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N E T W O R K  S C I E N C E

The effect of renewable energy incorporation on  
power grid stability and resilience
Oliver Smith*, Oliver Cattell, Etienne Farcot, Reuben D. O’Dea, Keith I. Hopcraft

Contemporary proliferation of renewable power generation is causing an overhaul in the topology, composition, 
and dynamics of electrical grids. These low-output, intermittent generators are widely distributed throughout the 
grid, including at the household level. It is critical for the function of modern power infrastructure to understand 
how this increasingly distributed layout affects network stability and resilience. This paper uses dynamical models, 
household power consumption, and photovoltaic generation data to show how these characteristics vary with 
the level of distribution. It is shown that resilience exhibits daily oscillations as the grid’s effective structure and 
the power demand fluctuate. This can lead to a substantial decrease in grid resilience, explained by periods of 
highly clustered generator output. Moreover, the addition of batteries, while enabling consumer self-sufficiency, 
fails to ameliorate these problems. The methodology identifies a grid’s susceptibility to disruption resulting from 
its network structure and modes of operation.

INTRODUCTION
Conventional power grids are dominated by small numbers of 
centrally located, high-output generators. However, many countries 
are experiencing a rapid shift toward renewable generation. For ex-
ample, the United Kingdom has seen the renewable share of pro-
duction rise from 6.9% in 2010 to 37.1% in 2019 (1). Renewable 
generators such as photovoltaic (PV) and wind power are low- 
output and intermittent. This small-scale generation is often dis-
tributed across and embedded within power grids in large numbers. 
Household generation forms a key component of such grid integra-
tion of renewables and may include the ability to store the power 
they produce and to supply it back upstream to the grid. The re-
sulting network is highly distributed, bidirectional, and mutable, 
with generators coming on- and off-line and households adopting 
the role of consumers or producers as daily and seasonal usage, and 
meteorological conditions vary. With the uptake in renewable pro-
duction set to continue in line with initiatives such as “net zero” (2) 
and the Paris agreement (3), understanding how this increased 
complexity affects network dynamics and function is an important 
challenge with implications for grid control strategies and future 
smart grid design.

The resilience and dynamics of conventional power grids have 
been extensively researched. Of particular interest is their resilience 
to cascading failures, phenomena whereby an initial fault propa-
gates throughout a network, causing large-scale disruption (4). 
Cascades have been described mathematically using threshold 
models (5), which identified critical operating regimes within which 
network-wide failures can occur. Using steady-state flow–based 
modeling, the severity of these cascades was found to be power-law 
distributed (6), with networks having highly heterogeneous power 
flow shown to be particularly fragile (7, 8). Modeling of blackouts in 
large-scale power grids (9, 10) has revealed some of the characteris-
tics that drive cascade severity and abruptness, such as the centrality 
of the initial failure and the network size. Methods to optimize 
the structure of power grids for resilience against cascades have 
also been investigated (11, 12). It has been shown that adding 

interdependencies between different power grids can increase each 
grid’s resilience to blackouts (12, 13). However, increasing inter-
dependency has also been shown to increase the probability of 
systemic failures (13). Another important requirement of power 
grids is to maintain stable operation despite fluctuations in frequency, 
voltage, and demand. In electrical engineering, this is often investi-
gated using transient stability analysis (14). In the broader field of 
complex systems, grid stability has been interrogated using the 
so-called swing equation: a nonlinear oscillator model of power 
dynamics (15). Its behavior has been characterized using the master 
stability function (16), and its dynamical impact upon the function 
of country-scale power grids has been modeled numerically and 
analytically (17, 18). Paradoxically, the addition of new lines to a 
power grid can cause instability (19).

These studies have focused on large-scale and conventional 
transmission networks, rather than highly distributed, renewable- 
dominated microgrids (20) that are the focus here. Microgrid de-
signs have been shown to boost self-sufficiency (21). It has also 
been shown that an increased distribution of power generation can 
aid synchronization (22, 23) and resilience (24, 25). In addition, 
the effect of self-healing policies based on redundant, activatable 
links has been investigated (26, 27). However, these issues have 
not been addressed together with the impact of realistic supply and 
demand variability. The effective level of distribution will change 
over the course of a day. The objective of this paper is to deter-
mine the dependence of network resilience on key previously 
unconsidered spatiotemporal features associated with small-scale 
renewable-integrated power grids. This is achieved by marrying 
network architecture and power flow dynamics with fluctuations in 
renewable generation and consumer demand, informed by exploit-
ing PV generation and household consumption data. We provide a 
framework in which to analyze microgrids and show that increased 
uptake of renewable generators can adversely affect grid robustness 
since their power outputs are highly clustered in time, despite their 
spatially distributed nature. This results in grids handling large 
power flows, rendering them fragile to catastrophic failures. More-
over, conventional usage of household batteries, commonly used 
to boost grid self-sufficiency, offers only limited improvements 
to resilience.
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RESULTS
Grid coupling and stability
To capture important transient dynamics that can cause network 
failure in real power grids, and the emergent power-balancing and 
stabilizing properties of these networked systems, steady-state 
approaches are inappropriate. Power grids must be synchronized to 
the grid reference frequency  (typically 2 × 50 Hz in Europe, 
most of Asia, and Africa and 2 × 60 Hz in North America), drift 
from which will cause damage and failure. We use the so-called 
swing equation (15, 28, 29) to describe the deviation i(t) of the 
phase angle from  of each network node i = 1…n, comprising a 
network of size n

     d   2     i   ─ 
 dt   2 

   +    d   i    ─ dt   =  P  i   −   ∑ 
j=1

  
n
     A  ij   sin(   i   −    j  )  (1)

and from which the power flow on a network edge connecting i and 
j is computed as

   f  ij   =  sin (   i   −    j  )  (2)

A full derivation and description of Eqs. 1 and 2 is given in the 
Supplementary Materials; briefly, network nodes are modeled as 
rotating machines and Eq. 1 expresses the balance of inertial, 
dissipative, and transmitted electrical power at each node. Power 
generation/consumption on each network node is denoted by a 
suitably defined Pi(t), which will be informed by power usage data 
as detailed in Materials and Methods. Transmission is encapsulated 
by the network adjacency matrix Aij and coupling parameter , 
while  scales inertial damping. For simplicity,  and  are assumed 
to be order one constants as in (29). In contrast to large-scale power 
transmission grids, the topologies of smaller-scale grids are highly 
variable and lack commonly agreed design principles to ensure 
stable operation under their changing composition associated with 
renewable generation. Hence, throughout this paper, we use ensem-
bles of synthetic Watts-Strogatz networks (30) with random rewiring 
parameter q ∈ [0,1] and varying consumer/generator composition 
to extract general results.

To inform and motivate the results that follow, we first consider 
an elementary network comprising two coupled nodes, one gener-
ating power with constant output, P1 = P, and the other with power 
consumption P2 = − P. A stability analysis shows that, in this case, 
the two fixed points of Eq. 1 annihilate at a saddle-node bifurcation 
at a critical value of the coupling constant c = P. Stable networks 
require c/P ≤ 1. Hence, the system requires a coupling capacity  
equal to at least the total power flowing through the network for 
stable synchronous operation. Minimizing c is desirable from a 
grid design perspective: The lower the value of c, the less excess 
capacity is required for the grid to maintain synchrony and hence 
stable operation. Figure 1A illustrates the bifurcation diagram that 
results as the parameter P/ changes. The lower and upper branches 
are the loci of the stable/unstable fixed points of Eq. 1, respectively, 
and these coalesce where P/ = 1, which defines pac. For this simple 
illustrative example, the steady states and critical capacity can be 
determined analytically; however, for realistic power grids and, in 
particular, for those with heterogeneous generation/consumption 
characteristics considered here, c must be obtained numerically 
(see Materials and Methods).

Figure 1 (B and C) summarizes the dependence of grid operating 
capacity, as encoded by c, on network structure and generator/
consumer composition. For a given network realization of size n 
and architecture defined through mean edge degree    

_
 K    and rewiring 

parameter q ∈ [0,1], consumer/generator variation is interrogated 
by defining n+ generator, n− consumer, and np passive nodes, allo-
cated to random locations, and constrained by n+ + n− + np = n. 
Figure 1B shows a representation of this node composition space for 
a particular example network; subsequent results are projected onto 
corresponding simplexes. Each generator has output Pi = Pmax/n+, 
while for consumers Pi = −Pmax/n− so that consumption and gener-
ation is balanced; this constraint will be relaxed later to model the 
network’s ability to import, export, or store power. The mean critical 
coupling    _    c   , normalized by Pmax, for ensembles of 200 realizations 
of lattice networks (q = 0) is projected onto a simplex in Fig. 1C.  
Figure 1D shows equivalent results corresponding to a section of the 
simplex in Fig. 1C for different network structures. Grid synchrony 
is promoted where lower values of    _    c    are obtained, and this is min-
imized in the central regions of the simplex where the numbers of 
generators and consumers are commensurate. Moreover, Fig. 1D 
demonstrates that    _    c    is minimized in the central regions across the 
entire class of Watts-Strogatz networks. It also shows that    _    c    values 
decrease as q increases, indicating that networks with more topo-
logical randomness are easier to synchronize. For instance, Fig. 1D 
shows that a lattice (q = 0) with only one consumer will require a 
critical coupling capacity of half the maximum power in the network, 
whereas an equivalent small-world network (q = 0.1) requires only 
around a quarter of the maximum power. The q = 0.1 system is 
therefore inherently easier to synchronize. Coupling parameter values 
can be rescaled to give quantities in kilowatts to gauge the typical 
maximum power values that a system can handle. This reveals an ap-
proximate lower bound of 18.3 kW (see the Supplementary Materials). 
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Fig. 1. Variation in the critical coupling. (A) Bifurcation diagram of the elementary 
two-node network coupling a single generator to a consumer. The phase difference 
between the two nodes is  = 1 − 2. The dark and light blue lines denote stable 
and unstable fixed points of Eq. 1, respectively, and the black dot indicates the 
saddle node bifurcation occurring at the critical value c = P. (B) Diagrammatic ex-
ample of the configuration simplex for networks with n = 20 nodes. The black dot is 
a network with 5 generators, 10 consumers, and 5 passive nodes, or (n+, n−, np) = 
(5,10,5). (C) Mean critical coupling capacity    _    c    as a function of node configuration 
for lattice networks with n = 50. Each point is averaged over 200 lattice realizations. 
The cross section (i) is plotted in (D), which shows that    _    c    is minimized when the 
number of consumers is equal to the number of generators. Colored lines in (D) 
show the equivalent sections for Watts-Strogatz networks with increasing q.
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Subsequent data analysis will show that typical power values handled 
by a microgrid are around 13 kW. The coupling capacity  is there-
fore likely to be in excess of the maximum power and any critical 
values c as expected and means that power grids will not in general 
spontaneously desynchronize during normal operation. However, 
desynchronizations will be shown to play an important role during 
cascading failures. Making networks less susceptible to desynchro-
nization is therefore desirable from a resilience perspective.

Resilience to cascades
The preceding results suggest that uptake of renewable energy in 
the grid, corresponding to increasingly distributed power generation, 
can lead naturally to improved grid function insofar as synchrony is 
concerned. However, to function, grids must be resilient to transient 
shocks, such as line failures or overloads, not captured by these 
steady-state analyses. These failures can cascade through the grid, 
causing widespread power outages and damage.

To investigate the importance of these transient features in modern 
microgrids, we use a dynamic model of cascades based on Eq. 1 to 
evaluate their resilience as a function of consumer/generator com-
position. We consider disruptions by two mechanisms. The first is 
through the power on any edge exceeding a prescribed maximum 
capacity  that it can carry, termed an overload failure. The second 
is through the absolute value of the phase difference on an edge ex-
ceeding the 1-Hz safety threshold (see the Supplementary Materials) 
whereupon the network undergoes a desynchronization failure. In 
either case, the edge where the fault occurs is removed and the volt-
ages and associated power flows readjust according to Eq. 1. Edges 
on which subsequent faults occur continue to be removed until the 
cascade ceases through a new equilibrium being attained or the net-
work collapses entirely. A cascade is initiated by removing the edge 
on which the power is greatest. This maximum power flow is denoted 
*. The proportion S of surviving edges after such a cascade pro-
vides a convenient measure of network resilience; S = 1 or 0 indi-
cates complete resilience or failure, respectively. A critical capacity 
value c can be assigned for which half of the edges in the network 
survive the cascade, i.e., S = 1/2. The c value will be used subse-
quently to characterize the power in kilowatts that edges are required 
to carry for the network to be resilient to overloading failure.

Figure 2 (A and B) shows the dependence of the proportion of 
failures F due to overloads (green) or desynchronizations (orange) 
and the fraction of surviving edges S (blue) on the normalized ca-
pacity /*. The networks have the same size n = 60, but Fig. 2A has 
a surfeit of consumers over generators, whereas these are equal 
for Fig. 2B; in either case, there are no passive nodes. The vertical 
red line denotes the mean value of the normalized critical capacity   _   =   _    c   /   

_    *    for this network configuration. The curves for the fail-
ures have similar characteristic shapes for either configuration, but 
different magnitudes. Generally, overload failures are prevalent, but 
there is a range of  values for which desynchronization failures 
dominate when the network composition favors consumers. This 
will invariably be the case in real networks at certain times of the 
day as generation and consumption vary. Figure 2C shows the de-
pendence on /* of the mean cascade duration    

_
 T   , defined as being 

the interval between the removal of the edge with flow * and 
attaining a new equilibrium of Eq. 1, or failing entirely, for the two 
cases of network composition. The values of    

_
 T    show slight differ-

ences between the two cases at small values of . This regime corre-
sponds to networks with high susceptibility to complete failure, 

with all edges failing once the network is perturbed. The principal 
cause of failure in these cases is attributable to overloads and occurs 
so rapidly that an equilibrium of Eq. 1 cannot be accessed following 
the triggering event. As  increases, both curves rise steeply to a 
peak value in the 20 to 30s range at the value of    _    c   /    *   , which coin-
cides with the value for which half of the network remains intact. 
The results in Fig. 2C are for the case of  = 1, but these peak values 
are approximately constant across the entire range of realistic 
parameter values (see fig. S2). The cause of the failures here is ap-
proximately equally apportioned between overloads and desyn-
chronizations. With further increase of ,    

_
 T    declines and then 

saturates to a value independent of network composition. The sizes 
of the cascades in this regime are all small, being small perturbative 
fluctuations that do little damage to the network. Figure 2C there-
fore demonstrates that catastrophic cascades occur very rapidly, 
while less damaging cascades occur on a slower time scale (see 
fig. S3 for further examples). Countermeasures against the most 
damaging cascades must therefore be preventative, highlighting the 
importance of boosting network resilience.

The fraction S of edges surviving a cascade as a function of edge 
capacity follows a sigmoidal profile, as demonstrated in Fig. 2 (A and B), 
revealing a threshold capacity (at the point of inflection) at which 
the system transitions from complete failure to resilience. The lower 
this threshold value of edge capacity, the more resilient the network. 
The normalized location of the inflection point  = c/* is therefore 
a natural metric to gauge the resilience of an ensemble of networks, 
and it will later allow for a convenient means of incorporating real 
power data. The lower the value of , the greater the resilience. An 
equivalent metric was used in (25); however, the analysis was not 
dynamical as here. Rather, the networks relaxed via a sequence of 
quasi-equilibria to a new equilibrium state following the removal 
of overloaded edges. This implicitly assumed that the time scale of 
equilibration is sufficiently short to accommodate the new power 
flows. However, we have seen in Fig. 2 that these transient reconfig-
urations can lead to additional failure through desynchronization. 
Moreover, these cascades occur on a time scale that is much shorter 
than those on which the network changes because of diurnal or 
meteorological variations.

Using realizations of networks of size n = 100 with equal number 
of consumers and generators as examples produces distributions 
of  observed across an ensemble of network realizations of lattice 
(Fig. 3A) and small-world type (Fig. 3B). In both cases, the proba-
bility density of  is accurately described by a log-normal distribution 
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Fig. 2. Impact of cascading failures as a function of network edge capacity. 
The proportion P of surviving edges, and failures F due to overloads and desyn-
chronizations are shown as functions of /* for an ensemble of small-world 
networks with n = 60 and (n+, n−, np) = (15,45,0) in (A) and (n+, n−, np) = (30,30,0) in 
(B). The critical points   _    are marked by the vertical sections (i) and (ii) in each case. 
(C) shows    

_
 T   , the mean duration of cascades as a function of /* for the same networks.
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as shown by the full line, as was found in (25). The log-normal dis-
tribution is characterized by the mean and variance, and these values 
depend on the node composition and topological structure of the 
network. To visualize this dependence, we project the mean value of 
 onto a network composition simplex, as shown in Fig. 1C, to pro-
vide a resilience landscape. That shown in Fig. 3C is for a regular 
lattice and shows that the most resilient node configuration occurs 
in the central region of the simplex, the least resilient being found in 
a narrow band at the simplex’s lateral edges, corresponding to an 
imbalance between consumers and generators of power. The most 
advantageous configurations are located at the bottom-center of the 
simplex, where the number of passive nodes is small: Recall that this 
was also the case for c (Fig. 1C). Figure 3D for the small-world net-
work (q = 0.1) exhibits qualitatively similar behavior to the regular 
lattice, but with some important distinctions. The value of   _    is raised 
everywhere, and the region of low resilience near the simplex’s edge 
has broadened into the interior. The most resilient configurations 
remain those with small numbers of passive nodes. These behaviors 
maintain for smaller systems; networks with only n = 50 nodes dis-
play the same simplex morphologies as those with n = 100 (see fig. S5). 
As topological randomness increases to q = 1, giving Poisson net-
works, the region of low resilience spreads even further into the in-
terior (see fig. S4). Nevertheless, across the entire range of q, the most 
resilient region of the simplex remains the bottom-center, with the 
least resilient configurations being in the peripheral regions.

The dynamical model considered here predicts different resilience 
characteristics for particular (25), which found that most resilient 
networks lie in the middle of the simplex, implying an advantage of 
having passive nodes in the network’s compositional mix. This dis-
parity is of importance when considering the impact of dynamic 
changes in network composition over a day and across different 
seasons on a network’s susceptibility to disruption. This is explored 
in the next section.

Power usage trajectories in microgrids
Having established an operational space in which resilience is quan-
tified, the next task is to model how a small network of renewable 
power generators and consumers, referred to as a microgrid (20), 
traverses this terrain as diurnal and seasonal conditions change. 
This is informed with power consumption and generation data to 

define Pi(t) in Eq. 1 and, hence, the node composition of the network 
at any instant. Consumption of approximately 5000 households in 
the London area was recorded by UK Power Networks with a reso-
lution of 30 min over a 2-year period (31), and PV power generation 
from 100 separate panels with 10-min resolution was obtained over 
a year (32). The net power on each network node is given by Pi(t) = 
gi(t) − ci(t), where gi(t) and ci(t) denote generation and consumption 
time series drawn from the dataset (see Materials and Methods). 
The vector P(t) ∈ ℝn with components Pi(t) then determines the 
power supply and demand of the microgrid at time t. The microgrid 
is connected to the external grid via a point of common coupling 
(PCC), modeled as a single additional node that imports power 
in response to demand or exports power generated in excess of 
requirement.

To map these data onto the configuration space of the simplex, 
we define, by analogy with the discrete variables (n+, n−, np), the 
power generation/consumption densities (+, −, p). For a given 
snapshot in time t, these are defined by

     +   ≔   1 ─ n max(P)     ∑ 
x∈ P   + 

   x  (3)

and

     −   ≔   1 ─ n min(P)     ∑ 
x∈ P   − 

   x  (4)

where P+ and P− contain only the positive and negative contribu-
tions to P, respectively, and p = 1 − + − −. Note that the depen-
dence on t has been suppressed for notational brevity in the above 
definitions. The values (+, −, p) define a set of coordinates for a 
point on the consumer/generation simplex. These coordinates vary 
as P(t) changes with time. The daily variability in household power 
demand thus causes the microgrids to sweep a trajectory through 
the (+, −, p) simplex.

Figure 4A shows the mean power generation (blue) and con-
sumption (orange) measured in kilowatt-hour (kWh) for a week in 
autumn. Power consumption is low during the night, rising to a 
morning peak, then declining to a fairly constant value throughout 
the daytime, before rising again to a principal peak in the evening. 
PV generation of power is only significant during the middle third 
of the day, at which time local demand is not especially high. 
Figure 4B is the daily power profile during a day in September for a 
network comprising 25 houses and 100% PV uptake, i.e., all 25 houses 
are equipped with PV generation. The vertical lines denote midnight 
(i) and midday (ii). At midnight, there is no generation but still sig-
nificant overall consumption of power. The data reveal that this is 
due to a few high consumers with a large number of passive nodes 
(i.e., houses of net zero power), so the configuration lies at the top-
right of the simplex as shown in Fig. 4C. By midday, there are large 
numbers of generators, few consumers, but still a high proportion 
of passives. The network has now moved to the top-left of the sim-
plex. So as the day progresses, there is an oscillation between the 
right- and left-hand extremities of the simplex.

We consider a network of size n = 50 and simulate the grid re-
sponse using the data as described above for different levels of PV 
uptake. Figure 4D shows the mean trajectories over an ensemble of 
50 such networks during winter for the case of 50% PV uptake. The 
trajectories are confined to a small region of the simplex and do not 
gain access to its left-hand side, whereas a full traversal of across the 
simplex occurs in the 100% PV uptake case, as shown in Fig. 4E. The 
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summer trajectories are shown for a network with 50% PV uptake 
in Fig. 4F, which traverses the simplex, and this can be contrasted 
with those for the case of 100% uptake in Fig. 4G—note the substan-
tial excursion along the + axis during this season. For the base case 
of 0% uptake, the trajectories never leave the upper right boundary 
of the simplex, since the number of generators never changes. These 
trajectories simply oscillate on the p axis as household demand 
fluctuates. Figure 4 (D to G) demonstrates that trajectories venture 
into the center of the simplex at higher uptake levels, reflecting the 
increasing numbers of generators. For 100% uptake, the trajectories 
complete a full traversal to the left-hand side as they become more 
dominated by generators. These excursions become more prominent 
during the summer because of the higher PV output (see fig. S6 for 
more examples). Nevertheless, in all cases, the network operates 
principally in the peripheral regions of the landscape where resilience 
is poorest. The following section uses these trajectories in conjunc-
tion with the above results to simulate when network failures occur, 
and their causes, as the resilience terrain is traversed throughout 
the day.

Daily variability of synchrony and resilience in microgrids
We are now able to track the time dependence of resilience as the 
grid’s form and function changes. Both the critical coupling c and 
the critical capacity c display temporal variations, which indicate 
that the performance of a power grid is not simply a fixed feature 
of the network but depends on power usage and therefore on time 
and season.

The mean weekly trajectory of 50 regular lattice microgrid reali-
zations, each with 50 houses in the summer and 100% PV uptake, 
shows clear daily oscillations in the critical coupling capacity c that 
describes the minimal coupling required to achieve grid synchrony 
(Fig. 5). The value remains approximately constant for large parts of 
the day, with a small peak evident during the morning, and then 
two brief minima as the network traverses the simplex in each di-
rection, these being associated with the morning and evening peaks 
in power consumption (see Fig. 4, A and C). These minima coincide 
with power consumption and generation characteristics being such 
that the grid is balanced, i.e., trajectories approach the center of the 

simplex. Figure 1D demonstrates that    _    c    is minimized, rendering 
networks more synchronizable, in these interior regions of the sim-
plex where the numbers of effective generators and consumers are 
commensurate. Of note is the significant deviation from the mean 
near these transition points, highlighting that particular grids will 
be especially susceptible at these points. The simulations underlying 
Fig. 5 concern a regular lattice structure; although the amplitude of 
oscillations is typically reduced, the above-described features hold 
for less regular topologies (see the Supplementary Materials). The 
narrow downward spikes in Fig. 5B reveal that microgrids spend 
fleetingly little time in the advantageous interior region. This is due 
to the time disparity between periods of high consumer and generator 
activity. As shown in Fig. 2, desynchronization plays an important 
role in driving edge failures during cascades. Increasing the time 
spent in the central region should therefore be an important consid-
eration for future grid control schemes.

To determine how these daily variations affect grid resilience, 
cascading failures are randomly triggered in ensembles of microgrids 
at some point during their trajectories. The triggering probability is 
chosen to make cascades more likely to occur when grids are handling 
high volumes of power (see Materials and Methods). The points of 
failure are then recorded on the simplex. Figure 6 (A and B) shows 
the case for a sample of cascade simulations with different PV uptake 
on lattice networks during summer. For both cases, failures are con-
centrated near the boundary of the simplex, as would be expected 

a)

Days0 7

0

2

0.2

0.8

Mean generation and consumption

η +

η

η
p(i)

(ii)

0

12.5

0 24Hours

kW

(i) (ii)

η +

η
pη +

η
p η +

η
p η +

η
p

B CA

D E F G

kW

Fig. 4. Daily variations in household power demand and generation. (A) Mean PV generation and household consumption for an example week in autumn. Shaded 
area shows 1 SD from the mean. (B) Total power generation (blue) and consumption (orange) in a model microgrid of n = 50 nodes in autumn over a day with network 
nodes defined by data in (A) with all nodes equipped with PV generation. (C) Trajectory in the simplex corresponding to (B), with power generation/consumption densities 
(n+, n−, np) defined by Eqs. 3 and 4. Points (i) and (ii) indicate midnight and midday, respectively. (D to G) Mean simulated weekly trajectories in the region of the simplex 
indicated by the dashed box in (C) for an ensemble of 50 model microgrids with generation and consumption data as in (B). All grids have n = 50. (D) Winter, 50% PV 
uptake; (E) winter, 100% PV uptake; (F) summer, 50% PV uptake; (G) summer, 100% PV uptake.

A B

1 6Days
0.4

0.55

G
en

er
at

or
s

Passive

0.52

0.36

Fig. 5. Changes in critical coupling capacity over time. (A) Weekly trajectory 
through the    _    c    simplex of a microgrid network with q = 0 and n = 50 houses in the 
summer, with 100% PV uptake. (B) Corresponding values of    _    c    during the weekly 
trajectory plotted as a time series. Shaded regions indicate 1 SD from the mean.

D
ow

nloaded from
 https://w

w
w

.science.org on M
arch 07, 2022



Smith et al., Sci. Adv. 8, eabj6734 (2022)     2 March 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 9

because of the inadequate temporal distribution of power generation/
usage over the grid.

For each failure event, the critical capacity that would be required 
to survive the cascade c = * in kilowatts is obtained from the 
log-normal resilience distribution computed above, but where * is 
now defined as the maximum flow specified by the power time series 
data at the time where the cascade was initiated. The distribution of 
c shown in Fig. 6 (C and D) reveals that higher uptake of PV 
significantly decreases grid resilience during the summer, with grid 
connections requiring significantly higher rating c to survive po-
tential cascading failure. This is attributable to the high power gen-
eration during the day, which must be shunted to the PCC. The 
increased concentration of generators at these times acts to push the 
trajectories further down the >left-hand side of the simplex into 
regions of lower resilience. The distribution of c becomes bimodal 
during the summer in the case of high PV uptake, with peaks corre-
sponding to failures occurring on each side of the simplex. The 
smaller mode is associated to those less damaging cascades occur-
ring in the evening, when the grids exhibit heterogeneous demand; 
the larger mode corresponds to those that arise during high PV out-
put. The emergence of a larger, more damaging mode for high PV 
uptake also occurs for more random networks with q > 0 (see 
fig. S11). The critical line capacities c required to survive the 
cascades about this larger mode are in the range 5 to 15 kW. Since 
the line ratings of connections in low-voltage transmission grids are 
typically 4 to 15 kW (33), microgrids with high PV uptake are oper-
ating at close to their critical capacity during summer months.

These results demonstrate that the high temporal variability in 
power flow characteristics counteracts the stabilizing effect of in-
creased distribution of generation associated with grids containing 
high numbers of renewable generators. Control strategies that 
address this daily and seasonal temporality are therefore necessary. 
We will discuss this in the next section.

Impact of batteries on resilience
Battery storage forms a natural candidate to affect a spreading of 
spikes in PV generation and thereby to ameliorate the temporal 
volatility of usage and generation highlighted above. Figure 7 shows 
how the resilience of microgrids examined in the previous section 
(Fig. 4) is affected by the addition of batteries. Each house in the 

network with a PV generator is equipped with a battery, based on 
the Tesla Powerwall 2 (34), typical of present-day commercially 
available household batteries. These batteries are designed to only 
optimize for individual household self-sufficiency. As solar genera-
tion and consumer demand varies, the battery linearly charges or 
discharges to smooth out the net demand; see Materials and Methods 
for a full description of the battery model. An example time series 
for an individual house is shown in Fig. 7A; note that the house 
becomes self-sufficient (i.e., Pi = 0) for large parts of the week. This 
increase in passivity is reflected in Fig. 7B, showing the mean weekly 
trajectory for an ensemble of 50 microgrids corresponding to those 
shown in Fig. 4G (i.e., each with 100% PV uptake and summer 
conditions) but now incorporating batteries on each generator. The 
trajectory is largely confined to the simplex edges, and particularly 
to the left-hand side, reflecting the self-sufficiency now introduced 
by the PV-battery pair and the excess daytime production. Unfortu-
nately, while beneficial for individual households, this is problematic 
from a network resilience perspective, as it constrains the grid dy-
namics to precisely the regions with the highest values of    _    c    and   _   . 
We also see that the daily oscillations in    _    c    and bimodality of c ob-
served in Figs. 5B and 6D are retained. In the latter case, the mean 
value of the critical capacity c is only marginally reduced, while in the 
former, the maximum value of the mean critical coupling strength 
actually increases. To boost resilience, a battery operating scheme 
should ideally act to manipulate trajectories further into the lower- 
central regions of the simplex. These regions are associated with 
higher resilience for networks across the full range of q. However, 
Fig. 7 shows that present-day household battery operation does not 
achieve this. Further simulations reveal that this type of battery is 
also ineffective at boosting resilience during the winter months and 
for lower levels of PV uptake (see fig. S12).

DISCUSSION
This paper has addressed the resilience characteristics of electrical 
microgrids, which are of increasing importance as housing stock is 
replaced and developed afresh, and as the power that supplies these, 
and existing, dwellings moves toward carbon-neutral renewable 
generation and storage. The ad hoc way that these developments are 
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established prompts questioning whether there are favorable network 
architectures or dynamic control strategies that can flexibly accom-
modate changes in usage and generation throughout the day and 
across the seasons while remaining resilient to failure. Initial steps 
for answering some of these issues were tackled by assuming that a 
network’s response to an outage, caused by a power carrying edge 
being overloaded, could be determined through the power distribu-
tion relaxing via a sequence of quasi-equilibrium states, when these 
exist (25). While informative, this approach neglects transient pro-
cesses that can occur on power networks that can further affect 
performance. Following (17), we remedy this by incorporating the 
dynamics described by the swing Eq. 1, which, in addition to pre-
dicting when and where power overloads occur, also accounts for 
desynchronization of the local AC power supply from the external 
grid. In this way, a fitness landscape is established whereby the 
resilience of a network, with given composition of consumers, pro-
ducers, and net passive users of power, can be determined for over-
loading and desynchronization faults.

These landscapes provide values of the grid coupling c required 
for stable operation, together with the power line ratings c required 
to survive a cascade, for networks of any consumer-generator con-
figuration. Regions of greatest robustness are located in the central 
regions of the landscapes, corresponding to grids operating with 
roughly equal proportions of generators and consumers on-line at a 
given time. Combining these landscapes with household data for 
power consumption and generation reveals the paths that microgrids 
trace as they traverse these terrains. The analysis shows that micro-
grids spend most of their time operating in the least favorable regions 
of the robustness landscape, across all ranges of PV uptake. This is 
due to a supply-demand discrepancy, meaning microgrids are alter-
nately dominated by either consumption or generation. The grids 
therefore spend fleetingly little time in the center of the simplex and 
are therefore unable to exploit the robustness advantages that in-
creased distribution intuitively ought to provide. Increased uptake 
of PV can cause microgrids to operate at critical values c that are at 
the upper end of modern line ratings. These grids would be able 
to operate normally but would be extremely fragile to cascading 
failures. The installation of household battery storage, while in-
creasing consumer self-sufficiency, does little to ameliorate this 
resilience problem.

In conclusion, this paper has shown that increased installation of 
distributed renewable generation and household storage can lead to 
a lack of robustness. This highlights the importance of developing 
new control strategies for future microgrids. In particular, battery 
usage could be adjusted to push grids into the more favorable re-
gions of the robustness landscape. Today’s commercially available 
household batteries, such as those modeled here, are not designed 
to dispatch energy back upstream into the network. Instead, they 
optimize only for individual household self-sufficiency. This mode 
of operation was reported to be economically inefficient (35), and 
our work establishes that it fails to mitigate undesirable vulnerabil-
ities introduced by the increasingly variable and distributed na-
ture of modern power generation. Nascent technologies such as 
vehicle-to-grid (36) show promising abilities to balance renewable 
power systems (37) and can be used together with energy manage-
ment control systems to form so-called virtual power plants (38). It 
is vital that any such future control schemes also take into account 
the dynamical properties of the network to ensure the resilience of 
future power grids.

MATERIALS AND METHODS
Computation of c
The critical coupling c for a given power network is evaluated by 
finding stable fixed points of Eq. 1 for a range of  values. These 
fixed points satisfy

   P  i   −   ∑ 
i=1

  
n
    sin(   i   −    j   ) = 0  (5)

for all nodes i = 1, …, n and are computed via numerical integration 
of Eq. 1. Since no stable fixed points exist for  < c, the critical 
coupling can therefore be readily identified as the value of  beneath 
which time-stepping fails to converge on a steady state satisfying 
Eq. 5. Other methods to identify c based on numerical continua-
tion are also available but may, in practice, be more computationally 
intensive because of the presence of multiple parallel branches of 
stable solutions.

Network cascade model
This paper uses cascading failures as a means to gauge the resilience 
of power networks. Algorithm 1 is used to compute these cascading 
failures in a given power network G = (𝒱, E, P, ), with n = ∣𝒱∣ nodes, 
m = ∣E∣ edges, power vector P, and edge capacities .

Algorithm 1 Dynamic cascade
Input: A network G = (𝒱, E, P, ).
Output: Fraction of surviving edges S
1: Find steady state * by integrating Eq. 1
2: Delete an edge
3: Find all connected components H ∈ G and their node phase 

vectors H

4: S ≔ 0
5: for all H ∈ G do
6:  S = S + NETMON(H, H, )
7: end for
8: S = S/∣E∣
The dynamical cascade algorithm used here is adapted from the 

steady-state Motter-Lai process (7), which has previously been used 
to investigate network resilience as a function of edge capacity 
(17, 25, 39, 40). The algorithm monitors the network after some 
initial failure, removing edges that become overloaded or that drift 
too far from the grid reference frequency . The procedure begins 
by finding the steady-state power flow pattern of the network using 
Eq. 1, giving a vector of node phase angles  and frequencies . The 
greatest power flow on any edge in this initial steady state is labeled 
* and is the minimum edge capacity required for normal operation. 
The edge carrying this greatest power is then deleted, serving as a 
model of overloading line failure. The network (or networks, if it 
has fragmented into separate connected components) is then mon-
itored using the function in Algorithm 2. This function continues to 
time-step Eq. 1 while removing any edge e with power flow fe >  
and removing any nodes i where i > 1 Hz to mimic the typical 
tolerances of the U.K. power grid (41). The function also detects any 
new connected components formed as the network breaks down, 
which are then monitored by recursively calling Algorithm 2; note 
the recursive step at line 19. The cascade finishes when all remain-
ing network components are within the frequency and capacity tol-
erances. The fraction S of surviving edges is then returned. A small 
adaptation to Algorithm 2 provides the total cascade time, and the 
fractions of edges failing by either desynchronization or overload. 
This cascade scheme is repeated for a range of edge capacity values 
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, producing profiles of the type shown in Fig. 2. The critical value 
c at which S = 1/2, and thus the resilience measure  = c/*, is 
determined using a bisection method. The distribution of  values 
for networks of a given composition of generators to consumers is 
then obtained by repeating this cascade procedure over an ensemble 
of Watts-Strogatz network realizations of fixed rewiring q and node 
composition (n+, n−, np) placed uniformly at random.

Algorithm 2 Network monitor function
1: function NETMON(G, , )
2: Surviving edges S ≔ 0
3: Balance supply and demand in G
4: while Finished == False do
5:  Time-step Eq. 1
6:  if frequency exceeds tolerance then
7:  return S = 0
8:  end if
9:  if steady state found then
10:  return S = number of edges in G
11:  end if
12:  if edge flow fe exceeds  on any edge e then
13:   Finished = True
14: end if
15: end while
16: Delete all overloaded edges
17: Find all connected components H ∈ G and their node phase 

vectors H

18: for all H ∈ G do
19:  S = S + NETMON(H, H, )
20: end for
21: return S
22: end function

Microgrid model
Household power consumption and PV panel generation time series 
data are used to construct random models of microgrids. These data-
sets contain U.K. household power demand and PV panel output 
data at up to 10-min resolution. Each dataset covers at least a full 
year, allowing microgrids to be modeled for different seasons in a 
temperate climate.

The microgrids are modeled as networks of size n, wherein n − 1 
nodes are houses and the remainder is the PCC, which connects the 
microgrid to the external grid. Each of the houses is prescribed a 
time series of power demand ci(t), drawn uniformly at random from 
the dataset. A random subset of the houses is also chosen to addi-
tionally be equipped with PV generation; these houses are prescribed 
a time series of generation gi(t) drawn uniformly at random from 
the PV dataset. The fraction of houses with PV is referred to as the up-
take. The net power generated by each house is then Pi(t) = gi(t) − ci(t). 
Surplus power generated by PV units will flow through the PCC to 
be supplied back upstream to the external grid. If there is a deficit 
within the microgrid, with household demand outstripping local PV 
production, then power from the external grid will flow in through 
the PCC. The PCC is therefore modeled as behaving variably as a 
source or sink, serving to balance supply and demand.

Battery model
Batteries are modeled on the Tesla Powerwall 2, a common domestic 
battery currently being installed in renewable housing developments. 
They have a maximum charge and discharge rate of 5 kW and a 

maximum storage capacity of around 14 kWh (34). Their usage in 
microgrids is modeled by assuming that each household injects any 
surplus power produced via PV units into their battery. At other 
times, when a household’s consumption outstrips its PV generation, 
the house first uses any power stored in the battery before taking 
any power from the microgrid. Each battery-equipped house i then 
has net power production Pi(t) = gi(t) − ci(t) − bi(t), where bi(t) is the 
battery’s rate of charge in kilowatts.

Data-driven cascade model
Microgrids constructed as above trace daily trajectories through the 
node configuration simplex as usage and generation patterns vary. 
Each point on the simplex has a resilience distribution calculated 
using the network cascade model outlined above. Exploiting the 
log-normal distribution of  in this way obviates the need for pro-
hibitively intensive direct simulation, as the ability of a network to 
survive a failure therefore depends on where in the simplex the 
microgrid happens to be at the onset of failure. To investigate this, 
the maximum power flow Pmax occurring within a microgrid is 
tracked throughout the course of a week as it travels through the 
simplex, producing a time series of maximum power flow. A cas-
cading failure is then chosen to occur randomly at some time t, with 
a probability p proportional to the maximum power at that time 
Pmax(t), where

  p =    P  max  (t) ─  
 ∑  t ′  ∈T      P  max  ( t ′  )    (6)

and T is the set of time points over the week. This probability is very 
low, except during times of high power usage. If a cascade is trig-
gered, then the grid’s location in the simplex is recorded. A value of 
 is then sampled from that simplex point’s resilience distribution, 
given the value of    ̄    and the variance for that network’s log-normal 
distribution. This is then used to calculate the edge capacity volume 
c = * required for at least half of the network to remain functional. 
This experiment is then repeated for an ensemble of microgrid real-
izations for a given time of year and level of PV uptake, producing a 
distribution of c values as shown in Fig. 6A.

The objective of these experiments is not to derive a realistic dis-
tribution describing the likelihood of a cascade occurring. See, for 
example, (18) for an analysis along those lines. Instead, the objective 
here is to evaluate the ability of the system to survive a cascade 
should one occur. The probability in Eq. 6 is therefore designed to 
make cascades more likely to occur when grid connections are 
handling heavy loads, and microgrid realizations that do not enter 
a cascade are discarded.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj6734
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