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Abstract: Let (Xn : n ≥ 1) be a sequence of random observations. Let σn(·) =

P
(
Xn+1 ∈ · | X1, . . . , Xn

)
be the n-th predictive distribution and σ0(·)=P (X1 ∈ ·)

the marginal distribution of X1. To make predictions on (Xn), a Bayesian fore-

caster only needs the collection σ = (σn : n ≥ 0). Because of the Ionescu-

Tulcea theorem, σ can be assigned directly, without passing through the usual

prior/posterior scheme. One main advantage is that no prior probability has to

be selected. This point of view is adopted in this paper. The choice of σ is only

subjected to two requirements: (i) The resulting sequence (Xn) is conditionally

identically distributed, in the sense of [4]; (ii) Each σn+1 is a simple recursive

update of σn. Various new σ satisfying (i)-(ii) are introduced and investigated.

For such σ, the asymptotics of σn, as n → ∞, is determined. In some cases, the

probability distribution of (Xn) is also evaluated.
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1. Introduction

Consider a Bayesian forecaster who makes predictions on a sequence (Xn : n ≥ 1)

of random observations. At each time n, she aims to predict Xn+1 based on

(X1, . . . , Xn). To this end, she needs to assign the conditional distribution

of Xn+1 given (X1, . . . , Xn), usually called the n-th predictive distribution.

To formalize this problem, we fix a measurable space (S,B) and we take

Xn to be the n-th coordinate random variable on S∞, namely

Xn(s1, . . . , sn, . . .) = sn for all n ≥ 1 and (s1, . . . , sn, . . .) ∈ S∞.

To avoid technicalities, we assume that S is a Borel subset of a Polish space

and B is the Borel σ-field on S. Moreover, following Dubins and Savage

[14], we introduce the notion of strategy.

Let P denote the collection of all probability measures on B. A strategy

is a sequence σ = (σ0, σ1, . . .) such that

� σ0 ∈ P and σn = {σn(x) : x ∈ Sn} is a collection of elements of P ;

� The map x 7→ σn(x)(A) is Bn-measurable for fixed n ≥ 1 and A ∈ B.
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Here, σ0 should be regarded as the marginal distribution of X1 and σn(x) as

the conditional distribution ofXn+1 given that (X1, . . . , Xn) = x. Moreover,

σn(x)(A) denotes the probability attached to the event A by the probability

measure σn(x).

An important special case is when the strategy σ is dominated by a fixed

measure λ on (S,B). This means that σn(x) has a density with respect to

λ, say fn(· | x), for all n and x. Hence, σn(x) can be written as

σn(x)(A) =

∫
A

fn(z | x)λ(dz) for all A ∈ B.

For instance, if S is countable, any strategy σ is dominated by λ =counting

measure. Or else, if S = R, some meaningful strategies are dominated by

λ =Lebesgue measure. Clearly, in the dominated case, the strategy σ can

be identified with the sequence (f0, f1, . . .) of predictive densities. However,

in this paper, we deal with general strategies and dominated strategies are

just a (remarkable) special case.

For any strategy σ (dominated or not), there is a unique probability

measure Pσ on (S∞,B∞) such that

Pσ(X1 ∈ ·) = σ0 and Pσ

(
Xn+1 ∈ · | (X1, . . . , Xn) = x

)
= σn(x)

for all n ≥ 1 and Pσ-almost all x ∈ Sn.

The above result, due to Ionescu-Tulcea, provides the theoretical foun-

dations of Bayesian predictive inference. To make predictions on (Xn),
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1.1 Motivations

one needs precisely a strategy σ. The Ionescu-Tulcea theorem guarantees

that, for any σ, the predictions based on σ are consistent with a unique

probability distribution Pσ for the data sequence (Xn).

However, (Xn) is usually required some distributional properties sug-

gested by the specific problem under consideration. For instance, (Xn) is

asked to be exchangeable, or stationary, or Markov, and so on. In these

cases, the strategy σ can not be arbitrary, for Pσ must belong to some given

class of probability measures on (S∞,B∞).

1.1 Motivations

In a Bayesian framework, (Xn) is typically assumed to be exchangeable. In

that case, there are essentially two approaches for selecting a strategy σ.

For definiteness, as in [8], we call them the standard approach (SA) and the

non-standard approach (NSA). Both are admissible, from the Bayesian point

of view, and both lead to a full specification of the probability distribution

of (Xn).

According to SA, to obtain σ, one should:

� Select a prior π, namely, a probability measure on P ;

� Calculate the posterior of π given that (X1, . . . , Xn) = x, say πn(x);
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1.1 Motivations

� Evaluate σ as

σn(x)(A) =

∫
P
p(A) πn(x)(dp) for all A ∈ B,

where π0(x) is meant as π0(x) = π.

Instead, according to NSA, the strategy σ can be assigned directly,

without passing through the above prior/posterior scheme. Rather than

choosing π and evaluating πn and σn, the forecaster merely selects her

predictive σn. This procedure makes sense because of the Ionescu-Tulcea

theorem. See e.g. [3], [5], [8], [9], [12], [15], [16], [17], [19], [20], [21], [23],

[25], [26].

The merits and drawbacks of SA and NSA are discussed in [8]. In

short, SA is a cornerstone of Bayesian inference but is not motivated by

prediction alone. Its main scope is to make inference on other features

of the data distribution, such as a random parameter (possibly, infinite

dimensional). However, when prediction is the main target, SA is clearly

involved. In turn, NSA has essentially four merits.

� NSA requires the assignment of probabilities on observable facts only.

The next observation Xn+1 is actually observable, while π and πn

(being probabilities on P) do not deal with observable facts.

� The data sequence (Xn) is not forced to satisfy any distributional

assumption. In particular, (Xn) may fail to be exchangeable.
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1.1 Motivations

� The strategy σ may be assigned stepwise. At each time n, the fore-

caster has observed x = (x1, . . . , xn) ∈ Sn and has already selected

σ0, σ1(x1), . . . , σn−1(x1, . . . , xn−1). Then, to predict Xn+1, she is still

free to select σn(x) as she wants. No choice of σn(x) is precluded.

According to us, this is consistent with the Bayesian view, where the

observed data are fixed and one should condition on them. A similar

point of view is highlighted in [15].

� NSA is more straightforward than SA when prediction is the main

goal. In this case, why select the prior π explicitly ? Rather than

wondering about π, it seems reasonable to reflect on how Xn+1 is

affected by (X1, . . . , Xn).

The above remarks refer to any (Bayesian) prediction problem, both

parametric and nonparametric. However, NSA is especially appealing in

the nonparametric case, where selecting a prior with large support is usually

hard. For instance, NSA is quite natural when dealing with species sampling

sequences. Indeed, this paper has been written having the nonparametric

framework in mind.

If (Xn) is assumed to be exchangeable, however, NSA has a drawback.

To apply NSA with exchangeable data, one should first characterize those

strategies σ which make (Xn) exchangeable under Pσ. A nice character-

ization is [16, Th. 3.1]. However, the conditions on σ for making (Xn)
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1.1 Motivations

exchangeable are quite hard to check in real problems.

To bypass this drawback, the exchangeability assumption could be

weakened. One option is to assume (Xn) conditionally identically distributed

(c.i.d.). We refer to Subsection 2.2 for c.i.d. sequences. Here, we just men-

tion a few reasons for taking c.i.d. data into account.

� Essentially, (Xn) is c.i.d. if, at each time n, the future observations

(Xk : k > n) are identically distributed given the past (X1, . . . , Xn).

This assumption is quite natural in several prediction problems.

� The asymptotic behavior of c.i.d. sequences is very similar to that of

exchangeable ones.

� A meaningful part of the usual Bayesian machinery can be developed

under the sole assumption that (Xn) is c.i.d.; see [15].

� A number of interesting strategies cannot be used if (Xn) is asked to

be exchangeable, but are available if (Xn) is only required to be c.i.d.;

see e.g. [8]. Furthermore, conditional identity in distribution is more

reasonable than exchangeability in a few real problems. Examples

occur in various fields, including clinical trials, generalized Polya urns,

species sampling models and disease surveillance; see [1], [2], [4], [11].

� It is not hard to characterize the strategies σ which make (Xn) c.i.d.

under Pσ; see Theorem 1. Therefore, unlike the exchangeable case,
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1.2 Our contribution

NSA can be easily implemented.

1.2 Our contribution

This paper aims to develop NSA for c.i.d. data. It is the natural follow up

of [8] but all results and examples (with the only exception of Example 3)

are new. Our main goal is to introduce and investigate new strategies σ

having the following two properties:

(i) The sequence (Xn) is c.i.d. under Pσ;

(ii) σn+1 is a simple recursive update of σn for each n ≥ 0.

Condition (i) has been already discussed. Condition (ii) is to obtain

a fast online Bayesian prediction, in the spirit of [20]. Ideally, condition

(ii) should imply that each predictive can be evaluated through a simple

recursion on the previous one.

To make some examples, for all x = (x1, . . . , xn) ∈ Sn and y ∈ S, write

(x, y) = (x1, . . . , xn, y).

In this notation, (x, y) is a point of Sn+1, x is the sub-vector containing the

first n coordinates and y is the (n + 1)-th coordinate. Then, for instance,

condition (ii) holds if σ satisfies the recursive equations

σ0 = α0 and σn+1(x, y) = qn(x)σn(x) + (1− qn(x))αn+1(x, y) (1.1)
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1.2 Our contribution

for all n ≥ 0, x ∈ Sn and y ∈ S, where qn : Sn → [0, 1] is any measurable

function and α = (α0, α1, . . .) is a given strategy.

According to (1.1), the predictive σn+1(x, y) is a convex combination of

the previous predictive σn(x) and the new contribution αn+1(x, y), with a

weight qn(x) not depending on the last observation y. A possible interpre-

tation is that, at time n+ 1, after observing (x, y), the next observation is

drawn from σn(x) with probability qn(x) or from αn+1(x, y) with probability

1 − qn(x). Even if simple, this updating rule is able to model various real

situations; see Examples 1−9. Moreover, no prior probability is required.

The forecaster has only to choose the weights q0, q1, . . . and the strategy α.

An obvious criticism to (1.1) is that, to calculate σ, the forecaster should

first select another strategy α (in addition to the weights q0, q1, . . .). And,

in general, choosing α is as difficult as choosing σ. This is only partially

true, for the choice of α is not so hard in several real situations. Exploiting

an idea from [20], for instance, α can be obtained via copulas; see Example

1. Or else, α can be built by iterated conditioning; see Example 2. More

importantly, the choice of α is simpler in the Markovian case. In this paper,

a strategy α is said to be Markovian if

αn(x, y) = α∗
n(y) for all n ≥ 2, x ∈ Sn−1 and y ∈ S

where α∗
n : S → P is any measurable map. With a slight abuse of notation,

when α is Markovian, we will write αn(y) instead of α∗
n(y).
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1.2 Our contribution

In addition to (ii), σ is required to satisfy condition (i). Our first result

is that, if σ satisfies (1.1), then (Xn) is c.i.d. under Pσ provided

σn(x)(A) =

∫
αn+1(x, y)(A)σn(x)(dy) for all n ≥ 0, x ∈ Sn and A ∈ B.

Such a condition becomes simpler if α is Markovian. Suppose indeed α

is Markovian and recall that a filtration on (S,B) is an increasing sequence

G0 ⊂ G1 ⊂ . . . ⊂ B of sub-σ-fields of B. Then, (Xn) is c.i.d. under Pσ

if αn+1 is the conditional distribution of α0 given Gn for all n and some

filtration (Gn). Formally,

αn+1(·)(A) = Eα0

(
1A | Gn

)
, a.s. with respect to α0, (1.2)

for all n ≥ 0, all A ∈ B and some filtration (Gn).

For instance, if Gn = B for all n, condition (1.2) yields αn+1(y) = δy

for all y ∈ S where δy denotes the unit mass at the point y. Indeed,

some popular strategies admit representation (1.1) with αn+1(y) = δy. Well

known examples are Dirichlet sequences, Beta-GOS sequences, exponential

smoothing and generalized Polya urns; see [1], [2] and [8, Sect. 4]. In all

these cases, (Xn) is c.i.d. under Pσ. At the opposite extreme, if Gn is the

trivial σ-field for all n, condition (1.2) implies αn+1(y) = α0 for all y ∈ S.

In this case, under Pσ, (Xn) is i.i.d. with common distribution α0.

More interestingly, take Gn to be the σ-field generated by a countable

partition Hn of S, where H ∈ B and α0(H) > 0 for all H ∈ Hn. In this
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1.2 Our contribution

case, condition (1.2) implies

αn+1(y) =
∑

H∈Hn

1H(y)α0(· | H) = α0

(
· | Hn

y

)
where Hn

y is the only H ∈ Hn such that y ∈ H. Moreover, Gn ⊂ Gn+1 if the

partition Hn+1 is finer than Hn. With this choice of α, several meaningful

strategies satisfying (i)-(ii) can be obtained. For instance, if qn = (n +

c)/(n+ 1 + c) for some constant c > 0, one obtains

σn(x) =
c α0 +

∑n
i=1 α0

(
· | H i−1

xi

)
n+ c

.

The above strategy σ is analogous to that of a Dirichlet sequence, i.e.,

βn(x) =
c α0 +

∑n
i=1 δxi

n+ c
.

However, σ and β give rise to completely different behaviors for (Xn).

Firstly, (Xn) is exchangeable under Pβ and only c.i.d. under Pσ. Secondly,

if G =
{
Xi = Xj for some i ̸= j

}
, one obtains Pσ(G) = 0 and Pβ(G) = 1

provided α0 is non-atomic. We also note that attaching probability zero to

G is useful in various applications.

This is just an example. Various other strategies come to the fore with

a suitable choice of Hn and qn; see Section 3.

In addition to (1.1), a second class of strategies is introduced and inves-

tigated in this paper. Let S = R and un a sequence of real numbers such
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1.2 Our contribution

that 0 = u0 < u1 < u2 < . . . < 1. Define f0(x) = 0 and

fn+1(x, y) =

√
un+1 − un

1− un

y +
(
1−

√
un+1 − un

1− un

)
fn(x)

for all n ≥ 0, x ∈ Sn and y ∈ S. Define also a strategy σ as

σn(x) = N
(
fn(x), 1− un

)
for all n ≥ 0 and x ∈ Sn.

Such a σ satisfies condition (ii) since σn+1(x, y) depends only on the last

observation y and the mean of σn(x). As shown in Section 4, σ satisfies

condition (i) as well. Moreover, under Pσ, the sequence (Xn) is Gaussian

with mean 0, variance 1, and a known covariance structure.

Due to its simple form, the above σ is potentially useful in applications.

In addition, σ is just a special case of a larger class of strategies satisfying

(i)-(ii). In fact, the normal distribution can be replaced by any symmetric

stable law. For instance, the normal could be replaced by the Cauchy if

heavier tails are regarded more suitable for prediction.

The last part of the paper is devoted to the asymptotics of σn as n→∞.

In fact, because of condition (i), one obtains

Pσ

(
σn → µ weakly

)
= 1

for some random probability measure µ on (S,B); see Subsection 2.2. Hence,

it is quite natural to investigate µ, and this is exactly the scope of Section

5. We give conditions for µ ≪ σ0 a.s., for µ to be degenerate a.s., and for

∥σn − µ∥ a.s.−→ 0 where ∥·∥ is total variation norm.
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Finally, some applications are discussed in Section 6.

To make the paper more readable, all the proofs are gathered in the

“supplementary material”.

2. Preliminaries

2.1 Some further notation

Let λ, ν ∈ P . We write λ≪ ν to mean that λ is absolutely continuous with

respect to ν, namely, λ(A) = 0 whenever A ∈ B and ν(A) = 0. Moreover,

λ and ν are singular if λ(A) = ν(Ac) = 0 for some A ∈ B.

We denote by x a point of Sn where n is an integer or n =∞. In both

cases, xi is the i-th coordinate of x. If n = 0 and σ is a strategy, σ0(x) is

meant as σ0(x) = σ0. Moreover, if x ∈ S∞ and f is any map on Sn, we

write f(x) to denote f(x) = f(x1, . . . , xn). In particular,

σn(x) := σn(x1, . . . , xn) for all x ∈ S∞.

2.2 Conditional identity in distribution

C.i.d. sequences have been introduced in [4] and [22] and then investigated

in various papers; see e.g. [1], [2], [5], [6], [7], [8], [9], [11], [15], [18], [19].

Let P be a probability measure on (S∞,B∞). Say that (Xn) is c.i.d.
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2.2 Conditional identity in distribution

(or that P is c.i.d.) if X2 ∼ X1 and

P
(
Xk ∈ · | X1, . . . , Xn

)
= P

(
Xn+1 ∈ · | X1, . . . , Xn

)
a.s. for all k > n ≥ 1.

Thus, at each time n, the future observations (Xk : k > n) are identically

distributed given the past. This is actually weaker than exchangeability.

Indeed, (Xn) is exchangeable if and only if it is stationary and c.i.d.

The asymptotics of c.i.d. sequences is similar to that of exchangeable

ones. To see this, suppose P is c.i.d. and define the empirical measures

µn(x) =
1

n

n∑
i=1

δxi
for all n ≥ 1 and x ∈ S∞.

Define also

µ(x) = lim
n

µn(x) if the limit exists and µ(x) = δx1 otherwise,

where x ∈ S∞ and the limit is meant as a weak limit of probability measures.

The random probability measure µ is a meaningful parameter of P

(even if not as crucial as in the exchangeable case; see [8, Ex. 17]). In fact,

µn(A)
a.s.−→ µ(A) for each A ∈ B.

Moreover, for fixed n ≥ 0 and A ∈ B, one obtains

EP

{
µ(A) | X1, . . . , Xn

}
= P

(
Xn+1 ∈ A | X1, . . . , Xn

)
a.s.

By martingale convergence, this equality implies

P
(
Xn+1 ∈ A | X1, . . . , Xn

) a.s.−→ µ(A) for each A ∈ B.
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We also note that (Xn) is asymptotically exchangeable, in the sense that

the probability distribution of the shifted sequence (Xn, Xn+1, . . .) converges

weakly to an exchangeable probability measure Q on (S∞,B∞). Further-

more, Q = P on the σ-field generated by µ.

Finally, we report from [6] a characterization of c.i.d. sequences in

terms of strategies. The next result is fundamental for this paper.

Theorem 1. ([6, Th. 3.1]). For any strategy σ, (Xn) is c.i.d. under Pσ

if and only if

σn(x)(A) =

∫
σn+1(x, y)(A)σn(x)(dy)

for all n ≥ 0, all A ∈ B and Pσ-almost all x ∈ Sn.

Henceforth, we say “Pσ is c.i.d.” to mean that “(Xn) is c.i.d. under Pσ”.

3. Convex combinations of random probability measures

Let α = (α0, α1, . . .) be a strategy and qn : Sn → [0, 1] a sequence of

measurable functions, where n ≥ 0 and q0 is constant. For easy of notation,

we write ν instead of α0, namely, we fix ν ∈ P and we let α0 = ν. We

also recall that α is Markovian if αn(x) = α∗
n(xn) for all n ≥ 2 and x ∈ Sn,

where α∗
n : S → P is any measurable map. In this case, with a slight abuse

of notation, we write αn(xn) instead of α∗
n(xn).
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In this section, the strategy σ satisfies equation (1.1), namely

σ0 = ν and σn+1(x, y) = qn(x)σn(x) + (1− qn(x))αn+1(x, y)

for all n ≥ 0, x ∈ Sn and y ∈ S. Arguing by induction, it follows that

σn(x) = ν
n−1∏
j=0

qj +
n∑

i=1

αi(x1, . . . , xi) (1− qi−1)
n−1∏
j=i

qj (3.3)

for all n ≥ 1 and x = (x1, . . . , xn) ∈ Sn. In formula (3.3),
∏n−1

j=i qj is meant

as 1 when i = n, and qj is a shorthand notation to denote

qj = qj(x1, . . . , xj).

Our first goal is to give conditions for Pσ to be c.i.d.

Theorem 2. Pσ is c.i.d. provided

σn(x)(A) =

∫
αn+1(x, y)(A)σn(x)(dy) (3.4)

for all n ≥ 0, all A ∈ B and Pσ-almost all x ∈ Sn. Moreover, if α is

Markovian, condition (3.4) follows from

αn(x)(A) =

∫
αn+1(y)(A)αn(x)(dy) (3.5)

for all n ≥ 0, all A ∈ B and ν-almost all x ∈ S.

In the Markovian case, Theorem 2 applies if αn+1 is a conditional dis-

tribution of ν given Gn for all n, where (Gn) is any filtration on (S,B).
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Corollary 1. Let G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ B be an increasing sequence of

sub-σ-fields of B. If α is Markovian, then Pσ is c.i.d. whenever

αn+1(·)(A) = Eν

(
1A | Gn

)
, ν-a.s., for all n ≥ 0 and A ∈ B.

We are now able to provide examples of strategies which satisfy equation

(1.1) and make (Xn) c.i.d.

Example 1. (Copulas). A simple way to get the strategy α is to exploit

an idea by Hahn, Martin and Walker [20]. To this end, we write “density”

to mean “density with respect to Lebesgue measure”. We also recall that,

if C is a bivariate copula and F1, F2 are distribution functions on R, then

F (x, y) = C
{
F1(x), F2(y)

}
is a distribution function on R2. In addition, if

C, F1 and F2 have densities, then

f(x, y) = c
{
F1(x), F2(y)

}
f1(x) f2(y), (x, y) ∈ R2,

is a density of F , where c, f1, f2 are densities of C, F1, F2, respectively.

Having noted this fact, let S = R and suppose that ν has a density

f0. Moreover, fix a sequence C1, C2, . . . of bivariate copulas with densities

c1, c2, . . . For the sake of simplicity, assume f0 > 0 and cn > 0 for all n ≥ 1.

Define σ0 = ν and denote by F0 the distribution function corresponding to

σ0. Next, for each x ∈ R, let

α1(x)(dz) = f1(z | x) dz where f1(z | x) = c1
{
F0(z), F0(x)

}
f0(z).
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Then, define σ1(x) = q0 σ0 + (1 − q0)α1(x) and call F1(· | x) the distri-

bution function corresponding to σ1(x). Next, for each (x, y) ∈ R2, let

α2(x, y)(dz) = f2(z | x, y) dz where

f2(z | x, y) = c2
{
F1(z | x), F1(y | x)

}
f1(z | x).

Then, define σ2(x, y) = q1(x)σ1(x)+(1−q1(x))α2(x, y). In general, suppose

σn(x) has been defined for all x ∈ Rn and denote by fn(· | x) and Fn(· | x)

the density and the distribution function of σn(x). Then, it suffices to let

αn+1(x, y)(dz) = fn+1(z | x, y) dz for all x ∈ Rn and y ∈ R

where fn+1(z | x, y) = cn+1

{
Fn(z | x), Fn(y | x)

}
fn(z | x).

Since fn+1(· | x, y) is a density, α is a strategy dominated by Lebesgue

measure. In addition, Fubini’s theorem yields∫
αn+1(x, y)(A)σn(x)(dy) =

∫ ∫
A

fn+1(z | x, y) dz fn(y | x) dy

=

∫
A

∫
cn+1

{
Fn(z | x), Fn(y | x)

}
fn(z | x) fn(y | x) dy dz

=

∫
A

fn(z | x) dz = σn(x)(A) for all A ∈ B.

Hence, Pσ is c.i.d. because of Theorem 2.

To implement Example 1, one only needs f0 and the copula densities

cn. Some useful choices of cn are suggested in [20]. In particular, one can let

cn = c1 for all n. Furthermore, one can use conditional copulas instead of
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plain copulas, in the sense that cn+1 is allowed to depend on the observed

data x ∈ Rn. We also note that, letting qn = 0 for all n, the strategies

obtained in [20] are a special case of Example 1.

In Example 1, the idea for building α is borrowed from [20]. A different

idea is sketched in the next example.

Example 2. (Iterated conditioning). For each τ ∈ P and each sub-σ-

field G ⊂ B, let τ(· | G) =
{
τ(· | G)(x) : x ∈ S

}
denote a (regular) version

of the conditional distribution of τ given G. This means that τ(· | G)(x) is

a probability measure on B, for fixed x ∈ S, and

τ(A | G)(·) = Eτ (1A | G), τ -a.s., for all A ∈ B.

For each n ≥ 0, take a sub-σ-field Gn ⊂ B. Define σ0 = ν and

α1(x) = ν
(
· | G0

)
(x) for all x ∈ S.

To realize equation (1.1), define also σ1(x) = q0 σ0 + (1 − q0)α1(x). Next,

for each (x, y) ∈ S2, define

α2(x, y) = σ1(x)
(
· | G1

)
(y) and σ2(x, y) = q1(x)σ1(x) + (1− q1(x))α2(x, y).

In general, after σn(x) has been defined for all x ∈ Sn, it suffices to let

αn+1(x, y) = σn(x)
(
· | Gn

)
(y) for all x ∈ Sn and y ∈ S.

By construction, this strategy α satisfies condition (3.4). Hence, Pσ is c.i.d.

because of Theorem 2.
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As an example, take qn = n+c
n+1+c

and Gn = G for all n ≥ 0, where c > 0

is a constant and G ⊂ B a sub-σ-field. Then, formula (3.3) yields

σn(x) =
c ν +

∑n
i=1 αi(x1, . . . , xi)

n+ c
=

c ν +
∑n−1

i=0 σi(x1, . . . , xi)
(
· | G

)
(xi+1)

n+ c
.

A special case of the latter strategy is discussed in Examples 4-5.

If compared with Example 1, Example 2 replaces the choice of the

copula densities cn with that of the sub-σ-fields Gn. In principle, since the

Gn are completely arbitrary, this provides some more degrees of freedom for

modeling real situations. Obviously, however, the practical calculation of

σn(x)
(
· | Gn

)
(y) may be very hard.

We next turn to the Markovian case. In the rest of this Section, α is

Markovian (i.e., αn(x) = αn(xn) for all n ≥ 2 and x ∈ Sn).

Example 3. (Example 13 of [8]). For each n ≥ 0, let Hn be a countable

partition of S such that H ∈ B and ν(H) > 0 for all H ∈ Hn. Define

αn+1(y) =
∑

H∈Hn

1H(y) ν(· | H) = ν
(
· | Hn

y

)
for all y ∈ S,

where Hn
y denotes the only H ∈ Hn such that y ∈ H. If Gn is the σ-field

generated by Hn, one obtains αn+1(·)(A) = Eν

(
1A | Gn

)
for all A ∈ B.

Moreover, Gn ⊂ Gn+1 provided Hn+1 is finer than Hn for all n ≥ 0 (as we

assume). Therefore, Pσ is c.i.d. because of Corollary 1.

Example 3 can be developed in various ways. For any partition H of
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S, let

U(H) = sup
H∈H

sup
y,z∈H

d(y, z) where d is the distance on S.

Example 4. (Dirichlet-like sequences). Fix a constant c > 0 and define

qn =
n+ c

n+ 1 + c
, αn+1(y) = ν

(
· | Hn

y

)
, νn(x) =

∑n
i=1 ν

(
· | H i−1

xi

)
n

.

Then, formula (3.3) yields

σn(x) =
c ν +

∑n
i=1 ν

(
· | H i−1

xi

)
n+ c

=
c

n+ c
ν +

n

n+ c
νn(x).

In turn, the predictives of a Dirichlet sequence are

βn(x) =
c

n+ c
ν +

n

n+ c
µn(x)

where µn(x) = (1/n)
∑n

i=1 δxi
is the empirical measure. The strategies σ

and β have a similar structure. Moreover, σn(x) and βn(x) are usually close

for large n. In fact, for various distances D on P , one obtains

lim
n

D
[
σn(x), βn(x)

]
= 0 for each x ∈ S∞ (3.6)

provided limn U(Hn) = 0. For instance, relation (3.6) holds if D is the

bounded Lipschitz metric; see Theorem 4. Despite (3.6), however, σ and β

conflict under a fundamental aspect. Indeed, σn(x) ≪ ν for all n ≥ 0 and

x ∈ Sn while this is not true for βn(x). As a consequence, Pσ and Pβ are

even singular when ν is non-atomic; see Theorem 4 again.
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Example 5. (Example 4 continued). The situation of Example 4 may

appear strange. Suppose ν is non-atomic and limn U(Hn) = 0. On one

hand, since Pσ and Pβ are singular, σ and β induce completely different

distributions on the data. On the other hand, because of (3.6), σ and β

provide similar predictions for large n.

Such a situation mostly depends on the distance D. In fact, σn(x) and

βn(x) are no longer close if D is replaced by some stronger distance on P ,

such as the total variation distance.

More precisely, suppose the target is to predict f(Xn+1) based on

(X1, . . . , Xn), where f : S → R is a bounded measurable function. Then, σ

and β actually yield similar predictions for large n. As an example, if f is

Lipschitz and D is the bounded Lipschitz metric, one obtains

∣∣∣Eσ

{
f(Xn+1) | (X1, . . . , Xn) = x

}
− Eβ

{
f(Xn+1) | (X1, . . . , Xn) = x

}∣∣∣
=
∣∣∣∫ f(t)σn(x)(dt)−

∫
f(t) βn(x)(dt)

∣∣∣ ≤ k D
[
σn(x), βn(x)

]
for some constant k depending only on f .

However, σ and β give conflicting predictions in more elaborated prob-

lems. For instance, suppose one aims to predict whether the next observa-

tion is new. Letting Gn = {Xn+1 = Xi for some i ≤ n}, one obtains

Pσ

(
Gn | (X1, . . . , Xn) = x

)
= σn(x)({x1, . . . , xn}) = 0 while

Pβ

(
Gn | (X1, . . . , Xn) = x

)
= βn(x)({x1, . . . , xn}) = n/(n+ c).
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Example 6. (Exponential smoothing-like sequences). Let

βn(x) = qnν + (1− q)
n∑

i=1

qn−iδxi

where q ∈ [0, 1] is any constant. Making predictions through β may be

reasonable when the forecaster has only vague opinions on the dependence

structure of the data, and yet she feels that the weight of the i-th observation

xi should be an increasing function of i; see [2] and [8]. Now, if qn = q and

αn+1(y) = ν
(
· | Hn

y

)
, formula (3.3) reduces to

σn(x) = qnν + (1− q)
n∑

i=1

qn−iν
(
· | H i−1

xi

)
.

Essentially the same remarks of Examples 4-5, about the connections be-

tween σ and β, can be repeated in this example.

Exploiting countable partitions is a flexible idea which may be realized

in various ways. We support this claim with two further examples.

Example 7. (Mixed strategies). Let H ⊂ B be a fixed countable parti-

tion of S and A0 ⊂ A1 ⊂ A2 ⊂ . . . an increasing sequence of elements of B.

Assume ν(Ac
n ∩H) > 0 whenever Ac

n ∩H ̸= ∅ and define

αn+1(y) = 1An(y) δy + 1Ac
n
(y) ν

(
· | Ac

n ∩Hy

)
whereHy is the onlyH ∈ H such that y ∈ H. Then, αn+1 satisfies Corollary

1 with Gn the σ-field generated by the sets A∩An and H ∩Ac
n for all A ∈ B

and H ∈ H. Since Gn ⊂ Gn+1 for all n, it follows that Pσ is c.i.d.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



For instance, take

S = R, H =
{
(−∞, 0), {0}, (0,∞)

}
, An = [−un, un]

where 0 < u0 < u1 < u2 < . . . are any constants. Suppose also that, at

each time n, an observation y is informative about the future observations

whenever |y| ≤ un. Otherwise, if |y| > un, the only relevant information

provided by y is its sign. Then, choosing αn+1 as above may be reasonable.

Finally, taking qn as in Example 4, one obtains

σn(x) =
c ν +

∑n
i=1 αi(xi)

n+ c

=
c ν +

∑n−1
i=0

{
1Ai

(xi+1)δxi+1
+ 1Bi

(xi+1) ν(· | Bi) + 1Ci
(xi+1) ν(· | Ci)

}
n+ c

where Bi = (−∞,−ui) and Ci = (ui,∞).

Example 8. (Occupancy models). At each time n, a random integer

rn is selected and rn particles are randomly placed into p boxes. The i-th

observation is xi = (j1(i), . . . , jp(i)) where jk(i) is the number of particles

in box k at time i. To model this situation, set S = {0, 1, 2, . . .}p and take

Hn = F for all n, where F is the partition of S with elements

Fr =
{
(j1, . . . , jp) ∈ S :

p∑
k=1

jk = r
}

for r = 0, 1, 2, . . .

Moreover, take ν to be the probability distribution of (Y1, . . . , Yp) where

Y1, . . . , Yp are i.i.d. Poisson random variables. The conditional distribution
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of (Y1, . . . , Yp) given
∑p

k=1 Yk = r is multinomial with index r and equal

cell probabilities 1/p. Therefore,

ν
(
{(j1, . . . , jp)} | Fr

)
=

1

pr
r!

j1! . . . jp!
for all (j1, . . . , jp) ∈ Fr.

Hence, denoting by x∗
i =

∑p
k=1 jk(i) the sum of the coordinates of xi, the

strategy σ is

σn(x) = ν
n−1∏
j=0

qj +
n∑

i=1

ν
(
· | Fx∗

i

)
(1− qi−1)

n−1∏
j=i

qj.

The choice of qj depends on the specific problem at issue. For instance, qj

could be as in Examples 4, 6 or 9. We just note that exchangeability is useful

in the framework of occupancy models, and Pσ is actually exchangeable (and

not only c.i.d.) if qj = (j + c)/(j + 1 + c); see [10] and [13].

Our last example deals with a more elaborate choice of qn.

Example 9. (Reinforcements). For each n ≥ 1, fix a set Cn ∈ Bn, two

constants 0 < an < 1/2 < bn < 1, and define

qn(x) = bn 1Cn(x) + an (1− 1Cn(x)) for all x ∈ Sn.

Roughly speaking, the underlying idea is that σn(x) exhibits good predictive

performances whenever x ∈ Cn. Therefore, if (X1, . . . , Xn+1) = (x, y) and

x ∈ Cn, to predict Xn+2 the forecaster is inclined to reinforce σn(x) with

respect to αn+1(y). (Recall that an < 1/2 < bn).
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As a concrete example, let S = [0, 1] and q0 = 1/2. For all n ≥ 1 and

x ∈ Sn, let xn = (1/n)
∑n

i=1 xi be the sample mean of x and mn(x) any

(measurable) predictor of Xn+1 based on σn(x). For definiteness,

mn(x) =

∫
t σn(x)(dt).

If mn(x) is regarded as a predictor of the past observations xi, i ≤ n, then

xn −mn(x) = (1/n)
n∑

i=1

{
xi −mn(x)

}
is the arithmetic mean of the prediction errors. In a sense, σn(x) works

nicely whenever xn −mn(x) is small. Hence, given ϵ > 0, one could let

Cn =
{
x ∈ Sn : |xn −mn(x)| < ϵ

}
.

To close this section, we note that the strategies obtained so far have

applications beyond the predictive framework of this paper. In fact, various

species sampling sequences correspond to strategies of the form (3.3). And,

in Bayesian nonparametrics, species sampling sequences may be used to

define priors; see [1].

4. Predictions via stable laws

In this section, we let S = R, we fix a constant γ ∈ (0, 2], and we introduce

a further class of strategies. Such strategies need not satisfy equation (1.1)

(unless qn = 0 for all n). However, they meet conditions (i)-(ii) and the
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probability measure σn(x) is γ-stable for all n ≥ 0 and x ∈ Sn. (The

exponent γ of a stable law is usually denoted by α, but in this paper α

denotes a strategy).

Let Z be a real random variable with characteristic function

E
{
exp(i t Z)

}
= exp

(
−|t|

γ

2

)
for all t ∈ R.

For a ∈ R and b > 0, denote by S(a, b) the probability distribution of

a+ b1/γZ, namely

S(a, b)(A) = P
(
a+ b1/γZ ∈ A) for all A ∈ B.

Note that S(a, b) = N (a, b) if γ = 2, where N (a, b) is the Gaussian law on

B with mean a and variance b. Similarly, S(a, b) = C(a, b) if γ = 1, where

C(a, b) is the probability measure on B with density f(x) = 2 b
π

1
b2+4 (x−a)2

.

(Incidentally, in this parametrization, the standard Cauchy distribution is

C(0, 2) and not C(0, 1)).

Next, fix the real numbers

0 = u0 < u1 < u2 < . . . < u,

and define f0 = 0 and

fn+1(x, y) = fn(x)

(
1−

(
un+1 − un

u− un

)1/γ
)

+ y

(
un+1 − un

u− un

)1/γ

for all n ≥ 0, x ∈ Sn and y ∈ S.
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In this section, we focus on the strategy

σn(x) = S
(
fn(x), u− un

)
for all n ≥ 0 and x ∈ Sn. (4.7)

It is worth noting that σ0 = S(0, u) and σn+1(x, y) can be easily evaluated

based on y and the median of σn(x). Hence, condition (ii) holds. We now

turn to condition (i).

Theorem 3. If σ is given by (4.7), then Pσ is c.i.d.

In the rest of this section, σ denotes the strategy (4.7).

An useful feature of σ is its asymptotic behavior. Define

L =
{
x ∈ S∞ : lim

n
fn(x) exists and is finite

}
and f(x) = limn fn(x) for each x ∈ L. Since Pσ is c.i.d., it follows that

Pσ(L) = 1. Moreover, for each x ∈ L, one obtains

σn(x) −→ δf(x) weakly if sup
n

un = u and

σn(x) −→ S
(
f(x), u− sup

n
un

)
in total variation if sup

n
un < u.

We refer to the proof of Theorem 6 for more details. Here, we turn to

examples.

Example 10. (Cauchy and Normal distributions). The most popular

cases are γ = 1 and γ = 2. Indeed,

σn(x) = C
(
fn(x), u− un

)
or σn(x) = N

(
fn(x), u− un

)
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according to whether γ = 1 or γ = 2. Both strategies can be useful in real

problems. Note also that fn(x) is just a weighted average of the first n

observations x1, . . . , xn and, in the normal case, the weights are connected

to the conditional variances.

The next example provides further information on the sequence (Xn).

Example 11. (Finite dimensional distributions). Let

Yn+1 =
n∑

i=1

(ui − ui−1)
1/γ Zi + (u− un)

1/γ Zn+1 for all n ≥ 0,

where Z1, Z2, . . . is an i.i.d. sequence with Z1 ∼ S(0, 1). Then, Y1 ∼ S(0, u).

Furthermore,

(Y1, . . . , Yn) = gn(Z1, . . . , Zn) and
n∑

i=1

(ui − ui−1)
1/γ Zi = fn(Y1, . . . , Yn)

where gn is an invertible linear transformation. Therefore,

P
(
Yn+1 ∈ · | Y1, . . . , Yn

)
= P

(
Yn+1 ∈ · | Z1, . . . , Zn

)
= P

(
fn(Y1, . . . , Yn) + (u− un)

1/γ Zn+1 ∈ · | Z1, . . . , Zn

)
= S

(
fn(Y1, . . . , Yn), u− un

)
= σn(Y1, . . . , Yn) a.s.

In other terms, the predictive distributions of the sequence (Yn) agree with

those of σ, and this implies

Pσ(B) = P
(
(Y1, Y2, . . .) ∈ B

)
for all B ∈ B∞.
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This equation allows to determine the finite dimensional distributions of

(Xn) under Pσ. Here, we just highlight two facts. Firstly,

fn(Y1, . . . , Yn) =
n∑

i=1

(ui − ui−1)
1/γ Zi ∼ u1/γ

n Z1 ∼ S(0, un).

Thus, fn ∼ S(0, un) under Pσ, namely, Pσ(fn ∈ A) = S(0, un)(A) for all

A ∈ B. Secondly, since gn is linear, the finite dimensional distributions of

(Xn) under Pσ are Gaussian when γ = 2. In this case, since (Yn) is c.i.d.,

the moments are

EPσ(Xn) = 0, EPσ(X
2
n) = u and

EPσ(XnXm) = E(YnYm) = E
[
Yn E(Ym | Y1, . . . , Yn)

]
= E(Yn Yn+1) = un−1 +

√
(un − un−1)(u− un−1) for all 1 ≤ n < m.

The last example collects some miscellaneous remarks.

Example 12. (Choice of γ, u and un). To work with σ, one has only to

select γ and u, u1, u2, . . . Obviously, the choice of γ depends on the specific

problem at hand. We just note that, in applications, γ ∈ {1, 2} is not the

unique meaningful choice. For instance, γ /∈ {1, 2} is quite common when

modeling financial data; see e.g. [24, Chap. 13]. The numbers u and un are

scale parameters which control the dispersion structure of (Xn). If γ = 2, for

instance, u and un determine the variances and covariances of the Gaussian

sequence (Xn); see Example 11. An important distinction is supn un = u or
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supn un < u, as the limiting distribution of σn is degenerate in the former

case while it is not in the latter. Finally, we mention a practically useful

choice of un. Fix u > 0 and q ∈ (0, 1) and define

un = u (1− qn) for all n ≥ 0.

Then, un+1 − un = (u− un)(1− q) and the updating rule for fn reduces to

fn+1(x, y) = (1− b) fn(x) + b y where b = (1− q)1/γ.

Equivalently, fn(x) = b
∑n

j=1(1− b)n−jxj for each x ∈ Sn.

5. Asymptotics

We first recall two popular distances on P . Let λ1, λ2 ∈ P and let F be

the set of all functions f : S → [−1, 1] such that |f(y)− f(z)| ≤ d(y, z) for

all y, z ∈ S, where d is the distance on S. The bounded Lipschitz metric

and the total variation distance are, respectively,

D(λ1, λ2) = sup
f∈F

∣∣∣∫ f dλ1 −
∫

f dλ2

∣∣∣ and ∥λ1 − λ2∥ = sup
A∈B
|λ1(A)− λ2(A)|.

It is not hard to see thatD ≤ 2 ∥·∥. Moreover, D metrizes weak convergence

of probability measures, in the sense that, for all λn, λ ∈ P ,

λn → λ weakly ⇔ lim
n

D(λn, λ) = 0.

We next make precise some claims made in Example 4.
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Theorem 4. Let σ and β be as in Example 4. If limn U(Hn) = 0, then

lim
n

D
[
σn(x), βn(x)

]
= 0 for each x ∈ S∞.

Moreover, Pσ and Pβ are singular if ν is non-atomic.

Next, for each x ∈ S∞, define

µ(x) = lim
n

µn(x) if the limit exists and µ(x) = δx1 otherwise,

where µn(x) = (1/n)
∑n

i=1 δxi
is the empirical measure and the limit is

meant as a weak limit of probability measures. The random probability

measure µ is a meaningful object. In fact,

Pσ

{
x ∈ S∞ : σn(x)→ µ(x) weakly

}
= 1

for any strategy σ such that Pσ is c.i.d.; see Subsection 2.2. In the sequel,

we investigate µ when σ comes from Sections 3-4.

For each τ ∈ P , say that τ is degenerate if τ = δz for some z ∈ S. The

abbreviation “a.s.” stands for “Pσ-a.s.” For instance, µ ≪ τ a.s. means

µ(x)≪ τ for Pσ-almost all x ∈ S∞. Recall also that qn(x) = qn(x1, . . . , xn)

for all x ∈ S∞.

Theorem 5. If the strategy σ satisfies equation (1.1), then σn(x) converges

in total variation distance for each x ∈ S∞ such that
∑

n(1− qn(x)) <∞.

Moreover, if σ is as in Example 3, then:
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� µ≪ ν a.s. and limn∥σn−µ∥ = 0 a.s. provided
∑

n(1− qn) <∞ a.s.;

� µ is degenerate a.s. provided limn U(Hn) = 0 and there are constants

a > 0 and cn ≥ 0 such that

∑
n

c2n =∞ and a ≤ qn ≤ 1− cn a.s. for all n ≥ 0. (5.8)

Theorem 5 can be applied to the examples of Section 3. Suppose in fact

limn U(Hn) = 0. Then, in Example 6, µ is degenerate a.s. In Example 9,

µ≪ ν a.s. if
∑

n(1− bn) <∞ and µ is degenerate a.s. if
∑

n(1− bn)
2 =∞

and infn an > 0. However, Theorem 5 does not work in Example 4, for in

that case 1− qn(x) = 1/(n+ 1+ c) for all x ∈ S∞. Indeed, the behavior of

µ in Example 4 is an open problem.

Finally, we turn to the strategies of Section 4.

Theorem 6. In the notation of Section 4, let

L =
{
x ∈ S∞ : lim

n
fn(x) exists and is finite

}
,

f(x) = lim
n

fn(x) for each x ∈ L and u∗ = sup
n

un.

If σ is the strategy (4.7) then, for each x ∈ L,

σn(x) −→ δf(x) weakly if u∗ = u and

σn(x) −→ S
(
f(x), u− u∗) in total variation if u∗ < u.

Moreover, Pσ(L) = 1 and f ∼ S(0, u∗) under Pσ, namely

Pσ(f ∈ A) = S(0, u∗)(A) for all A ∈ B.
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6. Applications

We finally discuss some applications of the strategies obtained via NSA. We

let S = R and we denote by x ∈ Rn the observed data.

Roughly speaking, NSA replaces the choice of the prior with that of a

strategy σ; see Section 1. Thus, in general, NSA applies to any Bayesian

prediction problem. Practically, for any time series (Xn), the forecaster has

only to choose her strategy σ. In making this choice, she has no constraints

other than her feelings and the specific features of (Xn). Once σ is selected,

its possible uses are the usual ones. For instance, the forecaster can build a

pointwise predictor for Xn+1, such as the mean or the median of σn(x). Or

else, given γ ∈ (0, 1), she can build a prediction interval for Xn+1, namely

an interval In(x) such that

Pσ

(
Xn+1 ∈ In(x) | (X1, . . . , Xn) = x

)
= σn(x)

[
In(x)

]
≥ 1− γ.

The previous remarks, while reasonable, may look generic. Thus, we

mention a more concrete application based on martingale posterior distribu-

tions (m.p.d.’s) as defined in [15]. A m.p.d. is the conditional distribution

of θ given the observed data, where θ = θ(X1, X2, . . .) is any (measurable)

function of the whole data sequence (X1, X2, . . .). Note that θ would be

known if we knew (X1, X2, . . .). Hence, the only source of uncertainty is

the ignorance about (Xn+1, Xn+2, . . .). Quoting from [15, Abst.], a m.p.d.
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“returns Bayesian uncertainty directly on any statistic of interest without

the need for the likelihood and prior”.

In applications, m.p.d.’s can be sampled through a computational scheme,

called predictive resampling and displayed in Algorithm 1 below. Based

on predictive resampling, in [15], several applications to real datasets are

provided, including the galaxy and air quality datasets which are classic

benchmarks to test new procedures.

Algorithm 1 A practical algorithm for predictive resampling

Assign σn(x) based on the observed data x = (x1, . . . , xn)

Set σ∗
n(x) = σn(x)

M and N > n are integers with N large

for j ← 1 to M do

for i← n+ 1 to N do

Sample Yi ∼ σ∗
i−1 where σ∗

i−1 = σ∗
i−1(x, Yn+1, . . . , Yi−1)

Update σ∗
i ← {σ∗

i−1, Yi}

end for

Compute the empirical measure µN = 1
N

(∑n
i=1 δxi

+
∑N

i=n+1 δYi

)
Compute θ

(j)
N according to µN .

end for

Return θ
(1)
N , . . . , θ

(M)
N where the θ

(j)
N are estimates of θ based on µN

M.p.d.’s are introduced in the framework of NSA. As in this paper, the
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predictives are assigned directly and (Xn) is required to be c.i.d. Condition

(ii) is very useful as well. Therefore, each of the strategies of Sections 3-4

can be exploited to obtain m.p.d.’s. To implement Algorithm 1, in fact,

one needs to sample from a given predictive distribution. In turn, sampling

from the strategies of Sections 3-4 is straightforward. In this sense, using

such strategies in predictive resampling is computationally efficient.

Acknowledgments: We are grateful to the editors and an anonymous

referee for their useful remarks and suggestions.
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