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Abstract 

In this paper, the flutter instability of a conventional two-stage axially moving telescopic 

UAV wing is investigated. To this aim, and to be as close as possible to the reality, the 

effects of temporal variation of mass and length, due to the movement of stages and 

their overlapping, along with the effects of morphing speed are considered for the first 

time. The bending-torsional dynamics of the two-stage wing is modelled by modifying 

the Euler-Bernoulli beam theory to take into account the effects of morphing speed and 

variations of mass and length. Furthermore, the aerodynamic loads are simulated using 

Peters' unsteady aerodynamic model. The governing aeroelastic equations are 

discretized using a finite element approach, and a length-based stability analysis is 

proposed to investigate the aeroelasticity of the wing. The obtained results are 

compared with those available in the literature, and a good agreement is observed. It is 

found that the aeroelastic stability of a telescopic wing is more sensitive to the fixed part 

parameters than the moving part. Also, it is shown that the wing critical length is 

sensitive to the morphing speed. Therefore, by selecting the telescopic wing morphing 

parameters properly, the aeroelastic stability of the system can significantly be 

improved. 

Keywords 

Morphing aircraft, aeroelastic stability, unsteady aerodynamic, variable span wing, 

morphing speed. 



2 
 

1. Introduction 

Due to their promising performance, morphing wings have received a huge interest in 

the past decade. Among all possible morphing concepts, the wing extension concept 

has been shown to be an effective method for improving both aircraft range and 

endurance (Friswell and Inman, 2006). However, as a result of the change in the wing 

dimensions, the dynamic characteristics of the system are altered. Thus, it is crucial to 

understand the dynamic behaviour of the wing when designing such structures.  

Due to the nature and dimensions of UAV wings, the beam theory is mainly used to 

analyze the dynamics of slender wings (Bisplinghoff et al., 2013). Many researchers have 

studied the dynamic behaviour of axially moving beams. Wang and Wei (1987) studied 

the vibration of a robot arm modelled by a moving slender prismatic beam. In this study, 

it was shown that increasing or decreasing the length of the flexible arm has 

destabilizing or stabilizing effects on the arm vibrations. Stylianou and Tabarrok (1994a) 

presented a finite element analysis of an axially moving beam. This study was then 

continued by considering the effects of physical damping, tip mass, tip support, and wall 

flexibility on the stability characteristics of the aforementioned beam using the 

eigenvalue analysis (Stylianou and Tabarrok, 1994b). Raftoyiannis and Michaltsos 

(2013) employed a modal superposition technique for dynamic analysis of telescopic 

cranes’ boom based on a continuum approach. Chang et al. (2010) used a finite 

element method to derive the equations of motion of an axially moving beam based on 

the Rayleigh beam theory. In this study, the stability of the beam with constant 

extension speed was sought using the eigenvalue analysis. Furthermore, the Floquet 

theory was employed to investigate the stability of the beam with periodical back-and-

forth motion. Park et al. (2013) determined the dynamic behaviour of an axially moving 
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beam modelled by using the nonlinear von Karman strain theory. The results showed 

that the response of the system were consistent for both linear and nonlinear conditions. 

Furthermore, it was obtained that depending on the morphing acceleration and Young’s 

modulus values, the differences between linear and nonlinear solutions might increase. 

Duan et al. (2014) studied the dynamic response of an axially moving nested beam 

theoretically and experimentally. The equations of motion were obtained using 

D’Alembert's principle and a good agreement between experimental and numerical 

results were obtained.  The effects of a moving mass on the dynamic behavior of a two-

stage telescopic mechanism used in truss structures of a bridge inspection vehicle was 

considered by Sui et al. (2015). In this research, the structural dynamics of the 

telescopic mechanism was modeled using Euler-Bernoulli beam theory. This study was 

then continued to investigate the dynamic behavior of a 2-DOF telescopic mechanism 

(Sui et al., 2016b). Yang et al. (2016) studied the energetics and invariants of the 

deploying beam with given initial conditions by the assumed-mode method. It was 

concluded that when the beam is being deployed with constant speed, the adiabatic 

invariant may be kept constant. Zhang et al. (2016) investigated the vibration 

characteristics of a Z-shaped beam with variable folding angles to model and design the 

Z-wing of a morphing aircraft. This study was then continued to investigate the nonlinear 

vibration behavior of a Z-shaped folded plate with inner resonance experimentally and 

numerically (Guo et al., 2019).  

As it was mentioned above, the structural dynamics of the span morphing beam is 

dependent to its length, and hence the aeroelastic characteristics of telescopic wings 

can also be affected. Huang and Qiu (2013) studied the effects of span morphing 

velocities on the aeroelastic stability of a single variable-span with uniformity 
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assumption (uniform time invariant parameters). The established aeroelastic model was 

based on Euler-Bernoulli beam theory and unsteady vortex lattice aerodynamic theory. 

It was shown that using a span morphing mechanism can improve the aeroelastic 

performance of the wing. Zhang et al. (2013) investigated the nonlinear dynamic 

behaviour of a single deploying-and-retreating wing in supersonic airflow using a 

cantilevered laminated composite shell model. Also, Yang and Zhang (2014) studied the 

nonlinear vibrations of an axially moving beam by considering the coupling of the 

longitudinal and transversal motion. Zhang et al. (2014) investigated the nonlinear 

dynamics of a deploying orthotropic composite laminated cantilever rectangular plate 

with Reddy’s third-order shear deformation plate and third-order nonlinear piston 

Theories. It was shown that deploying velocity and damping coefficients have great 

effects on the stability of system. This study was then developed further for subsonic 

airflow by combining the von Karman theory with Kutta-Joukowski lift theorem (Zhang et 

al., 2017). They characterized the effect of extension velocity on the nonlinear dynamic 

behaviour and stability of the wing. Lu et al. (2018) investigated the piezoelectric 

material characteristics and the time-varying nonlinear dynamic behavior of a deploying 

laminated composite plate under the aerodynamic loads and piezoelectric excitation. It 

was shown that by choosing a suitable voltage and polarity, the nonlinear vibration of 

the deploying cantilevered laminate can effectively be suppressed. Huang et al. (2018) 

studied the effects of rigid-body motions on the aeroelastic response of span-morphing 

wings. They combined Euler-Bernoulli beam theory with an unsteady strip aerodynamic 

theory and showed that the quasi static stability of the morphing wing is dependent on 

the fuselage flexibility. The flutter behavior of a variable-span wing in supersonic flow 

using the piston theory was considered by Li and Jin (2018). Ajaj and Friswell (2018) 

investigated the sensitivity of the flutter speed of a single variable-span morphing wing 
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for various system parameters and morphing velocities with uniformity assumption. 

They combined the shape functions of bending and torsional modes with the 

Theodorsen’s unsteady aerodynamic model, and showed that the morphing speed 

affects the aeroelastic stability of the wing, and needs to be taken into account. The 

quasi static aeroelastic behaviour of telescopic, multi-segment, stepped, span morphing 

wings was studied by Ajaj et al. (2019). In this research, Euler-Bernoulli beam theory 

and Theodorsen’s unsteady aerodynamic model were combined to form the aeroelastic 

equations. The results showed that this mechanism can be used as a means for wing 

flutter suppression. However, in their study, the effect of morphing speed was ignored. 

In all previous studies concerned with the stability analysis of axially moving cantilever 

beams, several simplistic assumptions such as uniformity assumption and quasi-steady 

assumption were considered. Therefore, this study aims to offer a new aeroelastic 

framework for stability analysis of axially moving wings by removing all these simplistic 

assumptions. To this aim, the bending-torsional dynamics of the wing is modelled using 

Euler-Bernoulli beam theory, and the aerodynamic loads are simulated using Peters' 

unsteady aerodynamic model (Peters et al., 1995). The governing aeroelastic equations 

are discretized using a finite element method based on the beam-rod model. Finally, the 

effect of morphing speed and wing parameters on the length-based stability of the wing 

is determined by checking the eigenvalues of the system. It is noted that the main 

novelties of this paper are to investigate the effects of temporal variation of mass and 

length due to the movement of stages and their overlapping, along with the effects of 

morphing speed on the aeroelastic stability of two-stage telescopic wing with different 

properties. 
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Governing equations 

As shown in Fig. 1, a two-stage Euler-Bernoulli beam model is employed to simulate the 

structural dynamics of an axially moving telescopic wing with sliding motion. The wing 

has an axially moving speed (morphing speed) of  , and the length of the fixed and 

moving parts are denoted by 1l  and ml , respectively. The total time-dependent length, l, 

can be expressed as  

(1) 1( )l t t l= +  

 

Fig. 1 Two-stage telescopic beam 

The governing equations of motion are derived using the extended Hamilton's principle 

(Zhang and Qing, 2021) as follows 

(2) 

2

1

( ) 0

t

t

T V W dt − + =  
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where T , V and W are the kinetic energy, potential (strain) energy and nonconservative 

work, respectively.  

Considering Fig. 1 as a two-stage telescopic wing, Fig. 2Fig. 2 shows a typical 

section of the wing including the out-of-plane bending (h) and the torsion (α) degrees of 

freedom.  

 

 

Fig. 2 Typical section of wing 

 

The kinetic and potential energies of the wing can be expressed as 
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1 1 1 1 1 1 2 1 2( , ) ( , ) ( , ) ( , ) ( , ) ( , )e eW F h l t F r l t Lh x t Lh x t M x t M x t  = − − + + + +
 

1 1 1 1 1( ) ( , ) ( , ) = + + e eF m t g h l t r l t  

 

where m  is the mass per length, EI  is the bending rigidity and GJ  is the torsional 

rigidity. Also, r  is the distance between the center of mass and the elastic center, g  is 

the acceleration of gravity, L  is the aerodynamic force and M  is the aerodynamic 

moment. Furthermore, the indices (•1) and (•2) refer to the fixed and moving parts of the 

wing, respectively. Also, ( )em t
 is the Equivalent mass at the end of the fixed part due to 

the incomplete connection of the moving part with the fixed part (Sui et al., 2016a): 
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The first variation of kinetic and potential energies are defined as 
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By substituting Eq. 5 in Eq. 2, the general governing equations of motion for a two-stage 

wing can be obtained as follows 

(6) 

 

 

As both bending and torsional variables are functions of time and space, and also due 

to the fact that 𝜅̇ =
𝑑𝑙

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
 the partial derivatives of each variable can be obtained as 

(7)  

 

 

Finally, by substituting Eq. 7 in Eq. 6, and considering suitable bending and torsional 

shape functions ( ( )hH x  and ( )H x ) based on Hermitian beam element (Cook, 2007), 

the discretized weak form can be obtained (Appendix A).  
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The generalized lift and moment applied on the wing (𝐿𝑔 , 𝑀𝑒.𝑐
𝑔

) are obtained using 

Peters' unsteady aerodynamic model as follows (Peters et al., 1995)  

 

 

 

 

 

(8)  

where u  is the flight speed, b  is the semi-chord,   is the air density, a  is the 

nondimensional distance from the elastic center to the mid-chord, and the definitions of 

inflow[A ] , 
inflow{C }  and 

inflow{b }  are presented in the work of (Peters et al., 1995). It is 

noted that the discretized generalized aerodynamic lift and moment equations are given 

in Appendix A and related matrices are defined in the Appendix B. 

The boundary conditions at the roots and the tips of the fixed and moving beams are 

listed as follows: 

(9) 
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)0(1 [M]{X}+[C]{X}+[K]{X} ={F} 

where M, C and K are the mass, damping and stiffness matrices, respectively.  

It is worth mentioningnoted that the above general form of the aeroelastic equations 

contain the effects of length change and related parameters (such as morphing speed). 

As Fig. 3Fig. 3 shows, the dynamic instability onset of the system can be found by 

assuming the system morphs slowly, at any time during the length change, using the an 

eigenvalue analysis. This is referred to as the length-based stability analysis here which 

can be closer to the reality. It should be noted that the number of finite elements is fixed 

in time, and hence the size of the elements ofn the moving part changes at each time 

step. 
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Fig. 3 Flowchart of stability analysis for the two stagetwo-stage morphing wing 

2. Verification 

To verify the developed model for morphing wings, first the time response of a two-

stage Euler-Bernoulli telescopic beam subjected to a concentrated moving mass is 

obtained and compared with those reported by Sui et al. (2015), and shown in Fig. 4Fig. 

4. The parameters used for this case are presented in Table 1Table 1. It is clear that the 

present results are in a good agreement with those presented by Sui et al. (2015) with 

maximum difference of 4%. It is noted that here 40 elements have been used for each 

of the fixed and the moving part, and the initial conditions are considered as compatible 

deformation with the presence of a concentrated mass ( pm ) at the end of the beam. 
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Furthermore, here the effect of gravity is retained in the equations to be able to compare 

the results directly. 

Table 1: Parameters of telescopic beams 

Parameter Value 

(m)l  10.7 

(m)ml  10.7 

1 (kg/m)m  85 

2(kg/m)m  46 

1

2(Nm )EI  35 

2

2 (Nm )EI  35 

(m/s)  0.5 

(kg)pm  400 
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Fig. 4 The dynamic response of a two-stage telescopic beam subjected to a concentrated 

mass 

 
Next, to verify the developed model for flutter analysis, a high aspect ratio wing with the 

properties defined in  

Table 2Table 2 is used (Patil, 1999). It is noted that Patil (1999) solved the exact beam 

formulation using a finite element method. Furthermore, Ajaj et al. (2019) also analyzed 

the same wing based on Euler-Bernoulli beam structural model and Theodorsen’s 

unsteady aerodynamic model using the Rayleigh-Ritz method. The flutter speed and 

frequency of this wing are obtained for two different numbers of elements, and 

compared with those calculated by Patil (1999) and Ajaj et al. (2019), and presented in  

Table 3Table 3, and a very good agreement is observed.  

 

Table 2: The high aspect ratio wing properties (Patil and Althoff, 2011) 
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(m)l  16 

(m)ml  8 

(m)c  1 

1 (kg/m)m  0.75 

1

2(Nm )EI  2 x 104 

2

1 (Nm )GJ  1 x 104 

Spanwise elastic 

axis
 

50% chord 

Center of gravity
 

50% chord 

(50%chord) (kg.m)I  0.1 

 

Table 3: The comparison of the flutter speed and frequency of the high aspect ratio wing 

 Patil  Ajaj et al 

Present method 
Percent of 

Difference 
20 

elements 

40 

elements 

(m/s)flutteru  32.21 33.43 33.6 33.45 0.06 

(rad/s)flutterfreq  22.61 21.38 21.5 21.73 1.63 

 

Finally, the change of flutter speed of the telescopic wing with the properties presented 

in  

Table 2Table 2 are determined and compared with the results obtained by Ajaj et al. 

(2019) for two cases (quasi-static). The results are shown in Fig. 5Fig. 4, and a good 
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agreement is observed. It should be noted that using equivalent mass results in a 

reduction in computational time.  

Furthermore, Fig. 6Fig. 5 shows the convergence of the flutter speed for the case of 

maximum length, for different numbers of elements. It is clear that by using 40 

elements, the flutter speed can be predicted accurately, and hence from here on, 40 

elements are used for all case studies. 

  

Fig. 5 The effect of wing span on the flutter speed for two mass models 
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Fig. 6 The convergence of the flutter speed at maximum wing length 

By considering all above studies, it can be concluded that the developed aeroelastic 

model is able to capture the aeroelastic stability of telescopic wings accurately. In what 

follows, the effects of various system parameters on the stability of telescopic wings are 

investigated. 

3. Results 

In the first step, the effect of wing length and morphing speed on the flutter speed is 

determined and shown in Fig. 7Fig. 6. Here, 𝜅̇ = 0 refers to the quasi-static morphing in 

which the wing length increases at each stage, but related temporal changes in the 

coefficients of the equations are not taken into account. Fig. 7Fig. 6 shows that for the 

quasi-static morphing assumption (κ̇ = 0), a 37% increase in span length leads to a 
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significantly affects the flutter speed of the wing. It is also observed that ignoring the 

effect of mass of the moving part inside the fixed part (overlapping part) results in a 

change in flutter speed of up to 10%. This emphasizes the importance of the effect of 

overlapping part mass on the stability of the wing. Also, because the moving part slides 

inside the fixed part and the cross-section is fixed, the stiffness of the cross section is 

assumed to be constant. 

 

Fig. 7 The effect of wing span change and morphing speed on the flutter speed 

 

In what follows, the critical length, (Lf), at which the wing gets unstable is obtained, and 
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3.1. Variation of mass per unit length 

The effect of wing mass per unit length on the critical length of axially moving wings is 

determined and shown in Fig. 8Fig. 7. It is noted that unless otherwise stated, from here 

on all results are presented at a flight speed of 32 m/s and all values are 

nondimensionalized using the original wing parameters. Considering the effect of axially 

moving speed results in an improvement of up to 10% in the critical length compared to 

the original wing. Furthermore, the morphing wing critical length increases (decreases) 

when the mass per unit length increases (decreases). Also, the wing critical length is 

more sensitive to the mass per unit length of the fixed part than the moving part. 

Moreover, as shown in Fig. 8Fig. 7, the critical frequency of the morphing wing is also 

sensitive to the mass per unit length and morphing speed. The critical frequency is 

inversely related to the mass per unit length and moving speed. It is noted that the 

critical frequency is more sensitive to the mass per unit length than the morphing speed. 

  

Fig. 8: The effect of mass per unit length and axially moving speed on the critical length 

and frequency of the wing (solid line 𝜿̇ = 𝟏 𝐦/𝐬, dashed line 𝜿̇ = 𝟎. 𝟐𝟓 𝐦/𝐬) 
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3.2.  Variation of bending stiffness 

Fig. 9Fig. 8 shows the effect of wing bending stiffness on the critical length for two 

different axially moving speeds. The wing critical length decreases when the bending 

stiffness increases. Furthermore, the bending stiffness of the fixed part affects the 

critical length  more than the moving part. Moreover, the critical frequency and bending 

stiffness are directly related to each other, and hence an increase in bending stiffness 

results in an increase in the critical frequency.  

  

Fig. 9 The effect of bending stiffness and axially moving speed on the critical length and 

frequency of the wing (solid line 𝜿̇ = 𝟏 𝐦/𝐬, dashed line 𝜿̇ = 𝟎. 𝟐𝟓 𝐦/𝐬) 

3.3. Variation of torsional stiffness 

Fig. 10  Fig. 9  shows the variation of critical length with respect to the change of 

torsional stiffness for two different axially moving speeds. The critical length increases 

when the torsional stiffness increases. It is noted that the torsional stiffness of the fixed 

part has higher impact on the critical length than the moving part. Moreover, the critical 

frequency and torsional stiffness are inversely related to each other. In this case, the 
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torsional stiffness has an effect of up to 40% on the critical length and up to 28% on the 

critical frequency.  

  

Fig . 10  The effect of torsional stiffness and axially moving speed on the critical length 

and frequency of the wing (solid line 𝜿̇ = 𝟏 𝐦/𝐬, dashed line 𝜿̇ = 𝟎. 𝟐𝟓 𝐦/𝐬) 

Fig. 11Fig. 10 shows the effects of both bending stiffness and torsional stiffness on the 

wing critical length and frequency. It can be seen that at a certain morphing speed, 

torsional stiffness has a greater effect on the critical length. Furthermore, the wing 

critical length is more sensitive to the torsional stiffness of the fixed part than the moving 

part. 
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Fig. 11 The effect of bending and torsional stiffnesses on the critical length and 

frequency of the wing for 𝜿̇ = 𝟎. 𝟐𝟓 𝐦/𝐬 

 

3.4. Variation of axially moving speed 

The effect of axially moving speed on the critical length and frequency of the wing for 

various flight speeds is determined and shown in Fig. 12Fig. 11. By increasing the 

morphing speed, the critical length increases, while the critical frequency decreases. At 

first, both critical length and frequency change rapidly up to the axially moving speed of 

𝜅̇=0.3 m/s, and then the rate of change reduces. This highlights that the morphing 

speed significantly affects the stability of the wing.  
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Fig. 12 The effect of axially moving speed on the critical length and frequency of the wing 

for various flight speeds 

4. Conclusions  

In this study, the aeroelastic stability of a conventional two-stage spanwise morphing 

UAV wing has been studied. The equations of motion have been obtained using the 

extended Hamilton’s principle and discretized using the finite element method. The 

obtained results have been compared with those available in the literature, and a good 

agreement has been observed. The effect of morphing speed and wing parameters on 

the stability of the wing has been determined by checking the eigenvalues of the 

system. The results of this study are summarized as follows: 

1- The aeroelastic stability of the telescopic wing is more sensitive to the fixed part 

parameters than the moving part.  

2- The stability of the wing is more sensitive to the torsional stiffness than the bending 

stiffness.  
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3- The variation of the mass of the overlapped parts affects the aeroelastic stability of the 

wing. 

4- The morphing speed has stabilizing effects. 

 

Appendix A 

substituting Eq. 7 in Eq. results in equation A.1 
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)3(A. 

The weak form of Equation A.1 is obtained as A.4 
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