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Abstract

Autonomous driving promises great potential for social and economic benefits. While
autonomous driving remains an unsolved problem, recent advances in computer vision
have enabled considerable progress in development of autonomous vehicles. For instance,
recognition methods such as object detection, semantic and instance semantic segmentation
affords the self driving vehicles with the precise understanding of their surroundings which is
critical to safe autonomous driving. Furthermore, with the advent of deep learning, machine
recognition methods have reached human-like performance. Therefore, in this thesis, we
propose different methods to exploit semantic cues from state-of-the-art recognition methods
to improve performance of other tasks required to solve autonomous driving. To this end, in
this thesis, we examine the effectiveness of recognition as a regularizer in two prominent
problems in autonomous driving, namely, scene flow estimation and end-to-end learned
autonomous driving.

Besides recognizing traffic participants and predicting their position, an autonomous
car needs to precisely predict their 3D position in the future for tasks like navigation and
planning. Scene flow is a prominent representation for such motion estimation where a
3D position and 3D motion vector is associated with every observed surface point in the
scene. However, existing methods for 3D scene flow estimation often fail in the presence
of large displacement or local ambiguities, e.g., at texture-less or reflective surfaces which
are omnipresent in dynamic road scenes. Therefore, first, we address the problem of large
displacements or local ambiguities by exploiting recognition cues such as semantic grouping
and fine-grained geometric recognition to regularize scene flow estimation. We compute
these cues using CNNs trained on a newly annotated dataset of stereo images and integrate
them into a CRF-based model for robust 3D scene flow estimation. We also investigate
the importance of recognition granularity, from coarse 2D bounding box estimates over
2D instance segmentations to fine-grained 3D object part predictions. From this study,
we show that regularization from recognition cues significantly boosts the scene flow
accuracy, in particular in challenging foreground regions. Secondly, we conclude that the
instance segmentation cue is by far strongest, in our setting. Alongside, we demonstrate the
effectiveness of our method on challenging scene flow benchmarks.

In contrast to cameras, laser scanners provide a 360 degree field of view with just one
sensor, are generally unaffected by lighting conditions, and do not suffer from the quadratic
error behavior of stereo cameras. Therefore, second, in this work, we extend the idea
of semantic grouping as a regularizer for 3D motion to 3D point cloud measurements
from LIDAR sensor observations. We achieve this goal by jointly predicting 3D scene
flow as well as the 3D bounding box and semantically grouping the motion vectors using
3D object detections. In order to semantically group the motion vectors using 3D object
detections, we need to predict pointiwise rigid motion. We show that the traditional global
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Abstract

representation of rigid body motion prohibits inference by CNNs, and propose a translation
equivariant representation to circumvent this problem and amenable to CNN learning. For
training our deep network, we augment real scans from with virtual objects, realistically
modeling occlusions and simulating sensor noise. A thorough comparison with classic and
learning-based techniques highlights the robustness of the proposed approach.

It is well known that recognition cues such as semantic segmentation can be used as an ef-
fective intermediate representation to regularize learning end-to-end learned driving policies.
However, the task of street scene semantic segmentation requires expensive annotations.
Furthermore, segmentation algorithms are often trained irrespective of the actual driving
task, using auxiliary image-space loss functions which are not guaranteed to maximize
driving metrics such as safety or distance traveled per intervention. Therefore, third, in this
work, we analyze several recognition-based intermediate representations for end-to-end
learned driving policies. We seek to quantify the impact of reducing segmentation annotation
costs on learned behavior cloning agents. We systematically study the trade-off between
annotation efficiency and driving performance, i.e., the types of classes labeled, the number
of image samples used to learn the visual abstraction model, and their granularity (e.g.,
object masks vs. 2D bounding boxes). Our analysis uncovers several practical insights
into how segmentation-based visual abstractions can be exploited in a more label efficient
manner. Surprisingly, we find that state-of-the-art driving performance can be achieved with
orders of magnitude reduction in annotation cost.
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Kurzfassung

Autonomes Fahren verspricht ein großes Potenzial für soziale und wirtschaftliche Vorteile.
Während das autonome Fahren nach wie vor ein ungelöstes Problem darstellt, haben die
jüngsten Fortschritte in der Computer Vision erhebliche Fortschritte bei der Entwicklung
autonomer Fahrzeuge ermöglicht. Zum Beispiel ermöglichen Erkennungsmethoden wie
Objekterkennung, semantische und instanzsemantische Segmentierung den selbstfahrenden
Fahrzeugen ein präzises Verständnis ihrer Umgebung, was für sicheres autonomes Fahren
entscheidend ist. Darüber hinaus haben maschinelle Erkennungsmethoden mit dem Auf-
kommen von Deep Learning eine menschenähnliche Leistung erreicht. Daher schlagen wir
in dieser Arbeit verschiedene Methoden vor, um semantische Hinweise von modernsten
Erkennungsmethoden zu nutzen, um die Leistung anderer Aufgaben zu verbessern, die
zur Lösung des autonomen Fahrens erforderlich sind. Zu diesem Zweck untersuchen wir
in dieser Arbeit die Effektivität der Erkennung als Regularisierer in zwei prominenten
Problemen des autonomen Fahrens, nämlich der Schätzung des Szenenflusses und dem
Ende-zu-Ende-gelernten autonomen Fahren.

Neben der Erkennung und Vorhersage der Position von Verkehrsteilnehmern muss ein
autonomes Auto für Aufgaben wie Navigation und Planung auch deren 3D-Position in
der Zukunft präzise vorhersagen. Der Szenenfluss ist eine prominente Darstellung für eine
solche Bewegungsschätzung, bei der jedem beobachteten Oberflächenpunkt in der Szene
eine 3D-Position und ein 3D-Bewegungsvektor zugeordnet ist. Bestehende Methoden zur
3D-Szenenflussschätzung versagen jedoch oft bei großen Verschiebungen oder lokalen
Mehrdeutigkeiten, z. B. bei texturlosen oder reflektierenden Oberflächen, die in dynami-
schen Straßenszenen allgegenwärtig sind. Daher adressieren wir zunächst das Problem
großer Verschiebungen oder lokaler Mehrdeutigkeiten, indem wir Erkennungsmerkmale
wie semantische Gruppierung und feinkörnige geometrische Erkennung zur Regularisierung
der Szenenflussschätzung nutzen. Wir berechnen diese Hinweise mit CNNs, die auf einem
neu annotierten Datensatz von Stereobildern trainiert wurden, und integrieren sie in ein
CRF-basiertes Modell für eine robuste 3D-Szenenflussschätzung. Wir untersuchen auch die
Bedeutung der Erkennungsgranularität, von groben 2D-Bounding-Box-Schätzungen über
2D-Instanzsegmentierungen bis hin zu feinkörnigen 3D-Objektteilvorhersagen. Aus dieser
Studie geht hervor, dass die Regularisierung von Erkennungsmerkmalen die Genauigkeit
des Szenenflusses signifikant erhöht, insbesondere in schwierigen Vordergrundregionen.
Zweitens kommen wir zu dem Schluss, dass der Instanzsegmentierungs-Cue in unserer
Umgebung bei weitem am stärksten ist. Daneben demonstrieren wir die Effektivität unserer
Methode in anspruchsvollen Scene-Flow-Benchmarks.

Im Gegensatz zu Kameras bieten Laserscanner ein 360-Grad-Sichtfeld mit nur einem
Sensor, sind im Allgemeinen unbeeinflusst von den Lichtverhältnissen und leiden nicht unter
dem quadratischen Fehlerverhalten von Stereokameras. Daher erweitern wir in dieser Arbeit
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Kurzfassung

zweitens die Idee der semantischen Gruppierung als Regularisierer für 3D-Bewegungen
auf 3D-Punktwolkenmessungen aus LIDAR-Sensorbeobachtungen. Wir erreichen dieses
Ziel durch die gemeinsame Vorhersage des 3D-Szenenflusses sowie der 3D-Bounding
Box und die semantische Gruppierung der Bewegungsvektoren unter Verwendung von
3D-Objektdetektionen. Um die Bewegungsvektoren mithilfe von 3D-Objekterkennungen
semantisch zu gruppieren, müssen wir die punktweise starre Bewegung vorhersagen. Wir
zeigen, dass die traditionelle globale Repräsentation der Starrkörperbewegung die Inferenz
durch CNNs verbietet, und schlagen eine translationsäquivariante Repräsentation vor, um
dieses Problem zu umgehen und für das CNN-Lernen geeignet zu sein. Um unser tiefes
Netzwerk zu trainieren, erweitern wir reale Scans mit virtuellen Objekten, modellieren
realistisch Verdeckungen und simulieren Sensorrauschen. Ein gründlicher Vergleich mit
klassischen und lernbasierten Techniken unterstreicht die Robustheit des vorgeschlagenen
Ansatzes.

Es ist bekannt, dass Erkennungshinweise wie die semantische Segmentierung als ef-
fektive Zwischenrepräsentation verwendet werden können, um gelernte Ende-zu-Ende-
Fahrstrategien zu regularisieren. Die Aufgabe der semantischen Segmentierung von Stra-
ßenszenen erfordert jedoch teure Annotationen. Darüber hinaus werden Segmentierungsal-
gorithmen oft unabhängig von der eigentlichen Fahraufgabe trainiert, indem Hilfsverlust-
funktionen verwendet werden, die nicht garantieren, dass sie Fahrmetriken wie Sicherheit
oder zurückgelegte Strecke pro Eingriff maximieren. Daher analysieren wir in dieser Arbeit
drittens mehrere erkennungsbasierte Zwischendarstellungen für Ende-zu-Ende-gelernte
Fahrstrategien. Wir versuchen, die Auswirkungen einer Reduzierung der Segmentierungs-
annotationskosten auf Agenten, die gelerntes Verhalten klonen, zu quantifizieren. Wir
untersuchen systematisch den Kompromiss zwischen Annotationseffizienz und Fahrleistung,
d.h. Art der gelabelten Klassen, die Anzahl der Bildproben, die zum Lernen des visuellen
Abstraktionsmodells verwendet werden, und deren Granularität (z.b., Objektmasken vs. 2D
Bounding Boxes). Unsere Analyse deckt mehrere praktische Erkenntnisse darüber auf, wie
segmentierungsbasierte visuelle Abstraktionen auf eine effizientere Weise genutzt werden
können. Überraschenderweise stellen wir fest, dass die modernste Fahrleistung mit einer
Größenordnung weniger Annotationskosten erreicht werden kann.
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1 Introduction

Autonomous driving promises great potential social and economic benefits such as reducing
the cost of mobility, frequency of accidents, parking requirements, traffic congestion. Since
the first successful demonstrations in the 1980s [DM92; DG88; Tho+88], considerable
advances have been made towards development of autonomous cars specially in the last
few years with the emergence of deep learning. However, autonomous driving outside of a
constrained setting remains a challenging unsolved problem.

1.1 Modular approaches for Autonomous Driving

Traditionally, most industrial autonomous driving projects employ a modular approach for
developing autonomous vehicles. This involves leveraging computer vision techniques to
infer vital properties of the scene such as detecting location and motion of other vehicles,
estimating derivable region. The output from the computer vision modules are then fed to
a path planning and vehicle control module in order to generate the vehicle controls. The
advantage of such approach is that each module can be developed in parallel by independent
engineering teams. Moreover, the intermediate outputs of each module allow for better
explainability of the driving decision policy.

1.2 Recognition in Autonomous Driving

For intelligent systems such as self-driving cars, the precise understanding of their surround-
ings is critical. Therefore, recognition is a key step in the modular pipeline for autonomous
driving. In order to avoid collisions and crashes, it is necessary that the autonomous vehicle
recognizes and localizes other vehicles, pedestrians and obstacles in its surroundings. It is
also necessary for the autonomous vehicle to follow the traffic rules and regulation. Recog-
nition which is the task of identifying a semantic object in an image enables the self driving
car to recognize speed limit signs, traffic lights and road markings. The recognition problem
has been approached using a variety of input modalities. Video cameras are the cheapest and
most commonly used type of sensors for recognition. Active sensors that emit signals and
observe their reflection, like laser scanners can provide range information which is helpful
for detecting an object and localizing it in 3D. However, laser scanners often have a smaller
resolution compared with video cameras. Depending on the weather conditions, time of
day, or material properties, it can be problematic to rely on a single type of sensor alone.
Cameras and laser scanners are affected by reflective or transparent surfaces, therefore, the
combination of information from different sensors via sensor fusion allows for the robust
integration of this complementary information. Human drivers also use recognition to safely
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1 Introduction

Figure 1.1: Object Detection for Autnomous Driving. In object detection, we are interested
in finding all objects of certain classes in an image. These detections are usually represented
with bounding boxes. Reproduced from [Yu+19].

drive a vehicle and can recognize and localize other cars, pedestrians and other semantic
categories with high accuracy in diverse weather conditions and in presence of high amount
of occlusions, shadows or reflections. While recognition is a relatively easy task for humans,
machine recognition is a challenging problem because of diversity in intra-class appearance,
scale, illumination of the scene and viewpoint of the sensor recording the observations. In
addition, semantic objects of interest could appear with non-rigid deformations and can
be occluded, making the problem more challenging. The following recognition tasks have
significant applications in autonomous driving and are therefore most relevant to this work.

• Object Detection: Object detection is the task of identifying and localizing multiple
semantic objects present in the scene. Each detected object is defined by a bounding
box and semantic label as shown in Fig. 1.1.

• Semantic Segmentation: Semantic segmentation is a fundamental problem in com-
puter vision and an intermediate goal towards solving higher-level tasks such as scene
understanding. The goal of semantic segmentation is to assign each pixel in the image
a label from a predefined set of categories. The task is illustrated in Fig. 1.2 using
an example from the Cityscapes dataset1 by Cordts et al. [Cor+16]. Segmentation of
images into semantic regions that are typically found in street scenes, such as cars,

1https://www.cityscapes-dataset.com/
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Figure 1.2: Semantic Segmentation for Autonomous Driving. In semantic segmentation,
the goal is to assign a semantic class label to each pixel in the image. Reproduced from
[Cor+16].

pedestrians, or road allows for a comprehensive understanding of the surrounding
which is essential to autonomous navigation.

• Instance Semantic Segmentation: The goal of semantic instance segmentation is
to simultaneously detect, segment and classify every individual object in an image.
Unlike semantic segmentation, a solution to this task provides information about the
position, semantics, shape, and count of individual objects.

1.3 Scene Flow in Autonomous Driving

Besides recognizing traffic participants and identifying their 3D locations, an autonomous
car needs to precisely predict their 3D position in the future for tasks like navigation and
planning. Notably, a critical input to modular autonomous driving approaches are such
predictions about the future positions of other traffic actors. To this end, the autonomous
vehicle requires knowledge about the 3D motion of other agents in the scene.

1.3.1 What is Scene Flow?

Scene flow is the most generic representation of this 3D motion introduced by [Ved+99;
Ved+05]. It associates a 3D position and 3D motion vector with every observed surface point
in the scene. Scene flow is most commonly estimated from two consecutive in time stereo
image pairs from a calibrated stereo camera rig [HD07; Wed+08]. As illustrated in Fig. 1.3,
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Figure 1.3: Scene Flow Estimation from Stereo Sequences. The minimal setup for image-
based scene flow estimation is given by two consecutive stereo image pairs. Reproduced
from [HD07].

stereo image based methods parametrize scene flow in the image space by employing a
2D representation of scene flow. In such a parameterization, scene flow is represented by
optical flow which is the projection of the 3D motion onto the image plane of a camera and
disparity maps for the two time points to compute 3D scene flow. The estimated disparity
between the left and right camera at the first time frame allows for 3D reconstruction of
every surface pixel in the image. The estimated optical flow can be then combined with
estimated disparity at the next time frame to generate the second 3D reconstruction. The
scene flow at every surface point is the difference between the two reconstructions. Thus,
scene flow generalizes optical flow to 3D, or equally, dense stereo to dynamic scenes.

More formally, consider left and right image sequences from a stereo camera setup
Il(x,y, t), Ir(x,y, t) where parameters (x,y) denote pixel coordinates and t is time. Scene
flow can be defined by computing the corresponding point for every pixel (x,y) in the left
reference image at time t in the other three frames. Let optical flow (u,v) denote the motion
of the pixel (x,y) in the left image at time t upto time t +1. Let (d,d0) denote the disparity
between the left camera and right camera image at time t and t +1 respectively. Given the
disparity (d,d0) at time (t, t +1) respectively, the corresponding point in the right camera
image at time t is (x+d,y). Given the optical flow (u,v), the corresponding point in the
left camera image at time t +1 is (x+u,y+ v). Finally, the corresponding pixel to the pixel
(x,y) in Il is (x+u+d0,y+v). After computing the correspondences, the 3D location of the
surface pixel in both time frames can be computed and hence fully describes the 3D motion
of that surface point.
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1.4 Recognition as a Regularizer for Scene Flow from Stereo Images

1.3.2 Computing Scene Flow

Classical methods for computing scene flow minimize an energy function consisting of
a data term and a smoothness term. The data term is designed to model the consistency
of visual features for matching points across frames. However, data term is not enough to
obtain a unique solution because the scene flow estimation problem is ill-posed. Therefore,
additional regularization constraints are required to obtain a unique solution. Typically, a
smoothness term is added to the energy function to regularize the scene flow estimation by
encouraging coherent structure and motion.

While humans are able perform this task effortlessly by integrating depth and motion
cues from observations over time, existing scene flow methods rely heavily on local features
(e.g., Census [ZW94] and Daisy [TLF10]) for computing the data term and for initialization.
Therefore, scene flow estimation shares some of the challenges with stereo and optical flow
estimation, such as matching ambiguities in weakly textured regions, large motions and
varying illumination described below.

Large Displacements. As vehicles move at high velocity, matching based on local features
can lead to large errors. As shown in Fig. 1.4 (top), in presence of large displacement, local
visual features can lead to matching of the front wheel with the real wheel.

Varying illumination. The brightness consistency assumption is often violated in dynamic
road scenes. It can occur because of changing illumination conditions because of sudden
movement of clouds. In addition, shadows and external illumination from light sources from
other vehicles and buildings can pose problems.

Textureless Regions. Textureless and specular regions such as windows of vehicles make
matching based on local visual features challenging and therefore can lead to large errors in
estimation.

As a consequence of the above listed challenges, even state-of-the-art methods fail in the
presence of very large displacements or local ambiguities from, e.g., textureless or reflective
surfaces. However, these challenges are omnipresent in outdoor road scenes, which is the
application we focus on in this thesis.

1.4 Recognition as a Regularizer for Scene Flow from Stereo
Images

First, in this work, we propose an approach to address the problem with large displacements
or local ambiguities in scene flow estimation. Towards this goal, we propose regularization
of scene flow estimation with recognition cues such as semantic grouping and fine-grained
geometric recognition. In addition, we investigate the importance of recognition granularity,
from coarse 2D bounding box estimates over 2D instance segmentations to fine-grained
3D object part predictions. We will formulate the output of the recognition task as a new
constraint, besides standard constraints such as local appearance and 3D motion-smoothness
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2D Bounding Box 2D Instance Segmentation 3D Object Coordinates

Figure 1.4: Motivation for Recognition as a Regularizer for Scene Flow. Top: Two
consecutive frames (overlaid) from the KITTI 2015 scene flow dataset. Large displacements
and specular surfaces are challenging for current scene flow estimation algorithms. Bottom:
Recognition can provide powerful geometric cues to help with this problem. In this work,
we investigate: 2D bounding boxes, 2D instance segmentations and 3D object coordinates.

within an image, in a CRF-based framework. For semantic grouping, we consider two
scenarios: i) a bounding box around the visible part of each semantic instance, and ii) a
pixel-wise segmentation of the visible part of each semantic instance. While the latter output
provides a more detailed mask of the object, and hence may be more beneficial for the
scene flow task, it is also a harder task to solve, and hence may contain segmentation errors.
While these cues do not provide additional geometric evidence, they constrain the space
of possible rigid body motions: pixels which are grouped together are likely to move as
a single rigid object in the case of vehicles. We integrate both cues into the scene flow
task by enforcing consistency between neighboring views (either in time or space). In
short, a pixel within an instance region (bounding box or segment) in one frame should
be mapped to an instance in the other frame. Furthermore, all pixels within an instance
should move as one rigid entity. The 3D object coordinates specify the relative 3D location
of an object’s surface point with respect to the object’s local coordinate frame as shown in
Fig. 1.4 (bottom-right) with illustrative colors. Thus, they provide a detailed geometric cue
for matching pixels in neighbouring frames, even in the presence of large displacements.
The fine-grained geometric recognition and the semantic grouping have, certainly, a different
trade-off between modeling-power versus prediction accuracy. If the recognition task was
to be solved perfectly well, the continuous object part would be the strongest geometric cue,
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followed by the segmentation mask and the bounding box. On the other hand, as we will
see experimentally, the continuous object parts are most challenging to predict precisely,
followed by the segmentation mask and the bounding box. Given this trade-off, one of
the key questions addressed in this work is: Which level of recognition is most beneficial
for the scene flow task, when combining different cues, i.e. local appearance, 3D motion-
smoothness and recognition-based geometric constraint, in a CRF-based framework?

1.5 Deep Learning for Scene Flow

Image-based scene flow methods have rarely made it into robotics applications. The reason
for this is that robotics application requires real-time estimation of scene flow. However,
most leading techniques take several minutes or hours to predict scene flow for each frame
due to the inefficient optimization step. Deep learning methods employing convolutional
network provide the promise of fast estimation for real time applications of scene flow
methods which is required in autonomous driving vehicle. However, very few approaches
for CNN based scene flow estimation have been proposed so far. SceneFlowNet [May+16]
is one of the notable exceptions, which concatenates features from FlowNet [Dos+15] and
DispNet [May+16] for image-based scene flow estimation.

1.6 Scene Flow Estimation from 3D Point Clouds

Despite significant progress in image-based 3D scene flow estimation, the performance
of such approaches has not yet reached the fidelity required by many applications. The
reason for this is that stereo-based scene flow methods suffer from a fundamental flaw, the
“curse of two-view geometry”: it can be shown that the depth error grows quadratically with
the distance to the observer [Len+11]. This causes problems for the large baselines and
object depths often found in self-driving cars. Consequently, most modern self-driving car
platforms rely on LIDAR technology for 3D geometry perception. In contrast to cameras,
laser scanners provide a 360 degree field of view with just one sensor, are generally
unaffected by lighting conditions, and do not suffer from the quadratic error behavior of
stereo cameras. Therefore, there have been several methods proposed recently for estimating
3D scene flow from pairs of unstructured 3D point clouds. Dewan et al. [Dew+16b] propose
a 3D scene flow approach where local SHOT descriptors [TSS10] are associated via a
CRF that incorporates local smoothness and rigidity assumptions. However, local shape
representations such as SHOT often fail in the presence of noisy or ambiguous inputs.

1.7 Recognition as a Regularizer for Scene Flow from 3D point
clouds

Second, in this work, we propose to estimate 3D motion from such unstructured point
clouds using a deep neural end-to-end trainable model that is able to learn local and global
statistical relationships directly from 3D point cloud data. Moreover, we extend the idea of
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semantic grouping as a regularizer for 3D motion to 3D point cloud measurements from
LIDAR sensor observations. We achieve this goal by jointly predicting 3D scene flow as
well as the 3D bounding box and semantically grouping the motion vectors using 3D object
detections. In a single forward pass, our model jointly predicts 3D scene flow as well as the
3D bounding box and rigid body motion of objects in the scene. In order to semantically
group the motion vectors using 3D object detections, we need to predict pointiwise rigid
motion. We show that the traditional global representation of rigid body motion prohibits
inference by CNNs, and propose a translation equivariant representation to circumvent
this problem and amenable to CNN learning. Furthermore for training our deep network,
we generate large diverse training datasets by augmenting real scans from KITTI with
virtual objects, realistically modeling occlusions and simulating sensor noise. A thorough
comparison with classic and learning-based techniques highlights the robustness of the
proposed approach.

1.8 End-to-end Learned approaches for Autonomous Driving

A major drawback of modular approaches for autonomous driving is the fact that solving
of human-designed intermediate sub-problems may not be optimal for the driving task
performance. Moreover, each sub-problem module is developed in isolation optimizing
the problem specific loss. For instance, estimating accurate motion for far away objects in
the scene may not be important for safe autonomous driving. However, the independently
developed motion planning algorithm lacks information about the importance weights of
other cars in the scene and therefore assigns equal weight to all objects. Thus, the system is
wasting computational resources on irrelevant tasks leading to overall sub-optimal driving
performance. An alternative to modular pipelines is end-to-end learning-based models
which try to learn a policy, i.e. a function from observations to actions using a generic model
such as a deep neural network. The network parameters of end-to-end driving methods are
typically learned via behavior cloning by replicating the behavior of a teacher using expert
demonstrations or using reinforcement learning to explore the environment by trial and
error. Behavior cloning approaches learn to map sensor observations, such as RGB images,
to desired driving behavior by learning to clone the behavior of an expert. Thus, these
approaches fall into the category of supervised learning techniques. Most commonly, a deep
neural network is employed to represent the mapping from observations to expert actions.
In the 1980s, Pomerleau [Pom88] propose ALVINN, the first demonstration of imitation
learning for self-driving vehicles using a small fully connected neural network. Few decades
later, Bojarski et al. [Boj+16] propose a deeper end-to-end deep convolutional neural
network for lane following, illustrated in Fig. 1.5, that maps images from the front-facing
camera of a car to steering angles, given expert data. Codevilla et al. [Cod+18] extend this
approach for lane changes or turns by proposing a conditional imitation learning framework
to learn a driving policy for steering and throttle control from a high-level navigational input
in addition to the observations from the camera. The high-level navigational input represents
the driver’s intention, such as the direction to take at the next intersection, which cannot be
recovered from sensory input alone. However, these methods for end-to-end learned driving
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Figure 1.5: End-to-end Learning for Lane Following. A block diagram of an end-to-end
model for lane following proposed by [Boj+16]. Conditioned on the image, a CNN estimates
a steering command which is compared to the expert command for tuning the CNN weights
in order to bring the CNN output closer to the desired output. Reproduced from [Boj+16]

models working directly with raw image sensor observations fail to generalize to different
visual conditions like change in weather or city neighborhood.

1.9 Recognition as a Regularizer for End-to-end Learned Driving

Therefore, there has been a surge in interest on using recognition cues as visual priors
for learning end-to-end control policies with improved performance, generalization and
sample efficiency [ZKK19; Mou+19; Sax+19]. Instead of learning to act directly from
image observations, a visual prior is enforced by feeding a visual representation such as
semantic segmentation as an input to a policy learning algorithm, e.g., [Sax+19; SS16;
Mül+18].

However, the task of street scene semantic segmentation requires expensive annotations.
Besides, it is unclear which semantic classes are relevant to the driving task and to which
granularity they should be labeled. Furthermore, segmentation algorithms are often trained
irrespective of the actual driving task, using auxiliary image-space loss functions which
are not guaranteed to maximize driving metrics such as safety or distance traveled per
intervention.

Therefore, last, in this work, we seek to quantify the impact of reducing segmentation
annotation costs on learned behavior cloning agents. We analyze several segmentation-
based intermediate representations. We use these visual abstractions, which are compact
recognition-based representations of the scene with fewer classes, coarser annotation, and
learned with little supervision, to systematically study the trade-off between annotation
efficiency and driving performance, i.e., the types of classes labeled, the number of image
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Trained with 6400 finely annotated images and 14 classes
Annotation time ⇡ 7500 hours, policy success rate = 50%

Trained with 1600 coarsely annotated images and 6 classes
Annotation time ⇡ 50 hours, policy success rate = 58%

Figure 1.6: Label efficient visual abstractions for learning driving policies. To address
issues with obtaining time-consuming annotations, we analyze image-based representations
that are both efficient in terms of annotation cost (e.g., bounding boxes), and effective when
used as intermediate representations for learning a robust driving policy. Considering six
coarse safety-critical semantic categories and combining non-salient classes (e.g., sidewalk
and building) into a single class can significantly reduce annotation cost while at the same
time resulting in more robust driving performance.

samples used to learn the visual abstraction model, and their granularity (e.g., object masks
vs. 2D bounding boxes). Surprisingly, we find that certain visual abstractions learned with
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only a fraction of the original labeling cost can still perform as well or better when used as
inputs for training behavior cloning policies (see Fig. 1.6). Beyond label efficiency, we find
several additional training benefits when leveraging visual abstractions, such as a significant
reduction in the variance of the learned policy when compared to state-of-the-art end-to-end
driving models.

1.10 Contributions

The contributions of this thesis can be summarized as:

• We address the problem with large displacements or local ambiguities by regulariza-
tion of scene flow estimation with recognition cues:

– A new 3D scene flow method, leveraging recognition-based geometric cues to
achieve state-of-the-art performance on the challenging KITTI 2015 scene flow
benchmark, at the time of submission.

– A detailed ablation study of the importance of recognition granularity, from
coarse 2D bounding boxes over 2D instance segmentations to fine-grained 3D
object part predictions, within our scene flow framework.

– High-quality, instance-level annotations of 400 stereo images from the KITTI
2015 benchmark [MG15].

• Second, we extend the idea of semantic grouping as a regularizer for 3D motion to
3D point cloud measurements from LIDAR sensor observations:

– We present PointFlowNet, an end-to-end trainable model for joint 3D scene flow
and rigid motion prediction and 3D object detection from pairs of unstructured
LIDAR 3D point clouds data, as captured from a (self-driving) car.

– We show that a global representation is not suitable for rigid motion predic-
tion, and propose a local translation-equivariant representation to mitigate this
problem.

– We augment the KITTI dataset with virtual cars, taking into account occlusions
and simulating sensor noise, to provide more (realistic) training data.

– We demonstrate that our approach compares favorably to the state-of-the-art.

• Third, we systemically study which properties of a recognition prior are useful for
end-to-end learning of autonomous driving policies:

– Given the same amount of training data, we empirically show that using classes
less relevant to the driving policy can lead to degraded performance. We find
that only few of the commonly used classes are directly relevant for the driving
task.

– We demonstrate that despite requiring only a few hundred annotated images in
addition to the expert driving demonstrations, training a behavior cloning policy
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with visual abstractions can significantly outperform methods which learn to
drive from raw images, as well as existing state-of-the-art methods that require
a prohibitive amount of supervision.

– We further show that our visual abstractions lead to a large variance reduction
when varying the training seed which has been identified as a challenging
problem in imitation learning [Cod+19].

1.11 Thesis Overview

We start with chapter 2, where we provide a short survey of different methods in machine
recognition, namely, object detection and semantic segmentation. We then briefly discuss
methods of scene flow estimation and end-to-end learned autonomous driving most related
to our work. In chapter 3, we address the problem of large displacements or local ambiguities
in scene flow estimation by exploiting recognition cues such as semantic grouping and
fine-grained geometric recognition to regularize scene flow estimation in a CRF-based
model. In chapter 4, we propose a novel CNN to extend the idea of semantic grouping as a
regularizer for 3D motion estimation from LIDAR sensor observations. In chapter 5, we
analyze several recognition-based cues and propose label-efficient visual representations to
improve the generalization of end-to-end learned autonomous driving policies. Finally, we
conclude our work in chapter 6 and provide an outlook for future research directions.
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2 Related Work

2.1 Object Detection

Classical object detection systems usually consist of multiple steps that are applied consecu-
tively to solve the object detection task. A classical detection pipeline usually comprises
the following steps: preprocessing, region of interest extraction (ROI), object classification,
and verification or refinement. In the preprocessing step, tasks such as exposure and gain
adjustment, as well as camera calibration and image rectification, are usually performed.

Regions of interest can be extracted using a sliding window approach, which shifts a
window over the image at different scales. As exhaustive search is very expensive, several
heuristics have been proposed for reducing the search space. Typically, the number of
evaluations is reduced by assuming a certain ratio, size, and position of candidate bounding
boxes. Apart from that, image features, stereo, or optical flow can be leveraged for focusing
the search on relevant regions. Broggi et al. [Bro+00], for instance, leverage morphological
characteristics (size, ratio, and shape), vertical symmetry of human shape, and distance
information obtained from stereo for the extraction of relevant ROIs. Selective Search
[Uij+13] is an alternative approach to generate regions of interest. Instead of an exhaustive
search over the full image domain, selective search exploits a segmentation of the image to
extract approximate locations efficiently.

The next step is the processing of candidate image regions from sliding window to verify
them and classify objects. The classification of all candidates in an image can be quite costly
due to the vast amount of image regions that need to be processed. Therefore, a fast decision
is necessary which quickly discards candidates in the background region of the image. Viola,
Jones, and Snow [VJS05] combine simple and efficient classifiers, learned using AdaBoost,
in a cascade that allows them to quickly discard false candidates while spending more time
on promising regions. With the work of Dalal and Triggs [DT05], linear Support Vector
Machines (SVMs) in combination with Histogram of Orientation (HOG) features have
become popular tools for classification. Benenson et al. [Ben+14] conclude that the number
and diversity of features is clearly an important factor for the performance of classifiers
since the classification problem becomes easier with higher dimensional representations.
Consequently, today, all state-of-the-art object detection systems use convolutional neural
networks to learn expressive features in an end-to-end fashion from large datasets [Cai+16;
Xia+17; Zhu+16; YCL16; Che+15c; Ren+15; Gir15].

2.1.1 Deep Learning for Detection

All previous methods rely on hand-crafted features that are difficult to design and limited
in their representation capabilities. With the renaissance of deep learning [KSH12], con-
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Figure 2.1: Object Detection Networks. Illustration of the three popular object detection
networks. Upper left: Region-based network Fast-RCNN [Gir15] that works on regions.
Right: Region proposal network Faster-RCNN [Ren+15] that learn to extract regions. Lower
left: One-stage detector YOLO [Red+16] that formulates the detection task as regression
problem. Reproduced from [Gir15; Red+16; Ren+17].

volutional neural networks have been applied to the object detection problem, resulting in
significantly increased performance. Examples of the three most popular architectures are
illustrated in Fig. 2.1.

Sermanet et al. [Ser+13] introduced CNNs to the pedestrian detection problem by learning
the extraction of expressive features in an unsupervised fashion using convolutional sparse
auto-encoders. Eventually, they train a classifier in an end-to-end supervised fashion while
extracting the features with a sliding window scheme and jointly fine-tuning the auto-
encoders. However, they use a shallow network with a small receptive field, which allows
precise localization of the objects using a sliding window approach. In contrast, deeper
networks with larger receptive fields complicate the precise localization because local
information is extracted in earlier layers, while high-level information is represented in
deeper layers. Therefore, Girshick et al. [Gir+14] propose R-CNNs to solve the CNN
localization problem via a “recognition using regions” paradigm. They generate many
region proposals using selective search [Uij+13], extract a fixed-length feature vector for
each proposal using a CNN and classify each region with a linear SVM. Region-based
CNNs are computationally expensive but several improvements have been proposed to
reduce the computational burden [He+14; Gir15]. He et al. [He+14] use spatial pyramid
pooling which allows computing a convolutional feature map for the entire image with
only one run of the CNN in contrast to R-CNN that needs to be applied on many image
regions. Girshick [Gir15] (Fast-RCNN) further improve upon these results by proposing a
single-stage training algorithm using a multi-task loss that jointly learns to classify object
proposals and refine their spatial locations.

In region-based CNNs, the classical region proposal algorithm remained the primary
computational bottleneck and the main factor limiting performance. Therefore, Ren et al.
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[Ren+15] (Faster-RCNN) introduced Region Proposal Networks (RPN), which share full-
image convolutional features with the detection network and thus do not incur additional
computational costs. RPNs are trained end-to-end to generate high-quality region proposals,
which are classified using the Fast R-CNN detector [Gir15]. In chapter 5, we employ a
Faster-RCNN based detector for generating the 2D detections of objects from outdoor
driving scene images.

Eventually, one-stage detectors [Ser+14; Red+16; Liu+16; RF17; Lin+17b] completely
got rid of the region proposal step by formulating the object detection task as a regression
problem. The first one-stage detector by Sermanet et al. [Ser+14] was a deep convolutional
version of the sliding window approach. They extract features with a CNN and apply a
classifier network based on AlexNet [KSH12] on the extracted feature maps in a sliding
window fashion. Redmon et al. [Red+16] (YOLO) instead suggest to jointly learn spatially
separated bounding boxes and class probabilities from the topmost feature maps of a network
based on GoogLeNet [Sze+15]. This allows them to achieve real-time performance and
eventually YOLO9000 [RF17] to outperform the Region Proposal Networks. Liu et al.
[Liu+16] further improve in accuracy and efficiency by incorporating feature maps from
different scales and considering a fixed set of bounding boxes.

2.1.2 3D Object Detection from 3D Point Clouds

In contrast to cameras, laser range sensors directly provide accurate 3D information, which
simplifies the extraction of object candidates and can be helpful for the classification task as
it provides 3D shape information. Li, Zhang, and Xia [LZX16] exploit a fully convolutional
neural network for detecting vehicles from range data. They use a 2D representation of the
3D range data analogous to cylindrical images with the channels encoding the 3D location of
the points. Given this representation, they simultaneously predict an objectness confidence
and bounding box using a single 2D CNN. In contrast, Wang and Posner [WP15] propose
an efficient scheme to apply the common 2D sliding window detection approach to 3D
data. More specifically, they discretize the space into a 3D voxel grid and exploit the sparse
nature of the problem with a voting scheme on top of a linear classifier, which is shown to
be equivalent to convolutions on the full 3D point cloud. Engelcke et al. [Eng+17] extend
this feature-centric voting scheme by implementing a novel convolutional layer to apply
sparse convolutions across the 3D point cloud. Additionally, they encourage sparsity in
the intermediate representation using ReLU non-linearities and L1 penalty. While [WP15;
Eng+17] extract hand-crafted features from the voxels, VoxelNet from Zhou and Tuzel
[ZT18] learns the features in an end-to-end trainable deep network. They propose a voxel
feature encoding layer that learns a unified feature representation for the points of the
voxels. Eventually, a region proposal network generates detections from these feature
representations. In chapter 4, we use an architecure based on VoxelNet from Zhou and Tuzel
[ZT18] for estimating 3D bounding boxes from LIDAR laser scans.

Relying only on laser range data makes the detection task challenging due to the limited
density of the laser scans and lack of appearance information. Thus, existing LiDAR-based
approaches perform weaker compared to their image-based counterparts on the 2D detection
problem of KITTI. However, recently, it has been shown that the fusion of LiDAR and
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camera information allows reducing the gap and eventually even outperforming state-of-the-
art 2D detectors [Che+17b; Ku+18; CVN17; Qi+18; Du+18].

2.2 Semantic Segmentation

Traditionally, the problem was posed as maximum-a-posteriori (MAP) inference in a con-
ditional random field (CRF), defined over pixels [HZC04; VT07; Sho+09] or superpixels
[HZR06; KLT09]. Hierarchical [HZC04; KH05; Lad+09; Lad+14] and long-range con-
nectivity as well as higher-order potentials defined on image regions [HZR06; KLT09]
have been exploited to compensate for limitations of CRFs with local connections and to
model long-range interactions within the image. Krähenbühl and Koltun [KK11] propose
a tractable inference algorithm for fully connected CRF models which model pairwise
potentials between all pairs of pixels in the image. While previous methods using fully
connected CRFs [Rab+07; GRB08; KLT09] could only be applied to smaller image regions
due to the computational and memory complexity of these algorithms, [KK11] allows
deploying fully connected CRF models at pixel-level.

An alternative to inference in graphical models for the task of semantic segmentation is
presented by Munoz, Bagnell, and Hebert [MBH10]. They train a sequence of inference
models in a hierarchical procedure that captures context over larger image regions. This
allows them to bypass the difficulties of training structured prediction models when exact
inference is intractable and yields a very efficient and accurate scene labeling algorithm.

While most previous approaches rely on very simple features such as color, edge and
texture information, Shotton et al. [Sho+09] observed that more powerful features have
the potential to significantly boost performance. They propose an approach based on a
novel feature type called texture-layout filter that exploits the textural appearance of objects,
its layout as well as textural context. They combine texture-layout filters with lower-level
image features in a CRF to obtain pixel-level segmentations.

2.2.1 Deep Learning for Semantic Segmentation

The success of deep convolutional neural networks for image classification and object
detection has sparked interest in leveraging their potential for solving pixel-level tasks, in
particular semantic segmentation. The fully convolutional neural network [LSD15] illus-
trated in Fig. 2.2 is one of the earliest works which applies CNNs to the image segmentation
problem. Modern convolutional neural networks for image classification combine multi-
scale contextual information by consecutive pooling and sub-sampling layers that lower
the resolution. However, semantic segmentation requires multi-scale contextual reasoning
together with full-resolution predictions, i.e. dense predictions.

Several methods [Che+15b; YK16; GF16; BKC17] have therefore been proposed to
tackle the opposing needs of multi-scale inference and full-resolution outputs. Dilated
convolutions [Che+15b; YK16] enlarge the receptive field of neural networks without loss
of resolution. The dilated convolution operation corresponds to a regular convolution that
skips pixels while applying the filter. This allows for efficient multi-scale reasoning without

16



2.2 Semantic Segmentation

Figure 2.2: Convolutional Neural Network. Fully convolutional neural network for seman-
tic segmentation proposed by Long, Shelhamer, and Darrell [LSD15]. Reproduced from
Long, Shelhamer, and Darrell [LSD15].

increasing the number of model parameters. Chen et al. [Che+18b] extend this idea by using
multiple dilated convolutions with different sampling rates in parallel.

In contrast, Badrinarayanan, Kendall, and Cipolla [BKC17] propose an encoder-decoder
network with skip connections. Each decoder layer maps a low resolution feature map of an
encoder (max-pooling) layer to a higher resolution feature map. In particular, the decoder
in their model takes advantage of the pooling indices computed in the max-pooling (i.e.
downsampling) step of the corresponding encoder to implement the upsampling process.
This eliminates the need to learn the upsampling and thus results in a smaller number
of parameters. Furthermore, sharper segmentation boundaries can be obtained using this
approach. In chapter 3, we use and encoder-decoder network similar to Badrinarayanan,
Kendall, and Cipolla [BKC17] to estimate the 3D object coordinates on the surface of every
car in the scene.

While activation maps at lower-levels of the CNN hierarchy lack information specific to
object categories, they provide information of higher spatial resolution. Ghiasi and Fowlkes
[GF16] leverage this assumption and propose to construct a Laplacian pyramid based on
a fully convolutional network. Aggregating information at multiple scales allows them to
successively refine the boundary reconstructed from lower-resolution layers. They achieve
this by using skip connections from higher resolution feature maps and multiplicative
confidence gating, penalizing noisy high-resolution outputs in regions where low-resolution
predictions have high confidence.

A different way to address the needs of multi-scale inference and full resolution prediction
is the combination of CNNs with CRF models. Chen et al. [Che+15b; Che+18b] propose to
refine the label map obtained using a convolutional neural network using a fully connected
CRF model [KK11]. The CRF allows them to capture fine details based on the raw RGB
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input which are missing in the CNN output due to the limited spatial accuracy of the CNN
model.

Simonyan and Zisserman [SZ15] and Szegedy et al. [Sze+15] have shown that the depth of
a CNN is crucial to represent rich features. However, increasing the depth of a network leads
to an increase in complexity as well as to saturation and degradation in accuracy. He et al.
[He+16] proposed a deep residual learning framework (ResNet) to address this problem. In
deep residual networks, each stacked layer learns a residual mapping instead of the original
mapping. This facilitates the backpropagation of gradients and thus training and results in
higher accuracy in comparison to regular deep networks. Wu, Shen, and Hengel [WSH19]
propose a more efficient ResNet architecture by analyzing the effective depth of residual
units. They point out that ResNets behave as linear ensembles of shallow networks. Based
on this understanding, they design a group of relatively shallow convolutional networks
for the task of semantic image segmentation, which performs better. To better incorporate
global context information into the pixel-level prediction task, Zhao et al. [Zha+17] propose
a pyramid scene parsing network (PSPNet). They apply a pyramid parsing module to the
last convolutional layer of a CNN which fuses features of several pyramid scales to combine
local and global context information. The resulting representation is fed into a convolution
layer to obtain the final per-pixel predictions. Inspired by this work, [Che+17a] revisited the
Atrous Spatial Pyramid Pooling (ASPP) [Che+18b] by experimenting with cascading and
parallel application of dilated convolutions. This allows them to improve upon their previous
work [Che+18b] while achieving comparable results to PSPNet [Zha+17]. In chapter 5,
we use a ResNet and Feature Pyramid Network (FPN) backbone [He+16; Lin+17a], with
a fully-convolutional segmentation head [LSD15] to generate the semantic segmentation
masks for images collected from cameras on the self driving vehicle.

2.2.2 Instance Semantic Segmentation

There exist two major lines of research for the task of semantic instance segmentation:
Proposal-based and proposal-free instance segmentation. While proposal-based approaches
usually consist of two steps, i.e. proposal extraction and proposal classification, proposal-
free methods predict pixel labels directly from the image.

Proposal-based Approaches Proposal-based instance segmentation methods extract class-
agnostic proposals which are classified as an instance of a semantic class in order to obtain
pixel-level instances. There exist several region proposal methods like Constrained Para-
metric Min-Cut (CMPC) [CS12], Multiscale Combinatorial Grouping (MCG) [Arb+14],
DeepMask [PCD15], and SharpMask [Pin+16] returning generic class-agnostic region pro-
posals which can be directly used as instance segments. Several object detection classifiers
were proposed which simultaneously address object detection and semantic segmentation
by leveraging region features from instance segments to improve the detection accuracy, i.e.
O2P [Car+12], Simultaneous Detection, and Segmentation (SDS) [Har+14], Convolutional
Feature Masking (CFM) [DHS15], HyperColumn [Har+15].

Proposal-based algorithms are slow at inference time due to the computationally expensive
proposal generation step. To avoid this bottleneck, Dai, He, and Sun [DHS16] propose
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Multi-task Network Cascade (MNC) a fully convolutional network with three stages. They
extract box proposals, use shared features to refine these to segments, and finally classify
them into semantic categories. The causal relations between the outputs of the stages
complicate training of the multi-task cascade. In order to overcome these difficulties, a fully
differentiable mask prediction layer is presented to train the whole model in an end-to-end
fashion. Box proposals can also induce errors into the proposal-based instance segmentation
method due to wrongly scaled or shifted bounding boxes. In order to tackle this problem,
Hayder, He, and Salzmann [HHS17] present a shape aware object mask network that
predicts a binary mask for each bounding box proposal, potentially extending beyond the
box itself. They integrate the object mask network into the Multi-task Network Cascade
framework of Dai, He, and Sun [DHS16] by replacing the original mask prediction stage. In
chapter 3, we use the Multi-task Network Cascade (MNC) from Dai, He, and Sun [DHS16]
to predict the 2D bounding boxes and segmentation masks for all cars present in the scene.

While earlier methods address the detection and segmentation problem with two sub-
networks sequentially, recent work [Li+17; He+17; Che+18a] propose to jointly address
these problems. All joint formulations use ResNet-like architectures [He+16] for feature
extraction. Li et al. [Li+17] propose FCIS, the first fully convolutional neural network
for end-to-end instance semantic segmentation. They extend the fully convolutional mask
proposal network [Dai+16] by sharing the convolutional representation of the proposals
with a detection and segmentation sub-network. In contrast to FCIS, Mask R-CNN [He+17]
and MaskLab [Che+18a] both build on Faster R-CNN [Ren+15]. He et al. [He+17] extend
Faster R-CNN [Ren+15] by an additional branch for predicting segmentation masks. Chen
et al. [Che+18a] combine box predictions from Faster R-CNN with semantic segmentation
logits for pixel-wise classification and direction prediction logits estimating the direction
towards instance centers. The direction towards instance centers allows them eventually to
separate instances from the same class.

Proposal-free Approaches Due to the problem of proposal-based approaches to inherit
errors of the proposal generation, a number of alternative methods have been proposed re-
cently. These methods jointly infer the segmentation and the semantic category of individual
instances by casting instance segmentation directly as a pixel labeling task.

Several approaches [Zha+15; ZFU16; Uhr+16] show how depth information can be used
to identify different object instances. Zhang et al. [Zha+15] and Zhang, Fidler, and Urtasun
[ZFU16] train a fully convolutional neural network (FCN) to directly predict pixel-level
instance segmentations of densely sampled image patches while the instance ID encodes a
depth ordering. They improve the predictions and enforce consistency with a subsequent
Markov Random Field. Uhrig et al. [Uhr+16] propose an FCN to jointly predict semantic
segmentation as well as depth and an instance-based direction relative to the centroid of
each instance. This relative direction cue is then used for clustering pixels into individual
instances. However, all [Zha+15; ZFU16; Uhr+16] require ground-truth depth data for
training their model.

Instead of relying on depth information, concurrent work [Kir+17; BU17; AT17] present
proposal-free approaches based on an initial semantic segmentation. Kirillov et al. [Kir+17]
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Figure 2.3: Panoptic Segmentation. Difference between semantic (b), instance (c) and
panoptic segmentation (d). Reproduced from [Kir+19b]

combine semantic segmentation and object boundary detection via global reasoning in a
multi-cut formulation to infer semantic instance segmentation. Bai and Urtasun [BU17]
combine ideas from classical watershed transform with deep learning to create an energy
map from an initial semantic segmentation and the input image where the basins correspond
to object instances. This allows them to cut at a single energy level for obtaining a pixel-
level instance segmentation. Arnab and Torr [AT17] propose to refine an initial semantic
segmentation using an instance subnetwork. The initial category-level segmentation is used
along cues from the output of an object detector within an unrolled Conditional Random
Field [Zhe+15] to predict pixel-level instances.

2.2.3 Panoptic Segmentation

Instance segmentation focuses on instances of objects and usually ignores classes that are
not amendable to this task like sky or road as illustrated in Fig. 2.3. In contrast, panoptic
segmentation, first introduced by Kirillov et al. [Kir+19b], addresses the dense estimation
of a semantic label and instance id. Several approaches [Kir+19b; LAT18; CPN18; Xio+19;
Kir+19a] have been proposed to address the problem.

Proposal-free instance segmentation approaches like [AT17; BU17; Kir+17] can be used
directly to learn panoptic segmentation. However, ground truth for training them on this
problem is very limited. Thus, Li, Arnab, and Torr [LAT18] use [AT17] in a semi-supervised
fashion to learn panoptic segmentation. They use interactive foreground extraction (Grap-
Cut) [RKB04], proposal segmentation [Pon+17] and gradient-based localization of classes
[Sel+17] to train the network in a semi-supervised fashion.

In contrast, several approaches [CPN18; Xio+19; Kir+19a] address panoptic segmenta-
tion with a joint semantic and instance segmentation formulation based on Mask R-CNN

20



2.3 Scene Flow Estimation from Stereo Images

Figure 2.4: Piecewise Rigidity. In Vogel, Schindler, and Roth [VSR15] the scene is modeled
as a collection of rigidly moving planar segments. Reproduced from [VSR15].

[He+17]. Costea, Petrovai, and Nedevschi [CPN18] propose to fuse object detections, se-
mantic, and instance segmentation. They use semantic segmentation to distinguish between
fore- and background regions. While the semantic class of background regions is directly
obtained from the semantic segmentation, they use object detection, instance, and semantic
segmentation to determine the class of foreground regions. In contrast, concurrent work
[Xio+19; Kir+19a] extends Mask R-CNN by an additional semantic segmentation branch
removing the requirement of a heuristic fusion. Xiong et al. [Xio+19] combine a semantic
segmentation network based on deformable convolutions with Mask R-CNN. They predict
dense class labels by applying a softmax on concatenated channels of the semantic and
instance segmentation networks. In contrast, Kirillov et al. [Kir+19a] train the semantic and
instance segmentation networks simultaneously without concatenating the channels. They
apply non-maximum suppression [Kir+19b] to avoid overlapping instances.

2.3 Scene Flow Estimation from Stereo Images

Following the work of Vedula et al. [Ved+99; Ved+05] several approaches formulate 3D
scene flow estimation as a variational optimization problem where optimization proceeds in
a coarse-to-fine manner, and local regularizers are leveraged to encourage spatial smooth-
ness of depth and motion [BMK13; HD07; PKF07; Val+10; Wed+11; VSR11]. Wedel
et al. [Wed+08; Wed+11] propose a variational framework by decoupling the motion esti-
mation from the disparity estimation while maintaining stereo constraints. Starting from
a precomputed disparity map at each time step, optical flow for the reference frame and
disparity for the other view are estimated. The motivation for this decoupling is mainly
computational efficiency by choosing the optimal technique for each task. In addition, Wedel
et al. [Wed+11] propose a solution for varying lighting conditions based on residual images
and provide an uncertainty measure which they showed to be useful for object segmentation.
Rabe et al. [Rab+10] integrate a Kalman filter to the decoupling approach for temporal
smoothness and robustness.

Unfortunately, coarse-to-fine variational optimization suffers when displacements are
large. Similar to stereo and optical flow, prior assumptions about the geometry and motion
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Figure 2.5: Object Scene Flow. Menze and Geiger [MG15] propose decomposition of
the scene into a small number of independently moving objects and the background. By
conditioning on a superpixelization, they jointly estimate this decomposition as well as the
rigid motion of the objects. Reproduced from [MG15].

can be exploited to better handle the challenges of the scene flow problem. Thus, slanted-
plane models [YMU13; YMU14] have recently been introduced [VSR13; VRS14; MG15;
MHG15b; Lv+16] which gain their robustness by decomposing the scene into a collection
of rigidly moving planes and exploiting discrete-continuous optimization techniques. Vogel,
Schindler, and Roth [VSR15] and Lv et al. [Lv+16] represent the dynamic scene as a
collection of rigidly moving planar regions, as shown in Fig. 2.4. Vogel, Schindler, and Roth
[VSR15] jointly recover this segmentation while inferring the shape and motion parameters
of each region. They use a discrete optimization framework and incorporate occlusion
reasoning as well as other scene priors in the form of spatial regularization of geometry,
motion, and segmentation. In addition, they reason over multiple frames by constraining
the segmentation to remain stable over a temporal window. Their experiments show that
their view-consistent multi-frame approach significantly improves accuracy for challenging
scenarios. Using the same representation, Lv et al. [Lv+16] focus on an efficient solution
to the problem. They assume a fixed superpixel segmentation and perform optimization in
the continuous domain for faster inference. Starting from an initialization based on Deep
Matching [Wei+13], they independently refine the geometry and motion of the scene, and
finally perform a global non-linear refinement using the Levenberg-Marquardt algorithm.
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As visualized in Fig. 2.5 Menze and Geiger [MG15] also follow a slanted plane approach,
but in addition to previous methods [VSR15; Lv+16], they model the decomposition of
the scene into a small number of independently moving objects and the background. By
conditioning on a superpixelization, they jointly estimate this decomposition as well as
the rigid motion of the objects and the plane parameters of each superpixel in a discrete-
continuous Conditional Random Field (CRF). Compared to [VSR15; Lv+16], they leverage
a more compact representation, by implicitly regularizing over larger distances. They also
present a new scene flow dataset by annotating dynamic scenes from the KITTI raw data
collection using detailed 3D CAD models. Menze, Heipke, and Geiger [MHG15b] propose
an extension of this model where the pose and 3D shape of the objects are inferred in
addition to the rigid motion and segmentation. In particular, they incorporate a deformable
3D active shape model of vehicles into the scene flow approach.

With the advent of challenging real-world benchmarks, such as the KITTI 2012 [GLU12]
and KITTI 2015 [MG15], great progress has been made in this area. While these methods
have demonstrated impressive performance on the challenging KITTI benchmark [GLU12;
MG15], they fail to establish correspondences in textureless, reflective or fast-moving
regions due to violations and ambiguities of the data term and weak prior assumptions. In
chapter 3, we propose to use recognition cues to improve the performance of scene flow
methods from stereo images in the presence of such challenges.

Deep Learning for Motion Estimation While several learning-based approaches for
stereo [Ken+17; ŽL16; Lia+17] and optical flow [Sun+18; Dos+15; Ilg+17] have been
proposed in literature, there is little prior work on learning scene flow estimation. A notable
exception is SceneFlowNet [May+16], which concatenates features from FlowNet [Dos+15]
and DispNet [May+16] for image-based scene flow estimation. In contrast, in chapter 4 we
propose a novel end-to-end trainable approach for scene flow estimation from unstructured
3D point clouds.

2.3.1 Scene Flow from RGB-D Sequences

When per-pixel depth information is available, two consecutive RGB-D frames are sufficient
for estimating 3D scene flow. Initially, the image-based variational scene flow approach
was extended to RGB-D inputs [Wed+08; HRF13; Qui+14]. Franke et al. [Fra+05] instead
proposed to track KLT feature correspondences using a set of Kalman filters. Exploiting
PatchMatch optimization on spherical 3D patches, Hornacek et al. [HFR14] recover a
dense field of 3D rigid body motions. However, while structured light scanning techniques
(e.g., Kinect) are able to capture indoor environments, dense RGB-D sequences are hard to
acquire in outdoor scenarios like ours. Furthermore, structured light sensors suffer from the
same depth error characteristics as stereo techniques.

2.3.2 Scene Flow from 3D Point Clouds

In the robotics community, motion estimation from 3D point clouds has so far been addressed
primarily with classical techniques. Several works [DON11; Ush+17; Tan+14] extend
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occupancy maps to dynamic scenes by representing moving objects via particles which are
updated using particle filters [DON11; Tan+14] or EM [Ush+17]. Others tackle the problem
as 3D detection and tracking using mean shift [Asv+16], RANSAC [Dew+16a], ICP [MS13],
CRFs [VRT10] or Bayesian networks [Hel+16]. In contrast, Dewan et al. [Dew+16b]
propose a 3D scene flow approach where local SHOT descriptors [TSS10] are associated via
a CRF that incorporates local smoothness and rigidity assumptions. While impressive results
have been achieved, all the aforementioned approaches require significant engineering and
manual model specification. In addition, local shape representations such as SHOT [TSS10]
often fail in the presence of noisy or ambiguous inputs. In contrast, in chapter 4 we address
the scene flow problem using a generic end-to-end trainable model which is able to learn
local and global statistical relationships directly from data. Accordingly, our experiments
show that our model compares favorably to the aforementioned classical approaches.

2.4 Semantic Priors as Geometric Constraints

Several works have considered semantic information for stereo or optical flow estimation.
Güney et al. [GG15] presented a model for stereo estimation where 3D object hypotheses
from a CAD model database are jointly estimated with the disparity map. Hur et al. [HR16]
proposed a model for joint optical flow and semantic segmentation. In particular, they
classify the scene into static and dynamic regions and introduce a constraint which measures
how well the homography of a superpixel meets the epipolar constraint. Sevilla-Lara et al.
[Sev+16] used semantic segmentation to identify object instances and combine per-object
layered flow predictions [Sun+13] with DiscreteFlow [MHG15a]. Bai et al. [Bai+16]
proposed a model which first identifies car instances and then predicts each rigidly moving
component in the scene with a separate epipolar flow constraint.

While existing methods leverage recognition to aid either reconstruction or motion
estimation, in chapter 3 we consider recognition for the 3D scene flow problem, i.e., the
combination of the two. In contrast to flow-only methods [Bai+16] that need to search for
correspondences along epipolar lines, our method exploits the semantic cues as well as the
geometry which allows us to estimate the rigid motion between frames more robustly and
leads to significantly improved results compared to all baselines. Furthermore, we are (to
the best of our knowledge) the first to investigate the impact of recognition granularity on
the task, ranging from coarse 2D boxes to fine grained 3D object coordinates predictions.

Continuous 3D object parts, also known as 3D object coordinates, have so far mainly
been leveraged in the context of 3D pose estimation [Tay+12; Bra+14; Bra+16; Mic+15],
camera re-localization [Val+15] and model-based tracking [Kru+14]. The typical approach
is to train a random forest for predicting instance-specific object probabilities and 3D object
coordinates with respect to a fixed local coordinate system. These predictions are used to
fit a 3D model of the known object, resulting in the 3D object pose. In chapter 3, we also
explore the possibility of using object coordinates as a continuous labeling for the surface
points of the object.

24



2.5 End-to-End Learning for Autonomous Driving

2.5 End-to-End Learning for Autonomous Driving

Behavior cloning approaches learn to map sensor observations to desired driving behavior
through supervised learning. Behavior cloning for driving has historical roots [Pom88]
as well as recent successes [Boj+16; Zen+19; Pra+20; Ohn+20]. Bojarski et al. [Boj+16]
propose an end-to-end CNN for lane following that maps images from the front facing
camera of a car to steering angles, given expert data. Xu et al. [Xu+17] propose an alternative
approach and exploit large scale online datasets from uncalibrated sources to learn a driving
model. Specifically, they formulate autonomous driving as a future ego-motion prediction
problem. They claim that predicting ego-motion instead of vehicle control allows their
approach to generalize better to new platforms. Their deep learning architecture combines
FCNs and LSTMs, and learns to predict the motion path given the current state of the agent.

A challenge with behavior cloning approaches is that the training data is collected using
an off-policy expert teacher, i.e. the training data is collected by rolling out the expert policy,
which is different from the policy being learned. As collecting expert demonstrations for
all possible situations is not practical, the training trajectories do not cover all possible
states. At test time, the rollout of the behavior cloning policy thus causes it to move to a
different distribution of states compared to the one it was trained on. Due to this covariate
shift between the training and test time trajectories, the behavior cloning agent’s errors
compound when drifting away from the expert demonstrations. In other words, the vehicle
is likely to encounter new situations it has not been trained for and therefore acts wrongly.
In contrast, in on-policy rollout, training data is collected using the current policy being
learned. Ross and Bagnell [RB] propose DAgger to alleviate covariate shift by iteratively
collecting corrective expert actions for the states visited by rolling out the currently learned
driving policy. The driving policy parameters are then trained using the data collected
on-policy. However, doing on-policy rollouts with an imperfect policy has the disadvantage
of drifting and potentially reaching dangerous states, thus requiring a simulator for safe
training. Laskey et al. [Las+17] claim to provide a safer way of generating training data
using expert policy with small amounts of noise injected to approximate the errors of on-
policy rollout. They achieve this by iterating between learning a noise model that minimizes
the covariate shift and generating data for training the behavior cloning agent.

Besides the drifting problem during test time, behavior cloning-based driving systems
have other limitations. Sensor input alone is often not sufficient to uniquely infer control.
Consider intersections, for example, where multiple possible actions are valid (left, right,
straight). Without conditioning on the goal, all three options are acceptable. Thus, some
of the behavior cloning agents, such as the one by Bojarski et al. [Boj+16], require human
intervention for lane changes or turns. Conditional Imitation Learning (CIL) extends this
framework by incorporating high-level navigational commands into the decision making
process [Cod+18], as illustrated in Fig. 2.6. The high-level navigational input represents
the driver’s intention, such as the direction to take at the next intersection, which cannot
be recovered from sensory input alone. Chen et al. [Che+19] show that imitation learning
can be simplified by decomposing it into two stages. They first train an agent that has
access to privileged information. This privileged agent cheats by observing the ground-truth
layout of the environment and the positions of all traffic participants. In the second stage,

25



2 Related Work

the privileged agent acts as a teacher that trains a purely vision-based sensorimotor agent.
The resulting sensorimotor agent does not have access to any privileged information and
does not cheat. They demonstrate that this approach substantially outperforms the state of
the art on the CARLA benchmark and the recent NoCrash benchmark, attaining the best
performance to date.

Approaches based on reinforcement learning (RL) learn to drive by training an agent that
tries to maximize a user defined reward which the agent receives while interacting with the
environment. In the autonomous driving application, the reward is defined by specifying the
driving agent’s preferences and goals. Dosovitskiy et al. [Dos+17] propose a reinforcement
learning method that trains a deep network based on a reward function provided by the
CARLA simulator which combines speed, distance traveled towards the goal, collision
damage, overlap with sidewalk and overlap with the opposite lane. For training the agent,
they use the asynchronous advantage actor-critic (A3C) algorithm [KT99] which uses the
value function learned by the critic to update the actor’s policy. Dosovitskiy et al. [Dos+17]
observe that the RL agent performs significantly worse compared to a behavior cloning
agent trained using conditional imitation learning [Dos+17] despite the fact that the RL
agent was trained on a significantly larger set of visual observations. Recently, Kendall et al.
[Ken+18] showed first promise in learning to drive in the real-world using a reinforcement
learning agent. They use the deep deterministic policy gradients algorithm for training the
RL agent and define the reward as the distance traveled by the vehicle without the safety
driver taking control.

The aforementioned methods are trained using model-free reinforcement learning. The
disadvantage of model-free methods is that they are often data inefficient and require a
large number of interactions with the environment. In contrast, model-based reinforcement
learning approaches learn a model of the environment dynamics from observational data and
then exploit this model for training a driving policy. Model-based methods have been shown
to significantly reduce the number of environment interactions required to learn an effective
policy. However, model-based methods also typically require an interactive environment as
a dynamics model trained on a fixed set of demonstrations may make incorrect predictions
outside the training domain. The interactive training environment is however not practical
in the real-world where such interactions are expensive and dangerous. To alleviate this
problem, Henaff, Canziani, and LeCun [HCL19] propose to train a model-based policy
which is encouraged to produce actions which the forward dynamics model is confident
about. They achieve this by training the policy network to minimize an uncertainty cost
which represents the mismatch between the states it induces and the states in the trained data.
However, RL approaches are inefficient to train and require a simulator or non-practical
trial and error runs in a real environment as well as careful design of the reward function.
Therefore, several methods have been proposed to combine the strengths of both approaches.
Liang et al. [Lia+18] propose an approach to alleviate the low exploration efficiency of
RL for large action space. They achieve this by constraining the policy search space by
initializing the weights of the policy network of an RL algorithm by a network trained to
clone the expert behavior. They observe significant improvements on the CARLA benchmark
over agents trained using RL from scratch. Li et al. [Li+18] propose an approach that learns
to clone only the best behaviors of several sub-optimal teachers. They estimate the best
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Figure 2.6: Goal-conditional Behavior Cloning. Architecture of goal-conditional end-to-
end behavior cloning for autonomous driving proposed by Codevilla et al. [Cod+18]. The
goal command acts as a switch that selects between specialized sub-policies that correspond
to different commands such as lane following, turning left or turning right. Reproduced
from [Cod+18]

teacher by estimating the value function of each sub-optimal teacher. The sub-optimal
teachers are defined using several simple controllers over the planner output. Therefore,
they do not require expert teachers for labeling data and allow for better exploration
compared to learning from a single expert teacher. In addition, learning from multiple
sub-optimal teachers leads to faster training compared to pure RL agents as exploration
only happens from feasible states. The requirement to specify the reward function limits
the practical use of Reinforcement Learning. An accurate specification of the reward
requires tedious and computationally inefficient hyper-parameter tuning. Sharifzadeh et al.
[Sha+16] propose to learn the unknown reward function of the driving behavior from expert
demonstrations by applying Inverse Reinforcement Learning (IRL). In contrast to behavior
cloning approaches that directly learn the observation-control mapping in a supervised
fashion, Inverse Reinforcement Learning approaches claim to offer better generalization by
learning a reward function that explains the expert behavior.

Codevilla et al. [Cod+19] present an analysis of several limitations of End-to-End Learn-
ing for Autonomous Driving. In particular, they observe that driving performance drops
significantly in new environments and weather conditions. They also observe drastic vari-
ance in performance caused by model initialization and data sampling during training. In
chapter 5 we address these issues with semantic input representations while maintaining
low labeling costs.

2.6 Semantic Priors for Improving Generalization

Recent papers have shown the effectiveness of using mid-level visual priors to improve
the generalization of visuomotor policies [Wan+19b; ZKK19; Sax+19; Mou+19; Mül+18].
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Object detection, semantic segmentation and instance segmentation have been shown to
help significantly for generalization in navigation tasks [Wan+19b; ZKK19]. Müller et
al. [Mül+18] train a policy in the CARLA simulator with a binary road segmentation as the
perception input, demonstrating that learning a policy independent of the perception and
low-level control eases the transfer of learned lane-keeping behavior for empty roads from
simulation to a real toy car. Similarly, Wang et al. [Wan+19a] infer the depth and poses of
the objects present in the scene from front-facing camera images and project the objects into
an overhead view. They train a behavior cloning agent over the concatenation of front-facing
and overhead images and observe improved performance over an agent trained only on
front-facing images. More recently, Zhao et al. [Zha+19] studied the significance of using
intermediate representations pursued in computer vision research such as depth, segmen-
tation, optical flow for improving several sensorimotor tasks such as urban driving. They
observed that an agent that takes as input one or more of these intermediate representations
along with the image learns significantly better sensorimotor control than an agent which
uses just the raw image as input. They observed significant improvements even when the
intermediate representations were noisy predictions by a simple deep network. Toromanoff
et al. [TWM20] show how to effectively incorporate knowledge from segmentation labels
into a reinforcement learning trained policy. These existing studies either compare different
visual priors or focus on improving policies by choosing a specific visual prior, regardless
of the annotation costs. Nonetheless, knowing these costs is extremely valuable from a
practitioner’s perspective. In chapter 5, we are interested in identifying and evaluating label
efficient representations in terms of the performance and variance of the learned policies.

Compact Semantic Representations for Driving Instead of using a comparably higher-
dimensional visual prior such as pixel-level segmentation, Chen et al. [Che+15a] present an
approach which estimates a small number of human interpretable, pre-defined affordance
measures such as the angle of the car relative to the road and the distance to other cars. These
predicted affordances are then mapped to actions using a rule-based controller, enabling
autonomous driving in the TORCS racing car simulator [Wym+15]. The advantage of such
compact intrediate representations is that the failure cases are more interpretable compared
to traditional behavior cloning approaches. Similarly, Sauer et al. [SSG18] estimate several
affordances from sensor inputs to drive in the CARLA simulator. In contrast to [Che+15a],
they consider the more challenging scenario of urban driving where the agent needs to avoid
collision with obstacles on the road and navigate junctions with multiple possible driving
directions. They achieve this by expanding the set of affordances to be more applicable to
urban driving. Similar to the aforementioned methods, Mehta, Subramanian, and Subra-
manian [MSS18] also propose to use intermediate visual affordances such as “distance to
intersection”, and action primitives such as “slow down” as input to the driving policy net-
work. However, in contrast to the aforementioned works, they predict visual affordances and
action primitives as an auxiliary task to the driving control task. They claim that predicting
representations which are crucial for the driving decision allow the policy network to learn
superior internal representations leading to more efficient training and better generalization.
Bansal, Krizhevsky, and Ogaler [BKO18] propose a perception module that translates raw
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sensor observations to a mid-level representation. Their representation includes a top-down
rendering of the environment where 2D boxes of vehicles are drawn along with a rendering
of the road information and traffic light states. They use this mid-level representation as
input to a recurrent neural network (RNN) which outputs the control command. These meth-
ods are relevant to our study in chapter 5, in that they simplify perception through compact
representations. However, these affordances are hand-engineered and very low-dimensional.
Thus, failures in design will lead to errors that cannot be recovered from.
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3 Exploiting Recognition for Robust 3D
Motion Estimation

Existing methods for 3D scene flow estimation often fail in the presence of large dis-
placement or local ambiguities, e.g., at texture-less or reflective surfaces. However, these
challenges are omnipresent in dynamic road scenes, which is the focus of this work. Our
main motivation in this chapter is to overcome these challenges in 3D motion estimation
by exploiting recognition cues such as bounding box detections or instance segmentations.
Furthermore, we investigate the importance of recognition granularity, from coarse 2D
bounding box estimates over 2D instance segmentations to fine-grained 3D object part
predictions. We compute these cues using CNNs trained on a newly annotated dataset
of stereo images and integrate them into a CRF-based model for robust 3D scene flow
estimation - an approach we term Instance Scene Flow.

To obtain the bounding box or segmentation masks, we utilize an existing state-of-the-art
approach - the multi-task network cascade (MNC) from Dai et al. [DHS16]. In contrast
to [DHS16], we achieve improved outputs, by providing a dense depth map as additional
input to the network. To train the CNN, we annotated 400 stereo images from the KITTI
2015 benchmark of Menze et al. [MG15] using in-house annotators. For fine-grained
geometric recognition we train a new convolutional neural network (CNN) on 2D instance
segmentations of MNC which predicts the continuous 3D object parts, also known as 3D
object coordinates [Bra+14; Bra+16; Val+15; Mic+15; Tay+12], for each pixel inside the
instance mask. The 3D object coordinates specify the relative 3D location of an object’s
surface point with respect to the object’s local coordinate frame. Thus, they provide a
detailed geometric cue for matching pixels in neighboring frames, even in the presence
of large displacements. Our CRF framework is based on [MG15] and termed Instance
Scene Flow. We validate the benefits of recognition cues for scene flow on the challenging
KITTI 2015 benchmark [MG15]. Firstly, we conduct a detailed ablation study for the
three levels of recognition granularity, i.e. 2D bounding box, 2D segmentation mask, and
continuous 3D object parts. From this study, we conclude that the instance segmentation
cue is by far strongest, in our setting. Secondly, we show that our Instance Scene Flow
method significantly boosts the scene flow accuracy, in particular in challenging foreground
regions. Alongside, we demonstrate the effectiveness of our method on the challenging
KITTI 2015 scene flow benchmark where we achieve state-of-the-art performance at the
time of submission. We analyze the importance of each recognition cue in an ablation
study and observe that the instance segmentation cue is by far strongest, in our setting. We
demonstrate the effectiveness of our method on the challenging KITTI 2015 scene flow
benchmark where we achieve state-of-the-art performance at the time of submission.
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Figure 3.1: Work flow for our approach. Note that each intermediate step uses as input all
of the previous results. Given the four RGB input images (t/t+1, left/right) we compute 3D
points (XYZ) for each pixel. For each of the four RGB,XYZ image-blocks we obtain instance
segmentations, alongside bounding boxes. The M instances are processed individually to
obtain object coordinates for each instance, using our object coordinates CNN. Finally, all
this information is integrated into our Instance Scene Flow method (ISF) to produce the
final output.

3.1 Method

This section describes our approach to 3D scene flow estimation. The overall work flow
of our approach is illustrated in Fig. 3.1. Given the 4 RGB images we extract 3D points
(XYZ) for each pixel in camera coordinate system using a stereo method (see Section 3.2
for details). Based on the RGB and XYZ values, we train a multi network cascade (MNC)
[DHS16] to predict 2D bounding boxes and 2D instance segmentations. We train a CNN to
predict object coordinates for car instances. Finally, we integrate the bounding box, instance
and object coordinates cues into a slanted-plane formulation and analyze the importance of
each cue for the scene flow estimation task. The remainder of this section is structured as
follows.

As our goal is to analyze the impact of different levels of recognition granularity, we first
describe the inputs to our method in Section 3.1.1 and Section 3.1.2. In particular, we are
interested in improving scene flow estimation of vehicles which are challenging due to their
large motion and non-lambertian appearance. In Section 3.1.3, we finally show how these
predictions can be integrated into a CRF model for 3D scene flow estimation.

3.1.1 2D Bounding Boxes and Instances

As discussed before, recognizing and segmenting objects is imperative for our approach. For
this task, we use the state-of-the-art Multi-task Network Cascades (MNC) proposed by Dai
et al. [DHS16] to obtain bounding boxes and segmentation masks of all cars present in the
scene. Unlike the standard MNC framework which operates on RGB images, we provide
the network with an RGB-XYZ image, where XYZ denotes the 3D scene coordinates, i.e.,
the 3D location of every pixel in the scene in camera coordinates. The 3D location for each
pixel is computed from disparity maps, see Section 3.2 for details.

We pre-train the network using Pascal VOC and fine-tune it using 3200 coarse annotations
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of KITTI [GLU12] provided by [Che+14]. We obtained 200 images with 1902 pixel-accurate
instance annotations from the KITTI 2015 Stereo benchmark [MG15] using in-house
annotators. We further refined the model with these fine annotations. The final accuracy
(IoU-50%) on the validation set of [Che+14] is 83% as compared to 78% when using only
RGB images.

3.1.2 3D Object Coordinates

3D object coordinates specify the 3D location of the surface of an object with respect to
a local coordinate frame. They can be viewed as a fine grained unique geometric labeling
of the object’s surface which is independent of the viewpoint and can be used to establish
correspondences between frames, which we expect to be more robust to appearance changes
than correspondences based on sparse feature matching.

While random forests have been used for estimating object coordinates when the target
instance is known [Bra+14; Bra+16; Val+15; Kru+14], we found that a CNN-based ap-
proach leads to significantly better object coordinates predictions as also evidenced by our
experiments in Section 3.2. We use a modified version of the encoder-decoder style CNN
proposed in [TDB16] for estimating the object coordinates at each pixel. As above, the
input to the CNN is an RGB-XYZ image as well as the instance prediction from the MNC.
The output of the CNN is a 3 layer regression which stores the X, Y and Z coordinates for
each point of the input.

An illustration of our architecture can be found in Fig. 3.2. We use an Encoder-Decoder
style network similar to that of [TDB16]. The input to our network is the RGB image and the
XYZ point cloud of a car instance that is predicted from the instance prediction network. The
XYZ point cloud can be obtained using the estimated disparity and the camera calibration
which is known. The network regresses the X, Y and Z values in object coordinate system
for each pixel of the input. We consider this as fine grained unique geometric labeling of the
object’s surface points.

The encoder part of the network is a set of 5 convolutional layers with a stride of 2 at
each of them (Conv0-Conv4), followed by 3 fully connected layers (FC1-FC3). Further, the
FC3 layer is reshaped to a matrix again and follows through a set of deconvolutional layers
(Dec4-Dec0). Each convolutional/deconvolutional layer is follwed by a nonlinear ReLU
layer with negative slope 0.2 except for Dec0 after which a tanh layer is used for the output.
While training the network, we present the RGB-XYZ features of an image as input and
use the ground truth object coordinates for computing the loss. The network is trained by
minimizing a robust and smooth Huber loss function [Gir15] using the Adam solver with a
momentum of 0.9 and a learning rate of 1e-5.

We generate the ground truth object coordinates for the foreground cars using the follow-
ing process. We obtain the car CAD model and the corresponding 6D pose annotations from
Menze et al. [MG15]. Using the CAD model and the 6D pose, we render dense 3D object
coordinates for each visible point on the surface of the car.
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Figure 3.2: Architecture of our Encoder Decoder Network for Object Coordinate
Prediction.

3.1.3 Scene Flow Model

We now describe our scene flow model which is based on [MG15] but adds two new
components to it, in particular an instance sensitive appearance term and a term which
encourages object coordinates to align across frames. For making the chapter self-contained,
we specify the full model.

Notation: We first describe the notation of the inputs to the scene flow model which are pre-
computed as described in the previous section and fixed during inference. Let V = {0,1,2,3}
denote the set of views as illustrated in Fig. 3.3 and let Iv 2 Rw⇥h⇥3 denote the input image
corresponding to each view. For each view v 2 V , we compute the following information:
first, our MNC predicts instance label maps Mv 2 {0, . . . , |Mv|}

w⇥h which determine the
predicted semantic instance label for each pixel in each view. In our experiments, these
maps are either coarse 2D bounding box segmentations or more accurate 2D instance
segmentations which are both computed via MNC. Background pixels are assigned the label
Mv(p) = 0 and foreground pixels are assigned positive labels. Note that instance labels
do not correspond across frames as the correspondence is unknown a-priori and needs to
be inferred jointly with the scene flow. Furthermore, we denote the 3D object coordinates
predicted by the network with Cv 2 [�1,1]w⇥h⇥3.

We now describe the parameters of our model which are optimized during inference.
Let S denote the set of superpixels in the reference view and O denote the set of objects
in the scene. Each superpixel i 2 S is associated with a region Ri in the reference image
and a variable si = (ni,ki)T, where ni 2 R3 describes a plane in 3D via nT

i x = 1. Further,
let ki 2 {0, . . . , |O|} index the object which the superpixel is associated with. Here |O|

denotes an upper bound on the number of objects we expect to see, and k = 0 refers to the
background object with k > 0 to other traffic participants. Each object j 2O is associated
with a variable o j 2 SE(3) which describes its rigid body motion in 3D. Each superpixel
associated with object j inherits its rigid motion parameters o j 2 SE(3). In combination
with the plane parameters ni, this fully determines the 3D scene flow at each pixel inside
the superpixel.

Energy Model: Given the left and right input images of two consecutive frames (Fig. 3.3),
our goal is to infer the 3D geometry of each superpixel ni in the reference view, the
association to objects ki and the rigid body motion of each object o j. We formulate the scene
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Figure 3.3: Geometric Relationship between reference and target views. Pixels in the
reference view are mapped to a pixels in a target view via their depth and rigid body motion.

flow estimation task as an energy minimization problem comprising data, smoothness and
instance terms:

ŝ, ô = argmin
s,o

j(s,o)| {z }
data

+ y(s)|{z}
smooth.

+ c(s,o)| {z }
instance

(3.1)

We summarize all variables involved in the optimization with s = {si|i 2 S} and o = {oi|i 2
O}. For clarity of exposition we omit all weight parameters of the model.

Data Term: Our data term encodes the assumption that corresponding points across all
images should be similar in appearance:

j(s,o) = Â
i2S

Â
p2Ri

Â
v2V

jD
v (p,q) (3.2)

q = K
�
Rv(oki)� tv(oki)nT

i
�

K�1

| {z }
homography (view 0 ! view v)

p (3.3)

Here, V = {1,2,3} denotes the set of target views and q is the location of pixel p in reference
view 0 mapped into the target view v 2 V according to the calibration matrix K, the rigid
body motion Rv|tv of the corresponding object oki and the plane parameters of the associated
superpixel ni. See Fig. 3.3 for an illustration.

The data cost jD
v (p,q) compares the appearance at pixel p in reference image 0 with the

appearance at pixel q in the target view v 2 V . In our experiments, we use Census descriptors
[ZW94] which are robust to simple photometric variations [MG15; VSR15; YMU14]. To
guide the optimization process and overcome local minima we additionally add a robust
`1 loss to jD

v . This loss measures the difference wrt. sparse DiscreteFlow correspondences
[MHG15a] for the flow terms (v = 2,3) and depth estimates from SPS-stereo [YMU14] for
the stereo term (v = 1).
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Smoothness Term: The smoothness term encourages coherence of adjacent superpixels in
terms of depth, orientation and motion. It decomposes as

y(s) = gS
i j Â

i⇠ j
yG

i j (ni,n j)+yM
i j (si,s j) (3.4)

with the following geometry (G) and motion (M) terms:

yG
i j (ni,n j) = Â

p2Bi j

r (d(ni,p)�d(n j,p))

+ r
�
1� |nT

i n j|/(knikkn jk)
�
,

yM
i j (si,s j) = gM

i j (ni,n j) [ki 6= k j].

Here, d(n,p) denotes the disparity of plane n at pixel p in the reference image, Bi j is the
set of shared boundary pixels between superpixel i and superpixel j, and r is the robust `1
penalty. The instance-sensitive weight gS

i j is defined as

gS
i j = 1�bS · [(i, j) 2M] (3.5)

where M denotes the set of adjacent superpixel pairs where exactly one of the superpixels
lies on an object instance. b 2 [0,1] is a hyper-parameter which weighs down the costs of
discontinuities for adjacent superpixels in M. Note that this weighting is only possible in
the presence of instance predictions.

The geometry-sensitive motion weight is defined as

exp

 
�

l
|Bi j|

Â
p2Bi j

(d(ni,p)�d(n j,p))2

!

⇥ |nT
i n j|/(knikkn jk)

encouraging motion boundaries to align with 3D folds and discontinuities rather than
within smooth surfaces.

Instance Term: The instance term c(s,o) measures the compatibility of appearance and
part-labeling induced by the 3D object coordinates when warping the detected instances
into the next frame. It takes the following form

c(s,o) = Â
i2S

Â
p2Ri

Â
v2V

c I
v(p,q) (3.6)

with

c I
v(p,q) = [M0(p) = 0_Mv(q) = 0] ·l + (3.7)

[M0(p)> 0^Mv(q)> 0] ·
�
cA

v (p,q)+cL
v (p,q)

�

Here, q is calculated as in (3.3) and the appearance (A) potential and the part labeling (L)
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Algorithm 1 Optimization
1: Input: Iv, Mv, Cv for v 2 V

2: Initialize s and o as described in “Initialization”
3: for all iterations n = 1, . . . ,N do
4: for all i 2 S do
5: Draw samples for si (Gaussian)
6: end for
7: for all j 2O do
8: Draw samples for o j (MCMC)
9: end for

10: Run TRW-S [Kol06] on discretized problem
11: end for
12: Output: ŝ, ô

potential are defined as

cA
v (p,q) = kI0(p)� Iv(q)k1 (3.8)

cL
v (p,q) = kC0(p)�Cv(q)k1 (3.9)

and measures the difference in appearance I and 3D object coordinates C between image
location p in the reference view and q in the target view, respectively. While the data term
in (3.2) also evaluates appearance, we found that the Census descriptors work well mostly
for textured background regions. In contrast, it returns noisy and unreliable results in the
presence of textureless, specular surfaces such as on cars. However, as evidenced by our
experiments, including an additional `1 constraint on appearance for instances leads to
significantly better estimates in those cases. This observation is in accordance with recent
works on direct visual odometry and SLAM [EKC16; NLD11; ESC14] which use similar
measures to reliably estimate the camera pose in weakly textured environments. In contrast
to them, here we exploit this constraint to estimate the relative pose of each individual
weakly textured object in the scene.

The intuition behind this term is as follows: when warping the recognized instances
from the reference frame into the target frame according to the estimated geometry and
motion, the appearance as well as the part labeling induced by the object coordinates should
agree. The term [M0(p)> 0^Mv(q)> 0] ensures that these constraints are only evaluated
if both the reference and the target pixel belong to a detected instance (i.e., when M > 0).
However, as both cA

v and cL
v are positive terms the model prefers to associate instances

with background regions which incurs no additional cost compared to associating instances
with instances. We therefore incorporate an additional term which yields an appropriate bias
l and favors the association of instances.

Optimization: For optimizing (3.1), we leverage max-product particle belief propagation
with TRW-S [Kol06] as proposed in [MG15]. At each iteration this optimization algorithm
discretizes the continous variables by drawing samples around the current maximum-a-
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posteriori (MAP) solution and runs TRW-S until convergence before resampling. However,
we found that this approach gets easily trapped in local minima, in particular due to the
highly non-convex energy function associated with the appearance of the foreground objects.

We thus modify their sampling strategy as shown in Algorithm 1, which leads to better
results. While the original algorithm [MG15] discretizes the continuous variables (in partic-
ular the rigid body motions o) by sampling from a Gaussian centered at the current MAP
estimate, we create samples by running a Markov chain based on the appearance term in
(3.6) for each object individually. More specifically, our sampling energy warps all pixels
inside an instance based on the predicted depth and the rigid body motion of the sample,
and measures the photoconsistency between reference and target views using the `1 norm.
This “informed” way of sampling ensures that TRW-S has access to high-quality samples
compared to noisy estimates drawn around the current MAP solution. For sampling the
geometry variables (i.e., normals), we follow [MG15].

The hyper parameters in our model are estimated using block coordinate descent on a
train/validation split.

Initialization: As we are presented with a complex NP hard optimization problem in (3.1),
initialization of parameters is an important step. We describe the details of our initialization
procedure in the following.

We initialize the geometry parameters using dense disparity maps and the object hy-
potheses/motion variables using sparse flow predictions and the predicted bounding box-
es/instances. More specifically, we robustly fit all superpixel parameters to the disparity
estimates and aggregate all sparse flow estimates for each instance to robustly fit a rigid
body motion to it via RANSAC.

For the instance-based algorithms, we aggregate the sparse flow estimates directly based
on the instance masks and robustly fit a rigid body motion to it via RANSAC. Given
the high quality of the instance predictions, this leads to very robust initializations. For
baselines which do not leverage recognition we follow [MG15] and initialize objects based
on clustering sparse 3D scene flow estimates which disagree with the background motion.
Based on this clustering, we initialize the associations and poses using robust fitting using
RANSAC. We refer the reader to [MG15] for further details.

While we have also experimented with color histograms and pose prediction to support
the assignment of instances across frames, we found that aggregating sparse flow vectors
[MHG15a] and dense geometry [May+16] allows for correctly associating almost all objects.
We thus don’t use such an additional term in the model, which, however, could be easily
integrated to solve more challenging association problems as present in the KITTI 2015
scene flow benchmark.

Runtime: Our MATLAB implementation with C++ wrappers requires on average 40
seconds for each of the 10 iterations of the optimization described in Algorithm 1. This
leads to a runtime of 7 minutes for processing one scene (4 images) on a single i7 core
running at 3.0 Ghz. In addition, the inputs to our methods namely, dense disparity maps,
sparse flow predictions and predicted bounding boxes/instances require on average 3 minutes
for processing one scene, leading to a total runtime of 10 minutes.
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3.2 Experimental Evaluation

D1 D2
bg fg bg+fg bg fg bg+fg

OSF 4.00 8.86 4.74 5.16 17.11 6.99
ISF-BBox 3.94 8.81 4.69 5.10 10.77 5.97
ISF-SegMask 4.06 7.97 4.66 5.26 9.20 5.86
ISF-SegMask-ObjCoord 4.08 7.98 4.68 5.27 9.20 5.87
ISF-SegMask-CNNDisp 3.55 3.94 3.61 4.86 4.72 4.84

Fl SF
bg fg bg+fg bg fg bg+fg

OSF 6.38 20.56 8.55 7.38 24.12 9.94
ISF-BBox 6.46 12.90 7.44 7.42 17.11 8.90
ISF-SegMask 6.72 10.78 7.34 7.74 14.60 8.79
ISF-SegMask-ObjCoord 6.72 10.84 7.35 7.75 14.66 8.80
ISF-SegMask-CNNDisp 6.36 7.31 6.50 7.23 8.72 7.46

Table 3.1: Quantitative results from ablation study on KITTI 2015 Validation Set. We re-
port the disparity (D1,D2), flow (Fl) and scene flow (SF) error averaged over our validation
set for OSF[MG15] (no recognition input), ISF-BBox (bounding box input), ISF-SegMask
(segmentation input) and ISF-SegMask-ObjCoord (segmentation + object coordinates input).
Additionally, we also report results of ISF-SegMask-CNNDisp (ISF-SegMask with higher
quality CNN based disparity input).

3.2.1 Effect of recognition granularity

In this section, we study the impact of different levels of recognition granularity for estimat-
ing the 3D scene flow of dynamic (i.e., foreground) objects. In addition to the recognition
cues, we use sparse optical flow from sparse DiscreteFlow correspondences [MHG15a] and
dense disparity maps from SPS-stereo [YMU14] for both rectified frames. We obtain the
superpixel boundaries using StereoSLIC[YMU13]. Table 3.1 provides a quantitative com-
parison of the performance of OSF [MG15] (no recognition input), ISF-BBox (2D bounding
boxes as recognition input), ISF-SegMask (2D instance segmentations as recognition input)
and ISF-SegMask-ObjCoord (2D instance segmentations in conjunction with 3D object
coordinates as recognition input) on our validation set (which is a subset of the KITTI
2015[MG15] scene flow training set). We report the error with respect to four different
outputs: disparities in the first and second frame (D1,D2), optical flow (FL) and scene flow
(SF).
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Figure 3.4: Qualitative Results from Ablation Study on KITTI 2015 Validation Set. The top
row shows predicted masks and bounding boxes which form the input to our method overlaid
onto the left camera image at time t and t +1. Each figure in the bottom row (from left to
right) shows scene flow error of OSF[MG15] (no recognition input), ISF-BBox (bounding
box input) and ISF-SegMask (segmentation input) using the color scheme depicted in the
legend. The red box shows zoom-ins.

Our results indicate that recognition (both 2D bounding box and 2D instance segmen-
tation) provides large improvements for optical flow estimation (and in turn scene flow
estimation) on foreground parts of the scene. Note that we do not tackle the recognition of
static background objects in this method which are estimated relatively well without such
priors. Furthermore, as illustrated in Fig. 3.4, we note that instance segmentations as input
improve performance in particular at the boundary of objects. We attribute this effect to
the more fine grained nature of the 2D segmentation input compared to using rough 2D
bounding boxes input. We remark that for evaluation, the KITTI 2015 benchmark considers
only a subset of the cars in the scene as foreground, specifically dynamic cars within a
threshold distance to the camera. In contrast, as defined in section 3.1.3, our scene flow
estimation model considers all car instances detected by our CNN as foreground.

Moreover, we observe that 3D object coordinates do not increase performance beyond 2D
instance segmentations (and hence yield the same estimates, i.e., the weight of the object
coordinate terms are zero after optimization).

Next, we provide more qualitative analysis of the impact of different levels of recognition
granularity for estimating the 3D scene flow of dynamic (i.e., foreground) objects. In
particular, Fig. 3.5 to 3.9 compare the results of OSF[MG15] (no recognition input), ISF-
BBox (2D bounding boxes as recognition input), ISF-SegMask (2D instance segmentations
as recognition input) on our validation set (which is a subset of the KITTI 2015 training set).
As 3D object coordinates do not increase performance beyond 2D instance segmentations,
we do not visualize the result of our model using 3D object coordinates. Instead, we refer the
reader to the next section for a detailed analysis why 3D object coordinates do not provide
any further gains. For each scene and recognition granularity, Fig. 3.5 to 3.9 show the left
input image at frame t = 0 and frame t = 1 along with the detected 2D bounding boxes, the
2D instance segmentation mask estimated by the network, the error images corresponding
to the estimated disparity in the first frame (D1), the optical flow errors and the scene flow
errors. Following [MG15], we use a logarithmic color coding where red shades represent
errors above 3 pixels / 5% relative error and blue shades denote errors below 3 pixels / 5%
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relative error. Our results indicate that recognition (both 2D bounding box and 2D instance
segmentation) provide large improvements for optical flow estimation (and in turn scene
flow estimation) on foreground parts of the scene (note that we do not tackle the recognition
of static background objects in this method which are estimated relatively well without such
priors).

Figure 3.5: Impact of Recognition Granularity on 3D Scene Flow Estimation. The top
row shows two consecutive input images of the left camera along with the predicted 2D
bounding boxes (red) and 2D instance segmentation masks (green) which form the input to
our method. The figures below show (from top-to-bottom) the results of OSF[MG15] (no
recognition input), ISF-BBox (bounding box input), ISF-SegMask (segmentation input) in
terms of disparity (left), optical flow (middle) and scene flow (right) errors.
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Figure 3.6: Impact of Recognition Granularity on 3D Scene Flow Estimation. The top
row shows two consecutive input images of the left camera along with the predicted 2D
bounding boxes (red) and 2D instance segmentation masks (green) which form the input to
our method. The figures below show (from top-to-bottom) the results of OSF[MG15] (no
recognition input), ISF-BBox (bounding box input), ISF-SegMask (segmentation input) in
terms of disparity (left), optical flow (middle) and scene flow (right) errors.

Figure 3.7: Impact of Recognition Granularity on 3D Scene Flow Estimation. The top
row shows two consecutive input images of the left camera along with the predicted 2D
bounding boxes (red) and 2D instance segmentation masks (green) which form the input to
our method. The figures below show (from top-to-bottom) the results of OSF[MG15] (no
recognition input), ISF-BBox (bounding box input), ISF-SegMask (segmentation input) in
terms of disparity (left), optical flow (middle) and scene flow (right) errors.
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Figure 3.8: Impact of Recognition Granularity on 3D Scene Flow Estimation. The top
row shows two consecutive input images of the left camera along with the predicted 2D
bounding boxes (red) and 2D instance segmentation masks (green) which form the input to
our method. The figures below show (from top-to-bottom) the results of OSF[MG15] (no
recognition input), ISF-BBox (bounding box input), ISF-SegMask (segmentation input) in
terms of disparity (left), optical flow (middle) and scene flow (right) errors.

Figure 3.9: Impact of Recognition Granularity on 3D Scene Flow Estimation. The top
row shows two consecutive input images of the left camera along with the predicted 2D
bounding boxes (red) and 2D instance segmentation masks (green) which form the input to
our method. The figures below show (from top-to-bottom) the results of OSF[MG15] (no
recognition input), ISF-BBox (bounding box input), ISF-SegMask (segmentation input) in
terms of disparity (left), optical flow (middle) and scene flow (right) errors.
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3.2.2 Why are 3D object coordinates not important?

In this section, we study the effect of using 3D object coordinate cues to improve 3D scene
flow estimation. Towards this goal, we evaluated our ISF-SegMask-ObjCoord method which
includes a data term in the CRF penalizing the difference in 3D object coordinates between
corresponding image locations. Figure 3.10 shows the influence of the 3D object coordinate
term weight on the scene flow error. Surprisingly, we observe an increase in 3D scene flow
error, in particularly for the foreground parts of the image, when increasing the importance
of the 3D object coordinate cue.

Figure 3.10: Impact of 3D Object Coordinates. This figure shows the 3D scene flow error
evaluated at all pixels in the image (red) and only the foreground pixels (blue) with respect
to the weight of the object coordinates data term.

We now analyze the reason why 3D object coordinates fail to improve 3D scene flow
estimation beyond simpler 2D instance segmentation cues. We hypothesize that the accuracy
of 3D object coordinate predictions from modern CNN-based methods is below what is
required to further improve 3D scene flow estimation due to the high level of accuracy
requested by current benchmarks (i.e., 3 pixels error in KITTI). In order to validate this
hypothesis, we computed optical flow for the foreground part of the scene by finding corre-
spondences between the reference and target frame using the 3D object coordinates. We then
compare this flow with the optical flow results of our CRF-based ISF-SegMask method after
initialization and with the final results after optimization. Quantitatively, we find that the
optical flow computed via 3D object coordinate matching improves upon ISF-SegMask ini-
tialization and final flow output for only 1.4% and 1% of the foreground pixels, respectively.
For the remaining pixels, however, the quality of the 3D object coordinates does not reach
the level required for accurate 3D scene flow estimation. Fig. 3.11 to 3.16 illustrate this
observation on a few examples from our validation set. The figures show that flow accuracy
from object coordinate matching is either worse or similar at places where ISF-SegMask
fails. Therefore, 3D object coordinates fail in improving 3D scene flow estimation using our
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CRF framework.

Remark: We compare the quality of our 3D object coordinate predictions to state-of-the-
art approaches using random forests in the last section of this chapter and demonstrate
significantly better performance when using our convolutional neural network architecture.
This demonstrates that even state-of-the-art object coordinate predictions are not helpful for
improving 3D scene flow due to the high level of accuracy required by current benchmarks
(i.e., 3 pixels error in KITTI).

Figure 3.11: Qualitative Analysis of Flow from 3D Object Coordinate on KITTI 2015
Validation Set. The top row shows two consecutive frames of the left camera. Each figure
in the bottom row shows optical flow errors on foreground pixels in the reference view
using the color scheme depicted in the legend. In particular, we compare results when flow
is obtained directly from the 3D object coordinate predictions (left) to our ISF-SegMask
method before (middle) and after (right) optimization.

Figure 3.12: Qualitative Analysis of Flow from 3D Object Coordinate on KITTI 2015
Validation Set. The top row shows two consecutive frames of the left camera. Each figure
in the bottom row shows optical flow errors on foreground pixels in the reference view
using the color scheme depicted in the legend. In particular, we compare results when flow
is obtained directly from the 3D object coordinate predictions (left) to our ISF-SegMask
method before (middle) and after (right) optimization.
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3 Exploiting Recognition for Robust 3D Motion Estimation

Figure 3.13: Qualitative Analysis of Flow from 3D Object Coordinate on KITTI 2015
Validation Set. The top row shows two consecutive frames of the left camera. Each figure
in the bottom row shows optical flow errors on foreground pixels in the reference view
using the color scheme depicted in the legend. In particular, we compare results when flow
is obtained directly from the 3D object coordinate predictions (left) to our ISF-SegMask
method before (middle) and after (right) optimization.

Figure 3.14: Qualitative Analysis of Flow from 3D Object Coordinate on KITTI 2015
Validation Set. The top row shows two consecutive frames of the left camera. Each figure
in the bottom row shows optical flow errors on foreground pixels in the reference view
using the color scheme depicted in the legend. In particular, we compare results when flow
is obtained directly from the 3D object coordinate predictions (left) to our ISF-SegMask
method before (middle) and after (right) optimization.
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Figure 3.15: Qualitative Analysis of Flow from 3D Object Coordinate on KITTI 2015
Validation Set. The top row shows two consecutive frames of the left camera. Each figure
in the bottom row shows optical flow errors on foreground pixels in the reference view
using the color scheme depicted in the legend. In particular, we compare results when flow
is obtained directly from the 3D object coordinate predictions (left) to our ISF-SegMask
method before (middle) and after (right) optimization.

Figure 3.16: Qualitative Analysis of Flow from 3D Object Coordinate on KITTI 2015
Validation Set. The top row shows two consecutive frames of the left camera. Each figure
in the bottom row shows optical flow errors on foreground pixels in the reference view
using the color scheme depicted in the legend. In particular, we compare results when flow
is obtained directly from the 3D object coordinate predictions (left) to our ISF-SegMask
method before (middle) and after (right) optimization.

3.2.3 Experiments with CNN based disparity as input

Furthermore, we evaluated our method with the optimal level of recognition granularity
selected based on the ablation study (ISF-SegMask) on higher quality disparity inputs
computed from DispNetC [May+16] and MC-CNN-acrt [ŽL16]. In particular, combining
DispNetC results for instance pixels and MC-CNN-acrt results for the rest performed best
on our validation set. We report the results of our top performing method ISF-SegMask-
CNNDisp on the validation set in Table 3.1.
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D1 D2
bg fg bg+fg bg fg bg+fg

PRSM* [VSR13] 3.02 10.52 4.27 5.13 15.11 6.79
OSF+TC* [NŠ17] 4.11 9.64 5.03 5.18 15.12 6.84
OSF [MG15] 4.54 12.03 5.79 5.45 19.41 7.77
ISF-SegMask-CNNDisp 4.12 6.17 4.46 4.88 11.34 5.95

Fl SF
bg fg bg+fg bg fg bg+fg

PRSM* [VSR13] 5.33 13.40 6.68 6.61 20.79 8.97
OSF+TC* [NŠ17] 5.76 13.31 7.02 7.08 20.03 9.23
OSF [MG15] 5.62 18.92 7.83 7.01 26.34 10.23
ISF-SegMask-CNNDisp 5.40 10.29 6.22 6.58 15.63 8.08

Table 3.2: Quantitative Results on the KITTI 2015 Scene Flow Evaluation Server. These
tables shows the disparity (D1/D2), flow (Fl) and scene flow (SF) errors averaged over
all 200 test images for our method in comparison to other leading methods (OSF[MG15],
OSF-TC[NŠ17] and PRSM[VSR13]) on the KITTI 15 benchmark. Methods with * use more
than two temporal frames.

3.2.4 Results on the KITTI Benchmark

In this section, we present results of our top performing method ISF-SegMask-CNNDisp
evaluated on the KITTI 2015 scene flow evaluation server. Table 3.2 compares the per-
formance of our method with other leading methods on the benchmark: PRSM [VSR15],
OSF [MG15] and OSF-TC [NŠ17]. We obtain state-of-the-art performance at the time of
submission, even including anonymous submissions. Notably, our method also outperforms
methods which use more than two temporal frames (OSF-TC [NŠ17] and PRSM[VSR15]).
Figure 3.17 shows scene flow errors for examples where other leading methods fail to
effectively estimate scene flow in foreground regions. Scene flow estimation is challenging
for this region as the texture-less car undergoes large displacement and is occluded in the
second frame. Our method employing recognition cues performs comparatively better than
other methods. Without recognition cues, only very few matches could be established in
those regions and most of them would be wrong.

3.2.5 Random Forests vs. CNNs for Predicting Object Coordinates

In this section, we compare our object coordinate predictions to those of an existing state-of-
the-art approach using random forests as presented by Brachmann et al. [Bra+14]. For this
comparison, we use the same random forest (RF) implementation provided by [Bra+14].
In particular, their implementation estimates the pixel-wise object coordinates using an
RGB-Depth patch of size 20x20 at each pixel of the instance. We train a random forest with
3 trees and maximum depth of 64 by sampling 3 million random points during training.

We remark that in [Bra+14], object coordinates are predicted only for a fixed set of known
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Figure 3.17: Qualitative Comparison on KITTI-15 Test Set. The first column shows
the input images, followed by scene flow error maps of OSF[MG15], OSF-TC[NŠ17],
PRSM[VSR13] and our method using the color scheme depicted in the legend.

3D objects. On the contrary, our case is a lot more complex due to the large intra-class
variation among cars (hatchback, station wagon, SUV etc.). This presents a challenge to the
prediction model as it has to generalize well for all of the possible car types. We found that
our CNN based model generalized better to various types of cars and is more accurate in
predicting object coordinates compared the state-of-the-art RF based approach. The average
euclidean error of the predicted object coordinates using our CNN is 0.6 meters while
random forests acchieve an average error of 2.89 meters. We believe that with more training
data the performance of our object coordinate predictions could be further improved.

In Fig. 3.18, we compare the object coordinate predictions from our CNN to those of
the RF. For illustration purposes, we have colorized the object coordinate ground truth. As
clearly visible, the continuous smooth change of colours indicate a smooth fine grained part
labelling of the car. In addition, we show the corresponding error map. In contrast to our
predictions, the object coordinate predictions from the RF are extremely noisy and thus lead
to very large errors. We conclude that random forests can’t cope well with the appearance
changes induced by intra-class variations present in our dataset.
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Figure 3.18: This figure shows a qualitative comparison of object coordinate predictions
from our CNN and a baseline Random Forest (RF) approach. In each of the illustrations,
we show the ground truth object coordinates (ObjC GT), predictions from our CNN (Our
Prediction), predictions from RF (RF Prediction), corresponding pixel wise error maps (Our
Error, RF Error) and also the car instance for which the object coordinates are predicted.
While the error of our CNN based object coordinate predictions is mostly below 1 meter, the
RF based approach leads to much larger errors.
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4 Learning Representations for Rigid
Motion Estimation from Point Clouds

In the previous chapter we proposed an approach to address the problem with large displace-
ments or local ambiguities by regularization of scene flow estimation with recognition cues
such as semantic grouping and fine-grained geometric recognition. However, stereo-based
scene flow methods suffer from a fundamental flaw, the “curse of two-view geometry”: it can
be shown that the depth error grows quadratically with the distance to the observer [Len+11].
This causes problems for the large baselines and object depths often found in self-driving
cars, as illustrated in Fig. 4.1 (top).

In this chapter, we extend the idea of semantic grouping as a regularizer for 3D motion to
3D point cloud measurements from laser scanners. Towards this goal, we jointly predict
pointwise 3D scene flow, pointwise rigid motion as well as the 3D bounding box. We then
semantically group the pointwise rigid motion estimates over the predicted detections to
obtain rigid body motion of objects in the scene. While the prospect of estimating 3D scene
flow from unstructured point clouds is promising, it is also a challenging task. Because of
the sparse and non-uniform nature of the point clouds, as well as the missing appearance
information, the data association problem is complicated. Moreover, characteristic patterns
produced by the scanner, such as the circular rings in Fig. 4.1 (bottom), move with the
observer and can easily mislead local correspondence estimation algorithms. Furthermore,
we show that the traditional global representation of rigid body motion cannot be directly
inferred by CNNs. Finally, for training our deep network, a large labeled dataset is required.
To address these challenges, we propose PointFlowNet, a generic model for learning 3D
scene flow from pairs of unstructured 3D point clouds. We propose a novel translation
equivariant representation for pointwise rigid motion which can be inferred by CNNs. We
create large, diverse training datasets by augmenting real scans from KITTI with virtual CAD
models of cars. We then use our LiDAR simulator that realistically modeling occlusions
and simulating sensor noise to generate the augmented scans.

4.1 Method

We start by formally defining our problem. Let Pt 2 RN⇥3 and Pt+1 2 RM⇥3 denote the
input 3D point clouds at frames t and t +1, respectively. Our goal is to estimate

• the 3D scene flow vi 2 R3 and the 3D rigid motion Ri 2 R3⇥3, ti 2 R3 at each of the
N points in the reference point cloud at frame t, and

• the location, orientation, size and rigid motion of every moving object in the scene
(in our experiments, we focus solely on cars).
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Figure 4.1: Motivation for LIDAR based Scene Flow. To motivate the use of LIDAR
sensors in the context of autonomous driving, we provide a qualitative comparison of the
state-of-the-art image-based scene flow method ISF [Beh+17] (top) to our LIDAR-based
PointFlowNet (bottom) using a scene from the KITTI 2015 dataset [MG15]. The left column
shows the output of the two methods. The right column shows a zoomed-in version of the
inlet. While the image-based result suffers from the “curse of two-view geometry” (with
noisy geometry, and non-uniform background movement), our LIDAR-based approach is
also accurate in distant regions. Moreover, ISF relies on instance segmentation in the image
space for detecting objects: depth estimation errors at the boundaries lead to objects being
split into two 3D clusters (e.g., the red car). For clarity, we visualize only a subset of the
points.

The overall network architecture of our approach is illustrated in Figure 4.2. The network
comprises five main components: (1) feature encoding layers, (2) context encoding layers
(3) scene flow estimation, ego-motion estimation and 3D object detection layers, (4) rigid
motion estimation layers and (5) object motion decoder. In the following, we provide a
detailed description for each of these components as well as the loss functions.

4.1.1 Feature Encoder

The feature encoding layers take a raw point cloud as input, partition the space into vox-
els, and describe each voxel with a feature vector. The simplest form of aggregation is
binarization, where any voxel containing at least one point is set to 1 and all others are
zero. However, better results can be achieved by aggregating high-order statistics over the
voxel [Qi+17a; Qi+17b; ZT18; Su+18; PZZ17; Che+17b]. In this chapter, we leverage
the feature encoding recently proposed by Zhou et al. [ZT18], which has demonstrated
state-of-the-art results for 3D object detection from point clouds.
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Figure 4.2: Network Architecture. The feature encoder takes a raw LIDAR point cloud as
input, groups the points into W ⇥H ⇥10 voxels, and outputs 128D feature maps (for clarity,
the size of the feature maps is not shown in the figure) which are concatenated and passed
to the context encoder. The context encoder learns a global representation by interleaving
convolution with strided convolution layers and “flattening” the third dimension (height
above ground), i.e., we assume that 3D objects cannot be located on top of each other and
that 3D scene points that project to the same location in the ground plane undergo the
same 3D motion. Feature maps at different resolutions are upsampled, stacked and fed into
the decoding branches. 3D scene flow is computed for every input voxel in the scene flow
decoder and the result is passed to the rigid motion decoder, which infers a rigid body
transformation for every point. In parallel, the ego-motion regressor, further downsamples
the feature map by interleaving convolutional layers with strided convolutional layers and
a fully connected layer at the end to regress rigid motion for the ego vehicle. In addition,
the object decoder predicts the location and size (i.e., 3D bounding box) of objects in the
scene. Finally, the object motion decoder takes the point-wise rigid body motions as input
and predicts the object rigid motions by pooling the rigid motion field over the detected 3D
objects.

We briefly summarize this encoding, but refer the reader to [ZT18] for more details. We
subdivide the 3D space of each input point cloud into equally spaced voxels and group
points according to the voxel they reside in. To reduce bias with respect to LIDAR point
density, a fixed number of T points is randomly sampled for all voxels containing more than
T points. Each voxel is processed with a stack of Voxel Feature Encoding (VFE) layers to
capture local and global geometric properties of its contained points. As more than 90% of
the voxels in LIDAR scans tend to be empty, we only process non-empty voxels and store
the results in a sparse 4D tensor.

We remark that alternative representations, e.g., those that directly encode the raw point
cloud [Wan+18; GWL18], could be a viable alternative to voxel representations. However, as
the representation is not the main focus of this approach, we will leave such an investigation
to future work.
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4.1.2 Context Encoder

As objects in a street scene are restricted to the ground plane, we only estimate objects and
motions on this plane: we assume that 3D objects cannot be located on top of each other and
that 3D scene points directly above each other undergo the same 3D motion. This is a valid
assumption for our autonomous driving scenario, and greatly improves memory efficiency.
Following [ZT18], the first part of the context encoder vertically downsamples the voxel
feature map by using three 3D convolutions with vertical stride 2. The resulting 3D feature
map is reshaped by stacking the remaining height slices as feature maps to yield a 2D
feature map. The resulting 2D feature map is provided to three blocks of 2D convolutional
layers. The first layer of each block downsamples the feature map via a convolution with
stride 2, followed by a series of convolution layers with stride 1.

4.1.3 3D Detection, Ego-motion and 3D Scene Flow

Next, the network splits up in three branches for respectively ego-motion estimation, 3D
object detection and 3D scene flow estimation. As there is only one observer, the ego-
motion branch further downsamples the feature map by interleaving convolutional layers
with strided convolutional layers and finally using a fully connected layer to regress a 3D
ego-motion (movement in the ground-plane and rotation around the vertical). For the other
two tasks, we upsample the output of the various blocks using up-convolutions: to half the
original resolution for 3D object detection, and to the full resolution for 3D scene flow
estimation. The resulting features are stacked and mapped to the training targets with one
2D convolutional layer each. We regress a 3D vector per voxel for the scene flow, and follow
[ZT18] for the object detections: regressing likelihoods for a set of proposal bounding boxes
and regressing the residuals (translation, rotation and size) between the positive proposal
boxes and corresponding ground truth boxes. A proposal bounding box is called positive if
it has the highest Intersection over Union (IoU, in the ground plane) with a ground truth
detection, or if its IoU with any ground truth box is larger than 0.6, as in [ZT18].

4.1.4 Rigid Motion Decoder

We now wish to infer per-pixel and per-object rigid body motions from the previously
estimated 3D scene flow. For a single point in isolation, there are infinitely many rigid body
motions that explain a given 3D scene flow: this ambiguity can be resolved by considering
the local neighborhood.

It is unfortunately impossible to use a convolutional neural network to regress rigid body
motions that are represented in global world coordinates, as the conversion between scene
flow and global rigid body motion depends on the location in the scene: while convolutional
layers are translation equivariant, the mapping to be learned is not. Identical regions of flow
lead to different global rigid body motions, depending on the location in the volume, and
a fully convolutional network cannot model this. In the following, we first prove that the
rigid motion in the world coordinate system is not translation equivariant. Subsequently, we
introduce our proposed rigid motion representation in local coordinates and show it to be
translation equivariant and therefore amenable to fully convolutional inference.
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Figure 4.3: Rigid Motion Estimation. In (a), indices A and B denote the coordinate system
of points p and q at origin oA and oB, respectively. The same scene flow v can locally be
explained with the same rigid body motion (RL, tL), but requires different translations tp

W 6=
tq
W in the global coordinate system. A simple example (b) provides empirical evidence that

translation cannot be learned in global coordinates with a CNN. Using global coordinates,
the translation error increases significantly with the magnitude of rotation (green). There is
no such increase in error when using local coordinates (orange).

Let us assume a point p in world coordinate system W and let A denote a local coordinate
system with origin oA as illustrated in Fig. 4.3a. A scene flow vector v is explained by rigid
body motion (RA, tA), represented in local coordinate system A with origin oA, if and only
if:

v = [RA (p�oA)+ tA)]� (p�oA) (4.1)

Now assume a second world location q, also with scene flow v as in Fig. 4.3a. Let B denote
a second local coordinate system with origin oB such that p and q have the same local
coordinates in their respective coordinate system, i.e., p�oA = q�oB. We now prove the
following two claims:

1. There exists no rigid body motion RW , tW represented in world coordinate system W
that explains the scene flow v for both p and q, unless RW = I.

2. Any rigid body motion (RA, tA) explaining scene flow v for p in system A also does
so for q in system B.

Towards this goal, we introduce the notation (Rp
W , tp

W ) to indicate rigid motion in world
coordinates W induced by vp.

Claim 4.1.1.
8p,q 2 R3,p�oA = q�oB,oA 6= oB :

vp = vq =) Rp
W 6= Rq

W or
tp
W 6= tq

W or
Rp

W = Rq
W = I

(4.2)

55



4 Learning Representations for Rigid Motion Estimation from Point Clouds

Proof of Claim 1. From vp = vq we get

Rp
W p+ tp

W �p = Rq
W q+ tq

W �q
Rp

W p+ tp
W = Rq

W (p�Do)+ tq
W +Do

�
Rp

W �Rq
W
�

p =
�
I�Rq

W
�

Do+
�
tq
W � tp

W
�

where Do = oA �oB. Now, we assume that Rp
W = Rq

W and that tp
W = tq

W (in all other cases
the claim is already fulfilled). In this case, we have Do = Rp

W Do. However, any rotation
matrix representing a non-zero rotation has no real eigenvectors. Hence, as oA 6= oB, this
equality can only be fulfilled if Rp

W is the identity matrix. ⌅

Claim 4.1.2.
8p,q 2 R3, p�oA = q�oB,oA 6= oB :

v = R(p�oA)+ t+(p�oA)

=) v = R(q�oB)+ t+(q�oB)

(4.3)

Proof of Claim 2. Trivially from p�oA = q�oB. ⌅

The first proof shows the non-stationarity of rigid body motions represented in global
coordinates, while the second proof shows that the rigid motion represented in local coordi-
nates is stationary and can therefore be learned by a translation equivariant convolutional
neural network.

We provide a simple synthetic experiment in Figure 4.3 to empirically confirm this
analysis. Towards this goal, we warp a grid of 10⇥ 10 points by random rigid motions,
and then try to infer these rigid motions from the resulting scene flow: as expected, the
estimation is only successful using local coordinates. Note that a change of reference system
only affects the translation component while the rotation component remains unaffected.
Motivated by the preceding analysis, we task our CNN to predict rigid motion in local
coordinates, followed by a deterministic layer which transforms local coordinates into global
coordinates as follows:

RL = RW tL = (RW � I)oL + tW
RW = RL tW = (I�RW )oL + tL

(4.4)

In our case, the origin of the world coordinate system W coincides with the LIDAR scanner
and the origin of the local coordinate systems is located at the center of each voxel.

4.1.5 Object Motion Decoder

Finally, we combine the results of 3D object detection and rigid motion estimation into
a single rigid motion for each detected object. We first apply non-maximum-suppression
(NMS) using detection threshold t , yielding a set of 3D bounding boxes. To estimate the
rigid body motion of each detection, we pool the predicted rigid body motions over the
corresponding voxels (i.e., the voxels in the bounding box of the detection) by computing
the median translation and rotation. Note that this is only possible as the rigid body motions
have been converted back into world coordinates.
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4.1.6 Loss Functions

This section describes the loss functions used by our approach. While it seems desirable
to define a rigid motion loss directly at object level, this is complicated by the need for
differentiation through the non-maximum-suppression step and the difficulty associating to
ground truth objects. Furthermore, balancing the influence of an object loss across voxels is
much more complex than applying all loss functions directly at the voxel level. We therefore
use auxiliary voxel-level loss functions. Our loss comprises four parts:

L= aL f low +bLrigmo + gLego +Ldet (4.5)

Here, a,b ,g are positive constants for balancing the relative importance of the task
specific loss functions. In order to fix the balancing weights in our multi-task loss function,
we performed a hyperparameter search over the loss function weights, maximizing the
performance over the scene flow and object rigid motion. We set a = 4.0, b = 1.0, g = 1.0
in Eqn. 4.5.

We now describe the task-specific loss functions in more detail.

Scene Flow Loss: The scene flow loss is defined as the average `1 distance between the
predicted scene flow and the true scene flow at every voxel

L f low =
1
K Â

j

��v j �v⇤j
��

1 (4.6)

where v j 2 R3 and v⇤j 2 R3 denote the regression estimate and ground truth scene flow at
voxel j, and K is the number of non-empty voxels.

Rigid Motion Loss: The rigid motion loss is defined as the average `1 error between the
predicted translation t j 2 R2 and its ground truth t⇤j 2 R2 in the local coordinate system and
the average `1 error between the predicted rotation q j around the Z-axis and its ground truth
q ⇤

j at every voxel j.

Lrigmo =
1
K Â

j

��t j � t⇤j
��

1 +l
��q j �q ⇤

j
��

1 (4.7)

where l is a positive constant to balance the relative importance of the two terms. The
conversion from world coordinates to local coordinates is given by (see also Eq. 4.4)

RL = RW (q j) tL = (RW (q j)� I)p j + tW (4.8)

where p j 2 R2 specifies the position of voxel j in the XY-plane in world coordinates and
RW (q j) is the rotation matrix corresponding to rotation q j around the Z-axis.

Ego-motion Loss: Similarly, the ego-motion loss is defined as the `1 distance between the
predicted background translation tBG 2 R2 and its ground truth t⇤BG 2 R2 and the predicted
rotation qBG and its ground truth q ⇤

BG:

Lego = ktBG � t⇤BGk1 +lkqBG �q ⇤

BGk1 (4.9)
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Detection Loss: Following [ZT18], we define the detection loss as follows:

Ldet =
1

Mpos
Â
k
Lcls(ppos

k ,1)+Lreg(rk,r⇤k)

+
1

Mneg
Â

l
Lcls(pneg

l ,0)
(4.10)

where ppos
k and pneg

l represent the softmax output for positive proposal boxes apos
k and

negative proposal boxes aneg
l , respectively. rk 2 R7 and r⇤k 2 R7 denote the regression

estimates and ground truth residual vectors (translation, rotation and size) for the positive
proposal box k, respectively. Mpos and Mneg represent the number of positive and negative
proposal boxes. Lcls denotes the binary cross entropy loss, while Lreg represents the smooth
`1 distance function.

4.2 Experimental Evaluation

We now evaluate the performance of our method on the KITTI object detection dataset
[GLU12] as well as an extended version, which we have augmented by simulating virtual
objects in each scene.

Eval. Training Scene Flow (m) Object Motion Ego-motion

Dataset Dataset FG BG All Rot.(rad) Tr.(m) Rot.(rad) Tr.(m)

K K 0.23 0.14 0.14 0.004 0.30 0.004 0.09
K K+AK 0.18 0.14 0.14 0.004 0.29 0.004 0.09

K+AK K 0.58 0.14 0.18 0.010 0.57 0.004 0.14
K+AK K+AK 0.28 0.14 0.16 0.011 0.48 0.004 0.12

Table 4.1: Ablation Study on our KITTI and Augmented KITTI validation datasets, abbre-
viated with K and AK, respectively.

4.2.1 Datasets

KITTI: For evaluating our approach, we use 61 sequences of the training set in the
KITTI object detection dataset [GLU12], containing a total of 20k frames. As there is no
pointcloud-based scene flow benchmark in KITTI, we perform our experiments on the
original training set. Towards this goal, we split the original training set into 70% train, 10%
validation, 20% test sequences, making sure that frames from the same sequence are not
used in different splits.

Augmented KITTI: However, the official KITTI object detection datasets lacks cars
with a diverse range of motions. To generate more salient training example, we generate a

58



4.2 Experimental Evaluation

Eval. Method
Scene Flow (m) Object Motion Ego-motion

Dataset FG BG All Rot.(rad) Tr.(m) Rot.(rad) Tr.(m)
K ICP+Det. 0.56 0.43 0.44 0.22 6.27 0.004 0.44
K 3DMatch+Det. 0.89 0.70 0.71 0.021 1.80 0.004 0.68
K FPFH+Det. 3.83 4.24 4.21 0.299 14.23 0.135 4.27
K Dewan et al.+Det. 0.55 0.41 0.41 0.008 0.55 0.006 0.39
K Ours 0.29 0.15 0.16 0.004 0.19 0.005 0.12

K+AK ICP+Det. 0.74 0.48 0.50 0.226 6.30 0.005 0.49
K+AK 3DMatch+Det. 1.14 0.77 0.80 0.027 1.76 0.004 0.76
K+AK FPFH+Det. 4.00 4.39 4.36 0.311 13.54 0.122 4.30
K+AK Dewan et al.+Det. 0.60 0.52 0.52 0.014 0.75 0.006 0.46
K+AK Ours 0.34 0.18 0.20 0.011 0.50 0.005 0.15

Table 4.2: Comparison to Baselines on test sets of KITTI and Augmented KITTI, abbrevi-
ated with K and AK, respectively.

Figure 4.4: Data Augmentation. Simulating LIDAR measurements based on 3D meshes
would result in measurements at transparant surfaces such as windows (left), wheres a real
LIDAR scanner measures interior points instead. Our simulation replicates the behavior of
LIDAR scanners by taking into account model transparency and learning the noise model
from real KITTI scans (right).

realistic mixed reality LiDAR dataset exploiting a set of high quality 3D CAD models of
cars [FDU12] by taking the characteristics of real LIDAR scans into account.

Figure 4.5 describes our workflow for generating the Augmented KITTI. We start by
fitting the ground plane using RANSAC 3D plane fitting; this allows us to detect obstacles
and hence the drivable region. In a second step, we randomly place virtual cars in the
drivable region, and simulate a new LIDAR scan that includes these virtual cars. Our
simulator uses a noise model learned from the real KITTI scanner by fitting a Gaussian
distribution conditioned on the horizontal and vertical angle of the rays, based on KITTI
LIDAR scans. Our simulator also produces missing estimates at transparent surfaces by
ignoring them with a probability equal to their transparency value provided by the CAD
models, as illustrated in Figure 4.4. Additionally, we remove points in the original scan
which become occluded by the augmented car by tracing a ray between each point and the
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4 Learning Representations for Rigid Motion Estimation from Point Clouds

LiDAR scan at time = t Detected the ground plane and obstacles in 3D
LiDAR data

Over 100 detailed 3D car CAD models

LiDAR Scan of a real outdoor scene at t augmented
with scan & 3D bounding box of a synthetic car

LiDAR scan at time = t+1 LiDAR Scan of a real outdoor scene at t+1 augmented
with scan & 3D bounding box of a synthetic car

Sample realistic rigid
body motion

Sample CAD model

Sample CAD model

RANSAC ground
plane fitting

Sample location in
drivable region

Figure 4.5: Augmented KITTI. Workflow for generating the Augmented KITTI dataset.

LIDAR, and removing those points whose ray intersects with the car mesh. Finally, we
sample the augmented car’s rigid motion using a simple approximation of the Ackermann
steering geometry, place the car at the corresponding location in the next frame, and repeat
the LIDAR simulation. We generate 20k such frames with 1 to 3 augmented moving cars
per scene. We split the sequences into 70% train, 10% validation, 20% test similar to our
split of the original KITTI dataset.

4.2.2 Baseline Methods

We compare our method to four baselines: a point cloud-based method using a CRF [Dew+16b],
two point-matching methods, and an Iterative Closest Point [BM92] (ICP) baseline.

Dewan et al. [Dew+16b] estimate per-point rigid motion. To arrive at object-level motion
and ego-motion, we pool the estimates over our object detections and over the background.
As they only estimate valid scene flow for a subset of the points, we evaluate [Dew+16b]
only on those estimates and the comparison is therefore inherently biased in their favor.

Method Matching 3D Descriptors yield a scene flow estimate for each point in the
reference point cloud by finding correspondences of 3D features in two timesteps. We
evaluate two different descriptors: 3D Match [Zen+17], a learnable 3D descriptor trained on
KITTI and Fast Point Feature Histogram features (FPFH) [RBB09]. Based on the per-point
scene flow, we fit rigid body motions to each of the objects and to the background, again
using the object detections from our pipeline for a fair comparison.

Iterative Closest Point (ICP) [BM92] outputs a transformation relating two point clouds to
each other using an SVD-based point-to-point algorithm. We estimate object rigid motions
by fitting the points of each detected 3D object in the first point cloud to the entire second
point cloud.
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Evaluation Metrics: We quantify performance using several metrics applied to both the
detected objects and the background. To quantify the accuracy of the estimates independently
from the detection accuracy, we only evaluate object motion on true positive detections.

• For 3D scene flow, we use the average endpoint error between the prediction and the
ground truth.

• Similarly, we list the average rotation and translation error averaged over all of the
detected objects, and averaged over all scenes for the observer’s ego-motion.

4.2.3 Experimental Results

The importance of simulated augmentation: To quantify the value of our proposed
LIDAR simulator for realistic augmentation with extra cars, we compare the performance
of our method trained on the original KITTI object detection dataset with our method
trained on both KITTI and Augmented KITTI. Table 4.1 shows the results of this study. Our
analysis shows that training using a combination of KITTI and augmented KITTI leads
to significant performance gains, especially when evaluating on the more diverse vehicle
motions in the validation set of Augmented KITTI.

Comparison with the baselines: Table 4.2 summarizes the complete performance com-
parison on the KITTI test set. Note that the comparison with Dewan et al. [Dew+16b] is
biased in their favor, as mentioned earlier, as we only evaluate their accuracy on the points
they consider accurate. Regardless, our method outperforms all baselines. Additionally,
we observe that the ICP-based method exhibits large errors for object motions. This is
because of objects with few points: ICP often performs very poorly on these, but while
their impact on the dense evaluation is small they constitute a relatively larger fraction of
the object-based evaluation. Figures 4.6 - 4.13 show qualitative comparison of our method
with the best performing baseline methods on examples from the test set of the Augmented
KITTI dataset. For clarity, we visualize only a subset of the points. The qualitative results
show that our method predicts motion for both background and foreground parts of the
scene with higher accuracy than all the baselines on a diverse range of scenes and motions.

Regarding execution time, our method requires 0.5 seconds to process one point cloud pair.
In comparison, Dewan et al. (4 seconds) and the 3D Match- and FPFH-based approaches
(100 and 300 seconds, respectively) require significantly longer, while the ICP solution also
takes 0.5 seconds but performs considerably worse.
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Figure 4.6: Qualitative Comparison of our method with the best performing baseline
methods on an example from the test set of the Augmented KITTI dataset.

Figure 4.7: Qualitative Comparison of our method with the best performing baseline
methods on an example from the test set of the Augmented KITTI dataset.
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Figure 4.8: Qualitative Comparison of our method with the best performing baseline
methods on an example from the test set of the Augmented KITTI dataset.

Figure 4.9: Qualitative Comparison of our method with the best performing baseline
methods on an example from the test set of the Augmented KITTI dataset.
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Figure 4.10: Qualitative Comparison of our method with the best performing baseline
methods on an example from the test set of the Augmented KITTI dataset.

Figure 4.11: Qualitative Comparison of our method with the best performing baseline
methods on an example from the test set of the Augmented KITTI dataset.
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Figure 4.12: Qualitative Comparison of our method with the best performing baseline
methods on an example from the test set of the Augmented KITTI dataset.

Figure 4.13: Qualitative Comparison of our method with the best performing baseline
methods on an example from the test set of the Augmented KITTI dataset.

65





5 Label Efficient Visual Abstractions for
Autonomous Driving

In chapter 3 and chapter 4, we proposed to exploit recognition cues towards improving
performance of 3D scene flow methods. Typically, the scene flow estimation is further
employed in the modular autonomous driving pipeline to estimate the future positions of
other traffic actors and thus allows for safe planning of self driving vehicle motion. In this
chapter, we consider an alternative to modular pipelines, that is, end-to-end learning-based
models which try to learn a policy, i.e. a function from observations to actions using a
generic model such as a deep neural network. The network parameters of end-to-end driving
methods are typically learned via behavior cloning by replicating the behavior of a teacher
using expert demonstrations. However, these methods for end-to-end learned driving models
working directly with raw image sensor observations fail to generalize to different visual
conditions like change in weather or city neighborhood.

Therefore, there has been a surge in interest on using visual priors for learning end-to-end
control policies with improved performance, generalization and sample efficiency [ZKK19;
Mou+19; Sax+19]. Instead of learning to act directly from image observations, which is
challenging due to the high-dimensional input, a visual prior is enforced by decomposing the
task into intermediate sub-tasks. These intermediate visual sub-tasks, e.g., object detection,
segmentation, depth and motion estimation, optimized independently, are then fed as an
input to a policy learning algorithm, e.g., [Sax+19]. A useful visual prior needs to encode
the right assumptions about the environment in order to simplify policy learning. In the case
of autonomous driving, semantic segmentation encodes the fact that certain pixels in an
image can be treated similarly: e.g. the agent can drive on roads but not sidewalks; the agent
must not collide with other vehicles or pedestrians. Semantic segmentation has also been
shown to act as a powerful visual prior for driving agents [SS16; Mül+18]. While beneficial
for learning robust policies, such intermediate sub-tasks require explicit supervision in the
form of additional manual annotations. For several visual priors, obtaining these annotations
can be time consuming, tedious, and prohibitive.

In parallel, significant research effort has been devoted into semantic segmentation of
street scenes in recent years, where images from a camera sensor mounted on a vehicle are
segmented into classes such as road, sidewalk, and pedestrian [BFC09; Cor+16; Yu+18;
Hua+18; GLU12]. It is widely believed that this kind of accurate scene understanding is
key for robust self-driving vehicles. Existing state-of-the-art methods [Zha+17] optimize
for image-level metrics such as mIoU, which is challenging as it requires a combination of
coarse contextual reasoning and fine pixel-level accuracy [Far+13]. The emphasis on such
image-level requirements has resulted in large segmentation benchmarks, i.e., thousands of
images, with high labeling costs. However, the development of such benchmarks, in terms
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5 Label Efficient Visual Abstractions for Autonomous Driving

of annotation type and cost, is often done independently of the actual driving task which
encompasses optimizing metrics such as distance traveled per human intervention.

This motivates our study of visual abstractions, which are compact semantic segmentation-
based representations of the scene with fewer classes, coarser annotation, and learned with
little supervision (only several hundred images). We consider the following question: when
used as visual priors for policy learning, are representations obtained from datasets with
lower annotation costs competitive in terms of driving ability? In particular, we seek to
quantify the impact of reducing segmentation annotation costs on learned behavior cloning
agents. We analyze several segmentation-based intermediate representations. We use these
visual abstractions to systematically study the trade-off between annotation efficiency and
driving performance, i.e., the types of classes labeled, the number of image samples used to
learn the visual abstraction model, and their granularity (e.g., object masks vs. 2D bounding
boxes). Our analysis uncovers several practical insights into how segmentation-based visual
abstractions can be exploited in a more label efficient manner. Surprisingly, we find that
state-of-the-art driving performance can be achieved with orders of magnitude reduction in
annotation cost. Beyond label efficiency, we find several additional training benefits when
leveraging visual abstractions, such as a significant reduction in the variance of the learned
policy when compared to state-of-the-art end-to-end driving models. Towards addressing
this research question, we systematically analyze the performance of varying intermediate
representations on the recent NoCrash benchmark of the CARLA urban driving simula-
tor [Dos+17; Cod+19]. Our analysis uncovers several new results regarding label efficient
representations.

5.1 Method

As illustrated in Fig. 5.1, we consider a modular approach that comprises two learned
mappings, one from the RGB image to a semantic label map and one from the semantic label
map to control. To learn these mappings, we use two image-based datasets, (i) S = {xi,si

}
ns
i=1

which consists of ns images annotated with semantic labels, and (ii) C = {xi,ci
}

nc
i=1 which

consists of nc images annotated with expert driving controls. First, we train the parameters
of a visual abstraction model af parameterized by f using the segmentation dataset S. The
trained visual abstraction stack is then applied to transform C resulting in a control dataset
Cf = {af (xi),ci

}
nc
i=1 on which we train a driving policy pq with parameters q . At test

time, control values are obtained for an image x⇤ by composing the two learned mappings,
c⇤ = pq (af (x⇤)).

In this section, we discuss the core questions we aim to answer, followed by a description
of the visual abstractions and driving agent considered in our study.

5.1.1 Research Questions

We aim to build a segmentation dataset S that is cost-effective, yet encodes all relevant
information for policy learning. We are interested in the following questions:
Can selecting specific classes ease policy learning? A semantic segmentation s assigns
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5.1 Method

Figure 5.1: High-level overview of the proposed study. We investigate different
segmentation-based visual abstractions by pairing them with a conditional imitation learn-
ing framework for autonomous driving.

each pixel to a discrete category k 2 {1, . . . ,K}. Knowing whether a pixel belongs to the
building class or tree class may provide no additional information to a driving agent, if
it knows that the pixel does not belong to the road, vehicle or pedestrian class. We are
interested in understanding the impact of the set of categories on the driving task.

Are semantic representations trained with few images competitive? In a policy learning
setting, the training of the driving agent may be able to automatically compensate for some
drop in performance of the segmentation model. We aim to determine if a parsimonious
training dataset obtained by reducing the number of training images ns for the segmentation
model can achieve satisfactory performance.

Is fine-grained annotation important? Exploiting coarse annotations such as 2D bounding
boxes instead of pixel-accurate segmentation masks can alleviate the key challenge in
building segmentation models: annotation costs [Zla+18]. If fine-grained annotation can be
avoided, we are interested in how to select af to exploit coarse annotation during training.

Are visual abstractions able to reduce the variance which is typically observed when
training agents using behavior cloning? Significant difference in performance of behavior
cloning policies is caused as a result of changing the training seed or the sampling of the
training data [Cod+19]. This is problematic in the context of autonomous driving where
evaluating an agent is expensive and time-consuming, making it difficult to assess if changes
in performance are a result of algorithmic improvements or random training seeds. Since
visual priors abstract out certain aspects of the input such as illumination and weather, we
are interested in investigating their effect on reducing the variance in policies with different
random training seeds.
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5 Label Efficient Visual Abstractions for Autonomous Driving

5.1.2 Visual Abstractions

Figure 5.2: Visual Abstractions. For our analysis, we consider three visual abstractions
based on semantic segmentation. From top left in clockwise order, we illustrate the camera
image, Privileged Segmentation, Standard Segmentation, and Hybrid Detection and Seg-
mentation based visual abstractions. We show the comparison for 6 semantic class labels.

For our analysis, we consider three visual abstractions based on semantic segmentation as
illustrated in Fig. 5.2.

Privileged Segmentation: As an upper bound, the ground-truth semantic labels (available
from the simulator) can be used directly as an input to the driving agent. This form of
privileged information is useful for ablative analysis.

Standard Segmentation: For standard pixel-wise segmentation over all classes, our
perception stack is based on a ResNet and Feature Pyramid Network (FPN) backbone
[He+16; Lin+17a], with a fully-convolutional segmentation head [LSD15].

Hybrid Detection and Segmentation: To exploit coarser annotation, we use a hybrid
architecture that distinguishes between stuff and thing classes [HK08]. The architecture
consists of a segmentation model trained on stuff classes annotated with semantic labels
(e.g. road, lane marking) and a detection model based on Faster-RCNN [Ren+15] trained
on thing classes annotated with bounding boxes (e.g. pedestrian, vehicle). The final visual
abstraction per pixel is obtained by overlaying the pixels of detected bounding boxes on top
of the predicted segmentation, based on a pre-defined class priority. Similar hybrid architec-
tures have been found useful previously in the urban street scene semantic segmentation
setting, since detectors typically have different inductive biases than segmentation networks
[Sal+18].
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5.1.3 Driving Agent

Conditional Imitation Learning: In general, behavior cloning involves a supervised
learning method which is used to learn a mapping from observations to expert actions.
However, sensor input alone is not always sufficient to infer optimal control. For example,
at intersections, whether the car should turn or keep straight cannot be inferred from camera
images alone without conditioning on the goal. We therefore follow [Cod+18; Cod+19]
and condition on a navigational command. The navigational command represents driver
intentions such as the direction to follow at the next intersection. Our agent is a neural
network pq with parameters q , which maps a semantic representation s 2 S, navigational
command n 2N , and measured velocity v 2 R+ to a control value c 2 C:

pq : S⇥N ⇥R+
! C (5.1)

Imitation Loss: In order to learn the policy parameters q , we minimize an imitation loss
Limitation defined as follows:

Limitation = ||c� ĉ||1 (5.2)

Here, ĉ = pq (s,n,v) is the control value predicted by our agent and || · ||1 denotes the L1
norm.

Velocity Loss: Recordings of expert drivers have an inherent inertia bias, where most of
the samples with low velocity also have low acceleration. It is critical to not overly correlate
these since the vehicle would prefer to never start after slowing down. As demonstrated in
[Cod+19], predicting the current vehicle velocity as auxiliary task can alleviate this issue.
We thus also use a velocity prediction loss:

Lvelocity = ||v� v̂||1 (5.3)

Architecture: The architecture used for our driving agent is based on the CILRS model
[Cod+19], summarized in Fig. 5.3. The visual abstraction is initially processed by an
embedding branch, which typically consists of several convolutional layers. We flatten the
output of the embedding branch and combine it with the measured vehicle velocity v using
fully-connected layers. Since the space of navigational commands is typically discrete for
driving, we use a conditional module to select one of several command branches based on
the input command. The command branch outputs control values. Additionally, the output
of the embedding branch is used for predicting the current vehicle speed, which is compared
to the actual vehicle speed in the velocity loss Lvelocity defined in Eq. 5.3. The final loss
function for training is a weighted sum of the two components, with a scalar weight l :

L= Limitiation +lLvelocity (5.4)
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Figure 5.3: Driving agent architecture. Given a segmentation-based visual abstraction,
current vehicle velocity, and discrete navigational command, the CILRS model predicts a
control value [Cod+19].

5.2 Experiments

In this section, we present a series of experiments on the open-source driving simulator
CARLA [Dos+17] to answer the questions raised in Section 5.1.1. We perform our analysis
by training and evaluating driving agents on the NoCrash benchmark of CARLA (version
0.8.4) [Cod+19].

5.2.1 Task

The CARLA simulation environment consists of two map layouts, called Town 01 & Town
02, which can be augmented by 14 weather conditions. We use the provided ‘autopilot’
expert mode for data collection. All training and validation data is collected in Town 01 with
the four weather conditions specified as the ‘train’ conditions in the NoCrash benchmark.
The number of external agents is uniformly sampled from the range [80,160]. Town 02 is
reserved for testing.

Evaluation: The primary evaluation criterion in CARLA is the percentage of successfully
completed episodes during an evaluation phase, referred to as Success Rate (SR). Successful
navigation requires driving the vehicle from a starting position to a specified destination
within a fixed time limit. Failure can be a result of collision with pedestrians, vehicles
or static objects; or inability to reach the destination within the time limit (timeout). The
benchmark consists of three levels of traffic density: Empty, Regular and Dense involving 0,
65 and 220 external agents respectively. We perform evaluation in Town 02 for two ‘test’
weather conditions of the NoCrash benchmark that are unseen during training.
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5.2.2 Datasets

Table 5.1: Summary of control datasets. The third column indicates the number of labeled
images used for training our detection and segmentation models. The fourth column indi-
cates the approximate cost of annotating these images.

Name Classes Labeled Images Cost (Hours)
Standard-Large-14 14 6400 7500
Standard-Large 6 6400 3200
Standard 6 1600 800
Standard-Small 6 400 200
Hybrid 6 1600 50

Perception: We collect a training set of 6400 images from Town 01 for training our
detection and segmentation models. The images are annotated with 2D semantic labels for
14 classes, and 2D object boxes for 4 of these classes. These annotations are provided by
the CARLA simulator.

Control: Following [Cod+19], we collect approximately 10 hours of driving frames and
corresponding expert controls for imitation learning using the autopilot of the CARLA
simulator. The images are sampled from three cameras facing different directions (left, center
and right) on the car at 10 frames per second. We create five variants of this control dataset
(summarized in Table 5.1) by transforming the input RGB images to visual abstractions. The
Standard-Large-14 dataset is generated using a segmentation network trained to segment the
input into fourteen semantic classes: ‘road’, ‘lane marking’, ‘vehicle’, ‘pedestrian’, ‘green
light’, ‘red light’, ‘sidewalk’, ‘building’, ‘fence’, ‘pole’,‘vegetation’, ‘wall’, ‘traffic sign’
and ‘other’. The remaining datasets, namely Standard-Large, Standard, Standard-Small,
and Hybrid, use a reduced set of six classes: ‘road’, ‘lane marking’, ‘vehicle’, ‘pedestrian’,
‘green light’ and ‘red light’. While the Standard datasets are generated using a segmentation
network, the Hybrid dataset is generated using the combination of a 2-class segmentation
model and 4-class detection model.

The study of [Zla+18] provides approximate labeling costs based on a labeling error
threshold, for a dataset of similar visual detail as ours. The annotation time reported for
the Standard abstraction (fine labeling) is around 300 seconds per image and per class. Our
Hybrid visual abstraction roughly corresponds to a 32-pixel labeling error, which requires
approximately 20 seconds per image and per class. Based on these statistics, we include the
estimated annotation time for each visual abstraction in Table 5.1.

In addition, we also collect a Privileged dataset comprising the ground truth semantic
segmentation for the input, which we use for ablation studies involving privileged agents.

5.2.3 Implementation Details

Our perception models are based on a ResNet-50 FPN backbone pre-trained on the MS-
COCO dataset [Lin+14]. We finetune this model for 3k iterations on the perception dataset
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5 Label Efficient Visual Abstractions for Autonomous Driving

with the hyper-parameters set to the default of the Detectron21 detection and segmentation
algorithms.

The driving agents use a ResNet-18 model in the ‘embedding’ branch (see Fig. 5.1).
We process the velocity input with two fully-connected layers of 128 units each, which
is combined with the ResNet output in another fully-connected layer of 512 units. The
velocity prediction branch and each command branch encompass two fully-connected layers
of 256 units. We train each model from scratch for 200k iterations using the default training
hyper-parameters of the COiLTRAiNE2 framework. This is the standardized repository used
to train imitation learning agents on CARLA [Cod+19; Zha+19], which currently supports
CARLA version 0.8.4.

5.2.4 Results

Identifying Most Relevant Classes: In our first experiment, our goal is to analyze the
impact of training policies with a reduced set of annotated classes. For this, we train and
evaluate agents using the Privileged dataset. As a baseline, we use a semantic representation
consisting of all fourteen classes in the dataset. We then evaluate a reduced subset of seven
classes that we hypothesize to be the most relevant: ‘road’, ‘sidewalk’, ‘lane marking’,
‘vehicle’, ‘pedestrian’, ‘green light’ and ‘red light’. Next, we evaluate representations that
consist of six and five classes, by excluding ‘sidewalk’ and then ‘lane marking’ from the
seven-class representation. For the five-class representation, we re-label ‘lane marking’
as ‘road’. The driving performance for these representations is summarized in Fig. 5.4.
We show the percentage of evaluation episodes in the test environment where the agent
succeeded, collided with an obstacle or timed out.

We note from our results that perfect segmentation accuracy does not mean perfect
overall perception. The fourteen-class model does not achieve perfect driving in any of
the three traffic conditions. Even with perfect perception, limitations of using behavior
cloning methods such as covariate shift, where the states encountered at train time differ
from those encountered at test time, can lead to non-optimal driving behavior. Further, the
higher relative dimensionality when using fourteen classes, which includes fine details of
classes such as fences, buildings, and vegetation, makes it harder for the agent to identify the
right features important for generalization. This is reflected by the fact that the seven-class
representation outperforms the agent based on fourteen classes in all three traffic conditions.
We empirically observe that the fourteen-class agent is more conservative in its driving style,
and more susceptible to timeouts.

1https://github.com/facebookresearch/detectron2
2https://github.com/felipecode/coiltraine
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Figure 5.4: Identifying most relevant classes. Success/collision/timeout percentages on
the test environment (Town 02 Test Weather) of the CARLA NoCrash benchmark. For this
ablation study, we use ground truth segmentation as inputs to the behavior cloning agent.
Reduction from fourteen to seven or six classes leads to a slight increase in success rate,
but further reduction to five classes leads to a large number of failures.

The six-class representation that excludes sidewalk segmentation achieves similar per-
formance to seven classes in empty and regular traffic. We therefore additionally compare
the six-class and fourteen-class representations using inferred visual abstractions without
privileged information, in order to analyze if the same trends observed in Fig. 5.4 hold.
Specifically, we compare the Standard-Large-14 and Standard-Large datasets as described
in Table 5.1. These datasets are generated using fourteen-class and six-class segmentation
networks respectively. Example visual abstractions for fourteen-class and six-class seg-
mentation privileged and standard agents are illustrated in Fig. 5.5. The success rates of
these trained models are shown in Fig. 5.6. Additionally, we show the performance of the
corresponding six-class and fourteen-class Privileged agents for reference. We observe that
the six-class representation consistently maintains or improves upon the performance of
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5 Label Efficient Visual Abstractions for Autonomous Driving

agents trained using all fourteen classes. The six-class approach helps to reduce annotation
costs by removing the requirement of assigning labels to several classes such as poles and
vegetation, which can be time-consuming due to thin structures with a lot of fine detail.

Interestingly, we observe from Fig. 5.4 that using only five classes leads to a significant
reduction in performance, with the overall success rate dropping from 67% to 29%. This
drastic change indicates that the lane marking class is of very high importance for learning
driving policies, and the task becomes hard to solve without this class even with perfect
segmentation accuracy on all other classes. Based on the consistent performance of the
six-class visual abstraction in both Fig. 5.4 and Fig. 5.6, we choose this representation to
perform a more detailed analysis of trade-offs related to labeling quality and quantity.

Figure 5.5: Identifying Most Relevant Classes. In the top and bottom rows, we illustrate
the Privileged Segmentation and Standard Segmentation respectively for fourteen (left) and
six (right) semantic classes.
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Figure 5.6: Evaluating the six-class representation. Success Rate (Privileged/Standard)
on the test environment (Town 02 Test Weather) of the CARLA NoCrash benchmark. The
six-class representation consistently leads to better performance than the fourteen-class
representation while simultaneously having lower annotation costs.

Number of Annotated Images: In our second experiment, we study the impact of reducing
annotation quantity by training agents using the Standard-Large, Standard, and Standard-
Small datasets from Table 5.1. Reducing from Standard-Large to Standard-Small, each
dataset has 4 times less samples (and therefore 4 times less labeling cost) than the preceding
one. Our results, presented as the mean success, collision and timeout percentages over 5
different training seeds for the behavior cloning agent, are summarized in Fig. 5.7.

We observe no significant differences in overall downstream driving task performance
between the agents trained on 6400 or 1600 samples, and a slight drop when using 400
images. Taking a closer look at the driving performance, we observe that the number of
collisions in dense traffic is slightly lower for 6400 samples, but success rate is also slightly
decreased on empty conditions. This shows that for our task, when focusing on only the
most salient classes, a few hundred images are sufficient to obtain robust driving policies.
In contrast, prior work that exploits semantic information on CARLA uses fine-grained
annotation for several hours of driving data (up to millions of images) [Zha+19].

From Fig. 5.7, we clearly observe a saturation in overall performance beyond 1600
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training samples. We therefore study the impact of granularity of annotation in more detail
while fixing the dataset size to 1600 samples.
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Figure 5.7: Comparing visual abstractions as annotation quantity is reduced. Suc-
cess/collision/timeout percentages on the test environment (Town 02 Test Weather). Mean
over 5 random training seeds. Performance remains consistent with 6400 or 1600 annotated
images, with a slight drop as the training dataset for the visual abstraction is reduced to
400 images.

Coarse Annotation: In our third experiment, we analyze the impact of using the Hybrid
visual abstraction that utilizes coarse supervision during training, requiring only an estimated
50 hours to annotate. We present a comparison of the Hybrid and Standard visual abstractions
in Fig. 5.8. The results are presented as the mean driving success rate of five training
seeds. We find the Hybrid abstraction to improve performance on tasks involving external
dynamic agents, i.e., regular and dense settings. Since objects are input as rectangles,
without additional noise introduced by a standard segmentation network, we hypothesize
that Hybrid abstractions are able to simplify policy learning (see Fig. 1.6). Overall, the
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performance of the Hybrid agent is on par with that of the Standard agent despite having
approximately 15 times lower annotation costs (see Table 5.1).
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Figure 5.8: Evaluating the Hybrid visual abstraction. Success rate on the test environment
(Town 02 Test Weather) as the quality of annotation is reduced. Mean over 5 random training
seeds. Overall, the performance of the Hybrid abstraction matches Standard segmentation
despite having a reduction in annotation costs of several orders of magnitude.

Variance Between Training Runs: In our fourth experiment, we investigate the impact of
semantic representations on the variance between results for different training runs. In order
to conduct a fair comparison, we use the same raw dataset for training all the models in this
study. This ensures that there is no variance caused by the training data distribution. Similar
to [Cod+19], the raw training data was collected by the standard CARLA data-collector
framework3.

We compare our approach to CILRS [Cod+19], which uses the weights of a network pre-
trained on ImageNet [Rus+15] to reduce variance due to random initialization of the policy
parameters. The only remaining source of variance in training is the random sampling of
data mini-batches that occurs during stochastic gradient descent. However, existing studies
have still reported high variance in CILRS models between training runs [Cod+19]. For
our approach, we choose the agent trained with the Hybrid abstraction. The results of five
different training seeds along with the mean, standard deviation and coefficient of variation
(standard deviation normalized by the mean) for each method are shown in Table 5.2.

We observe that for CILRS, the best training seed has double the average success rate of
the worst training seed, leading to extremely large variance. In particular, on dense traffic
conditions, the success rate ranges from 0 to 18. This amount of variance is problematic
when trying to analyze or compare different approaches. In contrast, there is less variance

3https://github.com/carla-simulator/data-collector
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Table 5.2: Variance between random training seeds. Percentage Success Rate on Town 02
Test Weather for five training seeds on Empty (E), Regular (R), and Dense (D) conditions,
as well as the average Overall (O) success rate. Max and min values indicated in bold. Our
approach significantly reduces the standard deviation and coefficient of variation (CV).

Task Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Mean " Std # CV #

CILRS [Cod+19]
E 26 44 42 48 46 41.20 8.79 0.21
R 24 26 30 32 40 30.40 6.23 0.20
D 0 2 4 4 18 5.60 7.13 1.27
O 17 24 25 28 34 25.60 6.18 0.24

Hybrid
E 76 80 82 78 90 81.20 5.40 0.06
R 64 68 72 72 72 69.60 3.57 0.05
D 28 22 18 34 22 24.80 6.26 0.25
O 55 56 57 61 61 58.00 2.82 0.04

observed when training with the Hybrid visual abstraction. Specifically, there is a significant
reduction in the standard deviation across all traffic conditions, and the coefficient of
variation is reduced by an order of magnitude.

We would like to emphasize that the variance reported in Table 5.2 comes from training
with different random seeds. The training seed is the primary cause of variance, in addition
to secondary evaluation variance which is caused by the random dynamics in the simulator.
The existing practice for state-of-the-art methods on CARLA is to report only the evaluation
variance by running multiple evaluations of a single training seed. We argue (given our
findings) that for fair comparison, future studies should additionally report results by varying
the training seed and providing the mean and standard deviation (as in Table 5.2).

Comparison to State-of-the-Art: In our final experiment, we compare our approach
to CAL [SSG18], CILRS [Cod+19], LaTeS [Zha+19] and LSD [Ohn+20], which is the
state-of-the-art driving agent on the NoCrash benchmark with CARLA version 0.8.4. For
fair comparison, we report percentage success rate with the mean and standard deviation
over three different evaluations of the best model for each approach. We further report
the results of the expert autopilot used for training on the CARLA simulator as an upper
bound. Our results are summarized in Table 5.3. We would additionally like to mention
that LBC [Che+19], which is the state-of-the-art for a different CARLA version (0.9.6)
cannot be directly compared to these methods due to the reliance on several different forms
of privileged information (such as the 3D position and orientation of all external dynamic
agents).

Conditional Affordance Learning (CAL) [SSG18], which maps an input image to six
scalar ‘affordances’ that are used by a hand-designed controller for driving, is unable to
achieve satisfactory performance. We rerun CILRS [Cod+19] using the author-provided
best model, and notice that the rerun numbers (reported in Table 5.3) differ significantly
from the CILRS models we trained in our experiments (reported in Table 5.2) despite using
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Table 5.3: Comparison to state-of-the-art. Percentage Success Rate on Town 02 of the
CARLA NoCrash benchmark, presented as mean and standard deviation over three evalua-
tions of the same model for Empty (E), Regular (R), and Dense (D) conditions. * Indicates
our rerun of the best model provided by the authors of [Cod+19]. Models trained with
visual abstractions obtain state-of-the-art results.

Task CAL CILRS* LaTeS LSD Standard Hybrid Expert
Train Weather

E 36±3 65±2 92±1 94±1 91±2 87±1 96±0
R 26±2 46±2 74±2 68±2 77±1 82±1 91±0
D 9±1 20±1 29±3 30±4 27±7 41±1 41±2

Test Weather
E 25±3 71±2 83±1 95±1 95±1 79±1 96±0
R 14±2 59±4 68±7 65±4 75±6 71±1 92±0
D 10±0 31±3 29±2 32±3 29±5 32±5 45±2

the same author-provided codebase. The authors do not release the specific dataset used
for training their best model, which could explain the difference in performance. However,
our models significantly outperform both the CILRS models we trained in our experiments
(reported in Table 5.2) and author-provided best model (reported in Table 5.3) on every
evaluation setting of the benchmark.

The authors of LaTeS [Zha+19] train a teacher network that takes ground truth segmenta-
tion masks as inputs and outputs low-level driving controls. A second student network which
outputs driving controls by taking only RGB images as inputs is trained with an additional
loss enforcing its latent embeddings to match the teacher network. The training of their
teacher network requires fine-grained semantic segmentation labels for each sample used to
train the driving policy (hundreds of thousands of images). In contrast, the models trained
on our Standard and Hybrid datasets require only a few hundred fine or coarsely labeled
images respectively, and outperform LaTeS in the majority of the evaluation settings.

LSD [Ohn+20] uses a mixture model trained using demonstrations and further refined
by optimizing directly for the driving task in terms of a reward function. In contrast to our
approach, this method uses no image-level annotations, but directly optimizing the policy
with a reward is challenging outside of simulated environments. While this approach is
slightly better at navigating empty conditions, our models outperform it in regular and dense
traffic.
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6 Conclusion

In the last few years deep neural networks have shown great success in solving recognition
tasks like object detection and semantic segmentation. While recognition has important
direct applications in autonomous driving, it can be exploited further to improve performance
of other tasks required to solve autonomous driving. In this thesis, we investigated the
effectiveness of recognition as a regularizer in the following two prominent problems in
autonomous driving.

Exploiting Recognition for Robust 3D Motion Estimation. In chapter 3, our main
contribution is to improve performance of 3D scene flow estimation methods in presence
of large displacement or local ambiguities by exploiting recognition cues as a prior. We
studied the impact of different levels of recognition granularity on the problem of estimating
scene flow for dynamic foreground objects. Our results indicate that recognition cues
such as 2D bounding box and 2D instance segmentation provide large improvements on
foreground parts of the scene in the presence of challenges such as large displacement
or local ambiguities. Furthermore, we showed that our method achieves state-of-the-art
performance on the challenging KITTI scene flow benchmark.

In chapter 4, we have proposed a learning-based solution for estimating scene flow and
rigid body motion from unstructured point clouds. Towards this goal, we proposed to exploit
recognition cues like 3D object bounding boxes to semantically group the pointwise scene
flow vectors for every semantic object in the scene. Our model simultaneously detects
objects in the point clouds, estimates dense scene flow and rigid motion for all points in the
cloud, and estimates object rigid motion for all detected objects as well as the observer. We
have shown that a global rigid motion representation is not amenable to fully convolutional
estimation, and propose to use a local representation. Our approach outperforms all evaluated
baselines, yielding more accurate object motions in less time.

While our method proposed in chapter 3 achieves state-of-the-art performance on scene
flow estimation from stereo images, it has limited application in autonomous driving. This
is because our method takes several minutes to process each frame because of the inefficient
optimization step. We address this problem in chapter 4 by introducing a CNN for fast
inference of scene flow from LIDAR data. Therefore, we expect to develop a real-time
inference algorithm for scene flow estimation from stereo images, potentially by replacing
the inefficient CRF optimization with a fast GPU based optimizer.

Furthermore, most self driving vehicles have both cameras and LIDAR sensor collecting
observations. While camera sensors can collect high resolution data with color information,
LIDAR sensors work better with some materials and in some lighting and weather conditions.
LIDAR sensors can also provide 360 degree 3D scan of the scene. Therefore, in future, we
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plan to extend our scene flow methods to fuse observations from both camera and laser
scanners for higher redundancy in the input and in turn a more robust estimation.

In chapter 4, in order to process the LIDAR scans, we apply the standard 3D convolution
operations. Specifically, we discretize the point cloud to a grid of voxels. However, because
of the sparse nature of the LIDAR data, most of the space is empty, which makes the
approach computationally and memory inefficient. To alleviate this problem, in future we
expect to employ the continuous convolution that operates over non-grid structured data as
proposed in Wang et al. [Wan+18].

Exploiting Recognition for End-to-End Learned Autonomous Driving. In chapter 5,
we take a step towards understanding how to efficiently leverage recognition-based represen-
tations in order to learn robust driving policies in a cost-effective manner. As fine-grained
semantic segmentation annotation is costly to obtain, and methods are often developed
independently of the final driving task, we systematically quantify the impact of reducing
annotation costs on a learned driving policy. Based on our experiments, we find that more
detailed annotation does not necessarily improve actual driving performance. We show that
with only a few hundred annotated images, that can be labeled in approximately 50 hours,
segmentation-based visual abstractions can lead to significant improvements over end-to-
end methods, in terms of both performance and variance with respect to different training
seeds. Due to the modularity of this approach, its benefits can be extended to alternate policy
learning techniques such as reinforcement learning. We believe that our findings will be
useful to guide the development of better segmentation datasets and autonomous driving
policies in the future.

Our analysis in chapter 5 is performed on images from a autonomous driving simulator.
While modern simulators are getting closer to photo-realism, they still cannot offer the
complexity of a real world environment. Therefore, in future, we expect to validate the
claims made in chapter 5 in a real world setting.

Furthermore, existing state-of-the-art semantic segmentation methods [Zha+17] optimize
for image-level metrics such as mIoU, which is challenging as it requires a combination
of coarse contextual reasoning and fine pixel-level accuracy [Far+13]. However, offline
metrics such as mIoU may not be optimal for predicting the performance of downstream
autonomous driving task. Therefore, in the future, we expect to design metrics for semantic
segmentation which are comparatively less challenging to optimize at the same time are a
better indicator of downstream task performance.



A Publications

Publications [Beh+17; Beh+19; Beh+20] are covered in this thesis:
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