibromin 1
CNIH4 0.65† cornichon family AMPA receptor auxiliary protein 4
ADCY10P1 -0.75 adenylate cyclase 10 (soluble) pseudogene 1
USMG5 0.56 up-regulated during skeletal muscle growth 5 homolog (mouse)

Using limma, differential expression analysis between the aspirin-sensitive and resistant

groups identified 494 transcripts with fold changes ≥ 1.5 and p ≤ 0.05, 47 more than reported

by Fallahi et al. 225 . Myotilin was declared as significantly down-regulated in the aspirin-resistant

group. Interestingly, Myotilin has not been directly implicated in relation to blood clotting

and is only known to be expressed in skeletal muscles and the heart, where it interacts with

α-actinin231. Nonetheless, since α-actinin is known to interact with several binding-partners,

further examination of the connection with myotilin might be worthwhile232.

For our second approach using normal t-tests, we selected the top 3.5% (1913) transcripts

with the smallest p-values from the whole dataset. While all of the p-values for these transcripts

were ≤ 0.027, none of the transcripts were significantly differentially expressed after multiple

testing correction, for either of the methods.

Functional analysis of the limma transcript set using DAVID230 found useful gene annota-

tions for 331 transcripts. Table 6.2 shows the 10 most significant functional annotations found

for the limma results.

Comparison with functional annotation performed by Fallahi et al. 225 reveals that our

results are highly similar: we found the four identical function annotations alternative splicing,

complications of blood transfusions, coronary artery stent thrombosis, and ECT receptor inter-
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Table 6.2: Ten most significant functional annotations provided by DAVID for the differ-
entially expressed genes between AS and AR groups as reported by limma. Count, the
percentage with respect to the provided geneset and p-values are shown.

Functional Annotation Count Count% P-Value
Alternative splicing 179 54.1 4.8x10−4

Tobacco Use Disorder 72 21.8 5.7x10−4

extracellular space 37 11.2 5.8x10−4

lymphoproliferative disorders; 3 0.9 8.0x10−4

blood transfusion complications
platelet degranulation 8 2.4 1.1x10−3

positive regulation of endothelial cell apoptotic process 4 1.2 1.2x10−3

coronary artery stent thrombosis 3 0.9 1.6x10−3

vaso-occlusive crisis 3 0.9 1.6x10−3

Antiphospholipid Syndrome|Arteriosclerosis 3 0.9 1.6x10−3

Lupus Erythematosus, Systemic|Thrombosis
ECM-receptor interaction 7 2.1 1.7x10−3

action. Furthermore, two functional annotations that were very similar to the ones reported

by Fallahi et al. 225 were found: platelet degranulation and thrombosis. However, we could

not find significant enrichment of the functions cytoplasmic vesicle part, restenosis or different

infarctions in our gene set, but instead found that 72 differentially expressed transcripts (21.8%)

fit genes related to the diagnosis of Tobacco Use Disorder (TUD). Since tobacco use increases the

risk of heart disease, stroke, atherosclerosis, and vascular disease233,234, we used this subset of

genes to test how many of the reported genes were found in functional annotations of the other

indicated categories and not linked primarily to the psychological effects of tobacco addiction.

We found that of the 72 genes in this set, 59 were annotated for alternative splicing, 12 for

hypertension and 10 for stroke, suggesting a relation to cardiovascular disease and the aim

of the study. On the other hand, one of the inclusion criteria for patients recruited by Fallahi

et al. 225 was risk factors, including smoking. It is conceivable that the authors did not control

for this confounding factor.

Furthermore, 37 transcripts (12.2%) were annotated as relating to functions in the extracel-

lular space, four transcripts (1.2%) were involved in the regulation of endothelial cell apoptosis

and three (0.9%) to vaso-occlusive crisis, a type of thrombosis associated with sickle cell disease

(SCD)235. Platelets in SCD patients are chronically activated and cause inflammation, playing

a large role in this complication236.

Functional annotation results of the 3.5% of transcripts with the lowest p-value found useful

annotations for 1,605 transcripts. Functional groups did not show enrichment of transcripts

linked to blood clotting, platelets or related diseases. Instead, transcripts linked to mitochondrial

inner membrane (67 genes, p-value 2.6x10−10), mRNA splicing (43 genes, p-value 1.5x10−8),

ribonucleoproteins (50 genes, p-value 4.0x10−10) and cell cycle (67 genes, p-value 7.4x10−10)
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were overrepresented. This suggests that the selected, high number of genes contained too much

noise, a hypothesis which is supported by the small sample size and fits the correspondingly

high FDR that was predicted by OCplus. This is also reflected in the p-values of the t-test, which

showed none of the genes as significant after multiple testing correction.

The R script used in the normalization and expression analyses is available as part of the

results of our project on qPortal (see Appendix D). Code for our quality control workflow is

available on Github.i

6.4 Discussion

We presented how our experimental design framework can be used to help reproduce publicly

available studies, as shown by our comparison to the work performed by Fallahi et al. 225 . Our

approach allowed the import and registration of existing ISA-Tab metadata of a study on the

aspirin response signal. The aggregation graph implemented previously allows visualization of

the experimental setup and sample sizes of the aspirin study.

Our implementation of a microarray QC workflow leverages the data model presented

earlier to enable users to start quality control on relevant data and perform explorative data

analysis based on experimental factors. Our QC analysis of the aspirin study showed successful

data normalization and no biases between arrays. We noticed that hierarchical clustering and

plotting of the first two principal components showed some grouping according to the different

factor levels. Surprisingly, some of the low ARU (AR) samples clustered closer to the high

ARU (AS) samples than to the high normal group. On the one hand, clustering based on all

transcript intensities should not be over-interpreted. On the other hand, this very small group

of patients might show other genetic or phenotypic similarities between groups, that Fallahi

et al. 225 could not control for.

We performed statistical power estimation using the study’s experimental design. Results

showed that, based on the sample sizes of the two groups of aspirin-sensitive and aspirin-

resistant samples, we could expect only low sensitivity, while false discovery rate was relatively

high, especially for transcripts with low fold changes.

Using the same thresholds for α and fold change, and the standard implementation of the

t-test in R, we could confirm the large majority of transcripts found by Fallahi et al. 225 to be

DE between the aspirin-resistant group and all other samples. One of the transcripts found

to be DE in the previous study was not detected by our t-test but was found by limma. In

addition, both of our methods reported five additional transcripts as differentially expressed.

As discussed in Section 2.3 varying software or operating system versions used in the analysis

may lead to rounding errors. The proximity of the p-values and fold change in question to the

cut-off values of 0.001 and 1.5, respectively, indicate this as a reasonable cause. Except for this

ihttps://github.com/qbicsoftware/qbic-wf-microarray_qc-old
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outlier, we could reproduce this part of the study with high sensitivity. The results show that our

analysis using the limma R package reported 57 unique transcripts as differentially expressed.

This can be attributed to its more complex approach of using linear models and an empirical

Bayes method to moderate the standard errors of estimated fold changes, resulting in improved

power106. Interestingly, the limma results declared myotilin as significantly down-regulated in

the aspirin-resistant group, a connection that may encourage further study due to its relation

to well-known binding partners231,232.

We used limma for the second part of our analysis, focusing on differential expression

between sensitive and resistant samples. While we found overall more genes to be differentially

expressed, we found very similar functional annotations corresponding to platelet function

and related disease states. For example, vaso-occlusive crisis is a type of thrombosis associated

with sickle cell disease (SCD)235. Platelets in SCD patients are chronically activated and cause

inflammation, playing a large role in this complication236. As aspirin inhibits platelet function,

these annotations fit well to the scope of genetic mechanisms for aspirin resistance or sensitivity.

Functional annotation also suggested 72 genes linked to tobacco use disorder. We showed

that at least some of these genes are in fact known to be involved in cardiovascular diseases.

However, this connection could also be explained by insufficient correction for the confounding

factor of smoking by the authors of the original study.

We also used the top 3.5% transcripts with lowest p-values for functional annotation. This

approach did not reveal relevant functional groups, which potentially points towards too many

genes being included, leading to noise. This explanation is supported by both the high FDR that

was predicted by OCplus, as well as the results of the corrected t-test. On the other hand, most

corrections for multiple testing are very strict by design and might not be a fitting benchmark

for the method proposed by Pawitan et al. 128 . Nonetheless, to further test the benefits of

this approach, larger datasets or datasets with larger fold changes are needed. Selecting the

top differentially expressed genes without performing multiple testing may seem unorthodox.

However, it can be compared to the common methods of alleviating the multiple testing problem

by previously filtering out genes with low variability or fold change. Additionally, the need to

control for false discovery rate is always dependent on the aim of a study. If few promising

candidate genes need to be found, strict filtering with adjusted p-values is necessary. For some

approaches, for example, the training of a machine learning algorithm, researchers may want

to use a larger set of genes. Here, a less strict approach might provide benefits as validation

using additional data needs to be done in any case.

In summary, we could recreate many of the results reported by Fallahi et al. 225 using their

methods and described threshold values. As expected, following the analysis protocol as closely

as possible has a large impact on the results. However, despite using the same analysis and

parameters, there was a very slight disagreement regarding which transcripts were reported

as differentially expressed. The latter part of our analysis shows that the use of publically
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available online tools can be problematic for reproducibility: DAVID provides a very large

number of options, especially concerning the annotation databases. Fallahi et al. 225 did not

record the version or parameters used and we could only guess that they used the GAD disease

database from their results. Versioning in this context is also important since many of the

source databases used by tools like DAVID are updated concurrently to the algorithm itself.

Nonetheless, we were able to replicate many of the functional groups found in the earlier study,

even when using the larger transcript set reported by limma. This suggests that many of the

platelet-related functional annotations may actually be significant.

We did not use a qPortal workflow for our differential expression analysis for several reasons.

First, we wanted to use various analysis methods and types of thresholds, including top-ranking

genes as well as p-values. Secondly, our experience from related studies has taught us that the

annotation of microarray data is notoriously difficult, as different platform versions cannot

be automatically obtained from the same source. Here, container solutions, as discussed in

previous chapters, may be beneficial for solving versioning problems. Microarray data also lends

itself very well to interactive analysis, as none of the analysis steps after normalization typically

take longer than a few seconds. This allows for fast troubleshooting and testing of different

approaches, which is why interactive analysis tools like Mayday have been developed237.

Nonetheless, qPortal does provide the necessary metadata and computational framework as

a foundation to include workflows for the most often used platforms and methods. Current

development is focused on providing these tools.
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Chapter 7

Conclusion and Outlook

In recent years, vast amounts of data have been generated in genomics, transcriptomics,

proteomics, and other fields of high-throughput biology and medicine. Despite the tremendous

opportunities that have been opened up by the increasingly fast and cheap measurement of big

biological data, researchers have identified many obstacles that stand in the way of efficient

and accurate exploitation of these data. The reproducibility crisis has shown that many studies

cannot be reliably reproduced. The main reasons for these difficulties are missing or incorrect

metadata annotation on the one hand and insufficient statistical planning of experiments on

the other.

Especially due to the fact that big biological data is often associated with large and varied

metadata annotation, specialized models, concepts, and tools are required to collect metadata

and other information about experimental designs. The shift from localized data analysis to the

cloud and different online platforms has led to the creation of various science gateways. Since

their main purpose is to allow users to analyze different types of omics data, these platforms

often focus on the annotation of workflow parameters. In contrast, our first contribution focuses

on the tracking of the biological provenance of samples using a tier-based data model. The

Experimental Design Wizard portlet helps researchers create experiments and samples as part

of a multi-factorial research design. It has been used extensively as part of the qPortal platform.

Creation of large studies is simplified by allowing the import of sample tables or the open

metadata standard ISA-Tab. Adding further metadata annotation is possible via the upload of

spreadsheets. While we already cover two distinct use cases in the creation of experimental

designs and the entry of additional measurements for existing samples, we are working on

further modularizing these two aspects of project creation. Support for further metadata

formats like the ones used by ENA, SRA or PRIDE are under development. We have shown the

extensibility of our approach for peptidomics, ligandomics, and other experiment types and

support for additional study and data types is in development. The correct way of performing

integrative data analysis based on different omics types is still a major topic of research that

has not been conclusively solved. Therefore, scientists are in need of new analysis approaches

and pipelines. Our software and data model builds a foundation that enables researchers

to successfully plan multi-omics studies, integrate raw data and develop integrative analysis

pipelines that take into account the study design.
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7. Conclusion and Outlook

While spreadsheet-based formats have strengthened the connection between lab-scientists

and data science, they lose some of their usefulness for large or even medium-sized projects.

Current methods are not sufficient to allow scientists to check the validity of the vast amounts

of metadata they enter. We have discovered that many publically available studies show

inconsistencies between the experimental design reported in ISA-Tab and their publications.

Our contribution to resolving this problem is an interactive visualization of large studies based

on the aggregation of similar samples into a graph showing the biological provenance. Here,

we make use of our data model and experimental designs to visualize study factors and number

of replicates or other interesting aspects of a study. Through our support of the open format

ISA-Tab, public studies can be easily explored. While we make our approach available via a

stand-alone application, the real strength of this visualization is highlighted in combination

with additional data sources as they are available in qPortal instances. Imported studies can be

checked for consistency before they are registered in the system. For existing studies, missing

data can be visualized and the respective samples listed. Since our approach is not strictly

tied to the aggregation of study factors or species, we are working on the inclusion of more

customization options for users. Visualization of aggregation graphs shows promise for future

applications like the interactive creation or editing of study designs.

To focus on the second cause of the reproducibility crisis — insufficient experimental design

and missing statistical planning — we connected our data model to an interactive method for

sample size and power estimation in differential gene expression analysis. While a number

of methods for power analysis exist in this field, many are limited to command line tools or

statistical programming languages and none are connected to metadata and data storage. With

our approach, we enable the easy use of pilot data to predict sample size or statistical power of

an experiment, potentially saving costs and helping researchers to create reproducible studies.

While we focus on data of microarrays and RNA-Sequencing, our portlet is extendable for other

methods and data types, given that tools can be included in a Singularity container or even

directly into the portlet. This modularity is useful, as there is still no agreement on the best

methods to estimate the required sample size or the power of studies using RNA-Seq data. An

important point is that our focus in these cases was on studies comparing two levels of a factor.

Our model for experimental designs supports multi-factorial research designs and factors with

more than two levels. To take full advantage of these designs, additional methods are needed

for power prediction and analysis of the experiments created with our approaches. Analysis of

variance (ANOVA) is one classic example that can be used to compare three or more group

means. For microarrays, the analysis package Limma provides methods to analyze complex

experimental setups. Power analysis can also be a topic of interest for multi-omics experiments,

where taking into account the interaction between different omics layers is important. Methods

that use the knowledge gained through the use of one technology could potentially increase
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statistical power when other parts of the data is insufficient to draw statistically significant

conclusions.

The application of our work to a real study shows that we can easily import and analyze

well-annotated studies. In the course of this analysis, we leveraged the functionality of qPortal

and our experimental design model in order to create a workflow for automated normalization

and quality control of microarray data, further demonstrating the advantages of our approach.

Utilization of our portlet for statistical power estimation showed that sample sizes were most

certainly not large enough to control for both type I and type II errors. In general, the comparison

of differential gene expression analysis based on the approaches used by the original study

was a success. However, despite the authors providing good annotation for their data, we

could identify obstacles when reproducing their study. Especially when online tools are used,

the provenance chain from raw data to results can be broken, if no version information is

provided. If these tools are based on third-party databases that are frequently updated between

versions, the problem can be exacerbated. Guidelines are needed so providers of online services

prominently offer versioning and parameter information of their algorithms, and researchers

need to be made aware that they should provide this information upon publication.

Existing guidelines, as defined by the FAIR standard, already try to alleviate the causes of the

reproducibility crisis. Our approaches provide FAIR data in the following ways: the Experimental

Design Wizard enables input, upload and update of metadata for large studies, connected to

the powerful FAIR data management system openBIS. This lays the foundation to make data

findable by its metadata. For statistical power estimations and analysis workflows, we store

parameters and results, guaranteeing data provenance and reproducibility. As part of qPortal,

metadata imported via our tools, and the attached data are stored and transferred securely

and using accessible protocols. Interoperability is achieved by using controlled vocabularies for

suitable types of metadata, often matched to public ontologies of the respective biomedical fields.

In addition, we support open standards like ISA-Tab and are working on export functionality

for multiple formats. Last but not least, we aid in the reusability of our results and tools by

providing the source code and versions of portlets, containers, and workflows using Github

and Maven.

In conclusion, we are confident that our efforts will contribute to the advancement of

various fields of biological high-throughput analysis.
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Appendix A: Abbreviations

API Application Programming Interface

bp base pair

cDNA complementary DNA

CTD Common tool descriptor

DE Differentially expressed/differential expression

ENA European Nucleotide Archive

ESI electrospray ionization

ETL Extract, transform, load

FDR False discovery rate

FN(R) False negative (rate)

FPKM Fragments per kilobase per million mapped reads

(G)UI (Graphical) user interface

HLA human leukocyte antigen

iTRAQ isobaric Tags for Relative and Absolute Quantitation

I/O Input/Output

LC(-MS) Liquid chromatography(–mass spectrometry)

LDAP Lightweight directory access protocol

LIMS Laboratory information management system

MALDI matrix-assisted laser desorption/ionization

MS Mass spectrometry

MS/MS tandem mass spectrometry

m/z ratio mass-to-charge ratio

NGS Next-generation sequencing

OBI Ontology for Biomedical Investigations

openBIS Open Source Biology Information System
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Abbreviations

OS Operating system

PTM posttranslational modification(s)

QC Quality control

(Q)TOF (quadrupole) time-of-flight

RIN RNA integrity number

RNA-Seq RNA sequencing

RPKM Reads per kilobase per million mapped reads

SILAC stable isotope labeling by amino acids in cell culture

SSH Secure Shell

SSO Single sign-on

TMT Tandem Mass Tag

TP(R) True positive (rate)

VM Virtual machine
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Visual Exploration of Experimental Designs

Table of MetaboLights studies used for validation

Table B.1: MetaboLights studies used in validation of our graph aggregation tool for
experimental design visualization. Study identifiers, description, and our assessment
of reproducibility due to the shared information and its accuracy compared with the
respective publication is shown.

Identifier Description Assessment
MTBLS618 Metabolomics on tomato plants infected with blight accurate metadata
MTBLS619 Response to dietary carbohydrates in seabass tissue missing species replicates
MTBLS622 Wheat and aphid metabolism biological replicates missing
MTBLS640 Metabolome in Parkinson’s mouse model factor undefined, no replicates
MTBLS654 Role of fermented fish in kimchi fermentation accurate metadata
MTBLS669 Effects of starvation in breast cancer model accurate metadata
MTBLS674 Metabolome in Parkinson’s mouse model factor undefined, no replicates
MTBLS687 Linking root exudates to functional plant traits 3 replicates missing
MTBLS750 Effects of Lipin1 deficiency accurate metadata
MTBLS780 Multi-omics study on S. cerevisiae strain diversity ISA-Tab contains additional strains
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Interactive Sample Size Calculation for Differential Gene Expression Experiments

Code used for Statistical Power Estimations

1 #Calculate FDR for FC=1 and different sample sizes of a Microarray
,→ experiment

2 library(OCPlus)
3 samplesize(p0 = 0.95, D=1, crit.style = c(’top␣percentage ’), crit =0.05)
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Supplimentary material

Supplementary material is available via qPortal.i using user credentials qbcdemo01 and pass-

word demo.

Table of all differentially expressed transcripts found

Table D.1: Significantly expressed transcripts found by the Limma package filtered by
minimum fold change of 1.5 and a threshold of α = 0.001. Positive fold change denotes
up-regulation in the resistant group. *Probes also found to be DE in the study by Fallahi
et al. 225 .

Probe Set ID Gene Symbol log FC
1564052_at* TREML4 -1.673
1557582_at* BIN3 1.629
215101_s_at CXCL5 -1.508
241092_at — -1.472
1555520_at PTCH1 -1.230
1565716_at* FUS -1.204
220117_at* ZNF385D -1.162
220374_at* KLHL28 -1.125
238913_at* — -1.090
241339_at* — -1.073
243169_at — 1.059
1569676_at TOR1AIP2 -1.051
1569685_at* COX10 -1.046
202110_at* COX7B 1.027
239501_at* — -0.999
215663_at* MBNL1 -0.992
209773_s_at RRM2 -0.960
217329_x_at* — 0.958
222791_at* RSBN1 -0.957
241254_at — -0.953
215708_s_at PRIM2 -0.951
244349_at* — -0.934
227088_at PDE5A -0.923
229095_s_at* LIMS3-LOC440895 0.920
201742_x_at* SRSF1 -0.905
219659_at ATP8A2 -0.904
222777_s_at* WHSC1 -0.903
1555756_a_at* CLEC7A 0.898
239799_at LINC00476 -0.897
241732_at* — -0.892
236669_at* SDCBP2-AS1 0.891
1559648_at LINC00892 -0.883
239384_at* SRSF1 -0.881
202635_s_at* POLR2K 0.880
208782_at FSTL1 -0.880
238231_at* NFYC -0.877
226289_at* CAPRIN1 -0.874
1557315_a_at* — -0.873
204724_s_at COL9A3 0.873
236513_at PRELID2 -0.871
1562528_at — -0.869
1554406_a_at* CLEC7A 0.864
227449_at* EPHA4 -0.859
240054_at* MMP25-AS1 -0.857
233725_at* — 0.857
1570352_at* ATM -0.841
225312_at* COMMD6 0.839
238573_at* OTUD7B -0.836
229773_at* SNAP23 -0.836
223566_s_at* BCOR -0.834
213280_at RAP1GAP2 -0.833
244332_at* — -0.831
1552646_at IL11RA -0.826
1559614_at* FLJ38773 0.822
236511_at* — -0.817

ihttps://portal.qbic.uni-tuebingen.de/portal/web/qbic/browser#!project//PUBLIC_PROJECTS/QHASP
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Probe Set ID Gene Symbol log FC
240703_s_at HERC1 -0.816
1560171_at* — -0.812
233228_at* — -0.808
228542_at* MRS2 -0.808
213846_at COX7C 0.806
219728_at* MYOT -0.793
227016_at* ERICH1 0.791
239426_at* SLC2A8 -0.785
213285_at* TMEM30B -0.784
207550_at MPL -0.783
237389_at — -0.780
203960_s_at* HSPB11 0.777
241786_at* — -0.776
233925_at — -0.772
222875_at DHX33 -0.772
1563958_at* — -0.771
217535_at — 0.770
225195_at* DPH3 0.769
1554309_at* EIF4G3 -0.769
234989_at* NEAT1 -0.769
202918_s_at* HSPE1-MOB4 /// MOB4 0.767
228033_at E2F7 -0.765
215898_at* TTLL5 -0.753
222316_at* — -0.752
1557300_s_at — -0.752
233959_at* ADCY10P1 -0.750
1556758_at* FAM208B -0.750
228053_s_at* TOMM5 0.749
229391_s_at FAM26F 0.749
218049_s_at MRPL13 0.745
1557749_at* EHBP1L1 0.742
238578_at* TMEM182 -0.741
226130_at* RPS16 -0.738
211732_x_at* HNMT 0.735
242968_at* — -0.731
200061_s_at* RPS24 0.730
228984_at CARNS1 -0.728
233099_at* — -0.727
201754_at COX6C 0.727
202634_at* POLR2K 0.721
212678_at* NF1 -0.715
1560622_at — -0.715
223797_at* PRO2852 -0.710
222575_at* SETD5 -0.708
232264_at* — -0.706
232406_at* LOC105372526 0.701
213767_at* KSR1 0.699
230171_at LOC105377348 0.698
218728_s_at* CNIH4 0.691
223062_s_at PSAT1 -0.691
1566129_at LIMS1 0.691
220969_s_at* — -0.690
202984_s_at BAG5 -0.690
1558183_at* ZNF17 -0.689
227461_at* STON2 -0.685
243996_at NPR2 -0.682
206572_x_at* ZNF85 0.681
227156_at* CASK -0.681
232676_x_at* MYEF2 -0.676
239760_at — -0.675
225127_at* TMEM181 -0.674
214224_s_at* PIN4 0.673
211973_at NUDT3 0.670
214657_s_at NEAT1 -0.670
224129_s_at* DPY30 0.669
236207_at* SSFA2 0.669
219794_at* VPS53 0.666
1558369_at* MPHOSPH9 -0.664
203703_s_at TTLL4 -0.663
1568732_at — 0.663
229374_at EPHA4 -0.661
1570048_at DNAJC24 -0.659
243003_at* — -0.658
236165_at* MSL3 -0.654
209000_s_at* SEPT8 -0.654
1561596_at* — 0.654
222771_s_at MYEF2 -0.651
227350_at* HELLS -0.648
217682_at* C16orf72 -0.648
1560680_at* — -0.647
202278_s_at SPTLC1 -0.645
206007_at PRG4 -0.645
235433_at* APOOL -0.640
228556_at* YTHDC1 0.639

129



Using Experimental Design for Data Processing and Visualization

Probe Set ID Gene Symbol log FC
214717_at* PKI55 -0.638
217773_s_at NDUFA4 0.638
225036_at* TOMM5 0.636
244190_at* THAP5 0.635
223260_s_at* POLK 0.634
241250_at* — -0.631
205644_s_at* SNRPG 0.628
204112_s_at* HNMT 0.623
214242_at* MAN1A2 -0.623
1562903_at FAM86B3P 0.622
224511_s_at* TXNDC17 0.620
235847_at — -0.615
1554986_a_at* SNX19 0.614
204375_at CLSTN3 -0.614
200963_x_at* RPL31 0.612
218351_at* COMMD8 0.611
215407_s_at* ASTN2 -0.611
213822_s_at* UBE3B 0.610
229319_at* — -0.607
1557126_a_at* PLD1 -0.606
221380_at — 0.606
1552633_at* ZNF101 0.605
1553530_a_at* ITGB1 /// ITGB1P1 -0.605
221434_s_at* SLIRP 0.605
227840_at C2orf76 0.605
244132_x_at* ZNF518A -0.604
223996_s_at MRPL30 0.604
223993_s_at* CNIH4 0.603
203781_at* MRPL33 0.602
1556633_at* C1orf204 -0.602
204992_s_at* PFN2 -0.601
222044_at PCIF1 0.601
1552306_at ALG10 -0.601
243129_at* CXorf40A /// CXorf40B -0.600
203521_s_at* ZNF318 -0.598
243279_at* — 0.598
240893_at LOC101928317 0.597
241932_at* — -0.595
218309_at* CAMK2N1 -0.594
243903_at* — 0.593
233818_at LTN1 -0.591
243993_at* — -0.588
233476_at* — 0.588
217998_at PHLDA1 -0.587
214747_at ZBED4 -0.586
242676_at NDUFV2-AS1 0.586
225080_at MYO1C -0.585
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