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a b s t r a c t

Creep fracture behaviour of tempered martensitic steels is generally governed by the

process of cavity nucleation, growth and coalescence into microcracks. Therefore, creep

ductility, which can be treated as material resistance to damage, has a critically important

implication on the creep performance of materials and components, particularly where

mechanical and metallurgical constraints are present. This review deals with some key

aspects relating to creep ductility of high-temperature materials, paying a specific atten-

tion to creep strength enhanced ferritic (CSEF) steels. In the present work, the currently

available state-of-the-art creep ductility-based constitutive models are reviewed, and the

predictive capabilities of these models, particularly under multi-axial stress states, are

examined. On this basis, the main limitations and challenges associated with using the

existing models are evaluated and identified, and the requirements for developing

improved creep ductility-based models for CSEF steels in order to carry out more accurate

service life assessments are addressed.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

D Rupture elongation

Z Reduction of area at rupture

L0 Initial gauge length

Lu Reference gauge length at rupture

A0 Initial cross-sectional area of gauge section

Au Cross-sectional area at rupture

εcu Uniaxial ductility

ε
*
cu Multiaxial ductility

εcu;loc The true local strain at rupture

_εmin Minimum creep rate

tn Time at void nucleation

tf Creep rupture life

ε
0
cu Intrinsic creep ductility

εcu;m Monkman-Grant ductility

fh Void area fraction

fi Void area fraction at nucleation

fc Void area fraction at coalescence

bc;m Void aspect ratio at failure under multiaxial

stress state

m Stress triaxiality ratio

dg Grain size

ε
0
p A portion of the primary creep strain

l Damage tolerance factor

r Notch root radius

d The diameter at the minimum notch section

εcu;u Uniaxial creep ductility on Regime-I (upper

shelf)

εcu;l Uniaxial creep ductility on Regime-III (lower

shelf)

T Temperature

s The applied stress

sm Hydrostatic stress

se von Mises equivalent stress

s1 Maximum principal stress

_εc Creep strain rate

Ci (i ¼ 0; 1; 2; ::etc) Material constants

fðMPÞ Material Pedigree Function

n Stress exponent at the secondary creep stage

m Material constant accounting for the primary

creep

p and q Material constants in Spindler's ductility-based

model

u Creep damage

CSEF Creep Strength Enhanced Ferritic

BM Base metal

WM Weld metal

HAZ Heat-affected zone

CTZ Completely transformed zone

PTZ Partially transformed zone

OTZ Over tempered zone

CDM Continuum damage mechanics

FE Finite element
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1. Introduction

Creep Strength Enhanced Ferritic (CSEF) steels with 9e12% Cr

have been referred to as innovative high-temperature mate-

rials which are capable to cope with the increasing demand

towards higher thermodynamic efficiency and reduced carbon

emissions. Since their introduction, these materials have

found increasing applications in various industrial fields, e.g.,

in power generation and petrochemical plants, owing to their

superior high-temperature mechanical properties such as

excellent creep strength, lower susceptibility to thermal fa-

tigue and oxidation resistance [1,2]. Such properties are

derived from the tempered martensitic microstructure, sche-

matically shown in Fig. 1 [3]. The tempered martensitic

microstructure in CSEF steels can be achieved by proper

alloying as well as normalisation and tempering heat treat-

ments to control the distribution and type of precipitates

formed in the microstructure, and thereby maintain superior

mechanical properties at high temperatures [3,4]. Details of

heat treatment conditions for high chromium steels are

documented in the cited reference [4]. The potential

strengthening mechanisms in martensitic CSEF steels,

resulting from alloying and heat treatment, are dislocation

hardening, precipitation strengthening, and solid solution

strengthening [4]. The microstructure of 9e12% Cr steels such

as P91 and P92 steels typically exhibits a hierarchical

arrangement, which can be subdivided into prior austenite

grains (PAGs) consisting of packets, blocks and laths [3e6]. The
Fig. 1 e A schematic diagram showing the tempered

martensitic microstructural features (PAG, packets, blocks,

laths) and precipitate distributions of 9Cre1Mo steel [3].
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Fig. 2 e Micro-graph image showing microdamage and

creep cavity formation in the HAZ of a P91 header

weldment [24].

j o u r n a l o f m a t e r i a l s r e s e a r c h and t e c hno l o g y 2 0 2 2 ; 1 7 : 3 3 3 7e3 3 6 0 3339
CSEF steels are also characterised by a fine dispersion of

precipitates (e.g., MX carbonitrides and the Cr-rich M23C6

carbides) as well as high dislocation density [3e8].

Modern power generation plants are subjected to an ever-

increasing range of temperature and pressure conditions

[9,10]. As such, there appears an increasing need for improved

computational constitutive material modelling to predict

component performance with higher accuracy, and therefore,

enhance plant efficiency and reliability. A number of creep

and creep-fatigue damage models and life assessment

methods have been proposed in recent decades (e.g. [11e21]).

Based on material constitutive models, design methodologies

for high-temperature structures have been established.

However, it may be noted that the proposed design methods

for pressure parts operating at high temperatures are gener-

ally based on uniaxial creep rupture strength data [22] while

creep ductility, which is directly related to material resistance

to damage, has received much less consideration. Creep

ductility concerns on CSEF steels have been emphasised

following the introduction of these materials into high-

temperature power plants, where a range of operational and

industrial challenges has been documented. For instance, the

low ductility (damage tolerance) of the base metal was

identified as one of the main causes for the premature heat-

affected zone (HAZ) cracking observed in the welded joints

of Grade 91 power plant headers [23,24]. Given the large vari-

ability observed in the creep performance of Grade 91 welded

components, there have been increasing concerns that

components fabricated from the steel casts, that exhibit poor

creep ductility, may develop enhanced creep damage sus-

ceptibility under multi-axial stress states at positions where

mechanical constraints due to poor design and metallurgical

constraints due to material heterogeneity are present [25e27].

The significance of creep ductility and its influence on

creep performance of materials at high temperatures have

been further demonstrated in recent investigations. For

instance, Siefert et al. [28,29] carried out an experimental

study to link creep performance of CSEF steel weldments to

the parent metal creep properties. It was shown that the low

creep ductility of the base metal contributes to poor cross-

weld creep performance and could lead to creep life re-

ductions undermulti-axial stress states [30,31]. This reduction

can be generally related to creep damage being accelerated

more rapidly than under a uniaxial stress state [31]. It is also

believed that, at a longer term, the effects of creep ductility on

creep crack growth and fracture behaviour of steels become

more pronounced, possibly due to microstructural changes

[32]. More specifically, a series of systematic microstructural

investigations have been conducted [33e36] and a range of

metallurgical risk factors have been elucidated in CSEF steels,

which are generally linked to chemical compositions, micro-

structure, heat treatment, steel making practices and some

other factors [27,31,37e39]. Such factors are found to influence

creep cavitation behaviour in CSEF steels and increase the risk

of fast fracture for low ductility steel casts [40e42]. Based on

these findings, the link between creep ductility and the

nucleation and growth of cavities is clear, which implies that

creep damage constitutive models and design methodologies

for structures fabricated from metallurgically susceptible

steels such as CSEF steels should be based not only on creep
rupture strength but also on creep ductility. This is crucial to

avoid the risk of catastrophic brittle failure due to the low

damage tolerance of low ductility materials.

Several creep ductility-based models with different capa-

bilities have been proposed to predict creep crack growth and

damage in creeping solids (e.g., ref [43e48]). Although these

models have provided reasonable predictions in some specific

situations [49e51], their limitations to the application for the

CSEF steels exist. The aim of this review is to provide a clearer

picture of the role of creep ductility in high temperature

structural integrity undermulti-axial stress states. The paper is

organised as follows: In Section 2, the concept of creep ductility

and the current experimental methods adopted to measure

creep ductility are reviewed. The key mechanical and metal-

lurgical factors influencing creep ductility of CSEF steels are

discussed in .Section 3 InSection 4, the state-of-the-art uniaxial

and multi-axial creep ductility-based models are reviewed. An

appraisal of the existing creep ductility-based models is pre-

sented inSection5, inwhich the capabilities of the state-of-the-

art ductility-based models are examined, the main limitations

of themodels are identified, andon this basis, the requirements

for future developments are addressed. Finally, a brief sum-

mary of this review is given in Section 6.
2. Creep ductility and experimental methods

2.1. Definition of creep ductility

It is generally established that, under a given stress state, the

tendency for brittle type fracture in tempered martensitic

CSEF steel is primarily controlled by the cavity growth and

coalescence into microcracks [31,52,53], as demonstrated in

Fig. 2, with damage rates being more enhanced under higher

degrees of multi-axial stress states. On this basis, creep

ductility may be generally defined as the ability of a material to

redistribute stresses and to avoid the propagation of a single crack

[32,54]. From metallurgical perspectives, creep ductility is

related to the resistance of the material to cavitation damage

[25,27,28,31]. As such, it is believed that creep ductility has a

paramount influence on creep deformation and fracture

https://doi.org/10.1016/j.jmrt.2022.02.047
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Fig. 3 e a) A schematic showing the stages of a typical creep curve in a constant load uniaxial test and some of the

parameters characterising creep ductility (adapted from ref [32]), and b) Experimental data from a P91 cross-weld creep test

at 625 �C and 60 MPa nominal stress [26].
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behaviour of steels at high temperatures, particularly where

mechanical notches due to poor design considerations

and metallurgical constraints due to weldments are present

[27,31]. In the following sections, the concept of creep ductility

is further elaborated for uniaxial andmulti-axial stress states.

2.1.1. Uniaxial creep ductility
Figure 3a depicts schematically a typical three-stage uniaxial

creep curve, comprising primary creep, secondary creep and

tertiary creep. It may be noted that under some conditions

theremay be very limited primary creep and in other cases the

tertiary creep component is dominant. The primary creep

stage is characterised by decreasing creep strain rates with

time due to strain hardening [55]. During the secondary or

steady-state creep, the rate of strain hardening is balanced by

the rate of thermal softening [56], leading to a constant or

minimum creep strain rate, _εmin. The tertiary stage represents

a region of accelerating creep strain rates due to thermal

softening until rupture occurs. This stage of creep is also often
associated with microstructural instability and metallurgical

changes such as substructure recovery [57], the formation of

new phases [58], coarsening of existing precipitates [59] and

accumulation of damage due to cavitation and microcracks

[55]. Figure 3b depicts the creep curve of a long-term feature

type cross weld creep test at nominal stress of 60 MPa, which

has a general shape to that shown in Fig. 3a.

An important parameter that can be evaluated from the

uniaxial creep curve, Fig. 3a, is the uniaxial creep ductility,

which can be considered as a measure or an indicator of the

susceptibility of a given material to creep damage under a uniaxial

stress state condition. Figure 3a shows a schematic of the

nominal creep strain vs time in a constant load uniaxial creep

test. The uniaxial creep ductility can be characterised through

a number of parameters as illustrated below.

The most used parameters to characterise uniaxial creep

ductility are creep rupture elongation and reduction of cross-

sectional area at rupture, which are expressed by Equations (1)

and (2), respectively:

https://doi.org/10.1016/j.jmrt.2022.02.047
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Fig. 4 e a) A schematic diagram of the plain bar uniaxial specimen (L0 denotes the gauge length and D0 is the diameter of the

smooth bar). b) A schematic diagram of the notched bar specimen with double notches (d denotes the diameter of the notch

throat while r represents the notch root radius).
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Creep rupture elongation, D, is given by:

D¼ Lu � L0
L0

(1)

Reduction of area at rupture, Z, is given by:

Z¼A0 �Au

A0
(2)

where L0 and Lu are the initial gauge length and gauge length at

rupture,respectively.A0 andAu denotetheinitialcross-sectional

area of gauge section and cross-sectional area at rupture,

respectively. Alternatively, if the initial instantaneous strain

upon loading is insignificant, the rupture elongation ðDÞ can be

assumed as an equivalent to creep strain at rupture, εcu [32].

In previous investigations (e.g., refs [49,50]), creep rupture

strain and reduction of area at rupture were used to represent

the uniaxial creep ductility and have shown to be able to

predict creep failure with reasonable accuracy.

Creep ductility can also be expressed in terms of the true

local strain at rupture, εcu;loc, as illustrated below:

εcu;loc ¼
ZLu
L0

dL
L

¼ LnðLuÞ � LnðL0Þ ¼ Ln

�
Lu
L0

�
(3)

Using the constant volume assumption (incompressibility)

of plastic flow, we have:

A0L0 ¼AuLu or
Lu
L0

¼ A0

Au
(4)

Substituting Equation (4) in (3) yields the following expres-

sion forcreepductility in termsof the true local strainat rupture:

εcu;loc ¼ Ln

�
1

1� Z

�
(5)

Although the above parameters are widely adopted to char-

acterise creep ductility of materials for their convenience and
the easewithwhich they canbe determined experimentally (e.g.

basedonuniaxial creep rupture tests), theyare known todepend

on the size of the tested specimens [32,60]. To overcome these

challenges, somepractical indicators to represent creep ductility

are proposed such as the intrinsic creep ductility, ε
0
cu, and

Monkman-Grant ductility [61], εcu;m, as defined in Fig. 3. The

intrinsic creep ductility, ε0cu, is assumed to comprise two com-

ponents as given by Equation (6), while the Monkman-Grant

ductility, εcu;m, is given by the product of the minimum creep

rate (_εmin) and creep rupture life (tf ), as expressed by Equation (7).

ε
0
cu ¼ ε

0
p þ εcu;m (6)

εcu;m ¼ _εmintf (7)

As illustrated by Equation (7) and Fig. 3, the Monkman-

Grant ductility, εcu;m, ignores a significant portion of the pri-

mary creep strain and also the tertiary creep. Therefore, this

parameter will only provide a reasonable approximation of

the intrinsic creep ductility if the primary creep strain is

sufficiently small (ε0p z0) and steady-state creep is dominated.

While creep ductility is typically measured in terms of creep

rupture strain or reduction of area at rupture, the Monkman-

Grant ductility is thought to provide a relativelymore accurate

representation of creep ductility since it can be considered as

a measure of the local strains produced by the creep diffu-

sional processes occurring uniformly at the microstructural/

grain-boundary levels prior to any necking [45].

Based on Equations (6) and (7), another important ductility

parameter can be introduced, known as creep ductility ratio or

damage tolerance factor, l, as given by Equation (8). This

parameter provides useful insights about the capacity of

steels to redistribute stresses in structural components [32,54]

and can also be used as an indicator to assess material

susceptibility to localised cracking at strain concentrations

[38,62]. For instance, based on this parameter, it has been

https://doi.org/10.1016/j.jmrt.2022.02.047
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Table 1 e A summary of the common notched bars geometry, materials and creep test conditions.

Notch acuity
ratio (d= r)

Material Temperature
(o C)

Net section
stress (MPa)

Rupture life
(hours)

Reduction of
area (%)

Reference

0 P92 650 145 403.3 92.16 [82]

2.8 1083.8 23.06

20 1203.3 2.27

0 9Cre1Mo 600 150 63.55 90 [76]

1 163.1 86.71

2 537.80 64.86

4 943.10 45.87

10 1452.20 17.08

20 1200 13.37

0 9Cre1Mo 600 210 3.5 93.37 [77]

1 18.6 87.58

2 22.75 82.65

4 65.9 75.79

10 89.1 61.60

20 120 50.16

0 FB2 605 350 5.1 70.62 [79]

10 988.8 4.97

24 1212.1 4.26
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proposed that steels can be classified into creep ductile (l � 5)

and creep brittle (l < 5) [38]. However, these boundaries have

not been evaluated for a wide range of alloys nor stress states.

l¼ εcu

εcu;m
(8)

where εcu is the creep strain at rupture.

2.1.2. Multi-axial creep ductility
Multiaxial creep ductility may be regarded as an indicator to the

resistance of a given material system to creep damage when sub-

jected to a multi-axial loading condition. It is believed that under

multi-axial stress state conditions, voids growth rate becomes

higher [15] and therefore, creep ductility under multi-axial

loading conditions is typically lower [15,32]. This reduction

can significantly influence creep behaviour of steels and

consequently lead to creep damage and early fracture. The

multi-axial creep ductility can also be characterized in terms

of creep rupture elongation or reduction of area as measured

from bi-axial notched bar creep rupture tests. Alternatively,

the multiaxial creep ductility can be computed based on the

uniaxial creep ductility through implementation of void

growth models such as Rice-Tracey [63] and Cocks-Ashby

models [64], as illustrated in further details in Section 4.

2.2. Experimental methods to measure creep ductility

2.2.1. Uniaxial creep tests
Conventional uniaxial creep tests are often conducted on

plain bars, as shown schematically in Fig. 4a, to study creep

deformation and fracture behaviour of engineering materials

under uniaxial stress state. The experimental tests are typi-

cally conducted following standard methods, e.g. ASTM E139

[65] and BS EN 10291 [66]. In these tests, constant force is

usually applied at a constant temperature and the corre-

sponding deformation with time (i.e., creep curve) is moni-

tored during the test. The typical creep curve obtained from

such tests is shown schematically in Fig. 3, which can provide
useful information on creep deformation and damage

properties. The uniaxial creep ductility can be evaluated from

uniaxial creep tests as the engineering creep strain at failure

(εcu) or in terms of the reduction of area %.

In addition to the standard uniaxial creep tests, small-scale

creep testing techniques such as impression creep test, small

punch creep test and other miniature specimen testing tech-

niques have received increasing attention because they

require small volumes of materials to be sampled [67,68]. The

two-material miniature specimen test method proposed by

[67] can reasonably characterise the tensile and creep prop-

erties of materials. One of the key advantages offered by such

a test is that it can reproduce the full uniaxial creep curves

from a very small volume of material [67]. Therefore, creep

ductility may be obtained from this test in a similarmanner to

that in conventional uniaxial creep tests. However, it should

be noted that the size dependency, surface oxidation etc can

be considered as potential limitations of the application of

small-scale testing techniques to measure creep ductility

which generally requires a sufficiently long creep time.
2.2.2. Multi-axial creep tests
Multiaxial creep ductility is usually determined by notched

bars creep rupture tests at high temperatures. The introduc-

tion of notches, which can be of different shapes and geom-

etries, into creep specimens imposes local constraints on

creep deformation and results in a significant level of multi-

axial stress state. Such tests can be carried out on either

single or double notched bars, shown in Fig. 4b, with the latter

being preferred as they enable examination of the state of

damage in thematerial close to rupture through the unbroken

notch [69]. In notched bar creep tests, the multiaxial creep

ductility is typically measured in terms of reduction of area %

rather than elongation at rupture since the axial strain is not

uniform over the gauge length [70].

Other techniques for characterising the multi-axial creep

behaviour include cruciform specimens under biaxial tension

https://doi.org/10.1016/j.jmrt.2022.02.047
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creep loading [71,72], thin-walled tubes under pure torsion

[73], thin-walled tubes subjected to combined tension and

torsion [74], pressurised tubes and pipes under creep loading

[75], which are thought to be more representative of stress

states in real components. All these tests can provide useful

insights into the stress state effects on creep damage and

fracture and how stresses redistribute during creep.
3. Factors influencing creep ductility

Creep ductility can be influenced by a range ofmechanical and

metallurgical variables. In practice, the mechanical variables

relate to plant operation and installation and involve, for

example, stress state, stress level, strain rate and pre-

straining, while the metallurgical factors are related to steel

manufacture and fabrication practice including chemical

composition andmicrostructure,material heterogeneity, steel

fabrication methods, and heat treatment conditions. These

factors will be reviewed in more details in the following

subsections to gain insights into their effects on creep

ductility and to fully appreciate their key role when devel-

oping improved creep ductility-based models for CSEF steels.

3.1. Mechanical constraints

3.1.1. Effects of stress state
In practice, pipes and tubes under internal pressure are typi-

cally operating under multi-axial stress conditions. The local

stress state will be further complicated by a sudden change in

geometry (mechanical or thermal) loading conditions or ma-

terial properties such as the introduction of weld joints. It has

been widely reported that the exhaustion of creep ductility

under multi-axial stress state is responsible for the generation

of in-service creep damage [32]. As such, it is very important to

fully understand the effect of stress state on creep ductility.

The influence of stress state on creep ductility can be investi-

gated experimentally using multi-axial creep tests such as

notched bar creep rupture tests. Several studieshave examined

the influence of stress state on creep ductility and damage

using experimental notched bar rupture tests (e.g., ref [76e80]).

Table 1 provides a summary of the common notched bars
Fig. 5 e Influence of degree of constraint (notch acuity ratio)

on creep ductility parameter (reduction of area %) for

9Cre1Mo steel at 873 K [77].
geometry, materials and creep test conditions reported in the

literature. The relevant experimental findings are also

reviewedand listed inTable 1 andpresented in Fig. 5. Thenotch

acuity ratio, d/r, in Table 1 refers to the ratio of the notch throat

diameter, d, to notch root radius, r, as illustrated in Fig. 4b. This

ratio controls the degree of stress state and hence the multi-

axial creep ductility. As illustrated in Table 1, the notched bar

specimens under creep conditions exhibit notch strengthening

effect, i.e., the rupture life of thenotched bar is higher than that

of the plain bar (r / ∞) with notch acuity ratio d/r ¼ 0. It is

usually the case that tests of short duration show notch

strengthening, however in some alloys notch weakening has

been observed in long duration tests. The general trend of

experimental rupture ductility shown in Table (1) and Fig. 5

does suggest that creep ductility (in terms of reduction in

area at rupture) tends to decrease with the introduction of

notches,whichbecomesmorepronouncedwith the increase in

the degree of constraint (i.e., higher notch acuity ratios).

Figure 5 also indicates that creep ductility is high at high

stresses and low at low stress regime. Experimental in-

vestigations have demonstrated that as creep ductility

decreases, due to an increase in the degree of constraint, the

fracture surface appearance of the notched bars tends to

change from ductile transgranular to brittle intergranular

fracture dominated by creep cavitation [77,81,82], as illustrated

in Fig. 6. The brittle fracture mode observed in accelerated

notched bar tests under specific conditions is analogues to that

observed in service, where low ductility failure of components

is usually associated with the presence of high density of

cavitation [27]. The transition in fracture behaviour could be

explained in part by the shift from von Mises controlled frac-

ture to maximum principal stress dominated failure [76,77].

3.1.2. Effects of creep strain rate
The effect of creep strain rates on creep ductility ofmaterials is

a complex process as it involves several creep damage and

fracture mechanisms. Hales [83] proposed three creep regimes

to characterise the variation of creep rupture ductility with

strain rates, namely i) Viscoplastic cavity growth regime

(Regime-I), ii) Diffusion controlled cavity growth regime

(Regime-II), and iii) Constrained cavity growth regime (Regime-

III), as shown schematically in Fig. 7a. Regime-I (Upper Plateau)

is characterised by high strain rates and high rupture ductility

since the fracture process is dominated by plasticity controlled

void growth, as presented in Fig. 7b. Regime-II (transition re-

gion) shows a remarkable drop in creep ductility with the

decrease in strain rates. In this regime, the cavitation rate is

controlled by the rate of vacancy diffusion on the grain

boundary and the grains are assumed to be rigid, Fig. 7c. In

Regime-III (Lower Plateau) with low strain rates, the rate of

cavitation is constrained by the slow creep deformation of the

matrix and grain boundary sliding, resulting in lower creep

ductility, Fig. 7d. As shown, creep ductility in the lower plateau

(Regime-III) is insensitive to strain rates. This regime descrip-

tion is found to be consistent with the experimentally

measured creep rupture data of 1CrMoV steel at 500 �C [84],

Type 304 steel at 593 �C [85] and 1CrMoV rotor steel at 550 �C
[60], as illustrated in Fig. 8a, Fig.8b and Fig.8c, respectively.

Generally, the data show the first two regions whereas the

evidence for Regime-III is limited.
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Fig. 6 e SEM micrographs showing: (a) ductile transgranular dimple failure observed in the notched bar with d= r ¼ 4

(at central region), (b) brittle intergranular fracture in the notched bar with d=r ¼ 20 (at notch root), and (c) creep cavitation at

notch root for the notched bar with d=r ¼ 20 (Creep tests under stress of 150 MPa at 600 �C) [76].
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3.1.3. Effects of stress levels
It has been experimentally observed that creep ductility is

high at the high-stress (accelerated creep) regime and low at

low stresses (long-term creep regime), as shown in Fig. 9a.

This is also consistent with the creep deformation regime

proposed by Hales [83] and shown in Fig. 7. The general fea-

tures characterising ductile and brittle fracture in 9%Cr steel

plain bars (tested under creep conditions) are illustrated in

Fig.9b and Fig.9c. As shown, the ductile fracture observed in

plain bars tested at higher stress levels (Regime I) is associated

with a high degree of necking, while the brittle fracture in

plain bars tested under lower stress levels (Regime III) is

characterised by reduced necking, i.e., lower ductility.
Fig. 7 e Schematic representation of the effect of strain rate on cr

Hales [83]; (b) Regime-I: viscoplastic cavity growth; (c) Regime-I

constrained diffusion cavity growth.
Another splitting regime to characterise the variation of

creep ductility over short-term and long-term creep is pro-

posed by Holdsworth [32] and shown in Fig. 10a. Compared to

that of Hall [83], the splitting regime shown in Fig. 10a consists

of four creep rupture stages [32]. Regime-I (at high stresses)

exhibits relatively high rupture ductility with ductile-

transgranular rupture due to the formations of voids caused

by particle/matrix decohesion. In Regime-II (transition region)

a significant drop in creep ductility due to the increased grain

boundary cavitation and matrix deformation is evident. At

relatively lower stress values, Regime-III, ductility reaches its

lowest values due to the nucleation and diffusive growth of

cavities at the grain boundaries. Holdsworth [32] argued that
eep rupture ductility [70]: (a) The three regimes proposed by

I: diffusion-controlled cavity growth; and (d) Regime-III:
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Fig. 8 e Experimental creep rupture data showing dependency of creep ductility on strain rates for different steel grades. a)

creep ductility variation in terms of reduction of area at rupture against minimum creep rate for 1CrMoV steel at 500 �C [84],

b) variation of creep ductility (defined as engineering strain at failure) for Type 304 steel at 593 �C [85], and c) variation of

local rupture strain % for 1CrMoV rotor steel at 550 �C (BC, FF, MV, TN, TQ, H1 are steel heats with different chemical

compositions) [60].

Fig. 9 e Experimental creep rupture data and fractured specimen showing stress dependency of creep ductility: a) Variation

of creep ductility against the normalised stress (i.e. ratio of applied stress to yield strength) for 316H steel at 700 �C [70], b)

Ductile fracture of Grade 91 plain bar tested at high stress at 550 �C (rupture time of 100 h), and c) Brittle fracture of Grade 91

plain bar tested at low stress at 650 �C (rupture time of 20,014 h) [86].

j o u r n a l o f m a t e r i a l s r e s e a r c h and t e c hno l o g y 2 0 2 2 ; 1 7 : 3 3 3 7e3 3 6 0 3345

https://doi.org/10.1016/j.jmrt.2022.02.047
https://doi.org/10.1016/j.jmrt.2022.02.047


Fig. 10 e (a) A schematic diagram showing the effect of rupture time on creep rupture ductility [32], and (b) Creep rupture

data for X19CrMoVNb11 steel at 500 �C and 550 �C showing the time dependent process of creep ductility in terms of rupture

elongation % (Adapted from Ref [32]).
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the reduction in rupture ductility is followed by a remarkable

recovery in creep ductility in Regime-IV due to the ageing of

microstructure in longer terms, which in turns leads to a

reduction in the rate of cavity nucleation and growth and

subsequent improvement in creep ductility. Experimentally,

some materials were found to exhibit this variation of creep

ductility with respect to time as demonstrated in Fig. 10b. The

drop in creep ductility with time could be associated to the

microstructural evolution and microdamage during creep

exposure such as carbide coarsening [87], as shown in Fig. 11.

3.1.4. Effect of pre-straining
Since industrial powerplants operate under conditions of

cycles and base loading, it becomes crucial to explore and

understand the effects of pre-straining on the subsequent

creep behaviour. Previous experimental and numerical

studies on various steel grades have demonstrated that prior

fatigue loading exhibits a paramount influence on creep

properties (e.g. [88e93]). For instance, Zhang et al. [90] per-

formed prior fatigue tests on P92 steels at 650 �C at various

lifetime fractions of prior low cycle fatigue (LCF) followed by

creep tests under a net section stress of 130 MPa. The study

has revealed that creep ductility (in terms of creep rupture
Fig. 11 e SEM images showing precipitates in 2.25Cre1Mo stee

90 MPa net section stress and temperature 873 K) [87].
strain) tends to gradually decrease with the percentage of

lifetime fraction of prior LCF, Fig. 12a, and consequently creep

life is significantly affected as presented in Fig. 12b. Similar

findings were obtained by Sarkar et al. [91] for reduced acti-

vation ferritic-martensitic (RAFM) steels at 550 �C. Further, the
effects of cyclic preloading on the subsequent viscoplastic

deformation of austenitic stainless steel were investigated by

Mayama et al. [92] and the reduction in creep rupture strain

with cyclic preloading was distinctly observed.

From microstructural perspectives, the pre-straining is

found to affect the local microstructure andmay also promote

several micro-damage mechanisms such as early recovery of

the lath martensite, as shown in Fig. 13a-d, accompanied by

reductions in the dislocation density [89e91,94,95], as shown

in Fig. 14a-d. In the subsequent creep deformation, the early

recovery of the lath martensite can transport defects to the

lath boundaries, aiding in the development of creep cavities

[89,90]. The degradation mechanisms resulting from pre-

straining consequently lead to the deterioration of mechani-

cal properties such as creep strength and creep ductility of the

material. One criticism that may be levelled against these

tests is that the high levels of plastic strain used in laboratory

tests are not representative of service behaviour and thus the
l (a) before creep testing, and (b) after creep testing (under
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Fig. 12 e a) Variation of creep ductility with lifetime fraction of prior cyclic loading (PCL), and b) Effects of prior cyclic loading

(PCL) on creep rupture life [90].
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weakening effects may not necessarily capture the true

creep-fatigue interaction behaviour.

3.2. Metallurgical constraints

There are some metallurgical risk factors for CSEF steels

which affect creep ductility and increase steel damage

susceptibility. In general, these factors are related to the

chemical composition, the content of impurity/tramp ele-

ments (e.g., As, Cu, Sb, Sn), heat treatment conditions, in-

clusions size, distribution and content. It is crucial to
Fig. 13 e TEM images showing creep fracture for specimens with

20%, and (d) 50% [90].
explore the influence of these factors on creep ductility to

improve the creep performance of components and there-

fore avoid the risk of catastrophic brittle failure due to the

low damage tolerance (creep ductility). The key micro-

structural and metallurgical factors influencing creep

ductility in CSEF steels are briefly reviewed in the following

sections.

3.2.1. Effects of composition and microstructure
3.2.1.1. Impurity elements. There are specific elements intro-

duced into steel alloys during steel making and processing
different lifetime fractions of prior LCF at (a) 0%, (b) 10%, (c)
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Fig. 14 e TEM images of specimens at various prior fatigue loadings: (a) as-received, (b) 20% lifetime fraction of 0.4% prior

LCF, (c) 50% lifetime fraction of 0.4% prior LCF, and (d) 20% lifetime fraction of 180 s prior CeF [89].
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such as Sb, Sn and Cu, which have a drastic influence on creep

ductility and therefore need to be strictly controlled [27].

The presence of these elements in steel even at relatively low

percentages byweight tends to reduce the boundary cohesion,
Fig. 15 e a) Effects of impurity elements (Sn, Sb, Cu and S) on cree

at 650 �C (Experimental data are adapted from ref [96]), and b) A

and Al2O3) in Grade 91 steel creep tested at 625 �C and 60 MPa)
creating preferential sites for the nucleation and growth of

creep cavities and consequently leading to a reduction in

creep ductility [96]. Sulphur (S) also exhibits a negative influ-

ence on creep ductility when present in specific quantities as
p ductility parameter reduction of area (%) for Grade 91 steel

ssociation of creep damage with an inclusion cluster (MnS

[26].
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Fig. 16 e Micrograph image showing the development of

creep cavities associated with BN particles in Grade 92

CSEF steel (Adapted from ref [98]).
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demonstrated by previous metallurgical investigations (e.g.

[26,29,84]). It was suggested that the presence of this element

in sufficient quantities would lead to the formation of a large

number density of inclusions such as MnS, which act as

initiation sites for creep cavities, as illustrated in Fig. 15b,

reducing the creep ductility and lowering the creep life [26,29].

Further, the presence of Sulphur precipitates was found to

weaken the interface between matrix and particles (decohe-

sion), leading to increased cavitation and significant re-

ductions in creep ductility [84]. The effects of the impurity

elements on creep ductility (in terms of reduction of area %) of

Grade 91 steel at 650 �C are illustrated in Fig. 15a, which shows

a remarkable reduction in creep ductility for heats incorpo-

rating high levels of impurity elements.

3.2.1.2. Content of boron. Boron (B) is used as an alloying

addition in CSEF steels and under specific heat treatment

conditions to improve the creep performance of these steels

[27]. However, it has been observed that when excessive levels

of Boron are used, this will increase the risk of forming BN

inclusions, Fig. 16, which have negative impacts on creep
Fig. 17 e A schematic showing the classification of the HAZ mi

weldment [33,99].
ductility as these inclusions could act as initiation sites for

creep cavities and therefore reducing creep ductility and creep

rupture life [27,37,38,97,98]. Further, like AlN inclusions, the

formation of BN inclusions can also reduce the amount of

Nitrogen available in thematrix and limit the formation of MX

carbides, which are required to maintain good strength at

high-temperature conditions [25,26].

3.2.2. Effect of material heterogeneity (weld microstructure)
Localised creep damage and failure of welded joints present a

major concern for the structural integrity of high-temperature

components. The susceptibility of the weldment region to

creep damage has been linked with additional variables

pertinent to the weld microstructure which can influence

creep ductility of welded components and increase the risk of

brittle failure. One of these factors is the non-homogenous

microstructure of the heat-affected zone (HAZ) in CSEF steel,

which can be subdivided into three microstructural regions:

the completely transformed zone (CTZ), partially transformed

zone (PTZ) and over tempered zone (OTZ), as shown sche-

matically in Fig. 17 [97e99]. Among the different HAZ regions,

the partially transformed zone shows incomplete dissolutions

of the pre-existing precipitates during welding and inhomo-

geneous distributions of the M23C6 carbides on lath and grain

boundaries [33,98], resulting in less restraining to the grain

boundary sliding and increased cavitation density [33,34,99].

Other microstructural features in CSEF weldment which in-

fluence creep ductility and promote the formation and/or

growth of cavities involve the presence of secondary phase

particles (e.g., Al2O3 and BN phases) above a critical size, which

normally act as potential sites for cavity formation [26,98].

These inclusions are not dissolved in the partial dissolution

zone as they will only dissolve at higher temperatures.
4. Existing creep ductility-based constitutive
models

In this section, the state-of-the-art creep ductility-based

constitutive models are reviewed. Analytical models repre-

senting creep ductility under uniaxial stress state are
crostructure in an as-welded single-pass 9% Cr steel
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Fig. 18 e Comparison of the measured creep rupture

ductility (in terms of reduction of area %) and the predicted

values using Equation (12) for 1CrMoV steel at 550 �C
(Adapted from ref [84]).
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introduced in Section 4.1, while those relevant to multiaxial

creep ductility are investigated in Section 4.2.

4.1. Uniaxial creep ductility models

As discussed in Section 3, creep ductility under uniaxial stress

state is influenced by many factors including operating

conditions such as the applied stress, stress states, tempera-

ture and strain rates. The variation of creep ductility with

these conditions is associated with different void growth

mechanisms, plastic hole growth, diffusion-controlled cavity

growth and constrained cavity growth [83]. On this context, a

number of creep ductility based models have been proposed

to take into account the influence of thesemechanisms on the

uniaxial creep ductility and to represent the three creep

rupture regimes shown in Fig. 7. Some of these models are

briefly reviewed and appreciated below.

4.1.1. R5-2003 assessment procedure
In the R5 assessment procedure (R5-2003), an empirical model

is proposed to characterise the effect of temperature (T) and

creep strain rates ( _εc) on the uniaxial creep ductility (εcu) as

follows [100]:

εcu ¼min

�
εcu;u;max

�
εcu;l;C0exp

�
C1

T

�
_εC2
c

��
(9)

With reference to Equation (9) and Fig. 7, εcu;u represents

uniaxial creep ductility on Regime-I (upper plateau), which

can be determined from accelerated creep tests. εcu;l repre-

sents creep ductility on Regime-III (lower shelf), which can be

measured based on long-term creep tests. The transition

region (i.e., Regime-II), where ductility reduces with a

decrease in creep strain rates, is represented by the expo-

nential term. Ci (i ¼ 0; 1;2) are material constants obtained by

fitting the experimental uniaxial creep rupture data with the

empirical model.

4.1.2. Stress modified ductility approach
The model adopted in the R5-2003 assessment procedure,

Equation (9), has been shown to give conservative predictions

of creep damage at low-stress regime [70]. Therefore, to avoid

these limitations and improve the prediction capability of the

model, a modified ductility model has been proposed by

Spindler [101,102], which considers the effect of stress level on

creep ductility as given below:

εcu ¼min

�
εcu;u;max

�
εcu;l;C0exp

�
C1

T

�
_εC2
mins

C3

��
(10)

where s and _εmin are the applied stress and minimum creep

rate, respectively. The other symbols are as defined earlier.

The modified model, as given by Equation (10), has been

included in the R5-2014 assessment procedure and has shown

more accurate creep damage predictions as opposed to the

former version (R5-2003) [70].

4.1.3. Evans-wilshire model
Evans and Wilshire [103] proposed an empirical relation,

Equation (11), to quantify the effect of stress and temperature

variations on creep ductility under uniaxial stress state. In this
model, the transition region (Regime-II) is represented by an

exponential parametric function of the applied stress and

temperature as expressed below:

εcu ¼minðεcu;u;maxðεcu;l; expðC0 þC1sþC2TþC3sTÞÞÞ (11)

where the constants Ci (i ¼ 0; 1;2;3) are obtained by fitting the

experimental creep rupture data with Equation (11).

4.1.4. Uniaxial ductility model coupled with material pedigree
function
The empirical models introduced above, Equations 9e11,

characterise creep ductility in terms of the strain rates, tem-

perature and stress levels. As discussed in Section 3, creep

ductility is also dependent on chemical composition, which

may exhibit a paramount influence. For low alloy steels such

as CrMoV steel, creep ductility is also influenced by the prior

austenite grain size. To capture the effects of these metal-

lurgical factors on creep ductility, Binda et al. [84] proposed an

empirical model with material pedigree function for 1CrMoV

steel based on Spindler's stress modified ductility model as

given below:

εcu ¼min

�
εcu;u;max

�
εcu;l;C0exp

�
C1

T

�
_εC2
mins

C3 fðMPÞ
��

(12)

where fðMPÞ is a material pedigree function to quantify the

effects of chemical composition and heat treatment condi-

tions on creep ductility. The other symbols are as defined

earlier. The model has shown a good capability to predict

creep ductility characteristics of 1CrMoV steel at 550 �C, as
shown in Fig. 18.

4.2. Multi-axial creep ductility-based models

As components are typically operating under complex multi-

axial stress state conditions, predictive models considering
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the effect of stress state on creep ductility are hugely

important. In the literature, many models have been devel-

oped, which are generally based on the growth of a void in a

deforming medium. These models relate uniaxial creep

ductility to multiaxial creep ductility as a function of the

stress triaxiality factor
�
sm
se

�
. Numerous multiaxial ductility-

based models are reviewed in the following subsections.

Physically based models are reviewed is Section 4.2.1, while

the empirical or semi-empirical models are reviewed in

Section 4.2.2.

4.2.1. Physically based multiaxial ductility models
4.2.1.1. Rice-Tracey model. Rice and Tracey [63] developed a

physically based model, which considers the effect of multi-

axiality on cavity growth in elastic-perfectly plastic materials.

The model expresses the multiaxial ductility factor
�
ε
*
cu
εcu

�
in

term of the stress triaxiality factor
�
sm
se

�
as given in Equation

ε
*
cu

εcu
¼ exp

�
1
2
�3sm

2se

�
(13)

where ε
*
cu is the multiaxial creep ductility; sm and se represent

the hydrostatic stress and effective stress, respectively.

4.2.1.2. Cocks-Ashby model. Another physical-based model is

proposed by Cocks and Ashby [64], which assumes that, under

multiaxial stress states, the growth of grain boundary cavities

occurs due to the power-law creep of the surrounding grains.

The model is expressed as follow:

ε
*
cu

εcu
¼ sinh

�
2
3

�
n�0:5
nþ0:5

�	
sinh

h
2
�
n�0:5
nþ0:5

�
sm
se

i (14)

where n is the stress exponent under the secondary creep.

A ductility exhaustion model is often employed with the

Cocks-Ashbymodel, where creep damage evolution at a given

material point is defined by the following:

du
dt

¼ _εc
ε
*
cu

(15)

Cocks-Ashby model has been widely adopted to compute

the multi-axial creep ductility and to predict creep damage,

crack growth and failure in many engineering materials

under multi-axial stress states [30,49,51,104e106]. The ma-

terial constants in the Cocks-Ashby model for various ma-

terials are listed in Table 2. It can be noted that testing

temperatures of the stainless steel and the carbon steel are at

the very lowest end on the creep range whereas that of P92 is

at the upper end.
Table 2 e Material parameters in Cocks-Ashby model for diffe

Material Temperature (o C)

316H stainless steel [51] 550

Carbonemanganese steel [104] 360

ASME P92 steel [105] 650

316H steel [49] 550
4.2.1.3. Wen and Tu model. Wen and Tu [15] developed a

multiaxial ductility model based on cavity growth and coa-

lescence at grain boundaries, assuming that the growth of

cavities is only controlled by power-law creep. In this model,

the viscoplastic cavity growth mechanism is considered to

control the rate of cavitation growth. The model, Equation

(16), has a similar form to that of Cocks and Ashby model,

except that the sinh function in Cocks-Ashby model is

replaced by an exponential term in Wen-Tu model as given

below, resulting in more reliable multi-axial creep ductility

predictions at lower triaxiality stress state.

ε
*
cu

εcu
¼ exp

�
2
3

�
n�0:5
nþ0:5

�	
exp

h
2
�
n�0:5
nþ0:5

�
sm
se

i (16)

Further, a multi-axial creep constitutive model was pro-

posed based on modified cavity growth and microcrack

interaction theories [15] and given by:

_
ε
c
ij ¼

3
2
Asn�1

eq Sij exp

0
BB@2ðnþ 1Þ
p

ffiffiffiffiffiffiffiffiffiffiffi
1þ 3

n

q u3=2

1
CCAtm (17)

where A;n;m are material constants; Sij and ε
c
ij (i, j ¼ 1,2,3) are

the deviatoric stress tensor and creep strain tensor, respec-

tively. The damage evolution is typically defined as given by

Equation (15).

Wen-Tu ductility-based damage model was applied to

simulate creep damage and crack growthbehaviour in different

engineering materials [107e110] and was generally found to

yield more consistent results of cavity growth rates and multi-

axial creep ductility compared with Cocks-Ashby model [15].

To account for the effects of creep damage and stress state

on creep deformation, an improved multi-axial creep consti-

tutive model was proposed by Wen et al. [44] and imple-

mented to simulate creep crack growth in C-Shaped Tension

and Compact Tension (CT) specimens of 316H steel tested at

550 �C. In their model [44], creep deformation and damage are

coupled as expressed in the below equations:

_
ε
c
ij ¼

3
2
Bsn�1

eq Sij

"
1þ b

�
s1

seq

�2
#nþ1

2

(18)

where B;n are material constants; s1 is the maximum prin-

cipal stress.

b is a stress independent function reflecting material

behaviour and expressed by the following:

b¼ 2r
nþ 1

þ ð2nþ 3Þr2
nðnþ 1Þ2 þ ðnþ 3Þr3

9nðnþ 1Þ3 þ
ðnþ 3Þr4

108nðnþ 1Þ4 (19a)
rent materials.

Creep exponent (n) Uniaxial creep ductility (εcuÞ %
10.62 21

10.0 18

5.23 16

10.18 (average) 7.1 (average)
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Table 3 e Material parameters in Wen-Tu model for different materials.

Material Temperature (oC) A n m Uniaxial creep ductility (εcuÞ %
316H stainless steel [15] 550 2 � 10�19 6.0 �0.434 8

P92 steel [108] 650 1.3 � 10�23 4.36 �0.43 12

T91 steel [107] 550 5.87 � 10�36 13.2 e 28.3

Table 4 e Material constants in Spindler ductility model
for different materials.

Material Temperature (oC) p q

Type 304 stainless steel [114] 593 2.38 1.04

Type 316 stainless steel [114] 593 0.15 1.25

Nickel based superalloy [115] 750 0.15 1.25

CrMoV steel [116] 575 1.5 1.2
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The parameter r characterises the microcrack damage and

primarily depends on the number of micro-cracks per unit

volume and their average diameter [44] and given as follow:

r¼ 2ðnþ 1Þ
p
�
1þ 3

n

�1=3u3=2 (19b)

Table 3 below shows the material parameters of Wen-Tu

damage model for selected materials.

4.2.1.4. Multiaxial ductility-based model involving void shape
change. In the original void growth model proposed by Cocks

and Ashby [64], void is assumed to remain spherical in shape

during creep. Although this assumption is found to be

reasonable for mid stress triaxiality range (2/3 � sm
se

< 2), it is

not applicable when stress triaxiality is significantly lower (1/3

� sm
se

< 2/3) [111]. To overcome this limitation, a micro-

mechanism based void growth model involving void shape

evolution during creep deformation is developed by Hu et al.

[111] based on Cocks-Ashby model. Analytical solutions are

given for the multi-axial creep life and creep ductility

respectively in the following forms:

tf � tnþ 1
_εmin

2
64Zfc

fi

�
1� fh

�n
ð1þ DÞn=2 � �

1� fh
�nþ1 dfh þ

2fc
3

*

�
1� fc

�n
ð1þ DcÞn=2 �

�
1� fc

�nþ1 lnbc;m

3
75

(20)

ε
*
cu � _εmintf þ

4bc;ml

3dg

��
2� 1

bc;m

� ffiffiffiffiffi
f 3c

q
�

ffiffiffiffiffi
f 3i

q �
(21)

where tn and tf are time at void nucleation and creep lifetime,

respectively; ε*cu is the multiaxial creep ductility; _εmin is the

steady state creep strain rate; fh is void area fraction; fi and fc
are void area fractions at nucleation and coalescence,

respectively; bc;m is void aspect ratio at failure under multi-

axial stress state. l is the radius of isolate cylinder and dg is the

grain size. The terms D and Dc in the multiaxial creep lifetime

expression are related to the stress triaxiality ratio m through

the following equations:

D¼3

��
1� fh

�ðm� 1=3Þ
ln fh

�2
(22.a)

At coalescence, Dc is given by:

Dc ¼3

��
1� fc

�ðm� 1=3Þ
ln fc

�2
(22.b)

The model showed good agreements with the multi-axial

creep rupture data and improved predictions of creep life and

multiaxial creep ductility. Further, it was shown that creep
rupture life and creep ductility are significantly affected by the

void shape changes in the range of low stress triaxiality [111].

4.2.2. Empirical and semi-empirical models
4.2.2.1. Manjoine models. Manjoine [112] studied the effects of

stress state on creep ductility of Type 304 steel at 593 �C
and proposed an empirical model where creep ductility is

inversely proportional to the stress triaxiality factor as

follows:

ε
*
cu

εcu
¼ se

3 sm
(23)

In later work by Manjoine [113], another empirical relation

was developed following a series of notched bar tests on a

range of materials to better characterise the multiaxial creep

ductility and creep fracture behaviour characteristics. The

proposed relation is given below:

ε
*
cu

εcu
¼ 2

�
1� sm

3 se

�
(24)

4.2.2.2. Spindler multiaxial ductility model. The multiaxial

ductility models introduced earlier account only for the effect

of stress multiaxiality on cavitation growth without any

consideration to the effect of cavity nucleation on creep

ductility. To overcome this shortcoming, Spindler [114]

developed a semi-empirical ductility model based on the

model developed by Rice and Tracey [63], Equation (13). The

model comprises two terms to capture the effects of multi-

axiality on both cavity nucleation and growth. The cavity

nucleation term is assumed to depend on the maximum

principal stress component while the cavity growth term is

defined in terms of the stress triaxiality as illustrated below:

ε
*
cu

εcu
¼ exp

�
p

�
1�s1

se

�
þ q

�
1
2
� 3sm

2se

��
(25)

where p and q are material constants obtained from fitting

Equation (25) with experimental multi-axial creep rupture

data. The typical values of these constants for a range of

materials are listed in Table 4. It can be noted that Spindler

model can be reduced to that proposed by Rice and Tracey

when p ¼ 0 and q ¼ 1, and it is also identical to that of Man-

joine [113] (Equation (24)) when p ¼ 0 and q ¼ 2lnð2Þ.
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4.2.2.3. Modified Wen-Tu model. In order to avoid an over

conservative estimation of the multi-axial creep ductility

when the stress triaxiality ratio is very large, a modified

ductility-basedmodel was proposed by Zhang et al. [117] based

on Wen-Tu creep damage model and implemented to simu-

late creep damage and crack growth behaviour of 9Cre1Mo

steel at 600 �C [109,117]. In their work, the relationship

between multi-axial and uniaxial creep ductility is defined as

follow:

ε
*
cu

εcu
¼a *

exp
�
2
3

�
n�0:5
nþ0:5

�	
exp

h
2
�
n�0:5
nþ0:5

�
sm
se

iþ b (26)

where a and b are material constants, with typical values of

0.9574 and 0.0426, respectively for 9Cre1Mo steel [117]. This

indicates that themodifiedmodelmaintains a constantmulti-

axial ductility when the stress triaxiality ratio is very large, as

shown in Fig. 19.

4.2.2.4. Multi-scale ductility constraint model. Nikbin [45]

proposed a multi-scale ductility constraint model to predict

creep rupture and crack growth under uniaxial and multi-

axial stress states. The model links the global constraint

(due to geometry) with microstructural constraint (from creep

diffusion) at sub-grain level. In this approach, creep ductility is

defined in terms of Monkman-Grant ductility rather than

creep rupture strain [45], and therefore the accumulation of

creep damage at any time is given by:

u¼
Ztf
0

_εc
ε
*
MG

dt (27)

where ε
*
MG is the multiaxial Monkman Grant ductility, which

can be obtained from void growth models.

In addition, Yatomi and Nikbin [118] presented a semi-

empirical model based on CockseAshby model by noting

that the value of stress exponent (n) lies between 5 and 15 for
Fig. 19 e Comparison of multi-axial creep ductility

predictions obtained by the modified model proposed by

Zhang et al. and Wen-Tu model with the experimental

data of 9Cre1Mo steel at 525 �C (Adapted from ref [117]).
most engineering materials [118], and therefore Cocks-Ashby

model can be further simplified into the following form:

ε
*
cu

εcu
¼ 0:61

sinh
h ffiffiffi

3
p

sm
se

i (28)

5. Appraisal of the existing models and
recommendations

In this section, we offer a comprehensive appraisal of the

existing creep ductility-based models reviewed in the previ-

ous section. The capabilities and advantages of several

commonly used multi-axial creep ductility-based models are

discussed in Section 5.1, while the associated major limita-

tions and challenges are elucidated in Section 5.2. Finally, the

fundamental requirements for future improvement are rec-

ommended in Section 5.3.

5.1. Capabilities and advantages of the existing models

The existing multi-axial creep ductility-based models offer

numerous capabilities and hold several key advantages.

5.1.1. Capability to predict multi-axial creep ductility
Multi-axial creep ductility-based models can reasonably

predict the reduction in creep ductility under multi-axial

stress states, in satisfactory agreement with the experi-

mental observations [76,77,82]. Further, they can provide a

very good approximation of the multi-axial creep ductility for

a range of stress triaxiality ratios, as illustrated in Fig. 20.

5.1.2. Capability to predict multi-axial creep damage and
creep rupture life
In many situations, multi-axial creep ductility-based damage

models have been implemented successfully to predict creep

damage, creep crack growth and creep rupture life of high-
Fig. 20 e Comparison of creep ductility predicted by several

multiaxial creep ductility models with the experimental

data from uniaxial and multiaxial creep tests

(experimental data are adapted from ref [70]).
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Fig. 21 e Variation of creep ductility as measured by

reduction of area over creep life for Grade 92 steel at 650 �C
(adapted from ref [22]).
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temperature components with reasonable accuracy [116,117].

For instance, Wen and Tu [15] performed FE creep damage

analysis using damage mechanics-based material models

coupled with multi-axial creep ductility models based on

power-law creep-controlled cavity growth theory to investigate

the influence of creep ductility on the creep deformation and

crack growth rates in C-Shaped Tension and Compact Tension

specimens of 316H steel tested at 550 �C. Similar investigations

have been conducted to predict creep damage and creep crack

growth behaviour in 9Cre1Mo steel [117] and 316 stainless steel

at 600 �C [44,107] using creep damage models in conjunction

with multiaxial ductility-based models, embedded in a FE

solver. In the aforementioned studies, creep damage distribu-

tion and crack growth behaviour obtained bymulti-axial creep

ductility-based damage models had shown good agreement

with the corresponding experimental data. In addition, creep

ductility-based models have also shown excellent capabilities

to predict creep damage, failure locations and cracking in

welded high-temperature structures under complex multi-

axial stress state conditions with a good agreement with the

experimental observations [43].

5.1.3. Advantages and merits over stress-based CDM models
It is generally believed that ductility-based models can offer

more accurate results than stress-based models e.g., Kacha-

nov type model, provided appropriate knowledge of creep

strain is available. In this regard, Song et al. [108] performed

numerical analysis to investigate creep damage behaviour of

small punch creep tests by employing different creep damage

constitutive models. In their work, the ductility exhaustion

model was found to yield more robust predictions concerning

creep crack growth behaviour, failure position and creep

rupture life than the stress-based models [108]. Another key

advantage offered by creep ductility-basedmodels is that they

require relatively fewermaterial constants comparedwith the

stress-based CDMmodels, which in turn promotes their wider

applicability for creep damage and creep life assessments.

Creep ductility-based models also enable the prediction of

creep damage and crack growth rates for materials with

different levels of creep ductility [43,119], which may not be

the case with the stress-based models.

5.2. Challenges and limitations of the existing models

Despite of the advantages and capabilities given in the pre-

vious section, the existing creep ductility-based models still

have some limitations, which need to be addressed as well.

These are outlined in the following subsections.

5.2.1. Consideration of metallurgical risk factors in CSEF
steels
The existing creep ductility-based models reviewed in this

work were not developed specifically to suit the characteris-

tics of CSEF steels and their microstructural features. As

discussed in Section 3, there are a set of metallurgical risk

factors linked to the microstructure of 9e12% Cr steels, which

affect their creep damage susceptibility. Such critical factors

are, however, disregarded by the current creep ductility-based

models, which in turn limit their applicability for the CSEF

steels. Although there have been some attempts to model the
effects of material microstructure and metallurgy on creep

ductility through material pedigree function [84], such

approaches are statistically based and may not offer a com-

plete physical understanding of the effects of metallurgical

variables on creep ductility and creep damage.

5.2.2. Representation of damage mechanisms
Most creep ductility damage models incorporate a single

damage variable to represent, inmany cases,material damage

due to cavitation, which does not necessarily reflect thewhole

fracture and damagemechanisms experienced by CSEF steels.

It is expected that, as the temperature and stress level change,

more than a single damage mechanism may operate [21].

5.2.3. Long-term embrittlement behaviour
An accurate estimation of the long-term creep ductility (long-

term embrittlement) constitutes another challenge for many

creep ductility-based models. It has been experimentally

observed that some CSEF steel grades exhibit a reduction in

creep ductility at longer terms [22,37,87] due to possible voids

coalescence and micro-cracks formation, as shown in Fig. 21.

Nevertheless, creep ductility is often calculated based on

the average ductility values at different stress levels

[15,50,109,117], which is a compromise and therefore not very

accurate. It is expected that there is a mechanism change that

governs the transition from high ductility to lower ductility at

longer terms.

5.2.4. Stress state representation
It is generally believed that at lower degrees of multi-axial

stress states, the lode parameter has a paramount effect on

critical failure strain and void coalescence [70,120]. Review of

the currentmodels has shown that themulti-axial stress state

is mainly defined through the stress triaxiality ratio
�
sm
se

�
while
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the effect of lode parameter on creep ductility is not consid-

ered. Another limitation of some multi-axial creep ductility-

based models, e.g., Cocks-Ashby model, is manifested by the

infinite values predicted for creep ductility at low-stress

triaxiality ratio, as shown in Fig. 21, which is not realistic

and should not be used for creep life assessments. Previous

investigations also pointed out that (under bi-axial loading

conditions, with biaxiality ratio less than zero) the Cocks-

Ashby model may give rise to non-conservative predictions

[15,44]. In some situations, ductility exhaustion models have

shown very limited capability to predict creep damage and

creep rupture lives under bi-axial loading conditions, with

more than 30% estimated error in creep life predictions [117],

which emphasises the need for more robust models with a

better representation of multi-axial stress states.

5.2.5. Consideration of cavity nucleation effects on creep
ductility and damage
Needless to say, numerous multi-axial ductility-based models

disregard the effect of cavity nucleation on creep ductility

because the drivingmechanisms bywhich cavities nucleate are

not fully understood [70]. Although in the Spindler model,

Equation (25), anadditional term is added toquantify the effects

of cavity nucleation on the multi-axial creep ductility, the

modelwas derivedbasedonfitting creep ductility experimental

data of austenitic stainless steel and hencemaynot necessarily

represent creep ductility characteristics of the CSEF steels.

5.2.6. Practical challenges
In this section, wewill address some of the practical challenges

associated with the implementation of ductility-based models

for real-life applications. These are summarised below:

1. The complexity to accurately define the stress state in an

operating component.

2. The complexity and uncertainty to obtain the active me-

chanical loads on a complex system.

3. Availability of material properties relevant to the material

and age in service. For instance, how to reliably determine

long-term creep properties.

Such concerns emphasise the need for relatively easy to

deploy predictive models without compromising the model

accuracy and the technical details.

5.3. Recommendations for future improvements

Developing improved creep ductility-based damage models

for the CSEF steels is challenging yet a necessary step towards

amore robust approach,which takes into account the range of

relevant stress and temperature combinations and metallur-

gical risk factors. In view of the main limitations and chal-

lenges presented in the previous section, it is evident that

future improvements need to consider several aspects to

overcome these deficiencies:

1. Themicrostructureeproperty relationship should be at the

heart of developing future ductility-based models to

appreciate the complex metallurgy of the CSEF steels. This
necessitates the incorporation of additional state variables

with a clear physical insight and linked to material

microstructure and thus enable the effects of the key

metallurgical constraints to be captured by the models.

2. Future improvements also need to clearly define the

transition behaviour in creep ductility in a wide range of

stresses and temperatures to eliminate any un-

certainties with regards to the creep fracture behaviour

of the CSEF steels and to predict more accurately the

long-term embrittlement observed in some CSEF steel

grades.

3. Future models are also required to consider more robustly

the wide variability of the multi-axial creep behaviour. For

this purpose, stress state representation should rely not

only on one factor, e.g., the stress triaxiality ratio but also

on other parameters such as the lode parameter (which is a

function of the third invariant of the stress deviator and

thought to control the void shape), particularly at lower

triaxiality ranges.

4. It has been shown that the creep performance of the CSEF

steel weldments is largely affected by the creep ductility

of the base metal [97,98]. As such, future models should

offer the capability to predict creep damage susceptibility

of the CSEF steel weldments (BM, WM, HAZ) and to eval-

uate the micro-damage, cavity rate and distribution for a

specific alloy composition under given stress and

temperature.

5. Since creep ductility is related to creep cavitation, an

improved physical understanding of the mechanisms

associated with cavity nucleation and evolution utilizing

advanced tools such as X-ray synchrotron tomography is

crucial to developing improved ductility based constitutive

models.
6. Summary

Creep ductility has important implications in high-

temperature material performance and structural integrity

assessment. In the present study, creep ductility definition,

experimental methods, dependency, and some constitutive

material models are reviewed. An appraisal of the state-of-

the-art ductility-based damage models is presented, where

the capabilities of the existing models are appreciated and

critically examined. On this basis, the major limitations of the

current models are identified and the requirements for future

improvement are addressed.

Undoubtedly, proper characterization/measurement of

the multi-axial creep ductility plays an important role in

accurate creep damage and creep rupture lives prediction.

Thus, the popular multi-axial notched bars creep ductility

tests should be reappreciated and improved in future work.

Of particular relevance to notched bars design is the degree

of multi-axiality, level of plastic strain, the extent of creep

deformation and local fracture behaviour which govern the

nature of multi-axial stress states and geometry-induced

mechanical constraints. These aspects require further in-

vestigations through theoretical study, experiment testing

and numerical modelling. Additionally, much more
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emphasis should be placed on understanding the link be-

tween creep damage susceptibility and the metallurgical and

mechanical constraints in CSEF steels in order to develop

improved physically-based constitutive models, optimise

alloy composition and design components of better

performance.
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