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Abstract
Given a complex connected reductive Lie group G with a maximal torus H ⊂ G, Tits
defined an extension WT

G of the corresponding Weyl group WG . The extended group
is supplied with an embedding into the normalizer NG(H) such thatWT

G together with
H generate NG(H). In this paper we propose an interpretation of the Tits classical
construction in terms of themaximal split real formG(R) ⊂ G, which leads to a simple
topological description of WT

G . We also consider a variation of the Tits construction
associated with compact real form U of G. In this case we define an extension WU

G
of the Weyl group WG , naturally embedded into the group extension ˜U := U � �

of the compact real form U by the Galois group � = Gal(C/R). Generators of WU
G

are squared to identity as in the Weyl group WG . However, the non-trivial action of
� by outer automorphisms requires WU

G to be a non-trivial extension of WG . This
gives a specific presentation of the maximal torus normalizer of the group extension
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˜U . Finally, we describe explicitly the adjoint action ofWT
G andWU

G on the Lie algebra
of G.

Keywords Weyl group · Tits extension · Real form of complex semisimple Lie group
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1 Introduction

In the standard approach to classification of complex semisimple Lie groups the prob-
lem is reduced to an equivalent problem of classification of root data. In other words,
the root data (roots/co-roots and lattices of characters/co-characters of a maximal
torus H ⊂ G) define the corresponding semisimple Lie group up to an isomorphism.
Curtis, Wiederhold and Williams [5] demonstrated that for classification of compact
connected semisimple Lie groups G it is enough to classify the normalizers NG(H)

of maximal tori H ⊂ G. The normalizer provides information about the action of the
Weyl group WG := NG(H)/H on H , but this is not enough for classification, since
one also needs the precise structure of the group extension of WG by H . Thus, for the
classification problem one might replace the original object, the semisimple Lie group
G, by the group extension of the finite group WG by the abelian Lie group H . One
perspective to grasp this equivalence is to look at NG(H) as a kind of degeneration
of G [5]. An apparently related but more conceptual approach is based on attempts to
look at NG(H) as the Lie group G defined over some non-standard base field (akin
to the mysterious field F1 “with one element” introduced by Tits [11], probably with
regard to this subject). In this way an equivalence of the two classification problems for
compact semisimple Lie groups and normalizers looks like a manifestation of a gen-
eral principle (due to Claude Chevalley [4]), saying that a classification of semisimple
algebraic groups should not essentially depend on the nature of the base algebraically
closed field.

The reasoning above demands amore detailed study of the group extension structure
on NG(H). The key fact is that this extension does not split in general [1, 5, 6, 9, 10].
To get a universal description of NG(H) one should look for a set-theoretic section
of the projection NG(H) → WG generating an extension of WG . Such construction
was proposed by Demazure [6] and Tits [9], [10]. It may be naturally formulated in
terms of the Tits extensionWT

G ofWeyl groupWG by the subgroup of order 2 elements
in H . This construction allows an explicit presentation of NG(H) by generators and
relations.

Although the Tits construction is known for a long time, its forthright explanation
involves scheme-theoretic arguments. Precisely, for a Chevalley group scheme G over
Z the Tits extension is the group of Z-points of the normalizer of the Z-split torus of
G . In this paper we use set-theoretic arguments to explain the Tits construction in the
case of complex reductive Lie groups (for recent discussion on Tits groups see e.g.
[1, 7, 8]). After reminding general results on normalizers of maximal tori in Sect. 2
we revisit the Tits construction in Sect. 3. We stress that the Tits group construction
is defined for the split real form G(R) ⊂ G of a complex semisimple group G. This
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enables us to present in Proposition 3.5 a simple purely topological description of the
Tits extension of the Weyl group WG (our considerations appear to be pretty close to
the final section of [2]).

As a variation of the Tits construction we consider its analog for the maximal
compact group U ⊂ G. Precisely, we define an extension WU

G of WG embedded into
a semi-direct product ˜U = U � � of the maximal compact subgroup U ⊂ G and the
Galois group � = Gal (C/R) acting in the standard (non-twisted) way on U . In this
case the natural generators of the corresponding extension WU

G of the Weyl group are
squared to identity (in contrast with the case of the Tits group), while the non-trivial
extension of WG arises from the action of � via on WU

G by outer automorphisms. The
main result of this paper (Theorem 4.5 in Sect. 4) describes the structure of maximal
tori normalizers in the Galois group extension ˜U of the compact connected semisimple
Lie groupU . Note that our construction is dealing with the extended group ˜U and thus,
it differs from the constructions given in [1, 7]. In Sect. 5 we calculate explicitly the
adjoint action of the Tits group and of its unitary analog on theLie algebra g = Lie (G).
This action, in contrast with the adjoint action on h ⊂ g, depends on the lift of WG

into G. Finally in Sect. 6 we provide details of the proof of Theorem 4.5.

2 Normalizers of maximal tori andWeyl groups

Westart with recalling standard facts on normalizers ofmaximal tori and the associated
Weyl groups. Let G be a complex connected semisimple Lie group, H ⊂ G be a
maximal torus and NG(H) be its normalizer in G. Then there is the following exact
sequence:

1 −→ H −→ NG(H)
p−→ WG −→ 1, (2.1)

where p is the projection on the finite group WG := NG(H)/H , the Weyl group of
G. The Weyl group WG does not actually depend on the choice of H ⊂ G, and thus
appears to be an invariant of G. Let g := Lie(G) and let I be the set of vertices of the
Dynkin diagram associated to G, where |I | = Lie(g). Let (�,�∨) be the root-coroot
system corresponding toG, {αi , i ∈ I } be a set of positive simple roots, and {α∨

i , i ∈ I }
be the corresponding set of positive simple co-roots. Let ‖ai j‖, ai j = 〈α∨

i , α j 〉, be the
Cartan matrix of (�,�∨). The Weyl group WG has a simple presentation in terms
of generators and relations. Precisely, WG is generated by simple root reflections
{si , i ∈ I } subjected to

s2i = 1, (2.2)

si s j si · · ·
︸ ︷︷ ︸

mi j

= s j si s j · · ·
︸ ︷︷ ︸

mi j

, i 	= j, i, j ∈ I , (2.3)

where mi j = 2, 3, 4, 6 for ai j a ji = 0, 1, 2, 3, respectively. Equivalently these rela-
tions may be written in the Coxeter form:

s2i = 1, (si s j )
mi j = 1, i 	= j, i, j ∈ I .

123



A. A. Gerasimov et al.

The exact sequence (2.1) defines the canonical action of WG on H . Let hi ∈ h =
Lie (H) be the generators corresponding to the simple co-roots α∨

i , then the WG-
action on h ⊂ g and on its dual is as follows:

si (h j ) = h j − 〈αi , α
∨
j 〉 hi = h j − a ji hi ,

si (α j ) = α j − 〈α j , α
∨
i 〉αi = α j − ai jαi .

(2.4)

The exact sequence (2.1) does not split in general, i.e. NG(H) is not necessarily
isomorphic to a semi-direct product of WG and H . A delicate situation in this regard
is described by the following result due to [1, 5].

Theorem 2.1 Assume G is a simple complex Lie group and let Z(G) be the center of
G. Then the exact sequence (2.1) splits in the following and only the following cases:

• Type A�, � � 1, � 	= 3, such that |Z(G)| is odd;
• Type B�, � > 1, for the adjoint form;
• Type D�, � > 2, for all forms except Spin (2�);
• Type G2.

Thus to have an explicit description of the normalizer NG(H) one should look
for appropriate set-theoretic section of the projection map p in (2.1) generating some
extension ofWG . In the following section we provide the construction of the resulting
extension of the Weyl group by a finite group. Let us note that for a normal finite
subgroup Z ⊂ G one has: if (2.1) splits for G then it splits for G/Z as well. In
the following, for simplicity, we consider only the case of simply-connected complex
groups.

3 The Tits extension of Weyl group

To describe the extension (2.1) in terms of generators and relations Tits proposed the
following extension WT

G of the Weyl group WG by a discrete group [9, 10] (closely
related results were obtained by Demazure [6]).

Definition 3.1 Let A = ‖ai j‖ be the Cartan matrix corresponding to a semisimple
Lie algebra g = Lie(G) and let mi j = 2, 3, 4, 6 for ai j a ji = 0, 1, 2, 3, respectively.

The Tits group WT
G is an extension of the Weyl group WG by an abelian group Z

|I |
2

generated by {τi , θi , i ∈ I } subjected to the following relations:

(τi )
2 = θi , θiθ j = θ jθi , θ2i = 1, (3.1)

τiθ j = θ
−a ji
i θ jτi , (3.2)

τiτ jτi · · ·
︸ ︷︷ ︸

mi j

= τ jτiτ j · · ·
︸ ︷︷ ︸

mi j

, i 	= j, i, j ∈ I , (3.3)

where the abelian subgroup is generated by {θi , i ∈ I }.
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Let {hi , ei , fi : i ∈ I } be the Chevalley–Serre generators of the Lie algebra g =
Lie (G), satisfying the standard relations

[hi , e j ] = ai j e j , [hi , f j ] = − ai j f j , [ei , f j ] = δi j h j , (3.4)

ad
1−ai j
ei (e j ) = 0, ad

1−ai j
fi

( f j ) = 0, (3.5)

where A = ‖ai j‖ is the Cartan matrix, i.e. ai j = 〈α∨
i , α j 〉.

According to [2] (see also [9]) there exists a subset {ζi , i ∈ I } ⊂ H of canonical
elements of order two satisfying the following relations:

si (ζ j ) = ζ jζ
−a ji
i ,

where si , i ∈ I , are the generators of the Weyl group WG (2.2), (2.3).

Theorem 3.2 (Demazure–Tits) Let WT
G be the Tits group associated with the complex

semisimple simply connected Lie group G, then the map

τi 
→ ṡi := e fi e−ei e fi , θi 
→ ζi , i ∈ I , (3.6)

defines an embedding of the Tits group WT
G into NG(H) such that p(WT

G) = WG for
the projection p in (2.1). In particular, the normalizer group NG(H) is generated by
H and by the image of the Tits group, so that the following relations hold:

Adṡi (h) = si (h), for all h ∈ h = Lie(H), i ∈ I .

Example 3.3 In the standard faithful two-dimensional representation φ : SL2(C) →
End (C2) given by (6.3) we have

φ(ṡ) =
(

0 −1
1 0

)

, φ(ṡ)2 = φ(ζ ) =
(−1 0

0 −1

)

.

The appearance of the Tits extension WT
G via a specific choice of a set-theoretic

section looks a bit ad hoc. As it is mentioned in Introduction one may use a scheme-
theoretic argument to support this particular choice of extension of WG . In the
following we propose a set-theoretic argument based on consideration of the split
real form G(R) of G to elucidate the construction of WT

G . For the split real form
G(R) ⊂ G there is an analog of (2.1):

1 −→ H(R) −→ NG(R)(H(R))
p−→ WG −→ 1, (3.7)

with the real split maximal torus given by the intersection

H(R) = H ∩ G(R),
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of the complex maximal torus with the split real subgroup. Note that the set-theoretic
section of (3.7) defining WT

G provides a set-theoretic section of (2.1) thus embedding
WT

G into NG(R)(H(R)). The group H(R) allows the product decomposition

H(R) = MA, M := H(R) ∩ K ,

where K ⊂ G(R) is a maximal compact subgroup of G(R), M is isomorphic to
the group Z

|I |
2 and A ⊂ H(R) is the connected exponential group A = exp (h(R))

without torsion. Therefore, H(R) is not connected and consists of 2|I | components,
and the group M may be identified with the discrete group of connected components
of H(R):

M = π0(H(R)).

Considering the groups of connected components of the topological groups entering
(3.7) we obtain the induced exact sequence

1 −→ π0(H(R)) −→ π0(NG(R)(H(R))) −→ WG −→ 1, (3.8)

so that |π0(NG(R)(H(R)))| = |M | · |WG | = |WT
G |. This provides a canonical exten-

sion of WG by the abelian group M of order 2|I |.
Explicitly, the group of connected components may be identified with the quotients

by the connected normal subgroup A

π0(NG(R)(H(R))) � NG(R)(H(R))/A,

and we have the exact sequence

1 −→ A −→ NG(R)(H(R)) −→ π0(NG(R)(H(R))) −→ 1. (3.9)

Lemma 3.4 The exact sequence (3.9) splits and thus π0(NG(R)(H(R))) allows an
embedding into NG(R)(H(R)).

Proof The extension (3.9) is an instance of extensions of π0(NG(R)(H(R))) by A.
Such extensions are classified by the group H2(π0(NG(R)(H(R))), A). The triviality
of this group follows from the fact that π0(NG(R)(H(R))) is a finite group and A is
an instance of abelian torsion-free group. By the standard cohomology argument (see
e.g. [3, Chapter VI]), the second cohomology of any finite group with coefficients in a
torsion-free abelian group is trivial. Thus the extension (3.9) is necessarily trivial and
therefore the required embedding exists. �

Up to now we have constructed a canonical extension of WG given by (3.8). It is
easy to see that this extension is isomorphic to the Tits group.

Proposition 3.5 The following isomorphism holds:

π0(NG(R)(H(R))) � WT
G . (3.10)
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Proof Recall that the images ṡi , ζi , i ∈ I , of theTits generators belong to themaximally
split real subgroup G(R) ⊂ G. Thus we have the embedding WT

G into NG(R)(H(R))

providing section of the exact sequence

1 −→ A −→ NG(R)(H(R)) −→ WT
G −→ 1.

Note that splitting of this exact sequence may be independently verified by using
an argument similar to the one used in our proof of Lemma 3.4. Therefore the
group NG(R)(H(R)) allows a representation as semidirect product NG(R)(H(R)) =
A�WT

G . By considering the connected components we deduce the assertion (3.10).�
Example 3.6 For maximal split form SL2(R) ⊂ SL2(C) we have

H(R) =
{(

λ 0
0 λ−1

)

, λ ∈ R
∗
}

, H(R) = MA,

A =
{(

λ 0
0 λ−1

)

, λ ∈ R
∗+
}

, M = {±Id} .

Elements g ∈ NSL2(R)(H(R)) are defined by the condition that for each λ ∈ R
∗ there

exists λ̃ ∈ R
∗ such that

g

(

λ 0
0 λ−1

)

=
(

λ̃ 0
0 λ̃−1

)

g, g =
(

a b
c d

)

, ad − bc = 1.

One might check that the normalizer group NSL2(R)(H(R)) is a union of two compo-
nents

NSL2(H(R)) = N1 � Ns,

where N1 is a set of diagonal elements with c = b = 0, ad = 1 	= 0, and Ns is the
set of anti-diagonal elements with a = d = 0, cb = −1. Each of the co-sets N1, Ns

splits further into two connected components

N1 = N+
1 � N−

1 , Ns = N+
s � N−

s ,

depending on the sign of the entries c, d in the last row of g.
The group π0(NSL2(R)(H(R))) is isomorphic to the quotient of NSL2(R)(H(R)) by

A � R
∗+ and consists of four elements corresponding to the connected components

N±
1 , N±

s of the group NSL2(H(R)), allowing the following parameterization:

N+
1 = A, N+

s = ṡ A, N−
1 = θ A, N−

s = θ ṡ A,

where

ṡ =
(

0 −1
1 0

)

, θ = (ṡ)2 =
(−1 0

0 −1

)

, θ ṡ =
(

0 1
−1 0

)

.
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Clearly, the groupπ0(NSL2(R)(H(R))) is generated by representatives of the connected
components N±

1,s , so indeed it is isomorphic to the order four cyclic group generated
by ṡ, in concordance with (3.10).

4 Weyl group and Galois extension of the compact real form

As we have demonstrated in the previous section the Tits group extensionWT
G appears

quite naturally if we consider the split real subgroup G(R) ⊂ G. This motivates to
look for analogs of the Tits construction associated with other real forms of G.

Let {hi , ei , fi ; i ∈ I } be the Chevalley–Serre generators of the Lie algebra g =
Lie(G), satisfying (3.4), (3.5).Wefix the split real structure by assuming the generators
{hi ,−ei ,− fi−; i ∈ I } to be real. Let �: g → g be the Cartan anti-involution,
associated with the split real structure:

�: ei 
→ fi , fi 
→ ei , hi 
→ hi , i ∈ I . (4.1)

Let U ⊂ G be the connected compact real form of the Lie group G:

U = {g ∈ G : g†g = 1},

where g 
→ g† is the composition of the Cartan anti-involution (4.1) with the
complex conjugation associated with the split real structure. The Galois group
� := Gal(C/R) � Z2 of the extension R ⊂ C is generated by γ , γ 2 = 1. The
group � acts both on G and on U by the complex conjugation, so let us introduce the
following semidirect products:

˜U := U � � ⊂ ˜G := G � �. (4.2)

Since the generators {ei , fi , hi ; i ∈ I } are real, they are fixed by γ ∈ �. Let us note
that the �-fixed subgroup ofU is a maximal compact subgroup K ⊂ G(R) of the split
real form G(R).

Definition 4.1 Let ‖ai j‖ be the Cartan matrix corresponding to a semisimple Lie alge-
bra g = Lie(G). Let WU

G be a group generated by {σi , σ̄i ; i ∈ I } subjected to

σ 2
i = σ̄ 2

i = 1, σi σ̄i = σ̄iσi , (4.3)

σ jσiσ j = σ̄ j�
1−a ji (σ̄i ) σ̄ j , i 	= j, i, j ∈ I , (4.4)

σiσ jσi · · ·
︸ ︷︷ ︸

mi j

= σ̄ j σ̄i σ̄ j · · ·
︸ ︷︷ ︸

mi j

, i 	= j, i, j ∈ I , (4.5)

where in (4.5), mi j = 2, 3, 4, 6 for ai j a ji = 0, 1, 2, 3, respectively. Here � is the
involutive map of the generators given by �(σi ) = σ̄i , �(σ̄i ) = σi , i ∈ I .
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Lemma 4.2 For all i, j ∈ I the following holds:

(σ j σ̄ j )(σi σ̄i ) = (σi σ̄i )(σ j σ̄ j ). (4.6)

Proof For both a ji and ai j odd, (4.4) reads

(σ j σ̄ j ) σi (σ j σ̄ j )
−1 = σ̄i , (σ j σ̄ j ) σ̄i (σ j σ̄ j )

−1 = σi ,

which yields (σ j σ̄ j )(σi σ̄i ) = (σi σ̄i )(σ j σ̄ j ).
For a ji even, we have two cases: a ji = ai j = 0 and a ji = −2, ai j = −1. In the

former case (4.5) gives σiσ j = σ̄ j σ̄i and σ jσi = σ̄i σ̄ j , which implies

(σ j σ̄ j )(σi σ̄i ) = σ j (σ̄ j σ̄i ) σi = (σ jσi )(σ jσi ) = σ̄i (σ̄ j σ̄i ) σ̄ j = (σ̄iσi )(σ j σ̄ j ).

In the case a ji = −2, ai j = −1 (4.4) gives (σ j σ̄ j ) σi = σi (σ j σ̄ j ) and (σi σ̄i ) σ j =
σ̄ j (σi σ̄i ), so that the latter equality entails σ̄ j (σi σ̄i ) = (σi σ̄i ) σ j . Thus we have

(σi σ̄i )(σ j σ̄ j ) = σ̄ j (σi σ̄i ) σ̄ j = (σ j σ̄ j )(σi σ̄i ).

This completes our proof. �
Lemma 4.3 The map � acting on the generators by

�(σi ) = σ̄i , �(σ̄i ) = σi ,

extends to an involutive automorphism of the group WU
G .

Proof Clearly, the relations (4.3), (4.5) are invariant under the action of�. The relation
(4.4) transforms under the �-action into

σ̄ j σ̄i σ̄ j = σ j�
1−a ji (σi ) σ j , i 	= j, i, j ∈ I ,

which may be equivalently written as follows:

(σ j σ̄ j ) σ̄i (σ j σ̄ j )
−1 = �−a ji (σ̄i ), i 	= j, i, j ∈ I . (4.7)

For a ji odd (4.7) reads

(σ j σ̄ j ) σ̄i (σ j σ̄ j )
−1 = σi ,

which follows from (4.4) in the form (σ j σ̄ j ) σi (σ j σ̄ j )
−1 = σ̄i .

For a ji even we have to prove (4.7), which reads

(σ j σ̄ j ) σ̄i (σ j σ̄ j )
−1 = σ̄i .

This follows from (4.4), (σ j σ̄ j ) σi (σ j σ̄ j )
−1 = σi , by multiplying both sides by σi σ̄i

and using (4.6). �
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Proposition 4.4 The group WU
G is given by the following extension:

1 −→ Z
|I |
2 −→ WU

G −→ WG −→ 1, (4.8)

of the Weyl group WG by the abelian group Z
|I |
2 ⊂ WU

G .

Proof Introduce the elements ηi := σi σ̄i , i ∈ I . They have order two, and they
pairwise commute by (4.6):

η2i = 1, ηiη j = η jηi , i, j ∈ I ,

and are invariant under involution �. Consider a �-stable subgroup Hη ⊂ WU
G gen-

erated by {ηi , i ∈ I }. The relation (4.4) may be equivalently written in the following
form:

σiη j = η jη
−a ji
i σi , σ̄iη j = η jη

−a ji
i σ̄i . (4.9)

Indeed, from (4.4) we have σiη j = η j�
1−a ji (σ̄i ), which for a ji even reads σiη j =

η jσi and for a ji odd (4.4) is equivalent to σiη j = η j σ̄i = η jηiσi . This implies
the first equation in (4.9). The second relation in (4.9) is obtained by applying the
automorphism� to the first one. The identities (4.9) yield that the subgroup Hη ⊂ WU

G
generated by ηi , i ∈ I , is normal. A proof of the fact that |Hη| = 2|I | is given in
Lemma 6.4 below.

Next,we consider the quotient groupWU
G /Z

|I |
2 . It is generated by si := π(σi ), i ∈ I ,

and satisfying the standard relations (2.2), (2.3) of the group WG . Indeed, π(σi ) =
π(σ̄i ) implies that the relations (4.3) are mapped to the relations (2.2), relations (4.4)
equivalent to (4.9) become identities, and the braid relations (4.5) of WU

G are mapped
to the braid relations (2.3) of WG . Thus, we have a surjective homomorphism π

π : WU
G → WG , ηi 
→ 1, i ∈ I .

This gives the exact sequence (4.8). �
The following analog of Theorem 3.2 holds.

Theorem 4.5 Let U ⊂ G be a maximal compact subgroup of the complex semisimple
simply connected Lie group G. Let (�,WG) be the root system of g = Lie(G) with
the Cartan matrix ‖ai j‖. Let γ be the generator of the Galois group � = Gal(C/R)

of the field extension R ⊂ C and let ı ∈ C be the imaginary unit. Then the following
map:

σi 
→ ςi := e
ıπ
2 (ei+ fi ) γ, σ̄i 
→ ς̄i := e− ıπ

2 (ei+ fi ) γ, i ∈ I , (4.10)

defines an injective homomorphism WU
G → ˜U, with ˜U given by (4.2). The elements

ςi , i ∈ I , and γ together with the maximal torus H generate the group NG(H) � �.

We give a proof of Theorem 4.5 in Sect. 6 below.
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Let us stress a clear analogy between the constructions of WT
G and WU

G . On the
one hand, in the Tits setting the finite group is embedded into the maximal compact
subgroup K ⊂ G(R) of the maximally split real form G(R) ⊂ G. On the other hand,
the extension WU

G constructed above is embedded into Galois group extension ˜U of
maximal compact subgroup U ⊂ G (note that the action of complex conjugation
on U may be equivalently represented by the action of the Cartan anti-involution
(4.1)). In this way ˜U plays the role analogous to K ⊂ G(R) in the Tits construction,
while WU

G looks like a “complex” analog of the finite group WT
G , where the relations

τ 2i = θi are replaced by σi σ̄i = ηi . Let us note that for each i ∈ I we have the cyclic
subgroup 〈ṡi : (ṡi )4 = 1〉 = Z4 ⊂ WT

G in the Tits construction. Meanwhile in the case
of WU

G for each i ∈ I the group 〈σi , σ̄i : σ 2
i = σ̄ 2

i = (σi σ̄i )
2 = 1〉 = (Z2)

2 ⊂ WU
G

appears. Note that these two instances exhaust possible extensions of Z2 by Z2. It is
natural to expect that with other real forms of the complex group G one can associate
appropriate extensions of the Weyl group WG . These extensions presumably would
be combinations of both constructions considered above.

5 Adjoint action of the extendedWeyl groups

While the action of WG on the maximal commutative subalgebra h = Lie(H) is
defined canonically (2.4) and does not depend on a lift ofWG into NG(H) its action on
the whole Lie algebra g = Lie(G) does depend on the lift. Above we have considered
two extensions of the Weyl group WG together with their homomorphisms into the
corresponding Lie group. Here we describe their induced adjoint actions on g.

Proposition 5.1 Theadjoint action of theTits groupWT
G on theLie algebrag = Lie(G)

via homomorphism (3.6) is given by

Adṡi (ei ) = − fi , Adṡi ( fi ) = − ei , (5.1)

Adṡi (e j ) = e j , Adṡi ( f j ) = f j , ai j = 0, (5.2)

Adṡi (e j ) = (−1)|ai j |

|ai j |!
[

ei , [. . . [ei
︸ ︷︷ ︸

|ai j |
, e j ] . . .]],

Adṡi ( f j ) = 1

|ai j |!
[

fi , [. . . [ fi
︸ ︷︷ ︸

|ai j |
, f j ] . . .]], i 	= j . (5.3)

Proof Relations (5.1) are actually relations for sl2 Lie subalgebras generated by
{ei , hi , fi , i ∈ I } and may easily be checked using for example the standard
faithful representation (6.3). Relations (5.2) trivially follow from the Lie algebra rela-
tions (3.4). Thus we need to prove (5.3). Let us introduce the following notation:
ṡi (a) := Adṡi (a). Then for the conjugated generators we have

[hk, ṡi (e j )] = ṡi ([hsi (k), e j ]) = 〈si (α∨
k ), α j 〉 ṡi (e j ) = (akj − akiai j ) ṡi (e j ),

[hk, ṡi ( f j )] = ṡi ([hsi (k), f j ]) = − 〈si (α∨
k ), α j 〉 ṡi ( f j ) = − (akj − akiai j ) ṡi ( f j ).
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These relations fix the r.h.s. of (5.3) up to coefficients. Let us calculate the coefficients
by taking into account only the terms of the right weights. We have

ṡi (e j ) = e fi e−ei e fi e j e
− fi eei e− fi = (−1)|ai j |

|ai j |!
(

Ad
|ai j |
e fi ei e− fi

(e j )
) + · · · ,

wherewe have used the Serre relations (3.5) and denote by · · · the terms of the “wrong”
weight. Taking into account

Ade fi (ei ) = ei + · · · ,

we obtain the first relation in (5.3). The second relation is obtained quite similarly
using the following equality (for a proof see Lemma 6.1):

e fi e−ei e fi = e−ei e fi e−ei .

In this case we have

ṡi ( f j ) = e−ei e fi e−ei f j e
ei e− fi eei = 1

|ai j |!
(

Ad
|ai j |
e−ei fi eei

( f j )
) + · · · .

Taking into account

Ade−ei ( fi ) = fi + · · · ,

we obtain the second relation in (5.3). �
Let us stress that there is a simple way to get rid of sign factors in (5.1) and (5.3).

Define a new set of generators ẽi = −ei , f̃i = fi . Then we have

Adṡi (ẽi ) = f̃i , Adṡi ( f̃i ) = ẽi ,

Adṡi (ẽ j ) = ẽ j , Adṡi ( f̃ j ) = f̃ j , ai j = 0,

Adṡi (ẽ j ) = 1

|ai j |!
[

ẽi , [. . . [ẽi
︸ ︷︷ ︸

|ai j |
, ẽ j ] . . .]],

Adṡi ( f̃ j ) = 1

|ai j |!
[

f̃i , [. . . [ f̃i
︸ ︷︷ ︸

|ai j |
, f̃ j ] . . .]], i 	= j .

Now we describe the action on g of the Weyl group extension WU
G introduced in

Sect. 4. It is convenient to express it in terms of purely imaginary generators ıei , ı fi ,
i ∈ I .

Proposition 5.2 The elements of the group WU
G act on the Lie algebra g = Lie(G)

via homomorphism (4.10) as follows:

Adςi (ıei ) = − ı fi , Adςi (ı fi ) = − ıei , (5.4)
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and

Adςi (ıe j ) = − ıe j , Adςi (ı f j ) = − ı f j , ai j = 0, (5.5)

Adςi (ıe j ) = − 1

|ai j |!
[

ıei , [. . . [ıei
︸ ︷︷ ︸

|ai j |
, ıe j ] . . .]],

Adςi (ı f j ) = − 1

|ai j |!
[

ı fi , [. . . [ı fi
︸ ︷︷ ︸

|ai j |
, ı f j ] . . .]], i 	= j . (5.6)

Proof Taking into account (3.4) we have

eıπ t adhi (e j ) = e j e
ıπ tai j , eıπ t adhi ( f j ) = f j e

−ıπ tai j .

Next, we use the following representation for ςi (see Lemma 6.1 for details):

ςi = ṡi e
ıπ
2 hi γ, i ∈ I ,

and Proposition 5.1 to obtain (5.6) and (5.4). �

6 Proof of Theorem 4.5

We start with establishing an explicit relation between the generators ςi , ς̄i (4.10) and
the Tits generators ṡi .

Lemma 6.1 For each i ∈ I the following identities hold:

ṡi := e fi e−ei e fi = e−ei e fi e−ei = e
ıπ
4 hi e

ıπ
2 (ei+ fi )e− ıπ

4 hi , ṡ2i = eıπhi . (6.1)

Thus the generators {ςi , ς̄i , i ∈ I } defined by (4.10) may be represented as follows:

ςi = e− ıπ
2 hi ṡiγ = e− ıπ

4 hi ṡi e
ıπ
4 hi γ,

ς̄i = e
ıπ
2 hi ṡiγ = e

ıπ
4 hi ṡi e

− ıπ
4 hi γ,

ςi ς̄i = ṡ2i = eıπhi .

(6.2)

Proof The identities (6.1) follow from the corresponding relations in SL2 ⊂ G, using
the standard faithful two-dimensional representation φ : SL2 → End(C2),

φ(e) =
(

0 1
0 0

)

, φ( f ) =
(

0 0
1 0

)

, φ(h) =
(

1 0
0 −1

)

. (6.3)
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Direct calculations show that

φ(ṡ) = φ(e f e−ee f ) = φ(e−ee f e−e) =
(

0 −1
1 0

)

,

φ(ṡ2) = φ(e−ee f e−ee−ee f e−e) =
(−1 0

0 −1

)

= φ(eıπh),

φ
(

e− ıπ
4 h ṡe

ıπ
4 h) = φ

(

e
ıπ
2 (e+ f )) =

(

0 ı
ı 0

)

, φ
(

e
−ıπ
2 (e+ f )) =

(

0 −ı
−ı 0

)

.

Then (6.1), (6.2) follow from the faithfulness of φ. �
Lemma 6.2 The following relations hold:

ς2
i = ς̄2

i = 1, i ∈ I . (6.4)

Proof Direct calculation gives

ς2
i = e− ıπ

4 hi ṡi e
ıπ
4 hi γ e− ıπ

4 hi ṡi e
ıπ
4 hi γ

= e− ıπ
4 hi ṡi e

ıπ
4 hi e

ıπ
4 hi ṡi e

− ıπ
4 hi

= e− ıπ
4 hi ṡi e

ıπ
2 hi ṡi e

− ıπ
4 hi

= e− ıπ
4 hi e− ıπ

2 hi e− ıπ
4 hi (ṡi )

2 = e−ıπhi · eıπhi = 1.

The identity ς̄2
i = 1 follows from ς̄i = γ ςiγ , i ∈ I . �

Now let us verify that the generators ςi , ς̄i and ξi = ςi ς̄i , i ∈ I , satisfy the
remaining defining relations (4.9), (4.5) for the group WU

G :

ςiξ j = ξ jξ
−a ji
i ςi , ς̄iξ j = ξ jξ

−a ji
i ς̄i , (6.5)

and
ςiς jςi · · ·
︸ ︷︷ ︸

mi j

= ς̄ j ς̄i ς̄ j · · ·
︸ ︷︷ ︸

mi j

, i 	= j, i, j ∈ I , (6.6)

where mi j = 2, 3, 4, 6 for ai j a ji = 0, 1, 2, 3, respectively.
The first identity in (6.5) follows from (6.2) and (3.2):

ςiξ jς
−1
i = e− π ı

2 hi ṡiγ e
π ıh j γ ṡ−1

i e
π ı
2 hi = e− π ı

2 hi eπ ı(h j−a ji hi )e
π ı
2 hi = ξ jξ

−a ji
i .

The other identity in (6.5) follows from ς̄i = γ ςiγ , i ∈ I .
For the relation (6.6), on the left-hand side we have

ςiς jςi · · ·
︸ ︷︷ ︸

mi j

= (

e− π ı
2 hi ṡi e

π ı
2 h j ṡ j · · ·

︸ ︷︷ ︸

mi j

)

γmi j = exp
π ı

2
(−hi + si h j − si s j hi + . . .
︸ ︷︷ ︸

mi j

)(ṡi ṡ j · · ·
︸ ︷︷ ︸

mi j

) γmi j ,
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and on the right-hand side:

ς̄ j ς̄i ς̄ j · · ·
︸ ︷︷ ︸

mi j

= (

e
π ı
2 h j ṡ j e

− π ı
2 hi ṡi · · ·

︸ ︷︷ ︸

mi j

)

γmi j = exp
π ı

2
(h j − s j hi + s j si h j − . . .
︸ ︷︷ ︸

mi j

)(ṡ j ṡi · · ·
︸ ︷︷ ︸

mi j

) γmi j .

Since ṡi ṡ j · · ·
︸ ︷︷ ︸

mi j

= ṡ j ṡi · · ·
︸ ︷︷ ︸

mi j

holds due to (3.3), the identity (6.6) reduces to the following:

exp
π ı

2

(−hi + si h j − si s j hi + . . .
︸ ︷︷ ︸

mi j

) = exp
π ı

2

(

h j − s j hi + s j si h j − . . .
︸ ︷︷ ︸

mi j

)

. (6.7)

In turn the identity (6.7) may be proved by invoking the following fact.

Lemma 6.3 For each pair i, j ∈ I , i 	= j , the following holds:

(1 − s j + si s j − . . .
︸ ︷︷ ︸

mi j

) hi = 0. (6.8)

Proof Consider the order 2mi j Coxeter subgroup of WG generated by a pair of the
simple root reflections si , s j , i 	= j :

〈si , s j : (si s j )mi j = s2i = s2j = 1〉 ⊂ WG .

This group is isomorphic to the dihedral group Dmi j ⊂ O2(R) of symmetries of mi j -
gone in the real plane Vi j = Rhi ⊕ Rh j . The dihedral group may be equivalently
written in the following form:

Dmi j = 〈

t, r : tmi j = r2 = 1, r tr−1 = t−1〉, t = si s j , r = si .

We have two projectors in the plane Vi j = Rhi ⊕ Rh j :

P± = 1 ± si
2

: Vi j → Vi j , P2± = P±, P±P∓ = 0,

such that

P+hi = 0, P−hi = hi .

Therefore, the identity (6.8) is equivalent to the following:

(1 − s j + si s j − · · ·
︸ ︷︷ ︸

mi j

)(1 − si ) · hi =
∑

g∈Dmi j

(−1)gg ·hi = 0, (6.9)
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where (−1)g := det(g) is the sign character of Dmi j ⊂ O2(R). The kernel of the sign
character is a normal subgroup,

Zmi j = 〈t : tmi j = 1〉 ⊂ Dmi j ,

which consists of the rotations by 2πk
mi j

, 0 � k < mi j of the plane Vi j . The non-trivial

co-set in Dmi j /〈t〉 consists of the reflections {rk = tkr : 0 � k < mi j } with r0 = r
being a reflection sending hi to −hi . Thus we have (−1)rk = det(rk) = −1 and

Dmi j =
{

tk : 0 � k < mi j
} � {

rk = r tk : 0 � k < mi j
}

,

hence the identity (6.9) reads

∑

g∈Dmi j

(−1)gg · hi = (1 − r)

mi j−1
∑

k=0

tk · hi .

Now in the group algebra C[Dmi j ] the following identity holds:

tmi j − 1 = (t − 1)

mi j−1
∑

k=0

tk = 0.

Since t acts in the faithful representation Vi j without fixed vectors, we infer that
∑mi j−1

k=0 tk · hi = 0 and thus prove (6.9). �
Lemma 6.4 The elements ηi = σi σ̄i , i ∈ I , generate a subgroup Hη ⊂ WU

G of order
|Hη| = 2|I |.

Proof By (6.4), (6.5) and (6.6), the elements {ςi , ς̄i , i ∈ I } ⊂ ˜U = U � � satisfy
the defining relations of the group WU

G from Definition 4.1. Moreover, the images
ςi ς̄i = eıπhi ∈ U of the elements ηi = σi σ̄i , i ∈ I , generate the subgroup Hη � H (2)

of order two points in the maximal torus H ⊂ G, so that the order of Hη should be
not less then 2|I | and thus |Hη| = 2|I | holds. �

We complete our proof of Theorem 4.5 by verifying injectivity of the homomor-
phismψ : WU

G → ˜U . By Proposition (4.4),WU
G has a structure of the group extension:

1 −→ Z
|I |
2 −→ WU

G −→ WG −→ 1. (6.10)

Let W U
G = ψ(WU

G ) ⊂ ˜U , then the W U
G -action on h = Lie (H) implies the existence

of the surjective homomorphism π : W U
G → WG . By Lemma 6.4, W U

G contains a
normal abelian subgroup generated by {ψ(ηi ) = ςi ς̄i = eıπhi, i ∈ I } ⊂ U , which is
isomorphic to H (2) � Z

|I |
2 . Clearly, the normal abelian subgroup H (2) acts trivially on

h, hence it is in the kernel of the surjective homomorphism π , which entails |WU
G | �
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|W U
G |. On the other hand, the existence of homomorphism ψ : WU

G → W U
G implies

that |WU
G | � |W U

G | and hence |WU
G | = |W U

G |. Thus for W U
G we have the following

exact sequence:

1 −→ Z
|I |
2 −→ W U

G −→ WG −→ 1.

Taking into account (6.10) this provides a proof of injectivity of ψ , and therefore, of
Theorem 4.5.
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