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ABSTRACT

Magnetically sensitive experiments and newly developed quantum technologies with integrated high-permeability magnetic shields require
increasing control of their magnetic field environment and reductions in size, weight, power, and cost. However, magnetic fields generated
by active components are distorted by high-permeability magnetic shielding, particularly when they are close to the shield’s surface. Here,
we present an efficient design methodology for creating desired static magnetic field profiles by using discrete coils electromagnetically
coupled to a cylindrical passive magnetic shield. We utilize a modified Green’s function solution that accounts for the interior boundary
conditions on a closed finite-length high-permeability cylindrical magnetic shield and determine simplified expressions when a cylindrical
coil approaches the interior surface of the shield. We use an analytic formulation of simple discrete building blocks to provide a complete
discrete coil basis to generate any physically attainable magnetic field inside the shield. We then use a genetic algorithm to find optimized
discrete coil structures composed of this basis. We use our methodology to generate an improved linear axial gradient field, dBz=dz, and a
transverse bias field, Bx . These optimized structures generate the desired fields with less than 1% error in volumes seven and three times
greater in spatial extent than equivalent unoptimized standard configurations. This coil design method can be used to optimize active–
passive magnetic field shaping systems that are compact and simple to manufacture, enabling accurate control of magnetic field changes in
spatially confined experiments at low cost.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0071986

I. INTRODUCTION

The mathematical framework for magnetic field design was
first formalized by Roméo and Hoult, who used discrete loops
and arcs as the building blocks of a coil basis to generate high-
fidelity fields for MRI shimming coils.1 The magnetic field pro-
files produced by these simple coil building blocks were
expanded in a spherical harmonic basis and the harmonic fields
related to the geometry, position, and current of the coil basis
elements. The geometries were selected, and their positions
adjusted, to minimize unwanted signals and, therefore, maximize
the fidelity of a desired magnetic field profile. It was subse-
quently found that inverse methods based on a continuum

representation of the current density could allow the design of
higher-fidelity magnetic fields, albeit with more computational
effort. Pissanetzky first formulated arbitrary current densities on
triangular boundary elements,2 allowing optimal designs to be
found through an entirely numerical method. This formulation
was later improved upon by Poole,3 enabling the flexible design
of MRI gradient coils on surfaces of arbitrary geometry using
sophisticated 3D-contouring methods. Pseudo-analytical techni-
ques have also been developed on specific surface geometries
using Green’s function expansions and quadratic optimization
methods that enable the rapid design of high-fidelity user-
specified magnetic fields in free space.4–7
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Newly developed quantum technologies with greater perfor-
mance and reduced size have further increased the demand for
state-of-the-art magnetically controlled environments. The applica-
tions of these technologies range from fundamental physics
experiments8–13 to biomedical imaging.14–21 Magnetic field control
is required in many of these technologies to trap and manipulate
atoms. To translate these laboratory experiments to usable devices
in real-world settings, high-permeability passive magnetic shields
are used to attenuate stray magnetic fields caused by nearby elec-
tronic equipment and/or the local earth’s magnetic field.
Specifically, cylindrical and cubic magnetic shields are often used
in these systems as they are simple to manufacture, provide good
shielding, and can accommodate equipment easily inside
them.22–24 However, previous longstanding methods of magnetic
field design do not incorporate the interaction of active current-
carrying coils with the high-permeability passive shielding materi-
als. Consequently, if these methods are used to design coils to gen-
erate specific magnetic fields in shielded environments, the
magnetic shield will distort the field profile, prohibiting the desired
level of field control.25

Motivated by this problem, several novel numerical and ana-
lytical methods have recently been developed that incorporate high-
permeability passive shielding material into their design methodol-
ogies to design complex distributions of the current continuum
that generate extremely high-fidelity magnetic fields inside shielded
environments. The numerical methods allow more flexible wire
placement, whereas the analytical methods allow for physical
understanding of the symmetries embedded in the interaction with
the shield. The numerical methods use an equipotential scalar field
to enforce the boundary condition on the shield’s surface and then
account for this in the design of surface currents using boundary
elements on arbitrary geometries inside the shield.26,27 The analyti-
cal methods rely on modifying Green’s function to satisfy the
boundary condition on the shield’s surface. The currents are then
decomposed into an orthogonal basis set where the magnetic fields
generated by the combined system can be calculated.28,29 The
current continuum must be carefully discretized into a wire
pattern,30 or the high-fidelity fields are not realized physically.
Although this error can be estimated analytically for simple current
distributions without magnetic shields,31,32 generally, it must be
calculated a posteriori. This error is determined both by the com-
plexity of representing specific features of the continuum and the
response of the magnetic shield to the discretized current.
Moreover, although technologies, such as flex-PCBs33 and
3D-printers,34 offer the capability to represent the continuum very
precisely, such coils are expensive, time-consuming to manufacture,
and hard to repair if there is a breakage. Furthermore, in many of
these systems, magnetic field control is not the only area of
concern. Optical access, miniaturization, and cost also constrain
the development of many of these technologies. In these contexts,
using optimally placed discrete coil designs could allow for simplis-
tic, cost-effective, and accurate generation of magnetic fields with
greater optical access. Some simple discrete coil geometries have
been formulated that allow the design optimization of magnetic
field-generating systems in shielded environments. However, these
have been restricted to circular loops and simple transverse
fields.35–38 Currently, no generalized discrete coil optimization

method exists that incorporates the interaction with high-
permeability shielding.

Alongside this, multi-objective optimization procedures, such
as genetic algorithms, particle swarm optimizations, and differential
evolution algorithms, have garnered considerable attention over the
past decade because of their ability to find optimal solutions to
complicated problems with mixed constraints.39,40 Advances in
computational power and code accessibility have made these algo-
rithms much easier to implement.41 In this paper, using the analyt-
ical formulation of cylindrical coils in a cylindrical magnetic
shield,28 the framework of Roméo and Hoult,1 analytic solutions,
and a genetic algorithm optimization procedure,42 we present a
widely applicable design methodology that enables the construction
of optimized discrete coils in cylindrical magnetic shields. Firstly,
we expand on the analytical formulation by determining an
approximate form of the magnetic field when the coil is close to
the surface of the magnetic shield. Secondly, we formulate a com-
plete coil basis in cylindrical coordinates that allows the simple
construction of harmonic fields using discrete coils. Finally, we find
optimal configurations of multiple nested sets of a discrete coil
basis to generate specified harmonic fields by utilizing a genetic
algorithm. By incorporating these different elements, our method
enables the simple design of specified magnetic field profiles in
high-permeability cylindrical magnetic shields constrained by
optical access, cost, and size.

II. MODEL

Here, we consider a closed high-permeability cylinder of inner
radius ρs and length Ls, with planar end caps located at
z ¼ +Ls=2. Inside this cylinder, a current, J, flows on a co-axially
nested cylindrical surface of radius ρc, thickness 2ρw, and length Ls,
as shown in Fig. 1, such that ρc þ ρw � ρs. Many magnetic shield-
ing materials, including high-grade Mu-metal,43,44 approximate to
perfect magnetic conductors, i.e., μr ! 1, under applied fields up
to H ¼ 40 A/m before saturation.45 If the shield is assumed to be a
perfect magnetic conductor, the boundary conditions at the shield’s
surface can be approximated as

Bρ

����
z¼+Ls=2

¼ 0, Bf

����
z¼+Ls=2,ρ¼ρs

¼ 0, Bz

����
ρ¼ρs

¼ 0: (1)

The Green’s function solution for the total field, in a region within
the cylinder ρ , ρc, which satisfies (1), is given by28

Bρ ρ, f, zð Þ ¼ iμ0ρc
2π

X1
m¼�1

X1
p¼�1

ð1
�1

dk

� k eimf eikzI0m(jkjρ)Rm(k, ρc, ρs)J
mp
f (k), (2)

Bf ρ, f, zð Þ ¼ �μ0ρc
2πρ

X1
m¼�1

X1
p¼�1

ð1
�1

dk

�m
jkj
k
eimf eikzIm(jkjρ)Rm(k, ρc, ρs)J

mp
f (k), (3)
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Bz ρ, f, zð Þ ¼ � μ0ρc
2π

X1
m¼�1

X1
p¼�1

ð1
�1

dk

� jkj eimf eikzIm(jkjρ)Rm(k, ρc, ρs)J
mp
f (k), (4)

where Rm(k, ρc, ρs) ¼ K 0
m(jkjρc)� I0m(jkjρc)Km(jkjρs)=Im(jkjρs) and

Jmpf (k) is the Fourier transform with respect to z and f of the pth
reflected image current determined via the method of mirror images,46

where the p ¼ 0 term represents the Fourier transform of the actual
current distribution, which is confined to the region jz0j , Ls=2,

Jmp
f (k) ¼ 1

2π

ð2π
0

df0 e�imf0
ð1
�1

dz0

� e�ikz0 Jf f0, (�1)p z0 þ pLsð Þð Þ, (5)

where (f0,z0) specifies position on the current-carrying surface.
Here, we use this formulation to design simple discrete coils

inside of closed cylindrical magnetic shields. To maximize the
available interior volume of the system, as is normally required for
real-world applications, we consider discrete coils that are posi-
tioned at the shield’s inner surface, ρc ¼ ρs � ρw, and determine
their parameters using forward numerical optimization techniques,
thereby circumventing discretization error entirely. When the coil
is pressed against the inner surface of the shield, we can expand the
magnetic field as a power series of the (small) wire radius such that

B ρ, f, zð Þ ¼ B0 ρ, f, zð Þ þ ρwB
1 ρ, f, zð Þ þ ρ2wB

2 ρ, f, zð Þ þ :::, (6)

where the Bν terms are νth order field perturbations for ν [ Z0þ.
If the radius of the wire is sufficiently small compared to the
radius of the magnetic shield, the magnetic field can be

approximated while only introducing small deviations. Here, we
give the example of a simple loop placed at the center of a shield
with aspect ratio Ls=(2ρs) ¼ 1 and wire radius ρw ¼ 0:01ρs. The
error between the zeroth-order term and the complete solution
is less than 0:016% at the center, as shown by Fig. 2, but moving
toward the cylindrical wall, it increases. Discounting the region
close to the shield, the error within radial position ρ , 0:8ρs is
less than 0:25%. Henceforth, in this paper, we assume that
ρw , 0:01ρs and use only the zeroth-order term to design coils
in this regime. The magnetic field components are simplified
using the Wronskian, resulting in the governing equations

Bρ ρ, f, zð Þ ¼ � iμ0
2π

X1
m¼�1

X1
p¼�1

ð1
�1

dk

� k
jkj e

imf eikz
I0m(jkjρ)
Im(jkjρs)

Jmp
f (k), (7)

Bf ρ, f, zð Þ ¼ μ0
2πρ

X1
m¼�1

X1
p¼�1

ð1
�1

dk

�m
k
eimf eikz

Im(jkjρ)
Im(jkjρs)

Jmp
f (k), (8)

Bz ρ, f, zð Þ ¼ μ0
2π

X1
m¼�1

X1
p¼�1

ð1
�1

dk

� eimf eikz
Im(jkjρ)
Im(jkjρs)

Jmp
f (k): (9)

For a setup where ρw . 0:01ρs, the validity of the approximation
should be determined for each individual scenario and adjusted appro-
priately for a given field design tolerance and experimental system.

III. COIL BASIS

In free space, the magnetic field can be represented as the gra-
dient of a scalar potential, B ¼ �∇Ψ. The scalar potential and
magnetic field, (7)–(9), both satisfy Laplace’s equation. Following
Roméo and Hoult,1 we express the magnetic field as the set of real
spherical harmonics in spherical polar coordinates,

B(r, θ, f) ¼∇
X1
n¼0

Xn
m¼�n

Cn,mr
nPn,jmj cos θð Þ cos jmjfð Þ

sin jmjfð Þ
� �

,

m � 0,

m , 0,

(10)

where the harmonic fields are classified through their order, n, and
degree, m. Each harmonic has a magnitude, Cn,m, and a θ depen-
dence that is described by one of Ferrer’s associated Legendre poly-
nomials, Pn,jmj cos θð Þ. The degree is divided into two cases, m ¼ 0
and jmj . 0. The m ¼ 0 harmonic fields exhibit total azimuthal
symmetry and are known as zonal harmonics, Zn. The jmj . 0 har-
monic fields exhibit m-fold azimuthal symmetry and are known as
tesseral harmonics, Tn,m, where negative m , 0 harmonic fields are
π=(2jmj) azimuthal rotations of their positive m . 0 counterparts.

In Appendix A, we solve for the axial magnetic field compo-
nent from (10),

FIG. 1. Cylindrical magnetic shield with a high magnetic permeability, μr � 1,
of length Ls and inner radius ρs with planar end caps located at z ¼ +Ls=2. A
coil of radius ρc and equal length to the shield is placed symmetrically inside
the shield, and the coils are formed of wire of radius ρw .
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Bz(r, θ, f) ¼
X1
n¼1

Xn�1

m¼�nþ1

Cn,m(nþ jmj)rn�1Pn�1,jmj cos θð Þ cos jmjfð Þ
sin jmjfð Þ

� �
,

m � 0,
m , 0:

(11)

Due to the symmetry of the associated Legendre polynomials, the
parity of the axial field is even if nþm ¼ 2ν þ 1 and odd if
nþm ¼ 2ν, respectively, for ν [ Z. No axial field exists where
n ¼ jmj. Although the complete set of harmonic fields does not
exist within the axial field, any harmonic can be indirectly selected
using it due to its relationship to the scalar potential. Other mag-
netic fields may be used to select harmonics; however, their func-
tional forms are more complex.1 Thus, the axial field is most
appropriate for construction of any magnetic field provided the
correct current density basis is chosen such that the harmonics that
are not present in the axial field can be removed independently.

The axial magnetic field, (4), is directly related to the Fourier
transform of the azimuthal current density. To design coils effec-
tively using the axial field, the axial parity and azimuthal symmetry
of the azimuthal current density must enable f and z variations to
be decoupled independently. To generate zonal harmonics, this
requires closed circular azimuthal current loops with complete azi-
muthal symmetry. To generate tesseral harmonics, this requires a
set of arcs of the same azimuthal periodicity as the desired har-
monic. Because arcs are not continuous, they must be linked via
axial connections, forming saddle-like systems. Due to the pre-
served symmetries of the Legendre polynomials in the axial field,
(11), pairs of axially separated coils, centered about the origin of
the shield, with symmetric or anti-symmetric current flows can
only generate odd and even parity harmonics, respectively. From
this parity, the symmetry of a specific order of harmonic, n ¼ N ,
and, subsequently, axial coil symmetry can then be chosen to select

the required field symmetries within the system. Thus, there are
four units that form the building blocks of the coil basis, which will
be used to construct any arbitrary harmonic field using the axial
field—symmetric and anti-symmetric loops and arcs—as shown in
Fig. 3. To formulate these mathematically, let us decompose the
current density into axial and azimuthal components

Jf(f
0, z0) ¼ IΦ(f0)Z(z0), (12)

where I is the current in the wire. The axial variation of a symmet-
ric or anti-symmetric pair at axial positions z0 ¼ d and z0 ¼ �d,
respectively, is given by

Z+(z0) ¼ δ(z0 � d)+ δ(z0 þ d), (13)

with the resulting pth reflected Fourier transform from (5) written
as

Jmp
f (k) ¼ eikpLs e�(�1)pikd + e(�1)pikd

� �
Φm, (14)

where the azimuthal Fourier transform of the azimuthal variation
of the current density is

Φm ¼ 1
2π

ð2π
0

df0 e�imf0
Φ f0ð Þ: (15)

FIG. 2. (a) Schematic diagram of a loop of radius 0:99ρs at position z ¼ 0 in a closed magnetic shield of radius ρs and length Ls ¼ 2ρs. (b) Color map showing the
absolute error, jΔBzj, between the axial zeroth-order contribution in (9) and the exact solution in (4) for the example depicted in (a).
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FIG. 3. Azimuthal and axial variation in the basis currents on the fz-plane required by (12) to generate (a)–(b) symmetric, (N þ M) ¼ 2ν þ 1, and (c)–(d) anti-symmetric,
(N þ M) ¼ 2ν, zonal and tesseral harmonics, respectively, where N and M are the order and degree of the harmonic and ν [ Z. Red arrow heads show the direction of
the current flow.
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To maximize a specific degree of harmonic, m ¼ M, with either
complete azimuthal symmetry, M ¼ 0, or periodicity, π=jMj, the

azimuthal component is chosen according to the desired harmonic
field, given by

Φ(f0) ¼

P2M�1
λ¼0 (� 1)λ H f0 þ w� λπ

M

� ��H f0 � w� λπ
M

� �	 

, M . 0,

1, M ¼ 0,P2jMj�1
λ¼0 (� 1)λ H f0 þ w� λπ

jMj � π
2jMj

� �
� H f0 � w� λπ

jMj � π
2jMj

� �h i
, M , 0,

8><
>: (16)

where H(x) is the Heaviside function. These azimuthal variations
are illustrated in Fig. 4. The azimuthal Fourier transform, from
(15), is then found to be

Φm(w) ¼
sin(mw)
πm

P2M�1
λ¼0 (� 1)λ e�

imλπ
M , M . 0,

δm0, M ¼ 0,
sin(mw)
πm e�

imπ
2jMj
P2jMj�1

λ¼0 (� 1)λ e�
imλπ
jMj , M , 0:

8><
>: (17)

Substituting (14) into (9) and noting that the expression can
be written in terms of a Fourier series, the axial magnetic field gen-
erated by symmetric and anti-symmetric pairs is given by

B+
z ρ, f, zð Þ ¼ 2μ0I

Ls

X1
m¼�1

b+m (ρ, z; d) eimfΦm, (18)

where

bþm(ρ, z; d) ¼
X
peven

cos
πpz
Ls

� �
cos

πpd
Ls

� � Im
πp
Ls

��� ���ρ� �
Im

πp
Ls

��� ���ρs� � , (19)

b�m(ρ, z; d) ¼
X
podd

sin
πpz
Ls

� �
sin

πpd
Ls

� � Im
πp
Ls

��� ���ρ� �
Im

πp
Ls

��� ���ρs� � , (20)

are symmetric and anti-symmetric axial magnetic field variations,
respectively, of the coil basis for p [ Z. Using this coil basis that
generates zonal and tesseral, symmetric and anti-symmetric fields,
we may now begin to construct coil structures that select specific
harmonic fields.

Alternatively, a spherical coil basis1 may be used with loops at
different zenith angles and axial positions to construct the complete
set of harmonic fields. However, rotated zonal loops do not sit
exactly on the interior surface of the magnetic shield unless they
are projected onto ellipses, for which exact solutions are hard to
generate.

IV. HARMONIC SELECTION

We now propose a methodology for designing a coil to gener-
ate a specific spherical harmonic variation in any vector direction
using the coil basis. The road map of this harmonic selection
process is presented in Fig. 5.

First, we select a desired magnetic field harmonic of order
N and degree M (Step 1). The azimuthal variations and, subse-
quently, the degrees of the harmonics generated, as described in
(18), are determined by the periodicity of a given coil configura-
tion. Thus, to maximize the degree of any desired harmonic, we
must consider the azimuthal Fourier transform, (17) (Step 2).
For M ¼ 0, it is apparent that loops only generate fields of
degree m ¼ 0 and, so, do not require azimuthal optimization.
For jMj . 0, however, sets of arcs of periodicity π=jMj generate
an infinite number of harmonic fields of degree m ¼ (2ν þ 1)M,
where ν [ Z0þ. Therefore, to maximize the desired degree of a
tesseral harmonic field, the angular length, w, should be adjusted
to eliminate as many undesired azimuthal variations as possible.
From analysis of (17), the leading-order error term of degree
m ¼ 3M is removed if

sin(3Mw) ¼ 0: (21)

However, depending on the required accuracy of the desired
field, further variations might need to be removed. To achieve
this, additional arcs of angular length wj and azimuthal turn
ratios, Iwj , can be used to allow multiple degrees to be minimized
simultaneously, as shown in Fig. 6(a). Hence, generalizing (21),
we can use M0 arcs simultaneously to minimize ~M degrees of
harmonics (Step 3),

min
wj ,I

w
j

XM0

j¼1

Iwj sin((2ν þ 1)Mwj)

" #
, ν [ Z : ν [ [1, ~M]: (22)

The harmonics in (22) can be nulled completely for simple
integer Iwj by substituting the appropriate Chebyshev polynomials
or, easily and quickly in many cases, by using commercial root-
finding software. For practical applications, Iwj must be integer
ratios of one another and connected in series, limiting the space
in which optimal wj can exist. Typically, the best solutions have
significant angular lengths and azimuthal turn ratios within an
order of magnitude of each other to prevent the finite size of the
wires from introducing unwanted deviations from the desired
field. It should also be noted that designs with counter-
propagating current flows, i.e., both positive and negative Iwj ,
are useful if there are specific regions where wires are prohibited,
providing additional flexibility when designing coil setups, but
such designs may be very power inefficient. In extreme cases
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where ~M is large and/or the angular lengths are highly restricted,
a multi-variate optimization algorithm, as described in Sec. V,
may be employed to solve for multiple wj and Iwj to
minimize (22).

The same logic can also be applied to the radial and axial field
variations to remove harmonics of odd or even parity. To illustrate this,
we first transform the spherical harmonic axial field, (11), into cylindri-
cal coordinates and separate it into terms of even and odd parity,

FIG. 4. Azimuthal variation in the basis currents on the ρf-plane required by (16) to generate (a) the zonal, M ¼ 0, and (b)–(d) tesseral harmonics of degree one, two,
and three, M ¼ (1� 3), respectively, where the azimuthal arc length for each period, λ, is given by 2w. Red arrow heads show the direction of current flow.
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Bz ¼
X1
n¼0

X1
m¼�1

C2nþjmjþ1,m(2nþ 2jmj þ 1)(ρ2 þ z2)
2nþjmj

2 P2nþjmj,jmj
z

(ρ2 þ z2)1=2

 !"

þ
X1
n¼1

X1
m¼�1

C2nþjmj,m(2nþ 2jmj)(ρ2 þ z2)
2nþjmj�1

2 P2nþjmj�1,jmj
z

(ρ2 þ z2)1=2

 !#
,

cos jmjfð Þ
sin jmjfð Þ

� �
,

m � 0,

m , 0,
(23)

After analyzing (23) and (18), we can see that the radial and axial dependence of every harmonic of order n and degree m, excluding m = n, must
be completely contained within the symmetric and anti-symmetric axial field variations, (19)–(20). Therefore, we can write these variations as

bþm(ρ, z; d) ¼
X1
n¼0

~C2nþjmjþ1,m(d, ρs, Ls)(ρ
2 þ z2)

2nþjmj
2 P2nþjmj,jmj

z

(ρ2 þ z2)1=2

 !
, (24)

b�m(ρ, z; d) ¼
X1
n¼1

~C2nþjmj,m(d, ρs, Ls)(ρ
2 þ z2)

2nþjmj�1
2 P2nþjmj�1,jmj

z

(ρ2 þ z2)1=2

 !
, (25)

FIG. 5. Flow diagram describing the harmonic selection
process for generating a desired harmonic of order N and
degree M using N0 axial pairs of loops or arcs with M0
arcs at each axial position. The steps which we follow in
the main text are highlighted in gray. Step 3 is skipped
when M ¼ 0.
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where ~Cn,m(d, ρs, Ls) are effective harmonic magnitudes, which
depend only on the coil and shield parameters. To derive
~Cn,m(d, ρs, Ls), we substitute Taylor expansions of trigonometric
and Bessel functions into (19) and (20) and group the spatial varia-
tions into their constituent spherical harmonic functions (Step 4).
This must be done on a case-by-case basis since only specific sets
of harmonics exist within each of the basis coils.

Assuming that the required azimuthal variations are
eliminated using (22), the remaining undesired harmonics
constitute ~N different axial variations of degree M in the axial
field. To generate a desired harmonic, we minimize these
variations by simultaneously optimizing N 0 pairs of loops/arcs
at positions di with axial turn ratios Izi (Step 5) for the
symmetric case

min
Izi ,di

XN 0

i¼1

Izi ~C2nþMþ1,M(di, ρs, Ls)

 !
, n [ Z : n [ [0, ~N] excluding (N ¼ 2nþM þ 1)

� �
, (26)

and the anti-symmetric case

min
Izi ,di

XN 0

i¼1

Izi ~C2nþM,M(di, ρs, Ls)

 !
, n [ Z : n [ [1, ~N þ 1] excluding (N ¼ 2nþM)

� �
: (27)

This is illustrated for zonal symmetric and anti-symmetric loops in
Figs. 6(b) and 6(c). Note that we exclude the desired order, where
N ¼ 2nþM þ 1 and N ¼ 2nþM in the symmetric and anti-
symmetric cases, respectively, from the minimization. Depending
on the use-case, conditions that Izi is an integer with a limited mag-
nitude may constrain the optimization landscape. As Step 4 needs
to be applied on a case-by-case basis, we shall now demonstrate the
harmonic selection process with a simple example.

A. Example: Zonal linear axial gradient

An anti-Helmholtz pair within the bore of a cylindrical high-
permeability cylinder is presented in Fig. 7. The anti-Helmholtz
configuration uses a pair of anti-symmetric axial loops to generate
a scalar harmonic field, Z2, which produces an axial linear gradient
with respect to axial position, dBz=dz. The optimal loop position in
free space, d ¼ ffiffiffi

3
p

=2
� �

ρc, can be derived by eliminating the cubic

FIG. 6. Sets of the basis currents from (12) to generate higher-fidelity representations of (a) tesseral harmonics of degree M presented on the ρf-plane and (b)–(c) sym-
metric and anti-symmetric zonal harmonics, respectively, presented on the fz-plane, where N0 and M0 are the number of basis currents used. Red arrow heads show the
direction of the current flow.
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variations in the generated field, i.e., the Z4 scalar harmonic.1

In Figs. 8(a) and 8(b), we examine the field linearity of the
anti-Helmholtz coils located, respectively, in free space and within
a cylindrical magnetic shield of aspect ratio Ls=(2ρs) ¼ 1. The pres-
ence of the magnetic shield affects the inductance of the coils and
the profile of the field that they generate. In particular, coupling to
the shield increases the inductance of the coils and the field gradi-
ent that they generate by approximately a factor of two. In addition,
the magnetic shield amplifies the non-zero cubic variations in the
field profile, causing it to deviate from a linear variation and reduc-
ing, by a factor of approximately three, the volume (bounded by
dotted–dashed curves in Fig. 8) wherein the generated and desired
field gradient are within 1% of one another. Evidently, new optimal
coil separations must be determined to improve the accuracy of
the magnetic field gradient in shielded environments. The axial
magnetic field generated by a pair of loops with counter-flowing
currents and located co-axially on the interior surface of the high-
permeability shield is, from (14), (17), and (18),

Bz ρ, f, zð Þ ¼ 2μ0I
Ls

b�0 (ρ, z; d): (28)

As mentioned above, any given magnetic profile in the system can
be found by expanding the spatially varying functions. Using (20)
and substituting the well-known series expansions,

Im(x) ¼
X1
l¼0

1
l!(l þm)!

x
2

� �2lþm
;

and

sin(x) ¼
X1
l¼0

(� 1)lx2lþ1

(2l þ 1)
, (29)

the axial field generated by the anti-symmetric pair, (28), can be
written in terms of the harmonic fields

Bz ρ, f, zð Þ ¼ 2μ0I
Ls

�
πz~C2,0 d, ρs, Lsð Þ

þ π3
zρ2

4
� z3

6

� �
~C4,0 d, ρs, Lsð Þ þ � � �

�
, (30)

where the effective harmonic magnitudes are given by

~C2n,0 d, ρs, Lsð Þ ¼ 1
L2n�1
s

X1
p¼1

(2p� 1)2n�1
sin πd(2p�1)

Ls

� �
I0

π(2p�1)ρs
Ls

� � : (31)

Using (31), the optimal positions, z ¼ +d, of the coils in an
anti-symmetric pair can be determined so that the leading-order
axial variation in the desired field is removed when the coils are

FIG. 7. Schematic diagram of an anti-symmetric pair of current-carrying loops of radius ρs showing (a) their azimuthal position (thin black circle with red arrow heads indi-
cating current flow direction) within the magnetic shield (thick circle) and (b) their axial positions at z ¼ +d placed symmetrically from the axial center at z ¼ 0 of a
closed magnetic shield of radius ρs and length Ls ¼ 2ρs.
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enclosed by a shield with a given aspect ratio,

~C4,0 d, ρs, Lsð Þ ¼ 1
L3s

X1
p¼1

(2p� 1)3
sin πd(2p�1)

Ls

� �
I0

π(2p�1)ρs
Ls

� � ¼ 0: (32)

In Fig. 9(a), we show the optimal separation calculated vs the
shield aspect ratio by an exhaustive numerical search. Figure 9(b)
shows the corresponding variation of the gradient per unit current.
The red dotted lines in Figs. 9(a) and 9(b) show, respectively, the
optimal separation, d ¼ 0:824ρs, in the limit that the shield aspect
ratio tends to infinity and its corresponding gradient per unit

current, dBz=dz ¼ 1:230I. The blue dotted lines in Figs. 9(a) and 9(b)
are, respectively, the coil separation for the standard anti-Helmholtz
configuration, d ¼ ffiffiffi

3
p

ρs=2, and its gradient per unit current,
dBz=dz ¼ 0:806I, that is generated in free space. Due to the inter-
action and finite length of the magnetic shield, there exists a shield
aspect ratio, 0 , Ls=(2ρs) ⪅ 0:831, where no coil separation entirely
removes the cubic variation in the field. In this case, to determine
the optimal separation, contributions from both the cubic and
quintic variations should be minimized, but not nulled entirely, to
achieve the most uniform field linearity for a given application.
However, minimization of further variations becomes more difficult
since the effective harmonic magnitudes become increasingly sensi-
tive to the precise values of di, ρs, and Ls.

FIG. 8. Color maps showing the magnitude of the normalized axial magnetic field, Bz , in the xz-plane generated by the coil depicted in Fig. 7 in the anti-Helmholtz

arrangement with separation, d ¼ +
ffiffiffi
3

p
=2

� �
ρs in two situations (a) in free space and (b) placed symmetrically around the origin of a closed magnetic shield of radius

ρs and length Ls ¼ 2ρs (solid black outline). White contours enclose the regions where the gradient of the normalized axial field with respect to z deviates from unity (i.e.,
a perfectly uniform axial field gradient) by less than 5% (dashed curves) and less than 1% (dotted–dashed curves). Black contours represent lines of constant magnetic
flux (dashed curves). The resistance, field per unit current, and inductance of the coil both in free space and inside a unit length magnetic shield are presented in Table I.

TABLE I. The resistance R, field per unit current CNM/I, and inductance L for the example coils with wire radius ρw = 0.5 mm and (standard copper) resistivity
ϱ = 1.68 × 10−8Ωm, described in the text and located both in free space and inside a magnetic shield of unit diameter and length, ρs = 0.5 m and Ls = 1 m, respectively. The
anti-Helmholtz and improved linear axial gradient coils are shown in Figs. 7 and 10, respectively, and generate an N = 2 zonal harmonic field, Z2. The cosine phi (cosf) and
improved uniform transverse coils are shown in Figs. 12 and 13, respectively, and generate an N = 1, M = 1 tesseral harmonic field, T1,1. The inductance is calculated numeri-
cally using COMSOL MULTIPHYSICS Version 5.5.

Coil design
Resistance

(Ω)
Field/current
(μT/AmN-1)

Inductance
(μH)

Anti-Helmholtz linear axial gradient Unshielded 0.269 3.28 6.19
Shielded 7.16 12.4

Improved linear axial gradient Unshielded 2.96 2.74 131
Shielded 6.92 184

Cosine phi uniform transverse Unshielded 2.04 8.32 278
Shielded 13.4 595

Improved uniform transverse with central entry region Unshielded 3.96 5.26 496
Shielded 8.58 716
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V. GENETIC ALGORITHM OPTIMIZATION

To simultaneously solve for multiple axial variations in a compu-
tationally efficient manner, we use a genetic algorithm. The optimal
continuous separations, di, and discrete turn ratios, Izi , for N

0 loops or
arcs are found by minimizing the amplitudes of a set of undesired har-
monic fields. We formulate the optimization problem by using the set
of arbitrary user-defined undesired harmonic fields of order
n [ Z : n [ [~n1, ~n~N ] and degree M as the objective functions,

min f1 ¼ ~C~n1,M ρs, Ls; d1, , dN 0 , I1, :::, IN 0ð Þ
..
.

min f~N ¼ ~C~n~N ,M ρs, Ls; d1, , dN 0 , I1, :::, IN 0ð Þ:

8><
>: (33)

The search domain of the design parameters is

D=2 , d1 , d2 � D,
d1 þ D , d2 , d3 � D,

..

.

Dþ dN 0�1 , dN 0 , Ls=2,
1 � Iz1 � Izmax:,
�Izmax: � Iz2 � Izmax:,

..

.

�Izmax: � IzN 0 � Izmax:,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(34)

where the physical constraints on the system are that the first turn
must contain a positive current, the axial turn ratios are less than the
maximum axial turn ratio Izmax:, the separation of any two nested loops
or arcs is less than the minimum separation D, and the outer loop arc
is axially inside the shield dN 0 , Ls=2.

We now present two examples of optimized coil designs
found using a genetic algorithm. Firstly, we design an improved
linear axial gradient field, Z2, and compare this result to the previ-
ous anti-Helmholtz design. Then, we design a transverse bias field,
T1,1, where M ¼ N ¼ 1, in which arcs are deliberately excluded
from a region close to the center of the shield and compare this
result to a cosf coil.47,48 In both cases, we use the MATLAB func-
tion gamultiobj(), from the multi-objective genetic algorithm
toolbox, which implements the NSGA-II algorithm42 to solve for
the optimal axial positions.

A. Example I: Improved linear axial gradient field

To find an improved linear axial gradient field, we choose to
search for solutions using a four-pair anti-symmetric loop setup
within a high-permeability magnetic shield of aspect ratio
Ls=(2ρs) ¼ 1. The axial magnetic field is given by

Bz ρ, f, zð Þ ¼ 2μ0
Ls

X4
i¼1

Izi b
�
0 (ρ, z; di), (35)

and we choose to minimize the first three leading-order error
terms

min f1 ¼ ~C4,0 ρs, Ls; d1, :::, d4, I
z
1 , :::, I

z
4

� �
,

min f2 ¼ ~C6,0 ρs, Ls; d1, :::, d4, I
z
1 , :::, I

z
4

� �
,

min f3 ¼ ~C8,0 ρs, Ls; d1, :::, d4, I
z
1 , :::, I

z
4

� �
,

8><
>: (36)

FIG. 9. (a) Optimal normalized separation, d=ρs, of the anti-symmetric pair, depicted in Fig. 7, to generate the zonal Z2 harmonic as the length of the shield increases

(red curve). Horizontal dashed lines (red and blue) show the analytical values of d ¼ 0:824ρs and d ¼ ffiffiffi
3

p
=2

� �
ρs obtained in the long shield limit (Ls � 2ρs) and in

free space, respectively. (b) Gradient per current, (dBz=dz)=I, of the optimal anti-symmetric pair as the length of the shield increases (red curve). Horizontal dashed lines
(red and blue) show the values of dBz=dz ¼ 1:230I and dBz=dz ¼ 0:806I obtained in the long shield limit and in free space, respectively. A vertical dashed line (black) in
(a) and (b) shows the minimum shield length Ls ¼ 1:62ρs below which no optimal solution can be found.
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FIG. 11. Color maps showing the magnitude of the normalized axial magnetic field, Bz , in the xz-plane generated the design depicted in Fig. 10 in two situations (a) in
free space and (b) placed symmetrically around the origin of a closed magnetic shield of radius ρs and length Ls ¼ 2ρs (solid black outline). White contours enclose the
regions where the gradient of the normalized axial field with respect to z deviates from unity (i.e., a perfectly uniform axial field gradient) by less than 5% (dashed curves)
and less than 1% (dot-dashed curves). Black contours represent lines of constant magnetic flux (dashed curves). The resistance, gradient per unit current, and inductance
of the coil both in free space and inside a unit length magnetic shield are presented in Table I.

FIG. 10. Schematic diagram of four anti-symmetric loop pairs of radius ρs showing the (a) azimuthal variations and (b) axial positions z ¼ +di , where
di ¼ [0:592, 0:645, 0:777, 0:878]ρs, with axial turn ratios I

z
i ¼ [3, � 3, � 2, 3], for i [ Z : i [ [1, 4], placed symmetrically around the origin of a closed magnetic shield

of radius ρs and length Ls ¼ 2ρs.
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which, from (31), are given by

~C2n,0 ¼
X4
i¼1

Izi
L2n�1
s

X1
p¼1

(2p� 1)2n�1
sin πdi(2p�1)

Ls

� �
I0

π(2p�1)ρs
Ls

� � : (37)

We constrain the separation of the wires such that D ¼ 0:01ρs, limit
the maximum turn ratio to Izmax: ¼ 9, assume a wire radius
ρw ¼ 0:001ρs, and search for optimal values of [d1, :::, d4] and
[Iz1 , :::, I

z
4]. The genetic algorithm outputs numerous solutions where

the first three undesired contributions are minimized, meaning that
many solutions exist where no undesired harmonic can be further
minimized without increasing the magnitude of another undesired
harmonic. To filter these solutions, we first discard solutions where
all three harmonics are insufficiently nulled. Then, we rank the
remaining solutions according to their stability by adjusting each
wire placement in turn by +ρw and analyzing the magnitude of the
leading-order error terms. In Appendix B, we describe the imple-
mentation of gamultiobj() to the minimization of the effective har-
monic magnitudes and benchmark its performance. Averaged over
ten runs, the optimization takes 5:86 s and requires 127 500 evalua-
tions of each objective function, (36).

The optimized coil configuration is shown in Fig. 10. The color
maps in Fig. 11 show the magnitude of the axial magnetic field com-
ponent, Bz , generated (a) in free space and (b) inside the high-
permeability magnetic shield. Due to the improved linearity of the

magnetic field profile that results from the additional coil pairs, the
volume of the region within which the field achieved is within 1% of
the desired field (i.e., within the dotted–dashed curves) is seven
times larger than that produced by standard anti-Helmholtz coils
inside the same magnetic shield (see Fig. 8). This demonstrates the
effectiveness of our design methodology and the applicability of the
genetic algorithm optimization to this problem. The resistance, mag-
netic field gradient per unit current, and inductance for various coil
configurations in both free space and inside a magnetic shield of
unit length are summarized in Table I. The resistance and induc-
tance of the optimized coil are, however, an order of magnitude
larger than for the standard anti-Helmholtz configuration.
Additional constraints could be added to the optimization to mini-
mize the resistance, inductance, or to maximize the field per current,
i.e., by reducing Izmax:, imposing that all currents must flow with the
same parity, or adding a constraint to maximize the magnitude of
the desired harmonic. However, these would come at a cost of field
fidelity. We also present a comparison of this design to a coarse dis-
cretization of an optimized continuum current distribution on the
surface of a cylinder28 in Appendix C.

B. Example II: Improved uniform transverse field with
a central entry region

Now, we design a uniform transverse field, Bx , which can
be represented by a single spherical harmonic field of order

FIG. 12. Schematic diagram of a single axially anti-symmetric arc pair of radius ρs with M
0 ¼ 12 azimuthal variations, generating a saddle-like cosf coil from Refs. 47 and 48,

showing the (a) azimuthal variations of periodicity, π, for the 12 separate angular lengths wj ¼ arccos 1� j � 1
2

� �
=M0� �	 


, for j [ Z : j [ [1, M0 ], each with an azimuthal turn
ratio of unity, and (b) axial position z ¼ +d, where d ¼ (Ls=2� ρw )ρs, placed symmetrically around the origin of a closed magnetic shield of radius ρs and length Ls ¼ 2ρs.
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N ¼ 1 and degree M ¼ 1. Consequently, the symmetries within
the desired harmonic field correspond to the anti-symmetric
tesseral coil basis, with azimuthal periodicity π, as shown in
Figs. 3(d) and 4(b). As mentioned above, the harmonic T1,1 is
not present within the axial field. However, we can still search
for optimized transverse coils using the axial magnetic field.
Here, we use a setup comprising four pairs of coils with three

overlapping arcs of different angular lengths, which generate an
axial magnetic field

Bz ρ, f, zð Þ ¼ 4μ0
Ls

X1
m¼1

X4
i¼1

X3
j¼1

Izi I
w
j b

�
m(ρ, z; di)Φ

m
j cos(mf), (38)

FIG. 13. Schematic diagram of four axial anti-symmetric arc pairs of radius ρs with three azimuthal variations for each pair, showing the (a) azimuthal variations of period-
icity, π, for the three separate angular lengths wj ¼ [1:367, 1:101, 0:592] with azimuthal turn ratios Iwj ¼ [1, 1, 1], for j [ Z : j [ [1, 3], and (b) axial positions z ¼ +di ,
where di ¼ [0:600, 0:651, 0:781, 0:938]ρs, with axial turn ratios I

z
i ¼ [4, � 2, � 2, � 1], for i [ Z : i [ [1, 4], placed symmetrically around the origin of a closed mag-

netic shield of radius ρs and length Ls ¼ 2ρs. (c) Shows an expanded schematic diagram of one azimuthal section of the coil depicted in (a)–(b) for clarity.
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where

Φm(wj) ¼
sin(mwj)

πm
(1� (� 1)m): (39)

Using three angular lengths, we can remove the first three sets
of harmonics of degrees m ¼ 3, 5, 7ð Þ by solving the set of
simultaneous equations

min
wj

XM0

j¼1

Iwj sin((2ν þ 1)wj)

 !
, ν [ Z : ν [ [1, 3]: (40)

For simplicity and ease of manufacturing, we choose Iwj ¼ [1, 1, 1]
and find optimized angular lengths of wj ¼ [1:367, 1:101, 0:592] to
remove the leading-order azimuthal variations of degrees
m ¼ 3, 5, 7ð Þ. The angular lengths are calculated in 0:70 ms using
the FindRoot[] function in MATHEMATICA.

Having removed the first three leading-order azimuthal varia-
tions in the desired field, the first three leading-order error terms
in the total field are given by

~C2nþ1,1 ¼
XN
i¼1

Izi
L2ns

X1
p¼1

(2p� 1)2n
sin πdi(2p�1)

Ls

� �
I1

π(2p�1)ρs
Ls

� � ,

n [ Z : n [ [1, 3],

(41)

where the objective functions are written as

min f1 ¼ ~C3,1 ρs, Ls; d1, :::, d4, I1, :::, I4ð Þ,
min f2 ¼ ~C5,1 ρs, Ls; d1, :::, d4, I1, :::, I4ð Þ,
min f3 ¼ ~C7,1 ρs, Ls; d1, :::, d4, I1, :::, I4ð Þ:

8<
: (42)

Again, we impose the constraints, D ¼ 0:01ρs, Izmax: ¼ 9, and
ρw ¼ 0:001ρs, and search for optimal values of [d1, :::, d4] and
[Iz1, :::, I

z
4]. Additionally, we shall impose a constraint that d1 ¼

3Ls=10 so that optical access is maintained inside large windows
near the axial origin, e.g., for laser/electronic access. Following the
method described in Example I, the most stable Pareto-optimal sol-
ution is selected. This effectively eliminates the first two leading-
order error terms and greatly reduces the third. The optimization
takes 23:6 s and requires 526 000 evaluations of each objective
function, (42). Here, we note that, to minimize the set of spatial
variations as efficiently as possible, the number of azimuthal
degrees nulled is matched to the leading-order axial variation
which is not nulled; i.e., where the leading-orders n ¼ 3, 5, 7ð Þ are
minimized, nulling the degrees m ¼ 3, 5, 7ð Þ is appropriate.

We can compare the performance of the optimized coil to a
standard discrete saddle-shaped cosf coil47 within the same
magnetic shield. A discrete cosf coil is a specific case of the
M ¼ 1 anti-symmetric coil basis. This coil is constructed of M0

pairs of nested single saddles48 of angular lengths
wj ¼ arccos 1� j� 1

2

� �
=M0� �	 


, for j [ Z : j [ [1, M0], each with
an azimuthal turn ratio of unity. The set of axial wires that make
up the saddles emulates the axial current density Jz f0, z0ð Þ
¼ cosf0. When the respective angular lengths are substituted
into (22), in the case where M0!1, all undesired degrees are mini-
mized except M ¼ 1. The axial separation, d ¼ Ls � ρw, of the saddles

FIG. 14. Color maps showing the magnitude of the normalized transverse magnetic field, Bx , in the xz-plane generated by (a) the cosf uniform Bx field-generating
design depicted in Fig. 12 and (b) the optimized uniform Bx field-generating design depicted in Fig. 13, placed symmetrically around the origin of a closed magnetic shield
of radius ρs and length Ls ¼ 2ρs (solid black outline). White contours enclose the regions where the normalized transverse field deviates from unity (i.e., a perfectly
uniform transverse field) by less than 5% (dashed curves) and less than 1% (dotted–dashed curves). Black contours represent lines of constant magnetic flux (dashed
curves). The resistance, field per unit current, and inductance of the coil both in free space and inside a unit length magnetic shield are presented in Table I.
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is extended as far as possible along the whole length of the shield to
minimize the leading-order error harmonic, ~N ¼ 3. This can be dem-
onstrated by substituting n ¼ 1 and d ¼ Ls � ρw into (41) and noting
that the ~N ¼ 3 error harmonic is nulled to zero for ρw!0. Here, to
make a fair comparison between the cosf coil and the optimized
design, we set the number of pairs of nested saddles, M0 ¼ 12, equal
to the number of sets of saddles in the optimized design.

The wire configurations of the cosf coil and the optimized
coil are presented in Figs. 12 and 13, and their coil properties are
summarized in Table I. The transverse field variations in the
xz-plane inside the magnetic shield generated by the cosf coil and
the optimized coil are shown in Fig. 14. The optimized coil con-
tains windows for optical access along the axial center of the shield.
These windows extend over 60% of the shield’s length and are
more than twice as great in azimuthal extent than the equivalent
spaces in the cosf coil. The optimized transverse coil generates a
field that is homogeneous to within 1% variation throughout a
volume that is approximately three times greater than that gener-
ated by the cosf coil. However, the resistance and inductance for
the optimized transverse field coils are, respectively, 1:9 and 1:2
times larger than the cosf coil. The field per unit current is also a
factor of 1:6 lower in the optimized system compared with the
cosf coil. As with the previous example, additional constraints
could be added to the optimization to improve the desired coil
properties, at the likely cost of some field fidelity.

VI. CONCLUSION

In summary, we have introduced a coil design method based
around simple discrete current-carrying loops and arcs whose
geometry can be optimized to generate any physically attainable
magnetic field within a high-permeability cylindrical magnetic
shield to a high fidelity. To do this, we determined field expan-
sions that enable elimination of deviations from the desired field
to a specified expansion order when the coil is on the magnetic
shield’s surface. We then presented a discrete coil basis composed
of unit-coil building blocks and decomposed the magnetic field
into spherical harmonic terms in free space. Next, for specific
designs, we related the coil parameters, namely, the wire spacing,
angular arc lengths, and the currents through pairs of loops and
arcs, to a set of harmonic fields chosen to reflect the form of the
desired field profiles. We then used our model to determine the
variation in the optimal separation of an anti-Helmholtz pair in
magnetic shields of different aspect ratios. Taking this optimiza-
tion one step further, we formulated simultaneous equations to
remove multiple harmonic fields using multiple current loops and
arcs and used a genetic algorithm to find optimized turn ratios
and wire separations. We used this optimization procedure to
design high-fidelity transverse bias and linear-gradient fields. In
particular, we found that this optimization process increased the
volume within which variations of the field gradient are less than
1% by a factor of seven compared to the standard anti-Helmholtz
arrangement in the same shield.

Both the harmonic magnitudes and the Fourier series repre-
sentation of the field generated by each building block can be cal-
culated rapidly, enabling multiple functional evaluations during
the design process. Moreover, the discrete coil basis is additive,

meaning that building block units can be added to, or removed
from, a coil depending on the required performance. This meth-
odology will facilitate new miniaturized technologies that require
custom magnetic fields within a magnetically shielded environ-
ment. The performance of existing magnetic field-generating
systems can be improved by retrofitting discrete coil systems that
are optimized by our methodology. Additional objective functions
could be added to the method to maximize the desired harmonic,
minimize inductance, or test the representation of the desired har-
monic under shifts in wire placement. Further research could
investigate the use of discrete planar coils on the surface of the
end-plates to enable more power-efficient and high-fidelity
designs. As well as this, one could consider analytical solutions
for the electromagnetic coupling of either the spherical coil basis
or the projected spherical coil basis to magnetic shields of various
topologies.
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APPENDIX A: AXIAL DIFFERENTIATION OF SPHERICAL
HARMONICS

Let us consider the harmonic

Rn,m(r, θ, f) ¼ rnPn,jmj cos θð Þ cos jmjfð Þ
sin jmjfð Þ

� �
,

m � 0,
m , 0:

(A1)
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The differential of an arbitrary curvilinear coordinate system with
respect to another may be expressed as

@Rn,m(r, θ, f)
@χi

¼
X
j

@ξj
@χi

@

@ξj
Rn,m(r, θ, f): (A2)

Using this, the differential in cylindrical coordinates may be deter-
mined. Spherical polar coordinates can be written as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
, θ ¼ cos�1 zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

 !
, f ¼ f: (A3)

As a result, the axial derivative is given by

@Rn,m(r, θ, f)
@z

¼ @r
@z

@

@r
þ @θ

@z
@

@θ

� �
Rn,m(r, θ, f): (A4)

Using (A2) and (A3), the differential with respect to z is given
simply by

@Rn,m(r, θ, f)
@z

¼ cos θ
@

@r
� sin θ

r
@

@θ

� �
Rn,m(r, θ, f), (A5)

which, using (A1), becomes

@Rn,m(r, θ, f)
@z

¼ rn�1 n cos θPn,jmj cos θð Þ � sin θ
@Pn,jmj cos θð Þ

@θ

� �
cos jmjfð Þ
sin jmjfð Þ

� �
,

m � 0,
m , 0:

(A6)

Directly substituting the relation from Ref. 49

@Pn,jmj cos θð Þ
@θ

¼ n cot θPn,jmj cos θð Þ � nþ jmj
sin θ

Pn�1,jmj cos θð Þ, (A7)

into (A6) yields the final expression

@Rn,m(r, θ, f)
@z

¼ (nþ jmj)rn�1Pn�1,jmj cos θð Þ cos jmjfð Þ
sin jmjfð Þ

� �
,

m � 0,

m , 0:

(A8)

APPENDIX B: IMPLEMENTATION AND
BENCHMARKING OF THE GENETIC ALGORITHM

Here, we provide information about the implementation of
the genetic algorithm to solve for the optimal coil geometries and
provide its performance specification for the examples presented in
the main text. We use the NSGA-II algorithm42 as implemented
using the gamultiobj() function in the MATLAB Global
Optimization Toolbox. This algorithm is simple to implement and,
importantly, is elitist and controlled, meaning that it prioritizes
members of the population that are functionally closer to the objec-
tive and improve the diversity of the total population, respectively.
The algorithm is used simultaneously to minimize multiple axial

FIG. 15. (a) and (b) Implementation of the genetic algorithm to design the improved linear axial field gradient displayed in Fig. 10 inside a magnetic shield of radius ρs
and length Ls ¼ 2ρs. (a) The effective magnitude of the first three scaled leading-order error harmonics, ~C2n,0L2n�1

s , where n ¼ 2 is the cubic gradient (black), n ¼ 3 is
the quintic gradient (red), and n ¼ 4 is the septic gradient (blue), of the ten randomly selected members of the population with Npop: ¼ 1000 members as the number of
generations, ngen: [ Z : i [ [1, 108], progresses. Convergence is achieved after 108 generations. (b) Pareto front (gray shaded and scatter) on which the first three
leading-order effective harmonic magnitudes are minimized. Filtered solutions and the most stable solution to minimize the cubic gradient are highlighted (black and red,
respectively).
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variations, (33), by determining optimal axial positions and turn
ratios subject to constraints on the search domain, (34). We modify
the base mutation, crossover, and creation functions in gamultiobj()
so that integer turn ratios and continuous axial separations can be
optimized simultaneously.

In the examples presented in the main text, we wish to generate
a linear axial field gradient and a uniform transverse field by mini-
mizing (36) and (42), respectively. The crossover rate and the Pareto
fraction are set to standard values of 0:9 and 0:5, respectively.50 As
the higher-order effective harmonic magnitudes are very sensitive to
small changes in the geometric input variables, we initialize the vari-
ables randomly and use shrink mutation with default parameters.51

In addition, we use a large population size, Npop: ¼ 1000, to enhance
the exploration of the optimization landscape.52 We use a standard
number of maximum generations, Ngen: ¼ 10Npop:, and stop the
algorithm if the spread, i.e., the movement of the solutions on the
Pareto front, is smaller than a standard53 NGSA-II function toler-
ance, 1� 10�4, over a standard number of stall generations, 100. To
encode the search domain, (34), the maximal and minimal bounds
of each input variable are imposed as lower and upper bounds, and,
additionally, the minimum separation between adjacent loops is
imposed as a linear inequality constraint.

In Fig. 15(a), we plot the effective magnitudes of the scaled first,
second, and third leading-order error harmonics of ten randomly
selected members of the population at each generation in the design of
the improved linear axial field gradient coil. The axial variations are
scaled so that they are dimensionless quantities applicable to design in
any shield with aspect ratio Ls=(2ρs) ¼ 1 via appropriate adjustment
of the applied current. An example Pareto front on which these axial
variations are minimized is presented in Fig. 15(b). As described in the
main text, we filter the solutions on the Pareto front according to how
effectively the harmonics are minimized and then rank solutions
according to their stability. In this case, we choose this filtering to be
~C4,0L3s , 10�4, ~C6,0L5s , 1, and ~C8,0L7s , 1 [black in Fig. 15(b)]. We
rank the stability of solutions by adjusting each wire placement in turn
by +ρw and selecting the solution that minimizes the sum of the pro-
portionate increases in each of the leading-order error harmonics. It
should also be noted that, when we run the algorithm numerous
times, there exist other solution modes that may manifest themselves
after the ranking since they also null the sum of harmonics near-totally
and are stable. In this case, we choose the solution with the lowest
sum of absolute turn ratio magnitudes. Alternatively, nulling of the
fourth leading-order error harmonic or maximization of the desired
harmonic could also be used. The solution presented in the main text
[red in Fig. 15(b)] is then rounded to three decimal places since posi-
tioning below 1 mm precision is impractical. Averaged over ten runs,
the optimization takes 5:86 s and requires 127 500 evaluations of each
objective function, (36). Averaged over these ten runs, for the optimal
solution mode, the standard errors in the axial positions,
α dið Þ ¼ [0:0002, 0:0007, 0:0009, 0:003]ρs, are below the precision to
which we quote the axial positions in the main text.

Now, let us compare the performance of the algorithm to an
exhaustive search. We set the range of axial positions of the loops
coarsely to di ¼ 0:05jρs for j [ Z : i [ [1, 19], meaning that there
are 3876 unique combinations of the four axial positions after the
conditions on the search domain, (34), are applied. Using Izmax: ¼ 9,
there are 9 allowed integer I1z and 19 allowed I jz for j [ [2, 4], giving

61 731 unique combinations of currents. Combining these parameter
conditions requires us to evaluate the objective function 23 92 69 356
times, over 1800 times as many iterations as was used in the genetic
algorithm. This takes 148 minutes to evaluate, and no solution is
found, which minimizes the objective functions to match the filtering
conditions (~C4,0L3s , 10�4, ~C6,0L5s , 1, and ~C8,0L7s , 1). Clearly, the
algorithm is more robust and computationally efficient than an
exhaustive search. Future investigations could compare the computa-
tional efficiency and robustness of the genetic algorithm to other
multi-objective optimization routines, such as particle swarm optimi-
zation and simulated annealing.

The design of the uniform transverse field follows a similar
implementation to the improved linear axial field gradient. Compared
to the previous example, the objective functions have increased spatial
variability. This means that the algorithm requires more function eval-
uations to reach its stopping condition. The optimization takes 23:6 s
and requires 526 000 evaluations of each objective function.

APPENDIX C: COMPARISON BETWEEN BUILDING
BLOCK AND CONTINUUM LINEAR AXIAL FIELD
GRADIENT DESIGNS

Here, we design a magnetic field coil using a discretized contin-
uum current density on the open cylindrical inner surface of a
closed cylindrical magnetic shield. First, the azimuthal current
density is posed in a Fourier basis, which is substituted into (7)–(9)
and solved analytically. Details about this may be found in Ref. 28.
As current is conserved on the coil surface, the azimuthal current
density can then be related to the gradient of a streamfunction.46 To
manufacture any design from the continuum solution, a discretized
representation of the continuum current is generated by contouring
the streamfunction at an even number of evenly separated levels,
Ncontours. As discussed in the main text, when the continuum is
coarsely discretized, i.e., Ncontours is low, the magnetic field generated
by the discrete wire pattern may be substantially different from that
generated by the continuum. Thus, in cases where the Ncontours must
be low, e.g., a miniaturized device, a building block design may be
preferable. This is because the coarsely discretized continuum coil
will require a thorough discretization analysis. Consequently, this
analysis can only be determined a posteriori unless the coil topology
is highly idealized. The discretized patterns can have complex topol-
ogies and may require FEM software to evaluate,30 which may be
computationally intensive. However, because zonal harmonics have
total azimuthal symmetry, the contours may be represented as loop
pairs. This means that the magnetic field generated by discretized
zonal patterns can now be evaluated analytically using (18).

In Fig. 16(a), we present a continuum coil designed to gener-
ate a linear axial gradient field, dBz=dz, inside a magnetic shield
of aspect ratio Ls ¼ 2ρs. The regularization in this design is
deliberately low such that the field fidelity is as high as possible.
This, however, comes at the cost of a highly oscillatory stream-
function (see Ref. 28). In Fig. 16(b), the maximum axial field
gradient error, max ΔdBz=dzð Þ, over the central 50% of the z-axis
from the center of the magnetic shield is calculated as the
number of contour levels is increased (blue scatter). As the
number of contours increases, the maximum field gradient error
tends to that calculated from the continuum current (red) with
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some small offset due to the difficulty in representing very high
spatial frequency features in the design. Notably, however, for
Ncontours ¼ 12 (highlighted with a dark blue circle), the calcu-
lated maximum field gradient error is significantly reduced com-
pared to the other cases. The axial field variations in the
xz-plane inside the magnetic shield generated by this discretized
continuum coil are shown in Fig. 16(c).

We now compare the optimally discretized continuum design
with Ncontours ¼ 12 to the building block improved linear axial gra-
dient field design in the main text (Fig. 10). The volume of the
central region on the xz-plane within which the field achieved is
within 1% of the desired field is a factor of 0:76 smaller for the dis-
cretized continuum design compared to the building block design

[Fig. 11(b)]. This means that the optimally discretized continuum
coil represents the desired field profile to a slightly reduced fidelity.
Generally, building block designs will have fewer unique wire place-
ments than optimally discretized continuum coils. In this case, the
optimally discretized continuum coil contains wire pairs at 35
unique positions, whereas the building block coil has 4 unique
positions; this increases the inductance by a factor of 6:4 (Table I)
and may also block optical access. On the other hand, the process
of strictly minimizing undesired harmonics while not controlling
the objective harmonic may reduce the relative field per unit
current of the building block coil. In this case, the optimally discre-
tized continuum coil has a field per unit current a factor of 2:1
times greater at the center of the shield (Table I).

FIG. 16. Schematic diagram (a) and performance (b) and (c) of a linear axial field gradient, dBz=dz, generating coil system inside a closed magnetic shield of radius ρs
and length Ls ¼ 2ρs, where a discretized representation of a continuum of current is housed open cylinder placed symmetrically on the inner surface of the shield and of
the same dimension as the shield. (a) Streamfunction of the continuum current, where positive to negative values are represented from red to white to blue, respectively.
Black curves show a discretized representation of the continuum current with Ncontours ¼ 12 contour levels. Opposite current flow directions are represented with solid and
dashed line-styles, respectively. This coil was designed using the method of Ref. ??, with optimization parameters N ¼ 100, M ¼ 0, β ¼ 5:95� 10�15 T2/W,
t ¼ 0:5 mm, and ρ ¼ 1:68� 10�8 Ωm. (b) Maximum deviation in the normalized axial field gradient, max ΔdBz=dzð Þ, evaluated over the central half of the z-axis,
z ¼ [� Ls=4, Ls=4], calculated for discrete representations of the continuum of current as the number of contour levels is increased (blue scatter). The maximum devia-
tions calculated for the continuum of current in (a) (red dotted) and design in Fig. 10 (black dotted) are also plotted in the same context. The discrete representation that
minimizes the error is found at Ncontours ¼ 12 (dark blue circle). (c) Bz in the xz-plane generated the discrete representation with Ncontours ¼ 12 inside the magnetic shield.
White contours enclose the regions where the gradient of the normalized axial field with respect to z deviates from unity (i.e., a perfectly uniform axial field gradient) by
less than 5% (dashed curves) and less than 1% (dotted–dashed curves). Black contours represent lines of constant magnetic flux (dashed curves).
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