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Unidirectional (chiral) emission of light from a circular dipole emitter into a waveguide is only
possible at points of perfect circular polarisation (C points), with elliptical polarisations yielding
a lower directional contrast. However, there is no need to restrict engineered systems to circular
dipoles, and with an appropriate choice of dipole unidirectional emission is possible for any elliptical
polarization. Using elliptical dipoles, rather than circular, typically increases the size of the area
suitable for chiral interactions (in an exemplary mode by a factor ∼ 30), while simultaneously
increasing coupling efficiencies. We propose illustrative schemes to engineer the necessary elliptical
transitions in both atomic systems and quantum dots.

Introduction - Nanostructures are often employed to
finely control light. A common application is confin-
ing light into narrow channels to maximise the interac-
tion probability between photons and a matter system,
such an atom or quantum dot (QD) located at the focus
point, a situation sometimes called the “1D atom” [1–3].
The light propagating through these narrow channels has
components of transversely rotating (“rolling”) electric
fields [4], a consequence of Gauss’ law [5]. This rolling
polarisation can give rise to chirality, a near-field effect
where atomic transitions described by circular dipoles ra-
diate in a preferred direction [6–9].

These chiral behaviours have been recognised as a new
tool in the development of light-matter interfaces [10].
One application is constructing on-chip quantum memo-
ries with charged QDs, the qubit-states of which possess
oppositely handed circular dipoles. Without chirality dis-
tinguishing these dipoles in-plane is cumbersome: requir-
ing the collection and interference of beams propagating
in orthogonal directions [11].

Perfect chirality (100% emission in a single direction)
is frequently pursued by attempting to place the emitter
at a point of perfect circular polarisation (a C point).
These points are scarce. In nanofibre based waveguides
only elliptical polarisation is practically accessible [12],
while nano-beam and photonic crystal structures support
circular polarisation at a few accessible locations, but the
light field is elliptically polarised over the majority of the
mode volume [5, 13, 14].

However, in the typical case of elliptical polarisation
perfect chiral behaviour is still possible given the correct
dipole [8, 12, 15–18]. This suggests the alternative strat-
egy of engineering the emitter dipole, the topic of this let-
ter. This approach is attractive for quantum light-matter
interfaces as higher coupling efficiencies will typically be
possible using elliptical polarisation.

Emission - We begin with a 1D waveguide support-
ing a single forward and single backward propagating
mode described by classical, complex electric fields Ef (r)
and Eb(r). Time-reversal symmetry requires, Ef = E∗b .
Light is emitted by a matter system (MS), modelled as a
two level quantum system with energy levels connected
by an optical dipole transition with dipole moment d.
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FIG. 1: (a) Simulation of a circular dipole source
located at a point of elliptical polarisation in a photonic
crystal waveguide. Light is emitted in both directions
but the forwards direction is preferred. (b) Replacing
the circular dipole source with the depicted elliptical
one results in unidirectional emission as this dipole is
orthogonal to the polarisation of the backward mode.

The MS could represent an atom or QD for example. It
is placed at a location in the waveguide, r, and interacts
with the electric fields at this location.

From Fermi’s golden rule [19], the likelihood of the
excited state decaying via spontaneous emission in the
forwards direction is proportional to |d∗ · Ef |2 while for
the backwards direction it is |d∗ ·Eb|2.

When the local polarisation is elliptical, as depicted in
Fig.1(a), these dot-product rules indicate that a circular
dipole radiates in both directions in the waveguide, but
with differing intensities. This is confirmed using a Finite
Difference Time Domain simulation, Fig.1(a)[20][21].

However, there will always be a dipole orthogonal to
the polarisation of the backwards mode, d∗⊥ · Eb = 0, so
that there is no emission backward. For any polarisation
except linear, this dipole will be non-orthogonal to the
polarisation of the forwards mode, d∗⊥ · Ef 6= 0 result-
ing in emission in only the forward direction [8, 12, 15–
18]. An example is shown in Fig.1(b). By setting the
dipole’s long axis orthogonal to the long axis of the polar-
isation the linear components have been cancelled, leav-
ing only a circular-like effect (unidirectional emission).
This demonstrates that the directional contrast is not in
general limited by the degree of circular polarisation, and
can be unity with any polarisation (except exactly linear)



2

given the correct emission dipole.

The chirality can be measured using the directional
contrast, the difference between the power radiated for-
wards and backwards divided by the sum of the two,
D = (|d∗ ·Ef |2 − |d∗ ·Eb|2)/(|d∗ ·Ef |2 + |d∗ ·Eb|2). For
a circular dipole it is equal to the (normalised) Stokes
parameter describing the degree of circular polarisation
D = S3 = 2 Im(E∗xEy)/|E|2 [22]. In figure 2(a) we assess
a typical photonic crystal waveguide mode with wavevec-
tor kx = 0.395(2π/a), for lattice constant a [23]. The
hole radii/slab height are r = 0.3a and h = 0.6a respec-
tively [24]. The polarisation varies spatially, such that
a circular dipole is strongly directional (|D| ≥ 0.9) over
small areas as indicated by the darkest shading. How-
ever, for each location (except on lines of zero area) there
is a dipole that is unidirectional. A specific elliptical
dipole is shown, which is “half circular” in the sense that
S3 = S1 = 1/

√
2, with S1 = (|Ey|2 − |Ex|2)/|E|2 the

Stokes parameter for rectilinear polarisation. It is no-
ticeable that with this dipole a far larger area in the
waveguide is useful for unidirectional coupling. Finally
we mark the areas for which there exists a dipole that is at
least half-circular (S3 ≥ 1/

√
2) which has |D| ≥ 0.9. This

area is ∼ 30 times larger than that in which |D| > 0.9 oc-
curs with a circular dipole. Had we considered |D| > 0.95
the increase would instead be ∼ ×45 [19].

The two crucial parameters for a chiral light-matter
interface are the directional contrast and the fraction
of light that is emitted into the waveguide, known as
the Beta factor [25]. We have shown that one can
recover high directional contrast with elliptical polar-
isation. However, it is important to assess how this
will effect the Beta factor, which is largely determined
by the coupling rate between the MS and waveguide
(∝ |d∗ ·Ef |2 + |d∗ ·Eb|2). Typically a higher electric field
intensity will be possible away from a C point [25, 26].
However, away from the C point the polarisations of the
forwards and backwards modes are non-orthogonal, and
thus the dipole orthogonal to the backward mode has
poorer overlap with the forward mode. Accounting for
both effects the overall unidirectional coupling strength
varies as S2

3(r)|E(r)|2|d|2.

In Fig.2(b) we explore the impact of these compet-
ing effects. At each location the unidirectional coupling
rate after the dipole has been adjusted for the new lo-
cation is plotted. The rate is normalised to the emis-
sion rate in bulk GaAs (refractive index n = 3.45) to
give a Purcell factor; P (r) = S2

3(r)|E(r)|2 (3/8πvgf
2n)

with f the mode frequency and vg the group velocity,
expressed in units of c/a and c respectively [27]. In Fig.2
f = 0.262(c/a) and vg = 0.03c.

Coupling matching that at a C point is achieved over
a significant area, indeed coupling is not maximised at
the C points: It is over 50% higher at other locations
where increased field intensity has more than compen-
sated for the reduction in overlap between the dipole and
the forwards mode. Comparison with part (a) of the fig-
ure further shows that the elliptical dipole not only cou-
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FIG. 2: (a) Positions where different types of dipole
source have |D| ≥ 0.9 in a waveguide mode. Darkest -

circular dipole; next darkest - (fixed) elliptical dipole as

shown (S1 =
√

1/2). Second palest - Variable elliptical

dipole, tuned for maximum |D| subject to S3 ≥ 1/
√

2
(marked tuneable∗). Large white circles - air holes. (b)

Unidirectional Purcell factor. White/black dots are
right/left polarised C points where unidrectional

emission occurs for circular dipoles. In contrast all
locations with UPF 6= 0 enable unidirectional coupling

with suitably elliptical dipoles.

ples unidirectionally in more places, but also does so in
places with stronger coupling.
Scattering - Unidirectional coupling also has important

consequences for the scattering of photons from the MS.
To model scattering we assume that initially the MS is in
its ground state and the forwards waveguide mode is pop-
ulated with a single photon. The scattering amplitudes
with which the MS (re)-directs the incident photon are
then calculated using a method based on the photonic
Green’s function. Our aim is to avoid input/output the-
ory which can cause confusion in chiral systems [28]. The
calculation is summarised here and detailed in the sup-
plementary information [19].

The interaction between the MS and light is included
perturbatively. The probability amplitude in the state

|k〉, γk(t) at time t is given by γk(t) =
∑∞

l=0 γ
(l)
k (t), where

γ
(0)
k is defined by the initial condition and all subsequent

orders are calculated from the previous according to:
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γ
(z+1)
k (T ) =

T∫ ∑
m

〈k| Ĥ |m〉 γ
(z)
m (t)

ih̄
ei(Ek−Em)t/h̄dt, (1)

with the sum over all states, Em the unperturbed energy
of the state |m〉, and H the interaction Hamiltonian [29].

Adopting the long photon limit (a single frequency
photon), we can expand the integration range to ±∞.
Further the Hamiltonian is assumed to turn off slowly as
|t| → ∞ [30]. This assumption results in each even per-
turbation order being given by the previous even order
times a fixed multiplier, allowing all orders to be collected
using a geometric series.

The Hamiltonian for a single optical transition is: Ĥ =

−iσ̂+ l̂ + h.c. with [31, 32],

l̂ = d

∫∫
G(r, r′, ω′)

√
h̄Im[ε(r′, ω′)]

ε0π
f̂(r′, ω′)d3r′dω′ ,

(2)
where G(r, r′, ω′) is the tensor electromagnetic Green’s
function connecting locations r and r′ at frequency ω′.
The raising operator of the MS is σ̂+. The dielectric pro-
file is given by ε and f̂(r′, ω′) is the annihilation operator
of a bosonic excitation in the dielectric material and its
associated electromagnetic field [33].

Ĥ is inserted into the perturbation model and stan-
dard Green’s function identities [32, 34, 35], are exploited
to simplify the integrals. Finally an integration over a
small frequency window is introduced, representing the
resolution of a detector. This is necessary to correctly
normalise the density of states.

The result is the following equations for the (complex)
transmission and reflection amplitudes (the probability
amplitudes with which the photon will be found in the
forwards/backwards modes in the long-time limit):

t = 1−
d ·E∗f (r) d∗ ·Ef (r)

D
, (3)

r = −d ·E∗b(r) d∗ ·Ef (r)

D
, (4)

D =
1

2

[
|d∗ ·Ef (r)|2 + |d∗ ·Eb(r)|2

]
+ ζ (d ·GLoss · d∗ + ih̄ε0∆) ,

(5)

where GLoss represents the Green’s function of the loss
mode(s) (with both spatial dependencies set to r) and
∆ the detuning between the photon and the transition
frequency. The E terms are the electric fields of Bloch
modes normalised as

∫
ε(r)|E(r)|2 = 1 with the integra-

tion over a single unit cell of the waveguide (or over the
cross section for a translationally invariant waveguide like

a fibre). In a translationally periodic (invariant) waveg-

uide ζ =
2vg
aω (ζ =

2vg
ω ) with ω the transition angular

frequency.
The derivation can be extended to systems with more

than two levels and multiple transitions. Consider a four
level system with two allowed transitions, one connecting
|g1〉 to |e1〉, and the other |g2〉 to |e2〉, an arrangement we
denote II by analogy to the well known Λ and V systems
[36](Fig.4). Here there are two dipoles, d1, d2, one for
each transition. Similarly there are two detunings. If the
system is initially in one of the ground states then equa-
tions (3, 4) apply, using the detuning and dipole asso-
ciated with the transition available to the initial ground
state. An initial superposition of ground states simply
implies a superposition of reflection/transmission coeffi-
cients:

(α |g1〉+ β |g2〉) |1f 〉 →
α |g1〉 (t1 |1f 〉+ r1 |1b〉) + β |g2〉 (t2 |1f 〉+ r2 |1b〉),

(6)

where rn, tn are the reflection/transmission coefficients
calculated from equations (3, 4) using the dipole and
detuning of the nth transition. This is the underlying
mechanism behind some proposals to entangle the emit-
ter with a photon [6].

Scattering calculations for systems where a single
ground/excited state has multiple allowed transitions,
such as V and Λ arrangements require a more compli-
cated treatment [37, 38]. However, the dot-products that
determine directionality are unchanged.

Chiral interactions are characterised not just by an ex-
cited MS radiating light in only one direction, but also by
a single-photon transmission coefficient that approaches
−1 for low loss - i.e. transmission of the incident pho-
ton with a phase shift of π. This phase shift is ex-
ploited in several proposals for quantum information cir-
cuits [6, 14, 39, 40]. It occurs whenever the interaction
between the MS and waveguide is unidirectional.

This is shown in Fig.3 where the reflection and trans-
mission coefficients from equations (3, 4) are plotted.
In parts (a) and (b) the local polarisation is given by

Ef = 1/
√

2
(
1 i
)

and Ef = 1/
√

10
(
1 3i

)
(an arbitrary

choice) respectively while along the x axis the dipole is
varied as d =

(
cos θ i sin θ

)
with θ running from 0 to

π. A phase-shift (t ≈ −1) occurs when d∗ · Eb = 0,
a consequence of the fact that in this configuration the
forwards/backwards emission rates are identical to those
with a circular dipole at a C point, indeed there is no
special feature that separates chirality with circles from
that with ellipses.

More generally, many interesting effects have been pre-
dicted in theoretical frameworks where particular for-
ward/backward emission rates are assumed [14, 36, 39–
43]. The predictions of these works apply equally well to
all polarisation/dipole combinations that produce direc-
tionality.

Comparing the points with transmission approaching
−1 of parts (a) and (b) of Fig.3 notice the losses are
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FIG. 3: Single photon reflection (solid) and
transmission (dotted) coefficients for a two level MS as
a function of the dipole moment. Curves are calculated

using equations (3, 4) with ∆ = 0, |E| = |d| = 1 and
ζd ·GLoss · d∗ = 0.01. Dashed: lost intensity, right axis.

In (a) the polarisation is circular so that a dipole
matching the helicity of the light phase shifts a passing
photon (1), while a dipole of opposite helicity transmits

the photon with no phase shift (3). Linear dipoles
reflect the photon (2). In (b) with elliptical polarisation
note that there are still dipoles that transmit a photon

with or without a phase shift.

higher in (b). Here the poorer dot product between the
dipole and the forwards mode, combined with our as-
sumption that |E| is unchanged between parts (a, b) has
led to a reduced Beta factor. However, as discussed pre-
viously |E| can be much higher at elliptical points and
this will often more than compensate for the lower over-
lap. As seen in Fig.2 the choices that maximise coupling
(and consequently minimise this loss) are ellipses.

Some proposals require a MS with more than two lev-
els. We consider two specific schemes, both with poten-
tial applications in quantum information. First that of
[6], which makes use of a charged QD, described as a
four-level II system. Second [36], with Caesium atoms
described with three levels in a Λ configuration. In both
cases there are two relevant optical transitions and in
both ideally one transition couples only to the forwards
direction, while the other couples only backwards, de-
picted in Fig.4. As seen in part (b) of the figure the ideal
pair consists of two elliptical dipoles, identical in all re-
spects except for helicity (the arrowhead direction) which
is opposite between them. That is, ideally d1 = d∗2 and
d∗1 ·Eb = 0.

Note that the non-orthogonality of the dipoles is no
impediment to the quantum information proposals, as

|g1

|e1

|g2

|e2(b)

d1 d2
Ef

d1

|g1

|e1

d2

|g2

|e2(a)

Ef

Ideal"Normal"

FIG. 4: (a) Four level system with two transitions with
opposite circular dipoles. Each interacts with both

waveguide directions (arrows). (b) The dipole
arrangement such that each interacts with only a single
direction. For this polarisation (b) represents the ideal

situation for the protocols discussed in the text, in
contrast to (a).

the orthogonality of dipoles in real space does not equate
to orthogonality of quantum states in Hilbert space [19].

Dipole engineering - Finally we propose illustrative
schemes to achieve the necessary dipole engineering in
either an atomic or a QD system, focusing on proposals
that call for two transitions which are unidirectional in
opposite directions [6, 36].

Atoms - Given a system with a circular transition
dipole one can imagine rotating the system in 3D space
so that the projection of the circular dipole onto the 2D
plane spanned by the waveguide mode’s electric field re-
sembles the desired ellipse. If provided a system with
oppositely circular transitions rotating it to make one
transition couple only forwards will result in the other
only coupling backward. With atoms in vacuum [36, 44],
the external magnetic field defines the quantisation axis,
so that the relevant transitions have circular dipole mo-
ments in the plane orthogonal to the magnetic field direc-
tion [29, 45]. Consequently tilting the applied magnetic
field will have the desired effect.

QDs - In QDs there will be in-plane strain, which leads
to mixing between the heavy and light holes. The dipole
associated with the recombination of an electron with a
light-hole has the opposite sense of circular polarisation
to that for recombination with a heavy hole. As a result
recombination with the mixed holes in the QD is related
to an elliptical dipole [46], typically with 1%-20% degree

of linear polarization (
√

1− S2
3 = 0.01–0.2). The dipoles

of the two QD transitions are stretched along the same
axis, providing the ideal configuration. The degree of lin-
ear polarisation in these dipoles can be enhanced to up
to 40% by annealing [47], and can be tuned ±20% with
application of strain [48]. Two strategies emerge: first,
annealing allows the creation of QD-waveguide samples
where the (randomly located) QDs are more likely to
have a high directionality and stronger waveguide cou-
pling; second, it may be possible to exploit strain-tuning
techniques to modify the dipole of a particular QD in
situ to maximise the directionality.

Conclusion - We propose engineering elliptical dipoles
in quantum emitters as an approach to building chiral
interfaces. These strategies offer the two-fold advantage
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of making far more of the space within a waveguide useful
for directional interactions while simultaneously enabling
a higher photon collection efficiency.

Advanced proposals call for a system with two tran-
sitions, each unidirectional but in opposite directions.
This requires that the opposite circular dipoles are re-
placed with ellipses stretched along a shared axis. We
have outlined methods to achieve these arrangements in
both atomic and QD systems.

In summary, circular polarisations and transition
dipoles are not necessary for chiral interactions, further-
more they are typically not the most efficient choices.

Additional references [49–51] are used in the Supple-
mental information.
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A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H.
Lee, J. D. Song, S. Stobbe, and P. Lodahl, Nature Nan-
otechnology 10, 775 (2015).

[15] S. Perea-Puente and F. J. Rodŕıguez-Fortuño, Phys. Rev.
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son, S. Kumar, A. Rastelli, and O. G. Schmidt, Phys.
Rev. B 87, 075311 (2013).

[49] R. Loudon, The Quantum Theory of Light (OUP Oxford,
1973).

[50] Y. Chen, M. Wubs, J. Mørk, and A. F. Koenderink, New
J. Phys 13, 103010 (2011).

[51] P. Yao, V. Manga Rao, and S. Hughes, Laser & Photon-
ics Reviews 4, 499 (2010).

[52] Y. Shen, M. Bradford, and J.-T. Shen, Phys. Rev. Lett.
107, 173902 (2011).


