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Recent work has shown the effectiveness of tensor network methods for computing large deviation
functions in constrained stochastic models in the infinite time limit. Here we show that these
methods can also be used to study the statistics of dynamical observables at arbitrary finite time.
This is a harder problem because, in contrast to the infinite time case where only the extremal
eigenstate of a tilted Markov generator is relevant, for finite time the whole spectrum plays a role.
We show that finite time dynamical partition sums can be computed efficiently and accurately in
one dimension using matrix product states, and describe how to use such results to generate rare
event trajectories on demand. We apply our methods to the Fredrickson-Andersen (FA) and East
kinetically constrained models, and to the symmetric simple exclusion process (SSEP), unveiling
dynamical phase diagrams in terms of counting field and trajectory time. We also discuss extensions
of this method to higher dimensions.

Introduction.– Large deviation (LD) theory provides a
powerful framework to investigate the statistical fluctua-
tions of time-averaged observables in stochastic systems
(for reviews, see e.g. Refs. [1–4]). At long times (as-
suming finite correlation times) the probabilities of such
observables obey a LD principle, and the corresponding
scaled cumulant generating function (SCGF, see below)
can be retrieved from the leading eigenvalue of the tilted
(or deformed or biased) generator [1]. For large sys-
tems, estimating this eigenvalue is difficult, so one resorts
to sampling the corresponding biased trajectory ensem-
ble via numerical methods such as trajectory importance
sampling [5–8], population dynamics [9–11], optimal con-
trol [12–18], or machine learning approaches [19–24]. For
lattice models, recent work has focused on the use of
tensor network (TN) techniques to approximate the lead-
ing eigenvector of the tilted generator through variational
means [25–27] or power methods [28].

A harder problem is that of computing the statistics
of time-averaged observables for finite time [29–31]. The
reason is that away from the long time limit the corre-
sponding dynamical partition sums (i.e., moment gen-
erating functions) do not obey a LD principle in time
- only obeying an LD principle in space for large sizes
- and as a consequence they are not determined only
by the leading eigenvalue of the tilted generator, but by
their whole spectrum. If time is very short, one can get
away with direct sampling, but for intermediate times
the usual sampling approaches fall short [32]. Here we
develop a scheme to study these rare events by imple-
menting well-developed TN techniques to simulate time
evolution. This allows us to calculate dynamical parti-
tion functions for trajectories of arbitrary time extent.
Furthermore, we show how to use the results here to di-
rectly simulate stochastic trajectories in finite-time tilted
ensembles at small computational cost, thus generalising

the method of Ref. [32].
We focus for concreteness on one dimensional kinet-

ically constrained models (KCMs) - often used in the
modelling of structural glasses [2, 33–35] - specifically the
Fredrickson-Andersen (FA) [36] and the East [37] models,
and on the symmetric simple exclusion process (SSEP).
Both KCMs and SEPs display phase transitions in their
dynamical LDs in the long-time limit [38–44]. With the
methods developed here we are able to construct the dy-
namical phase diagram both as a function of counting
field and of trajectory time, determining finite time scal-
ing of active-inactive phase transitions in these models,
and uncovering the emergence with time of the correlated
structure of the active phase in the East model and the
SSEP.

Models.– The three models we consider live in a one di-
mensional lattice of N sites, with binary variables nj =
0, 1 for each j = 1 · · ·N , evolving under continuous-time
Markov dynamics with local transitions. The probability
for each configuration |x〉 = |n1 · · ·nN 〉 at time t, encoded
in a vector |P (t)〉 =

∑
x P (t, x) |x〉, evolves deterministi-

cally via a Master equation, ∂t |P (t)〉 = W |P (t)〉, where
W is the Markov generator. Being a stochastic operator
W has a structure W = K−R, with an off-diagonal ma-
trix of transition rates K, and a positive diagonal matrix
of escape rates R.

For the KCMs the generator reads

WKCM =
∑
i

fi
[
cσ+
i + (1− c)σ−i

− c(1− ni)− (1− c)ni
]
, (1)

where c ∈ (0, 1/2] defines the site occupation at equilib-
rium, and σ±i are the Pauli raising and lowering operators
at site i. Spin flips are only permitted if the kinetic con-
straint, fi, is satisfied. We consider two paradigmatic
KCMs, the Fredrickson-Andersen (FA) [36] model and
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the East [37] model. They are defined by the respective
constraint functions

fFA
i = ni−1 + ni+1, fEast

i = ni−1. (2)

We consider lattices with open boundary conditions
(OBC) to allow for efficient tensor network contractions.
For numerical convenience, we choose the fixed bound-
aries n1 = nN = 1 for the FA [45] model and n1 = 1 for
the East model. The corresponding stationary states are
product states,

|ssFA〉 = |1〉 ⊗ [(1− c) |0〉+ c |1〉]⊗N−2 ⊗ |1〉 , (3)

|ssEast〉 = |1〉 ⊗ [(1− c) |0〉+ c |1〉]⊗N−1
. (4)

The third model we consider is the symmetric simple
exclusion process (SSEP) whose generator reads

WSSEP =
1

2

∑
i

[
σ+
i σ
−
i+1 + σ−i σ

+
i+1 (5)

− (ni + ni+1) + 2nini+1

]
For the SSEP we consider OBC such that particles can
enter and leave at the boundaries with rate 1/4. The
stationary state is |ssSSEP〉 = 2−N |−〉 = 2−N

∑
x |x〉,

with the “flat” state 〈−| being the leading left eigenvector
of each generator above.

Dynamical rare events and LDs.– We now consider
the ensemble of all possible trajectories {ωα} with trajec-
tory time t, where ωα = {x0 → xt1 → · · · → xt} defines
jumps to configurations xtk at times tk. The probabil-
ity of observing the value K(ωα) = K of some time-
integrated observable K is

Pt(K) =
∑
α

π(ωα)δ(K(ωα)−K), (6)

where π(ωα) defines the probability of observing the tra-
jectory. The corresponding moment generating function
(or trajectory partition sum) is

Zt(s) =
∑
α

π(ωα)e−sK(ωα) (7)

where the counting field s is conjugate to the observable.
For large times, both Eqs. (6-7) take a large deviation

(LD) form in time [1, 38, 41, 46], Pt(K) � e−tϕ(K/t) and
Zt(s) � etθ(s). The LD rate function ϕ(K/t) and the
scaled cumulant generating function (SCGF) θ(s) play
the roles of a trajectory entropy density and a free-energy
density, respectively, and are related through the Legen-
dre transform θ(s) = −mink [sk + ϕ(k)].

The partition sum Eq. (7) can be written as

Zt(s) = 〈−|etWs |ss〉 (8)

in terms of the tilted generator Ws [1, 38, 41, 46]. In what
follows we focus on the dynamical activity [38, 41, 46,

FIG. 1. Demonstration of the methods. East model at
c = 0.5, N = 100 and s = 0.1. (a) Dynamical activity 〈k〉
from tMPS (black line), TPS with no auxiliary dynamics (red
circles), TPS with the LD eigenvector auxiliary dynamics via
vMPS (blue squares), and TPS with a tMPS reference dy-
namics (green pentagons). (b) Time-dependent occupations
(top) and instantaneous activity (bottom) from MPS time-
evolution (black line) from direct sampling with a tMPS aux-
iliary dynamics (green pentagons / bars).

47]), that is, the total number of spin flips, as a trajectory
observable. In this case, Ws = e−sK − R. While for
large times all that is needed to determine Eq. (8) is the
dominant eigenstate of Ws, for finite times the whole
spectrum of Ws is required.

Finite time statistics from MPS.– The models we
consider obey detailed balance. This allows us to write
Ws in a Hermitian form through a similarity transforma-
tion independent of s [41], Hs = P−1/2 Ws P1/2, where
P1/2 is a diagonal matrix of probability amplitudes at
equilibrium (for the SSEP, P is the identity). As a conse-
quence the leading eigenvalue of H obeys a Rayleigh-Ritz
variational principle, allowing the application of varia-
tional methods such as the density matrix renormalisa-
tion group (DMRG) [48]. We then write Eq. (8) as

Zt(s) = 〈ψ0|etHs |ψ0〉 , (9)

where |ψ0〉 = P−1/2 |ss〉 =
[
〈−|P1/2

]†
. It is useful to

define the time evolved vector |ψτ 〉 = eτHs |ψ0〉 (τ ≤ t).
The partition function can then be written as Zt(s) =
〈ψt−τ |ψτ 〉, and in particular can be determined by only
evolving the vector by τ = t/2.

The average dynamical activity (per unit time and site)
of the biased ensemble of trajectories follows from the
partition sum,

k(s) = − 1

Nt

d

ds
log(Zt(s)). (10)

We can also calculate time-dependent configurational ob-
servables for any 0 ≤ τ ≤ t,

〈O(τ)〉s = Zt(s)
−1 〈ψ0|e(t−τ)HsOeτHs |ψ0〉

= Zt(s)
−1 〈ψt−τ |O|ψτ 〉 . (11)



3

FIG. 2. Rare event statistics. The rare event statistics for the East model with c = 0.5 (top) and the FA model with c = 0.2
(middle) and SSEP (bottom). (a) The dynamical activity k(s, t) as a function of s and inverse time 1/t for N = 100. The
red dotted line indicates our estimate of the transition point. (b) The transition point for various system sizes N ∈ [10, 200].
The dotted lines indicate the infinite time value (see Refs. [25, 27]), and the dashed line shows sc(N, t) ∼ t−1. (c) The same
data is shown in (b) but with sc(N, t) scaled by sc(N) and time scaled by N−α, where α is the critical exponent extracted
from sc(N). The dotted line shows where the y-axis is one, and the dashed line shows t−β . The sum of both lines is given
by the dashed-dotted line. (d) The estimate of the rate function Φt(k) defined in Eq. (13). The dashed line shows a Poisson
distribution with the equilibrium average as its mean. All of the data is calculated using the dynamical partition sum Zt(s)
from tMPS.

In order to compute the time-evolved state |ψt〉 we
use methods from quantum many-body physics, in par-
ticular, matrix product states (MPS) (for reviews, see
Refs. [49, 50]) [51]. Here we use both variational opti-
mization of MPS (vMPS, e.g. [25, 49]), and time-evolved
MPS (tMPS, e.g. [52]). Notice that for long times, |ψτ 〉
becomes close to the leading eigenvector of Ws. We ex-
ploit this fact to simulate evolution for long times with
higher precision, see the Supplemental Material [53] for
details.

In Ref. [32], we used the MPS approximation (from
vMPS) to the ground state of Hs to construct a near-
optimal dynamics, which when supplemented with tra-
jectory importance sampling (specifically transition path
sampling or TPS [5]), allowed us to efficiently simulate
trajectories in large time tilted ensembles. Here we ap-
ply the same scheme, but instead use the time-evolved
state |ψt/2〉. We construct a time-independent dynamics
which approximates the optimal (or Doob) dynamics at
the centre of finite-time trajectories under tilting [54].

Figure 1(a) compares various sampling methods in the
East model at s > 0. The dynamics is active at short
times (due to initial conditions) and inactive at large
times [25, 38, 41]. We show the activity from the parti-
tion sum calculated via MPS time-evolution (black line)

as a function of trajectory length. We also show sam-
pling with TPS with the original dynamics (red circles);
this method only accounts for the dynamical activity 〈k〉
at short times, and fails at long times. The methods
introduced in Ref. [32] constructs the long-time optimal
(Doob) dynamics with the approximate leading eigen-
state from vMPS. We then apply TPS with this dynamics
to sample trajectories for arbitary time. This accounts
for 〈k〉 at long times [32], but fails at short times. If
we adopt this method, but replace the MPS used in the
auxiliary dynamics with the time evolved state (green
pentagons) we get accurate results for the activity for all
trajectory lengths. Despite the fact that the exact Doob
dynamics for finite time is in general time-dependent [55],
this latter approach with a time-independent dynamics
for each trajectory length t is efficient enough for TPS to
converge to the actual finite-time tilted ensemble, thus
correcting any discrepancies. In [53] we provide a de-
tailed comparison. Figure 1(b) shows the averaged time-
dependant occupations 〈n(τ)〉s (top) and instantaneous
activity 〈k(τ)〉s (bottom) for some fixed trajectory time
t = 100, generated from the s-ensemble at s = 0.1 for
both tMPS and tMPS+TPS.

Finite time scaling of active-inactive transition.–
The three models we study here display an LD phase
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FIG. 3. Structures in the active phase. We show the average occupations at the center of the trajectory 〈ni(t/2)〉s for
s = −0.1 for the (a) East model and (b) FA models. The left panels of each show the lattice average for a range of s and t with
c = 0.05, whilst the right panels show the occupations at each site for c = 0.05 (top) and c = 0.5 (bottom), with s = −0.1.
We show the same for the SSEP in (c) but with the nearest neighbour correlations Ci(t/2). The right panels are for s = −0.1
(top) and s = −1.0 (bottom). Dotted lines show the expected value at infinite times. All observables are calculated from the
time-evolved MPS |ψt/2〉.

transition [38, 40, 41, 43] in the long time and large size
limit between a dynamical phase where activity is exten-
sive in space and one where activity is subextensive. The
finite size scaling analysis of this transition in the long
time limit has been studied theoretically [40, 42, 56–58]
and numerically [25, 57]: for finite size the active-inactive
transition is smoothed into a sharp crossover located at
sc(N, t =∞) > 0, which decreases as an inverse power of
the system size. In general, however, the location of the
transition point depends both on time and size, sc(N, t),
but a detailed numerical analysis of the finite time scal-
ing has not been possible to date due to the difficulty
of simulating efficiently rare trajectories at intermediate
times [32]. With the approach presented above we can
now investigate this issue in detail.

Figure 2(a) shows the dynamical activity k(s) as a
function of s and inverse time t−1 (East model, top row;
FA model, middle; SSEP, bottom). There is a transition
from a high activity (light) to low activity (dark) as s is
increased which becomes sharper and moves to smaller
s with increasing time. The point sc(N, t) (shown by
the red dashed line) is that of the peak in the dynamical
susceptibility χ(s, t) = dk(s)/ds. These dynamical phase
diagrams are reminiscent of those of (first-order) quan-
tum phase transitions [59], with s as an applied field and
the inverse time as temperature.

The scaling of the transition point is shown as a func-
tion of (inverse) time for multiple system sizes N ∈
[20, 200] in column (b) of Fig. 2. For small times the
transition point scales approximately as sc ∼ t−1 for the
three models. When time becomes large enough finite-
size effects start to dominate. For simplicity, we use the
approximate form

sc(N, t) ≈ sc(N) + sc(t), (12)

where sc(N) ∼ N−α can be extracted from vMPS [25,
27]. For the FA and East models the exponent α > 1

[25], while for the SSEP we find the expected α ≈ 2 [40].
In column (c) of Fig. 2 we show how the sc(N, t) curves
can be collapsed, allowing us to estimate sc(t) ∼ t−β . We
find β ≈ 1 for all models.

Also important to the rare event statistics is the prob-
ability distribution of the dynamical activity, Pt(K).
While for finite times Zt(s) and Pt(K) do not obey a
LD principle in time, for large sizes they still obey one in
system size, Zt(s) � eNΘ(s,t) and Pt(K) � e−NΦt(K/N).
We can therefore obtain the time-dependent rate func-
tion Φt(K) through the Legendre transform

Φt(k) = −max
s

[Θ(s, t) + sk] , (13)

where Θ(s, t) = N−1 logZt(s). From the numerical esti-
mate of Zt(s) we can therefore estimate Φt(K/N) for all
times. Column (d) of Fig. 2 shows the corresponding rate
functions for system size N = 100. For small times, the
distribution of the activity is close to Poissonian (dashed
line), in agreement with the absence of a transition. As
time increases the rate function broadens into the char-
acteristic shape of a first order phase transition [25, 38].

Structure of the active phase.– Long time trajecto-
ries with an atypically large activity are known to display
an interesting structure in two of the models we consider
here [25, 43, 60]. Our finite time method allows to study
how such structure depends on the trajectory length.

In Fig. 3(a), we show the average occupation at the
mid point of the dynamics. The left panel shows the
lattice averaged occupations 〈n(t/2)〉s at time τ = t/2 for
ensembles of trajectories with total time t, as a function
of s for various t, at c = 0.05. The panels on the right
show the average spatial profile 〈ni(t/2)〉s at s = −0.1
for c = 0.05 (top) and c = 0.5 (bottom). In both cases,
the average density is spatially featureless at short times,
but arranges to maximise activity at long times. For c =
0.05 it does so by forming an anti-correlated structure,
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while these anti-correlations are absent for c = 0.5 (cf.
the long time case [60]). Figure 3(b) shows the same for
the FA model, where there is no appreciable structure
forming for small c. Notice also from the left panels the
longer times needed to reach the LD behaviour in the
East compared to the FA model.

In Fig. 3(c) we quantify the local structure of the SSEP
in terms of the nearest-neighbour correlations

Ci(t) = 〈nini+1(t)〉s − 〈ni(t)〉s 〈ni+1(t)〉s , (14)

and the lattice average C(t) = (N − 1)−1
∑N−1
i=1 Ci(t).

The right panels show a growth of anti-correlated order
with increasing trajectory length towards the “hyperuni-
form” arrangement at long times, cf. Ref. [43].

Conclusions.– We have implemented a time evolution
scheme using MPS to study the rare events of one dimen-
sional KCMs in finite-time trajectories. In this way we
have extended recent efforts on the long-time LD statis-
tics via TNs to the arguably harder problem of the LDs
away from the long time limit. We showed how to di-
rectly compute dynamical partition sums, and we derived
an efficient sampling scheme for finite-time rare trajecto-
ries. Understanding the finite-time behaviour of dynami-
cal systems is significant, as the times required to observe
long-time behaviour can be too large to implement exper-
imentally. A next step would be to extend these ideas to
dimensions larger than one. A possibility could be to im-
plement sampling through two dimensional TNs, such as
PEPS (e.g. [61, 62]), which have already proven useful
in studying the LDs in the long-time limit of two dimen-
sional exclusion processes [28]. While bond dimensions
will be limited in this case, using a time evolution scheme
like we presented here one could approximate the refer-
ence dynamics for the centre of trajectories (i.e. evolve
by etWs/2) alongside a scheme such as TPS to obtain re-
liable results. Another direction would be to apply the
methods demonstrated here to driven problems, such as
currents in exclusion processes. Here we cannot exploit
hermiticity, and would have to compute the time-evolved
left and right eigenvectors. We hope to report on such
studies in the near future.
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[32] L. Causer, M. C. Bañuls, and J. P. Garrahan, Phys. Rev.
E 103, 062144 (2021).

[33] F. Ritort and P. Sollich, Adv. Phys. 52, 219 (2003).
[34] D. Chandler and J. P. Garrahan, Annu. Rev. Phys.

Chem. 61, 191 (2010).

http://dx.doi.org/10.1016/j.physa.2017.12.149
http://dx.doi.org/10.1140/epjb/e2020-100605-3
http://dx.doi.org/10.1140/epjb/s10051-021-00164-1
http://dx.doi.org/10.1140/epjb/s10051-021-00164-1
http://dx.doi.org/10.1103/PhysRevE.97.032123
http://dx.doi.org/10.1007/s10955-020-02589-x
http://dx.doi.org/10.1007/s10955-020-02589-x
https://projecteuclid.org:443/euclid.cis/1119639799
https://projecteuclid.org:443/euclid.cis/1119639799
http://dx.doi.org/10.1103/PhysRevLett.96.120603
http://dx.doi.org/10.1103/PhysRevLett.96.120603
http://stacks.iop.org/1742-5468/2007/i=03/a=P03004
http://stacks.iop.org/1742-5468/2007/i=03/a=P03004
http://dx.doi.org/10.1103/PhysRevLett.120.210602
http://dx.doi.org/10.1103/PhysRevLett.120.210602
http://dx.doi.org/10.1103/PhysRevE.100.052139
http://dx.doi.org/10.1103/PhysRevE.100.052139
http://dx.doi.org/10.1063/1.5128956
http://dx.doi.org/10.1063/1.5128956
http://dx.doi.org/10.1063/1.5143144
http://dx.doi.org/10.1063/1.5143144
http://dx.doi.org/10.1088/2632-2153/ab95a1
http://dx.doi.org/10.1088/2632-2153/ab95a1
http://dx.doi.org/10.1088/1367-2630/abd7bd
http://dx.doi.org/10.1088/1367-2630/abd7bd
http://dx.doi.org/10.1103/PhysRevLett.127.120602
http://dx.doi.org/10.1063/5.0015301
http://dx.doi.org/10.1063/5.0015301
http://arxiv.org/abs/2105.04321
http://arxiv.org/abs/2107.03348
https://link.aps.org/doi/10.1103/PhysRevLett.123.200601
https://link.aps.org/doi/10.1103/PhysRevLett.123.200601
http://dx.doi.org/10.1103/PhysRevE.100.022101
http://dx.doi.org/10.1103/PhysRevE.100.022101
http://dx.doi.org/10.1103/PhysRevE.102.052132
http://dx.doi.org/10.1103/PhysRevLett.125.140601
http://dx.doi.org/10.1103/PhysRevLett.125.140601
http://dx.doi.org/10.1103/PhysRevE.95.012102
http://dx.doi.org/10.1103/PhysRevE.95.012102
http://dx.doi.org/10.1103/PhysRevE.95.062134
http://dx.doi.org/10.1103/PhysRevE.95.062134
http://dx.doi.org/10.1088/1742-5468/ab43d5
http://dx.doi.org/10.1088/1742-5468/ab43d5
http://dx.doi.org/10.1103/PhysRevE.103.062144
http://dx.doi.org/10.1103/PhysRevE.103.062144


6

[35] J. P. Garrahan, P. Sollich, and C. Toninelli, in Dynam-
ical Heterogeneities in Glasses, Colloids, and Granular
Media, International Series of Monographs on Physics,
edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipel-
letti, and W. van Saarloos (Oxford University Press,
Oxford, UK, 2011).

[36] G. H. Fredrickson and H. C. Andersen, Phys. Rev. Lett.
53, 1244 (1984).
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