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POPULAR SCIENCE SUMMARY OF THE THESIS 

Malaria is caused by parasites of the Plasmodium family. These parasites spend part of their 

life cycle replicating inside red blood cells (RBC). Malaria infects 200 million people and kills 

nearly half a million each year with the heaviest disease burden in sub-Saharan Africa. The 

disease can vary from asymptomatic to severe. The latter can manifest as impaired 

consciousness, organ failures and abnormalities in blood or metabolism. Severe malaria is most 

commonly caused by P. falciparum, which is the focus of this thesis. This parasite’s extreme 

harmfulness is in part due to its efficient cell invasion regardless of the age of the RBC and its 

ability to make parasitized RBC (pRBC) adhere to blood vessel walls. In addition, the infected 

host cells can bind to uninfected RBCs (uRBC), forming clumps of cells called rosettes. 

Excessive binding of pRBC in small blood vessels and rosettes can obstruct the blood flow 

causing oxygen deprivation and damage. 

Whether individuals develop severe malaria also depends on human factors. Previous studies 

have found that blood group O is protective against severe malaria, probably because the 

rosettes formed in blood group O are smaller and less tight. In paper I, we investigated how 

ABO blood groups affect the parasites ability to form rosettes. Rosettes that are formed in all 

non-O blood groups shield the parasite better from antibodies. This shielding could hamper the 

immune clearance of parasites during the infection. We were also interested in understanding 

how subgroups of ABO blood types affect rosettes. This is because individuals with blood 

group A can have various levels of A-antigen on the RBC depending on a blood group A 

subtypes (A1 > A2 > A3 etc.). A positive correlation between A-antigen levels on RBC and 

the sturdiness of rosettes was seen. In other words, if a person has A1 blood, then the rosettes 

are more resistant to disruption by antibodies. Therefore, future epidemiological studies 

investigating risk of severe malaria should keep in mind the subtypes of blood group A. 

For the parasites to stick to blood vessels and uRBCs, they need to decorate the surface of 

pRBC with their own proteins. A member of the parasite protein family called RIFIN has been 

suggested to bind to A-antigen and mediate rosette formation. There are approximately 200 

members in that family and little is known about their function. Many experiments for 

determining function and location of proteins rely on the use of antibodies against the particular 

protein. Paper II aims to generate and to validate antibodies for the future studies of RIFINs. 

Antibodies were tested by their ability to recognize a protein that could be a RIFIN based on 

size, ability to mark the cellular location of RIFINs, and binding specifically to protein 

fragments of RIFINs. In sum, only a few antibodies performed well in tests and most had 

specificity issues. Therefore, the antibody should be selected based on the assay in mind. 

When the pRBCs block blood flow, the local environment can become acidic due to anaerobic 

metabolism. In paper III, we explored what happens to pRBC stickiness in a low pH 

environment. We showed that parasites become less adhesive to tissue and form fewer rosettes 

when pH is altered from what is normal in the circulation. This reduction was linked to the loss 

of pRBC surface exposed PfEMP1, an antigen that mediates the binding. The total protein 



 

 

amounts remained similar, but the trafficking to the cell surface or insertion to the membrane 

was hampered by the drop in pH.  

Finally, in paper IV, we investigated anti-parasitic properties of a potential new drug, 

sevuparin. Sevuparin is developed from heparin but lacks heparin’s anti-coagulant activity and 

has been suggested as a promising candidate to be used in combination with other antimalarials. 

Sevuparin has previously been shown to block parasite invasion into RBCs and inhibit rosetting 

and cytoadherence. Here, we demonstrate that sevuparin has more modes of action against the 

parasites. Exposure to sevuparin slows down the development of parasites, reduces 

multiplication rate, and disturbs pRBC homeostasis. Our results suggest that parasites could be 

using host membrane channels and transporters for their own advantage. Sevuparin increases 

the sodium levels in cells, which could explain the observed increase in the lysis of pRBCs 

upon treatment. We found that sevuparin targets many harmful aspects of the parasite and 

therefore would be an attractive candidate for adjunctive therapy. 

Collectively, the work done here sheds light on factors that affect P. falciparum’s fitness and 

capacity to cause disease. In addition, this work explores the factors that affect the host, the 

tools that future studies could use, and steps that can be taken to counteract P. falciparum’s 

fitness and capacity to cause disease.   



 

 

ABSTRACT 

Malaria is an ancient disease that still has profound impact on human population. The virulence 

of the most lethal malaria parasite, Plasmodium falciparum, can be attributed to several features 

of the parasite. P. falciparum is known for its indiscriminate red blood cell (RBC) invasion and 

aptitude for cytoadherence. The latter is associated with various disease pathologies. This thesis 

explores factors that influence the virulence and fitness of P. falciparum, both from the host 

and parasite perspective. 

The association between ABO blood groups and protection from severe malaria has sparked 

many studies, and blood group O has emerged as protective against severe disease. This 

protection has been attributed to the binding of uninfected RBCs (uRBC) by the parasitized 

RBC (pRBC), a mechanism known as rosetting. Using a robust high-throughput flow 

cytometric method, we characterized rosetting for six parasite strains/isolates in all four major 

ABO blood groups. Rosettes formed in non-O blood shielded the major parasite surface antigen 

(PfEMP1) from antibody recognition. As blood group A is further subdivided based on 

qualitative and quantitative properties of the A-antigen, we found that levels of A-antigen on 

RBCs were positively correlated with rosette sturdiness against disruption by heparin and 

antibodies.  

RIFINs, another large family of surface antigens, has been implicated in blood group A 

rosetting. Members of this family can be divided into A- and B-RIFINS, depending on cellular 

localization and parasite stage expression. To set the scene for future studies of RIFINS, we 

generated and validated antibodies for various antibody-based methods. We identified two non-

rosetting RIFIN-expressing parasite lines that had not been characterized before. Their 

dominant rif transcripts were identified by RNA sequencing. 

As PfEMP1s along with RIFINs and other surface adhesins must be trafficked and inserted into 

the pRBC membrane to fulfil their cytoadhesive function, we hypothesized that his process 

might be affected by varied conditions in the host. Here, we describe the loss of pRBC’s 

adhesive capacities in acidified environment for rosetting and placental binding parasite stains. 

The reduction was associated with the loss of surface exposed PfEMP1 due to disturbances in 

the last steps of PfEMP1 trafficking and membrane insertion. 

Heparin-derivatives, including sevuparin, have sparked interest as possible adjunctive 

therapeutics in severe malaria treatment. Here, we investigated the mechanisms behind the 

invasion inhibition by clinically well-tolerated sevuparin and explored the additional anti-

parasitic properties of this compound. Sevuparin severely affected parasite intracellular 

development with delayed schizogony and reduced parasitemia after drug removal. The 

metabolic disturbances manifested in abnormal morphology, abundant extracellular parasites, 

and reduction of PfEMP1 on the pRBC surface. Inhibition by sevuparin was distinct from 

classical plasmodial surface anion channel (PSAC) inhibitors, suggesting the involvement of 

other channels or transporters. Using protein pull-downs from membranes of pRBCs and 

uRBCs, we identified putative sevuparin interactomes. Due to the identification of multiple 



 

 

human proteins linked to cation homeostasis and haemolysis, we measured cellular sodium 

levels. Upon treatment with sevuparin, cellular sodium levels were increased in pRBCs, 

whereas no differences were noted in uRBCs. 

In conclusion, we found that A-antigen levels on RBCs affect rosette characteristics, which 

should be considered in future studies investigating associations between blood group A and 

risk to develop severe malaria. We have validated tools for the study of RIFIN family of 

proteins and their possible function in disease pathogenesis. In addition, we demonstrated that 

PfEMP1 trafficking to the surface is pH sensitive. Finally, we showed that sevuparin has 

multimodal activity against malaria parasites. 
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1 INTRODUCTION 

1.1 MALARIA AND GLOBAL HEALTH 

Malaria has impacted the lives of humans for thousands of years. Even today it causes 

substantial morbidity and mortality, threatening the lives of nearly half of the world’s 

population. The disease burden lies heavily upon the sub-Saharan African region (Fig. 1). In 

2020, 241 million cases were estimated with 627 000 deaths, with the hardest impact on young 

children and pregnant women [1]. With this strong impact on humans before reproductive age, 

malaria has left imprints in human genetics, a phenomenon discussed later in this thesis. The 

cruelty of this disease not only manifests in the target population but also in the ways it affects 

the lives of survivors. Malaria has a negative impact on children’s education as it often results 

in absence from school and poorer cognitive performance [2,3]. Moreover, both adults and 

children suffer from neurological sequelae after recovering from cerebral malaria [4]. In 

general, morbidity caused by malaria results in days missed at work and hinders economic 

growth in a region. On the African continent, the disease itself has been proposed to be 

responsible for a 1.3% reduction in economic growth [2]. Malaria endemicity also leads to loss 

of investments and tourism [2]. Thus, the disease presents a “Catch-22”: elimination of malaria 

requires resources but malaria itself hinders economic growth. 

 

 

Figure 1. Map of predicted clinical malaria cases in 2019. (A) Plasmodium falciparum, responsible for the 

majority of global cases, clinical cases in all age groups. (B) Plasmodium vivax, accounting for 2% of global 

cases [1], cases in all age groups. The areas with insufficient data for prediction are light grey. The maps were 

obtained from the Malaria Atlas Project under the CC BY 3.0. 

A 
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Several elimination and eradication efforts to combat malaria have been initiated historically, 

but these efforts have not prevented resurgence of the disease. These resurgences have been 

intimately linked to socioeconomic factors as active and long-term intervention is needed, 

which is economically costly [5]. Furthermore, malaria control programs heavily rely on 

foreign investments, which are influenced by politics and changing priorities. The impact of 

the COVID-19 pandemic has negatively impacted malaria control efforts. Although the number 

of COVID-19 cases seems to be lower than expected in Africa [6], approximately two-thirds 

of additional malaria deaths (compared to 2019) were linked to reduced access to preventive 

services and other malaria provisions [1]. Besides the socioeconomic factors, malaria 

elimination and eradication programs have also been compromised by the development of drug 

resistance among parasites and mosquitoes. 

1.2 DRUG RESISTANCE AND NEW INTERVENTIONS (THERAPEUTICS AND 
VACCINES) 

As with any infectious disease, the arms race between the etiological agent and science is 

continuous. In the case of malaria, many players are involved. To begin with, the successful 

vector control by indoor residual spraying and insecticide-treated bed nets is jeopardized by 

development of resistance to pyrethroid insecticides by mosquitos and change in mosquito 

feeding habits [7–9]. Another reason for the plateauing of malaria elimination progress is the 

spread of parasite populations with increased tolerance to artemisinin analogues, which are 

central to current first-line combination therapies, as well as to partner drugs used in 

combination therapies [10]. Moreover, recently it has been discovered that parasite populations 

have evolved to escape diagnosis through deletion or drastic changing of genes encoding 

targets of rapid diagnostic tests [11–13]. Thus, there is a great need for the development of new 

therapeutic and diagnostic approaches. To delay the development of resistance, new 

therapeutics should preferably be fast-acting, target several cellular processes, or target host 

factors required for intracellular parasite growth [10]. 

On the brighter side, there are at least 13 new antimalarial drugs in clinical development and 

several of them are against novel targets [14–16]. The parasite’s intraerythrocytic growth 

requires uptake of various nutrients through alterations of host cell membrane permeability (see 

section 4.2), which presents an attractive process to target. This increased permeability 

facilitates the influx of sodium into the erythrocyte’s cytoplasm. Thus, the parasite needs to 

actively regulate the Na+ levels to maintain homeostasis. One of the drugs in the pipeline is 

Cipargamin (KAE609), which inhibits the P-Type Na+ATPase (PfATP4) and leads to 

increased Na+ levels inside the parasites, resulting in parasite death [17]. Cipargamin is in phase 

II clinical trials [14,18]. Another drug with a novel mechanism of action is Ganaplacide 

(KAF156), which is being tested in phase IIb trials in combination with Lumefantrine. 

Although the exact target is unknown, it is believed to affect parasite internal protein secretory 

pathways [14,16,18]. A key feature of malaria is the rapid proliferation parasites, which 

requires frequent rounds of DNA replication. The nucleotides needed for this can either be 

synthesized de novo or salvaged. A rate-limiting step in pyrimidine de novo synthesis is the 
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catalytic activity of dihydroorotate dehydrogenase (DHODH). A selective inhibitor of parasite 

DHODH, DSM265, is now being investigated in phase II clinical trials [16]. However, there is 

some concern regarding the ease of resistance development toward DHODH inhibitors [19]. 

Furthermore, the parasite translation machinery presents yet another promising drug target. 

Inhibition of Plasmodium falciparum elongation factor 2 (PfEF2) by M5717 has shown good 

efficiency in vitro and is now in phase I trials [14,16,20]. As a complement to parasite-killing 

drugs, adjuvant drugs hampering parasite virulence features such as anti-adhesive 

polysaccharides are being developed. Sevuparin, an agent manufactured from heparin and that 

lacks the antithrombin effect, can block parasite invasion to erythrocytes and reverse the 

binding of infected erythrocyte to uninfected erythrocytes and to the vascular endothelium. 

Sevuparin was tested in combination with atovaquone/proquanil in phase I/II trials and showed 

promising results [21]. 

In addition to new therapeutics, development of an effective malaria vaccine has always been 

a global goal. In October 2021, the World Health Organization (WHO) endorsed the 

widespread use of RTS,S/AS01 vaccine [22]. The vaccine is meant for use in children and 

targets the pre-erythrocytic Plasmodium falciparum circumsporozoite protein [23]. However, 

the efficacy and safety of this four-dose vaccine has been questioned as the protection seems 

to wane over time [24–26]. 

Although the future of malaria interventions looks promising, we cannot rest on our laurels and 

must keep finding new solutions. Therefore, it is important to first increase the understanding 

of the parasite’s biology and pathogenesis of the disease to develop novel targets and to 

improve the existing combinations. 

1.3 MALARIA LIFE CYCLE 

This ancient disease is caused by protozoan parasites belonging to the genus Plasmodium. The 

species of malaria parasites causing disease in humans differ in regard to global distribution 

and life cycle duration. The most prevalent malaria parasite, P. falciparum, is responsible for 

the majority of the disease associated morbidity and mortality and mainly affects sub-Saharan 

Africa, although it is also found in other malaria endemic regions (Fig. 1A). P. vivax is the 

second most prevalent and is mainly found outside Africa (Fig. 1B). P. ovale is widely 

distributed in tropical and sub-tropical areas, except the Americas, and can be further divided 

into P. ovale curtisi and P. ovale wallikeri [27,28]. P. vivax and P. ovale carry lower risk of 

fatal outcome and are characterized by tertian fevers (life cycle of 48 hours). P. malariae, 

causing quartan fevers (life cycle of 72 hours) was once probably quite prevalent but is now 

found in South America, Asia, and Africa but at low frequencies. The sixth malaria parasite, 

P. knowlesi, has zoonotic transmission throughout South East Asia [29]. The life cycle of P. 

knowlesi is the shortest, only 24 hours [30,31]. 

The life cycle of Plasmodium transitions through a variety of morphologically and 

physiologically distinct stages and requires a human as an intermediate host and an Anopheles 

mosquito as a definite host (Figure 2). The infected female of Anopheles mosquito injects 
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sporozoites into the dermis of the human host while probing for blood. From there, the 

sporozoites actively make their way into the blood circulation where they are swiftly carried to 

the liver. In the liver, they invade hepatocytes and forms a parasitophorous vacuole (PV) around 

them. This phase of the infection is asymptomatic and can last 8 to 25 days depending on the 

infective species. P. vivax and P. ovale can arrest growth and establish dormant forms called 

hypnozoites in the liver, leading to relapsing malaria years after initial clearance of parasites 

[32,33]. 

 

Figure 2. Life cycle of Plasmodium. Sporozoites are injected by the female Anopheles mosquito and travel 

with the blood to the liver, where they establish the initial host cell infection. After several rounds of asexual 

replication in hepatocytes, the intraerythrocytic developmental cycle begins. Merozoites invade red blood cells 

and develop into trophozoites, which mature to schizonts and undergo multiple fissions to form new merozoites. 

A new cycle can begin when the red blood cell ruptures and merozoites are released. A few parasites commit 

sexually and develop into female and male gametocytes, which can be transmitted back to mosquitos. Sexual 

replication occurs in the mosquito. Created with BioRender.com. 

After the primary replication in hepatocytes, thousands of merozoites are released into the 

blood stream where they proceed to invade the red blood cells (RBCs). Employing parasite 

ligands, merozoites attach to specific receptors on RBCs. They actively deform the RBCs and 

push themselves into the cell via a tight junction (see section 4.1.2). As with the hepatocyte 

invasion, a PV is formed around the merozoite, within which the parasite can grow and 

multiply. The following developmental stage is known as ring stage after its ring-like 

appearance in parasitized RBCs (pRBCs) upon Giemsa staining. As the parasite grows, it 

changes its shape to a more rounded or irregular trophozoite (about 24 hours post invasion (hpi) 

for P. falciparum). Trophozoites then mature to schizonts (approx. 36 hpi for P. falciparum), 

which undergo mitotic nuclear divisions, finally releasing 16–32 new merozoites during egress 
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(see section 4.1.1). The cycle repeats with the invasion of new RBCs by merozoites and with 

an exponential increase of parasite load in the patient. This part of the infection, the 

intraerythrocytic developmental cycle (IDC), is where clinical manifestations of the disease 

occur. Each IDC takes 24–72 hours depending on the Plasmodium species [32–34]. 

A fraction of the parasites commits to gametogenesis and become either female or male 

gametocytes that can be picked up by a mosquito when feeding on blood. After ingestion, male 

and female gametocytes develop into microgametes and macrogametes, respectively. The 

flagellated male microgametes fertilize the female macrogamete resulting in a zygote. The 

zygote transforms into a motile ookinete, penetrates the mosquito midgut wall, and encyst in 

bodies known as oocysts. Inside the oocyst, parasites divide mitotically and generates a large 

number of sporozoites. After the oocyst ruptures, the sporozoites migrate to the salivary glands 

where they are ready to infect a human host again [35]. 

1.4 P. FALCIPARUM’S INTRACELLULAR DEVELOPMENT 

Most of the molecular understanding of human malaria parasites comes from research on P. 

falciparum. The following chapter will therefore focus on the P. falciparum biology. 

1.4.1 Parasite invasion 

1.4.1.1 Egress 

The IDC ends with a coordinated release of merozoites from pRBC, a process known as egress. 

What exactly triggers the egress cascade and all the contributing factors remain elusive, but 

some of the key steps have been identified. Egress begins with rapid accumulation of cyclic 

guanosine monophosphate (cGMP), which activates the cGMP-dependent protein kinase 

(PKG) that in return phosphorylates substrates and triggers secondary messenger production 

[36,37]. Activation of PKG mobilizes the cytosolic Ca2+ and leads to rounding up of the PV 

with merozoites arranged symmetrically in a flower-like manner [38,39].  Occasionally, 

permeabilization of the PV membrane before rupture has been noted [40]. The combination of 

Ca2+ and PKG activity is required for the discharge and activation of subtilisin-like protease 1 

(SUB1) from merozoite exonemes into the PV [41–43]. In the PV lumen, SUB1 cleaves various 

merozoite surface and PV proteins, such as serine repeat antigens PfSERA5 and PfSERA6, 

which are crucial in later steps of egress [41,44–47]. Next, the PV membrane ruptures giving 

the merozoites more freedom to move inside the pRBC [48]. This is followed by the RBC 

membrane poration and collapse [49]. In the final step of egress, the RBC membrane ruptures, 

which is believed to be mediated by cysteine proteases as it is blocked by cysteine proteases 

inhibitor E-64 [50–52]. PfSERA6, one of the proposed enzymes, probably mediates proteolytic 

degradation of the RBC cytoskeleton [47,50]. The membrane rupture begins from a single point 

from which a few merozoites are ejected. Thereafter the membrane rips open and curls back, 

ejecting the remaining merozoites [53]. 
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1.4.1.2 Entry into the new RBC 

After egress, merozoites quickly find a new suitable RBC to invade as lingering in the 

bloodstream might lead to unwanted attention from the immune system. Thus, most invasions 

occur within a minute after egress and the process itself only requires 20 seconds to complete 

[54]. The merozoites go through series of events where various parasite proteins and complexes 

are released in a highly organized manner (Fig. 3). 

The initial contact between merozoite and RBC is a weak interaction, possibly mediated by 

merozoite surface proteins (MSPs) [55]. Of these, MSP1 has been highlighted. MSP1 forms 

large complexes and some of these bind band 3 and glycophorin A (GlyA) on the RBC 

membrane [56–58]. However, MSP1 alone does not seem to be essential as parasites lacking 

surface expressed protein are still able to invade RBCs [59]. Controversially, MSP1 has been 

proposed to be targeted for invasion blocking by heparin [60,61], but later it has been noted 

that merozoites can still remain in contact with the RBCs in presence of heparin [54,62]. This 

controversy could be due to the compensation by other parasite ligands binding to surface of 

RBCs or that the inhibitory target of heparin is different as heparin has been proposed to bind 

many different parasite proteins [60]. 

After the weak initial attachment, merozoite forms high-avidity interactions via adhesins 

released from the micronemes. Two major protein families have been implicated: Duffy 

binding-like (DBL) (also known as erythrocyte-binding-like, EBL) proteins and the 

reticulocyte-binding-like protein homologs (Rh) [55]. Members of these families bind different 

RBC receptors, for example, EBA-175 interacts with glycophorin A (GYPA) and EBA-140 

binds glycophorin C (GYPC) [63–65]. Although none of the proteins individually seem to be 

essential, their overall function is needed [66]. Furthermore, the diversity in engagement of 

receptors allows for the use of alternative invasion pathways [67]. These interactions lead to 

strong deformation of the RBC and reorientation of the merozoite with the apical end towards 

the RBC membrane. Next, an essential interaction between parasite Rh5 and basigin on the 

RBC surface occurs [54,68–71]. This event is connected to a calcium flux that is needed for 

successful invasion and release of further rhoptry content [54]. Among the proteins released 

are complexes formed in the bulbs of rhoptries: rhoptry-associated proteins (RAP) and a 

soluble complex composed of the RhopH proteins [72–76]. Among the latter is a small, 

conserved protein called RhopH3 [77]. Conditional knock-down of RhopH3 reduces the 

parasite invasive capacity and knockout of this gene kills the parasites [78,79]. Moreover, 

antibodies against RhopH3 and modifications of the protein inhibit the invasion, but its exact 

function during the invasion is unknown [74,80,81]. The importance of the RAP complex has 

been debated as knockdown of RAP1 and RAP2 in P. berghei does not affect the invasion [82] 

whereas knock-down of RAMA, another member of RAP complex, leads to protein 

mislocalisation and invasion defects [83]. Regardless of the role in invasion, the RAP complex 

is needed for correct structure of PV membrane and parasite intracellular growth [82]. 

Next, the RON complex (including RON2, 4 and 5) is injected into the RBC from the rhoptry 

neck and binds the AMA1 on the merozoite surface to form a tight junction [84–87]. The 
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invasion begins as the PV forms around the invading parasite. The merozoite pushes through 

the tight junction propelled by an actin-myosin motor, which is anchored to the tight junction 

[86,88]. Once inside, the membrane seals behind the merozoite and the PV is pinched off from 

the RBC membrane [89].  

 

Figure 3. Merozoite invasion. (A) Schematic overview of merozoite organelles. (B) Steps of merozoite invasion 

from initial attachment to internalization. 

1.4.2 Intracellular development and remodelling 

The malaria parasite must establish a suitable environment for growth inside the RBCs, cells 

that are moderate in their metabolic activity and have lost most of the internal organelles and 

functional trafficking machineries [90]. Therefore, the parasite needs to remodel the RBC for 

sufficient nutrient uptake and to perform other necessary functions for survival, such as 

cytoadhesion. 

1.4.2.1 Nutrient acquisition 

Growth and multiplication of an organism requires energy and various building blocks. For the 

malaria parasite, the main source of amino acids is digestion of host haemoglobin, which is 

internalized via a cytostome [91–93] and degraded by parasite enzymes [94]. However, 

haemoglobin does not contain all the essential amino acids required by the parasites [95]. For 

example, it lacks isoleucine and harbours only low levels of methionine. In addition, other 

nutrients can be rate limiting and need to be scavenged from the plasma, for 

example, pantothenate, the precursor of coenzyme A and purines [96,97]. Although the RBC 

membrane contains numerous channels and pumps, not all nutrients can be obtained in 

sufficient amounts via these mechanisms. Hence, the parasite introduces its own new 

permeation pathways (NPPs) to import the essential components from the plentiful plasma 

[98,99]. After infection, the RBC membrane permeability increases drastically to low 

molecular weight solutes such as sugars, sugar alcohols, organic cations, purines, amino acids, 
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certain vitamins, and ions [98,100–104]. The best studied and perhaps most important NPP has 

a strong preference for anion transport over cations and is therefore referred to as the 

Plasmodium surface anion channel (PSAC) [103,105–107]. NPPs appear on the pRBC surface 

from 18 hpi to meet the metabolic needs, and their activity peaks around 36 hpi [108]. PSAC 

is derived from the RhopH invasion complex and is composed of RhopH2, RhopH3, and 

CLAG [79,109]. These proteins are conserved throughout Plasmodium species [110]. RhopH2 

and RhopH3 exist as single copy genes [77,111], whereas CLAGs compose a multigene family 

[112]. CLAG3 has two paralogs that undergo epigenetic switching [113–118], neither of which 

seem to be essential for parasite growth under standard in vitro conditions [119]. This might be 

because other members of the family can substitute for the function or because of the excess of 

nutrients in culture medium. However, RhopH2 and RhopH3 are essential for parasite survival, 

and conditional knock-down causes defects in parasite nutrient uptake [78,79]. Although it’s 

been proposed that other types of parasite derived NPPs exist along-side PSAC, their exact 

compositions, whether they contain any host-derived proteins and molecules they transport are 

unknown [120]. 

Maintaining an appropriate intracellular ion balance throughout IDC is important to avoid 

premature cell lysis (reviewed in [121]). A by-product of increased permeability to nutrients is 

the flux of cations via PSAC [105,122]. In uRBCs, the levels of K+ are kept high and Na+ low 

via Na+,K+ ATPase, which exports Na+ and imports K+. In the pRBCs, the opposite is observed: 

high levels of Na+ and low levels of K+ [123–125]. Initially, Na+,K+ ATPase tries to compensate 

for the excess Na+ by increasing its activity but soon becomes overwhelmed [108]. Inside the 

parasite cytosol, the levels of sodium are kept low and the levels of potassium high as in other 

eukaryotic cells [123,125,126]. Plasmodium falciparum P-type ATPase 4(PfATP4) is 

proposed as the primary mediator of sodium efflux in the parasite plasma membrane, although 

it is unknown how Na+ enters the cell or how the potassium levels are maintained [127,128]. 

Another important cation is Ca2+, which plays a role in various signalling pathways. The levels 

of calcium are kept low in the uRBCs by Ca2+ ATPase, but the levels increase during parasite 

infection [37,130–133]. Other highly relevant physiological anions are Cl- and HCO3
- [121]. 

Changes in permeability affect their concentrations very little as both are already in 

electrochemical equilibrium across the RBC membrane. However, a slight increase in Cl- and 

HCO3
- in response to haemoglobin consumption by the parasite has been noted to compensate 

for the loss of negative charge from the haemoglobin [121,133]. 

After nutrients have been imported into the pRBC they need to cross two more membranes – 

the PV membrane and the parasite plasma membrane – before they reach their destination in 

the parasite cytosol. Solutes smaller than 1400 Da can freely pass the PV membrane via a non-

selective channel [134]. The loss-of-function complementation experiments of Toxoplasma 

gondii PV membrane channel mutants suggest that P. falciparum protein EXP2 forms this 

channel [135]. This hypothesis has found further support by the observation that the PV 

membrane channel frequency correlates with EXP2 expression and mutations in that protein 

alter channel characteristics [136]. Nutrients reach the final destination – i.e., the parasite 

cytosol – via variety of parasite transporters on parasite plasma membrane (reviewed in [137]). 
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1.4.2.2 Protein trafficking 

To remodel the RBC and to create the infrastructure for nutrient uptake and waste disposal, the 

parasite needs to export a wide array of proteins to the PV lumen, to the RBC cytoplasm and 

to the RBC membrane. The exportome of P. falciparum is vast, perhaps containing more than 

500 proteins [138–141]. 

All proteins destined for secretion and export begin with entry to the endoplasmic reticulum 

(ER) via Sec61 translocons [142]. For recognition, the protein needs to obsess a signal sequence 

or other suitable signals such as internal transmembrane domains. Proteins destined for PV 

include a N-terminal signal peptide, which is cleaved upon entry to ER by signal peptidase 

[143]. The majority of exported proteins have an N-terminal recessed signal sequence and a 

host targeting signal referred to as the Plasmodium export element (PEXEL) (RxLxE/Q/D) 

[144,145]. After the recessed signal sequence is cleaved upon entry to ER by plasmepsin V, 

the PEXEL motif is cleaved and N-acetylated [140,142,146–148]. Although PEXEL 

processing is essential for the proteins containing the motif, there is a separate group of 

exported proteins missing this motif and therefore are referred to as PEXEL-negative exported 

proteins (PNEPs). PNEPs typically have a signal peptide and a transmembrane domain [141]. 

From the ER, the proteins continue within the secretory vesicles to the PV [149]. 

Next, the host cell targeted proteins, including PEXEL and PNEPs containing proteins, need 

to pass the PV membrane [150–152]. This process is mediated by a complex named 

the Plasmodium Translocon of Exported Proteins (PTEX) [150]. PTEX is built up from three 

components: a protein unfolding motor, a flange shaped connector, and a PV membrane 

spanning channel. The first consists of hexamer of heat shock protein 101 (HSP101), which 

harvests the energy from ATP hydrolysis to unfold the exported proteins [153]. The second 

part is an adapter feeding the unfolded effector proteins into the membrane channel and is made 

of seven PTEX150 subunits [153]. Finally, the proteins pass through the funnel-shaped pore 

formed by a heptamer of EXP2 [153]. In addition, several accessory proteins have been 

observed interacting with PTEX complex. 

In the RBC cytosol, the effector proteins need to be refolded and transported to their final 

destination. The exact mechanism remains unclear, but the involvement of exported parasite 

chaperons and co-opted host chaperons has been implicated. Soluble proteins are probably 

transported through the RBC cytosol by diffusion, whereas proteins containing transmembrane 

domains or hydrophobic regions are likely to be part of a multimeric complex [154,155]. For 

example, the parasite encoded co-chaperon HSP40 and chaperon HSP70-x form a complex 

called J-dots that have been observed in association with the major virulence factor erythrocyte 

membrane protein 1 (PfEMP1) [156]. Furthermore, HSP40 has been detected to interact with 

members of PTEX (Hsp101, PTEX150) and with other exported proteins [157]. The next stop 

for many proteins is Maurer’s clefts (MC), which might serve as a concentration and sorting 

platform for proteins bound for host cell membrane such as the aforementioned PfEMP1 [158]. 

At the MC, PfEMP1 associates with other proteins such as the knob-associated histidine-rich 
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protein (KAHRP) [159–161] and is transported to the RBC surface inside the vesicles, which 

is possibly driven by actin treadmilling [162–164]. 

1.4.3 Cytoadhesion 

One of the major virulence features of P. falciparum is its ability to sequester in the 

microvasculature. The remodelling of the RBCs changes the biomechanical properties of the 

cell, resulting in rigid pRBCs. As the blood circulates through the splenic sinosoids, any 

abnormal RBCs, such as rigid pRBCs, are retained and engulfed by the macrophages. To 

survive, the malaria parasites have developed ways to avoid passing through the spleen: they 

export ligands to the cell surface to make the pRBCs “sticky” so they can adhere to the 

endothelial receptors (cytoadhesion) or to other uninfected RBCs (rosetting) (reviewed in 

[165]). All mature trophozoite stage parasites cytoadhere and this cytoadherence has been 

linked to various disease pathologies. 

For many years, the ability of laboratory parasite strains and clinical isolates to bind two or 

more uRBCs (i.e., rosetting) has been observed  [166–168]. Although the in vivo advantage of 

rosetting is elusive, it has been associated with disease severity in Africa [169–172]. One 

hypothesis has proposed that rosetting facilitates invasion by providing fresh uRBCs close-by; 

however, there is no definite conclusion on the matter as there are supportive [173] and 

confuting findings [174–176]. Another possible benefit would be masking of parasite surface 

antigens and therefore preventing antibody opsonization and phagocytosis. Indeed, tighter 

rosettes formed with blood group A RBCs have been shown to mask PfEMP1 from antibody 

recognition [177]. Furthermore, rosetting has been observed to hamper the phagocytosis of 

pRBCs [178,179], and rosetting could be a mechanism to reduce the blood flow, which would 

encourage for endothelial cell adhesion. On the other hand, the surrounding uRBCs can serve 

as a barrier blocking the pRBC’s adhesion to endothelium [180,181]. Alternatively, during high 

local parasitemias, vascular endothelium might be too saturated for pRBC adherence, and 

secondary binding to uRBC occurs as endothelium and RBCs share many receptors. Regardless 

of the exact purpose of this phenomenon, it seems to play an important role in disease 

pathogenesis. Several host and parasite receptors mediating cytoadherence have been identified 

and will be reviewed in the following sections. 

1.4.3.1 Adhesive parasite ligands 

PfEMP1 

PfEMP1, which appears on the pRBC surface around the same time mature trophozoites 

disappear from circulation, is the most noteworthy surface adhesin. In addition, PfEMP1 is a 

known target for naturally acquired immunity [182–186]. This relatively large protein (200–

350kDa) is encoded by the var gene family, which undergoes antigenic variation (see section 

4.4) [187–189]. Each haploid parasite genome contains approximately 60 variants, generating 

a bouquet of possible adhesive phenotypes [190]. Var genes can be divided based on their 

upstream elements and the transcription orientation to UpsA, UpsB, UpsC, and UpsE [191–

193]. UpsA genes are located in subtelomeres and transcribed toward the telomer end, UpsC 
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genes are located internally, and group B genes are found in both locations. Some clinical 

observations have been made about the groups and manifestations of malaria; for example, 

group A expressing isolates are linked to severe disease in Africa [172,194–196]. The var gene 

encompasses two exons divided by a conserved intron. The first exon encodes for 

hypervariable extracellular part of PfEMP1, including the N-terminal segment (NTS), the C2 

domain, and the multiple adhesive domains of DBL and cysteine-rich interdomain (CIDR) 

[197]. The second exon encodes a semi-conserved acidic terminal segment (ATS) that includes 

a C-terminal transmembrane region [190]. The DBL and CIDR domains can further be divided 

into five (α, β, γ, δ, and ε) and three (α, β, and γ) classes, respectively [197]. The number and 

order of adhesive domains may vary, creating a wide assortment of proteins. In addition to 

cytoadhesive properties, binding of PfEMP1 has been implicated in immune modulation [198]. 

RIFINs 

The largest family of variable surface antigens is the repetitive interspersed (RIFIN) protein 

family encoded by more than 150 rif genes per genome [199]. Rif genes are composed of two 

exons and each pRBC only expresses a few rif genes at the time [200–203]. The first exon 

contains a predicted signal peptide, and the second exon encodes the protein itself and contains 

extracellular conserved cysteine residues with a highly variable region, transmembrane 

segment, and conserved intracellular tail [200]. Unlike PfEMP1, RIFINs are typically small 

proteins (20–40 kDa) with one transmembrane domain [204,205]. Based on the presence or 

absence of a 25 amino acid insertion, RIFINs can be dived into two groups: A-RIFINs and B-

RIFINs [199]. This sub-division has functional significance as the A-RIFINs are transported 

via MC to the surface of the pRBC, whereas B-RIFINs remain confined within the parasite 

[199–201,206,207]. The function of RIFINs remains elusive, but some light has been shed on 

their contribution to disease pathology. Like PfEMP1s, RIFINs are clonally expressed and 

targets of protective antibodies [208,209]. Goel et al. linked an A-RIFIN (PFIT_bin05750) to 

the formation of rosettes in blood group A [204]. Recently, RIFINs have gathered attention for 

their immunomodulatory function by binding leukocyte receptors [210,211]. 

Other surface exposed parasite antigens 

The Sub-Telomeric Variable Open Reading Frame (STEVOR) protein family is closely related 

to RIFINs [212]. Like RIFINs, STEVORs are small proteins (20–40 kDa) that are believed to 

be expressed in a mutually exclusive manner. The function of STEVORs is puzzling. They are 

found on pRBC surface [213] during the merozoite stage (apical end and surface) [214–216] 

and expressed in sporozoites and gametocytes [217]. Therefore, it is likely that they perform 

different tasks in each parasite stage. Niang et al. provided some clues to the STEVOR’s 

function and demonstrated that it bound glycophorin C (GYPC) on RBCs and therefore 

mediates rosetting [215,218]. Moreover, anti-STEVOR antibodies have been observed to 

inhibit parasite invasion in a variant-specific manner [218]. This targeted inhibition implies 

that STEVORs could contribute to disease pathology; moreover, antibodies against them have 

been observed in the sera of malaria-exposed individuals [219]. 
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Another intriguing family of surface exposed proteins is composed of the SURFINs that are 

encoded by the surface-associated interspersed genes (surf). As with the RIFINs and 

STEVORs, they are expressed at different parasite stages and cellular locations [220]. 

SURFIN4.2 has been implicated in merozoite invasion and found at the knobs with PfEMP1 

[221,222]. The fifth multigene family of 13 members encodes for Maurer’s clefts two 

transmembrane (PfMC-2TM). Whether they are exposed or not on the pRBC surface remains 

inconclusive [205,223–225]. 

1.4.3.2 Host receptors 

Different members of the parasite adhesin families have affinity to different host receptors and 

several interactions can happen simultaneously. The site of sequestration influences the 

manifestations of the disease. Some of the more studied host receptors and their associated 

pathologies are described below. 

CD36 

The cluster of differentiation 36 (CD36), also known as platelet glycoprotein 4, is a receptor 

displayed on platelets, monocytes, RBCs, microdermal endothelium, dendritic cells, and some 

other cell types [226]. CD36 is an important scavenger receptor mediating non-complement 

dependent phagocytosis of various pathogens including malaria [227,228]. Most of the clinical 

isolates and laboratory parasite strains bind this receptor through PfEMP1, which leads to 

rosette formation and endothelial cytoadherence [229–234]. Parasite adherence to CD36 might 

protect it from phagocytosis mediated by CD36. Despite the promiscuous binding to CD36, no 

clear correlation between disease severity and CD36 binding has been observed [229,230]. 

Rather, the malaria cases with predominantly CD36 adhering parasites were associated with 

uncomplicated disease [235,236]. Furthermore, a wide abundance of polymorphisms of CD36 

gene have been identified in malaria endemic areas. Depending on the study site and population 

the results differ regarding whether there is protection from severe malaria [237–241]. This 

might be because of CD36’s other functions including immune responses to other diseases 

which would lead to balanced selection between functionality and reduced parasite 

sequestration.  

Intercellular Adhesion Molecule 1 (ICAM1) 

ICAM1 is present in low abundance on endothelial cells and leukocytes but is drastically 

upregulated upon activation by cytokines or binding of pRBC [242,243]. The parasite ligand 

that mediates the interaction appears to be PfEMP1 [244]. In other words, the binding to 

endothelial cells activates the cells and increases the expression of ICAM1, which allows for 

more pRBC to adhere. This cycle might be behind disease pathology associated with ICAM1 

binding. Post-mortem analysis from brains of fatal P. falciparum patients revealed significant 

co-localization of ICAM1 and sequestered pRBCs [234]. Moreover, the binding of ICAM1 

was the highest in cerebral malaria isolates [229,235]. In addition, the dual binding of ICAM1 

and endothelial protein C receptor (EPCR) has been linked to cerebral malaria pathogenesis 

and breakdown of the blood brain barrier (BBB) as the pRBC seems to be internalized by brain 
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endothelial cells in an ICAM-1-dependent manner [245,246]. Although the heterozygous 

genotype of ICAM1 is associated with lower P. falciparum parasite density, no correlation with 

protection from severe disease have been noted [247,248]. 

Endothelial protein C receptor (EPCR) 

EPCR, a receptor for activated protein C, is found on the surface of endothelial cells in the 

microvasculature and of larger blood vessels. EPCR is also expressed on other cell types such 

as placental trophoblasts and neutrophils. Several studies suggest that PfEMP1 and EPCR 

interaction is involved in cerebral malaria pathogenesis [249–252]. EPCR is essential for 

maintaining stability of the blood circulation through activation of protein C, which has anti-

coagulative and anti-inflammatory properties to protect the vascular barrier. Thus, the pRBC 

adherence to EPCR promotes a pro-coagulative environment and threatens microvasculature 

integrity. Therefore, it is not surprising that EPCR-binding isolates are associated with clinical 

manifestations of severe disease, such as retinopathy, anaemia, and cerebral malaria [236,252–

257]. 

Heparan sulphate (HS) 

Heparan sulphate (HS) is abundant on all the cell surfaces in the body, including the RBC 

membrane [258]. This widely expressed receptor allows alternative binding of pRBCs to 

endothelial cells and uRBCs. HS belongs to the glycosaminoglycan (GAG) family and is 

closely related to heparin. Heparin and other sulphated glycans can disrupt rosettes and inhibit 

cytoadhesion of some isolates [181,259–262]. Yet again, the parasite ligand mediating the 

binding appears to be PfEMP1 [181,262,263]. As with the previously described receptors, most 

parasites also bind HS [263,264]. Moreover, parasites isolated from patients with severe 

malaria more readily bound heparin than the ones from mild malaria patients [264]. The 

potential use of heparin derivatives as malaria treatment was described above, but interestingly, 

this interaction has also inspired attempts to develop new delivery methods for antimalarials 

[265,266]. 

Complement receptor 1 (CR1) 

Complement receptor 1 (CR1) is a glycoprotein found at various levels on RBCs, leukocytes, 

and dendritic cells. This receptor has been proposed multiple roles in malaria pathogenesis. 

First, CR1 is linked to parasite rosetting via PfEMP1, as CR1-deficient RBCs do not form 

rosettes and antibodies against CR1 and soluble CR1 can reverse rosetting [267,268]. Second, 

CR1 is the receptor used to eliminate complement-decorated pRBCs [269].  Third, it is an 

invasion ligand for merozoites [270]. Population studies on polymorphism have resulted in 

contradicting findings depending on the study location and malaria endemicity [165]. This is 

illustrated by the Opi et al. study in children in Kenya, where they saw opposing association 

with cerebral malaria from two polymorphisms widely spread in Africa [271]. The widespread 

existence of different polymorphisms could be explained by survival advantage of one of the 

mutations against other infectious diseases [271]. 
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Chondroitin sulphate A (CSA) 

The strongest link between disease pathology and cytoadhesion is pregnancy-associated 

malaria (PAM). Chondroitin sulphate A (CSA) is a GAG found in very high abundance on 

syncytiotrophoblasts in placenta. Parasite isolates from placenta commonly bind to CSA, 

whereas other isolates rarely do so [272–274]. P. falciparum uses a unique PfEMP1 called 

VAR2CSA to sequester in this immune privileged environment [193,273,275]. Recently, 

involvement of another parasite ligand has been suggested – Plasmodium falciparum 

chondroitin sulphate A ligand (PfCSA-L) [276]. However, further functional studies are 

needed to confirm the importance of this ligand. 

Blood group (Bg) antigens 

The histo-blood group ABO system divides the blood based on presence or absence of A- and 

B- antigens. These antigens, if present, are classically found on RBCs as well as on endothelial 

blood vessels, in tissue fluids, and some other cells [277]. Bgs are a result of differences in 

glycosyltransferases attaching oligosaccharides (A/B-antigens) to acceptor molecules and 

believed to be evolutionarily beneficial for resisting various diseases. Many subgroups of the 

major four Bgs exist. For example, several subtypes of A-antigen have been described with 

two of the more common ones being A1 and A2. Quantitative as well as qualitative differences 

between these subgroups have been characterised [278]. A possible relationship between ABO 

blood groups and malaria was put forward in 1967 and has inspired numerous studies [279]. 

As with many other receptors, the findings are not always coherent, but an overall protective 

effect of BgO against severe malaria has been seen in epidemiological [280,281] and genome-

wide association studies [282–284]. These findings are supported by mechanistic studies 

investigating the effect of the ABO system on primarily rosetting [177,204,281,285] as well as 

on cytoadherence [204]. Various members of the PfEMP1 and RIFIN families are believed to 

mediate binding to Bg antigens [204,285,286]. Counterintuitively, preferential invasion of BgO 

RBCs has been described although for a small sample size and seemingly in a strain-dependent 

manner [287–289]. ABO locus has also been linked to different levels of soluble serum factors, 

such as ICAM1, interleukin-6, P-selectin, S-selectin, and von Willebrand factor (vWF) 

[277,290]. To sum up, the protective or susceptive effects of Bgs can be confounded by other 

factors, which may affect the analyses of the role of ABO in disease pathogenesis. 

Other human receptors 

There are many more human receptors that have been suggested to mediate cytoadhesion. In 

addition to CSA, hyaluronic acid is present on the placental lining and has been identified as a 

receptor for parasite adhesion [291,292]. Platelet endothelial cell adhesion molecule 1 

(PECAM1) expression on endothelial cells is concentrated to intracellular junctions where it 

appears to serve as a docking point for pRBCs [293,294]. Furthermore, the activation of 

endothelial cells upregulates the expression of vascular cell adhesion protein molecule 1 

(VCAM1), E-selectins, and the release of P-selectins, which all allow for further adherence of 

pRBCs [233,234,295–298]. 
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Serum factors 

Serum proteins can be essential for rosetting as they might form inter-molecular bridges 

between host receptors and parasite ligands [299]. Early findings reported observations of 

fibrillar structures on cytoadhesive pRBCs that contained immunoglobulin (Ig) M and possible 

IgG [300]. Later, studies found that non-immune IgM plays a role in rosetting for both 

laboratory clones and clinical isolates [299,301,302] and that IgM binding associates with 

severe malaria [303]. Non-immune IgM binding PfEMP1 proteins are rather common in 

genomes of laboratory strains [304,305]. IgM seems to be important for clustering of PfEMP1 

on pRBC surface, which increases its binding affinity [306]. The role of IgG is less clear. IgG 

has been found on placental binding pRBCs and hypothesised to connect PfEMP1 with 

neonatal Fc receptor [307]. In addition, complement factor D together with albumin and anti-

band 3 antibodies have been shown to induce de novo rosetting, but the exact mechanism is 

unknown [308]. Serum proteins, fibrinogen, and vWF, known to participate in rouleax 

formation, have also been implemented in serum-dependent rosette formation for some parasite 

strains [302]. Moreover, serum factor dependent type two rosetting was described in P. 

falciparum and P. vivax isolates [178]. This rosetting requires monocyte secreted insulin 

growth factor binding protein 7 and two serum proteins – vWF and thrombospondin-1. 

1.4.4 Antigenic variation 

For the parasites, there is a grave risk of expressing proteins on the surface of pRBCs as they 

mark the cells for the immune system, in particular if they are to be exposed for an extended 

time. Therefore, it is crucial for any pathogen to change surface proteins to prevent elimination. 

Antigenic variation is a common strategy among pathogens establishing chronic infections, 

such as Trypanosoma brucei [309], Babesia bovis [310] and Giardia lamblia [311]. Naturally, 

longer infections increase the chances of transmission to new hosts. Moreover, antigenic 

variation allows the pathogens to re-infect already exposed hosts. In addition, the wide array 

of possible parasite ligands creates a spectrum of phenotypes for invasion, cytoadhesion, and 

solute transporters. Hence, different pathways can be used in the absence of a specific host 

receptor. However, to avoid premature exposure of all antigen variants, strict control over gene 

expression is required. 

Genes encoding proteins with different roles in parasite biology have been identified as 

antigenically variable. The best-known example is var/PfEMP1 family. Var genes are 

expressed in a mutually exclusive fashion with one or very few dominant var genes being 

transcribed out of ∼60 family members [312–316]. Typically, a single PfEMP1 variant or 

occasionally two are detected on the surface of pRBCs and determine the adhesive properties 

of the parasite [312,315,316]. To exhaust the repertoire too quickly, an intrinsic low switch rate 

exists, that is controlled at the transcription level [313,317]. Although not fully understood, the 

switching seems to be non-random and follows a relaxed hierarchy, at least in vitro [318–320]. 

The smaller surface antigens, RIFINs and STEVORs, are also believed to be variantly 

expressed within clonal parasite lines [201,321]. This expression does not appear to be 
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mutually exclusive as multiple rif and stevor genes can be transcribed simultaneously 

[207,218,322].  

Presumably, the most vulnerable stages of Plasmodium life cycle are the ones directly exposed 

to the bloodstream, such as merozoites invading new host cells. The invasion process involves 

numerous parasite proteins and adhesive ligands mediating the interaction with the receptors 

on the RBC. As expected, the invasion ligands are also antigenically variable.  Host cell tropism 

is mediated by members of two multigene families – EBL and Rh (see section 4.1.2). Different 

specific pairings of parasite ligands and host receptors allow for the use of alternative invasion 

pathways. The best example for this is an inducible switch from sialic acid-dependent invasion 

of parasite ligand EBA-175 (member of the EBL family) to sialic acid-independent invasion 

via Rh4 (member of Rh family) by the removal of sialic acid by neuraminidase [270,323,324]. 

Variability of nutrient acquisition could help the parasites adapt to different nutritional 

environments in human host or to survive drug pressure. For example, variant expression has 

been observed for gene families involved in lipid metabolism such as acyl-CoA synthases 

[321,325]. In addition, mutually exclusive expression has been noted for clag3.1 and clag 3.2 

encoding the CLAG3 protein, which is part of the PSAC nutrient channel [117,321]. 

Interestingly, switching in between these has been associated to blasticidin S resistance 

[118,326]. 

1.4.4.1 Regulation of antigenic variation 

Antigenic variation is regulated on several levels, but mainly transcriptionally. DNA 

accessibility for transcription has been suggested to act as the centre piece in coordinated gene 

regulation [327,328]. First, physical organisation of chromatin in the nucleus has been 

indicated as a regulatory mechanism linked to DNA accessibility. Most chromosomal regions 

are in decondensed euchromatin, which allows transcription, but silence genes are associated 

with heterochromatin. The telomeric regions of chromosomes are kept in repressive 

heterochromatin in the nuclear periphery, of which four to seven clustered nuclear foci are 

formed [329]. The active var gene, although located in nuclear periphery, is excluded from 

these clusters, suggesting that the active var gene moves to a more euchromatic region where 

transcription is permitted [330]. Similar relocation before activation has been observed for 

PfRh4 locus [331]. 

The chromatin organization at the local level appears equally important as the global 

compression of chromatin. The chromatin structure depends on two processes: post-

translational modifications of histone tails and occupancy of nucleosomes, which includes 

binding frequency, strength, location, and protein composition of the nucleosomes. Histone 

modifications also influence the overall compaction of chromatin. Loci containing clonally 

variant multigene families are enriched in the repressive histone mark H3K9me3 and 

heterochromatin protein 1 [331–335]. H3K4me3 and H3K9ac correlate with active var genes, 

and the variant poised for expression in the next cycle is marked by H3K4me2-3 [336]. Direct 
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DNA modifications, such as methylations of cytosines and adenines, are present at low levels 

in the Plasmodium genome and its gene regulatory role, if any, is not known [337–339].  

In addition to epigenetic regulation, participation of non-coding RNAs (ncRNAs) and specific 

transcription factors have been noted (reviewed in [340]). The introns of var genes contain a 

bidirectional promoter from which sense and anti-sense ncRNA are produced [341]. The 

expression of anti-sense long ncRNAs are associated with active var gene [342]. The exact role 

of sense and antisense ncRNAs is unknown, but both have been observed incorporated into the 

chromatin [342,343]. Additionally, a family of GC-rich ncRNAs has been demonstrated to act 

on var and Pfmc-2TM gene regulation [344–346]. The role of ncRNAs have also been 

implicated in the regulation of clag genes [115]. For transcriptional control of rifins and stevors, 

AP2-exp, a member of Apetala2 (AP2) family of transcription factors, could be important 

[347]. Lastly, peculiar translational regulation has been shown for one PfEMP1, VAR2CSA, 

which needs a particular translation factor for the production of a functional protein [348,349]. 

1.5 PATHOGENESIS 

1.5.1 General malaria manifestations 

As symptoms of uncomplicated malaria are very generic such as fever, malaise, fatigue, 

headaches, nausea, and chills, they can be easily confused for any other common infection 

[350]. The appearance of symptoms is correlated to the emergence of the parasite in the 

bloodstream and the beginning of IDC (8–15 days post infection). Most of the manifestations 

can be explained by the release of toxic compounds, such as hemozoin and 

glycosylphosphatidylinositols, into the bloodstream when the merozoites egress and the cell 

lyses [351]. These toxic products stimulate macrophages and other cells to secrete cytokines 

and other factors that will induce rigors, fever, and possibly other symptoms [351–353]. 

Synchronous schizogony of parasites results in the onset of fever paroxysms characteristic of 

malaria. However, febrile episodes can also be irregular as sometimes observed for P. 

falciparum and P. knowlesi infections. The timing of fever peaks depends on the Plasmodium 

species and their corresponding IDC completion time. In addition, repeated malaria infections 

are often accompanied by splenomegaly. If not treated, malaria can rapidly progress to severe 

illness and death. 

1.5.2 Severe malaria 

The main cause of severe malaria is P. falciparum, but it is not the only culprit as severe disease 

and fatal outcome can also follow an infection with P. vivax or P. knowlesi. Complications 

occur when the patient experiences serious organ failures and/or abnormalities in the 

metabolism or blood. These complications require urgent treatment and qualify severe malaria 

as a medical emergency. Epidemiological definition of severe malaria includes one or more of 

the following: impaired consciousness (cerebral malaria), acidosis, hypoglycaemia, severe 

malarial anaemia, acute kidney injury, jaundice, pulmonary oedema, abnormal bleeding, shock, 

and hyperparasitemia [4]. Syndromes of severe malaria often overlap [4,354]. The case fatality 

rate of severe malaria varies substantially among countries depending on access to in-patient 
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care; however, even if treated, it is around 20% [4,355]. Although the pathogenesis of severe 

malaria manifestations is not fully understood, some of the possible causes are described in 

following sections. 

1.5.2.1 Severe malarial anaemia 

As anaemia is common in malaria endemic areas, severe malarial anaemia is classified only in 

the presence of parasites (>10 000/μL) in combination with lower than normal haemoglobin (< 

5g/dL in children and < 7g/dL in adults) and haematocrit (< 15% in children and < 20% in 

adults) [4]. Depletion of oxygen-carrying haemoglobin/RBCs in anaemia results in reduced 

oxygen carrying capacity of blood leading to asphyxia. The mechanisms underlying the 

anaemia are multiple with the obvious first suspect being the sequential invasion and rupture 

of RBCs by the parasites. Another predictable reason is opsonization and clearance of pRBCs 

by the immune system and splenic clearance of rigid pRBCs. However, this does not account 

for the entire loss of RBCs. In fact, the main reason for the rapid decline of haematocrit is 

believed to be due to lysis of uRBCs. Mathematical modelling suggests that an average of 8.5 

uRBCs per pRBC are destroyed [356]. This could be the result of failed invasions during which 

merozoites have deposited parasite-derived proteins onto the surface of uRBCs, such as 

rhoptry-derived ring surface protein-2 (RSP-2), and marking them for destruction [357,358]. 

To make matters worse, malaria infection suppresses erythropoiesis. RSP-2 has also been 

observed to tag erythroid precursor cells in the bone marrow possibly contributing to 

dyserythropoiesis [358]. Moreover, erythropoiesis can directly be suppressed by released 

hemozoin during the egress and additionally by inflammatory mediators – tumour necrosis 

factor-α (TNF-α) and nitric oxide (NO) – produced by hemozoin-activated immune cells [359–

361]. Malarial infection also causes other abnormalities in blood including leukopenia, 

thrombocytopenia, and hypoglycaemia [362]. 

1.5.2.2 Cerebral malaria 

Cerebral malaria (CM) is diagnosed in malaria patients with unarousable coma for more than 

one hour after convulsions (not explained by other causes) using coma scales: in a Blantyre 

coma score of less than 3 of 5 or in adults a Glasgow score of less than 11 of 15 [4]. This 

neurological manifestation is the most severe malaria manifestation with 15–20% fatality rate 

even when treated, and 100% fatal without treatment [363]. Moreover, many who recover 

suffer from neurocognitive sequelae including ataxia, paralysis on one side of the body, speech 

disorders, and blindness. CM presents differently in adults than in children. Despite the lower 

mortality in paediatric CM, children are more prone to seizures and post-CM neurocognitive 

deficits [364,365]. The pathogenesis of CM could be explained by two approaches (mechanical 

sequestration based or cytokine centred view), but pathogenesis is probably due to their 

combination. Sequestration of parasites in the brain microvasculature of CM patients is 

commonly noted in post-mortem examination [366,367]. This sequestration has been proposed 

to advance the pathology in various manners, including disruption of blood perfusion, 

inflammation, and endothelial dysfunction. For example, pRBC binding of EPCR on 

endothelial cells via PfEMP1 has been linked to CM and brain swelling [252,254,368]. 
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Microvascular congestion might lead to local hypoxia at the obstruction site and increase 

intracranial pressure in neighbouring areas. Additionally, imbalances of pro- and anti-

inflammatory cytokines have been implicated in CM [369]. Increased levels of cytokines (pro- 

and anti-inflammatory) were found in Malawian children suffering from acute CM [370]. 

Several studies in humans have implicated elevated TNF-α in CM [371]. Ultimately, the 

activation of endothelial cells in combination with parasite factors leads to the loss of BBB 

integrity. Parasite expressing PfEMP1-s with dual-affinity to EPCR and ICAM-1 have been 

shown to induce the uptake of pRBCs by brain endothelial cells and cause the breakdown of 

BBB [245]. Moreover, examination of CM brain tissues showed reduction in junction proteins 

co-localized with sequestered pRBCs [372,373]. 

1.5.2.3 Respiratory distress 

Respiratory distress, which is characterized by deep and laboured breathing, is prevalent among 

malaria patients and an important sign of severe malaria. Malaria-associated acute respiratory 

distress syndrome (MA-ARDS) is a serious complication with high mortality rate. MA-ARDS 

pathogenesis is associated with damaged alveolar-capillary membranes and alveolar 

inflammation, which results in alveolar oedema and ultimately hypoxemia. In many instances, 

pathology occurs after treatment with antimalarials [374]. As with the other outcomes, MA-

ARDS is likely multifactorial. Parasite hemozoin has been suggested to be one of the culprits 

as it accumulates in lungs of rodents and humans where it stimulates the lung epithelium [375–

377]. Various models show that the epithelial activation leads to upregulation of adhesion 

ligands (CD36 and ICAM1) and proinflammatory mediators [376,377]. Moreover, in a mural 

ARDS model, accumulation of pRBCs resulted in cross-presentation of parasite antigens by 

endothelial cells to CD8+ T-cells, which drives the breakdown of tight junctions and damage 

to the alveolar-capillary membrane [378]. Sequestration of pRBCs in lung microvasculature 

has been observed in malaria patients [366,379]; in a murine malaria model, sequestration via 

CD36 is linked to acute lung injury [380]. Moreover, post-mortem lung sections of MA-ARDS 

patients showed increased intravascular vWF, alveolar oedematous vWF, and angiopoieting-2 

levels, findings that suggest endothelial activation [381]. 

Typically, metabolic acidosis manifests clinically as respiratory distress, namely 

hyperventilation. Metabolic acidosis is defined as excessive acidity of the blood and tissue 

fluids. In response, the body attempts to overcome the decrease in pH by altered breathing 

pattern to expel more carbon dioxide. Metabolic acidosis has been found to be a major risk 

factor for fatal outcome [382–385]. Acidosis can develop due to hepatic dysfunction, renal 

impairment, and/or microvascular obstruction [4]. Furthermore, a major contributor is 

anaerobic glycolysis in hypoxic cells due to parasite vascular occlusion and anaemia [386]. In 

addition, parasites consumption of glucose is intimately linked to the parasites’ secretion of 

lactic acid and free protons as waste, which contributes to the development of acidosis [387]. 
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1.5.2.4 Pregnancy associated malaria 

In endemic areas, children never develop sterile immunity to the parasite but acquire immunity 

to severe disease through repeated exposure to the parasites. However, pregnancy renders semi-

immune women again susceptible to severe disease, which harms both the mother and the 

unborn child. Any manifestation of severe malaria may occur in the mother, but respiratory 

distress and hypoglycaemia are the most common. PAM leads to an estimated 10 000 maternal 

and 200 000 neonatal deaths a year [388]. Even the surviving foetuses suffer severe 

consequences such as growth retardation. The placenta presents a new growth niche for the 

parasites and by adherence to the CSA on syncytiotrophoblasts, excessive sequestration of 

pRBCs to placenta is commonly observed [275]. In addition to a heavy parasite biomass 

blocking the nutrient and blood flow to the foetus, inflammatory responses to the sequestered 

parasites are believed to cause substantial harm. An infiltration of activated immune cells to 

the placenta and dysregulation of soluble mediators are associated with placental pathologies 

[389–392]. The primigravidae are at the highest risk of developing PAM, but the risk drops 

considerably with successive pregnancies [393]. Sera from multigravida women can block 

adhesion to CSA [394,395]. Furthermore, antibody levels and the ability of the antibodies to 

block the binding to CSA are parity-dependent [396] and improve the clinical outcome of PAM 

[397–400]. 

1.5.3 Determining factors of severe disease 

A wide range of parasite and host factors dictate the disease outcome such as parasite load, 

sequestration preference, host immune status, and balance between pro- and anti-inflammatory 

responses. There are differences in disease manifestations between adults and children, low vs. 

high transmission areas, and even due to gender. In high transmission areas, severe malaria 

occurs more often in children under the age of five with severe anaemia being the most 

common complication; however, in lower transmission areas, slightly older children are 

threatened by cerebral malaria [4]. Children progressively acquire immune protection through 

continuous exposure to the parasites – first against development of severe disease, then to 

uncomplicated malaria, and finally to any clinical manifestations. Unfortunately, sterile 

immunity seems to be hard to achieve (if ever), and the acquired immunity is lost quickly when 

exposure is eliminated. Therefore, it is not surprising that in lower transmission areas, severe 

disease can occur in any age groups as the development of immunity takes longer [401]. Even 

when clinical immunity is achieved, women are rendered susceptible to severe disease when 

they become pregnant as discussed above. 

Susceptibility to severe disease may be influenced by other ongoing infections in the host. Not 

only can these infections make correct diagnosis more difficult but also worsen the 

pathogenesis of malaria. The most studied is the co-infection with human immunodeficiency 

virus (HIV), which carries a higher risk of infection, elevated parasite numbers, more 

complications, and higher fatality rate [402–404]. HIV seropositive pregnant women are more 

likely to transmit the virus to the foetus when infected with malaria [4,405]. Furthermore, HIV 

status seems to hamper the antimalarial immunity development [406–408]. 
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Many inherent RBC disorders are common in malaria endemic areas and are strongly linked to 

protection from severe malaria. Evolutionary balance between clinical disease and harm from 

malaria has been achieved in endemic regions. The best-known disorder is probably sickle cell 

disease, where homozygous individuals for the sickle cell gene suffer disease pathology but 

heterozygous carriers do not have the haemoglobinopathy and benefit from the protection from 

severe malaria thanks to the reduced parasite growth at low oxygen tension. Several other 

protective mechanisms have been discovered. Moreover, hetero- and homozygotes for 

haemoglobin (Hb) variants C and sickle cell carriers have reduced parasite cytoadherence. In 

addition, hereditary elliptocytosis, where RBCs are elliptical, hampers parasite invasion. Both 

glucose-6-phosphate dehydrogenase (G6PD) deficiency and HbAE reduce parasite densities 

[4]. The underlying mechanisms of some of those hemoglobinopathies are known. In HbAS 

and HbS pRBCs, the trafficking of PfEMP1s and other proteins to the cell surface is perturbed, 

resulting in reduced cytoadherence [162,409]. Genetic diversity in other genes encoding RBC 

and endothelial receptors also occurs, but the connection to protection from malaria is not 

always clear. 
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2 RESEARCH AIMS 

This thesis aims to further the understanding of malaria disease dynamics by investigating the 

features of P. falciparum related virulence and fitness. The role of surface antigens and 

cytoadhesion was a red thread throughout the studies. Specific aims of each paper are listed 

below. 

Paper I: To elucidate the rosetting characteristics of P. falciparum in the ABO histo-blood 

groups with emphasis on weak ABO subgroups. 

Paper II: To assess and authenticate reagents for investigation of the RIFIN family proteins 

implicated in rosetting. 

Paper III: To characterize the effect of blood pH on surface antigen expression. 

Paper IV: To investigate the mechanisms behind heparinoid invasion inhibition and how 

heparinoids affect the intracellular growth of P. falciparum and consequently its virulence 

features. 
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3 METHODOLOGICAL CONSIDERATIONS 

This section presents the methodological considerations of laboratory methods of particular 

importance. Detailed protocols are available in the Materials and methods section of the 

respective papers. 

Parasite cultivation 

P. falciparum laboratory strains and clinical isolates were cultivated following standard 

methods [410] with minor modifications to meet the needs of the experiments. In general, 

parasites were grown in RPMI-1640 supplemented with 10% A+ human serum in BgO 

erythrocytes under constant microaerophilic condition. In paper I, experiments involving 

erythrocytes of various Bgs, 10% AB+ serum for laboratory strains and 15% AB+ serum for 

clinical isolates were used to avoid incompatibility between serum and erythrocytes. To 

investigate serum effect on rosetting (paper I), 10% of serum from each donor was used with 

pooled O+ erythrocytes. In paper III, pH of culture medium was adjusted using hydrochloric 

acid and sodium hydroxide with no changes to blood components. Previous studies have shown 

that PSAC inhibition depends on glucose availability [113]. Hence, in paper IV, we aimed to 

investigate sevuparin’s/heparin’s effect on parasite intracellular development under more 

physiological glycose levels. As the normal RPMI-1640 medium contains a high nutrient 

concentration, we reduced the glucose concentration in culture medium from 2 g/L to 1.2 g/L 

(normal blood glucose level is 0.7-1.3 g/L). 

Selection of parasite phenotypes 

Rosetting phenotypes of parasites were maintained by enrichment over a Ficoll-gradient, where 

heavier rosettes are separated from uRBCs and non-rosetting pRBCs [411]. Binding of CSA 

was achieved by selection on CSA-coated plastic plates as described by Brolin et al. [412]. In 

both cases, several rounds of selections were necessary to produce strong phenotypes. 

Furthermore, as a slow drift in dominant var gene expression occurs, regular enrichments were 

required for maintenance. 

Rosetting capacity was evaluated regularly by counting the percentage of rosette forming 

mature trophozoites under light microscopy. Phenotypes were further confirmed by 

immunostaining against dominant PfEMP1 and flow cytometry as discussed below. For the 

VAR2CSA expressing parasites, capacity to bind placenta was evaluated using an assay 

adapted from Flick et al. and Rasti et al. [292,307]. Magnetically-enriched pRBCs were 

allowed to bind placental cryo-sections for 1 h during incubation at 37 °C in humid chamber. 

Thereafter, the unbound cells were washed away and the binding quantified by microscopy. 

We observed that the number of bound parasites depended on various factors, including 

hematocrit, placental section, and relative humidity. Therefore, a non-VAR2CSA expressing 

parasite line (NF54CSA-ptefKO [348]) was used as internal control for normalization. 
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Moreover, dominant var gene expression was confirmed using RT-qPCR and gene specific 

primers. RNA from ring stage parasites (8–16 hpi) was collected and reverse transcribed. 

cDNA was probed with dominant var gene specific primers and with primers for endogenous 

control (seryl-tRNA-synthetase). 

Flow cytometry 

Flow cytometry was one of the key methods employed in the papers due to its objectivity and 

high throughput (Fig. 4). All assays were performed using FACS-Verse with universal loader 

(BD Bioscience) and analysed with FlowJo software (BD Bioscience). 

To determine parasitemia, parasite stage distribution, and rosetting rate, Hoechst 33342 and 

Dihydroethidium (DHE) co-staining was used [413,414]. As uRBCs do not contain any DNA, 

any cell positive for Hoechst would be parasitized giving the total parasitemia. DHE is oxidized 

in cells, where it stains both DNA and RNA, which allows for the determination of “late stage” 

parasites (mature trophozoites and schizonts). Rosetting characteristics could be evaluated 

from the “late stage” parasite population. Single cells are commonly used for flow cytometric 

analysis as determined by equal size of events on forward scatter (FSC) – height vs. FSC-area 

blot. Ch’ng et al. showed that events that have a larger area than height, so called mutliplets, 

can be used as surrogates for rosetting rate [414]. In paper I, this method was developed further 

by lowering FSC and side scatter (SSC) voltages and by eliminating the primary FSC-SSC 

gating conventionally used for debris removal. This improved the correlation between rosetting 

rate observed by microscopy and the percentage of multiplets. Increased sensitivity meant that 

small changes in rosetting rate between different conditions could be quantified with high 

confidence. In addition, the SSC area was observed to be a good indication for relative rosette 

size and could be used to compare the rosette sizes between conditions. In paper IV, we 

observed that extracellular parasites can be quantified from the same Hoechst-DHE staining by 

gating for Hoechst positive cells with relatively low FSC area. This gating was confirmed by 

releasing parasites from pRBCs using saponin lysis. 

For the detection of PfEMP1 surface exposure/accessibility on the pRBCs, cells were incubated 

with primary goat antibodies raised against dominant PfEMP1 and then incubated with anti-

goat secondary antibodies conjugated to a fluorophore. Non-immune goat IgG was used as a 

control to establish the level of non-specific binding. Non-immune IgG binding has been 

reported for placental binding parasites [300,415], although binding of IgM is more prevalent 

[299,416,417]. The same principle was used in paper I to determine A/B-antigen levels on 

RBCs using mouse antibodies as described in Hult and Olsson [418]. In papers I and III, a 

combination of Hoechst and Alexa Fluor 488 (AF488) coupled secondary antibodies were 

used. In paper IV, the DHE staining was added (in addition to Hoechst) and therefore Alexa 

Fluor 647 coupled secondary antibodies were chosen to avoid spill overs. Data were quantified 

as percentage of PfEMP1 positive “late stage” parasites or as median fluorescence intensity 

(MFI) of the late stage parasite population. 
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In paper IV, we established a flow cytometry protocol to measure cytosolic cation levels in 

pRBCs. We tested various indicator dyes that would emit a fluorescence signal upon binding 

to cations: ION NaTRIUM Green-2Am (Abcam), ION Potassium Green-2Am (Abcam), Fluo4 

(Invitrogen), and CoroNa Green AM (Invitrogen). The only dye that produced a strong and 

sensitive staining was sodium indicator ION NaTRIUM Green at 10 μM (Adcam) with 10 

μg/mL Hoechst 33342 (Invitrogen) and 0.01% Pluronic F-127 (Invitrogen) in RPMI-1640 for 

1 h at 37 °C. During the analysis, the rosette disruptive properties of the drugs 

(sevuparin/heparin) had to be considered as the fluorescence intensity of single cells would be 

much lower than in a rosetting event, creating a bias in the analysis. Therefore, normalized 

MFIs were calculated as a ratio between the MFI from Hoechst 33342 and ion-indicator 

double-stained sample and MFI from Hoechst 33342 single stained sample as described for 

embryonic stem cells [419]. 

 

Figure 4 Overview of flow cytometry gating strategies. The first gating is used to exclude debris and choose 

the cells of interest based on size (grey). In the case of in vitro culture, all cells are of interest and therefore this 

step could be omitted. Thereafter parasite stage, parasitemia and number of extracellular parasites can be 

obtained. Trophozoites and schizonts constitute a “late stage” population (red) that is used for further analysis: 

the percentage of multiplets (rosetting rate (green)) and PfEMP1 surface exposure. The total parasite population 

is used for evaluation of sodium levels using indicator dye (Ion NaTRIUm Green). Additional statistics can be 

obtained for comparison between samples. 
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Immunofluorescence assay (IFA) 

Visual examination can give additional information about protein cellular location, potential 

protein interaction partners, and the specificity of the antibody. In this work, many versions of 

immunostainings were used. In paper II, IFA was used to visualize the cellular location of the 

proteins recognized by the antibody and to investigate the strain-transcending capacity of 

antibodies. pRBCs were allowed to adhere to poly-L-lysine treated microscopy slides and fixed 

by desiccation. This procedure breaks the pRBC membrane and allows the antibodies to access 

the inner surface. However, native confirmations of epitopes might be lost. After blocking with 

bovine serum albumin, primary antibodies were allowed to adhere for 1 h at room temperature. 

After washing, corresponding secondary AF488 conjugated antibody was added. Finally, 

parasites were counterstained with nuclear dye (DAPI or Hoechst 33342) and mounted for 

visualization. In paper IV, the same procedure was used for late schizont pRBCs; however, 

before addition of primary antibodies, cells were incubated with increasing concentrations (3–

250 μg/mL) of sevuparin or heparin for 1 h at room temperature. The results from this 

competition assay between antibodies and sevuparin/heparin supported findings from other 

methods regarding heparin binding partners. In addition, live merozoite staining was performed 

in paper IV, which allowed for a more natural interaction. Merozoites were allowed to egress 

in presence of FITC-labelled heparin or sevuparin. Thereafter, merozoites were collected and 

fixed with 1% paraformaldehyde. Untreated parasites were stained with anti-RON3 antibodies 

and then with species-specific secondary antibody coupled to AF594. Both samples were 

counter-stained with Hoechst 33342. All experiments were visualized with Nikon Eclipse 80i 

fluorescence microscope. 

Lysis assay 

Sorbitol lysis is routinely used for parasite synchronization as it depends on presence of PSAC 

on pRBCs [420]. Similarly, protection from sorbitol lysis can be employed for investigation of 

PSAC inhibitors. By modifying method from Wagner et al., we probed the possible inhibition 

of PSAC by sevuparin in paper IV [421]. Magnetically-enriched pRBCs were incubated with 

three concentrations of sevuparin or with known PSAC inhibitor furosemide for 1 h at 37 °C. 

Phosphate-buffered saline (PBS) was used as a control. Next, samples were placed on ice until 

analysis. Lysis was initiated by adding the pre-warmed lysis solution (280 mM sorbitol, 20 mM 

Na-HEPES, 0.1 mg/mL BSA, pH 7.4 with drugs). Cell lysis was monitored at optical density 

(OD) of 700 nm with Nanodrop 2000c at 37 °C in a kinetic mode with continuous magnetic 

stirring. As the change in optical density depends on the efficiency of magnetic enrichment of 

pRBCs during the particular experiment, the results were normalized to the control sample (no 

drugs added): 100% cell lysis corresponded to the OD change of the control sample at the end 

of the experiment. All other time-points were calculated as: cell lysis (%) = ODstart(drug)-

ODtime(drug))/(ODstart(control)-ODend(control). 

Preparation of proteomics samples 

Mass spectrometry is a powerful tool to obtain new leads and to support findings from other 

methods. Here the preparation of proteins from various sample types is described. In paper 
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III, mass spectrometry for identification of peptides shaved from pRBC surface was 

performed. To determine the differences in exposed proteins on pRBC surface after growth in 

acidic or normal media, cells were treated with 0, 10, or 100 µg/mL of trypsin (Sigma) for 20 

min at 37 ⁰C. The reaction was stopped with the addition of soybean trypsin inhibitor (Sigma) 

at 1 mg/mL for 5 min at room temperature. The efficiency of trypsin cleavage was confirmed 

by flow cytometry and antibodies against dominant PfEMP1, which showed complete loss of 

staining after the treatment. The cell supernatant containing tryptic peptides was collected and 

separated on SDS-PAGE. The sample lanes were excised and subjected to nanoLC-MS/MS. 

In paper IV, mass spectrometry was used to identify proteins interacting with 

heparin/sevuparin. Purified merozoites were lysed in RIPA buffer on ice for 15 min. Next, 

potential detergents were removed from the sample with a HiPPR Detergent Removal Resin 

Kit (Thermo Scientific). Protein lysates were pre-cleared with uncoupled Sepharose beads (GE 

Healthcare) and then incubated with heparin-coupled or sevuparin-coupled sepharose for 3 h 

at 4 °C. Beads were washed three times and bound proteins were eluted with SDS buffer. Eluted 

proteins were separated by SDS-PAGE gel. Gel lanes were excised and analysed by nanoLC-

MS/MS mass spectrometry. 

For the investigation of intracellular interactors, the empty membranes of pRBC and uRBC 

known as ghosts were generated by the addition of 5mM KH2PO4 (pH 7.4) for 10 min at room 

temperature. Ghosts were lysed in RIPA buffer and sonicated for 10 min for total membrane 

rupture. The potential remaining detergents were removed from the sample with a HiPPR 

Detergent Removal Resin Kit (Thermo Scientific). The incubation with sepharose beads was 

carried out using the same procedure as with merozoite proteins. Uncoupled sepharose beads 

were included as controls due to the increased complexity of samples. After the washes, the 

sepharose beads were resuspended in 100 mM ammonium bicarbonate for analysis by nanoLC-

MS/MS. 

Peptide array 

To determine the specificity of antibodies and map their epitopes, a peptide array analysis was 

performed in paper II. For this purpose, custom made ultra-dense peptide microarray was 

created in collaboration with Roche-Nimblegen. The array was designed with representative 

members of multigene families (PHISTs, RIFINs, STEVORs, PfEMP1s, SURFINs, and 

2TMs) and contained 175 000 peptides of 12 amino acids in length. One amino acid lateral 

shift between adjacent peptides was designed to improve differentiation between epitopes and 

background. At least two adjacent peptides needed to be reactive to constitute an epitope, and 

any peptide without adjacent reactive peptide was discarded as false-positive. 

Ethical considerations 

The collection and use of blood products for parasite culture was approved by the Regional 

Ethical Review Board in Stockholm (Dnr: 2009/668-31/3). Erythrocytes and plasma were 

obtained through Karolinska University Hospital Blood Bank from healthy Swedish donors. 

The collection of clinical isolates from Uganda used in paper I was approved by Karolinska 
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Institute’s Regional Ethical Review Board (permission 03/095) and the Uganda National 

Council for Science and Technology (permission MV717). Informed written consent was 

acquired from the parents or guardians of the patients. 

Healthy Swedish placentas used in paper III were collected with approval from Regional 

Ethical Review Board in Stockholm (Dnr: 04-533/2). Approval for the use of human sera from 

individuals living in endemic regions was obtained from The Committee for Laboratory Safety 

and Ethics, China (permission 2008-IZ-20). Written informed consent was obtained from the 

patients. 

In paper IV, data for IC50 studies of clinical isolates were extracted from previously published 

work [21] and from experiments with isolates received from European Malaria Reagent 

Repository and National Institutes of Health (USA). 

 

 



 

 39 

4 RESULTS AND DISCUSSION 
 
PAPER I 

“Low blood group A-antigen levels on red blood cells render P. falciparum rosettes more 

susceptible to disruption”. 

Several genome wide association and epidemiological studies have linked ABO Bgs to malaria 

disease severity, notably protection from severe malaria by BgO compared to non-O Bgs 

[281,282,422,423]. Rosetting via Bg antigens have been suggested to drive the differences in 

malaria pathology between Bgs. Augmented rosetting rate and rosette size have been observed 

in BgA compared to BgO [204,281,285]. BgA further divides into subgroups with the two 

major ones being A1 and A2. There are qualitative and quantitative differences between them 

with A1 expressing approximately five times more A-antigen on the surface of RBCs [278]. 

In this study, we wanted to characterize the rosetting features of P. falciparum in a systematic 

way to explain some of the increased risk seen in association with Bgs. We were particularly 

interested in elucidating the role of weak Bg subgroups, which could affect the interpretation 

of previous results. As increased prevalence of BgO in Africa has previously been suggested 

to be selected for by malaria [424], we wanted to investigate the relative frequencies of Bg 

alleles leading to various weak phenotypes. To obtain the allele frequencies from various 

geographical regions, we took advantage of data available at the Erythrogene database. In 

accordance with epidemiological studies [424], BgA allele frequencies were the lowest in 

African cohort, which also suffers from the highest P. falciparum malaria burden. Furthermore, 

the allele frequency for weak BgA alleles was the highest among this cohort (predominantly 

A2). 

To determine the rosetting characteristics from sufficient number of samples and parasite lines, 

a high-throughput robust flow cytometric method was implemented. The method developed by 

Ch’ng et al. was able to detect multiplets relative to parasite rosetting rate but failed to 

determine absolute rosetting rates [414]. To identify subtler changes in rosetting rate expected 

between blood subgroups, the FCS and SSC voltages of the cytometer were lowered, and the 

primary gating on FCS-SSC was skipped to include all the rosetting events. Furthermore, SSC-

A was used as a surrogate for determination of rosette size. Our updated method was able to 

measure rosetting rate and size with good correlation to the ones observed by microscopy. 

Erythrocyte samples from seven healthy Swedish donors per blood group were collected (in 

total 28 samples). Two laboratory parasite clones and four culture-adapted clinical isolates (two 

severe and two uncomplicated) were grown in donor blood and their rosetting characteristics 

described. The influence of A- and B-antigen on rosetting was strain-dependent and became 

more evident in the presence of rosette-disruptive heparin. Antibody mediated destruction of 

pRBC is an important part of host immune defence. Hence the antibody accessibility to 

PfEMP1 in various blood groups was tested. Decrease in antibody staining was seen for all 

non-O Bgs for both tested parasite clones. 
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For the more detailed analysis of A-antigen levels on rosetting, A-preferring laboratory clone 

FCR3S1.2 was used. The blood from 30 donors per blood group (O, A1, non-A1, B, and AB) 

was obtained and quantified for blood antigen levels. Higher levels of A-antigen protected 

rosettes from heparin and antibody mediated rosette disruption with most durable rosettes in 

Bg A1 then Bg A2 and AB. Two clusters within AB Bg were observed, probably corresponding 

to A1B and A2B. In addition, we investigated the serum contribution to the rosetting as ABO 

Bgs also affect levels of serum components. FCR3S1.2 parasites were cultivated in BgO RBCs 

with 10% serum from 80 different donors (20 per Bg) and rosetting evaluated by flow 

cytometry. No differences in rosette size or rate and no correlation with A-antigen levels were 

observed. 

This paper offers insights to relationship between ABO Bgs and rosetting. The allele frequency 

investigation suggested that evolutionary pressure for low expressing BgA could be present in 

regions where P. falciparum is highly prevalent. As microscopic quantification is prone to 

human error and bias and that the through-put is low, the key to the further systematic work 

was the optimization of the flow cytometric methodology. With this improved method, we 

were able to characterize rosetting for several parasite lines in various Bgs. The results were 

strain-dependent with no clear overall preference for rosetting. These results are to be expected 

as rosetting depends on other ligands than just Bg antigens. Moreover, the small differences 

seen could be far more important under physiological flow conditions. As PfEMP1 is an 

important target to acquire immunity [425], shielding the epitopes might increase the risk of 

severe disease. We confirmed the previous findings that BgA rosettes hinder the access of 

antibodies to PfEMP1 [177] and expanded it to all non-O Bgs. Using a small sample set, Goel 

et al. observed that rosettes formed in A2 were smaller [204]. Moreover, recombinant PfEMP1 

domains more readily bind group A1 RBCs [286]. Here, we showed that the durability of 

rosettes to disruption by antibodies or heparin correlates directly to A-antigen levels on RBCs. 

To sum up, these findings emphasize that Bg A should be viewed as heterogenous in 

epidemiolocal studies and possibly BgAB. 

PAPER II 

“Generation of tools for the study of RIFIN family proteins”. 

The RIFIN family has gathered attention for their involvement in immune modulation [211] 

and BgA rosetting [204]. Rosettes formed in BgA are stronger, more resilient to disruption 

[414] and shield the pRBC from antibodies [177]. Paper I showed that the quantity of BgA on 

RBCs positively correlates with rosette sturdiness. This is of clinical relevance as individuals 

with BgA are more susceptible to development of severe malaria [281,285,423,426]. The 150–

200 members of the RIFIN family can be divided into A- and B-RIFINSs, which differ 

substantially with respect to the parasite stage that they are expressed and cellular location 

[199,207,225,427]. As many studies rely on antibody-based methods, this study aimed to create 

and validate tools for detection and visualization of RIFINs. 
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Purified IgG from ten rabbits and one goat, immunized commercially (Agrisera, Sweden) with 

RIFIN peptides/protein, were characterized in series of assays with a collection of eight 

laboratory parasite strains. Antigens were designed with the aim of recognizing all RIFINs (C-

terminal peptides) or A-RIFINs specifically (indel peptide). First, the ability to recognize a 

protein of correct size by the antibodies were tested with Western blot using SDS lysates of 

parasites. Only two rabbit antibodies (RαRIFC and RαRIFI) and the goat antibody (GαRIF) 

resulted in bands of the expected size (~35 kDa); in some parasite lines, cross-reactivity was 

observed with higher molecular weight proteins. Because cellular location can often be 

indicative of protein function, we probed the antibodies’ ability to detect RIFINs by an indirect 

IFA. The RαRIFC was the only antibody able to stain several parasite strains in a patchy 

manner distinct from anti-PfEMP1RDSM antibody, which stains the MCs [428]. To determine 

the exact epitopes of the antibodies produced, an ultra-dense peptide array was used. The array 

was designed to cover selected members of multigene surface antigen families (PfMC-2TM, 

PHIST, RIFIN, STEVOR, SURFIN, and PfEMP1) and consisted of 12 amino acid fragments 

with one residue shift between neighbouring peptides. Four rabbit antibodies and the goat 

antibody were tested. Two of the rabbit antibodies (R5αRIFC and R6αRIFC) emerged as 

unspecific. RαRIFC, RαRIFI, and GαRIF had strong affinity toward the RIFIN that the antigen 

originated from. Other members of the RIFIN family were also recognized by these antibodies: 

141/278 for RαRIFC, 102/278 for RαRIFI, and 66/278 for GαRIF. All antibodies also showed 

some degree of cross-reactivity against other multigene family members. Finally, the rif gene 

expression in four parasite lines at four timepoints (10, 20, 30, and 40 hpi) was evaluated with 

RNAseq to verify the RIFIN detection by other methods. RNAseq was not performed for 

FCR3S1.2 (rosetting) as it had been done before [204], for PAvarO as the genome was not well 

curated and for 3D7CD36ICAM1 or R29 as the Western blot analysis indicated very low levels 

of RIFIN expression. Parasites that were negative for RIFINs using RαRIFC antibodies showed 

low levels of rif gene expression. In addition, parasites (FCR3CSA and IT4CD36ICAM) that 

were positive for RαRIFC antibodies showed much higher expression of rif genes. In fact, the 

highest expressed RIFINs in those parasite lines match the epitope recognition of RαRIFC 

antibodies from peptide array. The peak expression of rif genes was found to be at 20 hpi. The 

results are summarized in Table 1. 

In conclusion, six of eight parasite strains probably express RIFINs on their surface. The other 

two parasite lines presented bands lower than expect with goat antibody in Western blot. 

Furthermore, no signal was observed for those lines in IFA as well. The inability to detect 

RIFINs could be due to the parasite expressing a different family member. However, the 

RNAseq analysis of one of them (NF54CSA) registered only very low levels of rif transcripts 

– i.e., the protein levels might be below detection level. Of eleven animals immunized, only 

very few resulted in functional antibodies. The RαRIFC antibody against the conserved C-

terminal part performed the best overall. It was able to recognize a linear epitope with the band 

of correct size in Western blot analysis and to detect fixed cellular epitopes on various pRBCs. 

The peptide array suggests that the likelihood of detection of a randomly expressed RIFIN by 

this antibody is 50%. However, since the epitope of this antibody is intracellular, it is not 
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suitable for functional assays such as blocking cellular binding. Goat GαRIF also bound to 

linear epitopes, but several unspecific bands of higher molecular weight were observed. 

Moreover, in the peptide array the antibody cross-reacted with some of members of PfEMP1, 

SURFINs, STEVORs, and PHISTs families. GαRIF antibody has previously been useful in 

flow cytometry assays with specificity to only one parasite clone (FCR3S1.2R), which might 

limit its usefulness. 

Table 1. Summary of antibodies and assay tested in paper II. 

S
p

ec
ie

s 

Code 
Description of 

Antigen 

Recognizes 

correct size 

protein from 

RIFIN positive 

parasites line 

(FCR3S1.2R) 

Detects RIFINs 

from other 

parasite lines 

IFA 

(patchy staining) 

Peptide array 

R
ab

b
it

 

RαRIFC 
A-RIFIN 

(PF3D7_0100400), 

conserved C-
terminal peptide 

(20aa) 

Yes1 

FCR3CSA1, 

IT4CD36ICAM1, 

PAvarO (weak) 

FCR3S1.2R, 

FCR3CSA, 

IT4CD36ICAM1, 

PAvarO, R29 

141/278 RIFINs 

including 
PF3D7_0100400; 

several SURFINs 

and STEVORs 

R2αRIFC No NT NT NT 

R3αRIFC A-RIFIN 

(PF3D7_0223100) 

C terminal peptide 

(23aa) 

No NT NT NT 

R4αRIFC No NT NT NT 

R5αRIFC B-RIFIN 

(PF3D7_0900500) 

C-terminal peptide 

(20aa) 

No NT No staining Cross-reactivity 

R6αRIFC No NT No staining Cross-reactivity 

R7αRIFC B-RIFIN 

(3D7_0223200) C-
terminal 

peptide(23aa) 

No NT NT NT 

R8αRIFC No NT NT NT 

RαRIFI A-RIFIN 

(PF3D7_0100400), 
semi-conserved 

indel peptide (25aa) 

Yes1 

FCR3CSA1, 

IT4CD36ICAM, 

PAvarO, S1.2NR 

No staining 

102/278 RIFINs, 

including 

PF3D7_0100400; 
limited cross-

reactivity 

R2αRIFI No NT NT NT 

G
o
at

 

GαRIF 

Full-length A-

RIFIN 

(PF3D7_0100400) 
Yes 

S1.2NR3, 

IT4CD36ICAM13, 

NF54CSA2,3, 

3D7CD36ICAM12,3 

Live staining only 

66/278 RIFINs 

including 

PF3D7_0100400; 

few members of 
PfEMP1, 

SURFINs, 

STEVORs and 

PHISTs 

NT: not tested 
1Two bands of similar size (30–50 kDa) 
2 Band smaller than others not recognized by other antibodies 
3Multiple prominent bands at various molecular weights 
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PAPER III 

“Changes in pH affects the distal aspects of PfEMP1 trafficking onto the pRBC surface”. 

Pathology of malaria has been linked to PfEMP1-mediated cytoadhesion to various cell types. 

This family of proteins has been extensively studied in relation to transcriptional regulation and 

protein trafficking [143,429]. However, these studies are usually done under ideal culture 

conditions and do not consider changes in the host environment. Upon in vitro cultivation of 

highly rosetting clonal parasite lines unexpected deviations were observed. One of the factors 

that might cause this was pH. This study aimed to elucidate how PfEMP1 function is affected 

by pH as local acidification could occur as a result of microvascular occlusion. 

To begin with, we determined the rosetting phenotypes of two well characterized laboratory 

clones (FCR3S1.2 and PAvarO) after 48 h growth in pH-altered media. Rosetting rate, 

determined using microscopy and flow cytometry, dropped significantly when parasites were 

grown outside the physiological pH (7.35–7.45). Moreover, the loss of surface detectable 

PfEMP1 responsible for rosetting followed the same trend over the pH gradient. Next, we 

explored whether the loss of adherence was rosetting specific or would be expanded to other 

cytoadhesive phenotypes. Using placental binding NF54CSA parasites, we observed a similar 

phenomenon, where parasites grown in normal media (pH 7.4) were able to bind more 

efficiently to placental sections than parasites grown in acidic media (pH 6.8). Yet again, the 

loss in cytoadhesive capacity was associated with the loss of surface detectable PfEMP1 as 

determined by flow cytometry. As the antibodies used for PfEMP1 detection were gene-

specific and cytoadhesive properties could be changed by switch in var gene expression, we 

collected RNA samples and performed RT-qPCR with dominant var gene specific primers. We 

observed no changes in transcript levels, indicating the observed effect to be independent of 

switching or downregulation of transcription. These results were confirmed by the recovery of 

the adhesive phenotype by the following cycle after returning parasites to medium with 

physiological pH. Immunoblot analysis was performed to investigate possible changes in 

PfEMP1 total quantity in response to change of pH. No noticeable difference was seen in total 

cellular PfEMP1 levels. Furthermore, any temporary mis-folding rendering the PfEMP1 

unrecognizable to antibodies was ruled out as no differences in immunostaining were detected 

after 4 h exposure to various pH levels. PfEMP1 is co-transported with other proteins, which 

could be affected by pH, to form host membrane protrusions. However, scanning electron 

microscopy images showed no noticeable changes in protrusions. Lastly, mild surface 

trypsinization was performed to verify the lack of PfEMP1 on the surface on pRBCs. Unique 

peptides were only detected by mass spectrometric analysis from samples of parasites grown 

in normal media, and no peptides from samples of parasites grown in acidic media were found. 

In this study, we worked from RNA to proteins’ surface presentation to identify the cause of 

decrease in cytoadhesive properties. Findings point toward problems in PfEMP1 trafficking to 

the pRBC surface in acidified environment. Unlike haemoglobinopathies, which affect the 

protein transport across PV membrane and lead to altered knob morphology and density [430], 

here we observed normal protrusions on pRBC indicative of correct formation of subsurface 
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protein complexes. Hence, the very distal steps of PfEMP1 insertion might be affected. It is 

also possible that pH-sensitive post-translational modifications play a role in PfEMP1 

membrane insertion either directly on PfEMP1 or indirectly on partner proteins needed for 

correct display. Interestingly, reduced surface display of PfEMP1 was also noted in response 

to short exposure to febrile temperatures (41 °C) [431]. Although the in vivo relevance of the 

findings in paper III is questionable, it is possible that the loss of cytoadherence at locally acidic 

microvasculature would allow the pRBCs to move to a more suitable environment. Overall, 

given the strong association between disease pathology and surface antigens, further studies on 

the surface display under various host environments are needed. 

PAPER IV 

“Sevuparin meddles with several aspects of parasite biology”. 

Several features of P. falciparum’s biology make it more virulent than other malaria parasites. 

These features include promiscuous host cell invasion, efficient parasite multiplication, and 

excessive cytoadhesion. Although heparin is often used in experimental setups to disrupt 

rosettes or block parasite invasion, it cannot be used in patients to treat malaria due to its severe 

side-effects [432,433]. Sevuparin was developed from heparin by removing its anticoagulant 

activity and has been shown, like heparin, to block parasite invasion and to impede 

cytoadhesion. Furthermore, it is well tolerated by the patients [21]. This study elaborates on 

the mechanisms behind the blocking of merozoite invasion and explores other parasite 

hindering properties of sevuparin and heparin. 

Sevuparin can block invasion of all parasite strains/isolates tested, including artemisinin 

resistant strains [21]. Here, we established additional IC50 values from parasite isolates from 

South East Asia and South America. The mean IC50 value for all the parasites tested here and 

during the previous study is 9.5 μg/mL (range 1.8–55.5). To pinpoint the timing of heparinoid 

(heparin and sevuparin) blocking of invasion, live cell imaging was used. In the presence of 

heparinoids, merozoites contacted RBCs and remained in contact for an extended period. They 

were able to weakly deform the RBCs but failed to initiate strong deformations leading to 

invasion. To identify the possible targets of heparinoids, protein pull-downs from merozoite 

lysates were done with heparin/sevuparin linked to sepharose beads. Five potential merozoite 

specific proteins emerged from this analysis: RhopH2, RhopH3, Rap1, Rap2, and Rap3. The 

targets were further narrowed down using an antibody competition assay. Preincubation with 

heparinoids prevented the binding of antibodies to the RhopH1, RhopH3, and RhopH complex 

but not the other merozoite proteins tested. Furthermore, we tested whether peptides designed 

from RhopH3 could quench the inhibitory effect of sevuparin: one of the peptides containing 

the predicted heparin-binding site was able to do so. Lastly, we co-incubated recombinant 

RhopH3 with heparinoids and observed a size shift on the native PAGE gel indicative of 

heparin binding to RhopH3. 

In addition to being essential for invasion, RhopH complex is important for nutrient acquisition 

as part of PSAC. We observed the parasite development in glucose-limited media as PSAC 
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inhibition depends on glucose availability [113]. At physiologically more relevant glucose 

levels (1.2 g/L), we detected a significant delay in schizont development in the presence of 

heparinoids. This was accompanied with abnormal morphology of trophozoites and increased 

numbers of extracellular parasites. The schizonts that developed in the presence of heparinoids 

generated fewer merozoites. 

The expression of adhesive virulence proteins could depend on parasite fitness and availability 

of nutrients. We investigated the effect of heparinoids of PfEMP1 display when added before 

its appearance on the surface. There was approximately 40% reduction in PfEMP1 on the 

surface of pRBCs when exposed to heparinoids for extended periods. This is an additional 

mechanism by which heparinoids can reduce parasite virulence besides interfering with the 

adhesive properties of already exposed antigens. 

As PSAC inhibition by heparinoids was suspected, we performed metabolic profiling of 

parasites after treatment and compared it to the known PSAC inhibitor furosemide. The 

principal component analysis of metabolite abundance revealed clear differences between 

furosemide and heparinoid treatments. This was further confirmed by sorbitol lysis assay where 

blocking of PSAC prevented osmotic pRBC lysis. As expected, furosemide prevented cell lysis 

in a dose dependent manner, whereas heparinoids increased the numbers of extracellular 

parasites. 

To identify possible channels and proteins targeted by heparinoids at later developmental 

stages, protein pull-downs from pRBC ghost lysates were done with heparin/sevuparin-

sepharose beads. Several proteins were detected with nanoLC-MS/MS, but none of the 

members constituted PSAC. Putative interactive proteome was enriched for proteins associated 

with cation homeostasis, which could explain the haemolysis of pRBCs after heparinoid 

treatment. Cellular levels of sodium were evaluated using sodium indicative dyes and flow 

cytometry and by inductively coupled plasma atomic emission spectroscopy. Both methods 

indicated accumulation of sodium in pRBC specifically after treatment with heparinoids, but 

no changes were observed for uRBCs. If the elevated in sodium levels result in higher cellular 

osmolarity, cell swelling and lysis would follow. This could explain the observed increase in 

extracellular parasites after treatment with heparinoids. 

Sevuparin has been put forward as potential fast-acting adjunctive therapy, which could 

provide time for antimalarials to kill the parasites. This study provided an additional mode of 

action for sevuparin. To begin with, our investigation of merozoite invasion in the presence of 

heparinoids points toward heparin inhibition occurring later than previously suggested [54]. 

Furthermore, it puts forward an idea that the RhopH-complex is the target for heparinoids. The 

time of invasion inhibition as the result of heparinoids resembles the picture seen when 

phosphorylation of RhopH3 is prevented [81]. In general, heparinoids inhibit the parasite’s 

ability to multiply by blocking invasion, delaying development, and reducing the number of 

offspring. Heparinoids also reduce parasite virulence by reducing the surface exposed PfEMP1 

levels and blocking the adherence of already exposed proteins. The disturbances in parasite 

metabolism and growth were suggested to be PSAC independent. Heparinoids might affect 
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PSAC differently from furosemide giving a distinct metabolic profile or targeting additional 

channels/transporters on pRBC, which is supported by the increase in sodium levels despite 

PSAC’s low permeability to Na+ [121]. 
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5 CONCLUDING REMARKS AND POINTS OF 
PERSPECTIVE 

The papers presented here cover various aspects of parasite fitness and virulence. In general, 

these research findings shed light on parasite biology and offer tools and directions for future 

studies. 

Paper I: We presented an optimized flow-cytometry method that could be a useful tool in 

many high-throughput studies – e.g., when screening simultaneously for rosette-disruptive 

agents for adjunctive therapies or when characterizing field isolates. We also showed that all 

rosettes formed in non-O Bgs reduced the antibody accessibility to PfEMP1, which could 

contribute to the development of severe malaria. Additionally, we demonstrated a positive 

correlation between rosette sturdiness and level of A-antigen on RBC surface. This is of utmost 

importance to future epidemiological and mechanistic studies, which should consider 

differences between A1 and A weak Bg. Viewing heterogeneous BgA could skew the results 

and misrepresent the risk odds. From the mechanistic point of view, it would be of interest to 

test the rosettes of different BgA subtypes under flow conditions in microfluidic channels as 

BgA rosettes have been shown to be more stable than BgO [434]. 

Paper II: We demonstrated that different anti-RIFIN antibodies perform differently in various 

applications. This study highlights the need for good antibody validation before experimental 

procedures to avoid misleading results. Additionally, use of several antibodies or alternative 

protein tagging strategies could be employed. Using the antibodies generated, we identified 

two additional RIFIN expressing parasite lines and confirmed the findings using RNAseq. 

Future studies can use these RIFIN expressing parasite lines for the investigation of RIFIN 

functions and potential cytoadhesive properties. 

Paper III: Surface display of PfEMP1 on pRBC surface is sensitive to environmental factors 

such as pH. Therefore, mechanistic studies investigating the PfEMP1 membrane insertion 

under various conditions are needed. Moreover, as this study focused on PfEMP1, the display 

of other important surface antigens, such as RIFINs and STEVORs, should also be investigated 

under changed pH conditions. Understanding how parasites behave in various host 

environments could help researchers design therapeutics targeting these processes. 

Paper IV: We identified possible sevuparin/heparin targets during parasite invasion and 

discovered additional anti-parasitic properties of sevuparin/heparin. In addition to invasion 

blocking, the drugs lead to delayed development and reduction in offspring. As parasitaemia is 

important factor in disease progression, even a small reduction could buy some time for the 

patients. These drugs were also able to interfere with another important virulence factor: 

cytoadhesion before and after surface exposure of PfEMP1. The observed effects on fitness 

and virulence were suggested to be PSAC independent. Further studies are needed that 

investigate how exactly sevuparin/heparin influences cellular sodium levels. Answering the 

heparin/sevuparin–sodium conundrum might shade some light on how Plasmodium takes 

advantage of human channels. Overall, sevuparin exhibits good properties for becoming 
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adjunctive treatment. A recent study proposed that parasite rosetting helped the parasites 

withstand short artesunate exposures [435]. Hence, the combination treatment with sevuparin 

would prevent spread of resistant parasites. On the other hand, some studies have seen that 

disruption of rosettes leads to increased cytoadherence to endothelium, which might worsen 

the clinical situation [443,444]. Therefore, the benefits and dangers of future treatments should 

be weighed carefully. 
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