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POPULAR SCIENCE SUMMARY OF THE THESIS 
Breast cancer is the most common cancer form among women and the second leading cause 
of death among women after lung cancer. Mortality rates decreased by up to 40% when 
national breast cancer screening programs were introduced in the 1980s and 1990s. Risk 
factors connected to breast cancer have been identified, with female sex and older age being 
the most common. Other risk factors are breast density, hereditary factors, number of child 
births, age at first childbirth, breast feeding habits and alcohol consumption. One of these, 
breast density, is derived from examination of mammographic images. 
 
In Sweden, all women between 40 to 74 years are invited to breast cancer screening every 
18 to 24 months. The screening examination consists of two standard views of each breast, 
and questions about clinical breast symptoms. All mammograms are examined by two 
breast radiologists. If either of the radiologists flags an examination because they find 
something suspicious, or if the woman reports worrying symptoms, her exam will be 
discussed at a special meeting called a consensus discussion. During this discussion, at least 
two breast radiologists discuss whether the woman should be declared healthy or recalled 
for further examinations.  
 
In Sweden there is a lack of breast radiologists, and it is important that their time is used 
efficiently. It is also important to make the screening process as effective as possible. We 
need to reduce the proportion of interval cancers - breast cancers that are clinically detected 
between two screening time points - which are associated with an increased mortality and 
morbidity. This might be achieved by making the screening process more individualized 
with the aim of detecting tumors as early as possible while the cancer is still curable.  
 
The introduction of deep learning, or artificial intelligence, for mammographic image 
analysis, might contribute to make the screening process more individualized, efficient and, 
in the end, further reduce morbidity and mortality. My research has focused on the 
construction of a large retrospective cohort for deep learning, then exploring the potential 
use of this technique for risk assessment, for independent analysis of mammograms, and 
finally, to calibrate a commercial artificial intelligence (AI) algorithm for use in a 
prospective clinical study at a Stockholm Breast Center.  
 
In study I, we described the underlying Cohort of Screen Aged Women from which the 
study populations of the following three studies are derived. I also described how the cohort 
has been used so far and the future opportunities for research. As expected, our research 
group found that there is a huge interest world-wide for population-based datasets. Parts of 
our dataset have been used in other research projects globally. 
 
In study II, we analyzed how a deep learning risk score, developed in collaboration with 
academic computer scientists at the Royal Institute of Technology in Stockholm, performed 
compared with standard breast density measurements for predicting future breast cancer 
risk. We concluded that compared to density, a deep neural network can more precise 
predict which women are at risk for future breast cancer and more precisely detect more 
aggressive forms of breast cancer.  
 
In study III, a retrospective simulation study, we analyzed the potential cancer yield when 
triaging screening examinations into two work streams, depending on the AI score related 
to the likelihood of cancer signs in the images - a ‘no radiologist’ work stream and an 
‘enhanced assessment’ work stream. We found that the AI score could potentially reduce 
radiologist workload and detect a large proportion of breast cancers earlier.  
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In study IV, we analyzed the consequences of alternative choices of the abnormality 
threshold for an independent reading AI algorithm. We demonstrated that the extent of 
change in sensitivity and false positives depend on these choices. The results were then 
used to develop the study protocol for a prospective clinical study, which I continue to be 
involved in as local investigator at the study hospital. 
 
In studies I to IV we have demonstrated promising results, shedding light on the possible 
introduction of AI and deep learning algorithms in breast cancer screening.  
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ABSTRACT 
Breast cancer is the most common cancer form among women worldwide and the incidence 
is rising. When mammography was introduced in the 1980s, mortality rates decreased by  
30% to 40%. Today all women in Sweden between 40 to 74 years are invited to screening 
every 18 to 24 months. All women attending screening are examined with mammography, 
using two views, the mediolateral oblique (MLO) view and the craniocaudal (CC) view, 
producing four images in total. The screening process is the same for all women and based 
purely on age, and not on other risk factors for developing breast cancer.  
 
Although the introduction of population-based breast cancer screening is a great success, 
there are still problems with interval cancer (IC) and large screen detected cancers (SDC), 
which are connected to an increased morbidity and mortality. To have a good prognosis, it 
is important to detect a breast cancer early while it has not spread to the lymph nodes, 
which usually means that the primary tumor is small. To improve this, we need to 
individualize the screening program, and be flexible on screening intervals and modalities 
depending on the individual breast cancer risk and mammographic sensitivity. In Sweden, 
at present, the only modality in the screening process is mammography, which is excellent 
for a majority of women but not for all. 
 
The major lack of breast radiologists is another problem that is pressing and important to 
address. As their expertise is in such demand, it is important to use their time as efficiently 
as possible. This means that they should primarily spend time on difficult cases and less 
time on easily assessed mammograms and healthy women. 
 
One challenge is to determine which women are at high risk of being diagnosed with 
aggressive breast cancer, to delineate the low-risk group, and to take care of these different 
groups of women appropriately. In studies II to IV we have analysed how we can address 
these challenges by using deep learning techniques. 
 
In study I, we described the cohort from which the study populations for study II to IV 
were derived (as well as study populations in other publications from our research group). 
This cohort was called the Cohort of Screen Aged Women (CSAW) and contains all 
499,807 women invited to breast cancer screening within the Stockholm County between 
2008 to 2015. We also described the future potentials of the dataset, as well as the case 
control subset of annotated breast tumors and healthy mammograms. This study was 
presented orally at the annual meeting of the Radiological Society of North America in 
2019. 
 
In study II, we analysed how a deep learning risk score (DLrisk score) performs compared 
with breast density measurements for predicting future breast cancer risk. We found that the 
odds ratios (OR) and areas under the receiver operating characteristic curve (AUC) were 
higher for age-adjusted DLrisk score than for dense area and percentage density. The 
numbers for DLrisk score were: OR 1.56, AUC, 0.65; dense area: OR 1.31, AUC 0.60, 
percent density: OR 1.18, AUC, 0.57; with P < .001 for differences between all AUCs). 
Also, the false-negative rates, in terms of missed future cancer, was lower for the DLrisk 
score: 31%, 36%, and 39% respectively. This difference was most distinct for more 
aggressive cancers. 
 
In study III, we analyzed the potential cancer yield when using a commercial deep 
learning software for triaging screening examinations into two work streams – a ‘no 
radiologist’ work stream and an ‘enhanced assessment’ work stream, depending on the 
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output score of the AI tumor detection algorithm. We found that the deep learning 
algorithm was able to independently declare 60% of all mammograms with the lowest 
scores as “healthy” without missing any cancer. In the enhanced assessment work stream 
when including the top 5% of women with the highest AI scores, the potential additional 
cancer detection rate was 53 (27%) of 200 subsequent IC, and 121 (35%) of 347 next-round 
screen-detected cancers. 
 
In study IV, we analyzed different principles for choosing the threshold for the continuous 
abnormality score when introducing a deep learning algorithm for assessment of 
mammograms in a clinical prospective breast cancer screening study. The deep learning 
algorithm was supposed to act as a third independent reader making binary decisions in a 
double-reading environment (ScreenTrust CAD). We found that the choice of abnormality 
threshold will have important consequences. If the aim is to have the algorithm work at the 
same sensitivity as a single radiologist, a marked increase in abnormal assessments must be 
accepted (abnormal interpretation rate 12.6%). If the aim is to have the combined readers 
work at the same sensitivity as before, a lower sensitivity of AI compared to radiologists is 
the consequence (abnormal interpretation rate 7.0%). This study was presented as a poster 
at the annual meeting of the Radiological Society of North America in 2021. 
 
 
In conclusion, we have addressed some challenges and possibilities by using deep learning 
techniques to make breast cancer screening programs more individual and efficient. Given 
the limitations of retrospective studies, there is a now a need for prospective clinical studies 
of deep learning in mammography screening. 
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1 INTRODUCTION 
 
Population-based breast cancer screening programs have been very successful. The 
mortality rates were reduced with up to 40% when nationwide breast cancer screening were 
introduced in the 90’s (1-3). Despite the success with national breast cancer screening 
programs, there is room for improvement, e.g., by decreasing the number of women who 
are diagnosed with late-stage breast cancer, and, by addressing the shortage of breast 
radiologists in many countries, including Sweden.   
 
In many developed countries, the only breast cancer risk factor that is used for inviting 
women is the age, and all who are invited is then offered the same “one size fits all” 
imaging method - mammography.  Mammography is excellent for the majority of women 
but not for all. Some women invited to screening would benefit from being examined by 
other, more sensitive, modalities than mammography, for example magnetic resonance 
imaging with a considerably higher sensitivity (4).  
 
To identify which women are likely to benefit from a modified screening process is 
challenging. Many breast cancer risk prediction models have been introduced, such as the 
Gail model (5) and the Tyrer-Cuzick model (6). These were primarily developed to assess 
life-time risk and not the relatively short-term horizon of two to three years applicable to 
the screening situation. Further, these risk prediction models do not generally take image-
based factors into account; only the latest version of the Tyrer-Cuzick model takes 
mammographic density into account (7).  
 
By introducing deep networks in the screening process, the information in the 
mammograms which is not consistently appreciated by the human eye might be used for 
cancer detection and risk estimation - if the networks are properly trained and validated. 
Since it is impossible or difficult to understand what the networks base their result on, 
proper validation and testing is paramount.   
 
The results shown in my studies give hope that it may soon be time for deep networks to 
improve women’s health by even better early detection of breast cancer, translating into 
less aggressive treatment being necessary and less lives being shortened by cancer. 
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2 LITERATURE REVIEW 
2.1 THE BREAST 
 
The breast is a glandular organ that develops from the milk line situated along the anterior 
part of the body wall from the groin to the axilla. The breast is eventually formed at the 
pectoral region. The breast consists of stroma, adipose tissue and glandular tissue which is 
connected by a loose framework of fibrous tissue (Cooper´s ligaments). The glandular 
tissue comprises the potentially milk producing lobules and the ducts eventually leading to 
the nipple. The nipple contains around 10 openings - each connected to a lactiferous sinus 
that receives a lobar collecting duct.  
 
The lobule and its connecting duct are called the terminal duct lobular unit (TDLU), which 
is the likely starting point of the most common breast cancer form, the paradoxically named 
ductal carcinoma. The inner luminal layer of the duct is composed of epithelial cells and an 
outer layer of myoepithelial cells. An outer basal membrane encloses these layers (8). The 
breast undergoes all developmental stages if a woman experiences pregnancy and 
childbirth, and reaches its full function during lactation (9).   
 

  
 
Figure 1. The breast with lobules and ducts.  
(https://commons.wikimedia.org/wiki/File:Lobules_and_ducts_of_the_breast.jpg) 

2.1.1  Biology, development, changes over time 
In the fetus and in infants there is no relation between sex, age, and the stage of 
development of the breasts. At birth the infant has breast structures like adults, with well-
defined lobules and terminal lobular duct units – sometimes with milk proteins. This means 
that both sexes have the TDLUs described above. A few months after birth, the glands 
involute in a similar pattern as the postmenopausal breast because of lack of breast 
stimulating hormones. Involution means that the glandular tissue decreases. During 
childhood, the breast grows in proportion to other tissues in the body. For women, the 
pubertal development of the breast commences before menarche, and changes drastically 
when average blood hormones such as estrogen (ER), prolactin, luteinizing hormone (LH), 
follicle stimulating hormone (FSH) and growth hormone levels rise. This process is 
gradually controlled by the hypothalamus, which in turn acts on the anterior pituitary gland, 
which increases the levels of FSH and LH. FSH stimulates the ovarian follicles to produce 
ER. Later in the menstrual cycle the ovaries also produce progesterone (PR).  
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During pregnancy, all parenchymal components of the breast change because of elevated 
levels of hormones. Similarly, but with an opposing effect, decreased levels of hormones 
lead to involution of the breast tissue in the postmenopausal period. The lobules shrink and 
the stromal tissue is replaced by fat. Menopause is initiated by atresia of ovarian follicles 
leading to a decrease of hormone levels. The menopause is a regressive phenomenon, and it 
occurs as a consequence of the atresia of around 400 000 follicles that were present in the 
fetus at the age of 5 months. Breast tissue in nulliparous (childless) women is less 
differentiated than that of parous women. Earlier differentiation stages are more vulnerable 
to carcinogenic damages than for more differentiated stages (10-12). 
 

 
 
Figure 2. Hormones affecting the breasts and the uterine mucosa. 
(https://commons.wikimedia.org/wiki/File:MenstrualCycle2.png) 

2.2 BREAST CANCER 

2.2.1 Epidemiology  
Breast cancer is the most common cancer form among women, and the second leading 
cause of deaths among women after lung cancer. Breast cancer counts for 23% of all 
cancers with an estimate of more than 2 million new cases worldwide yearly. It is now the 
most common cancer for women in both developed and in developing regions. The 
incidence rates vary greatly, with numbers ranging from high (more than 80 per 100,000 
women) in developed regions to low (less than 40 per 100,000 women) in developing 
regions. In North America, the 5-year survival rate approached 90% between 2010 to 2014. 
The corresponding number for Western Europe was 85% or higher. Breast cancer survival 
is lower in Eastern Europe and Africa (13). 
 
The overall lifetime risk for breast cancer diagnosis is 12.8% (1out of 8) and the lifetime 
risk for death for breast cancer is 2.6% (1 out of 39). The incidence of breast cancer is 
increasing, and most of the historic increase reflects changes related to fewer child births 
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and delayed childbearing. During the late 80s and 90s, the incidence rates of invasive breast 
cancer and DCIS increased rapidly because of the introduction of mammography screening 
programs, with increased attendance from 29% in year 1987, to 70% in year 2000. In 
contrast, there was a decrease (nearly 13%) for the invasive breast cancer rate between 
1999 and 2004, mainly because studies were published concluding that hormone replace 
therapy (HRT) was linked to breast cancer and heart disease. Since 2004, the incidence of 
invasive breast cancer has risen by about 0.3% each year. Since the end of the 1980’s, 
mortality rates in breast cancer have decreased with up to 40% to the present date. This can 
be explained by both improvements in treatment and by early detection with mammography 
screening programs.  
 
In Sweden, the median age for being diagnosed with breast cancer is 64 years, and less than 
5% of patients are under 40 years. Yearly, there are around 8,000-9,000 diagnoses of breast 
cancer, and every day around 20 women are diagnosed. A few (~ 40 to 60) men are 
diagnosed with breast cancer yearly and the prognosis is the same as for women. In 2018, 
1,400 women died from breast cancer. The relative five year survival is around 90% and the 
relative 10 year survival is around 80 % (14, 15). 
 

2.2.2  Biology and tumor characteristics 
Breast cancer is a heterogeneous disease with several pathologic features and biological 
behaviors. Different breast cancer subtypes have varying clinical and histopathological 
features, outcomes, and they respond to different therapies.  
 
Breast tumors are classified according to the location of origin. Of the histopathological 
types of breast cancer, around 70% of all breast cancers are of the ductal type. The second 
most common is lobular breast cancer which accounts for around 15%. The lobular cancer 
tends to be multifocal and bilateral. Other histological subtypes are medullary breast cancer 
(5%), tubular breast cancer (5%) cribriform breast cancer (2%), mucinous breast cancer 
(2%) and micro-papillary breast cancer (1–2%) (16). 
 
Breast cancer survival varies by stage of the disease at diagnosis. Stage is one of the most 
important predictors for breast cancer prognosis (17). The different stages  1 to 3, describe 
the size and spread to the lymph nodes in different ways. Stage 4 indicates that the tumor 
has spread to other organs. The overall survival rate for diagnosed patients from 2009 to 
2015 was 98% for stage 1 patients, 92% for stage 2 patients, 75% for stage 3 patients and 
27% for stage 4 patients (18).  

The tumor node metastasis classification of malignant tumors (TNM) classification is a 
structured tool developed by the American Committee on Cancer and the International Unit 
for Cancer Control. The system is applicable for all carcinomas with a histologic 
confirmation and describes the stages of the cancer. The system is defined by three letters: 
 
T corresponds to the extent of the tumor and the relationship to surrounding tissue. In case 
of multifocal tumor burden the highest T value is used for the system. 
 
N corresponds to eventual lymph node metastasis, and for breast cancer there are three 
levels (I–III). N0 refers to no spreading to the lymph nodes. N1 refers to spreading 1-3 
axillary lymph nodes. N2 Refers to spreading to 4-9 axillary lymph nodes and N3 refers to 
spreading to > 9 axillary lymph nodes as well as lymph nodes infra- and supraclavicular 
and/or parasternal lymph nodes. 
 
M corresponds to the extent of metastasis to other regions than lymph nodes (19).  
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The Elston grade (or Nottingham grade) describes the degree of differentiation in the 
tumors and is divided into three groups, where grade 1 is the most differentiated group and 
grade 3 is the least differentiated group (20). 
 
The classical immunohistochemical (IHC) markers include the ER receptor, the PR 
receptor and the human epidermal growth factor receptor 2 (HER2). These receptors are 
known to mediate cell growth signaling. Breast tumors are divided into different subgroups 
according to these markers. In general, ER- and PR- tumors have a poorer prognosis than 
ER+ or PR+ tumors. (21, 22) It is suggested that ER+ and PR+ tumors are associated with 
exposure to ER and PR, while ER- and PR- tumors are independent of hormone exposure. 
Patients with hormone sensitive tumors have a longer disease-free life and a better 
prognosis. 
 
The ER receptor is overexpressed in around 70% of all cancer cells; the hormone 17-
oestraddiol activates the receptor which then leads to tumor growth and inhibition of 
apoptosis of the tumor cells (23). It is important to discriminate whether breast cancer is ER 
positive or not, as a targeted adjuvant therapy called tamoxifen is available, although 40% 
of ER positive tumors are resistant to this treatment (22, 24). Tamoxifen was introduced in 
the 1980’s and was the first anti-ER therapy. For non-resistant tumors it effectively blocks 
ER stimulation by binding to the ER ligand (25). 
 
The PR receptor is a positive prognostic factor in the presence of ER and its presence is 
associated with a favorable response to endocrine therapy and chemotherapy (26). ER and 
PR positive breast cancers have around a 70% chance of responding to any endocrine 
therapy; breast cancers that are only ER positive respond in 20–40% of cases and those that 
are only PR positive respond in 40–45%. Both ER and PR negative breast cancers respond 
to endocrine therapy in less than 10% of patients (27). However, there is a current debate 
regarding PR as a predictor and its clinical impact (28). 
 
The HER2 receptor is normally related to cell proliferation and division, and if it is 
amplified in breast cancer cells it is a predictor for more advanced disease, increased risk 
for relapse and decreased patient survival (29). In around 15–30% of breast cancers HER2 
is amplified, and if there is uncertainty regarding HER2 amplification the specimen should 
undergo confirmation testing with fluorescence in situ hybridization (FISH) or 
chromogenic in situ hybridization (CISH) (30, 31). There is currently one targeted 
treatment for HER2+ tumors, the antibody trastuzumab, which decreases tumor growth and 
acts as a sensitizer for chemotherapy (25). 
 
A very important and widely used biological marker is the protein (antibody) Ki67 which 
indicates the proliferation activity in the tumor. The proliferation index is considered low 
when there are 14% or less stained nuclei, and considered positive or high when there are 
more than 14% stained nuclei. A high proportion of Ki67 is associated with lower overall 
survival and more often tumor recurrence (32, 33). Ki67 is also used to predict the 
neoadjuvant response, or the outcome from adjuvant chemotherapy (34). Posttreatment 
Ki67 levels can give prognostic information for patients with hormone positive tumors and 
for the risk of disease relapse (35). 
 
Based on gene expression analysis, molecular subtypes of breast cancer have been defined: 
luminal A, luminal B, HER 2 enriched, and triple negative breast cancer (36). The 
following proxies based on receptor expression have been suggested:  
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• Luminal A proxy:  ER+ and/or PR+ and HER2-, low grade, low proliferation.  
• Luminal B proxy: ER+, low PR, high grade and/or high proliferation and HER 2-. 
• HER2 enriched proxy: HER2+ and hormone receptor + or -.  
• Triple negative breast cancer proxy: ER-, PR-, HER2-  

 
The different subtypes are associated with different prognoses, where patients with luminal 
A have the best prognosis and patients with triple negative breast cancers have the worst 
prognosis. Based on the subtypes, patients have different treatment options. For patients 
with luminal A, B and HER2 positivity there are options for targeted treatments, while 
patients with triple negative breast cancer only have chemotherapy as an option (37).  
 
Breast cancer can be either invasive, in situ cancer, or mixed. Historically the major 
subtypes of in situ cancers are ductal cancer in situ (DCIS) and lobular cancer in situ 
(LCIS). In 2020 in Sweden, 10.9% of all diagnosed breast cancers were non-invasive, with 
the majority of cancer in situ (CIS) being ductal (83%). The definition of CIS is that 
abnormal cells replace the epithelium while the basal membrane is intact. When the basal 
membrane is invaded, the cancer becomes invasive. DCIS counts as a precursor for 
invasive cancer and LCIS only acts as a marker for a higher risk of breast cancer diagnosis 
but the more aggressive pleomorphic LCIS is connected to invasive lobular cancer. DCIS 
often appears as microcalcifications and LCIS is often incidentally detected (38). 
 
When the basal membrane is invaded, the cancer becomes invasive. Invasive breast cancer 
is a heterogeneous group of cancers; the largest group was previously known as invasive 
ductal carcinoma (IDC), but with the use of the new definitions, is now referred to as 
invasive carcinoma of no special type (NST). Other specific invasive breast cancers are 
invasive lobular, invasive medullary, invasive mucinous, invasive papillary, and 
metaplastic breast cancer (39).  
 
It should be noted that an alternative classification system which I find very interesting and 
might provide a better correlation between imaging biomarkers, large 3D histologic format 
and prognosis has been suggested by Professor Tabár (40). He suggests that it is most 
important to take the histological site of origin into account for treatment planning and 
prognosis (41). For smaller cancers (up to 14 mm) the mammographic features are said to 
be tightly linked to the histological origin. Acinar adenocarcinomas of the breast, 
originating from the TDLU, have an excellent prognosis when they are small (up to 14 
mm), and are often seen as spiculated or round masses in the mammogram. On the other 
hand, ductal adenocarcinomas of the breast have a poorer prognosis, and may appear as 
architectural distortions or microcalcifications arranged in duct-like patterns. Tabár argues 
that the current nomenclature of DCIS is a misnomer when the mammographic appearance 
are microcalcifications arranged in a duct-like pattern since those often represent invasive 
duct-forming cancers and are associated with a poor prognosis. This might also explain 
why they show contrast-enhancement on MRI even though they are supposedly “in situ”. 
 
Symptoms of inflammatory breast cancer differ from non-inflammatory breast cancer, 
including lumps with red and swollen skin, sometimes with fluid running from the skin. 
Around 2% of all breast cancer diagnoses are inflammatory breast cancer and the 
histopathologic features are distinctive, with tumor cell emboli in the skin of the breast. 
Some data imply that inflammatory breast cancer is a special type of cancer form, while 
others suggest that it correlates to NST grade III (42). 
 
Immunohistochemically markers (IHC) together with tumor size, tumor grade, histologic 
type, and nodal involvement, is used for prognosis and treatment decisions. 
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2.2.3 Risk factors 
There are many risk factors for developing breast cancer. The most important besides 
female sex is age, with an incidence highly related to increasing age.  
 
Mammographic density (MD) is the amount, or proportion, of pixels in the mammogram 
corresponding to radiodense breast tissue. Dense breast tissue appears bright, and non-
dense appears dark (adipose tissue). Women with over 75% MD have a 4 to 6 times higher 
risk of developing breast cancer compared to women with a small proportion of dense 
breast tissue. Thus, high density is considered a strong risk factor for breast cancer. Another 
important consideration is that the dense tissue might mask tumors in the image (43, 44). 
MD is associated with both lifestyle and reproductive factors, and it has been hypothesized 
that MD might partially act as an intermediate marker of breast cancer risk (45). One study 
by Kerlikovske et al suggested that women with high breast density combined with the 
Breast Cancer Surveillance Consortium (BCSC) 5-year risk for breast cancer can identify 
women at high risk for interval cancer (IC), and thus inform them on supplemental breast 
cancer screening (46). 
 
Another common risk factor for breast cancer is family history. Around one quarter of all 
breast cancer cases are related to family history. If a woman has a first degree relative with 
breast cancer, the risk is 1.75-fold higher to develop breast cancer than having no diagnosed 
relatives. The risk is 2.5-fold higher if a woman has two or more first degree relatives 
diagnosed with breast cancer (47).  
 
Some of the hereditary cases are the results of mutations in the high- and medium 
penetrance genes including breast cancer gene 1 (BRCA1), breast cancer gene 2 (BRCA2), 
TP53, PTEN, STK11, CDH1 (48). The BRCA1 and BRCA2 genes are also associated with 
higher risk for ovary, prostate and pancreatic cancers. The presence of a BRCA1 or BRCA2 
mutation can be predicted if a first degree relative is diagnosed with breast or ovarian 
cancer at a young age, the presence of bilateral breast tumors, as well as an increased 
number of affected relatives (25). The lifetime risk of developing breast cancer for BRCA1 
and BRCA2 carriers varies between 45% to 87%, with a lifetime risk of between 15% to 
45% for developing ovarian cancer (49). Carriers of BRCA1 often present with more 
aggressive cancers, such as triple negative breast cancer, while carriers of BRCA2 are more 
likely to present with ductal tumors such as DCIS or invasive ductal carcinoma (50). In 
Sweden, identified carriers of BRCA1 and BRCA2 mutation are offered yearly breast 
imaging including MRI from the age of 25. They are also offered prophylactic mastectomy 
and salpingo-oophorectomy after reproduction. 
 
It is well known that reproductive factors have an impact on breast cancer risk. Childbirth 
and parity are associated with a decrease in developing luminal breast cancer, while higher 
age at first childbirth is associated with an increased risk. Breast feeding is associated with 
a reduced risk of developing both luminal and triple negative breast cancer (51). 
 
ER levels play an important role in the risk of developing breast cancer, both endogenous 
and exogenous exposure. Endogenous ER is usually produced by the ovaries and, 
especially after menopause, by adipose tissue. The main source of exogenous ER are oral 
contraceptives and HRT. High ER levels in postmenopausal women are associated with an 
increased risk of developing breast cancer. The risk for developing breast cancer was 
decreased for women who stopped intake of oral contraceptives more than ten years ago 
while the risk for developing breast cancer was decreased two years after finishing 
treatment with HRT (52).  
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There are also lifestyle factors associated with breast cancer. Alcohol consumption is 
positively associated with ER+ and PR- breast cancer, and the association is even stronger 
for postmenopausal women. Alcohol can elevate the level of ER related hormones (53). 
There are conflicting results regarding the association of dietary fat with breast cancer, with 
some researchers suggesting that saturated fat that is more associated with breast cancer. 
Phytoestrogens and meat cooked at high temperatures have also been connected to an 
increased risk of developing breast cancer (54). 

2.2.4 Breast cancer treatment 
Oncologists, radiologists, surgeons, and pathologists are involved in the diagnostics and the 
treatment of breast cancer. Patients who are diagnosed with an operable tumor are treated 
with surgery and often with different combinations of systemic treatment and radiation 
therapy. 
 
Of the surgical methods used, the most common are mastectomy and breast conserving 
surgery (BCS).  
 
Mastectomy can be either total or simple, skin-sparing and nipple/areolar-sparing. The local 
recurrence rates vary with up to 7% for skin-sparing and with up to 5% for nipple/areolar-
sparing mastectomy (55-57). The site of 80% of recurrences is the chest wall (58).  
 
BCS is the most recommended surgical method, involving removal of the tumor and a rim 
of surrounding healthy tissue. BCS is most successful for DCIS and T1-T2 tumors if the 
woman can undergo radiation. For women with high risk of local recurrence, BCS is not 
recommended (59). Randomized studies show that BCS followed by radiotherapy has an 
equivalent survival rate to mastectomy for stage I to II invasive breast cancers (60). Tumor-
free margins are important for patients who undergo BCS. For invasive breast cancers there 
should be ‘no tumor on ink’ and for DCIS the margins should be at least 2 mm (61). Re-
excision occurs in around 20% but according to one study there were residual tumor cells in 
only 50% of the specimens (62). Many studies indicate that BCS gives the patient a better 
quality of life and similar satisfaction levels compared to mastectomy with immediate 
reconstruction (63). If more tissue than expected needs to be removed during BCS, there 
are  several oncoplastic methods to fill the tissue-defect (64).  
 
The first lymph node to drain the lymphatics from the breast is called the sentinel lymph 
node (SLN). Patients with an early stage invasive breast cancer and a clinically and 
radiologically negative axilla are recommended a sentinel lymph node  biopsy (SLNB) 
(65). For around 90% of all patients the sentinel node can be found and the false negative 
rate is low, at  around 5%to 10%, and the risk for a local axillary recurrence is less than 1% 
after a negative SLN (66). If a patient has three or more lymph node metastases, axillary 
lymph node dissection (ALND) is usually performed, which is associated with morbidity 
such as altered sensation, pain and lymphedema in the upper limb (67). Many studies have 
resulted in a trend towards less axillary surgery:  the large SENOMIC and SENOMAC 
studies were designed to examine the usefulness of ALND vs SLNB (68). 
 
A study published in Cancer 1995 showed that for 20% of mastectomy specimens, there 
were additional tumor foci within 2 cm of the index tumor (69). This is one reason for the 
introduction of radiotherapy; to remove unknown remaining tumor foci despite margins 
being free. Radiotherapy can be delivered to the whole breast, to a part of the breast, to the 
chest wall or to lymph nodes. After BCS the whole breast is treated (70). Adjuvant 
radiotherapy decreases the local recurrence rate by 50% and increases breast cancer specific 
survival rate (70). In a meta-analysis of 17 randomized trials, the local recurrence rate 
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decreased from 35% to 19.3% and breast cancer related deaths decreased from 25.2% to 
21.4% when adding radiotherapy to breast conserving therapy (71). There is no benefit with 
radiotherapy for patients with low-risk tumors and no metastases. However, radiotherapy is 
beneficial for women undergoing BCS with unfavorable risk factors (72).  
 
Patients with high or intermediate risk breast cancer should be treated with chemotherapy. 
Patients with small tumors (1-5 mm) and negative lymph nodes do not generally benefit 
from chemotherapy (73). Patients with triple-negative breast cancer, breast cancer negative 
for ER and progesterone, and positive for HER2 benefit more from chemotherapy than 
hormone positive tumors (74). Neoadjuvant chemotherapy is recommended for inoperable 
tumors to make them operable, for locally advanced breast tumors to allow BCS, and for 
the evaluation of drug sensitivity during treatment (75-77).   
 
There are different endocrine treatments with varying mechanisms, including prevention of 
ER production or by blocking the action of ER. The patients’ hormonal status is important 
for choosing the right treatment. Tamoxifen is a drug that blocks the binding of ER to the 
receptor. Goserelin is another therapy that blocks the ovarian production of ER by 
inhibiting the pituitary gland to produce hormones that stimulate the ovaries. To inhibit the 
conversion of androgens to ER, treatment with aromatase-inhibitors such as anastrozole, 
exemestane and letrozole is the option (78).  
 
Today, the recommendation for endocrine treatment is five years, although there are studies 
reporting that 10 years of treatment reduces the risk of tumor recurrence further (79).  If a 
woman experiences adverse side effects of an endocrine treatment, there are options to mix 
aromatase inhibitors with tamoxifen within certain intervals (80). Women treated with 
endocrine therapy over a long period often need additional treatment with zoledronic acid 
to strengthen the skeleton and to avoid pathological fractures. 
 
Treatment recommendation for postmenopausal women is aromatase-inhibitor for five 
years and if there are lymph node metastases another five years with tamoxifen is 
recommended. For premenopausal women tamoxifen for five years is recommended and if 
the lymph nodes are affected tamoxifen for ten years is recommended and for younger 
women, additional treatment with goserelin is recommended (78).  
 
The monoclonal antibody trastuzumab is available for targeted therapy for patients with 
HER2 overexpressing tumors. Trastuzumab is mediating cytotoxicity, cell cycle arrest and 
some level of apoptosis (81). Trastuzumab together with chemotherapy is synergistic and 
decrease the recurrence rate (82). Possible cardiotoxicity and treatment resistance are 
disadvantages with trastuzumab treatment (83, 84).  

2.3 BREAST CANCER SCREENING 

2.3.1 Imaging and sensitivity 
Internationally, breast lesions in radiology are mainly described according to the BI-RADS 
(Breast Imaging Reporting and Data System) system. The BI-RADS system was developed 
in the United States of America and  can be used for mammography, ultrasound, magnetic 
resonance imaging (MRI), and for density assessments (85). In Sweden, the BI-RADS 
system is generally not used, although some institutions do use the system for MRI 
assessments. The Swedish scoring system for mammography and ultrasound is partly 
similar to the BI-RADS system. The Swedish system also codes breast lesions from 1 to 5, 
where 1 is healthy and 5 is a clear cancer. The main difference is the expanded category 3, 
which contains a higher proportion of cancer in the Swedish system compared to the BI-
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RADS system (where it should be below 2%). In the Swedish system, lesions of category 3 
are always subject to biopsy while in the BI-RADS system, lesions of category 3 may 
instead be subject to radiological follow-up after six months. Another difference is that 
category 4 contains subgroups according to the BI-RADS system but not according to the 
Swedish system (86). 
 
Mammography is the most common modality for breast imaging in screening programs. 
The sensitivity for mammograms varies between 48% to 98% depending on the structure 
and distribution of glandular tissue, fibrous tissue and fat in the breast. Mammograms from 
dense breasts, i.e., breasts with a lot of fibrous and glandular tissue confer a lower 
sensitivity than mammograms of more fatty breasts. The sensitivity also increases with 
higher age when women usually get more fatty breasts (87).  
 
MD can be visually divided into different groups and classifications, including the BI-
RADS classification, the Tabár classification (88), and the Wolfe classification (89). 
Internationally, the most commonly used classification system is the BI-RADS system 
where density is divided into four categories A to D and D represents the most dense tissue 
(85). In prior versions of BI-RADS it was a visual assessment of the quantity of density, but 
in the most recent version qualitative aspects are included. A qualitative difference between 
category C and B, is that category C should be chosen if there is a chance that density “may 
obscure small masses”. This means that if there is a large blob of density in a small part of 
the breast it could still be category C, even if the total amount of density in the entire breast 
is not that high. 
 
Mammography involves three different views: the craniocaudal view (CC), the mediolateral 
oblique view (MLO) and the mediolateral view (ML). CC and ML are perpendicular views, 
and the MLO is an oblique view which is oriented along the pectoral muscle towards the 
axilla and includes more glandular tissue than the ML and CC views. Mammograms of two 
women of the same age can look very different in terms of volume and the patterns of dense 
and non-dense tissue. The appearance of breast cancer in mammograms varies greatly, and 
includes microcalcifications, distortions, asymmetry, spiculated and non-spiculated masses 
(see figure 3). 
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Figure 3. Mammographic appearances of breast cancer (courtesy of Fredrik Strand) 
 
The sensitivity for ultrasound varies depending on how experienced the examiner is and 
how the breast tissue is comprised. A study by Berg et al from 2008 concluded that for 
women with elevated risk for breast cancer, the addition of ultrasound or MRI to 
mammography yielded a higher proportion of breast cancer diagnoses although the false 
positive rate increased (90). Ultrasound examination is well tolerated by women, and it is 
radiation-free. It has limited value as a single modality due to less sensitivity for the 
visualization of microcalcifications and a lower reproducibility than other techniques (91).  
 
The combination of mammography and ultrasound can increase accuracy by up to 7.4% 
and the negative predictive value is greater than 98% when combining mammography and 
ultrasound when there is no palpable mass (92). 
 

  
 
Figure 4. Image of a tumor from an ultrasound examination. (Karin Dembrower) 
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Examination with MRI has the highest sensitivity for finding malignant lesions in 
asymptomatic high risk women (71%-100%) compared to mammography (13-59%) and 
ultrasound (13-65%) (93). The MRI-findings are often classified according to the BI-RADS 
system. The randomized clinical trial performed by van Gils et al, the DENSE trial, implied 
that among women with extremely dense breasts invited to screening and examined with 
MRI, the proportion of IC increased with 80% compared to women who were examined 
only with mammography. In the second round of MRI examination in the same study, the 
proportion of false positive cases were strongly reduced (94).  
 

 
 
Figure 5. Example of a breast MRI examination with a contrast enhanced suspicious lesion close to the chest 
wall medially in the right breast. (https://commons.wikimedia.org/wiki/File:Breast_dce-mri.jpg) 
 
Digital breast tomosynthesis (DBT) is a modality that involves multiple projections along 
an arc at small angular differences, then reconstructed into a stack of images. Depending on 
the manufacturer, the total arc along which the images are ensembled on varies between 15 
to 60 degrees (95). In the “Malmö Breast Tomosynthesis Screening Trial” by Lång et al, the 
cancer detection rate increased with one view tomosynthesis (8,9%) compared to digital 
mammography (DM) (6.3%) (96). In the study by Conant et al “Five Consecutive Years of 
Screening with Digital Breast Tomosynthesis: Outcomes by Screening Year and Round”, 
the use of long term tomosynthesis demonstrated a higher detection of poor-prognosis 
cancers compared to DM (97). Another study by Conant et al comparing breast 
tomosynthesis with mammography demonstrated a higher proportion of smaller node 
negative breast cancers as well as a lower recall rate for DBT (98).  
 
Since screening was introduced nationwide in 1989 in Sweden, mortality rates have 
decreased by up to 30 to 40% (99, 100). However, around 30% of all breast cancers from 
women attending screening programs are IC, detected clinically between screening 
intervals and some tumors are large (more than 2 cm) when detected at screening (101). 
These cases might be considered as failures, and show room for improvement of the 
screening programs.  
 
Despite the general success of the screening programs, there are ongoing discussions 
regarding their harms and benefits. One detriment is the recall of healthy women for 
radiological work-up, which may impact their mental well-being due to worry and anxiety. 
There are also claims that treating cancer in situ is overdiagnosis (102, 103). 



 

 27 

2.3.2 The current screening process in Sweden 
Breast cancer is more compliant to treatment when detected early and therefore many 
countries have introduced screening programs (104). Swedish population-based national 
screening programs were introduced during the 1980s, and today all women aged 40 to 74 
years are called for screening every 18 to 24 months. The attendance in the Swedish 
screening program is around 70-80% (105). The screening examination consists of two 
views, CC and MLO, of each breast, producing four images in total. In addition, nursing 
staff will ask questions regarding breast symptoms, hormonal medication and prior breast 
history.  
 
All mammograms are assessed by two independent breast radiologists. If either flags for 
potential cancer in the images, or if the patient notes that she has serious symptoms, the 
mammograms will be discussed at a special meeting called consensus discussion. During 
the consensus discussion at least two breast radiologists finally discuss whether the woman 
should be declared as healthy or recalled for further work-up (106). The work-up is 
individualized, depending on the symptom or the suspicious finding in the image. The 
mammographic examination is often extended when the woman is recalled. Usually, 
additional imaging is needed such as magnification images, tomosynthesis, ultrasound or 
even MRI examination.  
 
In Sweden the recall rate, i.e., the proportion of women who are recalled after attending 
screening, is around 2 to 3%, while the tumor detection rate worldwide and in Sweden is 
around 0.6 to 0.8 % per screening interval (107, 108). The recall rate is higher for women 
attending the first screening round. If the recall rate is too low there will be an increased 
number of false-negative women, increasing the risk of cancer cases, while if it is too high 
there will be an increased number of false positive women, unnecessarily worrying healthy 
women.  
 
Between 15% to 35% of all cancers are missed in the screening programs because the 
cancer is not visible or the radiologist was not able to perceive the cancer in the 
mammogram. A majority of these cancers are later diagnosed symptomatically as IC (109). 
IC is associated with a higher morbidity and mortality (101). 
 

 
 
Figure 6. The current screening process in Sweden 
 
Worldwide, most countries recommend biennial screening between the ages of 50 to 74. 
Some countries, including Sweden, start screening at 40 years because of the higher 
incidence of breast cancer in those countries. In some countries women of 40 to 49 years 
and over 74 years are welcome, but they do not receive an invitation letter. Different 
methods are used although mammography by far is the most common method. Breast self-
examination (BSE), DBT, ultrasound, MRI and identification of certain oncogene 
mutations are also methods used in the screening process. In some countries ultrasound is 
recommended together with mammography for women with dense breasts. MRI is not 
recommended as a primary screening modality in any country (110).  
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2.4 ARTIFICIAL INTELLIGENCE, MACHINE LEARNING AND DEEP LEARNING 
Artificial intelligence (AI) is defined as any technique that mimics human decision-making. 
Machine learning is a subset of AI that enables machines to improve with experience and 
adaptation. The term ‘machine learning’ also includes logistic regression models fitted to 
empirical data. In this thesis, for convenience, I will use the term AI to refer to the newer 
types of AI, specifically deep learning.  
 
Deep learning is a subset of machine learning techniques that has gained popularity during 
recent years. They are based on deep neural networks that allow more complex processing 
of input data. There are many different architectures of deep learning, but all are based on 
data nodes arranged in layers, going from the input data to output data and each layer can 
process data from earlier layers and affect the later layers. Each node contains a numeric 
value, and the connections between nodes are defined by mathematical formulas. When 
feeding deep learning models with large datasets, the discrepancy between the output of the 
network and the ground truth, is used to create an adjustment of the connections between 
the nodes through a method called ‘backpropagation’. Backpropagation defines how the 
network weights, or coefficients, should be adjusted, based on minimizing the overall 
classification error of the model. 
 
Training data with known outcomes is used to train the networks, validation data is used to 
adjust the training, and finally test data is used to test the network predictions. This kind of 
training is called supervised training. For the validity of the models, it is important that 
training data do not overlap with test data, neither by individual observations nor by 
including the same patients (111).  
 
Deep learning methods have dramatically improved computer-based speech recognition 
(112), visual object recognition (113), language translation and object detection (114). It is 
sometimes stated that deep neural networks might find underlying relationships in a set of 
data in a way that mimics how the human brain operates.  
 
The deep neural network in study II was developed with collaborating researchers and 
engineers from Kungliga Tekniska Högskolan (KTH). The network architecture was an 
Inception ResNet-v2 network (115). The input data were mammographic images, age at 
image acquisition, and image acquisition parameters such as exposure, tube current, breast 
thickness and compression force. The output of the network was a risk score, in which a 
higher number denoted women with a higher risk of breast cancer within five years.     
The deep neural network in study III and IV was a commercial cancer detection algorithm 
trained on 170,230 images, 36,468 diagnosed women and 133,762 healthy women. The 
mammograms were both screening and clinical mammograms and came from South Korea, 
USA and the UK. The training images were acquired on equipment from GE, Hologic and 
Siemens. The output was a generated prediction score 0-1 for malignancy in the image, 
where 1 represented the highest level of suspicion. 

2.4.1 Deep learning and tumor detection 
Over the past 20 years, Computer Aided Detection (CAD) programs have been developed 
to assist the radiologists in analyzing screening mammograms. Traditional CAD programs 
usually mark a suspicious region in the mammogram and the radiologist will assess the 
suspicious area. The technique was spread quickly and in 2008 in the USA in the Medicare 
population, 74% of all screening mammograms were assessed by CAD programs (116, 
117). However, it was never a success in Europe. There are controversial results for using 
CAD techniques. Initially, when CAD was introduced several studies indicated promising 
results with a higher sensitivity and increased cancer yield when adding CAD to the 
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analysis (118, 119). However, during the last ten years many studies indicate that the 
performance of CAD programs did not improve the performance of radiologists in the 
everyday practice in the USA (117, 120). 
 

 
 
Figure 7. CAD program marking a tumor in a mammogram (Karin Dembrower) 
 
During the last ten years, deep neural networks have been developed and in contrast to 
traditional CAD programs they do not normally involve handcrafted features (121, 122). In 
2016, an international challenge (the DREAM challenge) was organized to analyze if 
artificial algorithms could outperform radiologists’ performances. There were 126 teams 
participating in the challenge, assessing 144,231 screening mammograms. No single 
algorithm outperformed the human performance but a combination of algorithm and 
radiologist assessments improved the overall accuracy (123).  
 
In the retrospective study by Salim et al (2020), three commercial tumor detection 
algorithms performance was evaluated on a single dataset (124). The study demonstrated 
that there were large differences in performance between the three algorithms they 
evaluated. They also showed that combining the first reader with the best one of the three 
AI algorithms identified more cancer cases than combining the first and the second reader. 
Other retrospective studies have indicated that deep learning systems are better than 
experienced radiologists and fewer cancers might be missed by fatigue or subjective 
diagnosis. Some have suggested that radiologists will be totally replaced by AI, whilst 
others believe that will not happen since our breast cancer patients need complex 
assessments and interventions that can only be performed by humans (125-127).  
 
The results of the algorithmic assessments are presented in different ways such as 
continuous scales between 0 to 1, 0 to 10 or 0 to 100 where 0 demonstrates the lowest risk 
of having a tumor (128, 129). The sensitivity of different AI-algorithms differ between 
manufacturers and between datasets depending on many factors, e.g., the architecture and 
training of the algorithm as well as the size and quality of the dataset (130).  
 
At my hospital (Capio Sankt Görans Hospital in Stockholm) we are conducting a 
prospective clinical AI study (ScreenTrust CAD, NCT04778670). We use a tumor detection 
algorithm as a third independent reader for our screening assessments. My impression is 
that the CAD system is very good at finding suspicious microcalcifications but tends to flag 
too many false positive findings because it is not able to compare with prior images. I think 
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that the systems might become even better when there is an ability to compare the actual 
images with priors. In the ScreenTrust CAD study, we will primarily analyze whether the 
AI algorithm plus one radiologist is non-inferior to two radiologists. In addition, it is 
possible to explore various reader set-ups such as AI as a single, double or third reader.  

2.4.2 Deep learning as an independent reader 
It is well known that there is a huge lack of breast radiologists. It would be advantageous if 
their time could be more focused on women who are at high risk of, or already diagnosed 
with, breast cancer, and less on assessing healthy women (131).  
 
The introduction of AI in medical imaging might provide means to improve the efficacy of 
mammography screening by reducing the need of human readers. There are some studies 
indicating that AI-algorithms perform above or on par with an average radiologist (122, 
132). There are a few retrospective studies published indicating that there is a span of low-
risk mammographic examinations that could be assessed by an AI algorithm independently 
without missing any cancers and thereby save radiologist time for more important work. 
The numbers of the part of mammograms that could undergo independent reading by an 
AI-algorithm vary in different studies, by around 19% to 60% (133-135). As for 
radiologists, AI-systems can also miss cancer. One study demonstrated that three out of 
seven AI-missed cancers were small, low-grade invasive tubular breast cancers (133). Some 
studies have demonstrated that AI-systems increase the sensitivity for calcifications and 
could be more sensitive to invasive cancers (136, 137).  

2.4.3 Deep learning and breast cancer risk 
Breast cancer risk may be calculated based on many risk factors such as age, breast density, 
family history, hormone exposure and other risk factors (138). Examples of traditional 
models for assessing breast cancer risk are the Gail model and the Tyrer-Cuzick risk model. 
These models are based on questionnaires, taking into account clinical and demographic 
data and risk factors such as family history, hormone replacement therapy, parity, age at 
first birth, heredity etc (5, 6).  
 
Breast density can be assessed visually or by automated procedures. Examples of 
automated systems are LIBRA and Volpara. Density can be described in different ways, 
such as a category, percent density and dense area (139, 140). Only the latest version of the 
Tyrer-Cuzick risk model takes breast density into account (7).  
 
In addition to the above-mentioned factors, many more, mathematically defined, image 
features have shown association with breast cancer risk (141). However, these and other 
human-specified features may not be able to catch all risk-relevant information in the 
images. By using a deep neural network, more risk-relevant information might be captured.  
 
There are a few studies using deep neural networks for risk prediction. By using breast 
cancer risk models based on deep learning, it has been demonstrated that high risk women 
are more accurately selected. Risk scores based on deep neural networks have the strongest 
association with breast cancer and seem to be largely independent in relation to density 
measurements. It appears that deep neural networks might utilize more information from 
the mammograms than the density-based models (142-146).  
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3 RESEARCH AIMS 
 
The overall aim of this thesis is to analyze how deep learning can be incorporated in the 
screening process. I have analyzed how deep learning can contribute to reduce radiologist 
workload without missing cancers, to perform short-term risk stratification by analyzing 
mammograms of supposedly healthy women as well as demonstrate different methods for 
setting the operating point for AI algorithms. One prerequisite for all studies was to have a 
proper and robust dataset which was described in manuscript I. 
 
To improve our understanding of how deep learning can affect the screening process in 
different ways, the specific aims of my four studies were: 

3.1 STUDY I 
Aim: To develop a high-quality platform for training and testing of AI networks for 
screening mammograms 
 We knew that we needed a robust image dataset for analyzing AI performance. The dataset 
described in this study contains millions of mammograms from the Stockholm County 
breast centers using different mammography equipment manufacturers. Together with a 
well-established screening program with high attendance and linkage with nearly complete 
medical registers, the dataset provides an excellent platform for training and evaluating AI 
algorithms. Within this dataset we have created a smaller case-control subset for more 
efficient analyses of AI algorithms by reducing the abundant number of healthy women. 

3.2 STUDY II 
Aim: To evaluate and compare a deep learning risk score with standardized 
mammographic density for short term breast cancer risk prediction. 
Our hypothesis was that the robust deep neural networks might extract more information in 
the mammograms than the traditional density-based models were able to. Our network was 
trained on one set of the images in the dataset described in study I, and then tested on 
another set of images. The images for the study population di not overlap with the training-
set or the test-set. 

3.3 STUDY III 
Aim: To examine two roles for a commercially available AI cancer detector: as a 
single pre-reader to dismiss a proportion of normal mammograms; and as a final 
post-reader after a negative examination to identify women at highest risk of 
undetected cancer. 
Our hypothesis was that a substantial proportion of the population with the lowest AI scores 
could be safely ruled out without missing cancers that would otherwise be screen detected 
by a radiologist. We hypothesized that many women with the highest AI scores after a 
negative examination would later show up with IC cancers or next-round screen-detected 
cancer, potentially detectable by another modality such as ultrasound or MRI earlier. 

3.4 STUDY IV 
Aim: To explore two different principles for choosing a sensitivity-based AI 
abnormality threshold  
Our hypothesis was to set the abnormality threshold at a clinically meaningful and 
sustainable level by maintaining double-reading sensitivity of AI in combination with a 
radiologist rather than focusing on the independent sensitivity of AI compared to 
radiologists. We explored these two different principles for choosing the abnormality 
threshold to shed light on this issue, and to prepare for a prospective clinical study. 
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4 MATERIALS AND METHODS 
4.1 UNDERLYING STUDY POPULATION - CSAW 
The study populations for study II, III and IV were derived from the Cohort of Screen-aged 
Women, (CSAW), described in detail in study I. In short, CSAW contains all women 
invited to the national screening program within the Stockholm County area between 2008 
to 2015. The purpose of this database is training and validating AI algorithms. We have 
also created a smaller case-control data subset within CSAW to more efficiently enable 
training and validation through random-sampling, rather than complete inclusion, of a large 
number of healthy women. All women were initially identified through the Regional 
Cancer Center Stockholm-Gotland from which we received data on radiologist assessments 
and clinical cancer data. Their images were extracted from the radiology databases of 
Karolinska University Hospital and Stockholm County joint image service.  
 

 
 
Figure 8. CSAW (study I). The distribution of the study populations within CSAW in the different studies II 
to IV. 

4.2 REGISTER DATA 
Population-based registers have a very long tradition in Sweden thanks to the personal 
number system, which was introduced by the Government in 1947. The personal number is 
assigned at birth and can only be changed under very rare circumstances. For Studies I to 
IV, participants were initially identified through the following registers: 
 

• The Screening Register at the Regional Cancer Centre Stockholm- 
Gotland which contains data on attendance status, radiologist decisions and recall 
decisions. 

Then, the personal numbers received were further linked to extract cancer data to the 
following register: 
 

• The Breast Cancer Quality Register – a register that contains data on tumor receptor 
status, histological data, surgical margins, et cetera. This register in turn receives data 
from: 

o The Swedish Cancer Register which contains information about type of 
cancer, date of diagnosis, TNM stage, histological type. In 1978, 98.5% of all 
breast cancer diagnoses were reported to this register, which means there is a 
very small amount of missing data (147). 

6

.DUROLQVND�8QLYHUVLW\
+RVSLWDO

&DSLR�6DQNW�*|UDQV
+RVSLWDO

6RXWKHUQ�*HQHUDO
+RVSLWDO

6WXG\�,9�
���������

6WXG\�,,�
����������

6WXG\�,,,
���������

+RORJLF
LPDJHV

FDVH�FRQWURO
VXEVHW

3KLOLSV�
LPDJHV�



 

 33 

 
Finally, the personal numbers of all women with breast cancer were linked with: 
 

• Karolinska University Hospital PACS (radiology image database), for the images 
pertaining to the Karolinska uptake area 
 

• Stockholm county BFT (radiology service for all departments in Stockholm), for the 
images pertaining to the other breast centers of Stockholm (mainly Capio Sankt 
Görans Sjukhus and Södersjukhuset).  

4.3 DENSITY MEASUREMENTS 
The density-based measurements were calculated by the publicly available LIBRA software 
(version 1.0.4 University of Pennsylvania, Philadelphia, Pa) (148). In short, LIBRA 
provides a continuous measure of percentage density and dense area based on automated 
quantitative analysis of processed mammographic images. For study IV the density 
measurements were calculated by the software of the algorithm. The algorithm divides 
breast density into four categories 1 to 4. 

4.4 EPIDEMIOLOGICAL STUDY DESIGN 
Study I:  
This study is a descriptive study of the cohort CSAW and its features and the areas of 
interest, as it has been described above. 
 
Studies II– IV:  
Study II is a case-control study containing 278 women diagnosed with breast cancer and 
2005 randomly selected healthy controls without breast cancer through the end of follow-up 
in December 2015. All women were examined at the Karolinska University Hospital 
screening facility (on Hologic equipment). The study dataset is small since we needed a 
larger part for the prior development of the  deep learning risk prediction algorithm. 
 
Study III is a case-control study containing 547 diagnosed women and 6,817 randomly 
selected healthy controls. All women were examined at the Karolinska University Hospital 
screening facility (on Hologic equipment). This was an evaluation of an external AI 
algorithm, and therefore we could use the entire source population of women diagnosed 
with breast cancer with the main exclusion being women who did not fulfil the criteria to 
have visited two consecutive screening examinations. 
 
Study IV was a case-control study containing 1,684 diagnosed women and 5,024 healthy 
controls. In contrast to studies II and III, we focused solely on images acquired on Philips 
equipment since the prospective clinical study is only on Philips equipment. These images 
were originally extracted from Capio Sankt Görans Sjukhus and Södersjukhuset. 
 
In general, performing a case-control study is a practically efficient study design when the 
outcome is relatively rare, time to outcome is long, and the collection of exposure 
information is easy to assess. Given that around 0.6–0.8% of women receive a breast cancer 
diagnosis during a two-year period, the inclusion of  all healthy women would in most 
cases constitute an inefficient study design. The starting point of a case-control study is the 
collection of individuals who are diagnosed with the outcome of interest. Then, individuals 
without the outcome, but at risk are collected. If the individuals without the outcome are 
sampled randomly, the results should be representative of the source population. 
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4.5 STATISTICAL CALCULATIONS 
Odds ratio (Studies II-III) 
Odds Ratio (OR) is often used to describe risk measurements in medical case-control 
studies. The OR can be defined as the ratio of exposed to non-exposed individuals with the 
outcome of interest, divided by the corresponding ratio among individuals without the 
outcome. The OR demonstrates how under- or overrepresented the exposure is among those 
who obtained the outcome. 
 
Student’s t-test (Studies I–IV) 
Student’s t-test or t-test are terms for statistical hypothesis testing and a process for 
rejecting or not rejecting a specific hypothesis, usually called the null hypothesis. With this 
test you can calculate if there is likely to be a difference between two samples from a 
normally distributed population. The possible rejection can be described by the so-called p-
value. The p-value is the probability of obtaining test results at least as extreme as 
the results actually observed, under the assumption that the null hypothesis is correct (i.e., 
there is no true difference). 
 
Student’s t-test was used in Studies I–IV to compare normally distributed measures 
between groups. In Study I we compared measures between different age-groups diagnosed 
with breast cancer and in Study II we analyzed different predictors (follow-up time, age at 
mammography, dense area, percentage density) with the Student’s t-test. In Study III we 
analyzed different predictors (AI score and percent density) with Student’s t-test. In study 
IV the predictor (AI CAD score) was dichotomized to be similar to a radiologists 
dichotomized assessment - suspicious versus healthy. We tested for differences in 
subgroups for different methods of choosing the abnormal interpretation rate. 
 

 
 
Table 1. Comparing different predictors with Student’s t-test (study II). 
 
Logistic Regression (Studies II and III) 
Logistic regression models are often used when the outcome is binary, i.e. the outcome can 
have two different values such as breast cancer or healthy. This is commonly used in 
medical research where regression models examine several potential predictors for patients 
having vs not having a particular disease or condition. The result is often presented as the 
estimated OR or as the area under the receiver-operating characteristics curve (AUC) rather 
than the actual calculated model coefficients. AUC provides a measure of the overall 
accuracy of a binary classification model. 
 
Logistic regression modelling was used in Studies II and III with breast cancer or not as the 
outcome and mammographic percent density, mammographic dense area and DLrisk score 
as the predictors (Study II) and MD and AI score as the predictors (Study III). The results 
were presented as ORs with 95% confidence interval (CI) and AUCs. 
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Table 2. Deep learning risk score and mammographic measures associated with future breast cancer (study 
II). 
 
Up-sampling and bootstrapping  
We used the traditional cumulative sampling of healthy women in the study populations in 
the different studies. However, to calculate realistic performance measures in an enriched 
dataset with too many diagnosed women compared to the number of healthy women, we 
applied upsampling of healthy women. The two main approaches to resample a dataset, to 
obtain a desired proportion of observations between classes, are to delete examples from 
the over-represented class, called undersampling, or to duplicate examples from the under-
represented class, called upsampling. Random upsampling has been used for a long time, 
and has been shown to be robust (149). It is important to note that it is not appropriate to 
perform statistical tests on the, after up-sampling, artificially enlarged study population. 
Bootstrapping may be applied, which involves sampling with replacement from the 
upsampled dataset to obtain the same sample size as the original dataset, permitting 
estimation of summary statistics with confidence intervals for measures involving both 
diagnosed and healthy women – such as the abnormal interpretation rate. Without 
bootstrapping, differences could be tested on the original, smaller, study population within 
diagnosed women (e.g., for sensitivity) or within healthy women (e.g., for specificity). 

Standard Deviation 
Standard deviation (SD) describes how the measures of the amount of a set of values varies 
from the mean. A low SD indicates that the values tend to be close to the mean (could be 
called as the expected value), while a high SD indicates that the values are spread out over 
a wider range. 
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5 RESULTS 
5.1 STUDY I 
This study is a description of the study population from which the study populations in the 
three following studies (and many more) are derived. 
 
In total, 499,807 women were included in the CSAW cohort, based on 1,688,216 
invitations between 2008 and 2015. In this cohort, 8,463 women were diagnosed with their 
first incident cancer (2,119 women were excluded due to a prior history of breast cancer 
outside the screening range). The average age was 53.2 years (SD 10.1) overall, and 57.8 
(SD 9.3) for women diagnosed with breast cancer. The attendance during these years was 
70%. Most of the women had three to four screening rounds during the study period. 
In total there were 4,703 SDC and 1,938 IC. The proportion of IC was 29%. The most 
common invasive cancer was ductal (67%), and the second most common was lobular 
(11%).  
 
The total number of images in the CSAW dataset is more than 2 million, including all 
breast cancer cases, all healthy cases from the Karolinska University Hospital, and a 
random sample of healthy cases from the other breast centers in Stockholm. 
 

 
 
Table 3. Number of invited women and completed examinations within CSAW. 
 
For the separately described case-control subset, only women from the Karolinska 
University Hospital were included. All images from women diagnosed with their first 
breast cancer (n=1 303) were included as well as 10,000 randomly selected healthy 
controls. Pixel-level annotations were made by the author in 1,891 mammograms from 898 
women (Figure 9, below). 

Table 2. Mammography screening examinations.

Invitation to screening Completed examinations
n % n %

Karolinska University Hospital 278,996 17% 198,820 17%
Sankt Göran Hospital 668,366 40% 454,341 38%
Southern General Hospital 482,883 29% 340,866 29%
Danderyd Hospital 257,717 15% 188,527 16%
Other 254 <1% 179 <1%
Total 1,688,216 100% 1,182,733 100%
Note: Each screening examination contains four images, two of each breast.
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Figure 9. Example of a pixel-level annotation in a mammogram from CSAW. 

5.2 STUDY II 
The purpose of this study was to develop a deep learning risk (DLrisk) score associated 
with future breast cancer and compare it with density-based models. The deep learning 
network development was based on cases diagnosed from 2008 to 2012 and tested on cases 
between 2013 to 2014, along with healthy controls. The DLrisk score, dense area and 
percentage density were calculated for the earliest available digital mammographic 
examination for each woman. 
 
In total, 2,283 women were included in the study population of which 278 women were 
diagnosed with breast cancer. The mean follow-up time was 4.1 (SD 1.1) years for women 
who received a diagnosis of breast cancer and 3.6 (SD 2.3) years for healthy women. The 
mean age at mammography, mean dense area and the mean percentage density were higher 
among women who were later diagnosed with breast cancer (55.7 years vs 54.6 years, 38.2 
cm² vs 34.2 cm², and 25.6% vs 24%.  
 
We calculated ORs and AUCs for the associations between each predictor and breast cancer 
during the follow-up period. The standardized ORs for DLrisk score, dense area and 
percent density were 1.55 (95% CI 1.48, 1.63), 1.27 (95% CI 1.20, 1.33) and 1.13 (95% CI 
1.06, 1.19) respectively. The corresponding ORs after age-adjustment were 1.56 (95% CI 
1.48, 1.64), 1.31 (95% CI 1.24, 1.38) and 1.18 (95% CI 1.11, 1.25) respectively.  
 
In a multivariate model with DLrisk score, dense area and age as predictors, DLrisk (OR 
1.52; 95% CI 1.42, 1.59) and dense area (OR 1.15; 95% CI 1.09, 1.22) were both associated 
with the outcome. In a multivariate model with DLrisk score, percent density and age as 
predictors, only DLrisk (OR 1.55; 95% CI 1.47, 1.64) was associated with the outcome 
However we had insufficient evidence to detect an association between percent density and 
future breast cancer (OR 1.02; 95% CI 0.96, 1.08). The AUCs for the DLrisk score, age and 
dense area, age and all three measurements were 0.65 (95% CI 0.63.0.66), 0.60 (95% CI 
0.58, 0.61) and 0.66 (95% CI 0.64, 0.67). 
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False negative predictions were defined as patient cases with a DLrisk prediction score 
below the median, who nevertheless were diagnosed with breast cancer later on. The false 
negative rate for DLrisk score, age-adjusted dense area and age-adjusted percent density 
were 31% (95% CI 29%, 34%), 36% (95% CI 33%, 39%; P=0.006 compared with the 
DLrisk score) and 39% (95% CI 37%, 42%; P<0.001 compared with the DLrisk score). 
 

 
 
 

 
 
Table 4. ORs and receiver operating characteristic curves for the prediction of future breast cancer based on 
mammographic image evaluation according to three alternative predictors: a. deep learning risk score AUC 
0.65 (95% CI 0.63, 0.66) b. dense area AUC 0.58 (95% CI 0.52, 0.56) c. percentage density AUC 0.54 (95% 
CI 0.52, 0.56) 
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Table 5. Women with a prediction score below median and diagnosed with breast cancer – false negative 
predictions 
 

 
 
Figure 10. Examples of mammograms with concordance between DLrisk score and outcome of breast cancer 
(true predictions). These mammograms had low DLrisk scores and the women did not receive a diagnosis of 
breast cancer. 
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Figure 11. Examples of mammograms with concordance between DLrisk score and outcome of breast cancer 
(true predictions). These mammograms had high DLrisk scores and the women received a diagnosis of breast 
cancer. 
 

 
 
Figure 12. Examples of mammograms with discordance between DLrisk score and outcome of breast cancer 
(false predictions). These mammograms had low DLrisk scores and the women received a diagnosis of breast 
cancer. 
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Figure 13. Examples of mammograms with discordance between DLrisk score and outcome of breast cancer 
(false predictions). These mammograms had high DLrisk scores and the women did not get a diagnosis of 
breast cancer. 

5.3 STUDY III 
In this study we examined the potential change in cancer detection when using an AI 
cancer-detection software to triage (pre-read) certain screening examinations into a ‘no 
radiologist’ work stream and after regular assessment triaging mammograms with a high 
suspicion of cancer into an ‘enhanced assessment-work’ stream.  
 
All women diagnosed with breast cancer who attended two consecutive screening rounds 
were included. A total of 7,364 women were included in the study sample, of which 547 
women were diagnosed with cancer and 6,817 women were randomly selected as healthy 
controls. A total of 347 cancers were detected at screening and 200 were detected clinically 
as IC. Healthy women from the case-control source population were up-sampled to mimic a 
realistic frequency of 0.7% cancer per interval, and the simulated screening population 
contained 75,534 women.  
 
Within the no radiologist work stream, the AI score did not miss any cancer that would 
otherwise have been screen detected for 60% of the lowest AI scores. For the 70%, 80% 
and 90% lowest AI scores, there were 1, 9, and 14 cancers missed by the AI score 
respectively. 
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Table 6. Number of screen-detected cancers that would be missed in the no radiologist work stream 
depending on the proportion of the population lowest scores included. 
 
In the enhanced assessment work stream we calculated that among the top 1% of AI scores 
for women with negative mammograms after double reading, there were 24 IC and 48 next 
round SDC. The corresponding numbers for the top 5% were 53 IC and 121 next round 
SDC. The ORs for predicting IC for AI score and density was 2.01 (95%CI 1.98, 2.18); 
AUC 0.74) and 1.59 (95%CI 1.50, 1.68; AUC 0.67) respectively. The OR was markedly 
higher in the ipsilateral breast than in the contralateral breast, while the OR was similar in 
both breasts for MD. 
 

 
 
Table 7. Potential detection of IC and next round SDC in the enhanced assessment work stream depending on 
the proportion of the population highest scores included (after negative double-reading)  
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Table 8. Number of cancers potentially detected pre-emptively by the enhanced assessment work stream 
minus the screen-detected cancers missed in the no radiologist work stream. 

5.4 STUDY IV 
In this study, we analyzed two different principles as to how the abnormality threshold can 
be set when using an AI algorithm in a prospective screening setting. For the first principle, 
we aimed at setting the AI operating point at the same sensitivity as the second human 
reader. For principle two, we aimed at setting the AI operating point at the combined 
sensitivity of reader one and two. In our workgroup, less than 10% of all examinations are 
subject to consensus discussion. Therefore, setting the threshold too low in order to 
definitively include all breast cancer cases would create an impossible workload; a more 
realistic aim is to set the threshold in relation to the sensitivity or specificity of the 
radiologists of today. 
 
In this study, we aimed to maintain sensitivity when replacing a radiologist with AI, which 
we thought would serve to maintain the public trust in screening better than focusing on 
specificity. We included all women receiving a diagnosis of breast cancer at screening or 
within 23 months of screening and a random selection of healthy women. In total, there 
were 1,684 women diagnosed with breast cancer and 5,024 healthy women. To mimic the 
proportion of cancer (0.7%) in a true screening population, we upsampled (duplicated) the 
observations of healthy women, and the total number of the study population became 
235,428. 
 
The overall sensitivity for reader 1, 2 and 1+2 was 69.7%, 75.7% and 78.6% respectively. 
The proportion of abnormal assessments for reader 1, 2 and 1+2 were 4.4%, 4.6% and 6.1% 
respectively. AI alone had a sensitivity of 75.6% by principle 1 and 65.9% by principle 2. 
Reader 1 and AI together had a sensitivity of 82.4% and a proportion of abnormal 
assessment of 12.6% by principle 1. AI and reader 1 together with the combined sensitivity 
of reader 1 and 2 had a sensitivity of 78.6% and a proportion of abnormal assessment of 
7.0% by principle 2. 
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 Figure 14. This figure illustrates the percent of women with cancer that are flagged as suspicious by each 
reader. The vertical offset between the light blue and dark blue bars illustrates the discordant assessments 
were only one of the readers correctly flagged the case as suspicious. We show the observed measures for two 
radiologists and the estimated measures for AI and one radiologist, where the operating point was chosen  
based on standalone-reader matching (Alternative 1) and on combined-reader matching (Alternative 2). 
 

 
Table 9. Operating characteristics in double reading (sensitivity) 

The highest increase in sensitivity was for women with dense breast, category 4. The 
sensitivity increased from 55.4% to 64.5% for the standalone-reader matching. 
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Table 3. Operating Characteristics in Double-Reading

Reader 1 + Reader 2 Reader 1 + AI@Thr1 Reader 1 + AI@Thr2

% (95% CI) % (95% CI) p- value* % (95% CI) p- value* p -value**

Specificity (%) 94.4 (93.8 to 95.1) 87.9 (87.0  to 88.8) p < 0.001 93.5 (92.8 to 94.2) p = 0.049 p  < 0.001

AIR* (%) 6.06 (5.49 to 6.63) 12.6 (11.8 to 13.4) p < 0.001 6.99 (6.38 to 7.59) p < 0.001 p < 0.001

Sensitivity (%) 78.6 (76.6 to 80.5) 82.4 (80.6 to 84.2) p = 0.005 78.6 (76.6 to 80.5) p = 1.0 p  = 0.005

Density Category 1 84.0 (77.5 to 90.6) 89.9 (84.5 to 95.3) p = 0.178 86.6 (80.4 to 92.7) p = 0.583 p  = 0.421

Density Category 2 90.1 (87.3 to 92.9) 90.6 (87.8 to 93.3) p = 0.170 87.2 (84.1 to 90.3) p = 0.170 p  = 0.110

Density Category 3 76.5 (73.8 to 79.2) 80.8 (78.3 to 83.3) p = 0.022 77.6 (74.9 to 80.2) p = 0.586 p  = 0.080

Density Category 4 55.4 (47.9 to 63.0) 64.5 (57.2 to 71.7) p = 0.093 55.4 (47.9 to 63.0) p = 1.0 p  = 0.093

AI@Thr 1= Threshold set to achieve same sensitivity of AI as replaced Reader 2

AI@Thr 2= Threshold set to achieve same sensitivity of Reader 1 + AI as Reader 1 + Reader 2

*) p-value for the comparison with Reader 1 + Reader 2

**) p-value for the comparison with Reader 1 + AI@Thr1
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6 DISCUSSION 
6.1 STUDY I 
We observed that older age was a risk factor for diagnosis of breast cancer compared to 
healthy controls, which is in line with prior studies (150). We also found that nearly 30% of 
all breast cancers were clinically detected in the interval between two screenings, which is 
also in line with previous studies (101). We can be confident that the diagnoses are correct, 
as 99% of the breast cancers were biopsy-verified and underreporting to the cancer registry 
is very low (1.1% to 1.6%) (151). Several research areas can be addressed using this 
dataset, with some of those being tackled at present listed below:  
 

• Developing risk prediction networks (study II) 
• Developing tumor detection networks (ongoing prospective study, ScreenTrust MRI, 

Karolinska University Hospital) 
• Developing sensitivity assessment networks 
• Evaluating and validating third-party networks (implemented) 
• Interactive education and continuous training (implemented in a wide context among 

residents nationwide in Sweden) In November 2020 we held a course for residents in 
Stockholm. The participants used I-pads showing selected cases from CSAW to learn 
about breast pathology. The teaching was more compressed than going through a 
screening population with mainly healthy women. The course was well-received, and 
the participants were very happy to be able to identfy different tumors after short 
training. 

 
The strengths of the CSAW dataset are that all women within a specific geographic uptake 
area are included, without exclusions, a large number of diagnosed women, clinical data 
and image acquisition parameters are available, as well as the free-hand pixel-level 
annotation dataset, which can make precise comparisons by location. Other available 
mammography datasets are available but they are a lot smaller than CSAW, with content in 
the range of hundreds or thousands of images and small numbers of cases. CSAW contains 
millions of images and thousands of cases making it very robust (152).  
 
A possible limitation of the dataset is that for a task that requires a huge amount of training 
data it might be too small. However, Study II demonstrated that from a small amount of 
data from CSAW we were able to develop an algorithm that performed better than breast 
density measurements for breast cancer risk prediction. 

6.2 STUDY II 
It is of great importance to be able to stratify at what risk a woman is for developing breast 
cancer and for determining whether she would benefit from enhanced screening. Previous 
models have taken important factors such as age, parity and heredity into account. When 
MD was considered, these risk models improved markedly.  
 
In this study, we found that the DLrisk score could more accurately help to predict which 
women were at risk for future breast cancer compared to age-adjusted dense area (OR 1.56, 
AUC 0.65 and OR 1.31, AUC 0.60 respectively). The DLrisk score was an independent 
predictor for breast cancer in relation to density predictions and this is in line with previous 
deep learning studies regarding risk assessments for breast cancer (142, 144). The AUC of 
0.65 implies that there is a 65% probability that the DLrisk score assigns a higher risk score 
to a woman who will get a diagnosis of breast cancer than a women who will remain 
healthy. This is better than the density measurement, AUC 0.60, but far from ideal. The 
breast cancer risk assessment study by Yala et al indicated an AUC of 0.70 for their hybrid 
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DL score (142). It is likely that AUCs for deep learning models have a great potential to 
improve, although it is not realistic that they might attain a perfect score of 1.0. 
 
The fact that the correlation between DLrisk score and density-based measurements was 
quite weak shows that the DLrisk score is not a density estimator, and thus it can extract 
more type of information than just density from the images. Other studies imply that image-
based models are superior to the traditional Tyrer-Cuzick model (142), (153). Why do the 
DL models perform better than the density-based models? Visually assessed MD is limited 
by inter-reader variability. Quantitative density, using a single density-measurement, is 
unlikely to capture all relevant risk information from an image that is useful for predicting 
breast cancer. It is likely that the AI algorithm and MD might capture complementary 
information and more precise delineate women at higher risk of developing breast cancer.  
The false negative rate was lower for the DLrisk score than for age-adjusted dense area 
overall, and especially for more density measurements regarding more aggressive cancers, 
for example lymph node positive disease (31% and 42% respectively). For these women it 
is important to improve early detection, i.e., before the breast cancer has spread to lymph 
nodes, to improve the prognosis of the disease. This reasoning is in line with a previous 
study by Ding et al analyzing density and future breast cancer types, which indicated that 
the association between the two parameters was stronger for less aggressive subtypes than 
those that were more aggressive (154).  
 
It is important to consider where to set the cutoff to define false versus true predictions. In 
our study we chose the median as the threshold. A prospective study must take many 
parameters into account when deciding the cutoff point, for example the ability to further 
examine positive women, cost/benefit ratio, the disadvantages of causing healthy women 
mental anxiety during screening, and so on. 
 
This study is based on a screening population that did not have any cases of breast cancer 
excluded, which is quite rare and contributes to the strength of the study. Thanks to the 
Swedish personal number system, the cancer registers are almost complete (97.7% for non-
myeloma and non-leukemia cancers) (147). We used a temporal approach for validation of 
this model that might not always be an advantageous method and could make 
generalization to other settings and manufacturers difficult. We excluded mammograms 
within 12 months of diagnosis, and this meant that the algorithm could have been 
influenced by subtle tumor signs that it was able to catch more than 12 months before 
diagnosis. Another limitation is that our dataset, especially for training, could have some 
variety in the numbers and types of tumors, which might not be generalizable to other 
settings. 

6.3 STUDY III 
We demonstrated that a commercial AI breast cancer detection algorithm could be used 
both as a single reader to assess easily read mammograms without any radiologist 
involvement, and to select women for enhanced screening after negative double-reading by 
radiologists. We demonstrated that the AI breast cancer detection algorithm would not miss 
any screen-detected breast cancer among women with the lowest 60% scores. This is 
remarkable, as other studies have observed more modest results with a 19% cancer-free 
detection rate (135). If the algorithm were to solely assess 90% of all low score 
mammograms, we would miss only 4% of cancers that would otherwise be screen-detected; 
this is a relatively small number compared to all IC (28%) for all women invited to 
screening in a biennial basis (101). Given the lack of breast cancer radiologists, it would be 
most valuable to use their competence for women at a higher risk of developing breast 
cancer than examining healthy women. By using the AI algorithm to assess mainly healthy 
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women, we believe that we can reduce the workload substantially for radiologists without 
missing too many cancers. The AI algorithm has a great potential as an independent rule-
out reader. 
 
We also demonstrated that within the enhanced assessment work stream, the AI breast 
cancer algorithm could find a potential additional cancer detection rate of 71 cancers per 
1000 examinations among women with the 2% highest AI scores. This is a remarkable 
performance of the AI algorithm, and it is important to point out that the algorithm has not 
been trained on any image from our institution. If we implement the enhanced assessment 
work stream we could promote earlier detection of screen-detected cancers and thus, a 
reduction of IC at the first screening as well as a reduction of SDC during the first round. 
Going forward – a shift towards smaller SDC would be expected. 
 
Women are generally positive towards using computer programs to assess mammograms 
and to triage for MRI screening (155). However, in this context we think that those women 
ending up with a clinically detected cancer (IC) form an important target group for a 
discussion between policy makers and politicians when it comes to changing screening 
programs. In the USA, many states have decided that women should be informed whether 
they have an increased breast density and thus a high risk factor for IC (156, 157). These 
women can then discuss with their health-care provider whether supplemental screening is 
necessary to get a reliable answer from the screening examination (158). If we examined 
20% of all women with the highest AI scores and placed them in an enhanced screening 
program, the additional IC detection rate would be as high as 6.2 per 1000 examinations. 
This would be an enviable performance and superior to another American study by 
Kerlikovske et al, which demonstrated an additional IC detection rate of 1.4 per 1000 
woman when combining breast density with a traditional breast cancer risk model (46). 
However, that study differed from ours in two ways: breast cancer screening is mostly 
annual in the USA and IC rate is “as low as” 13% according to the BCSC (159). 
 
When trying to determine how the AI functions so well, we speculate that the AI algorithm 
finds subtle tumor signs in the image that our eyes are not able to capture due to density 
masking any tumor signs present. Upon AI assessment, the image is marked at the location 
of the suspicious area and enables targeted ultrasound for women at high risk. MRI has the 
highest sensitivity for finding malignant lesions in the breast, but it is time- and cost 
consuming, and a targeted ultrasound examination is a good, safe and cheap alternative for 
a screening population. 
 
In July 2021, and article in the British Medical Journal discussed the use of AI for image 
analysis in breast cancer. This was a systematic review of 12 studies published between 
2010 and 2021, and included our Study III as one of the twelve. The authors claimed that 
almost all studies were connected  to a lot of biases, it was not yet clear whether the use of 
AI in screening programs is beneficial, and that prospective studies are needed to further 
investigate this area. Certainly more prospective studies are needed, but I don´t agree with 
the discussion concerning bias. The authors noted a bia when choosing randomly selected 
controls, but in my point of view the random selection process removes bias. Some studies 
described screening processes under ‘laboratory conditions’ and this might be associated 
with bias. They also wrote that the applicability to European or UK breast cancer programs 
is low, meaning that the lack of a British study population made the studies not applicable 
to UK. However, in our study we used a true population-based screening cohort. Finally, 
the 12 studies under review were different in many ways, making comparison between 
them difficult (130). 
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The AI algorithm used in this study has never been exposed to images from our department, 
and is commercially available which is very advantageous. A weakness is that we had to 
use a case-controlled study design to improve computing efficiency. Another limitation is 
that women needed to have a prior mammogram not more than 30 months before diagnosis 
to be included, which affected the proportion of IC from 20% to 37%. We were not 
informed about the location of the tumor, and we could not confirm the tumor location via 
the AI algorithm findings. In addition, all women were from Sweden and the results might 
differ in another population.   

6.4 STUDY IV 
We found that when setting the abnormality threshold for AI to match the radiologist 
sensitivity, the abnormal assessment rate was almost twice as high compared to matching 
the combined readers sensitivity. This is important to keep in mind in the light of a severe 
lack of breast radiologists and a tradition of very low recall rates in Sweden. One 
explanation for the increased number of abnormal assessments when replacing one of the 
two double-reading radiologists with AI is that AI does not compare current images with 
prior images, which is central for radiologists. In prior retrospective studies, the method of 
choosing the AI abnormality threshold has been either to match the AI threshold to 
sensitivity, or specificity of human readers (123, 130, 146, 160-162). The abnormal 
assessment rate was 6.1% in our simulated screening study and that is in line with the 
Swedish breast cancer environment where the abnormal interpretation rates vary between 
5% to 7% (105). It is not possible or correct to have a twice as high abnormal interpretation 
rate, which would be the case if the sensitivity was supposed to match that of the 
radiologist. Our study has taken a completely new approach by matching the combined 
sensitivity of AI and reader 1 to the combined sensitivity of reader 1 and 2.  
 
Our group has published a study analyzing the performance of algorithms in another dataset 
(160). The double reader sensitivity in that study was 85.0% compared to 78.6% in our 
study. Differences between these studies are that the follow up period was 23 months in our 
study, compared to 12 months in the other, the mammograms were made only using Philips 
equipment in our study while the other used Hologic equipment, and the images originated 
from different breast centers in Stockholm in our study and only from one breast center in 
the other study. When matching the threshold on radiologists’ sensitivity in our study, the 
overall sensitivity resulted in 82.4% compared to an overall sensitivity of 88.6% in the 
other study. 
 
Why does the result differ? One reason could be that the AI algorithm in our study is 
mainly trained on GE and Hologic images and only a small set of Philips images. This 
could imply that the AI algorithm is better adapted to interpret Hologic. The highest 
increase in sensitivity was for women with most dense breasts (category 4), (increase from 
55.4% to 64.5%) when choosing the standalone reader approach. This means that for 
women with dense breasts it is favourable to choose the standalone reader approach rather 
than the combined-reader approach.   
 
This study is based on a large true screening population with a high attendance rate, and all 
women between 40 to 74 years were invited without exclusions. The screening registers 
and breast cancer registers are almost complete. A limitation is that images are derived only 
from one manufacturer, Philips, and the algorithm is trained mainly on mammograms from 
GE and Hologic. The study population was upsampled for healthy women because the 
retrospective study population was enriched. All radiologists were from Sweden, whith a 
tradition of very low recall rates. 
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7 CONCLUSIONS 
 
AI holds great promise to improve breast cancer screening. This thesis shows the great 
potential of AI for both risk assessment and tumor detection. During the last few years, 
several retrospective studies have been published indicating that AI can perform on par 
with or even above radiologist performance. However, the settings are artificial, not least 
because all women recalled historically were recalled by the human radiologist. Also, to 
what extent radiologists may appreciate the findings of AI cannot be accurately studied 
retrospectively. Therefore, how the recall decisions of AI would have played out cannot be 
known with certainty. For this and other reasons, prospective studies using AI in large 
screening cohorts are needed. Prospective studies will tell us how well AI works in real 
clinical settings with no exclusions and in a ‘non-laboratory’ environment.  
 
When it comes to understanding how well AI may perform, in Study II, we showed that AI 
was better than density as a risk predictor and in Studies III and IV, that AI performed well 
in detecting existing cancer in the images. However, it is not easy to shed light on which 
information in the images is most important or to obtain some sort of reasoning around how 
AI came to its conclusion. AI algorithms are to a large extent black boxes. Even though 
some techniques, such as saliency maps, can be used to visualize where in the image 
information is most important, this is not enough to create a human understanding of what 
AI is doing. Perhaps other techniques will become available, or we might have to accept 
that AI are largely black boxes – then we must make sure that those black boxes are 
accurate and robust in retrospective and prospective studies alike, and that we understand 
the limitations of their use. We are only in the infancy of development of AI for breast 
imaging. 
 

  



 

50 

8 ETHICAL CONSIDERATIONS 
 
The ethical Review Board (ERB) waived the requirement for informed consent for our 
studies. As a researcher, it is important to fully protect study participants against the risk of 
physical injury and violation of integrity, as well as examining women using the right 
modality in the best possible work stream as early as possible when there might be a 
suspicion of breast cancer. This reasoning is derived from the utilitarianism, a version of 
consequentialism, which means that the consequences of any action are the only standards 
of right and wrong. Women might say, “Look at this – the AI algorithm assessed my 
images as high-risk images, and I got the diagnosis of breast cancer. Why don´t you use this 
in the everyday work?” or “The DLrisk score assessed my images as having high risk of 
developing cancer – what do I do now? Can I get an MRI examination?” Due to the 
retrospective nature of the current studies, these questions did not arise. However, for 
prospective studies, they may very well arise and they are not easy to address. One 
possibility is to consider the AI as a medical device for which the manufacturer is 
responsible given that the clinicians have used the device in accordance with the approved 
use cases.  
 
Colleagues and patients are interested in these questions quite often and I currently have not 
reached a conclusion. I think that AI mistakes may be comparable to false positive and 
negative screening decisions made by radiologists, which to some extent is unavoidable 
given the very subtle image findings in some cases. However, it should not be taken for 
granted that the public perceives mistakes made by AI compared to mistakes made by 
humans in the same way. 
 
Another ethical consideration is that even if in theory, AI algorithms may be deployed 
across geographies and even out differences in diagnostic quality, it all depends on cost. If 
the AI companies price their algorithms too high, this evening out of inequalities will not 
happen, and the inequality may become even more pronounced between AI-equipped well-
staffed departments and AI-lacking short-staffed departments.   
 
Finally, another consideration is the desire of management to decrease cost. Is it a good use 
of AI to replace radiologists without re-deploying the radiologists to further improve 
diagnostic work-up or screening of more difficult cases requiring their expertise? I hope 
that we focus on using AI to improve the health and well-being of our patients instead of 
using it as a mere cost-cutting method.  
 
It is crucial that algorithms demonstrate both accuracy and robustness and are also 
evaluated according to ethical, legal, and social criteria. Excitement about deep learning 
algorithms could encourage a rush to implementation and to counteract that I think 
scientists and radiologists need to make policy-makers and the public aware of the need for 
controlled studies and continued surveillance of AI algorithms.  
 
Ethical approval for the studies was granted by the ERB in Stockholm with diarienummer 
(dnr) : 2016/2600-31. 
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9 POINTS OF PERSPECTIVE 
 
There is a need to improve the breast cancer screening process to detect breast cancer 
earlier and to reduce mortality and morbidity among breast cancer patients. Until now the 
breast cancer screening process has been the same for all women in a screening population, 
despite more and more studies, of AI and of density, showing that it is possible to risk-
stratify women for different screening regiments, using varying time intervals between 
screening rounds and with varying modalities. Mammography is a robust and proven 
modality for breast cancer screening, especially for women with less dense breasts, but 
there are other modalities that are more sensitive and that might suit some women better. 
The challenge is to identify which women need this kind of enhanced screening and for 
which women screening with only mammography is sufficient. Also, the time intervals 
between screening appointments might be reconsidered. To reduce the proportion of IC 
some women would benefit from more frequent screening. The further development of 
mammography with tomosynthesis and contrast-enhanced mammography as well as shorter 
MRI protocols (163) might make the incorporation of individualized screening easier to 
handle. 
 
There are many research groups worldwide studying risk-stratified breast cancer screening 
in different models with incorporated AI techniques. Many promising studies have been 
performed in retrospective datasets, but due to inherent biases in retrospective studies, such 
as exclusion of study participants, random up-sampling of healthy controls, there is a need 
for prospective clinical studies before wider clinical implementation.   
 
The development towards individual screening has started, and I firmly believe that AI will 
be an important contribution to identify women at different risks for developing breast 
cancer as well as to improve the efficacy for radiologists and to make the screening process 
more sophisticated. 
 
I am also convinced that the algorithms will improve even more and be able to make even 
more precise assessments, as well as having the ability to compare actual images with 
priors and thus reduce the proportion of false positives which is a challenge today. There 
might be algorithms trained to detect more aggressive breast cancers, indolent breast 
cancers as well as benign lesions. 
 
Further studies are needed to demonstrate whether AI is a robust and reliable tool that will 
work alongside physicians. It is also important to define a legal-ethical framework to make 
patients, physicians and researchers as comfortable as possible when using AI in the daily 
practice. We need to clarify who is responsible if AI fails in different situations and how the 
AI providers are responsible visavi the users of the AI systems. 
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SAMMANFATTNING PÅ SVENSKA (SWEDISH ABSTRACT) 
 
Bröstcancer är den vanligaste cancerformen bland kvinnor och incidensen ökar. När 
populationsbaserad screeningmammografi introducerades på 1980- och 1990-talen i 
Sverige sjönk mortaliteten med upp till 30-40%.  
 
Idag inbjuds alla kvinnor mellan 40-74 års ålder till screeningundersökning vartannat år (i 
vissa regioner varje 18 månader). Vid mammografiundersökningen tar man i regel två 
bilder på varje bröst i två olika projektioner, mediolateral oblique projektion och 
kraniokaudal projektion. Screeningprocessen är lika för alla kvinnor i Sverige. 
 
Även om det var framgångsrikt att införa nationell bröstcancerscreening så kvarstår ändå 
utmaningar, till exempel förekomsten av en stor andel intervallcancrar och stora 
screeningupptäckta cancrar som är kopplade till en ökad mortalitet och morbiditet.  
Idag är den svenska screeningmodellen endast baserad på ålder och inte på andra 
riskfaktorer. Den enda modaliteten som används är mammografi. Det finns ett behov att 
förändra den svenska screeningprocessen för att ytterligare minska mortalitet och 
morbiditet i bröstcancer. Det är viktigt att en kvinnas bröstcancer upptäcks tidigt när den är 
liten och inte har spridit sig till lymfkörtlar för att ha den bästa prognosen. För att uppnå det 
så tror jag att screeningprocessen behöver individualiseras och bli mer flexibel avseende 
längden på screeningintervall och avseende vilka modaliteter som är lämpligast beroende 
på den individuella risken att utveckla bröstcancer och den mammografiska sensitiviteten. 
 
Ett annat dilemma är den stora bristen på bröstradiologer i Sverige och vikten av att 
använda deras kompetens så effektivt som möjligt. Mest prioriterat torde bröstradiologers 
kompetens utnyttjas för svårbedömda fall och inte för friska kvinnor. 
 
Hur ser lösningarna ut på dessa frågor? En utmaning är att kartlägga vilka kvinnor som har 
hög risk att utveckla bröstcancer. Det är också viktigt att identifiera de 
mammografiundersökningar som har hög respektive låg känslighet för att uppvisa 
tumörtecken. I studie II till IV har vi analyserat hur man med hjälp av deep learning skulle 
kunna adressera dessa utmaningar. 
 
I studie I beskrevs kohorten CSAW. Ur denna kohort kommer studiepopulationerna för 
studie II till IV (även studiepopulationer från andra publikationer från vår forskargrupp). I 
CSAW ingår alla kvinnor som inbjudits till screeningundersökninng mellan 2008 och 2015 
inom Region Stockholm. Vi beskrev kohorten och hur den har använts. Vi beskrev också 
framtida möjligheter att använda kohorten samt den separata fall-kontroll databasen med 
annoterade tumörer och friska kontroller. Denna studie presenterades vid RSNA 2019. 
 
I studie II jämförde vi en AI algoritm, DLrisk med brösttäthet avseende risken att drabbas 
av framtida bröstcancer. Vi kom fram till att odds OR och AUC var högre för åldersjusterad 
DLrisk än för dense area och percentage density: 1.56; AUC, 0.65, 1.31; AUC, 0.60, och 
1.18  AUC, 0.57 (P < .001 for AUCs). Andelen falskt negativa var även lägre för DLrisk än 
för dense area och percentage density; 31%, 36% och 39%. Skillnaden var störst för mer 
aggressiva cancrar. 
 
I studie III analyserade vi mammografibilderna i två olika arbetsflöden. En AI algoritm 
bedömde förekomsten av tumörtecken i mammografibilderna. Varje 
mammografiundersökning fick en poäng mellan 0 till 1 där 1 representerade högst 
sannolikhet för tumörtecken i bilden. I det ena arbetsflödet bedömdes mammografibilderna 
av endast en AI-algoritm och ingen radiolog. I detta arbetsflöde kunde AI-algoritmen 
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bedöma 60% av mammografibilderna korrekt utan att missa någon cancer. I det andra 
arbetsflödet undersöktes kvinnorna med en negativ screening och de 1% respektive 5% 
högsta poängen avseende risk för tumörtecken i bilden med “en perfekt radiologisk 
undersökning”. I detta flöde kunde man hitta 24 (12%) respektive 53 (27%) intervallcancrar 
(av 200 senare diagnosticerade intervallcancrar) och 48 (14%) respektive 121 (35%) av 347 
senare diagnosticerade screeningupptäckta cancrar. 
 
I studie IV analyserade vi retrospektivt hur man kan välja abnormalitetspoäng i en miljö 
där en AI algoritm ska agera som oberoende tredje granskare av screeningmammografier i 
en klinisk prospektiv studie enligt två alternativ. Vi kom fram till att om man vill att en AI 
algoritm ska ha samma sensitivitet som en annan granskare så får man acceptera att en stor 
mängd undersökningar kommer att läggas för konsensusdiskussion (alternativ 1). Om man 
vill att AI-algoritmen ska ha samma sensitivitet som den samlade sensitiviteten av två 
radiologer (alternativ 2) men ändå hitta lika mycket cancer som vid dubbelgranskning så får 
man acceptera en lägre sensitivitet av AI algoritmen vilket innebär att en mindre mängd fall 
läggs till konsensusdiskussion jämfört med alternativ 1. Sensitiviteten för radiolog 1, 2 och 
1+2 var 69,66%, 75,69% respektive 78,56%. Andelen fall som lades till diskussion för 
radiolog 1, 2 och 1+2 var 4,45%, 4,56% respektive 6,06%. Granskare 1 och AI hade 
tillsammans en sensitivitet på 82,42% och lade 12,63% av fallen till diskussion enligt 
alternativ 1. AI tillsammans med den sammanlagda sensitiviteten av granskare 1 och 2 hade 
en sensitivitet på 78,56% och lade 6,99% av fallen till diskussion enligt alternativ 2. Denna 
studie presenterades som poster vid the annual meeting of the Radiological Society of 
North America 2021. 
 
Sammantaget har vi försökt att adressera en del av utmaningarna med en reformerad, 
individualiserad screeningprocess med deep learning. 
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