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Abstract

Industry 4.0 redefines manufacturing systems as smart and connected systems where software solutions provide additional capabilities to the man-
ufacturing equipment. However, the connection of manufacturing equipment with software solutions is challenging due to poor interoperability
between different original equipment manufacturers (OEMs), making it difficult to integrate into the manufacturing system. Hence, there is a need
for a methodology to develop modular “plug-and-produce” applications in the manufacturing domain to meet the requirements of Industry 4.0.
This work investigates the “appification” of manufacturing processes where the goal is to sub-divide the process into independent, re-configurable
digital manufacturing applications. In this context, “appification” means separating the digital implementation from the physical implementation
of the system by making the former modular and independent so that digital implementations can be re-used without depending on the physical
parts of the system. In this paper a framework for the development of such manufacturing “apps” is presented. This framework consists of four
main elements: a modular plug-and-produce architecture, a manufacturing apps development kit, a communication protocol, and a construction
methodology. The modular plug-and-produce architecture is developed using the recent advances in microservices, containerization, and commu-
nication technologies. The manufacturing apps development kit (MAPPDK) has been developed to facilitate the implementation of manufacturing
apps using high-level programming languages. MAPPDK allows to control manufacturing equipment from external computational devices. The
methodology for developing different modules for different types of manufacturing processes is also provided. The proof of concept is shown
experimentally by the “appification” of a sorting process using an industrial robot arm, a gripping end-effector, a third-party vision camera, and
an intelligent vision module.
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1. Introduction

The manufacturing industry is shifting from mass produc-
tion towards mass customization [6], which opens new chal-
lenges for existing manufacturing systems in adapting to chang-
ing environments and product specifications, increasing re-
configuration time and efforts. These challenges arise from ex-
isting manufacturing systems’ tightly interconnected structure
that hinders flexibility and adaptability to new requirements.

The current approaches to developing manufacturing soft-
ware solutions use a monolithic approach where different func-
tionalities are combined, limiting the “plug-and-produce” func-
tionality of the whole system. Plug-and-produce functionality is
a concept derived from plug-and-play self-configuring devices
used in computing. In manufacturing, it aims to improve the in-

teroperability and reusability of manufacturing modules by au-
tomatically identifying new components and integrating them
into a production system without manual efforts [1, 10].

In current approaches, if some part of the system changes,
the software solutions must be re-written to reflect the changes.
For example, robot controllers have been available for more
than 60 years, but they do not have a plug-and-produce func-
tionality. Instead, robot controllers need to be manually and la-
boriously configured to support adding new functionalities and
connected devices, limiting their ability to adapt to new envi-
ronments and tasks.

Instead of developing a monolithic software solution for the
whole task, we propose developing software solutions with in-
dependent and modular components. Manufacturing systems
should take inspiration from IT computer systems and sup-
port modular and plug-and-produce functionalities to meet
the changing market requirements and stay competitive in the
global industrial marketplace.2212-8271© 2022 The Authors. Published by Elsevier B.V.
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This work investigates the modularization of manufacturing
systems from a software perspective. Our goal is to provide
a methodological approach for developing software solutions
for manufacturing equipment. We investigate the microservices
and containerization technologies in the manufacturing domain.
Based on our findings, we propose:

• a new method of developing modular and plug-and-
produce software solutions for manufacturing systems;
• an architecture with the necessary characteristics to de-

velop modular and plug-and-produce software solutions;
• a manufacturing app development kit (MAPPDK) as a

solution for developing interoperable, modular, and plug-
and-produce manufacturing apps.

The remainder of the paper is organised as follows: In the
Related Work section, we compare existing solutions in the
literature and analyze their advantages and limitations. In the
Methodology section, we define the appification of manufac-
turing processes, define a conceptual architecture for modu-
lar and plug-and-produce manufacturing apps, and introduce a
software development kit. In the Experiment section, we show
the experimental proof of concept using a sorting process that
involves an industrial robotic arm, vision app, and intelligence
app. The manuscript ends with a Conclusions section.

2. Related Work

Microservices is an architectural approach in which soft-
ware is composed of a loosely coupled and independently de-
ployable collection of services. Unlike a monolithic architec-
ture where all processes are tightly coupled and run as a sin-
gle service, applications in a microservices architecture are bro-
ken into small and independent components to accomplish the
same task. The microservices architecture tries to remove the
unnecessary complexities that exist in a service-oriented archi-
tecture to achieve flexibility, interoperability [2], independence,
and scalability [5].

Containerization is a method of encapsulating a software
package with source code, related libraries, configuration files,
and required dependencies to run it on the host operating
system. Containers allow the “write once, run anywhere”
paradigm, removing operating system and software compati-
bility problems.

The microservices architecture and containerisation tech-
nologies are popular choices for developing manufacturing ar-
chitectures and frameworks with different purposes and goals.
Ibarra-Junquera et al. introduced a flexible, scalable and robust
framework based on container technology and microservices
for real-time control capabilities in the automation of industrial
bioprocesses [7]. Goldschmidt et al. used a container-based so-
lution to build a multi-purpose industrial controller which ad-
dresses legacy hardware emulation and flexible function de-
ployment [3]. Gonzalez-Nalda et al. introduced a generic mod-
ular architecture for cyber-physical Systems based on the Robot
Operating System (ROS) and Docker [4]. Thramboulidis et al.

proposed a framework for assembly systems based on microser-
vices and the Internet of things (IoT) [12]. Senington et al.
employed container technologies such as Docker, Docker reg-
istries, and Docker-compose registries to solve software man-
agement, deployment, configuration and integration in smart
factories in four locations around the European Union [11].

Interoperability between devices and machines often relies
on multiple heterogeneous communication protocols, which
hinders the development of modular manufacturing architec-
tures. The presence of heterogeneous technologies in manu-
facturing systems makes manufacturing processes complex and
difficult to control. To this end, Nikolakis et al. proposed an
end-to-end software framework to bridge the high-level plan-
ning and the low-level execution control using IEC61499 com-
pliant function blocks modelling of manufacturing operations
executed using docker containers [8]. Rufino et al. considered
end-devices as cyber-physical systems capable of running con-
tainerised services and abstracted interoperability using Repre-
sentational State Transfer (REST) protocols and a distributed
database at the gateway for communication mediation [9].

The above research publications show that microservices ar-
chitectures and containerization are often adopted together to
achieve flexible and agile automation systems in manufactur-
ing. Microservices architectures and containerization help deal
with multiple constraints such as ease of installation and de-
ployment, management, security, and scalability in modern in-
dustrial automation systems. However, some limitations hin-
der the further development and adoption by the manufacturing
community in the existing approaches.

The first research gap in the existing literature is the lack
of methodology for developing manufacturing solutions. Al-
though all authors use microservices and containerization tech-
nologies for developing manufacturing software solutions, none
of the authors provide a methodological way of developing such
manufacturing applications. This lack of a unifying method
of developing manufacturing applications makes it difficult for
practitioners to develop interoperable, modular, and plug-and-
produce solutions. No software development kit in the existing
literature is specially designed for developing manufacturing
software solutions. We address this issue by proposing MAP-
PDK.

The second research gap that we address in our work, which
is not addressed in the existing literature, is the re-usability and
distribution of developed software solutions for a similar man-
ufacturing process. We treat this problem similar to mobile ap-
plication development practice, where the developed apps are
distributed through the central hub.

The third research gap in the literature is the choice of devel-
oping manufacturing software solutions. The authors above use
a top-down approach for developing manufacturing solutions.
In the top-down approach, a high-level definition of a problem
is subdivided into smaller problems and the respective solutions
developed for the whole problem. While this method is easy to
implement, extending it to other processes is difficult because
of the problem-specific solutions developed in a top-down ap-
proach. Thus, we use a bottom-up approach where each system
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Fig. 1: Conceptual architecture that enables the development of modular and plug-and-produce manufacturing software solutions. This diagram serves as a guideline
for implementing and extending a modular architecture presented in Section 3.2.

module is developed individually. This method allows re-using
and distributing developed solutions for similar use-cases.

In the next section, we discuss our methodology for devel-
oping modular and plug-and-produce manufacturing software
solutions.

3. Methodology

3.1. Appification of manufacturing processes

In a manufacturing process such as assembling parts to make
a final product, the whole process can be divided into smaller
operations. Each operation in this process involves some man-
ufacturing equipment that depends on a software solution to
control the equipment. With the connectivity offered by Indus-
try 4.0, stand-alone control code is no longer enough to control
equipment, and instead the software solution includes control
code as well as access to other data sources to coordinate pro-
duction. We call these software solutions ’manufacturing apps’
and give the following definition to “appification” of the manu-
facturing process:

The “appification” of the manufacturing process refers
to separating digital and physical implementations of the
manufacturing system to make implementations modular and
reusable for similar manufacturing processes.

By “digital implementation” we mean the software compo-
nent, and by “physical implementation” we mean the specific
hardware in the manufacturing system.

The above definition assumes that each physical and digital
component of the manufacturing system can be modularized to
enable the development of apps for each module of the system.

The appification allows the reusability of developed solu-
tions. For instance, a pick-and-place process that consists of an
industrial robot arm, an end-effector, and a vision system can
be modularized into three independent modules with their apps

that provide the required capabilities. A vision system can be
considered a separate system with autonomous object detection
capability using machine learning methods. If, for some rea-
son, the vision system needs to be replaced during production,
the other two modules will not be affected by this change; or if
there is a need to get extra capability such as pose estimation,
it should be possible to do so by implementing the necessary
app. Similarly, if the robot or end-effector changes, it should
be possible to replace them without spending too much time on
re-adjusting all three modules.

3.2. Modular architecture

However, to be able to develop manufacturing apps, there
is a need for an architecture that meets certain requirements;
in particular, a conceptual architecture must have the following
inherent characteristics:

1. An architecture must enable modular physical implemen-
tations, i.e., physical components must be independent of
each other.

2. An architecture must enable modular digital implementa-
tions, i.e., software components must be independent of
each other.

3. An architecture must enable plug-and-produce properties,
i.e., physical and digital components must be replaceable
and reusable with minimum necessary configuration.

4. An architecture must enable the distribution of developed
solutions by publishing to the central hub to enable the
reusability of developed solutions in similar scenarios.

In this work, we propose a modular and plug-and-produce
architecture that has the above inherent characteristics. Before
giving implementation details, we first define the below terms
that are necessary for an architecture to be modular and enable
plug-and-produce:
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(a) Abstract Equipment class (b) Abstract App class

Fig. 2: Manufacturing App Development Kit interfaces. (a) demonstrates the object-oriented way of developing manufacturing equipment software. (b) demonstrates
the object-oriented way of developing manufacturing apps.

• Atomic device. An atomic device is a single physical
device intended to perform one specific operation such
as gripping with a gripper, capturing an image with a
camera, or measuring force with a force sensor. Dividing
every physical device of the manufacturing system into
atomic devices with one specific goal enables the physi-
cal modularity of the architecture.
• Physical node. A physical node consists of one or more

atomic devices to perform a manufacturing process. For
example, an industrial robot arm, camera, and gripper
may form one physical node to sort products. The def-
inition of the physical node is necessary for managing
atomic devices that are grouped to perform one manufac-
turing process.
• Computational node. A computational node is a de-

vice such as a Raspberry Pi that can control the physi-
cal nodes or the atomic devices in the physical nodes. A
computational node must have the ability to host variable
software solutions using microservices and containeriza-
tion technologies. The definition of computational nodes
helps solve the interoperability bottleneck in the existing
manufacturing systems by lifting the communication and
digital implementations to high-level computational de-
vices. Computational nodes enable digital modularity of
the manufacturing systems.
• Manufacturing process cluster. A manufacturing pro-

cess cluster is a group of physical and computational
nodes with one specific goal: sorting, bin-picking, pal-
letizing, welding, drilling. The manufacturing process
cluster helps organize physical nodes and computational
nodes for management.
• Architecture manager. Some of the functions of an

architecture manager are installing/updating/removing
apps, assigning and re-assigning computational nodes
and physical nodes to manufacturing process clusters.
The architecture manager enables the plug-and-produce
property of the manufacturing systems by giving man-
ufacturing engineers high-level management tools and
an interface for developers to develop software solutions
without considering management-related issues.

• Global applications repository. The global application
repository is a central hub for the publishing and deliv-
ering manufacturing apps. Global applications repository
enables the reusability of developed solutions for similar
processes.

This conceptual architecture is depicted in Figure 1. In the
above architecture, atomic devices, physical nodes, and man-
ufacturing process clusters are concepts that serve as the basis
for the architecture; computational nodes, the architecture man-
ager, and the global applications repository can be developed
using the recent advances in information technologies such as
microservices and containerization.

Docker was used for containerizing manufacturing apps. We
developed a computational node using Raspberry Pi and used
Ubuntu IoT as an operating system; however, any computa-
tional device with the minimum requirements to run container
technologies can serve as a computational node for this archi-
tecture.

We also developed an architecture manager using an in-
house container management software solution. This solution
is written using NodeJS and has a web interface for managing
different manufacturing apps. Computational nodes can also be
managed using more advanced orchestration technologies such
as Kubernetes. For the sake of simplicity, we used our custom-
developed approach for this work.

3.3. Manufacturing Apps Development Kit

The modular architecture acts as an enabler for developing
manufacturing apps. However, another challenge that currently
hinders the development of manufacturing apps is the lack of a
software development kit (SDK) specially designed for this pur-
pose. An SDK is a collection of tools that facilitate the creation
of applications for a given environment. Every OEM has an
SDK suitable only for that hardware. For example, FANUC has
FANUC PC Developers Kit, ABB has RobotStudio SDK, and
KUKA has its software collection for developing robotic ap-
plications. It is extremely difficult to make them work together
because of different vendor-specific standards [13]. However,
encapsulating the manufacturing process into a computational
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Fig. 3: Sorting process. In this diagram, every operation is appified to make it modular and plug-and-produce. In our experiments, we implement each component
in the above diagram as a Python module, making the code reusable for similar scenarios.

node that runs containerized software solutions allows us to
overcome this existing limitation.

We developed MAPPDK following an object-oriented
programming paradigm, i.e., communication, manufacturing
equipment, capability are objects, and particular instances in-
herit parent properties. The high-level manufacturing equip-
ment class is shown in Figure 2a. This abstract class defines
common methods such as data logging and error handling. For
instance, Robot is a child class that inherits properties from the
manufacturing equipment class and has robot-specific methods
such as getting the current position of end-effector, getting cur-
rent joint values, moving to the user-defined position. In MAP-
PDK, the abstract Robot class defines all robots’ necessary
methods and general properties and can be further extended by
developing robot-manufacturer-specific properties. For exam-
ple, ABB, KUKA, and FANUC all have different Euler-angle
conventions. These robot-manufacturer-specific details can be
integrated by inheriting the abstract Robot class and overwrit-
ing the necessary functions. This development approach al-
lows changing robots for the manufacturing process without
re-implementing the same solution for each robot separately.
Similarly, other manufacturing equipment can be integrated by
inheriting abstract manufacturing equipment class.

MAPPDK implements an abstract App class as shown in
2b for developing manufacturing apps, defining configurations
management, errors, and exception handling methods common
to all manufacturing apps. Thus, manufacturing apps developed
by inheriting abstract App class have access to the common
interface, facilitating plug-and-produce and modular develop-
ment. For example, pick-and-place, fastening, vision, drilling
can all be implemented by inheriting the App class.

Furthermore, we have developed a fast and lightweight com-
munication protocol that can be adapted to new robot manufac-
turers only by writing the driver for the robot controller. We im-
plemented our protocol because not all robot controllers support
the current standards. The MAPPDK side will stay the same for
all robots to enable easy replacement and reusability of devel-
oped solutions. In this implementation, the robot controller acts
as a server, and MAPPDK acts as a client requesting commands
to execute. The server implementation runs until an operator
stops, while client implementation runs only for one command
execution.

4. Experiments

In this section, we experimentally demonstrate the proof of
concept of the appification of manufacturing processes. As a
use case, we selected a simple yet industrially relevant process

of sorting products. In this setting, an industrial robot arm needs
to sort products based on their colors. In particular, there are
three different cylinders with different shapes and colors. The
task for an industrial robot arm is to pick these cylinders from
random positions and place them in their respective containers,
as shown in Figure 4.

Fig. 4: The demonstration on real manufacturing equipment. In this experiment,
a FANUC industrial robot utilizes the manufacturing apps depicted in Figure
3 to sort cylinders with different heights and colors. The Figure on the left
shows the final output after image capturing, workspace detection, and object
detection. The Figure on the right shows the actual robot execution.

We used a 6-axis FANUC ER-4iA industrial robot, which
has an R-30iB Mate Plus Controller, a Schunk gripper, and
an Intel RealSense L515 LiDAR camera. Also, the industrial
robot cell has a built-in FANUC iRVision camera. The hetero-
geneity of devices, i.e., different OEMs, is a good example for
demonstrating the modular manufacturing app development us-
ing MAPPDK.

In this setup, the industrial robot arm, gripper, and vision
camera are all considered atomic devices which make one phys-
ical node with one manufacturing process goal - sorting cylin-
ders. A Raspberry Pi Model 4 acts as the computational node
that runs the Docker container on top of the Ubuntu IoT oper-
ating system. The whole manufacturing process cluster is con-
trolled by the architecture manager developed using NodeJS.

In our experiments, we developed the sorting process in a
bottom-up approach to demonstrate the modularity of apps. Ini-
tially, we developed a simple pick and place app that picks
an object from any given pick position and places it to a pre-
defined place. This app receives a 6D pose of an object for pick-
ing and placing.

After verifying the correctness of the pick and place app, we
integrated a built-in cell camera to detect one type of cylinder.
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For this, we developed the image capturing, workspace detec-
tion, and cylinder detection apps.

The image capturing app is only responsible for capturing
images with an external camera. This app is device-agnostic
and can work with different types of cameras. The goal of the
workspace detection app is to detect the robot’s workspace. The
task of the object detection app at this stage was to detect the
position of one type of cylinder in the workspace.

In the next step, we changed the built-in camera with a third-
party LiDAR camera. The introduction of a new camera did not
introduce any changes to other apps in the system. Hence, we
achieved the modularity and plug-and-produce for integrating a
vision module.

After integrating a new camera, we changed the types of ob-
jects, i.e., we introduced cylinders with different shapes and col-
ors. This new change required only change in the object detec-
tion app, proving the modularity and plug-and-produce of inte-
grating an intelligence module. We used the OpenCV library for
implementing the vision-based logic. We used RANSAC based
Perspective-n-Point algorithm for detecting 6D poses of cylin-
ders. However, the object detection app can further be expanded
using more advanced machine learning methods, such as deep
learning-based 6D pose estimation methods.

In the next step, we integrated more intelligent capability
- sorting the object in the workspace. For this, we needed to
change only the main logic app, which has a sorting function.
The final sorting process app is shown in Figure 3.

Our aim with these experiments is to show the possibility of
developing manufacturing apps using high-level programming
languages. In particular, we used the Python programming lan-
guage for performing the defined tasks.

5. Conclusions

In this work, we investigated the appification of manufactur-
ing processes to develop modular and plug-and-produce manu-
facturing apps. We defined the methodology for developing and
deploying apps in an industrial environment.

The concept of appification of manufacturing processes was
shown experimentally by developing a sorting app that involves
heterogeneous devices. Existing solutions implement this in a
monolithic approach where all the required steps are tightly de-
pendent on each other. The appification of manufacturing pro-
cesses helps to divide all the steps into modular apps indepen-
dent from each other. Plug-and-play has proven extremely suc-
cessful in the computer science domain, and plug-and-produce
achieves a similar goal by making it easier for manufacturers to
introduce new equipment from new technology suppliers, thus
incentivizing technology providers to support the approach.

Plug-and-produce has previously been addressed in terms of
modularity of physical resources and associated interfaces (e.g.,
Antzoulatos et al. [1], Sanderson et al. [10]). In this work, we
have addressed plug-and-produce from the perspective of mod-
ular cyber-physical capabilities, where the software compo-
nents and the hardware components are not intrinsically locked
together, and instead, we allow for different software compo-

nents to be chosen depending on the application at hand and the
range of available hardware components.

One approach to achieving a plug-and-produce paradigm
and simultaneously securing intellectual property is ensuring
syntactic and semantic interoperability [2], where the OEMs
agree on a common data format and disclose other things re-
lated to securing IP. IP security is a key concern, and a data
access model that defines what information is required for the
plug-and-produce will be a future development.
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