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Abstract: The effects of fluorodeoxyglucose conjugated iron oxide magnetic nanoparticles (FDGMNP) on 

macrophages are presented using a yeast substrate. Iron oxide magnetic nanoparticles (MNP) were 

synthesized by partially reducing FeCl3, then conjugated with (3-aminopropyl) triethoxysilane (APTES) after 

silication with tetraethyl orthosilicate. Silanated MMP nanoparticles were combined with fluorodeoxyglucose 

(FDG). Fluorodeoxyglucose iron oxide magnetic nanoparticles (FDGMNP) and its unconjugated control 

(MNP) were added (1mL) to the cells from the murine macrophage-like, Abelson murine leukemia virus 

transformed cell line RAW 264.7 (American Type Culture Collection number TIB-71) cell culture wells at 

different concentrations from 90–3.6 μg/mL. Cells were placed on the magnet plate for 30 min before 

incubating at 37°C, 5% CO2 overnight. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

tetrazolium) assay was performed to measure cell viability. Our results demonstrate that iron based 

nanoparticles can be linked to macrophages (elements of the immune system that attack bacteria) without 

HIGHLIGHTS 
 

 Iron oxide based nanoparticles were synthesized. 

 They can be linked to macrophages without the function of the macrophages being affected. 

 No detrimental effects to the macrophages were evident. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
https://orcid.org/0000-0001-7417-356X
https://orcid.org/0000-0002-5464-2987


2 Lim, J; et al.  
 

 
Brazilian Archives of Biology and Technology. Vol.64: e21200736, 2021 www.scielo.br/babt 

the function of the macrophages being affected, ie no detrimental effects to the macrophages were evident 

in these experiments. We conclude that neither FDGMNP nor MNP had a detrimental effect on macrophage 

function. 

Keywords: urinary tract infections; iron oxide nanoparticles; fluorodeoxyglucose; magnetic nanoparticles. 

INTRODUCTION 

In the European Union (EU) alone, it is believed that 25 000 patients die (in the EU alone each year) on 

account of bacterial infections acquired in hospitals. Infections from resistant bacteria, can be life-threatening 

for example, with pneumonia, wound infections and sepsis [1]. In addition to causing deaths and extensive 

suffering, antimicrobial resistance potentially has large scale economic impacts. Multidrug-resistant bacteria 

are estimated to result in an economic loss in excess of €1.5 billion alone each year in the EU. Such infections 

constitute an on-going problem in hospitals and other such environments, and not only give rise to life-

threatening infections such as sepsis, but also cause problems at other more local sites in the body. [1]  

In addition to problems arising in hospitals and other such heath care settings, bacterial resistance is 

also becoming a problem in the treatment of more common infections in the community eg urinary tract 

infections (UTI’s). In most cases the causative agent of a UTI (75% of UTI cases) is Escherichia coli, (E. coli) 

[2]. UTIs occur more frequently in females, and it is believed that approximately half of all females contact 

one or more UTIs during their lifespan [3]. It is well recognised that bacteria causing UTIs embed themselves 

in a biofilm in the bladder [4]. The biofilm, (about 50 microns thick) protects the bacteria and provides nutrients 

to the bacteria [5]. Bacterial resistance arises on account of mechanisms which include the production of 

enzymes that inactivate antibiotics (e.g. β-lactamases), and biofilm growth [6,7]. Even when alternative 

antibiotics are developed, bacteria still have the potential to become resistant to such novel antibiotics [6].  

Clearly, there is scope for new treatments and new approaches to combat microbial resistance in order 

to relieve the suffering caused by such infections. Such new treatments have involved the use of 

nanoparticles composed of eg iron oxide, and chitosan nanoparticles. [8]. For example, Ibrahim et al (2015) 

investigated the use of chitosan nanoparticles with antibiotics such as ciprofloxacin, chlortetracycline 

hydrochloride and gentamycin sulphate and found that the use of this nanoparticle-antibiotic chimera inhibited 

growth of gram (+) and gram (-) bacteria. Furthermore, Jena and coauthors [9] demonstrated that CS-AgNPs 

inhibited bacterial growth without significant damage to macrophages. Furthermore it was demonstrated that 

propidium iodide staining showed endocytosis of CS-AgNPs resulting in reduced intracellular bacterial 

survival in macrophage resistance [9]. Chitosan nanoparticles in particular have been shown to be particularly 

effective in potential UTI treatment. Lambert and coauthors demonstrated that chitosan nanoparticles could 

effectively be taken up by pathogenic bacteria such as E. coli and S. aureus. [10]. So there is a clear role for 

metal based nanoparticles in the killing of pathogenic bacteria [10]. Metal-based nanoparticles are the most 

popular inorganic nanoparticles and represent a promising solution against the resistance to traditional 

antibiotics. Not only do they use mechanisms of action that are completely different from those described for 

traditional antibiotics, exhibiting activity against bacteria that have already developed resistance, but they 

also target multiple biomolecules compromising the development of resistant strains [10].  

Iron oxide magnetic nanoparticles have potential for imaging, diagnosis, treatment, and separation of 

biological materials. These nanoparticles can be oriented in the magnetic field due to their magnetic 

properties. Due to its magnetic properties, it is also possible to direct drug molecules loaded on magnetic 

nanoparticles to localized disease sites in the body. The aim of this study is to examine the use of 

fluorodeoxyglucose conjugated MNPs in imaging and therapy of infection, both as an MRI (Magnetic 

Resonance Imaging) agent, and for imaging of infection and when the drug molecule is loaded. In this way, 

higher drug concentrations can be emitted through the magnetic field for an infection in an area where the 

antibiotic is not easily accessible. 

The aim of this work is to understand if FDG MNPs can be linked to macrophages without the function 

of the macrophages being affected detrimentally. Thus, it may be possible to imaging infection disease using 

these particles such as MRI imaging systems.  
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MATERIALS AND METHODS 

Reagents and equipments 

FeCl3, tetraethyl orthosilicate (TEOS), (3-aminopropyl) triethoxysilane, cysteamine, C18 pre-cartridge, 

Dowex 50 cation exchange resin column, were purchased from Sigma-Aldrich Co. (Darmstadt, Germany). 

Dimethylformamide, sodium fluoride, sodium sulphite, Kryptofix, N-hydroxysuccinimide, ammonia solution 

were obtained from Merck Co. (Darmstadt, Germany). Mannose triflate, Potassium carbonate, Ambersep 

900 quaternary ammonium anion exchange resin were supplied from Fluka Co. (Buchs, Switzerland). All 

other chemicals were supplied from Sigma-Aldrich Co. (Darmstadt, Germany). All of the solvents and 

reagents were of the highest purity and were used as supplied. 

The following equipment from Ege University Institute of Nuclear Sciences were used: The dynamic light 

scattering device (Malvern Nano ZS DLS, Malvern, UK). Inductively Coupled Plasma and Mass Spectrometry 

(ICP-MS) (Agilent Technologies 7900 ICP-MS SPS4 Auto sampler, California, USA). Scanning electron 

microscopy (SEM) (FEİ QUANTA FEG 250, Thermo Fisher Scientific, Oregon, USA) images were taken at 

Tekirdağ Namik Kemal University, NABILTEM, Turkey.   

Synthesis Procedure 

Synthesis of mNPs was undertaken as described in previous reports [11,17]. Briefly, 2 M FeCl3 was 

combined with 80 mM Na2SO3 prior to the addition of 25% NH3 solution under inert medium. The particles 

were separated by centrifugation and then washed with a water–ethanol (2:1) mixture and re-suspended in 

80% ethanol after 30 minutes of incubation at 70 °C. Then they were mixed with tetraethyl orthosilicate for 

12 hours at 40 °C and washed with methanol prior to incubation with (3-aminopropyl) triethoxysilane (APTES) 

for 12 hours at 60 °C with rapid stirring. 

Separately, to synthesize FDG-mNPs, solutions of mannose triflate and cysteamine  were prepared in 

water, mixed and heated for 1 hour at 90 °C, precipitated and dried overnight prior to dissolving in 

dimethylformamide. Next, solutions of Kryptofix, K2CO3, dimethylformamide and NaF were added to 1 mL of 

the prepared mannose triflate-cysteamine and heated for 20 minutes at 90 °C. The product was purified by 

sequential passing through a Dowex 50 cation exchange resin column, Ambersep 900 quaternary ammonium 

anion exchange resin, Amberlite anion exchange resin and finally a C18 pre-cartridge. The purified NaF 

substituted mannose triflate-cysteamine was mixed with the MNPs prior to the addition of                                                          

N-hydroxysuccinimide and stirred for 2 hours. 

Characterization of mNPs and FDG-mNPs 

The hydrodynamic diameter of the FDG-mNPs was measured using a dynamic light scattering device. 

For that the MNPs or FDGMNP s were dispersed in 20% dextrose solution at FDGMNP (100 µg mL−1) 

concentration and measured at 25 °C. Measurements were repeated three times, and the results were 

expressed as the mean ± standard deviation. Particle size and morphology of the synthesized MNPs were 

obtained using scanning electron microscopy (SEM). Iron concentration was measured using an Inductively 

Coupled Plasma and Mass Spectrometry (ICP-MS, Agilent Technologies 7900 ICP-MS SPS4 Auto sampler, 

California, USA). 

The synthesized MNP and FDGMNP were maintained at 4 °C at a density of 30 mg/ml in solution. RAW 

264.7 (TIB-7) cells were acquired from ATCC (American Type Culture Collection). The magnetic plate used 

to generate the magnetic field for magnetofection was from Ozbioscience (Marseilles, France). Heat-Killed 

(HK) Candida albicans SC5314 was gifted by from Rebecca Hall (Kent) and was maintained in the fridge. All 

other chemical reagents were purchased from Sigma-Aldrich or Fisher Scientific.  

Macrophage cell growth conditions 

Cells from the murine macrophage-like, Abelson murine leukemia virus transformed cell line RAW 264.7 

(American Type Culture Collection number TIB-71) were cultured in DMEM supplemented with 2 mM L-

glutamine and 10% heat-inactivated FBS at 37°C, 5% CO2. As required, macrophages were scrapped in 

PBS, counted, and seeded in complete medium (500,000/well) onto standard clear 24-well tissue culture 

plates and incubated for 24 h at 37 °C, 5% CO2. Cells were serum starved for 2-16 hours prior to experimental 

use.  
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Nanoparticle addition and cell viability 

Fluorodeoxyglucose iron oxide magnetic nanoparticles (FDGMNP) and its unconjugated control (MNP) 

were added (1mL) to the wells at different concentrations from 90 – 3.6 μg/mL. Cells were placed on the 

magnet plate for 30 min before incubating at 37 °C, 5% CO2 overnight. MTT assay was performed to measure 

cell viability [12]. Briefly cells were washed in PBS before 0.5 mg/ml of the water-soluble tetrazolium dye MTT 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, prepared in SFM) was added to wells. For 

negative control, 0.1% (v/v) of the detergent Triton X-100 was introduced to a well containing cells and 

incubated at room temperature for 5 min, washed in PBS and assayed with MTT. After addition of MTT, a 

24-well plate was incubated at 37°C and 4% CO2 for 2 hr 30 min. Following incubation, the MTT mixture was 

removed and any purple formazan formed was dissolved in DMSO. Absorbance at 595 nm was measured 

using a plate reader (Molecular Devices) and the Software Pro 5.4 software. 

Statistical analyses  

One-way ANOVA followed by Dunnett’s multiple comparisons test was performed using GraphPad Prism 

version 8.4.3 for Windows, GraphPad Software, San Diego, California USA, www.graphpad.com. 

RESULTS 

The nanoparticles were homogeneously dispersed in dextrose (80% water, 20% dextrose) solution 

according to DLS measurement. The medium size was 176.7±4.7 nm (n=5) together with their hydrodynamic 

radius similar to previous study [11]. The surface potential of MNPs and FDGMNPs were found to be −4.77 
± 0.918 mV and 21.26 ± 0.862 mV respectively. 

SEM and TEM images showed that FDGMNPs displayed a mean size of 10-20 nm. Additionally, SEM 
data showed that these FDGMNPs had a cubic spinel structure (Figure 1A, Figure1B). MNPs possessed a 

particle shape that was a uniform homogeneous cubic crystal structure, with a particle size of around 20-30 

nm (Figure 1B).  

 

 

 

  

Figure 1. A) SEM Image of FDGMNPs (Fluorodeoxyglucose iron oxide magnetic nanoparticles), B) TEM Image of 
FDGMNPs (Fluorodeoxyglucose iron oxide magnetic nanoparticles) 
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Iron oxide based magnetic particles with and without conjugation with fluorodeoxyglucose (FDGMNP 

and MNP respectively)) successfully link to macrophages. The macrophages attached to the MNP and 

FDGMNP were then allowed to act on yeast (readily available and safe to use). The results is shown in Figure 

2.  
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Figure 2. The effects of FDGMNP (Fluorodeoxyglucose iron oxide magnetic nanoparticles) linked to 
macrophages and MNP (Iron oxide magnetic nanoparticles) linked to macrophages on yeast. 

FDGMNP has little effect on RAW 264 7 macrophage viability (Figure 2). Serum starved RAW264.7 

murine macrophages were challenged with FDG-MNP, MNP, Triton X-100 or untreated (serum-free medium, 

SFM) for 30 min at 37 °C. Cell viability was determined by MTT assay and no detrimental effects to the 

macrophages was observed. Statistical significance compared to SFM was determined by two-way ANOVA 

and a Tukey’s multiple comparisons test. (**) p≤0.01. 

DISCUSSION  

Magnetic nanoparticles (MNP) have potential in medical sciences, for example; PET-MRI (Positron 

Emission Tomography-Magnetic Resonance Imaging) as contrast agent and cell labelling [12]. Iron oxide 

MNPs have the potential to be used in two ways, either as targeted therapy agents to target chemotherapy 

drugs for cancer therapy or as magnetic fluid hyperthermia. The first applications of MNPs in vivo were done 

in 2011 by Nacev and coauthors, who investigated the possibility of delivering drug chemotherapy through 

MNPs linked to chemotherapeutic agents [13]. The goal involved in this treatment was achieved using an 

external magnetic field applied around the area of cancerous tissue. This area resulted in MNPs collected in 

cancer cells providing a high concentration of MNP and a higher drug concentration in cancer cells. Another 

study involving the therapeutic uses of MNPs was conducted in 2013 by Huang and Hainfeld , who conducted 

two studies using iron oxide MNPs [14]. The first study involved MNPs attached to liposomes containing a 

chemotherapeutic drug called doxorubicin. In the second study, MNPs were covalently bound to doxorubicin 

coated in a thermosensitive polymer. Both techniques took advantage of the heat generated in the magnetic 

field applied by MNPs to break the bonds that release the chemotherapeutic drug to destroy cancerous cells. 

With this application, possible damage to the healthy tissues surrounding the cancer has been greatly 

reduced. 

Increased metabolic activity of tumor cells is induced by overexpression of glucose transporters within 

the cell membrane. This leads to an increase in glucose uptake. There are different types of glucose 

transporters, but one seems to be particularly important, namely the GLUT-1 receptor expressed in all 

cancerous cells. Visualization of GLUT-1 receptors in tumor cells is possible with MRI scanning using 

superparamagnetic iron oxide MNPs as contrast agents [15] .However, in order for MNPs to be taken up by 

GLUT-1 receptors for display, they are functionalized with a glucose analog, namely 2-deoxy-D-glucose (2-

DG). This analog increases the uptake of MNPs in cancer cells due to the Warburg effect (higher metabolic 

uptake of the FDG component of the FDGMNP hybrid). It has been shown that FDGMNP have high affinity 

for MCF-7 breast cancer cells according to previous studies [11]. In a study conducted with another group, 

FDGMNPs were injected both intratumorally and intravenously (via the tail vein) in in-vivo studies on 

intraabdominal tumors of mice [16]. Mice were euthanized 70 minutes to 12 hours after injection. All of the 

mice showed little pronounced uptake of FDGMNPs into tumor cells in cells of other organs, in the heavy and 
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histology of cancer tissue. In addition, the results of in-vivo experiments in mice with prostate cancer over 

several days also showed that FDGMNPs were more concentrated in cancer cells of the prostate [17]. Thus, 

such nanoparticles show promise in the treatment of cancer hyperthermia. Clearly nanoparticles have a 

plethora of applications in cancer treatment as well as potential uses in treating bacterial infections including 

those bacteria involved in causing urinary tract infections. It is also known that Candida (yeast species) can 

also cause UTI’s, and results of our study (using a yeast species) has shown that FDGMNPs and MNPs do 

not affect the functionality of macrophages, which are involved in the immune response to such infections.  

We believe therefore that FDGMNPs and MNPs have potential uses in the treatment of UTI’s caused by 

yeast and bacterial species. [18] 

FDG MNPs can be linked to macrophages (elements of the immune system that attack bacteria) without 

the function of the macrophages being affected, ie no detrimental effects to the macrophages were evident 

in these experiments. FDG is known to be taken up by bacteria [19]. 18F-FDG is one of the few tracers that 

can be clinically applied to imaging infection. In this study, higher uptake was seen with increasing FDG MNP 

concentrations. FDG also appears to increase iron retention at increasing concentrations.  

Other reports have also indicated that nanoparticles do not appear to have a detrimental effect on 

macrophages [9], and that the effects of antibiotics can be enhanced by the use of nanoparticles [8]. 

Furthermore Lambert and coauthors demonstrated a high affinity of chitosan for S.Aureus and E.Coli [10]. 

As a result MNPs seems to be very promising that has shown potential application in targeting different strains 

of resistant and nonresistant microbial strains is the treatment with FDG MNPs. 

To date, 18F-FDG is one of the few tracers that may be clinically applied in infection imaging FDG MNPs 

can be taken up by a wide range of commonly encountered bacterial pathogens. Bacterial pathogens may 

also take up FDG MNP in vivo, thereby contributing to the MRI signal of iron oxide in infection imaging. Future 

experiments are needed to determine the proportion of FDG MNP that is taken up by infecting bacteria as 

compared to the 18F-FDG taken up by inflammatory cells. This will unveil the significance of our present 

findings in the clinical context. 

CONCLUSION 

Iron based MNPs can be linked to macrophages without the function of the macrophages being affected 

detrimentally. FDG increased the MNP uptake to macrophages. Although our study is based on yeast, this 

approach may have applications to other microbes and in particular those causative agents involving UTI’s. 

Macrophages linked to chitosan and perhaps other nanoparticles could be used as a potential treatment 

for UTI’s. Such treatments could possibly include the introduction of macrophages linked to nanoparticles 

directly into the biofilm itself, and this will be the focus of future investigation. 
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