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Highlights
Studies in the field of cognitive neurosci-
ence vary along two different axes: the
first refers to their ‘levels of control’
(e.g., controlled task designs vs.
resting-state paradigms) and the
second refers to their sample size.

Although theoretically these two axes
can be orthogonal, in practice they
often correlate: controlled designs gen-
erally dominate the field for small-scale
studies, whereas uncontrolled designs
are prevalent among large-scale studies.

This results in qualitative differences be-
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Recently, cognitive neuroscience has experienced unprecedented growth in the
availability of large-scale datasets. These developments hold great methodolog-
ical and theoretical promise: they allow increased statistical power, the use of
nonparametric and generative models, the examination of individual differences,
and more. Nevertheless, unlike most ‘traditional’ cognitive neuroscience
research, which uses controlled experimental designs, large-scale projects
often collect neuroimaging data not directly related to a particular task
(e.g., resting state). This creates a gap between small- and large-scale studies
that is not solely due to differences in sample size. Measures obtained with
large-scale studies might tap into different neurocognitive mechanisms and
thus show little overlap with the mechanisms probed by small-scale studies. In
this opinion article, we aim to address this gap and its potential implications for
the interpretation of research findings in cognitive neuroscience.
tween small- and large-scale studies,
which are not due to their size per se,
and poses challenges to the interpreta-
tion of the results.
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Two methodological axes of cognitive neuroscience research
Studies in the field of cognitive neuroscience vary along two different axes. The first axis, termed here
‘levels of control’, refers to the nature of the designs that are employed: in some studies, the cogni-
tive processes are driven by external input provided by the researcher (i.e., particular tasks or stimuli).
Tight control over the experimental input allows the researcher to track the specific cognitive
processes elicited by the task. At the other end of this continuum are studies in which cognitive pro-
cesses are generated internally (i.e., without any external stimulus or task). With no external input,
and without the ability to infer what participants are thinking, such studies entail low levels of control.

The second axis refers to the size of the study: traditionally, studies in the field of cognitive neuro-
science have relied on data collected from relatively few participants (often fewer than 20 per
group, although see the later discussion of current trends). However, in recent years, large-
scale studies, for which data are collected from hundreds or even thousands of participants,
are becoming increasingly popular.

Although theoretically these two axes can be orthogonal, in practice they often correlate. In this
opinion article, we investigate these two axes in the context of recent advances in the field of cog-
nitive neuroscience and demonstrate how these qualitative differences between small- and large-
scale studies might pose considerable challenges to the interpretation of research results.

Levels of control in cognitive neuroscience
Studies in the field of cognitive neuroscience employ different levels of control. The traditional
approach in the field is that tightly controlled experimental manipulations can be applied to discover
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interpretable relationships between the brain and behavior. This notion relies on the assumption
that carefully designed experimental tasks can be used to individuate cognitive processes, which
can then be linked to specific neural mechanisms. For example, a central debate in the cognitive
neuroscience of episodic memory revolved around the role of the hippocampus in episodic
retrieval: whether it selectively supports recollection (i.e., the retrieval of qualitative information
about a specific study episode), or otherwise supports the retrieval of ‘strong’ memories, regard-
less of whether their retrieval is achieved via recollection or familiarity-based judgments of prior
occurrence [1]. By combining neuroimaging measures with a range of tightly controlled memory
tasks (including source memory, context memory, and continuous recognition tasks), studies
lent support to the notion that the hippocampus tracks the amount of episodic information that is
retrieved, thereby selectively supporting recollection, rather than the strength of an undifferentiated
memory signal [2]. Other examples can be found in the fields of face perception (the face specificity
vs. individuation/expertise debate [3–7]), visual working memory (representations maintained in
frontoparietal vs. occipital regions [8–10]), and syntactic processing (a specific role in syntactic pro-
cessing vs. a general role in cognition for the left inferior frontal gyrus [11]). Over the years, this com-
bination of neuroimaging measures and tightly controlled experimental designs allowed cognitive
neuroscientists to make immense progress in characterizing and understanding the relations be-
tween cognitive and neural mechanisms viamultiple imagingmodalities (Box 1) and across multiple
cognitive domains.

At the other end of the levels-of-control continuum, resting-state studies emerged as one form of
uncontrolled design, often used as an alternative approach to map the relationship between trait-
like brain networks and cognitive functions. These studies build on the important discovery that
consistent functional resting-state networks are observed in the absence of any stimulus or
task [12–14]. In a typical resting-state study, neural data are acquired while participants are not
exposed to any controlled external input (i.e., specific task or stimuli). In some cases, additional
data are collected (e.g., data from behavioral tasks performed outside the scanner) and linked
to neural patterns that are observed at rest. This approach has been widely applied to the
study of various populations and clinical applications [15]. In addition, commonalities between
Box 1. Functional neuroimaging modalities in cognitive neuroscience

A variety of neuroimaging modalities, including fMRI, electroencephalography (EEG), MEG, positron emission tomography
(PET)/computed tomography (CT), and functional near-IR spectroscopy (fNIRS), are used in the field of cognitive neuroscience,
often providing different perspectives or complementary evidence that relies on the unique strengths offeredby each technique.
Nevertheless, in large-scale projects, there is a clear dominance of fMRI. In a recent review of open-access neuroimaging
datasets [26], of the 61 large-scale projects (n> 100) involving human participants, 37 included fMRI data but only nine included
EEG and/orMEGdata (we are aware of only two additional large-scale projects involvingM/EEG data, which were not included
in that review [48,49]).

Why some modalities are being relatively overlooked in large-scale projects is not entirely clear. Possible reasons for the
popularity of fMRI in large-scale projects include the straightforward combination with structural brain metrics and the
greater spatial resolution of fMRI. Nevertheless, given that EEG is widely available and frequently used in small-scale
studies, while also entailing relatively low costs, one might expect EEG to be at least as popular as fMRI for large-scale
projects. Thus, another reason for the popularity of fMRI in large-scale projects may stem from the fact that resting-state
networks were first established with fMRI [12–14], and resting-state data are relatively easy to collect on a grand scale
(see main text). Although resting-state networks have also been observed using MEG/EEG [50–54], the typical way of
analyzing such data remains task focused, and there is less consensus regarding resting-state connectivity metrics
[55]. Nevertheless, the investigation of the temporal dynamics of resting-state networks might greatly benefit from the
superior temporal resolution of these modalities.

Despite this dominance of fMRI in large-scale projects, it might not be the optimal modality for every purpose. It is impor-
tant to consider, we would argue, a range of methods, and rather than seeing fMRI as a ‘default’modality, to carefully se-
lect the methods that seem best suited to the specific research question(s) at hand.
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resting-state networks and task activation networks have been observed [16,17], suggesting that
both are largely shaped by a shared and stable intrinsic network architecture [18]. It is important
to note, however, that despite the prevalence of resting-state designs, especially in large-scale
studies, resting-state data are not unique in how they can be analyzed, and methods that measure
functional connectivity can be similarly applied to task data [19,20]. In addition to tightly controlled
experimental designs and resting-state designs, other designs are becoming increasingly popular
(Box 2), providing additional opportunities for the investigation of human neurocognition.

Small- versus large-scale studies
The number of participants inmuch of the cognitive neuroscience literature tends to be low. A recent
study [21] scrutinizing sample sizes in neuroimaging revealed that, between 1990 and 2021, the
median sample size in highly cited experimental functional magnetic resonance imaging (fMRI)
studies was ~12 per group. The study also reported a consistent growth in the median sample
size over the years, up to 24 in 2018. This growth can be attributed to the impact of the reproducibility
crisis (Box 3), which stressed the necessity of larger samples (ormore observationswithin participants
[22–25]), as well as to the growing availability and ease of use of experimental and neuroimaging
resources. Despite this increase, however, the sample size for most experimental neuroimaging
studies (i.e., those that employ controlled designs) rarely exceeds a few dozen participants.

Despite the fact that most experimental studies still rely on relatively low numbers of participants,
the recent movement towards large-scale (‘big data’) initiatives that is evident in many fields is
also present in the field of cognitive neuroscience. Several large-scale studies (recently reviewed
Box 2. Naturalistic designs: beyond controlled tasks and resting-state data

In the field of cognitive neuroscience, the recent decade has been characterized by increasing methodological versatility.
This has provided opportunities for innovative study designs that are different from the more traditional ones. In particular,
designs that incorporate naturalistic stimuli or behaviors are gaining popularity. For example, in movie-viewing paradigms,
participants watch a movie without performing any particular task (other than following a general instruction to ‘watch the
movie’) while neural measures are collected [35,56–59]. Similarly, in ongoing narrative-processing paradigms, participants
might listen to a story, a conversation, or a lecture, again provided with some general or minimal instructions [59,60]. Such
tasks comprise a continuous input stream, providing a more ecological model for how information is obtained and
processed in ‘real-world’ situations. Arguably, however, the naturalistic characteristics of such tasks are constrained by
the fact that, unlike our real-world experiences, in which we act and interact with the stimuli that surround us, the range
of behaviors afforded by these tasks remains limited. To account for these limitations, recent research has incorporated
interactive behaviors, such as continuous speech or navigation in a virtual-reality environment, to better approach
naturalistic cognition [61–63]. Although the production of naturalistic behaviors within the confines of an fMRI or MEG
scanner is undoubtedly challenging, such research benefits from recent methodological developments that allow better
mobility of neuroimaging techniques, such as mobile EEG devices and wearable MEG systems [64–67].

One of the initial motivations to use such ‘naturalistic’ designs was rooted in the long-standing critique that because of the
isolated and artificial nature of tightly controlled tasks, the conclusions they generate often fail to generalize outside the
laboratory into real-life contexts [68–73]. Moreover, although naturalistic paradigms do not have the experimental effi-
ciency of targeted manipulations [71], they offer better understanding of the relative contributions of different domains to
real-world phenomena [74]. Importantly, these designs also overcome some of the limitations of uncontrolled resting-state
designs [19], for example, by maintaining the complex, multidimensional, and ongoing nature of sensory input that the
brain has evolved to capitalize on to guide behavior [69]. Naturalistic stimuli have also been shown to enhance meaningful
individual differences in functional connectivity [75] and provide more direct links between neural and cognitive mecha-
nisms than resting-state studies (e.g., by using annotated stimulus features and narrative structure [20,57,76–78]). In
the context of large-scale studies, the great advantage of naturalistic paradigms is the richness of the data they produce.
This richness allows these data to be used to answer a wider range of research questions than typical task-controlled or
resting-state studies. For example, a spoken narrative can be used to investigate questions ranging from the domain of
word meaning or syntactic processing to the perception of emotions and social cognition [69,71,79]. At the practical level
(i.e., ‘ease of use’), these designs are comparable with resting-state designs and therefore are relatively easy to implement
in large-scale studies, and have been shown to reduce head motion in the scanner relative to rest [80]. When these are
complemented by controlled tasks, datasets will also allow more opportunities to map abstract laboratory-based tasks
onto more real-world cognitive processing.
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Box 3. The reproducibility crisis and samples that are too small

The reproducibility crisis in science, and in psychological sciences in particular, refers to the repeated observation that
research findings often fail to replicate [81–83]. This failure has been attributed to multiple reasons, including poorly
conducted procedures, flawed career incentive structures, and biases in the publication system [84–87]. Among these
issues, the most frequently identified cause is lack of statistical power due to samples that are too small [40,85]. In the null
hypothesis significance testing framework, statistical power is defined as the probability of rejecting the null hypothesis
(i.e., obtaining a statistically significant test result) given that the alternative hypothesis is true.

As discussed in previous articles [21,40,85], the problem with underpowered studies is threefold. First, inherent to the
aforementioned definition of power, in underpowered studies, the chance of discovering effects that are genuinely true
is low. That is, low-powered studies produce more false negatives than high-powered studies. Second, low power re-
duces the positive predictive value (PPV) of the study, defined as the probability that a ‘positive’ research finding reflects
a true effect (i.e., the finding is a true positive). For example, a PPV of 80% means that 80% of a study’s claims for discov-
eries will be correct. The link between this probability and the power is indicated by the formula

PPV ¼ 1 – βð Þ � R½ �= 1 − βð Þ � Rþ α½ �, ½I�

where (1 − β) is the power, α is the type I error, andR is the pre-study odds.With the other components of the formula (α andR)
held constant, the greater the power the greater the PPV.

Third, underpowered studies are likely to yield an exaggerated estimate of the magnitude of the effect when a true effect is
discovered. To clarify this point, suppose, for example, that a medium-sized effect (e.g., d = 0.5) truly exists. Due to
sampling variations and random errors, studies addressing this effect will yield effect sizes that fluctuate around the actual
effect size (e.g., between 0.4 and 0.6). However, because of the small sample size and a predefined threshold of statistical
significance (e.g., P < 0.05), only studies that produced a large effect size (due to these random fluctuations) would reach
statistical significance.

Underpowered studies (due to small sample sizes) are common in the field of cognitive neuroscience [21]. This lack of
power is partially attributed to the major costs associated with the collection of neuroimaging data, but also to other
non-financial factors such as ambiguity around how to define effect size or power in fMRI. Although in recent years sample
sizes have been increasing in neuroimaging research [21], the more fundamental transformations that could bring the
replication crisis to an end remain to materialize.
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in [26]) that involve the acquisition of neuroimaging (and other) data from a large number of
participants (at least a few hundred) have been launched in recent years. For example, the
WU/Minn Project [27] [part of the Human Connectome Project (HCP)] comprises data collected
from ~1200 participants (twin siblings). Functional neuroimaging measures in the HCP include
R-fMRI as well as seven well-established (although arguably basic) fMRI tasks tapping into
multiple cognitive domains (working memory, reward processing, motor processing, language,
social cognition, relational processing, and emotion processing). For working memory, for
example, a common variant of the widely used n-back task was employed, with high (‘2-
back’) versus low (‘0-back’) working memory load. Another large-scale project is the UK
Biobank [28,29]. This biomedical database and research resource contains in-depth genetic
and health information from half a million UK participants. Neuroimaging measures (from n =
~5000 participants) include R-fMRI data and task fMRI data from a well-established faces/
shapes ‘emotion’ task [30,31] in which participants are shown a visual stimulus at the top of
the screen (either a shape or an emotionally negative face) and are asked to decide which of two
shapes/faces presented at the bottom of the screen match that stimulus. A final example is the
Cambridge Centre for Ageing and Neuroscience (Cam-CAN) project, which uses epidemiological,
cognitive, and neuroimaging data to understand how individuals can best retain cognitive abilities
into old age [32,33]. This dataset includes multimodal [fMRI and magnetoencephalography (MEG)]
resting-state and sensory-motor task data, as well as fMRI movie-watching data, from n = ~700
participants aged 18–88 years. In addition, it includes MEG and fMRI measures from a variety of
tasks tapping into multiple cognitive domains (including emotion regulation, emotional memory,
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fluid intelligence, picture naming, response selection and inhibition, sentence comprehension, and
visual short-term memory), but only for a subset of the participants (n = ~140 per task).

Such projects hold great methodological and theoretical promise: they allow increased statistical
power and the examination of individual differences. Large datasets also enable the use of
models with higher complexity, such as nonparametric and generative models that aim to gener-
ate new data consistent with the original observations [34]. However, as we discuss later, the
transition from small- to large-scale studies is not always straightforward. In particular, when
upscaling, the level of control in the task designs that are implemented is often sacrificed due
to practical considerations.

Beyond sample size: qualitative differences between small- and large-scale
studies
The examples discussed earlier suggest that the two axes that can be used to characterize studies
in the field of cognitive neuroscience – level of control and sample size – are often correlated. Tightly
controlled designs dominate the field for small-scale studies. These often involve innovative tasks
that, to provide novel insights into cognitive (sub)processes, are typically fine-tuned to probe highly
specific aspects of cognition. These tasks are sometimes lengthy and might include several stages
(e.g., encoding and retrieval for memory tasks) and/or high levels of complexity (e.g., multiple
experimental conditions). By contrast, many of the large-scale projects are dominated by uncon-
trolled resting-state designs coupled with relatively simple and well-validated controlled tasks,
typically tapping into coarse or well-characterized cognitive processes. Therefore, in most cases,
the transition from small-scale to large-scale studies does not simply mean ‘more data’. Instead,
large-scale studies tend to collect data using designs that are qualitatively different from those
that are typically used for small-scale studies.

The discrepancy between small- and large-scale studies does not seem to result from theoretical
considerations but more likely reflects practical ones. Namely, although controlled task designs,
especially when combined with neuroimaging measures, allow some flexibility at the analytical
level (e.g., employing univariate and multivariate analyses to investigate variations in task-
induced processes and representations), they often aim to examine a limited number of cognitive
(sub)processes. On its own, this narrow focus might not be a limitation, and indeed reflects an
inherent property of these designs – that is, using well-matched tasks to investigate highly
specific cognitive processes. This ‘feature’, however, turns into a limitation in the execution of
large-scale projects: to maximize their potential contribution, and given the time, effort, and
resources they require, an important characteristic of large-scale projects is that they are able
to serve multiple purposes. Controlled designs, however, are unlikely to be informative beyond
the specific cognitive processes that they were designed to probe. By contrast, uncontrolled
designs often aim to tap into myriad cognitive processes and can therefore be used more flexibly
and to allow more versatility, thereby maximizing the potential ‘return’ of a large-scale project.
Another advantage of uncontrolled designs, which is likely to constitute a crucial consideration
for large-scale projects, is that with these design data are relatively easy to obtain, manage,
and share [19,35]. This stands in contrast to the often nuanced and complex nature of controlled
designs, which can be difficult to interpret for non-experts in a particular cognitive field.

To a large extent, these practical considerations have dictated the scope and type of tasks used
in large-scale studies. In some of these studies, controlled designs are also included, but these
tend to be short, simple, and designed to achieve goals markedly different from those commonly
encountered in small-scale studies. For instance, the fMRI tasks included in the HCP were
included ‘(i) to help identify as many ‘nodes’ as possible that can guide, validate, and interpret
Trends in Neurosciences, Month 2022, Vol. xx, No. xx 5
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the results of the connectivity analyses that will be conducted on resting-state fMRI (R-fMRI),
resting-state MEG (R-MEG), and diffusion data; (ii) to allow a comparison of network connectivity
in a task context to connectivity results generated using R-fMRI; and (iii) to relate signatures of
activation magnitude or location in key network nodes to individual differences in performance,
psychometric measures, or other phenotypic traits’ ([31], see p. 170). These goals are quite differ-
ent from those of a typical small-scale study, which tend to be aimed at determining how specific
cognitive processes are instantiated in the brain or at testing specific psychological theories [36].

Study goals are important because they dictate the types of tasks used. For the HCP, the tasks
were designed to act as ‘functional localizers’ for a diverse range of cognitive functions
(e.g., working memory, motor control, emotion processing) and were selected for their reliability
and efficiency (most tasks were ~3 min in length and used a block design). While these tasks
were well suited to the goals of the HCP, they are unlikely to be particularly informative about
the specific cognitive functions performed by individual regions in a given network. For instance,
the language processing task contrasts four blocks of listening to a story with four blocks of
solvingmathematics problems. Such a design does not allow isolation of the different component
processes involved in language (i.e., syntax, semantics, and pragmatics), for which a more
nuanced design is required [37].

Further, the utility of these tasks in predicting individual differences in cognitive performance
depends on whether the processes that differ across individuals are taxed by a given task.
For instance, age differences in motor control may not be observed during a simple task that
requires one movement at a time (i.e., tap right or left fingers, squeeze left or right toes) but
may emerge only when different movements conflict or when a prepotent response must
be inhibited [38]. Overly simple tasks can miss out on individual differences in the ability to
reconfigure network interactions to accomplish more challenging task goals [39] and may
also be unsuited to identify the neural underpinnings of specific cognitive disorders and
developmental changes.

What are the insights that large-scale studies do offer?
The high specificity and novel insights into cognitive processes offered by controlled designs are
not readily obtained with current large-scale studies. This is not to say that these studies do not
offer novel perspectives, but they differ in the type of knowledge they contribute. Namely, while
current small-scale and well-controlled studies are useful for identifying specific neurocognitive
processes, large-scale studies can help to, for instance, further characterize processes that are
already known (by using a combination of uncontrolled and well-established controlled designs)
and identify individual differences therein.

The current landscape, in which small-scale studies tend to rely on controlled designs whereas
large-scale studies tend to rely on uncontrolled designs, poses challenges to the interpretation
of the results. When commonalities between small- and large-scale studies emerge, they are
often informative and can provide complementary perspectives on cognitive processes. For
example, suppose that a small-scale study revealed that a certain memory task involves greater
connectivity within some brain network for remembered versus forgotten items. Now suppose
that in a large-scale study, resting-state connectivity within the same network was related
to task performance in a memory task performed outside the scanner. Taken together, these
findings provide compelling evidence that this network supports memory. However, when differ-
ences emerge between small- and large-scale studies, their interpretation is often hindered by the
qualitative differences in the designs. Suppose, again, that in a large-scale study, the aforemen-
tioned brain network was not related to memory performance. Is that because this network is
6 Trends in Neurosciences, Month 2022, Vol. xx, No. xx
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activated only during the task? Is it specific to the subprocesses probed by the memory task? Is it
because the projects used different cohorts or is the observed effect spurious due to the small
sample of the small-scale study [40]? These alternatives are difficult to disentangle.

To elevate current understanding of cognitive functions to the next level, large-scale studies
would benefit from the inclusion of more fine-grained tasks. With that, due to the substantial
resources required for the collection of large-scale datasets, it makes little sense to include
tasks that are not carefully validated in terms of their test–retest reliability, their construct
validity, and their measurements. Reliable measurements are a prerequisite for studies of inter-
individual variability. Does this imply that one should only use well-validated coarse tasks that
are unlikely to provide new insights? Should large-scale studies abandon novel fine-grained
tasks that can expand our knowledge but might not be as reliable? We would argue that
with additional planning and creativity, middle-ground solutions can be formed. For example,
data collection can be done in phases, where data from novel tasks collected in each phase
are analyzed prior to the execution of the next phase. This way, tasks can be replaced if
found to be unsuitable. Such solutions might require additional resources in the short term
(e.g., additional contingency planning, allowing more time for data collection, etc.), but overall
they can reduce the time and costs involved in scanning hundreds/thousands of individuals on
a suboptimal task.

We would argue that the few large-scale studies that do include a variety of neurocognitive
measures, such as any combination of resting-state, coarse and fine tasks, and other
(e.g., naturalistic) designs, already demonstrate the utility of this approach and illustrate how,
when integrated, these measures can be used to validate previous results and to lead to new
insights in the field of cognitive neuroscience. In one study, which used data from Cam-CAN
[32,33], functional connectivity during three mental states (resting-state, movie watching, and a
sensorimotor task) was measured within the same participants [41]. In accord with previous
findings, the authors showed commonalities between connectivity patterns across states.
Importantly, however, the study further revealed divergence between the states, suggesting that
individual differences in functional connectivity are driven not only by trait-like aspects but also by
state-dependent ones. Another study [42] analyzed fMRI data from seven tasks that tap into differ-
ent domains, to examine whole-brain task-related modulation of functional connectivity. By
leveraging large-scale task fMRI data from the HCP [31] and the University of California Los Angeles
(UCLA) Consortium for Neuropsychiatric Phenomics [43], the study showed that task-relatedmod-
ulations of connectivity patterns are not restricted by regional task activations, thus reinforcing the
importance of studying whole-brain task connectomes. In another example [44], task and resting-
state HCP data were used to validate previous findings showing correspondence between brain
networks that are activated during task and rest, while also generating new results regarding the
engagement of different brain networks in particular tasks. In a final example [45], independent
component analysis (ICA) was applied to task data from Cam-CAN to derive networks that are
shared and unique across two tasks that typically decline with age (fluid intelligence and object
naming) and one that is typically preserved (sentence comprehension). It was found that the
same networks that showed an age-related decrease in activity and connectivity in the declining
tasks did not show an age difference in the maintained task, suggesting that age differences in net-
work function depend on the task context. These examples demonstrate how the inclusion of mul-
tiple neurocognitive measures in a single large-scale initiative can offer novel insights and enhanced
interpretability that go beyond what can be obtained via ‘local’ small-scale studies or via large-scale
studies that do not include controlled designs. In particular, we believe that the inclusion of novel
task designs in large-scale studies is essential to provide novel insights regarding specific pro-
cesses within cognitive domains and would therefore play a key role in driving the field forward.
Trends in Neurosciences, Month 2022, Vol. xx, No. xx 7
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Outstanding questions
How do we determine the ideal
transition route (or design) for a
planned large-scale study? Given the
large investment these studies require,
and their usefulness to the wider scien-
tific community (as open datasets),
should the planning of these studies
be more community driven – for in-
stance, by soliciting potential cognitive
tasks from various research groups
and putting them to a vote via a scien-
tific society such as the Organization
for Human Brain Mapping?

In a field with fast-evolving technology
(i.e., new equipment, new scanning
sequences, etc.), how can we best
avoid using methods that may eventu-
ally become obsolete to maximize the
usefulness of data collected in large-
scale studies for years to come?

It would be beneficial for the field to
decide on some shared defaults or
guidelines for large-scale studies.
First, what are default or common
stimuli/tasks that could be used in-
stead of (or in addition to) the resting
state? Second, what should be the de-
Concluding remarks
During the past decade, big data has become one of the hottest buzzwords in many industries
and research areas, and the field of cognitive neuroscience is no exception. Despite this growing
popularity of large-scale datasets, as researchers we should upscale with caution (see Box 4 for
suggestions and see Outstanding questions for additional considerations). In a reality of limited
resources, progress might be achieved by our ability to ‘go bigger’, but might also depend on
other factors. Large-scale projects require many resources and their data collection and analysis
is slower and more tedious. In addition, their data are often analyzed many times by different
research teams, which enhances the risk of increasing false positives and for our research ques-
tions being limited by the data that are available [26,46,47] (see Outstanding questions). Another
challenge is that methodological progress may render some of the technology currently used in
large-scale studies less relevant in the future, complicating the comparison of findings over
time. Importantly, as discussed earlier, current small- and large-scale studies can make differen-
tial contributions to the field of cognitive neuroscience, owing to, among other factors, variations
in the nature of the designs that they typically use.

In a way, this might be unsurprising: small-scale studies are usually designed within the field of
cognitive neuroscience by cognitive neuroscientists and are tuned to provide new insights on
cognition and its neural substrates. By contrast, large-scale studies are usually designed by
multidisciplinary teams, which include cognitive neuroscientists but also researchers from other
domains, and aim to tackle a variety of topics, with cognition often included as a secondary
goal if at all. As well justified as these differences between small- and large-scale studies might
be, the important implication of what one can or cannot learn from a particular dataset should
be taken into account.
Box 4. Super-size me: how to upscale?

Large-scale studies often employ uncontrolled task designs. Nevertheless, to bridge the gap between small- and large-
scale studies, alternative designs should be considered. One option is to collect large-scale data for controlled designs.
The main advantage of this route is that small and large cohorts are then directly comparable. However, because
controlled designs are both costly (i.e., tasks are often lengthy and complex) and inflexible (i.e., targeting highly specific
cognitive processes), for large-scale projects, the limited efficiency of this route often outweighs its potential advantages.
Another alternative is to collect large-scale data for ‘known’ cognitive processes (i.e., processes that were already probed
via ‘classic’ cognitive tasks) using naturalistic designs (Box 2). For example, continuous narrative processing can be used
to tap into a variety of domains, such as auditory processing, language, memory, emotion, etc. Stimulus features
(e.g., emotional themes, specific auditory properties) can be labelled and contribute to event-based analyses
[57,61,88–92]. Additional tasks performed outside the scanner (e.g., a memory task about the content of the stimuli)
can also be used to facilitate interpretation. Thus, although novel insights into subtle subprocesses (e.g., those offered
by task designs) are hard to obtain using this approach, it allows understanding of how (relatively coarse) processes would
operate while also allowing more flexibility and easier implementation than controlled experimental designs. A similar route
entails the collection of large-scale data using naturalistic paradigms, together with controlled data that are also collected in
the same large-scale study. Arguably, this route represents an enhanced solution in terms of interpretability, but it incurs
higher costs. To overcome this problem, controlled task data can be collected for different subsets of participants (i.e., with
each participant taking part in some of the controlled tasks included in the study while all of the participants contribute to
naturalistic data). The advantage of this solution is that it maintains some overlap between the cohorts for the different
designs and therefore allows direct comparison/links between them (see Cam-CAN [32,33] for a similar implementation).

Alternative routes for upscaling also exist, and different routesmight be useful for different purposes. For example, a cohort
study aiming to investigate aging effects might benefit more from employing uncontrolled and naturalistic designs as well
as well-established tasks, whereas a project aiming to map the neurocognitive mechanisms underlying a proposed taxon-
omy ofmemory processesmight benefit from a combination of novel andwell-established tightly controlled tasks, together
with naturalistic designs. In some cases, a large n is necessary to meet the study’s goals (e.g., when individual differences
are of crucial interest), whereas in other cases, the study might benefit more from dense sampling (i.e., testing a relatively
low number of individuals on many experimental tasks/conditions) [22–25]. Importantly, when designing and analyzing
large-scale projects, these important variations and their outcomes should be kept in mind.
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fault infrastructures and standards for
the sharing and dissemination of be-
havioral and neuroimaging data?

The benefit of large-scale projects is
that the data can be used for many dif-
ferent studies to answer a wide range
of research questions. However, previ-
ous work has shown that data reuse
can increase the number of false posi-
tives, since researchers do not correct
for the increased number of multiple
comparisons across studies. To what
extent do the benefits of well-powered
studies outweigh these potential risks
of systematic bias acrossmany studies?

CellPress logo


Trends in Neurosciences
OPEN ACCESS
With this in mind, we believe that, in addition to uncontrolled resting-state data, more elaborate
task-based measures may offer several advantages. Science relies on our ability to generate
and test new hypotheses. As knowledge in the complementary fields of cognition, emotion,
and developmental psychology continues to evolve, our paradigms and measures in cognitive
neuroscience must also do so. Ultimately, we want to understand how brain function drives
cognition in the real-world settings it evolved to navigate; well-powered studies with a mix of
controlled, uncontrolled, and naturalistic tasks bring us closer to realizing this aim.
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