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ABSTRACT: Glioblastoma multiforme (GBM) is the most

aggressive primary brain tumor. Residual cells at the tumor margin Src inhibitor Formulations
are responsible for up to 85% of GBM recurrences after standard /@
treatment. Despite this evidence, the identification of compounds HN Br 257— SI306 + Pluronic F-68

— S1306 + Tween80
—SI306 + PVPVA

N
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active on this cell population is still an underexplored field. Herein, o™ NS
K/N\/\S)\N/ N

starting from the knowledge that kinases are implicated in GBM, ‘g 15

we evaluated three in-house pyrazolo[3,4-d]pyrimidines active as sis0s ¢ 2.,

Src, Fyn, and SGKI kinase inhibitors against patient derived cell Activity on GBM cells =

lines from either the invasive region or contrast-enhanced core of GIN8  ICs=11.2 uM

GBM. We identiﬁe.d our Src in_hibitor, SI306, as a promising Igad g'ggs I'g:g;;; L‘m o o T T o
compound for eradicating invasive GBM cells. Furthermore, aiming Size (nm)

at the development of a feasible oral treatment for GBM, we

performed a formulation study using 2D inkjet printing to generate soluble polymer—drug dispersions. Overall, this study led to the
identification of a set of polymer-formulated pyrazolo[3,4-d]pyrimidine kinase inhibitors as promising candidates for GBM
preclinical efficacy studies.

KEYWORDS: Kinase inhibitors, glioblastoma multiforme, miniaturized assay, inkjet 2D printing, invasive margin cells

lioblastoma multiforme (GBM) is the most common, Src-family kinases (SFKs) are a series of nine membrane-

malignant, and aggressive primary brain tumor in adults, associated, nonreceptor tyrosine kinases (c-Src, Fyn, Yes, Lyn,
mainly due to its rapid proliferation and ability to penetrate Lck, Blk, Fgr, Hck, and Yrk)8 that are involved in the
and diffusely infiltrate healthy brain parenchyma. Standard of regulation of a range of fundamental cellular processes.”
care treatment currently involves a combination of surgery, Previous studies have indicated that dysregulated SFK
radiotherapy, and chemotherapy.' Yet, despite this multimodal signaling can induce multiple protumorigenic effects in
treatment method, the median survival remains poor at less gliomas, including reduced apoptosis, increased angiogenesis,
than 15 months.” Problems with existing treatment approaches and increased proliferation.lO_B Furthermore, evidence
include (i) increased resistance to chemotherapeutic drugs suggests t}llft SFKs play roles in cancer cell invasion and
caused by the heterogeneity of the tumor microenvironment metastasis.” Src, the most widely studied member of SFKs, is a
and variation in tumor subclones, (ii) inability or impairment key downstream intermediate of growth factor receptor
of drugs to cross the blood—brain barrier (BBB), and (iii) lack pathways and is frequently overexpressed in brain tumors

(61% in GBM).">"*" Preclinical data confirmed the key role
of Src in GBM proliferation and invasion,'” leading the way for
the use of Src inhibitors in clinical studies. Additionally, Fyn
has also been reported to be an effector of oncogenic signaling
in GBM patients.'®

In 2009, Lu et al. identified that persistent epidermal growth
factor receptor (EGFR) signaling activated both Fyn and Src

of penetration of locally delivered therapeutic agents deep into
the brain parenchyma beyond the resection cavity at sufficient
therapeutic concentrations to target residual tumor cells.””
Superior and more innovative treatment methods are necessary
to eradicate invasive tumor cells, which remain beyond the
resection cavity lining postsurgery, and to block or impair
GBM recurrence, which is inevitable with current treatment

methods.
The implication of kinases in GBM pathogenesis and drug Special Issue: In Memory of Maurizio Botta: His kiR
resistance has led to small molecule kinase inhibitors emerging Vision of Medicinal Chemistry :
as possible treatment options.s’6 Crucially, kinase inhibitors, Received: November 18, 2019
acting specifically on molecular targets, are purported to Accepted: February 13, 2020
reduce off site toxicity during antitumor treatments.” Published: February 13, 2020
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Figure 1. Structures of in-house kinase inhibitors SI306, SI308, and SI113 and their activity toward Src, Fyn, and SGK1.

to increase GBM invasion and tumor survival in vivo."® More
recently, Comba et al. demonstrated the correlation of Fyn
expression with malignant features of GBM tumors, including
pseudopalisades, necrosis, and hypervascularization.'”

Dasatinib, a broad spectrum inhibitor of SFKs, including Src,
Fyn and Lyn, has been proposed as a therapeutic option in
recurrent GBM.'* Dasatinib was well tolerated in clinical trials
but failed to improve overall survival either as a monotherapy
or in combination therapy for GBM patients,””*' a result
attributed to its susceptibility to cellular efflux by transporters
and subsequent poor accumulation in brain tissue.”” Generally,
no kinase inhibitor trial (e.g, EGFR and PDGFR) has had
phase II survival benefit for GBM patients.”>**

In addition to SFKs, other kinases have been investigated for
their role in GBM pathogenesis, including serum- and
glucocorticoid-regulated kinase 1 (SGK1) which has been
associated with neoplastic transformation, and chemo/radio-
resistance.”>>°

Over recent years, our group has designed and synthesized a
wide library of pyrazolo[3,4-d]pyrimidines active as kinase
inhibitors.””** In particular, three of our in-house compounds
(SI306, SI308, and SI113 (Figure 1)) have been shown to be
potent inhibitors of the tyrosine kinases Src and Fyn and
serine-threonine kinase SGK1,7*' respectively, and have
demonstrated anticancer effects on different commercial
(established) GBM cell lines.’>*>**

However, most commercial GBM cell lines have historically
been derived from the core region of tumors, which does not
allow a realistic, phenotypically accurate representation of the
infiltrative cells which ultimately result in the inevitable
recurrence of GBM.” Significantly, residual cells at the tumor
margin are responsible for the 85% of GBMs that relapse
locally after maximal safe surgical resection followed by the
standard combination protocol of temozolomide and radio-
therapy.”* Therefore, the discovery of molecules active against
invasive GBM cells represents a crucial step in the develop-
ment of drugs for the treatment of this pathology.”

We evaluated the cytotoxicity of kinase inhibitors on primary
patient derived cell lines from the invasive region (GINS,
GIN28) and on the corresponding central tumor core
(GCE28) cell line from the same patient, and we assessed
the anticancer effects of our kinase inhibitors in monotherapy
and combination therapy. Furthermore, since our compounds
can be considered in biopharmaceutical classification system
(BCS) class I1,>° demonstrating good permeability”” (indicat-
ing a good probability of BBB permeation, which is further
supported by previous work on our compounds®®) but limited
water solubility, we performed a formulation study, applying
the innovative inkjet printing technology to generate solid
dispersions of our lead compound inhibitor in inert hydrophilic
polymeric carriers. This formulation strategy, recently reported
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by us,”” can be used to increase the water solubility of the
inhibitors in a manner that does not compromise potency and
thus provides a viable approach for development of oral
formulations.

In vitro data demonstrated that the different kinase inhibitors
were cytotoxic, implicating Src, Fyn, and SGK1 kinases as valid
targets in the tested GBM cell lines. SI306 (Src inhibitor) was
demonstrated to be the most potent tested compound with
IC, values of 11.2, 7.7, and 7.2 uM in the GINS, GIN28, and
GCE28 cell lines, respectively. Compound SI113 (SGKI
inhibitor) exhibited similar potency to SI306 in the GINS line
but was 1.9-fold and 1.5-fold less potent in GIN28 and GCE28
cells. The least potent compound was shown to be SI308 (Fyn
inhibitor), with ICy, values 4.9-fold, 6.5-fold, and 6.6-fold
higher than the most potent compound (SI306), in GINS,
GIN28, and GCE28 cells, respectively (Table 1 and Figure

Table 1. IC,, Values of Kinase Inhibitors on GBM Cells”

ICs, (uM)
compd GINS8 GIN28 GCE28
SI306 11.2 +£ 3.8 77 £ 1.6 72 £20
SI1308 54.7 £ 6.3 49.8 + 4.2 47.6 + 6.9
SI113 10.5 £ 3.5 144 + 2.8 10.7 £ 1.2

“Potency was assessed with PrestoBlue assay. Compounds were
applied diluted in 10% FBS containing DMEM for 48 h. Data
represent the mean + SE. IC, values were calculated from three
independent experiments. Statistical significance was determined via
two-way ANOVA followed by Dunnett’s multiple comparisons test.

4ST). However, despite being the least potent compound in
monotherapy, SI308 demonstrated a promising application in
synergistic combination therapy with a Scr inhibitor, as
described later.

Following the confirmation of compound cytotoxicity, we
next investigated the effector caspases-3/7 to determine if cell
death was apoptotic in nature.*’

Data in Figure 2 demonstrate that at a cytotoxic
concentration (12.5 M), SI113 and SI306 induce significant
increases in caspase-3/7 activation in all GBM cell lines tested
with the exception of SI113 in the GIN28 line.

For assay verification, staurosporine (10.0 M), a known
inducer of apoptosis,*’ was also tested as a reference
compound. It elicits significant increase in caspase activation
at similar or lower levels than those of the kinase inhibitors. It
can be noted that SI306 induces higher levels of effector
caspase activation compared to SI113, a result that reflects the
ICy, data (Table 1) which together indicate that SI306 is the
most active compound we tested against these cell lines.

To further confirm the apoptotic death induced by SI306,
the nuclear morphology and permeability were investigated by

https://dx.doi.org/10.1021/acsmedchemlett.9b00530
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Figure 2. Effect of kinase inhibitors on levels of activated effector
caspases-3/7 on GBM cells. Compounds were applied diluted in 10%
FBS containing DMEM for 48 h. Caspase levels were assessed with
the CellEvent caspase-3/7 probe. Data represent the mean + SEM (n
= 3). Statistical significance was determined via two-way ANOVA
followed by Dunnett’s multiple comparisons test.

fluorescence microscopy using Hoechst 33342 (Ho) and
propidium iodide (PI) double staining (Figure 3). Cells treated
with SI306 exhibit signs of chromatid condensation, nuclear
fragmentation, and the presence of apoptotic bodies, which are
well-known proapoptotic features. SI306 treatment did not
induce nuclear membrane permeability, as shown by PI
negative staining, or nuclear swelling, indicators of necrotic
cell death and demonstrated by ethanol (EtOH) (Figure 3), a
known inducer of necrosis.”* These observations, taken
together with the effective caspase activation, indicate that
SI306 is inducing GBM cell death via an apoptotic mechanism.

Previous evidence indicates that targeting more than one
kinase may be beneficial in cancer treatment, creating the
opportunity to achieve a synergistic effect and to overcome the
development of resistance.*>** Therefore, we have investigated
our novel compounds as combination therapies in order to
assess if synergistic activity can be achieved. The median-effect
algorithm based on the widely used method established by

Chou and Talalay*® was employed to calculate the
combination index (CI) as outlined in the Supporting
Information. The CI equation was used to generate CI values,
which categorize the compound—compound combinations as
synergistic, additive, or antagonistic. Interestingly, the combi-
nation of SI308 with either SI306 or SI113 was determined to
generate synergistic effects despite SI308 having been
demonstrated to be the least potent compound in mono-
therapy (Figure 4).

Combination Index Values

SI306 +SI308  SI113 +SI308 SI113 +SI306

GINS 0.53 1.13 0.99
GIN28 0.76 0.57 0.90
GCE28 0.88 0.46 0.97
-
Synergy Additive effect Antagonism
(<0.9) (0.9-1.1) (>1.1)

Figure 4. Combination index values. Compounds were applied at a
molar ratio of 1:1. Shown is a summary of the CI values for the
combinations of kinase inhibitors following 48 h incubation in three
GBM lines. Each CI value was calculated, and a heat map was
generated on the basis of three independent ICy, experiments (n = 3).
Values represent the mean + SD.

On the contrary, SI113 and SI306 co-therapy exhibited only
additive action. Therefore, the observed effects suggest that co-
inhibition of the Fyn kinase and SGK1 or Src kinases provides
a synergistic action that cannot be achieved via inhibiting
SGKI1 and Src together. Of further note is the observation that
in the GINS line, co-therapy with SI113 and SI308 produced
an antagonistic effect despite synergy being observed in the
GIN28 and GCE28 lines with this combination. The reasons
for this remain unclear; however, patient genetic variation may
play a role (GIN28 and GCE28 lines are derived from the
same patient, and the GINS line is from a separate patient).

GIN8

GIN28

GCE28

Hoechst

Hoechst

Apoptotic bodies

Chromatin condensation

Hoechst

Nuclear fragmentation

Figure 3. Ho/PI staining of nuclei. Effect of SI306 kinase inhibitor on apoptotic features of cellular nuclei. Cells were dosed with 12.5 uM SI306,
70% ethanol (EtOH) or DMEM (Neg, negative control) for 48 h followed by nuclear staining with Hoechst 33342 and propidium iodide dyes.
Scale bar indicates 30 ym. Images shown are representative of three sets of independent images. White arrows indicate the presence of apoptotic

nuclei (chromatid condensation, apoptotic bodies).
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Taken together, the evidence for synergistic action with our
compounds may promote the adoption of combination
therapies in the field of kinase inhibitors*® for the treatment
of resistant GBM.

The promising in vitro data highlight pyrazolo[3,4-d]-
pyrimidine kinase inhibitors as potential pharmacotherapies
for eradicating invasive GBM cell lines. To further their
development for clinical application, we have investigated the
formulation of our lead compound SI306. To overcome the
water solubility limitation of SI306, which may affect further in
vivo studies and future oral administration routes, we
performed a preliminary formulation screening process based
on 2D inkjet printing, building on an approach previously
validated by our group.””*”*" Different commercial polymers
were combined with SI306 and the apparent-solubility (AA%)
value of each formulation was calculated in order to identify
the polymers able to solubilize our lead compound (Figure S).
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Figure 5. AA% average of SI306-polymer formulation ranked
according to their water apparent-solubility enhancement (high AA
% is related to a high compound water solubility). Data represent the
mean + SEM (n = 3).

Data demonstrate that two surfactants (Pluronic F-68 and
Tween 80) and the amphiphilic copolymer PVPVA showed
notably higher AA% average values compared to the highly
hydrophilic homopolymers (PEG8000—20000) (see Support-
ing Information, Table 1SI and Figures 1SI and 2SI for further
details).

These results suggest that solubilization of hydrophobic
SI306 is due to associative interactions between hydrophobic
blocks in Pluronic F-68, Tween 80, and PVPVA and the
lipophilic regions in SI306.*” Dynamic light scattering (DLS)
measurements were performed on the formulation of SI306
with the three candidate polymers Pluronic F-68, Tween 80,
and PVPVA (Figure 6) in order to evaluate the particulate
nature of the drug—polymer assemblies.

As can be observed from Figure 6, all the formulations
produced well-defined nanoaggregates, characterized by a
single monomodal and monodispersed population with sizes
ranging from 180 to 200 nm, confirming the quality of the
nanoformulations.

To further validate the water solubility enhancement, we
performed a cytotoxicity assay using SI306 either dissolved in
DMSO or printed into the selected polymers. Negative
control, polymers alone, and SI306 suspended in PBS and
diluted in cell culture medium DMEM (to highlight SI306
poor water solubility and consequent in vitro inactivity) had no
effect on cell viability. On the contrary, formulated SI306

— SI306 + Pluronic F-68 (5 ug/ml)
25, — SI306 + PVPVA (5 ug/ml)

— SI306 + Tween80 (5 pg/ml)
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Figure 6. DLS traces in PBS of SI306 as a formulation. Light
scattering measurements were collected on suspensions prepared with
a final concentration of § pg/mL.

resuspended in DMEM and SI306 dissolved in DMSO
treatments had comparable cytotoxic effects on all GBM cell
lines (Figure 7).
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Figure 7. Compound SI306 formulated with the selected best
polymers was then tested against the patients derived GBM cell lines
and the potency compared to the compound solubilized in 1%
DMSO. Potency was assessed after 48 h with PrestoBlue assay. Data
represent the mean + SD.

Therefore, the described SI306 formulation can successfully
increase the apparent water solubility of the inhibitor without
affecting its potency, and this provides a further step into the
development of our lead compound.

It is noteworthy that no kinase inhibitor has yet shown
clinical benefit in GBM. The reasons for this are complex and
multifactorial and include failure to achieve BBB penetration,
genetic heterogeneity in the tumor, target redundancy, and
rapid molecular adaptation. On the other hand, kinase
inhibitors have certainly shown benefit in other aggresswe
forms of cancer such as non-small-cell lung cancer*” and renal
cancer,” and for these reasons, they can be considered
promising drugs for GBM therapy if the above problems are
overcome (Figure 8). Pyrazolo|[3,4- d]pyrlmldlnes synthesized
by our group were able to cross the BBB,***' laying the
foundation for a successful development.

In conclusion, we have evaluated the potency of our
pyrazolo[3,4-d]pyrimidines active as specific kinase inhibitors,
against patient derived cell lines from the invasive region and
core of GBM, identifying the Src inhibitor SI306 as a lead
compound. SI306 possesses an ICg, in the low micromolar
range on all the three GBM cell lines tested in this work,
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Figure 8. Simplified representation of the main issues that kinase
inhibitors have to overcome to obtain clinical benefits in GBM
therapy.

demonstrating the ability to induce apoptotic death. A
combination study, using the Chou and Talalay method, has
also been assessed and showed that, based on patient genetic
variations, our kinase inhibitors possess a synergistic effect that
could positively influence the success of GBM treatment.

Lastly, a polymer formulation strategy involving the novel
2D inkjet printing technology was explored as a strategy to
enhance SI306 water solubility. In vitro results illustrated that
printing S pg/mL of our lead compound into dispersions of
Pluronic F-68, Tween 80, or PVPVA at a level of 90% is a
successful formulation method, resulting in a comparable
potency to SI306 dissolved in DMSO. Accordingly, this
methodology provides a viable approach for the development
of oral formulations of our in-house kinase inhibitors.
Furthermore, since some of the chosen polymers, such as the
Pluronic family, have been shown to facilitate transport across
the BBB, a next challenge could be the selection of the best
polymer for in vivo GBM studies.

Overall, these results encourage in vivo studies and promote
polymer-carried pyrazolo[3,4-d]pyrimidine kinase inhibitors as
oral feasible treatments against GBM potentially active also
against tumor recurrence.
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