
����������
�������

Citation: Li, S.; Xu, M.; Sitnikova, E.

The Formulation of the Quadratic

Failure Criterion for Transversely

Isotropic Materials: Mathematical

and Logical Considerations. J.

Compos. Sci. 2022, 6, 82. https://

doi.org/10.3390/jcs6030082

Academic Editor: Stelios

K. Georgantzinos

Received: 8 February 2022

Accepted: 1 March 2022

Published: 7 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

The Formulation of the Quadratic Failure Criterion for
Transversely Isotropic Materials: Mathematical and
Logical Considerations
Shuguang Li * , Mingming Xu and Elena Sitnikova

Faculty of Engineering, University of Nottingham, Nottingham NG8 1BB, UK;
mingming.xu@nottingham.ac.uk (M.X.); elena.sitnikova@nottingham.ac.uk (E.S.)
* Correspondence: shuguang.li@nottingham.ac.uk

Abstract: The quadratic function of the original Tsai–Wu failure criterion for transversely isotropic
materials is re-examined in this paper. According to analytic geometry, two of the troublesome coeffi-
cients associated with the interactive terms—one between in-plane direct stresses and one between
transverse direct stresses—can be determined based on mathematical and logical considerations. The
analysis of the nature of the quadratic failure function in the context of analytic geometry enhances the
consistency of the failure criterion based on it. It also reveals useful physical relationships as intrinsic
properties of the quadratic failure function. Two clear statements can be drawn as the outcomes
of the present investigation. Firstly, to maintain its basic consistency, a failure criterion based on a
single quadratic failure function can only accommodate five independent strength properties, viz.
the tensile and compressive strengths in the directions along fibres and transverse to fibres, and the
in-plane shear strength. Secondly, amongst the three transverse strengths—tensile, compressive and
shear—only two are independent.

Keywords: quadratic failure function; Tsai–Wu criterion; failure envelope; strength; transverse shear
strengths; transversely isotropic materials

1. Background

Ever since Tsai and Wu proposed their failure criterion [1] based on a quadratic failure
function, the polynomials employed to construct failure criteria have been mostly kept to
the second order. Whilst one could legitimately argue for higher orders of polynomials
along the line, as was suggested in [2], or to partition the failure function according to
the failure modes, as was attempted in [3], many are on the verge of abandoning all
such theories developed on a phenomenological basis, having been discouraged by their
unsatisfactory performance. However, a sensible question does not seem to have ever been
asked: ‘Has the quadratic failure function been understood well enough before increasing
or abandoning any further efforts along this line of development?’ It is true that quadratic
functions are well understood in analytic geometry as a branch of mathematics, and yet it
will be revealed in the present paper that the established mathematics has not been properly
utilised in the important subject of composite failure. The well-established conclusions of
analytic geometry have simply not been appropriately recognised in the formulations of
failure criteria for composites based on quadratic functions. Therefore, before this aspect
has been appropriately examined and evaluated, it would surely be a premature decision to
propose more complicated arrangements for the failure function or to ditch every account
of phenomenological criteria based on macroscopic stresses or strains completely.

A thorough re-examination of popular existing failure criteria for modern compos-
ites [4] by two of the authors of this paper suggested that whilst the predictions of these
theories fell short of the expectation of the users, none of them had been formulated consis-
tently enough at a basic level. Phenomenological approaches based on macroscopic stresses
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or strains are bound to have their limitations. However, blaming the phenomenological
nature alone for the deficiencies in the existing criteria is a far too quick and easy escape.
Once one moves into the micromechanics of composites, there will be many more compli-
cations involved due to the consideration of both mechanics and materials, let alone the
necessary mathematics and logic. As an example, representative volume elements and unit
cells as basic and also necessary means of micromechanical investigations were subjected
to a serious and systematic examination in [5]. It was revealed that their formulation and
implementation are full of pitfalls and any oversight leads to an erroneous interpretation
of genuine material behaviours. If the mathematics and logic cannot be sorted out at a
macroscopic level, where there are only six macroscopic stresses to deal with, it is hard
to imagine that the study of composites failure can be accomplished at a microscopic
scale, where one can easily be swamped with new parameters, sometimes of little physical
meaning. Whilst researchers should not be discouraged from undertaking explorations into
micromechanics, it is worthwhile to re-examine the aspect of the rationality of conventional
and phenomenological failure criteria, not aiming to generate any new criterion, but to
tidy up the basic mathematics and logic underlying existing theories and to eliminate any
irrational elements before presenting them on a footing of a basic level of consistency. By
then, one could make an objective decision on how applicable such rationally formulated
failure criteria are and how far such a phenomenological theory can be used reliably. This
may even lay a firm basis for more sophisticated developments, as mentioned above.

2. A Critical Review of the Tsai–Wu Criterion

A reasonably comprehensive literature review on the subject of the Tsai–Wu failure
criterion is given in a recent publication [6] and will be waived in this paper. The criterion
was originally proposed as [1]:

F1σ1 + F2σ2 + F3σ3 + F11σ2
1 + F22σ2

2 + F33σ2
3 + 2F23σ2σ3 + 2F13σ1σ3 + 2F12σ1σ2

+F44τ2
23 + F55τ2

13 + F66τ2
12 − 1 = 0

(1)

in the context of generally orthotropic materials. The left-hand side is a quadratic failure
function. A careful examination of (1) suggests that many terms, such as linear and bilinear
expressions of shear stresses, are missing from the failure function for it to be a complete
quadratic polynomial of six stress components. These terms have been dropped because
the failure function must be even for each shear stress as a basic requirement of objectivity.
Therefore, the failure function in the form of a quadratic function as given in (1) is complete
as far as homogeneous orthotropic materials are concerned.

The coefficients F1, F11, F44, etc., in (1) should be determined by the strengths of the
material obtained through standard or special experiments. In fact, most of them have been
explicitly expressed in terms of conventional strengths. For instance, those coefficients that
are of particular relevance to the present discussion are listed below as:

F1 = 1
σ∗1t
− 1

σ∗1c
, F2 = 1

σ∗2t
− 1

σ∗2c
, F11 = 1

σ∗1tσ
∗
1c

, F22 = 1
σ∗2tσ

∗
2c

,

F44 = 1
(τ∗23)

2 and F66 = 1
(τ∗12)

2
(2)

where σ∗1t and σ∗1c are the tensile and compressive strengths of the material in the direction
along the fibres, respectively; σ∗2t and σ∗2c are the tensile and compressive strengths of the
material in the direction transverse to the fibres, respectively; and τ∗23 and τ∗12 are the shear
strength transverse and parallel to the fibres, respectively. These conventional strength
properties of the composite should be obtained when appropriate specimens are loaded
under uniaxial stress states or pure shear stress states in their material’s principal axis
according to available standards [7,8]. However, the coefficients of the interactive terms
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F23, F13 and F12 have been left somewhat loose. Restrictions were introduced in [1] on the
ranges of their values as:

F2
23 < F22F33

F2
13 < F11F33

F2
12 < F11F22.

(3)

Given the inequality form of (3), these restrictions are insufficient to fully quantify
F23, F13 and F12. However, at this point, certain mathematically inaccurate statements
were made in [1], and they need to be corrected, since the clarification of this matter will
eventually lead to the development that will be presented in this paper.

In general, the failure envelope is defined in a six-dimensional stress space. If (1) is
re-written as:

F1σ1 + F2σ2 + F3σ3 + F11σ2
1 + F22σ2

2 + F33σ2
3 + 2F23σ2σ3 + 2F13σ1σ3 + 2F12σ1σ2

= 1−
(

F44τ2
23 + F55τ2

13 + F66τ2
12
)
= K

(4)

it can be considered that the presence of any non-vanishing shear stress can be equivalently
considered as a reduction in the value of the constant term in (1) from 1 to a smaller
value, denoted as K, which could be negative under some stress states (K = 0 implies that
failure is due to shear stresses alone). The nature of the failure function can be sufficiently
comprehensively discussed within the three-dimensional subspace of direct stresses.

It was claimed in [1] that the conditions of (3) were to keep the failure envelope closed
on the basis that materials should exhibit finite strengths. This was misleading on two
accounts. Firstly, the conditions of (3) do not ensure the closeness of the failure envelope.
According to analytic geometry [9], each of the three conditions ensures that the intersection
of the failure envelope with the respective coordinate plane as a locus is an ellipse. Take
coordinate plane 1–2 for example. In this case, the locus is obtained when σ3 = 0 as:

F1σ1 + F2σ2 + F11σ2
1 + F22σ2

2 + 2F12σ1σ2 = 1− F66τ2
12. (5)

The condition F2
12 < F11F22 ensures that (5) is an ellipse in the 1–2 plane [9]. The

same argument can be made for the remaining two conditions in (3). The precise physical
interpretation of (3) is that strength is finite under any plane stress condition in each of the
principal planes of the material, which is a reasonable observation amongst all available
experimental data, as was also argued in [6]. However, the conditions of (3) do not exclude
the possibility of the failure envelope being open in the 3D space. Consider a real composite,
for example, T300/PR-319, which was one of the composites involved in WWFE-II [10] and
was also employed in [6] as one of the cases studied. With F12 given as:

F12 = −1
2

√
F11F22 (6)

which is the same as that introduced in [11], and the measured transverse shear strength
as τ∗23 = 45 MPa, the failure envelope (4) can be proven to be an ellipsoid in the subspace
of direct stresses. It is well known that no strength properties can be practically obtained
without experimental error, although clear indications of such errors are not usually pro-
vided in the published data. A rare example of published raw data for strength properties
can be found in [12], where the variability was as high as 30%, although the authors used a
different type of composite (AS4/8552). Suppose that there was a 10% experimental error
in τ∗23 and its value dropped to 40.5 MPa whilst satisfying (3) perfectly well. Then, the
failure envelope would turn into an hourglass-like hyperboloid. As will become clear later
in this paper, logically, the conditions in (3) serve as a set of necessary conditions for the
failure envelope to be closed, whilst the sufficient conditions provided later in this paper
are more restrictive [9].

The second issue is that the claim made in [1] prohibited the openness of the failure
envelope or any infinite strength. On one hand, a claim of an infinite strength under some
specific conditions can be equally as scientifically unfounded as a claim of a finite strength
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under any condition; on the other hand, either claim could be a reasonable assumption
under the appropriate considerations. If a material under a specific stress state could sustain
a stress level much higher than its strength under any uniaxial stress state, it would not be
unreasonable to assume the strength under that special condition was practically infinite.
Realistically, the available means for testing materials under multiaxial stress states only
allow for stress within a limited range. Without loading the material to failure, one cannot
be certain whether the strength is infinite. In view of this, a more meaningful question to
ask is not whether a claim of finite or infinite strength is correct, but whether a claim has
been made consistently within the theoretical framework.

In [11], Tsai and Hahn introduced (6), and their justification was that the Tsai–Wu
criterion should reproduce the von Mises criterion for isotropic materials of equal tensile
and compressive strengths. If so, the claim of a finite strength under all conditions would
lead to a logical contradiction, because the failure envelope for the von Mises criterion is
in fact open [13], since it is a cylinder in the space of three principal stresses intersecting a
coordinate plane in closed ellipses. Its axis corresponds to the hydrostatic stress state under
which the material is assumed to have infinite strength.

An attempt to reconcile the contradictive issues described above was made in [6].
Without violating the conditions in (3), it was concluded that an elliptic paraboloidal
envelope offers a reasonable compromise for logical consistency. Mathematically, there
exists a unique elliptic paraboloid sitting on the borderline between the ellipsoids and
the elliptic hyperboloids. Employing an elliptic paraboloid as the failure envelope, given
its open appearance, allows infinite strength, but only under a unique stress ratio [6] in
triaxial compression. There appears to be two ways to lock the failure envelope in an
elliptic paraboloid. One method is to abandon (6) and to employ the expression of F12 as
was obtained in [6]:

F12 = −1
2

√
δ
√

F11F22 (7)

where

δ = 4− F44

F22
= 4−

σ∗2tσ
∗
2c(

τ∗23
)2 . (8)

This leads to a method of determining F12 in terms of known strength properties,
eliminating the need for an additional strength measured under combined stress states.
However, a critical drawback of this approach is that δ as defined in (8) can be negative
for some materials, as shown in [6]; based on this, it was concluded that the Tsai–Wu
criterion was inapplicable to these materials, which remained an unsatisfactory aspect of
this development.

Alternatively, an elliptic paraboloidal failure envelope can also be achieved by the
slight modification of transverse strengths, given the wide variability in experimental data.
This consideration results in the development that will be presented in this paper, leading
to the determination of the transverse shear strength whilst delivering the necessary logical
consistency. There have been a number of other approaches proposed to determine the
transverse shear strength from the transverse tensile and/or compressive strengths, e.g.,
in [14–16], which will be discussed later in this paper, as well as those summarised in [6].

It is now clear that the conditions in (3) should be satisfied; however, the satisfaction
of (3) is not enough. It should also be noted that the three conditions in (3) are equally
critical in term of necessity, because violating any of them will allow an open locus in the
respective coordinate plane, implying an infinite strength under a plane stress condition.
The conditions in (3) are also equally restrictive for F23, F13, and F12 in specifying their
ranges.
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3. The Quadratic Failure Function for Transversely Isotropic Materials

Similar to [6], as well as in [1,3,14–16], the present paper will be confined only to trans-
versely isotropic materials, which cover a large class of unidirectionally fibre-reinforced
composites. In this case, the transverse isotropy offers the following relationships:

F2 = F3, F22 = F33, F13 = F12,
F44 = 2(F22 − F23) or F23 = F22 − 1

2 F44 and F55 = F66.
(9)

The Tsai–Wu criterion reduces to [1,6,11]:

F1σ1 + F2(σ2 + σ3) + F11σ2
1 + F22

(
σ2

2 + σ2
3
)
+ 2F23σ2σ3 + 2F12σ1(σ3 + σ2)

+2(F22 − F23)τ
2
23 + F66

(
τ2

13 + τ2
12
)
− 1 = 0

(10)

and there are seven seemingly independent coefficients F1, F2, F11, F22, F23 (or F44), F12 and
F66 to be determined from experimental data.

The relationships in (9) are a natural consequence of the transverse isotropy. However,
a follow-up question would have a far-reaching effect. The third relationship in (9) suggests
that F13 and F12 make equal contributions to the failure function as material properties,
regardless of the stress state. The justification for this is, of course, the identical strength
characteristics of the material in directions 2 and 3. In general, given the anisotropy of
the material, F12 and F23 are not expected to be the same. However, should the difference
between F12 and F23 be quantitatively associated with the degree of anisotropy? This is a
question that has never been asked properly in the literature to the best of our knowledge,
let alone has it been addressed. An attempt will be made and justified in this paper.

Having achieved what was presented in [6], the objective of the present paper is to
address some intrinsic relationships in the quadratic failure function that will have pro-
found implications for the understanding of the strength of transversely isotropic materials
in general. The consequence is that a quadratic failure function can only accommodate
five independent strength properties, and two out of the seven coefficients as involved in
(10) can be expressed in terms of the remaining five in general, provided that the material
is homogeneous and transversely isotropic, and the failure function is a single quadratic
function.

4. Characteristics of the Quadratic Failure Function for Transversely
Isotropic Materials
4.1. Necessary and Sufficient Conditions for an Elliptic Paraboloid

As was argued in Section 2, as well as in [6], the failure envelope should be allowed
to be an elliptic paraboloid to maintain a basic level of consistency in the logic behind
the Tsai–Wu criterion. The failure envelope for transversely isotropic materials in the
three-dimensional subspace of direct stresses is given as:

F1σ1 + F2(σ2 + σ3) + F11σ2
1 + F22

(
σ2

2 + σ2
3
)
+ 2F23σ2σ3

+2F12σ1(σ3 + σ2) = K.
(11)

This defines a quadric surface in the σ1 − σ2 − σ3 space in general, of which the
following invariants can be introduced [9].

A =

∣∣∣∣∣∣∣∣
F11 F12 F12

1
2 F1

F12 F22 F23
1
2 F2

F12 F23 F22
1
2 F2

1
2 F1

1
2 F2

1
2 F2 −K

∣∣∣∣∣∣∣∣ (12)

J =
∣∣∣∣ F11 F12

F12 F22

∣∣∣∣+ ∣∣∣∣ F22 F23
F23 F22

∣∣∣∣+ ∣∣∣∣ F22 F12
F12 F11

∣∣∣∣ = 2
(

F11F22 − F2
12

)
+ F2

22 − F2
23 (13)
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D =

∣∣∣∣∣∣
F11 F12 F12
F12 F22 F23
F12 F23 F22

∣∣∣∣∣∣ = F11F22
2 + 2F23F12

2 − 2F22F12
2 − F11F23

2 = (F22 − F23)∆ (14)

where
∆ = F11(F22 + F23)− 2F2

12. (15)

In general, quadric surfaces can be a range of different shapes, and for complete
categorisation a few more invariants [9] are required. The above conditions are suffi-
cient to determine if the surface is an elliptic paraboloid. Most quadric surfaces, such
as paraboloidal cylinders and various hyperboloids, lead to physically impermissible be-
haviours, e.g., possible infinite strength under a plane stress condition, or infinite strengths
at an infinite number of different stress conditions, some involving tensile stresses, etc.,
as elaborated in [6]. For instance, the elliptic cylinder defines the failure envelope for a
class of materials that show infinite strength under a triaxial stress state at a certain stress
ratio both in tension and compression—a typical ductile behaviour. It is inapplicable to
modern composites, which are mostly brittle, i.e., the material failure characteristics show
significant differences under tension and compression. The permissible quadric surfaces
are limited to an ellipsoid and an elliptic paraboloid. As argued earlier and will be further
elaborated later, an ellipsoid as a failure envelope for (11) cannot be the right choice.

The elliptic paraboloid, which is open at only one end and allows infinite strength
only at one specific triaxial compressive stress ratio, remains the only viable choice. The
conditions that are both necessary and sufficient for a quadratic function to be an elliptic
paraboloid are [9]:

A < 0, J > 0 and D = 0. (16)

Whilst the inequalities are discriminants, the satisfaction of which will be shown later,
the equation, i.e., D = 0, offers an additional relationship purely from a mathematical point
of view, which will be exploited below. Given (14), the first condition in (3) rules out the
possibility of F22 − F23 = 0; therefore, D = 0 is equivalent to ∆ = 0, i.e.,

F2
12 =

1
2

F11(F22 + F23) (17)

which agrees with what was obtained in [6]. This means that F23 and F12 are not both
independent.

Given the relationship between F23 and F12 shown in (17), one could be tempted to
shed the remaining responsibility of the full determination of F23 and F12 to experiments,
i.e., to have one of these values measured experimentally. Unfortunately, there are no
reliable experimental means to directly determine either of them. The best one can do is to
determine the transverse shear strength, from which F44 can be evaluated, and then obtain
F23 using the fourth relationship in (9). Then, F12 can be determined using (17), which is in
line with [6]; however, as discussed in Section 2, this approach is inefficient.

On the other hand, the available resources in terms of mathematics and logic have
not been exhausted. The consideration of mathematical and logical consistency will offer
another much-desired condition, and will be pursued in the next subsection.

4.2. Determination of F12 and F23

Equation (17) shows F12 as a function of F23, which is a parabola on the F23-F12 plane,
as sketched in Figure 1. The domain of the function can be obtained from the first condition
in (3). For transversely isotropic materials, it becomes:

F2
23 < F2

22. (18)

In regard to the domain, the range of the function happens to coincide with the third
condition in (3), i.e., F2

12 < F11F22, given that F11 and F22 are both positive and, hence,
F23 < F22. The permissible values of F23 and F12 can only be within the green rectangle
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shown in Figure 1, with the parabola passing its two corners on the right and touching its
side on the left.
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Any point on the parabola in Figure 1 satisfies (17). To determine F12 and F23 com-
pletely means to fix a point on the parabola, referred to as point P. This requires one
additional consideration that can be obtained by examining (17) in the context of its physi-
cal implications. The coefficients F12 and F23 are expressed one way or another in terms of
strength properties, which are obtained experimentally; hence, errors are inevitable. Any
perturbation due to an experimental error in one of the coefficients will have to be met
by a variation in the other in order to keep (17) satisfied. If P is selected close to the tip
of the parabola, where dF12/dF23 approaches infinity, it would require a large variation in
F12 to correct a small perturbation in F23, making the failure criterion extremely sensitive
to small errors in the evaluation of F23. Similarly, if P is placed close to the open end of
the parabola, although the derivative is neither infinite nor zero, the failure criterion is
bound to be more sensitive to F12 than to F23. Between these two extremes, according to the
mean-value theorem [9], there exists an unbiased point where the failure criterion will be
equally sensitive to the perturbations in F12 and F23. The question now is how to determine
it logically.

The parabola shown in Figure 1 will be subject to further examination, as its intricacy
has yet to be decoded. F12 as a function of F23 is apparently not single valued. The top
and bottom halves of the parabola both provide a single valued branch. Following the
relevant discussion in [6] on the sense of F12, for the quadratic form (11) to be an elliptic
paraboloid with an opening on the triaxial compression side, the value of F12 must be
negative; therefore, it is the lower half of the parabola in Figure 1 that should be considered
as the permissible branch for p to fall upon. For this branch, the legitimate range of F12
is (0, −

√
F11F22) as F23 varies within its range of (−F22, F22), covering the zone shaded in

Figure 1. Both F12 and F23 can now be normalised with respect to the breadths of their
single valued ranges as follows:

F̃12 =
F12√
F11F22

and F̃23 =
F23

2F22
. (19)

F̃12 varies from 0 to –1 over a non-dimensional unit distance, while F̃23 takes its value from
−1/2 to 1/2, also covering a non-dimensional unit distance. Thus, both F12 and F23 are
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normalised in a consistent and unbiased manner. Accordingly, the expression of ∆ as given
in (15) can also be normalised as:

∆̃ =
∆

2F11F22
=

1
2
+ F̃23 − F̃2

12. (20)

For ∆̃ to be equally sensitive to F̃12 and F̃23 in their unnormalized form, it is reasonable
to expect that:

∂∆̃
∂F̃12

=
∂∆̃

∂F̃23
. (21)

From (20), one obtains:

∂∆̃
∂F̃12

= −2F̃12 and
∂∆̃

∂F̃23
= 1 (22)

Thus, (21) leads to:

F̃12 = −1
2

or F12 = −1
2

√
F11F22 as given in (6). (23)

Since ∆ = 0, its nondimensionalised form ∆̃ as defined in (20) should also vanish.
Given (23), the relationship in (17) leads to:

F̃23 = −1
4

or F23 = −1
2

F22. (24)

Thus, both F12 and F23 are determined as shown above. Whilst the relationship in (17)
represents a rigorous consideration from analytic geometry, the relationship in (21) results
from the logical consideration of the unbiased sensitivity of the failure criterion to F12 and
F23. The normalisations made to F12 and F23 in (19) ensure that they can be compared as
like with like.

From (24), given the fourth condition of (9) and the expressions of F44 and F22 in (2), a
natural consequence is:

F44 = 2(F22 − F23) = 3F22 or τ∗23 =

√
σ∗2tσ

∗
2c

3
. (25)

This suggests that amongst the three transverse strengths—tensile, compressive and
shear—of a transversely isotropic material, only two are independent as long as the failure
criterion is based on a single quadratic function. Therefore, based on the elaboration
presented above, the fully rationalised Tsai–Wu criterion can be delivered as follows:

F1σ1 + F2(σ2 + σ3) + F11σ2
1 + F22

(
σ2

2 + σ2
3 − σ2σ3 + 3τ2

23
)

−
√

F11F22σ1(σ3 + σ2) + F66
(
τ2

13 + τ2
12
)
= 1

(26)

where the coefficients F1, F2, F11, F22 and F66 are determined by conventional strength
properties, as given in (2). It is clear that under triaxial compression at the following
stress ratio:

σ1 : σ2 : σ3 = −

√
F22

F11
: −1 : −1 (27)

whilst all shear stresses vanish, criterion (26) will never be satisfied, i.e., failure will never
take place, implying an infinite strength under this special and unique stress state. In fact,
the position holds even in presence of shear stresses. The triaxial compression at the ratio
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given in (27) has a reinforcing effect on the shear strengths. This can be seen clearly if (26)
is re-written under this particular stress state as:

3F22τ2
23 + F66

(
τ2

13 + τ2
12

)
= 1 +

(
F1

√
F22

F11
+ 2F2

)
σ (28)

where σ is the magnitude of the transverse stresses (i.e., non-negative) of the triaxial
compressive stress state.

For 2D stress states in the 1–2 plane, (26) is simplified to:

F1σ1 + F2σ2 + F11σ2
1 + F22σ2

2 −
√

F11F22σ1σ2 + F66τ2
12 = 1. (29)

An important observation to make is that to predict the failure of a material under a
3D stress state from (26), the same set of strength properties is required as that for a 2D
stress state from (29). It should be emphasised here that the rationalisation above has to
be carried out on the criterion in its 3D form before it is reduced to 2D. Although (29) is a
well-known form [11], its rational justification can be obtained only through the route of
manipulating 3D stress states, as presented above.

4.3. Verification and Discussion

The point on the parabola given by (23) and (24) is special in multiple ways. It was
argued above that it renders failure criterion (10) to be equally sensitive to F12 and F23
under the condition that the failure envelope is an elliptic paraboloid. The slope to the
parabola at this point happens to be equal to the slope of the secant between the two
extremes of the single valued branch concerned, i.e., the tip of the parabola and the bottom
right end. The tangent and secant are marked in Figure 1 by solid and dashed red lines,
respectively. Therefore, this is the point whose existence has been asserted by the mean-
value theorem [9].

In order to interpret the results above and to verify the normalisations introduced in
(19), all the terms in the failure criterion (10) are normalised as follows, which is similar to
procedure used in [11].

F̃1σ̃1 + F̃2(σ̃2 + σ̃3) + σ̃2
1 + σ̃2

2 + σ̃2
3 − σ̃2σ̃3 − σ̃1(σ̃3 + σ̃2) + τ̃2

23 + τ̃2
13 + τ̃2

12 = 1 (30)

where
σ̃1 =

√
F11σ1, σ̃2 =

√
F22σ2, σ̃3 =

√
F22σ3,

τ̃23 =
√

F44τ23 =
√

2(F22 − F23)τ23,
τ̃13 =

√
F66τ13, τ̃12 =

√
F66τ12

F̃1 = F1√
F11

, F̃2 = F2√
F22

(31)

The values of F̃12 and F̃23 as obtained in (23) and (24) are also incorporated above. All
terms of the similar nature tend to contribute to F in the same way, whilst the differences due
to the anisotropy of the material in all second order terms are absorbed in the normalisation
scheme. The contributions of F12 and F23 obtained in (23) and (24) have indeed been
equalised in their normalised form.

The outcomes presented in (23) and (24) rest heavily on the normalisations in (19). If
one is prepared to accept (19) as the correct normalisations, which equalise the contributions
of F̃12 and F̃23 to the failure function as the major premise for the deductive reasoning as
presented above, conclusions (23) and (24) will be the logical consequence.

The existence of a relationship amongst transverse strengths, as shown in (24), can
also be argued as follows. There are only two independent strength properties for isotropic
materials of different tensile and compressive strengths for 3D stresses in general, as well
as for any plane stress conditions as special cases, according to the established Raghava–
Caddell–Yeh criterion [17], which has been more rationally formulated in [18]. When a
transversely isotropic material is under a plane stress condition in its transverse plane,
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i.e., the 2–3 plane, the material is effectively isotropic; therefore, the Raghava–Caddell–
Yeh criterion in its 2D form should be applicable. If so, it will only require two strength
properties. For the Tsai–Wu criterion to reproduce the Raghava–Caddell–Yeh criterion
under this condition, the third strength property cannot be independent.

With F12 and F23 as determined in (23) and (24), one can verify conditions in (16) as
follows:

A = − 3
16

F22

(√
F22F1 + 2

√
F11F2

)2
< 0 provided

−F1√
F11
6= 2

F2√
F22

(32)

J = F22(2F11 + F22)−
1
2

F11F22 −
1
4

F2
22 =

3
4

F22(2F11 + F22) > 0 (33)

D = (F22 − F23)
(

F11(F22 + F23)− 2F2
12

)
=

3
2

F22

(
1
2

F11F22 −
1
2

F11F22

)
= 0 (34)

Hence, (11) defines an elliptic paraboloid. The inequality of (32) is met by most
composites of practical importance and the only alternative is A = 0, which arises only
under special conditions, as will be discussed later.

As a further verification, reducing the materials to isotropic materials of unequal
tensile and compressive strengths, whilst (33) and (34) still hold:

A = −27
16

F2
11F2

1 < 0 since F1 6= 0. (35)

In this case, Equation (10) leads to:(
1

σ∗t
− 1

σ∗c

)
(σ1 + σ2 + σ3)

+ 1
σ∗t σ∗c

(
σ2

1 + σ2
2 + σ2

3 − σ2σ3 − σ1σ3 − σ1σ2 + 3τ2
23 + 3τ2

13 + 3τ2
12
)
= 1

(36)

where σ∗t and σ∗c are the tensile and compressive strengths of the isotropic material, re-
spectively. This reproduces the Raghava–Caddell–Yeh criterion [17], for which the failure
envelope is a circular paraboloid demonstrating infinite strength against hydrostatic com-
pression, but not hydrostatic tension.

As a case of further specialisation for isotropic materials of equal tensile and compres-
sive strengths, i.e., σ∗t = σ∗c = σ∗, (36) further reduces to the von Mises criterion [13]:

σ2
1 + σ2

2 + σ2
3 − σ2σ3 − σ1σ3 − σ1σ2 + 3τ2

23 + 3τ2
13 + 3τ2

12 = (σ∗)2 (37)

where σ∗ is the strength of the material, which the same for both tension and compression.
This corresponds to the case when the condition for A > 0 does not hold. Given the
expression of A in (32), the only alternative is A = 0. In this case, (10) turns into a cylindrical
surface according to [9]. It can be seen that a cylindrical surface can be mathematically
considered as an extreme case of an elliptic paraboloidal surface, allowing the von Mises
criterion to be seen as a special case of the Tsai–Wu criterion.

As a further point of discussion, (24) shows that δ = 1 according to (8). Equation (7),
as obtained in [6], naturally leads to (23), reproducing (6) as Tsai and Hahn suggested
in [11]. However, the only justification given in [11] was that it allowed the Tsai–Wu
criterion to reproduce the von Mises criterion for isotropic materials of equal tensile and
compressive strengths, whereas in this paper, (23) and (24) were obtained simultaneously
from systematic and logical deduction. In [6], it was suggested that δ was a material
constant that could vary from between materials. Relationship (24) asserts further that δ is
a universal constant, i.e., δ = 4− σ∗2tσ

∗
2c

(τ∗23)
2 = 1, for all transversely isotropic materials, brittle

or ductile, including completely isotropic materials as a special case. This is apparently
observed in isotropic materials obeying the Raghava–Caddell–Yeh criterion [17] and the
von Mises criterion [13], as special cases. Any variation in δ, similar to those shown
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in [6], should be attributed to the variability of the experimentally measured transverse
strength properties. This resembles a universal relationship amongst Young’s moduli and
Poisson’s ratios, ν12E2

ν21E1
= 1, although the underlying considerations are rather different. Raw

experimental data would show significant variability as well if they were all independently
measured.

4.4. Comparisons of Predicted Transverse Shear Strengths with Measured Values and Those from
Other Theories

In the Puck failure criterion [14,15], the transverse shear strength is a derived quantity
that is equal to the transverse tensile strength. In comparison to (25), it corresponds to the
special case of σ∗2c = 3σ∗2t. The transverse shear strengths obtained according to the Puck
criterion and the present derivation are compared in Table 1 over a range of composites
from [10,19,20] where experimental data are available. Relative to the measured values of
τ∗23 in the third row of Table 1, those obtained from (25) outperform those from the Puck
criterion, except for S-2 glass/Epoxy 2 and G40-800/5026, as highlighted in Table 1. For
these two cases, one is only marginally worse than that predicted by the Puck criterion,
whilst the other is identical to that predicted from the Puck criterion, because σ∗2c = 3σ∗2t

holds, although the experimental shear strength of 57 MPa is nearly 20% below
√

σ∗2tσ
∗
2c

3 for
this particular material.

Given that
√

σ∗2tσ
∗
2c

3 is the strength of the material under pure transverse shear, as
predicted from failure criterion (26), the degree of its agreement with the experimentally
obtained transverse shear strength—i.e., the comparison between the measured values
in the third row of Table 1—and that predicted from (25), as shown in the fourth rows of
Table 1, can serve as a basic level of validation for the criterion (26). When applying (26)
to problems involving general stress states, one should be prepared for discrepancies of
a magnitude comparable with those between the figures in the third and fourth rows in
Table 1, as an indication of the level of accuracy that criterion (26) is capable of offering.

Another relationship amongst transverse strengths can be found in [16], and is given
as follows:

(τ∗23)
2 =

 1 + σ∗2t
σ∗2c

3 + 5 σ∗2t
σ∗2c

σ∗2tσ
∗
2c or

(τ∗23)
2

σ∗2tσ
∗
2c

=
1 + σ∗2t

σ∗2c

3 + 5 σ∗2t
σ∗2c

. (38)

It is apparently a more complicated expression than that given in (25). The derivation
in [16] was based on the following failure criterion stemming from Hashin’s matrix failure
criterion [3] under a plane stress state in the transverse plane before it was split into tensile
and compressive modes.

F2(σ2 + σ3) + F22(σ2 + σ3)
2 + F44

(
τ2

23 − σ2σ3

)
= 1. (39)

This is an incomplete quadratic form. The contributions from fibre direction as well as the
interactive term associated with F12 have been excluded a priori.

The interaction between the stresses represented by F12 resembles the role of Poisson’s
ratios in the generalised Hooke’s law in the theory of elasticity. It might be true that in
the solutions to many elastic problems, the contributions from Poisson’s ratios are limited
in terms of magnitude. Whilst ignoring such contributions would not lead to excessive
error, the absence of Poisson’s ratios would prevent the appropriate understanding of many
important mechanical behaviours of materials, such as the anticlastic behaviour, free edge
effects, etc.
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Table 1. Experimentally measured strengths and predicted transverse strengths according to different theories, all in MPa.

Category Row No. Strength
Type of Composite Considered

AS4
3501-6

T300
BSL914C

E-Glass
LY556

E-Glass
MY750

IM7
8551-7

T300
PR-319

A-SE
poxy 1

S-2 Glass
Epoxy 2

G40-800
5026

Experimentally
measured
strengths

1 σ∗2t 48 27 35 40 68 40 38 56.5 70
2 σ∗2c 200 200 114 145 185 125 150 180 210
3 τ∗23 55 N/A 50 50 57 45 50 40 57

Predicted τ∗23
from σ∗2t and σ∗2c

4 Present from Equation (25). 56.57 42.43 36.47 43.97 64.76 40.82 43.59 58.22 70.00

5 Puck [14,15],
which is equal to σ∗2t.

48 27 35 40 68 40 38 56.5 70

6 Christenson, as shown in
Equation (39) [16]. 50.93 43.82 33.50 42.56 58.59 36.91 41.90 54.48 56.12
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Similarly, to reveal the special relationships elaborated in this paper, it is important
to incorporate the interactive terms in the failure criterion. The approach to treating the
interactive terms can also be viewed as a meaningful indicator of the consistency of the
formulation. For instance, in the well-known Hashin criterion [3], the interactive term F12
was ignored based on the assumption that failure is determined by stresses on the failure
plane, which was inherited from the Mohr criterion [21] for isotropic materials; however,
this particular assumption is inapplicable to anisotropic composites, as was argued in [22].
Whilst the numerical errors could be insignificant in many cases, as Hashin also stated
in [3], the exclusion of such interactions would not allow the intricate relationships obtained
in this paper to be revealed. From another perspective, including one interactive coefficient
(F23) in the failure function, whilst excluding another (F12), as in [3], can at least be viewed
as a degree of inconsistency. The numerical closeness of the results from a theory to
experimental data in one aspect or another is important; however, we believe that the
mathematical and logical consistency of the theory is even more important.

The numerical values obtained from (38) [16] over the same range of materials as above
are also shown in the fifth row of Table 1. Relative to the experimental data in the third row
of Table 1, the predictions from (25) listed in the fourth row of Table 1 outperform those
from (38) for five out of eight materials. The trend is further shown graphically in Figure 2,

where the ratio (τ∗23)
2

σ∗2tσ
∗
2c

is plotted as a function of the ratio σ∗2t
σ∗2c

. The curve corresponding
to (38) does not seem to be more representative than the straight line obtained according
to (25), understanding the variability in measured transverse strengths as argued in [16].
The predictions are not more relevant to carbon composites (black symbols) than to glass
composites (green symbols) either, as was claimed in [16].
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Logically, the major premise underlying (38) is failure criterion (39), which is at its best
a special form of the criterion based on the full quadratic failure function from which (26)
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is obtained. There is no reason to expect (39) to be more representative than (26). In [16],
efforts were made to eliminate an independent strength property from (39) whilst keeping
the manipulations all within the transverse plane.

5. Retrospection and Prospection

According to analytic geometry [9], the sufficient conditions for the failure envelope
of transversely isotropic materials to be closed, i.e., to be an ellipsoidal surface, are:

A < 0; J > 0; D 6= 0 and DI > 0 (40)

where A, J and D are given in (12)–(14), respectively, and the following is another invariant
of quadratic form (11):

I = F11 + 2F22 (41)

Since I is always positive, given the expression of D in (14), and F22 − F23 is always positive
according to the fourth equation in (9) (because F44 is always positive), conditions D 6= 0
and DI > 0 can be re-written as:

∆ =
1
2

F11(3F22 − F44) > 0 i.e., 3F22 − F44 > 0 given F11 > 0. (42)

With F12 as given in (23), if the transverse shear strength τ∗23 (and hence F44) was left as
an independent property, (42) could not be satisfied in general. An ellipsoid could be guar-
anteed provided that τ∗23 was sufficiently large. In the case of isotropic materials obeying the
von Mises criterion, as a special case of transversely isotropic materials, D = ∆ = 0, which
satisfies (24) or (25) under the condition of (23), but violates (42). In other words, (42) would
prohibit (11) to degenerate to the von Mises criterion as a special case for isotropic materials
of equal tensile and compressive strengths, because D = 0 as a necessary condition is shared
by cylinders and elliptic paraboloids, but not by ellipsoids, according to analytic geometry.
It is clear now that having a closed failure envelope and having the von Mises criterion as a
special case are two mutually exclusive propositions. Sometimes, it only requires a very
small experimental or data processing error to nudge D from positive to negative; then, the
nature of the failure envelope would change dramatically from an ellipsoid to an elliptic
paraboloid or a hyperboloid. Whilst the imposition of (17) alone eliminates the possibility
of the failure envelope being an ellipsoid or hyperboloid, errors in measured transverse
strengths could still make the elliptic paraboloid imaginary according to analytic geometry.
Relationship (25), in addition to (23), not only ensures that the failure envelope is a real and
unique elliptic paraboloid, but also offers a way to mitigate experimental errors amongst
measured transverse strengths. This illustrates a perfect example of how mathematical
consistency brings insight into physical problems.

The conventional Tsai–Wu criterion could degenerate to the von Mises criterion for
isotropic materials of equal tensile and compressive strengths [11] because the failure
envelope in the original Tsai–Wu criterion was not limited to an ellipsoid, no matter how
much it was desired; it could be ellipsoid, elliptic paraboloid and different hyperboloids
depending on the value of the transverse shear strength τ∗23, whilst satisfying the inequalities
in (3). The necessary conditions of (3) were far too loose to impose such a restriction. The
controlling factor of the shape of the failure envelope rests on the transverse shear strength
τ∗23, which affects the values of various invariants, in particular D. Narrowing the failure
envelope down to an elliptic paraboloid, as proposed in this paper, can help to filter
out many physically prohibitive scenarios whilst restoring the mathematical and logical
consistency of the Tsai–Wu criterion. This is the spirit of rationalisation.

The fully rationalised Tsai–Wu criterion for general 3D stress states is presented in
(26). For this criterion, the transverse shear strength is not a required strength property, but
it can be predicted from the criterion. There will inevitably be a discrepancy between the
predicted value and the measured value. The available independently measured transverse
shear strength should be used to correct the experimental errors in other transverse strength
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properties, instead of being employed as an independent strength property for the failure
criterion based on a quadratic failure function. It should be employed to correct the
transverse tensile and compressive strengths in order to minimise systematic errors in
these measured strengths in the same way that the experimentally measured ν21 should
be employed to correct ν12, E1 and E2, rather than being incorporated in the generalised
Hooke’s law. A practical method of such corrections will be addressed in a subsequent
publication.

The 2D version of the fully rationalised Tsai–Wu criterion is given in (29). Although
it looks identical to its familiar form, as presented in [11], the transverse tensile and
compressive strengths required to evaluate F22 should be understood as their corrected
values using the transverse shear strength, whenever available. The rationalisation still
makes a difference to the 2D Tsai–Wu criterion but in an implicit way.

The failure criterion for transversely isotropic materials based on a single quadratic
failure function can now be considered fully established, with a complete understanding
of the nature of a quadratic failure function having been achieved mathematically. It can
be fully and logically defined with five independent strength properties, namely tensile
and compressive strengths in the directions along fibres and transverse to fibres, and the in-
plane shear strength. All coefficients involved in the failure function can be expressed with
mathematical rigour and logical consistency. Any additional strength property employed
as an independent one will compromise the consistency of the theoretical framework, even
if they were experimentally measured.

Having established the failure criterion (26) as the fully rationalised Tsai–Wu criterion,
any significant deficiency or genuine discrepancy with experimental observations can
now be confidently attributed to the lack of representativeness of the basic assumptions
underlying the criterion:

(1) The transverse isotropy and homogeneity of the material;
(2) Failure function being a single quadratic function.

Any deviation from these ideal positions will inevitably have an effect on the outcomes
and should be anticipated in assessing the accuracy of the predictions. The use of these
assumptions brings convenience but also restrictions. The obtained criterion can only be as
accurate as its underlying assumptions allow. The consistent use of a quadratic function
for a failure criterion helps to eliminate undue errors and anomalies due to mathematical
and logical oversights, but not the generic deficiency due to these assumptions themselves.

The limitations of using a single quadratic function as the failure function could be
improved whilst remaining within the framework of a phenomenological approach in one
of two ways:

(1) To use a higher order polynomial for the failure function;
(2) To partition the stress space into subspaces and to use a quadratic function in each

subspace.

Either way, the number of independent strength properties will inevitably increase.
One should always bear in mind how the newly introduced properties are to be determined,
experimentally or otherwise. Abandoning phenomenological approaches completely or
discontinuing their improvement before alternatives are established is partially responsible
for the confused state of the art on the subject of composite failure criteria. With consis-
tency established, one would be in a position to explore meaningful ways of determining
strength properties as required for alternatives to experimental measurements, for instance,
molecular dynamics as investigated in [23], although the material used in [23] was not
transversely isotropic.

The first option above seems to pose formidable difficulties, as the understanding of
the analytic geometry of polynomial functions higher than the second order in multidimen-
sional spaces has been very limited and is certainly far less than that of quadratic functions.
This is not an attractive direction forward practically.
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The second option is likely to offer a practical way forward. The Hashin criterion [3]
can be seen as an attempt in this direction, followed by a wide range of different attempts,
including those in [15,24]. However, it is the authors’ view that an appropriate rational-
isation is necessary for the Hashin criterion before a fundamental breakthrough can be
expected. This will be the objective of another one of our subsequent publications.

In the literature, there is lack of failure criteria for genuinely orthotropic materials,
apart from the maximum stress/strain criteria. The Tsai–Wu criterion was nominally pro-
posed for orthotropic materials. However, without the appropriate means to determine the
coefficients to the interactive terms, it has never been applied seriously beyond transversely
isotropic materials. This is a problem we will address in another subsequent publication.

6. Conclusions

Using a complete quadratic failure function, there is only one rational choice for the
failure envelope—an elliptic paraboloid, as a single-sided open surface that allows infinite
strength under a unique stress ratio in triaxial compression. Any alternative would lead to
contradictions one way or another. This quadratic failure function can only accommodate
five independent strength properties. Seven were initially introduced in the original Tsai–
Wu criterion [1] after considerations of transverse isotropy. A relationship was established
between the two interactive coefficients F12 and F23 based purely on analytic geometry. It
ensures that the failure envelope is an elliptic paraboloid. A further relationship between
these coefficients can be obtained from a logical consideration that the sensitivity of the
failure criterion to these two coefficients should be unbiased. Thus, they can both be
uniquely determined analytically as F12 = − 1

2
√

F11F22 and F23 = − 1
2 F22. Although the

former is well known, it can only be fully justified in presence of the latter, which can be
re-written as 3(τ∗23)

2 = σ∗2tσ
∗
2c, given the transverse isotropy of the material. This introduces

a relationship amongst transverse strengths as a natural consequence of the rationalisation;
the relationship is an intrinsic property of the quadratic failure function for transversely
isotropic materials. Failing to comply with this relationship compromises the consistency
of the criterion based on a single quadratic failure function.

Due to the high variability in the measured transverse strengths, the obtained rela-
tionship amongst transverse strengths may not be perfectly represented in the available
experimental data. In presence of all three transverse strengths independently obtained
experimentally, the transverse shear strength can be employed to validate the relationship
in (25), i.e., 3(τ∗23)

2 = σ∗2tσ
∗
2c. The failure criterion can only be as accurate as the agreement

between τ∗23 and
√

σ∗2tσ
∗
2c

3 .
The fully rationalised Tsai–Wu criterion is given in (26) for 3D stress states. Its 2D

version in (29) looks identical to its familiar form. Although no changes were made to (29),
the rationalisation offers a firm basis for (29), and the determination of F12 no longer relies
on experimental data fitting or other empiricism, but on a rigorous deduction from the
mathematical and logical consequences of the basic assumptions introduced instead.

The required five independent strength properties are limited to conventional and
widely available tensile and compressive strengths in the directions along and transverse
to fibres and the in-plane shear strength for the failure predictions of both 2D and 3D
stress states.

The most significant outcome of the present paper is the achievement of a thorough
understanding of the nature of the quadratic failure function, with its intrinsic relationships
having been revealed. Obeying these relationships ensures the self-consistency of the
failure criterion. This should conclude a phase of investigations on the subject of failure
criteria involved in recent publications [6,16,25] based on a quadratic failure function, as
far as transversely isotropic materials are concerned. The failure criterion given in (26) can
be employed in design and analysis with confidence within its applicability defined by its
assumptions, viz. the transverse isotropy and homogeneity of the material, and the failure
function being a single quadratic function.
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