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POPULÄRVETENSKAPLIG SAMMANFATTNING  
 
Smärta är en subjektiv upplevelse som i grunden är adaptiv då den varnar oss om faror i vår omgivning. 
Hur hjärnan bearbetar signaler som sedan upplevs som smärta är förnärvarande inte helt kända. Vi har 
kunskap om vilka områden i hjärnan som är involverade, men inte hur deras interaktion ger upphov till 
smärta. För att öka vår förståelse för de mekanismer som ligger till grund för smärta är det relevant att 
förstå vad som bidrar till att den varierar – exempelvis kan människor skilja sig åt i hur de upplever 
smärta. En sådan källa till variation är vårt genetiska bidrag till hjärnfunktion. Det här kan studeras 
genom en klassisk tvillingdesign som låter oss undersöka hur mycket av variationen i hjärnaktivitet som 
kan förklaras av genetik. En annan källa till variation är de fluktuationer som sker under en 
smärtupplevelse – alltså hur hjärnaktivitet varierar över tid. Målet med det här projektet var att 
undersöka ärftlighet i neurala processer vid förväntningar och bearbetning av smärtsamma stimuli, samt 
att förstå hur nätverk i hjärnan interagerar över tid under en smärtupplevelse.    
 
Resultaten visade på ärftlighet i centrala områden i smärtbearbetning och även i konnektivitetsmönster, 
som tyder på ärftlighet i integrering över multipla nätverk. Heritabilitet påvisades även under 
rädsloinlärning – det vill säga på hjärnaktivitet som föregår smärta - i områden som anses vara centrala 
både för rädsla och smärta, inklusive områden i hjärnans smärtreglerande system. Vidare visar resultaten 
hur nätverk integrerar sinsemellan över tid vid experimentell smärta. Resultaten visar även att det är 
viktigt att följa hjärnaktivitet med hög temporal upplösning. De här resultaten kan komma att användas 
för att utveckla biomarkörer samt för att förstå varför vissa har större risk att utveckla långvarig smärta.   
      
 
  



 

  

ABSTRACT 
 
Pain is an alarm system – warning us of dangers in the environment – yet becomes problematic when it 
transitions into chronic pain. It is defined, according to the International Association of Pain as “An 
unpleasant sensory and emotional experience associated with, or resembling that associated with, actual 
or potential tissue damage”. In advancing our knowledge of the underlying mechanisms of acute pain, 
it is relevant to understand sources of variability in pain perception. One such source is the genetic 
influence on brain function. This can be studied using a classic twin design to infer the proportion of 
variance in brain activation attributed to genetics. Another source of variation pertains to the temporal 
fluctuations in brain activity that could track pain processing. This was studied here using time-varying 
functional connectivity. Furthermore, since pain arises through large-scale interactions in the brain – the 
purpose here is to study pain and related processes through network neuroscience. Specifically, how 
functionally specialized – or segregated – neural structures of the brain integrate to shape pain.   
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1. INTRODUCTION 
  
Pain is a phenomenal experience that occurs against a backdrop of a complex cognitive, social, sensory, 
and emotional landscape. The neuroimaging community is well underway in understanding the 
principles by which the brain processes information about the world – including the body – and what 
might have gone astray when pain simply won’t go away. This thesis attempts to increase our 
understanding of how distinct specialized brain regions integrate to give rise to pain. Therefore, the 
terms integration and segregation (abbreviated as I/S) will be repeated throughout the thesis to stress the 
fundamental organizational nature of the brain in generating complex experiences such as pain. This 
thesis begins with the definition of pain and related notions. It then introduces the neuroimaging 
technique that underlies the thesis and how to measure integration in the brain through functional 
connectivity (FC). After introducing fundamental concepts, the thesis describes advances in pain 
neuroimaging in terms of brain networks before considering fluctuations in FC. Then follows a 
description of the derivation of genetic influences on brain activation and FC.  
 

2. LITERATURE REVIEW 
 

2.1 What is pain? 
  
Pain is defined by the International Association for the Study of Pain (IASP) as: “An unpleasant sensory 
and emotional experience associated with, or resembling that associated with, actual or potential tissue 
damage.” The definition emphasizes the inherent subjectivity of pain by using the term experience. 
There is also a multidimensional aspect to pain as it is part sensory and part emotional. This 
multidimensionality means that pain informs the brain on a large scale.  
 
Acute pain is adaptive (for instance, it allows us to protect the integrity of our bodies) yet has adverse 
effects when it becomes persistent. Someone can be said to have chronic pain if it is present over 50% 
of the time over six months or when it persists for three months. There is evidence that neural pain 
processing differs between acute and chronic pain (1). Pain can be studied by experimentally inducing 
pain or tracking spontaneous pain in the case of chronic pain. Though the neuroimaging field may one 
day be able to say objectively whether one is in pain or not – currently, the assessment of the intensity 
of the experienced pain is given by subjective ratings. Here, Studies I-II and IV included experimental 
pain in healthy participants. The participants in Study III had been surgically operated on for disc 
herniation on average 14 years ago, and some reported lingering pain. 
 
Finally, pain is distinct from nociception, which according to IASP, is defined as the neural encoding of 
noxious stimuli. This may involve autonomic processes or behavioral expressions but does not imply a 
subjective perception of pain. Study I investigated nociception since no subjective reports of pain were 
collected, while Study II examined subjective pain. Study III used a task-free design (described below), 
while Study IV investigated anticipatory effects in a fear conditioning paradigm.  
 

2.2. An overview of neuroimaging 
 
Investigations of the neural processes underlying pain involve many methods that provide different 
perspectives on the brain. This thesis used functional Magnetic Resonance Imaging (fMRI) to derive 
brain signals related to neuronal activity. This section begins with a description of the signals derived 
with fMRI and the methods for studying the brain's functional organization. Then follows a description 
of some of the discoveries that have been made in cognitive neuroscience.     
 
2.2.1. fMRI 
 
Brain function can be studied by way of blood-oxygen-level-dependent (BOLD) signals using fMRI (2, 
3) (Figure 1). The term brain activation refers to locations representing increased/decreased neural 
activation. In network neuroscience, one can relate BOLD signals from distinct brain regions to build a 
network of pairwise associations reflecting the degree of integration in the brain. This latter approach 
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aims to understand the brain's functional organization that generate cognition, emotion, perception, and 
action.  
 
The BOLD signal has advantages and disadvantages. It is an indirect measure of neuronal activity based 
on the relative difference in oxygenated and deoxygenated hemoglobin between active and inactive 
neurons and their difference in magnetic susceptibility. While neurons signal within milliseconds, the 
cerebral blood flow, or the hemodynamic response, is sluggish, with a peak after a few seconds 
following the activation of neurons. The relation between neuronal activity and hemodynamic activity 
is well-established (4). Thus, the difference between two conditions can be interpreted as a difference 
in neuronal activity (5). fMRI is slow compared to other techniques for measuring brain function. Other 
techniques that rely on electromagnetic properties of the brain, such as electroencephalography and 
magnetoencephalography, are faster and more direct measures of neural activity, sensitive to 
fluctuations on the order of milliseconds. On the other hand, fMRI is a whole-brain method that can 
capture signals at a higher spatial resolution. However, the sluggishness of the BOLD signal imposes a 
limit on the temporal resolution of fMRI. Despite these limits, fMRI has significantly advanced our 
understanding of the brain (5).  
 
2.2.2. FC: measuring functional integration  
 
The BOLD signal tells us about relative increases and decreases in activation across the brain during an 
fMRI session. FC refers to the pairwise interrelations between these time series, allowing for 
investigating the degree of integration between spatially remote brain regions (6). Brain regions can be 
defined in several ways; as individual voxels, by grey matter boundaries, or through resting-state FC 
profiles (7-9) (Figure 1). The definitions used in this thesis are described under Methodological 
Considerations.  
 
BOLD signals extracted from brain regions can be used to form relational structures or networks that 
can be investigated with methods from network science (Figure 1) (10). Two signals are related by some 
function that captures their similarity or distance, with the most common similarity measure being the 
Pearson correlation, although there are several other measures (11). FC does not imply that the brain 
regions have direct structural connectivity. Instead, it can be seen as a way to assess the degree of 
correlation between two brain regions, ultimately interpreted as neural communication (12) or as 
functional integration (6). 
 
The network of interconnectivity among regions across the brain is often called the functional 
connectome – the functional network architecture underpinning cognition, perception, emotion, and 
action (13). Studies in FC (and structural connectivity) reveal that the brain is organized into a hierarchy 
of smaller networks or modules - tightly connected groups of brain regions (14-17). The smaller 
networks integrate information within the network, for instance within the visual network, forming 
functionally specialized or segregated networks (18). Integration between networks in turn support 
complex functions (17-19).      
 
In neuroimaging, a distinction is made between resting-state and task-evoked FC (14). With brain 
activity measured when volunteers lay idle in the scanner, called resting-state fMRI, it is possible to 
measure the brains’ baseline architecture (spontaneous fluctuations). However, this baseline is poorly 
understood from a psychological perspective (20). Nevertheless, FC measured from task-based fMRI 
reveals task-evoked changes from the baseline intrinsic networks. This could mean that task-evoked 
reconfigurations of brain networks use the brains’ baseline architecture as a point of departure. However, 
there could also be interactions between evoked and baseline activity (20). Studies I, II, and IV use 
task-based fMRI, while Study III used resting-state fMRI. Furthermore, the functional brain 
architecture revealed through FC can be seen as dynamics around the structural connectome (18). In 
other words, the structural connectome constrains FC. Compared to resting-state FC, task-related 
reconfigurations are relatively small (14). Our brains already have a great capacity to make small but 
significant changes to meet task demands.  
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Figure 1. From brain activation to brain networks. Top left frame: In raw form, blood-oxygenation-level-
dependent (BOLD) functional magnetic resonance imaging (fMRI) signals are represented as voxels (3D grid) 
(top) or averaged across voxels within brain regions as specified with a brain atlas. Top right frame: For statistical 
parametric mapping (SPM), a general linear model (GLM) is specified with a design matrix. The design matrix 
columns can specify timings of events of interest (such as pain stimuli), convolved with a hemodynamic response 
function. Additional columns can specify motion artifacts such as head motion along the x,y and z direction and 
rotations in each direction. The design matrix is regressed against the BOLD signal at each voxel. The result of 
the GLM is a group-level statistical map of task-induced brain activation. Bottom frame: Three network 
representations showing the relational structure of brain function in terms of functional connectivity (FC). The 
pairwise correlation between all brain regions from the Schaefer brain atlas (8) is shown here in matrix 
representation (left), overlayed on a brain (middle) and as a graph (right). Notice in the matrix representation that 
only the lower triangular is shown since correlation is symmetric. The coloring scheme in the matrix and the graph 
representations show the network to which the brain regions belong. The Schaefer brain atlas and FC-brain overlay 
were plotted with netplotbrain (21). The 3D brain rendering was plotted with MRIcroGL (22). The code for the 
graph plot can be found at https://www.brainnetworkslab.com/coderesources. 
 
Why is FC important? FC could be used to support different types of biomarkers, such as (i) response 
biomarkers to track the effects of a drug, (ii) predictive biomarkers to help in predicting treatment 
outcomes for a single patient, (iii) or as a prognostic biomarker to determine the risk of future pain 
development (23). What is the explanatory value of FC? Researchers have argued that FC is not a 
mechanism but can provide rough mechanistic models or approximations for large-scale interactions in 
the brain (24, 25). The rough model sketches provided by FC pathways of the brain can further offer 
constraints to models of causal pathways estimated with effective connectivity (26). This can explain 
how interactions at the macro-scale support neurocognitive processes such as sustained pain. Its utility, 
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therefore, extends beyond biomarkers to provide explanations for fundamental principles of brain 
function.  
 

2.3. Brain networks in pain 
 
A network perspective in neuroscience has been around for a long time, saying that functions of the 
mind are supported by the interaction of elements of the brain. In the late 20th century, Melzack 
introduced the concept of the neuromatrix to understand pain (27). The neuromatrix refers to the 
dynamic integration between various functionally specialized brain networks. Other essential 
components of the neuromatrix perspective are that the structural and functional organization of the 
brain in large part is genetically constrained and experientially malleable.  
 

   
 
Figure 2. A schematic of the neurobiological architecture of pain. The figure highlights anatomical structures 
that often appear in the pain neuroimaging literature (28).  
 
Now, what is the network structure supporting pain? We have some knowledge about the brain regions 
involved in processing pain (28, 29) (Figure 2). However, it can be noted that several factors complicate 
our understanding of pain:  
 

(i) Individual variability: How come different individuals experience pain differently?  
(ii) Temporal variability: What are the mechanisms supporting variation in the experience of 

pain over time?  
(iii) Brain-body relationship: What is the relation between activity within the body and the brain?  

 
Is there a single network in the brain that is responsible for pain? Pain is defined in terms of a sensory 
and an emotional component, according to IASP, and it is distinct from nociception - the neural encoding 
of noxious stimuli. Furthermore, as mentioned above, the integrated nature of the brain allows for 
reciprocal influence between cognition and pain perception. For example, there is an interaction between 
pain and the anticipation of pain, described further in section 2.6. This implies multiple interacting 
networks for nociception, pain, and cognitive processing of pain (30). Furthermore, the anatomical 
regions depicted in Figure 2 can be seen as single computing units. For instance, the insular cortex 
could be represented by a single BOLD signal representing what is going on in the whole structure. 
However, brain regions are networks themselves integrating information from their substructures (18). 
For example, the insular cortex can be further decomposed along the posterior-anterior axis into the 
posterior, mid, and anterior insular cortex. These substructures have distinct information-processing 
roles and have different FC profiles (31).   
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2.4. The use of machine learning to find objective markers of pain 
 
As defined by IASP, pain is a subjective experience. Therefore, subjective pain ratings are the gold 
standard for assessing pain. There are, however, efforts to define objective markers of pain using 
machine learning (32-34). Machine learning can associate patterns of voxel-wise activations to pain 
behaviors. This allows for predicting, for example, pain ratings from pain-evoked fMRI data (35) or 
even predicting pain sensitivity from resting-state fMRI data (36). The studies are not the final word on 
the matter, but they can help define the brain regions and the interactions among them that support pain-
related phenotypes. In Study III, a machine learning-derived pain sensitivity index was used based on 
patterns of resting-state FC (36). Study I used the Neurologic Pain Signature (NPS), predicting 
subjective pain intensity (35) as an a priori defined area within which data was analyzed to focus on 
pain-relevant brain regions and to avoid circular analysis (37).  
 

2.5. Brain network integration and segregation  
 

The brain is a dynamic network composed of functionally specialized modules or subnetworks that 
integrate amongst themselves to support complex functions (13, 17, 38-41). Functional specialization 
refers to neural subnetworks in the brain that are specialized to some domain, such as vision, yet are 
multipurpose by supporting various neurocognitive functions. Functionally specialized networks can be 
formed by brain regions that are densely connected amongst themselves and sparsely connected with 
regions that belong to other networks (42). It is well recognized that I/S supports many functions of the 
brain (18, 19), including pain (43), as specialized structures in the brain (segregation) inform each other 
(integration). It is possible that during a task-free state (resting-state) the brain is more modular. On the 
other hand, there is more integration between networks (or modules) as the brain reconfigures or 
integrates functionally differentiated brain regions to support tasks engagement (14, 18). For instance, 
in a comparison between innocuous somatosensory stimuli and noxious stimuli, the pattern of FC 
becomes less modular and more integrated with noxious stimuli (44). This finding follows a study that 
showed that cognitively more demanding tasks are less modular (more integrated) than a simple motor 
task as well as resting-state (45). In addition to integrating spatially distributed brain regions, the brain 
also requires that the communication between brain regions are orchestrated over time (17). The brain 
in time will be discussed in section 2.8.  
 

2.6. Balancing the internal and the external world  
 
As we actively engage in the world around us, a set of brain regions forming a network - called the 
salience network - display increased activation. The salience network is anchored in the anterior insula 
and anterior cingulate cortex (ACC) (46-48), two regions that respond to nociceptive input and fear (49). 
The exact functioning of the salience network is unknown, yet it might be responsive to salient features 
of the world, including the body (36). Another network similar to the salience network in its spatial 
layout is the cingulo-opercular network linked to task-control (50). The salience network could also be 
involved in task control by switching between tasks following changes in saliency (48). Another network 
called the default-mode network (DMN) (51, 52) was independently shown by Fransson (53) and Fox 
et al. (54) to be anticorrelated to the salience network, such that, somewhat simplified, when activity in 
the one goes up, the activity in the other goes down. While the salience network activates when external 
events demand our attention, the DMN show increases intra-network connectivity during spontaneous, 
internally directed thought processes (51, 52). The interplay between the two networks could be 
interpreted as alternations between spontaneous thoughts and mind-wandering to moments of 
externally-focused attention (54).  
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Figure 3. Group-level seed-to-voxel resting-state FC. Brain maps of FC with seeds/sources at the right insular 
cortex (left frame) and the posterior cingulate cortex (PCC) (right frame) correlated with all the voxels of the rest 
of the brain. The left and right maps resemble the salience network and DMN, as commonly depicted in the 
literature. Notice also how the maps are anticorrelated. The figure is generated using data from Study III.   
 
Why is the DMN and the salience network important in pain neuroimaging? The salience network 
includes anatomical regions often associated with pain, namely the insula and the anterior cingulate. 
Yet, it seems to support functions other than pain. For instance, it has been hypothesized to be a 
defensive system independent of the type of threat (55, 56). Furthermore, as the name suggests, the 
salience network could process salient features in the environment (46, 47), and nociceptive stimuli 
would be a particularly salient feature (56). Moreover, brain activity changes within the DMN have been 
demonstrated in several chronic pain conditions, such as low back pain (53) and fibromyalgia (57). 
Often, altered connectivity is reported between the DMN and salience network in chronic pain (58, 59). 
However, DMN is associated with several neurological and psychiatric conditions (60). The 
psychological interpretation of the DMN is that it is involved in remembering and planning, in self-
referential processes (51). However, it is unclear what the connection between DMN and salience 
network during pain (or in chronic pain) means – if it is an alteration in any of these processes, or 
alternatively merely reflecting the presence of current pain (57). The result in Figure 3 was formed by 
correlating the right insular cortex with the rest of the brain (left frame). It shows correlation (FC) in the 
insula, and MCC/ACC, among other regions.  The left frame similarly shows the correlation between 
the posterior cingulate (a major hub in the DMN) and the rest of the brain.     
 
Overall, the distributive nature of the brain means that it can utilize the same networks to support 
multiple functions (61). Such general mechanisms can confound images of brain activation for pain. 
The most eloquent example was a study with concurrent measurement of brain activity and painful 
stimuli in patients incapable of feeling pain due to congenital genetic disease, where patients displayed 
similar activation to healthy participants (62). Pain, therefore, could share some of its neural processes 
with other processes, such as general threat detection (56).  
 

2.7. Anticipating pain 
 
Expectations during the time leading up to a painful stimulus involve neurobiological mechanisms 
tightly linked to those involved in the pain perception itself (63). For example, predicted threat increases 
activation of MCC, and influences its FC with the insula (64). Expectations or anticipation are modeled 
in fear conditioning as cues coupled with aversive stimuli resulting in fear learning (65). There is an 
overlap of the brain regions involved in pain and fear conditioning as measured with fMRI (66). Study 
IV is an investigation of the genetic influence on brain activation during fear conditioning, the processes 
leading up to a noxious stimulus. The same dataset was used in Study I to study the genetic influence 
on nociceptive processing, during the delivery of noxious stimuli. Understanding the anticipation of 
pain in fear conditioning is important since fear of pain and avoidance is a problem in chronic pain (67, 
68).   
 

2.8. Time-varying functional connectivity: measuring fluctuations in FC 
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FC describes possible communication pathways in the brain through the patterns of correlation between 
brain regions across all time points, representing “static” (time-averaged) connectivity. More recently, 
time-varying functional connectivity (TVFC) has taken place in neuroscience to estimate how 
correlations between brain regions vary as a function of time. One way to do this is to define a sliding 
window over the time series, computing a correlation measure at each step to produce a sequence of 
correlation matrices (Figure 4). The result can be used in downstream analyses with temporal network 
theory (69, 70) to investigate the dynamics of brain networks and their relation to pain (71).  
   
An incentive of TVFC is that it could provide information over and above that offered by FC. When 
aggregated over several minutes, FC might reflect structural connectivity, at least partially (18). Much 
research has been conducted on the utility of TVFC. A growing literature shows how it can track 
fluctuations in cognition and emotion (72). It has been demonstrated that TVFC and FC capture different 
aspects of behavior (73, 74). Furthermore, fluctuations in FC are heritable, indicating that flexibility of 
connections can serve as an intermediate phenotype for behavior (75). Genetic influences on brain 
activation will be the subject of the next section and were the target in Study I and IV.  
 
In pain neuroimaging, the variability of TVFC is related to behavioral measures and treatment outcomes. 
The variability of TVFC between brain regions of the antinociceptive network and DMN was associated 
with participants’ tendency to mind-wander away from pain (76). FC between DMN and periaqueductal 
grey (PAG) also predicted pain modulation in chronic low-back pain (77). TVFC of the same coupling 
also indicated a reduction in pain following ketamine treatment (78). This shows that dynamics in the 
brain relate to pain behavior, as derived with BOLD fMRI. The time-resolved estimates can further track 
how brain regions group together at different time points into tight networks with more connectivity 
amongst themselves than to other brain regions (42). In one study, the insula and ACC grouped together 
(in a data-driven manner) during pain. Still, with the induction of an opioid analgesic, the ACC displayed 
flexibility in that it shifted allegiance to another set of brain regions (79). This shows the utility of TVFC 
in capturing principles of dynamic neuronal activity that can be used to track pain behavior.  
 
Findings in TVFC extend investigations of the role of brain network I/S in supporting complex 
functions. As discussed above, brains alternate between I/S configurations, reflecting alternations in 
information processing with shifts in external demands (80, 81). Temporal profiles of I/S have been 
demonstrated in cognitively demanding working-memory task (81). The goal of Study II was to 
investigate I/S at different temporal scales during varying painful thermal stimulations.  
 

           
Figure 4. Measuring time-varying functional connectivity. Left: Pairwise correlation between BOLD time 
series within a window of size 𝜔 that is moved over the set of time series creates a sequence of correlation matrices. 
Right: Measures from temporal network science can be applied to the sequence to estimate, for example, the degree 
to which networks are more correlated within networks than between networks for each time point. The circles 
represent brain regions and the width of the lines or edges connecting the circle represent correlation or functional 
connectivity estimates. The network configurations change over time. The sequence of matrices (bottom left) was 
plotted with Teneto (69).   
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2.9. Genetic influence on nociceptive processing 
 
Melzack’s neuromatrix theory of pain emphasized the interaction of brain networks in generating pain 
experiences. In addition to brain dynamics, the theory also considers the genetic and experiential factors 
shaping the brain (27). There are considerable individual variations in pain perception (82). We can be 
pain sensitive to a greater or lesser extent, and we can differ in how much we avoid or even seek pain. 
Individual variability such as this is influenced by genetics and experience, shaping the very neural 
structures and communication patterns of the brain. Furthermore, some individuals are more at risk of 
developing chronic pain due to genetic factors (83, 84). It is possible to infer the degree of genetic 
influence on pain-related phenotypes. However, instead of relating genes to pain behavior, which are 
complex multidimensional aspects of subjective experience, it might be simpler to link genes to 
neuroimaging-derived intermediate brain phenotypes or endophenotypes – mediators between genes 
and phenotypes (85-87). An endophenotype is a measurable component (such as brain activity) between 
a disease and the genotype (85). There is some evidence to support more consistency in gene-brain 
associations than in gene-behavior associations (88).  
 
The classic twin design can be used to infer genetic influences. This is accomplished by considering the 
degree of correlation between identical twins (monozygotic or MZ) who share all their co-segregating 
alleles, and non-identical twins (dizygotic, DZ twins) that share half on average. Given that identical 
twins are more equal in their neural representation of pain than non-identical twins, the degree of genetic 
influence on the processes generating the neural representation can be inferred. Figure 5 shows that the 
influence on the variance of pain-related brain phenotypes can be decomposed into genetic influence (or 
additive genetics) (A), common environmental influence (C), and non-shared environmental influence 
or error (E). Considering that A is a hundred percent in MZ twins and fifty percent on average in DZ 
twins, and with the C and E components equal among MZ and DZ twins, it is then possible to compute 
the genetic influence on a phenotype.  
 
Neuroimaging studies have assessed the genetic influence on functional brain networks for resting-state 
brain connectivity and task-evoked FC (89-96). However, the genetic influence on brain activity in 
specific brain regions and FC during nociceptive processing has not been investigated before and was 
the aim of Study I, while Study IV explored the genetic influence on brain activation patterns related 
to fear learning in anticipation of a noxious stimulus.  
 

                    
Figure 5. Estimating the genetic influence on phenotypes. The influence on a phenotype such as BOLD 
activation can be decomposed into additive genetics (A), shared environment (C) and unique environmental 
influences or error (E).  
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3. RESEARCH AIMS 
 
The overall aim of this thesis was to use functional neuroimaging to study the genetic and neural 
underpinnings of pain both in healthy participants and those with a history of persistent pain. 
Specifically, the aim of each project was to,   
 

(i) Assess the genetic influence on brain activation and networks associated with nociception 
(ii) Characterize the temporal evolution of brain network I/S during pain  
(iii) Assess the relationship between peripheral back morphology and brain networks 
(iv) Assess the genetic influence on brain activation during fear learning  
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4. METHODOLOGICAL CONSIDERATIONS  
 
The work in this thesis used resting-state and task-based fMRI to study processes involved in pain, 
nociception, and fear. Below, I describe the preprocessing steps and methods for deriving FC, TVFC, 
and genetic influence. A description of the participants can be found in Table I. An overview of the 
designs of the different studies can be found in Table II, and an overview of fMRI data acquisition and 
preprocessing steps in Table III.  
 

 

 
4.1. Participants 

 
Studies I & IV: The studies included 305 healthy monozygotic (identical) and dizygotic (fraternal) 
twins, and the final sample included 246. For the final analyses, there were 56 monozygotic pairs (35 
female and 21 male) with a mean age of 34 and a standard deviation of 8. There were 67 dizygotic twins 
(39 female and 28 male) with a mean age of 33 and a standard deviation of 11. Participants not included 
in the final analysis were removed due to excessive head motion, outliers in the amplitude of brain 
responses, missing data, or incomplete data collection from both twin pairs. Participants gave written 
informed consent by the Uppsala Ethical Review Board Guidelines. 
  
Study II: The study included 33 healthy participants, with 22 females. The mean age was 27.9, with a 
standard deviation of 9. The data was downloaded from OpenNeuro, and the details of the participants 
can be found in the original research paper (97). Of the 33 participants, 25 were included in the analysis. 
The reason for excluding participants was excessive head motion or incomplete data collection. 
Participants gave informed consent. The study was approved by the Columbia University Institutional 
Review Board (97).  
 
Study III: This case-control matched study included 46 participants (24 females). Twenty-three 
participants had undergone a surgical operation for disc herniation when they were 18 years old or 
younger (range 17.2 – 17.9 years). Then there were 23 age- and gender-matched controls. The cases 
were recruited mean 14 years after their surgery (range 8.6 – 20.4 years). Ethical approval was obtained 
from the Ethical Review Board in Stockholm, and the data was collected in May 2019 to January 2020. 
Participants gave written and oral consent.  
 
 

Table I. Overview of the cohorts.  
 Participants N Age 
Study I, IV Healthy twins 246 (148 women) Mean 33.5, SD 10 

Study II Healthy  33 (22 women) Mean 27.9, SD 9 

Study III Patient/control 23, 23 (12/12 women) Surgery: Mean 31.3, range 29.8-32.9  
Control: Mean 31.6, range 30.1-33.2   

Table II. Overview of experimental design.  
 (f)MRI data Process Stimuli/Condition Domain 
Study I Task Nociceptive processing Electrical Brain activation & FC  

Study II  Task Pain Heat TVFC  

Study III  Rest Spontaneous fluctuations NA Whole-brain FC 

Study IV Task Fear learning, anticipation Visual cues, 
electrical stimuli 

Brain activation 
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4.2. MRI 
 
Studies I, III, IV: Data was acquired using a 3.0 Tesla scanner (Discovery MR750, GE Healthcare) at 
Karolinska’s MR center, Karolinska University Hospital, Stockholm, Sweden. The data in Study II was 
obtained from OpenNeuro (98). The data were acquired on a 3.0 Tesla Philips Achieva TX scanner at 
Columbia University’s Program for Imaging in Cognitive Science. Study I & IV used SPM (Statistical 
Parametric Mapping) to preprocess the data. These were early studies, and the decision was made later 
to use fMRIPrep (99) for preprocessing, which was done in Studies II & III. Please refer to the original 
articles for details concerning specific preprocessing steps. Notice also that Study III included an 
additional analytical procedure that implemented a custom-made preprocessing of the data (described 
further below) (36).    
 

4.3. Brain atlases 
 
The brain data captured in fMRI comes in a four-dimensional package for each participant. The first 
three dimensions represent the brain at a single time point, and the fourth dimension is time. Each data 
point is a voxel, a three-dimensional pixel, and a whole-brain image will contain tens of thousands of 
voxels. Computing the correlation between each voxel would therefore require heavy computational 
power. Although this is now possible using supercomputers (100), I opted for reducing spatial 
granularity using pre-defined brain atlases. Studies I & II used the Schaefer brain parcellation with 400 
nodes (8) assigned to seven Yeo networks (7). Study I assessed the genetic influence on brain activation, 
and to restrict the analysis to brain regions known to activate during pain, I could have used activated 
areas from the study, but this would have resulted in a circular analysis (37). Therefore, the study used 
a binarized NPS (35) to constrain the analysis of the genetic contribution to brain activation in brain 
regions associated with pain. Similarly, Study IV used two networks delineated in a meta-analysis (101) 
of fear conditioning to constrain our analysis of the genetic influences on fear conditioning to specific 
regions a priori and hence reduce the number of multiple comparisons. Notice the similarity between 
the activation patterns seen in Study IV and the results from the meta-analysis.    
 
Study III also used the Schafer brain parcellation with 400 brain regions and seven networks (7, 8). In 
addition to this parcellation, a subcortical brain atlas was included (102) with 32 brain regions. 
Additionally, a machine-learning-derived pattern predicting pain sensitivity from resting-state 
functional connectivity (RPN: resting-state pain susceptibility network) (36) was applied to the data, 
using a brain atlas of 122 brain regions. This analysis also involved custom-made preprocessing of data.   
 

4.4. Nuisance regression  
 
In neuroimaging, the BOLD signal is confounded by in-scanner head motion and physiological effects 
such as cardiac and respiratory signal. It is essential to implement some form of nuisance regression to 
attenuate the impact of noise on the BOLD signals (103). There is yet no gold-standard way to do this. 
Table III summarizes the confounds that were regressed in each study. In Study I, the six motion 
parameters were included in the design matrix. In the FC part of the study, the six motion parameters 
and their quadratic effects were included. It was later decided, for Studies II & III, to additionally 
include the derivatives of the six motion parameters and their quadratic effects, resulting in 24 
parameters (104). Additional confounders are signals from white matter (WM) and cerebrospinal fluid 
(CSF) used in Study I, that modestly reduce artifacts (105) or the first six principal components of the 
anatomical CompCor’s (Component based noise Correction), which provides signals coming from non-
neuronal sources such as WM and CSF (106) such as in Studies II & III. 
 
A particular confounding variable that has sparked controversy is the global signal (GS) (107) since it 
is unclear what exactly is removed in global signal regression (GSR) and that it could be considered a 
nuisance term as well as that it could contain valuable information (108). The GS is the average of the 
BOLD time series across the whole brain. Studies comparing different approaches to mitigate the effects 
of head motion show that pipelines that include GSR are most effective in both FC and TVFC (109, 
110). In Study II, I provided results with and without GSR for completeness, as results may vary 
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depending on whether one chooses to remove the signal or not. GSR was also performed in Study III. 
Additionally, using the GS together with the anatomical CompCor regressors is recommended (111).  
 
One can test for a group difference in head motion to ensure that motion artifacts do not influence results. 
This was done in Study III by comparing mean framewise displacement (FD). One could also check 
the number of time points that exceed some threshold for FD and exclude participants that exceed the 
threshold for some percentage. This was done in Study II & III.  
 
The influence of artifacts can be reduced by censoring time points (also known as scrubbing) (105, 109). 
This can be applied to both FC and TVFC. This was done in Studies II & III. The removed time points 
were replaced with values estimated with cubic spline interpolation, as done by others (112). One 
drawback of interpolation is that it gives the data synthetic characteristics (105). For Study I, I used 
ART-based outlier detection, as implemented in CONN (113) by adding additional covariates, with one 
covariate/regressor for each outlier scan, and then used regression to remove the influence of those 
scans. A setback is that scrubbing results in an unequal degree of freedom across subjects (105).  
 

 
4.5. Assessing genetic contributions to brain activity patterns: Study I, IV 

 
When computing the genetic influence on brain activation, the phenotypic variance, such as brain 
responses to nociception, can be decomposed into additive genetic variance, shared environment, and 
unique environmental variance or error, denoted A, C, and E, respectively (114). In the simple 
Falconer’s formula, the factors can be estimated by contrasting MZ twin-pair correlations with DZ twin-
pair correlations (2(MZr – DZr)). The A factor can be calculated since MZ twins are genetically identical 
while DZ twins share half of their co-segregating alleles on average. Contributions of non-shared 
environment refer to factors that make twins dissimilar. The genetic influence is then estimated as the 
proportion of phenotypic variance explained by additive genetic effects A and the statistic is usually 
denoted h2. In Study I, the genetic influence on brain activation during nociception was estimated within 
brain regions defined by the NPS (35). The genetic influence on whole-brain FC in response to 
nociception was assessed with brain regions and networks defined according to the Schaefer atlas (8) 
and Yeo network (7). In Study IV, the genetic influence on brain activity during fear/safety learning 
(described further below) was computed within brain regions defined from a previous meta-analysis 
(101). MZ and DZ twins are assumed to share environmental influence (C) to an equal extent. Indeed, 
C could be higher between MZ twins than in DZ twins. Therefore, the correlation in behavior between 
the former can be larger than assumed. However, it has been shown that the greater C between MZ twins 
does not significantly affect estimates of genetic influence (115).    
 

Table III: Overview of fMRI data acquisition and preprocessing steps. Abbreviations: 6aCompCor - the first six 
principal components of the anatomical CompCor; Friston24 - the six motion parameters, their derivatives and 
their square; GS - global signal; GS+ refers to global signal with its derivative and their square; FD - Framewise 
Displacement (FD); HRF - hemodynamic response function; CSF - Cerebrospinal fluid; WM - White matter; ART 
- Artifact Detection Tool; TR - Time to repetition.  
 TR Preprocessing Confound regression Scrubbing Brain atlas 
Study I 2.4s SPM 6 motion parameters (and their 

quadratic effects), CSF, WM  
ART Schaefer400_7nets, 

NPS 

Study II 2s fMRIPrep Friston24, 6aCompCor, GS  
(+ derivative), FD, HRF 

Cubic spline 
interpolation 

Schaefer400_7nets 

Study III 2.2s fMRIPrep Friston24, 6aCompCor, GS+,  Cubic spline 
interpolation 

Schaefer400_7nets, 
Tian-Subcortical,  
Oxford-Harvard, RPN 

Study IV 2.4s SPM 6 motion parameters  NA Fullana (101) 
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A classical fear conditioning paradigm was used for Study I and Study II. Two virtual characters served 
as cues (CS), and one cue (CS+) was associated with a brief electrical shock (US) to the left arm with 
an onset immediately after the offset of the CS. The US was given in eight out of sixteen trials. Another 
cue (CS-) was never associated with the US. To model fear conditioning (Study IV), the brain response 
to the threat cue (CS+) was compared to the brain response to the safe cue (CS-). Similarly, safety 
learning was defined as a comparison between the safe cue versus the threat cue. To model nociceptive 
processing (Study I), the activation to the threat cue that was followed by the US (CS+shock) (modeling 
the US as well) was compared to the activation in response to the threat cue when it wasn’t followed by 
the US.  
 
For the functional connectivity part of Study I, a weighted region-to-region FC was computed using 
CONN toolbox (113) with a Weighted Least Squares (WLS) linear model with condition-specific boxcar 
time series convolved with a canonical hemodynamic response function. The boxcar time series 
represented the onset and duration for CS+shock. A separate boxcar time series represented CS+no shock. 
Hence, the BOLD time series corresponding to these events were retained, and this was done separately 
for each of the two events. This allowed for the formation of two connectivity matrices (for each 
individual) that could be contrasted or subtracted to define nociceptive processing.  
 
In Study I, APACE (Accelerated Permutation Inference for the ACE model) was used to compute 
voxel-wise genetic influence with cluster-level inference (116). First-level (individual-level) contrast 
images from the GLM corresponding to the contrast CS+shock vs. CS+no shock (denoted nociceptive 
processing) was used as input for Study I, and first-level contrasts CS+ vs CS- (fear learning) for Study 
IV. The reverse contrast was denoted safety learning in Study IV. APACE estimates the A, C, and E 
components using squared twin pair differences, with ordinary least squares regression with inference 
using the Likelihood Ratio Test (LRT). Multiple testing correction was performed using permutations 
(n=1000) to control the FWER (Family Wise Error Rate). 
 
For the FC analysis in Study I, individual-level connectivity matrices were formed as described above 
by subtracting matrices corresponding to CS+no shock from CS+shock. Using APACE (116), the genetic 
influence was estimated for each edge in the matrices, resulting in new individual-level symmetric 
matrices of h2. These h2-matrices were entered into a method based on network-based statistics (117) by 
computing the largest connected component of each h2-matrix. This was performed a thousand times 
with permuted twin identity to create a null distribution – i.e., re-compute h2-matrices following a 
permutation of twin pairs and then compute the largest connected component. The empirical connected 
component was then compared to this null distribution. This approach requires a choice of threshold 
before computing the largest connected component. We tested several thresholds from h2 = 0.25 to 0.32 
and found that the component broke at h2 = 0.328. We chose to visualize results for this threshold.    
 

4.6. Measuring TVFC: Study II 
 
The jackknife correlation (JC) method (118) used to compute TVFC (119) was implemented in Study 
II to track pain-evoked fluctuations in FC. The JC between two time series x and y at time point t is 
computed as the Pearson correlation between x and y except for timepoint t, multiplied by negative one 
to correct for the sign inversion. Specifically,  
 

 
A normalized JC value of zero at time-point t can be interpreted as the mean FC, approximating the 
static connectivity. Positive values can be interpreted as time-points with larger than usual connectivity 
and similarly for negative values (81). After having derived TVFC, the within-network and between-
network temporal strength (69) was computed. Then the final measure of I/S was calculated as a 
difference between the within- and between-network strengths (SID; Segregation and Integration 
Difference) (81). The interpretation given above is then applied to these measures as well. For example, 
for SID, a value of zero is interpreted as the mean level of I/S across the whole session. In contrast, 
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positive and negative values denote more segregation or integration than usual. The strength of the 
connectivity within networks was computed as,  

 
 
for a network G at time point t, with connectivity matrix 𝐴!,#$ , and number of nodes in the network 𝑁%. 
The strength of the connectivity between two networks was computed as, 

 
 
For networks G1 and G2, with N1 and N2 number of nodes, respectively. Using these measures, SID 
between two networks and for each time point is computed as,  
 

 
 
The results in Study II considered global SID for each network by averaging its I/S across networks.   
 

4.7. Summaries of the cartographic profile: Study III 
 
Study III defined weighted region-to-region FC matrices from resting-state fMRI data, using CONN 
(113), defined as Fisher-transformed bivariate correlation coefficient between pairs of brain regions. 
The resulting matrices were used to compute the cartographic profile using the participation coefficient 
and the within-module degree z-score (120). The participation coefficient, a measure of integration, 
represents the connectedness of a brain region across networks and is defined as: 
 

 
 
where kis is the number of connections of node i in network s and ki represents the degree of a node i. It 
is equal to 1 if its connections are uniformly distributed across networks and 0 if confined solely within 
its network. The module degree z-score, a measure of segregation, represents the degree of connectivity 
of a node within its network and is defined as:  
 

 
 
where ki is the degree of node i to nodes in its own network si, 𝑘$&! is the average degree in network si, 
and 𝜎'"!  is the standard deviation of the degree in si. Both measures were then summarized by taking 
the median and the maximum of each measure and each network, as done previously (121, 122). 
 

4.8. Resting-state pain susceptibility network (RPN): Study III 
 
In Study III, I also applied a tool developed using machine learning that predicts pain sensitivity from 
task-free, resting-state fMRI. The question was whether the group that had undergone surgery would 
display altered pain sensitivity compared to healthy controls since participants showed disc degeneration 
and some participants reported pain in the lower back. Although this tool is automatic, I describe here 
that the RPN computes FC using partial correlation across all brain regions to ignore indirect 
connectivity (36). The resulting matrices were used as input to a machine learning protocol that used an 
elastic net to predict pain sensitivity, resulting in a single score for each participant. The tool was 
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developed using multiple resting-state datasets. A pain sensitivity score was calculated as a composite 
of various pain measures acquired outside the scanner. A machine learning protocol learned to predict 
those scores. The resulting tool can then predict pain sensitivity in new participants (36), as was done 
in our study. Note that we didn’t measure pain sensitivity. The predictive network included brain regions 
from several canonical networks such as the DMN, frontoparietal network, ventral attention network, 
salience network, somatomotor network, visual network, basal ganglia, mesolimbic network & 
cerebellum.   
 

4.9. Brain, body, and behavior  
 
Study III aimed to relate peripheral measures of disc degeneration to FC measures. Additional to this, 
we measured gait as participants walked back and forth. Their walking patterns were recorded using the 
Microsoft® Kinect® for Windows (system v.1, Microsoft, USA), the Microsoft® Software 
Development Kit (v1.8), and Microsoft® Visual Studio Express 2013 (Microsoft, USA). The rationale 
behind this is that disc degeneration and pain in the back may have resulted in altered walking patterns 
in patients, and we wanted to see if this could be detected in terms of gait variables. Additionally, we 
measured back morphology using a 3T Tesla Scanner and assessed disc degeneration. We related 
measures of disc degeneration with pain sensitivity predicted from patterns of resting-state FC (36). 
 
In Study IV, in addition to fMRI, we also measured skin conductance response (SCR), controlled with 
a BIOPAC system (Goleta, CA) and electrodes placed on the left hand. The SCR measures autonomic 
responses during fear conditioning. This way, we could compute the genetic correlation between brain 
responses and autonomic responses, in addition to their respective genetic influence. The genetic 
correlation indicates the extent to which the same genetic factors contribute to the variance in the two 
domains. Furthermore, in Study I, we estimated the genetic influence on behavioral sensitivity to 
electrical stimuli.   
 

4.10. Statistics  
 

In Study IV, SCR was analyzed to test for conditioning with a t-test to compare CS+ and CS-. We tested 
for conditioning in the amygdala as well by first averaging the BOLD signal for the left and right 
amygdala and then implementing a t-test.  
 
Study II included thermal stimuli, with five intensities ranging from 44.3o to 48.3o in steps of 1. The 
two lowest intensities were categorized as “low” and the two highest as “high” thermal intensities. The 
middle temperature was not included in the analyses. The Supplementary Material in Study II included 
the analyses for all thermal intensities. For TVFC estimated using windows covering a full trial, a 
permutation test was performed to compare high and low intensities for data averaged over trials. The 
test was performed for each network, and therefore, the Benjamini-Hochberg procedure was used to 
control for multiple comparisons (False Discovery Rate, FDR) (123). This test was performed for the 
SID measure and the within-network and between-network temporal strength. At the single time point 
scale – when TVFC was estimated with a window of a single time point – high and low thermal 
intensities were compared using a permutation test with cluster-level inference with threshold-free 
cluster enhancement (TFCE), implementing a one-way analysis of variance. Clusters were identified 
over time. The test was performed for each brain network. Therefore, the resulting p-values for each 
time point and all brain networks were also controlled for multiple comparisons using FDR. This was 
done separately for SID, within-network, and between-network strength. The relationship between the 
three temporal network measures was tested against the subjective pain ratings using a robust method, 
implementing skipped Spearman’s correlation (124, 125). The correlation was estimated after removing 
bivariate outliers by first computing the robust center of the data using the minimum covariance 
determinant estimator and then identifying outliers using the box-plot rule by first orthogonally 
projecting data points onto lines joining each data point to the middle of the data points, and then finally 
computing Spearman’s correlation after removing outliers. With TVFC at the trial time scale, each trial 
could be associated with the corresponding subjective pain rating. For the single time point scale, since 
there were seven time points for each trial, we instead correlated each time point with the subjective 
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rating for that trial. Like previously, p-values were controlled for multiple comparisons using FDR. For 
the single time point scale, p-values were controlled across time and space (brain networks).    
 
In Study III, the summary measures of the cartographic profile were used to compare groups for each 
network, and each measure, using an independent t-test and controlling for multiple comparisons using 
FDR. The RPN score was used in an ANCOVA to test for group differences using the RPN as the 
dependent variable, group as a factor, and results from questionnaires, measures of disc degeneration 
and gait variables as covariates. As shown in a prior study, groups differed in self-reported health 
outcomes and disc degeneration (126) and those variables were included here. Only the gait variables 
that were statistically significantly different between groups were included as covariates. However, 
since several variables were correlated, (Supplementary Material for Study III), not all variables were 
included as covariates. See the manuscript for Study III for details about the variables, as well as 
Lagerbäck, Kastrati et al., (126). For the gait variables, linear mixed models were used to compare 
groups, controlling for multiple comparisons with FDR.  
 

4.11. Exploring variations in decisions  
 
There are several choices that researchers could make in neuroimaging data analysis (127). One could 
explore variations in decisions along the fMRI data analysis pipeline. A small example of this is given 
in Study III, where results are presented for different thresholds used to keep only the strongest links 
in the connectivity matrices (that were subsequently used to compute summaries of the cartographic 
profile). An additional methodological choice that could be considered is the choice of similarity 
measure (e.g., correlation, partial correlation, Euclidean distance) since other measures could result in 
different FC profiles (11, 128). However, this was outside the scope of the current project. Additionally, 
there is no gold-standard procedure for reducing the influence of confounding variables on static and 
time-varying FC (109). One confounding variable is the influence of the GS on connectivity estimates 
(107). Here, one can produce results with and without the GSR (107), as was done in Study II. The 
same could be done with brain atlases since it is unclear how replicable results are across atlases. A 
caveat of assessing variation in analyses steps is that there will be many results, with possible differences 
that could be difficult to explain.      
 

4.12. Ethical considerations 
 

In pain neuroimaging, it is essential to ensure that the experimental induction of pain does not lead to 
any tissue damage. The studies can include thermal pain (Study II), electrical stimuli (Study I/IV), or 
other nociceptive stimulation paradigms (129). The ethical guidelines for pain research provided by 
IASP, states that the stimuli must be below that tolerated by the participants and that they can abort their 
participation at any time. The data from Study II was obtained from an online repository, and the authors 
of that study followed the ethical procedures. For Study I and II, we followed the procedure by 
calibrating the stimuli in the MRI before continuing. Participants gave both written and verbal 
instructions and were told that they could abort at any time, without giving any reason for doing so. 
There are additional ethical considerations in pain neuroimaging. For example, identified objective 
markers of pain should not replace subjective reports, for example in court. Objective markers could be 
used to develop save and effective treatment for pain (32).    
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5. RESULTS 
 
Study I: Genetic influence on nociceptive processing. The aim was to determine the genetic influence 
on brain activity and FC during nociceptive processing. In response to the nociceptive stimuli, there was 
a genetic influence on brain responses in the right (contralateral) postcentral gyrus, right posterior insula, 
right superior temporal gyrus, right supramarginal gyrus, left postcentral gyrus, left supramarginal 
gyrus, left posterior insula, left superior temporal gyrus, left ACC, right posterior medial frontal gyrus, 
and bilateral MCC (Figure 6). The study further estimated the genetic influence on FC during 
nociceptive processing (not shown here). The approach was based on network-based statistics on the 
genetic-influence-matrix, where each value corresponds to the genetic influence on the FC between two 
brain regions. The network-based statistics approach was used since it considers the dependency among 
FC values. The strategy identified a cluster of connections linking all the canonical brain networks. 
Finally, the results showed a genetic influence on the choice of threshold for the electrical stimuli.  

 
Figure 6. The main results from Study I, showing the genetic influence h2 on nociceptive processing (130). 
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Study II: Time-varying functional connectivity during pain perception. The study used TVFC in an 
exploratory study to characterize the temporal evolution of I/S during pain processing. The study used 
two window sizes to compute TVFC, corresponding to the smallest time-point or a whole trial. The aim 
was to characterize the temporal I/S of brain networks during high and low thermal intensities. The 
results showed that when the lower temporal resolution was used, all brain networks showed statistically 
significant increased integration with higher pain ratings (Figure 7). However, these results vanished at 
the lower temporal resolution for several brain networks (Figure 8).  
 

 
Figure 7. Result from Study II. Correlation between subjective ratings of pain and SID computed at the single 
time point scale. A negative correlation implies increased integration with higher ratings of pain.  
 

 
Figure 8. Result from Study II. Correlation between subjective ratings of pain and SID at the trial time-scale 
(i.e., SID estimated from TVFC computed with a window-size covering a whole trial) (131). As before, a negative 
correlation implies increased integration with higher ratings of pain. 
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Study III: The brain, the back, and walking patterns following surgery for disc herniation. In 
Study III, participants had undergone surgery for disc herniation mean 14 years before the study. 
Outside the scanner, walking patterns were recorded to derive gait variables. Since the images were 
acquired during resting-state fMRI, we could apply a neurological signature that predicts pain sensitivity 
from resting-state FC. Additionally, whole-brain FC was estimated to compute measures of I/S 
(summaries of the cartographic profile). A mean of 14 years since surgery, participants still had 
degeneration in the lower back and displayed worse patient-reported outcomes compared to matched 
controls (126). Here, the aim was to characterize brain patterns related to disc degeneration. The gait 
analysis showed a group difference in head angle and trunk angle, with a lower head angle and higher 
trunk angle for the group that had undergone surgery compared to controls. There was no group 
difference in pain sensitivity (RPN). However, there was a statistically significant influence of disc 
degeneration on the RPN score. There were no group differences in brain network I/S measures.   
 
Study IV: Genetic influence on brain responses during fear and safety learning. Study IV aimed 
to characterize the genetic influence on brain activation during fear and safety learning. The result in 
Study IV first showed that the activation for the threat cue (CS+ versus CS-) and the activation for the 
safe cue (CS- versus CS+) were similar to the activations found in a meta-analysis on fear conditioning 
(101). The results further revealed statistically significant genetic influence on brain responses during 
fear learning in bilateral insula, right putamen, left pallidum, right thalamus, and the PAG (Figure 9A). 
A statistically significant genetic influence during safety learning was found in the bilateral precuneus 
and contralateral PCC (Figure 9B). Moreover, there was a genetic influence on autonomic conditioning 
to the fear cue compared to the safe cue. A genetic correlation between mean brain activation and SCR 
was found for safety learning only. Finally, due to its reported importance in fear conditioning (132-
134), the amygdala was analyzed separately since it was not part of the a priori brain regions used in the 
main analysis. First, there was a statistically significant response during fear learning in bilateral 
amygdala. However, there was no statistically significant genetic influence. Figure 10 shows the 
activation patterns for fear learning (warm colors) and safety learning (cool colors).  
 

 
Figure 9. Genetic influence h2 on brain activation during fear conditioning. With permission from Springer 
Nature.   
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Figure 10. Task-evoked brain activation (statistical parametric map) during fear and safety learning from 
Study IV. Warm colors denote the CS+>CS- contrast (classical fear conditioning), and the cool colors refer to the 
reverse CS->CS+ contrast (safety learning). This result is a modified version from Study IV, with permission from 
Springer Nature.   
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6. DISCUSSION 
 
Our conscious experience of the world is subjective, and both in psychology and philosophy, the 
sensation of pain and the feeling of negative mental states are prime examples of qualia, or how mental 
states feel like (135). A specific neurobiological architecture has been proposed for pain that extends 
across brain networks (28). This architecture is nevertheless embedded in the larger network of the brain 
and therefore stands in constant dynamic interactions with its various sub-systems (27).         
 
This thesis aimed to take a network approach to pain-related processing. Using a unique research project 
with twins, the aims of Studies I and IV were to estimate the genetic influence on brain activity and FC 
in response to a noxious stimulus (Study I), as well as to fear learning in events leading up to the noxious 
event in fear conditioning (Study IV). In Study II, using a temporal functional connectivity measure, 
the aim was to characterize fluctuations in FC during various painful thermal intensities. Specifically, 
the temporal evolution of brain network I/S was probed. Study III assessed the relationship between 
brains, backs, and behavior. The specific aim was to identify brain-based markers in terms of I/S of 
brain networks since participants displayed disk degeneration, reported pain, and had worse patient-
reported outcomes.     
 
The main findings from Study I was a genetic influence on the dorsal posterior insula, MCC, and ACC 
during nociceptive processing and whole-brain FC. Study IV showed a genetic influence on brain 
activity in the thalamus, the putamen, the PAG, and the anterior insula during fear learning and genetic 
influence on the precuneus/PCC in response to the safe cue compared to the threat cue. The study also 
showed a genetic correlation between autonomic responses and mean brain activation during safety 
learning, indicating the extent to which the same genetic factors influence variance in the two domains. 
Study II found varying temporal profiles of I/S for different brain networks during pain, with a general 
increase in integration with more pain. The association between pain and integration of all networks was 
not as evident when TVFC was estimated at a lower temporal resolution. Study III showed altered gait 
and a possible association between pain sensitivity as predicted from resting-state fMRI and disc 
degeneration yet found no group difference in brain network I/S. 
 

6.1. Fear, pain, and salience 
 

During pain, anticipation, and fear, the activation pattern often shows great overlap (49, 68), involving 
the same large-scale structures such as the insula, MCC, and ACC – suggesting that the same systems 
are used for different purposes (136). However, activation of the posterior insular cortex is often 
observed with nociceptive processing (137). At the same time, the anterior insula is activated both during 
fear conditioning (101) and in pain perception (28, 35). In Study IV, there was some activation in the 
posterior insula; however, not in the coordinates found for the left and right insular cortex in Study I. 
Figure 10 show the activation pattern seen during the threat cue indicating posterior insula activity yet 
with predominant activity in the anterior insula and MCC.  
 
The patterns of brain activation, anchored in the insular, MCC, and ACC, also resemble the salience 
network (47) or the cinguloopercular network (50), see for example the resting-state network depicted 
in Figure 3 (left frame). The insular, MCC, and ACC, central in the salience and cinguloopercular 
networks, are two main components reported in the literature on fear conditioning (101) and pain (28). 
It is worth noting that these two structures are often deemed to be two of the most commonly coactivated 
brain regions in all of neuroimaging (106, 138), not only during fear or pain. The salience network has 
been linked to various functions, such as detecting salient or novel features in the external milieu. It 
could also be responsible for switching between externally and internally oriented attention, with a 
unique role assigned to the connectivity between the anterior insula and ACC (139). Even though the 
salience network includes regions involved in pain processing, Study II did not reveal a special status 
to the salience network in terms of I/S during pain. This was the case when measured with a higher 
temporal resolution. When estimated at a lower temporal resolution, only the integration of the salience 
network (and the visual network) correlated significantly with subjective pain reports. With the higher 
temporal resolution, integration of all networks showed some relation to pain to a varying extent and at 
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varying time points. This is in line with recent research that emphasizes the interplay between classical 
pain regions and extranociceptive brain regions in pain processing (140, 141), extended to the temporal 
domain in Study II.  
 

6.2. Genetic influences on brain activity  
 

Studies I and IV aimed to estimate the genetic influence on intermediate phenotypes. This is because 
behaviors are situated further away from the genotype, and it might be simpler to relate genes to 
neuroimaging-derived phenotypes (85, 86). As genes and environment shape phenotypes, we set out to 
determine the magnitude and spatial locations of genetic influence on brain activity during nociception 
and fear learning. Twin studies could inform us about the proportion of the variation in brain function 
that can be attributed to genetics. It could also say something about predispositions to certain 
phenotypes, for example, sensitivity to pain.   
 
The genetic influence during nociceptive processing included some commonly activated brain regions 
during nociception and pain. This result resonates with findings from infants with similar nociceptive 
activity as adults and with diminished expression in the anterior insular cortex (142). This is noteworthy 
because although the electrical stimulation activated the anterior insular cortex (see Supplementary 
Figure 2 of Study I), there was no statistically significant genetic influence of activity there. 
Furthermore, in Study I, we found a genetic influence on nociceptive thresholds. This is interesting 
since we saw a genetic influence on posterior insula activity during nociceptive processing, suggesting 
that cortical response to noxious input is under genetic influence. However, we did not estimate the 
genetic correlation between nociceptive thresholds and dorsal posterior insula activation. This could 
have allowed us to see the amount of shared genetic influence (if any) – such that the same genes 
influence processing of noxious input in the posterior insula that in turn could modify the choice of 
threshold of the electrical shock. Furthermore, a genetic influence on the anterior insula was found on 
activation during fear conditioning in Study IV. Although there was some activation in the posterior 
insula, the genetic influence could not be determined since it was not included in the a priori network. 
It should be noted that we saw activation in the posterior insula during fear learning while there was a 
deactivation in the posterior insula in the meta-analysis during safety learning (101). It is not clear what 
underlies this difference.  
  
In fear conditioning, cues have acquired an aversive meaning through an association to an aversive 
stimulus and hence come to elicit conditioned responses on its own. The activation pattern found in 
Study IV showed great similarity to a previous meta-analysis on fear conditioning (101). The genetic 
influence on the brain activation covered several regions, including the insular cortex and the PAG, 
while safety learning showed a genetic influence on the precuneus/PCC. It is noteworthy that these are 
the same structures involved in pain processing. The PAG, for instance, is involved in pain modulation 
(143). It is also involved in post-traumatic stress disorder (PTSD), especially its FC to the amygdala 
(144). The findings could have implications for understanding PTSD, which has been shown to have 
increased brain activation during various forms of conditioning (145). Assessment in anxiety disorders 
have also shown altered activation in response to a safe cue, indicating alterations in inhibitory 
mechanisms in response to the safe cue (146). Furthermore, the mechanisms underlying safety learning 
may be relevant to chronic pain since previous findings have shown impaired safety learning 
mechanisms in this group (67). Study IV also found a genetic correlation between mean brain activation 
and autonomic responses for safety learning. Since the brain regulates autonomic responses, the genetic 
control of SCR would act through influences on brain function, which could have implications for 
interpretations of previous SCR findings on individuals with anxiety (147).  
 
The activation that was seen during nociception, fear, and safety learning could be interpreted as 
activation of the now classical resting-state brain networks: the salience network (during 
nociception/fear) and default-mode network (during safety learning). Indeed, attention to pain increases 
salience network activation, while attention away from it is related to DMN FC (76). The interaction 
between attention and pain has been demonstrated in many studies (76, 148). This modulation may, in 
part, be driven through inhibitory signals via the PAG (76, 149), seen activated and under genetic 
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influence during fear learning in Study IV. The activation seen during safety learning could be 
interpreted as DMN resting-state activity (101). The statistically significant cluster of genetic influence 
in the PCC/precuneus region found in Study IV would then correspond to a genetic influence of resting-
state, DMN hub activity. Indeed, the brain seems to become more resting-state-like or more modular 
during innocuous stimuli than painful stimuli (44) and more segregated with less pain, as seen in Study 
II. Increased DMN activity in Study IV corresponded well to the pattern found in a meta-analysis of 
fear conditioning (101) and is supported by other studies. Concerning threat, the increased distance to a 
tarantula was associated with increased activity in the PCC and anterior orbitomedial prefrontal cortex 
(150). This suggests an increase in DMN brain activation as the distance to a threat is increased. 
Furthermore, the relative activation of the DMN or insula-centered brain networks could reflect the 
degree of conscious access to sensory information. For instance, variability in the perception of stimuli 
can be related to prestimulus baseline brain activity, with a negative correlation between brain activity 
- including the precuneus/PCC – and subsequent conscious perception of an innocuous somatosensory 
stimulus (151). However, the anterior insula would serve as a gate to conscious perception of sensory 
information (152). Depending on whether a visual cue is threatening or not, one is either made ready to 
consciously perceive sensory information or assign less importance to external stimuli.  
 
Overall, even if the networks activated during nociception, pain, fear, and safety represent the activity 
of intrinsic brain networks such as the salience network and DMN, their relative I/S via changes in 
within-network and between-network connectivity influences the experience, which is in line with 
previous findings and expanded to the temporal domain in Study II. Studies I and IV showed that 
activity in central structures within these networks is under genetic influence. Furthermore, in Study I, 
our aim was to move beyond brain activation to capture the genetic influence of connectivity patterns. 
We found a cluster of connectivity covering all the canonical brain networks used in the study, 
suggesting a genetic influence on brain integration, affecting mostly connectivity between networks. 
Previous findings have shown a genetic influence on specific brain networks, such as the DMN (89). It 
has also been shown that genetics influences the strength of the structural connections between brain 
hubs, suggesting that the links supporting global information integration are under significant genetic 
control (153). With resting-state FC, results show that connectivity within networks (segregation) is 
genetically influenced while environmental factors influence connectivity between networks 
(integration) (94). The findings from Study I demonstrate that brain-wide integration during nociceptive 
processing is under genetic influence.  
 

6.3. Brain network integration and segregation  
 

What are the mechanisms that control information integration in the brain? Studies on the structural 
connectome have found evidence for a rich club organization – a network with highly connected and 
inter-connected hubs (154). The rich club in the brain includes the precuneus, PCC, ACC, and the insular 
cortex (154). Further, recent research attempt to define a dynamic functional rich club that is invariant 
across tasks (155) and that should correspond to the global neuronal workspace underlying conscious 
access or information integration (156). Furthermore, recent theories of emotion regard the integration 
of interoceptive signals and exteroceptive signals as central for emotion (136, 157). Although caution 
should be taken when interpreting resting-state networks since their function is unclear and under debate 
(43), it is tempting to argue for a unified theory whereby the cortical core described above could be a 
source for integrating the DMN and the salience network – that are specialized yet domain-general – to 
support interoception and hence to regulate the conscious perception of emotions (136, 158). Here, the 
insula and the MCC/ACC are believed to process information concerning internal and external stimuli 
relevant to one’s capacity to survive and thrive (36) by representing and regulating interoceptive signals 
(136, 157). Under this framework, the signals we observed during Study I and IV could be related to 
predictions of interoceptive signals and autonomic control of those signals. However, the magnitude and 
spatial extent of the genetic influence on predictions of interoceptive signals and autonomic control of 
those signals under various contexts – aversive or non-aversive – has yet to be determined. To what 
extent do genetics influence – under different conditions – the perception and regulation of interoceptive 
signals and profiles of the integration between interoceptive and exteroceptive signals that result in a 
unique conscious expression of pain and negative affect?   
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Yet, a subjective experience – such as pain and fear - might give rise to similar bodily reactions in terms 
of heart rate, blood pressure, respiration, or muscle tension, that are then reflected as similar brain 
activation patterns, making it difficult to discern the effects of afferent and intrinsic activity using fMRI 
(4, 159). One could compare brain activation patterns to pain and fear controlling for variables such as 
heart rate and respiration to more clearly reveal where they convergence and divergence.  

 
6.4. Strengths and Limitations 

 
Study I aimed to estimate the genetic influence on nociceptive processing that could be relevant in 
understanding pain processing. One strength of Study I (and Study IV) is that it used a large cohort 
collected with fMRI and used a classical twin design. However, if we had collected subjective reports 
of pain, we could have derived brain responses to pain instead of being restricted to nociception. The 
results could have been different, for example, displaying a genetic influence on the anterior insula 
rather than the posterior insula – since the anterior insula is related more to the conscious aspect of pain 
(160). Another concern is that Study I used electrical shocks, which may not be the most ecologically 
valid pain stimuli or may not translate well to a clinical context. Finally, the event-related design of the 
twin study could have used longer sessions or repeated measures to identify more stable estimates of 
genetic influence, as it has been shown to be a function of scan length (75).  
 
A methodological concern is that we used a group averaged brain parcellation (Studies I-III) to define 
the functional connectome. However, this assumes that functional brain regions do not change over time 
or are the same between individuals or across tasks (161). For example, functional brain regions can be 
observed within a single individual that is not observed in the group-level parcellation (162). It has also 
been shown that the shape, size, and location of brain regions are predictive of individual behavior (163). 
The variability of functional brain regions and the use of group averaged parcellations might lead to 
brain-behavior relationships being averaged out. Furthermore, Study II estimated TVFC and the degree 
of I/S over time yet assigned brain regions to networks that did not vary. Another approach could have 
been to use temporal community detection whereby networks may grow, shrink, split and merge (42, 
164). A strength of the study was that it was obtained online, allowing others to verify the results.  
 

6.5. Points of perspectives 
 
The findings from Study I and IV showed a genetic influence on processes relevant to pain, such as 
nociceptive processes and anticipation which could allow for finding endophenotypes for chronic pain 
– a measurable component between a disease and genotype (85). This could provide an understanding 
of why some individuals are more vulnerable to developing chronic pain. The findings put forth here 
could support efforts to link complex genetics – underlying chronic pain – to brain function (43). A 
possible extension in future studies implementing a twin design would be to test participants with painful 
as well as non-painful stimuli to be able to compare activations and network patterns to pain-related fear 
and fear since it is not clear at present the extent of their neural similarities and differences (68), as well 
as how they differ from pain.  
 
Study II revealed that the integration of each of the networks tested was associated with pain reports. 
However, the temporal profiles of brain network I/S were assessed on a global level by considering a 
networks’ I/S profile with respect to all other networks. The temporal I/S between networks would 
provide further specificity to our understanding of pain perception. The spatiotemporal integration 
between some networks could be more relevant for pain, for instance between the DMN and salience 
network. One could also characterize the nodes that could drive I/S. What are the brain regions that are 
driving the I/S of brain networks (122) in relation to pain? Furthermore, the correlation between 
integration and subjective pain says nothing about causality. To what extent would the experience of 
pain be altered by delaying or prolonging the integration of brain networks – for instance by causally 
probing brain regions? This could be accomplished using computational models to reveal possible causal 
links between temporal I/S and pain (165).  
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6.6. Concluding remarks 
 
The way pain is experienced may be shaped not only by spatial relations among brain regions but by 
temporal relations – the way information flow is coordinated over time. Further investigations on how 
different temporal profiles relate to pain – acute or chronic – may help build biomarkers. Also, the ways 
we anticipate pain or process nociceptive input may be shaped by genetics. These findings could be used 
for endophenotypes, to provide an understanding of why some individuals are more vulnerable to 
developing chronic pain.  
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