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Abstract

An interest point detection scheme is presented that is comparable in quality to existing 

methods, but can be performed much faster.  The detection is based on a straightforward color 

analysis at a coarse granularity.  A 3x3 grid of squares is centered on the candidate point, so that 

the  candidate  point  corresponds  to  the  middle  square.   If  the  color  of  the  center  region  is 

inhomogeneous with all of the surrounding regions, the point is labeled as interesting.  A point 

will also be labeled as interesting if a minority of the surrounding squares are homogeneous, and 

arranged in an appropriate pattern.

Testing confirms that this detection scheme is much faster than the state-of-the-art.  It is 

also repeatable, even under different viewing conditions.  The detector is robust with respect to 

changes in viewpoint, lighting, zoom, and to a certain extent, rotation.
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CHAPTER 1 - Introduction

Interest  point  detection,  along  with  feature  description,  is  part  of  the  general  object 

recognition problem.  This problem, that of detecting arbitrary objects in real-world images, is 

well-documented.  It is difficult in part because of the large amount of information present in 

even the  most  basic  of  images.   Not  all  of  this  information  is  useful  in  object  recognition, 

however, and so simplifying the data set before analysis  is essential.   This is the purpose of 

interest point detection.

Interest point detection is an important technique for reducing the complexity of image 

data.  Most points in an image are homogeneous with their surroundings.  Thus, two nearby 

points are unlikely to provide complementary information.  If we only consider a set of points 

which are inhomogeneous with their  surroundings, we significantly reduce the complexity of 

analysis.   At the same time,  it  is  hoped that most  of the useful information in the image is 

preserved.

Another  difficulty  with object  recognition is  that  there are often real-time constraints 

imposed on the problem.  The speed which is necessary varies depending on the application.  In 

some circumstances, a slower, more reliable algorithm is appropriate.  In other cases a faster 

algorithm is desired if it does not sacrifice much in quality.  Such an algorithm is presented in the 

following paper.
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CHAPTER 2 - Summary of Related Work

Common approaches to object recognition are divided into an interest point detector and 

a feature descriptor.  The purpose of the interest point detector is to reduce the complexity of the 

information in the picture.  The feature descriptor takes the reduced input (the interest points) 

and characterizes them in a robust way, one that is resilient to natural transformations.

Interest Point Detectors
Interest point detection reduces the complexity of visual recognition, by determining the 

salient points in an image.  A “point” actually refers to a region of the image with a regular 

shape,  centered  on a  specific  point.   This  regular  shape  may circular  (or  elliptical,  if  affine 

invariance  is  desired),  or  it  may  also  be  rectangular  (a  cruder  approach  that  is  more 

straightforward for calculations).  Analyzing a region surrounding a point is necessary because a 

single pixel does not have enough information to be deemed interesting or uninteresting.

Only  the  points  found  with  the  interest  point  detector  will  be  passed  to  the  feature 

descriptor.  This does not require, however, that every pixel fall into at least one interest point’s 

area.  Certain regions of the image may not be useful in object recognition, and thus should be 

ignored.  Ideally, portions of the image that are ignored by the interest point detector do not 

contain useful information for object recognition.

It would seem that if a large percentage of the image is covered by the detected interest 

points, then little has been accomplished.  The argument would be that only a small percentage 

of the information has been eliminated.  This is not the case.  A good detector will properly 

aggregate the pixels of the image, so that they are easily analyzed in the feature description 

phase.

Numerous  algorithms  for  interest  point  detection  have  been  proposed.   The  earliest 

method that is still widely used today is the Harris corner detector.  Harris corners are found 

using the eigenvalues of the second-moment matrix.  They are rotationally invariant, but not 

scale-invariant.  [8]

Scale  invariance  can  be  achieved  with  automatic  scale  selection.   Lindeberg 
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experimented with both the determinant of the Hessian matrix and the trace (the Laplacian) for 

use in scale selection.  The maxima and minima of both functions were found to be useful in 

scale selection.  [14]

Mikolajczyk  and  Schmid  combined  these  techniques  to  create  more  robust  detection 

schemes.  The Harris-Laplace and Hessian-Laplace methods both use the Laplacian for scale 

selection, but use the Harris function and Hessian determinant (respectively) for point selection. 

[10]

Because the Laplacian is unstable, it  is common to apply a Gaussian smoothing filter 

before  applying  the  Laplacian  filter.   These  filters  can  be  combined  into  the  Laplacian-of-

Gaussian in order to reduce the number of computations necessary to perform both operations. 

[10]

Lowe approximated the Laplacian-of-Gaussian using a difference-of-Gaussian function. 

This function performs two consecutive smoothings using a Gaussian, and finds the difference in 

the resulting images.  This is efficient to compute because the smoothing is already necessary for 

building multiple scales in the image pyramid.  [11]

Bay,  Tuytelaars,  and  Van Gool  developed  a  detection  scheme  that  is  faster  than  the 

previously  mentioned  approaches.   It  relies  on  integral  images  [18]  and  box  filters  to 

approximate  the  determinant  of  the  Hessian  matrix.   This  has  been  demonstrated  to  be 

comparable with previous methods in terms of repeatability.  [1]

According to Mikolajczyk, repeatability is the measure of the performance of a detector 

[19].  Repeatability can be tested with respect to standard viewing deformations such as lighting, 

viewing angle, rotation, and scale.

To understand repeatability explicitly, consider two different images of the same object 

or scene.  Ideally, each interest point found in one image should correspond to an interest point 

in  the other  image.   But,  in  order to compare these images, some mathematical  relationship 

between them must be established.  The ground truth is such a relationship.  It is a homography 

that  projects  points  to  the  reference  frame  [19].   Using  the  ground  truth,  it  is  possible  to 

determine which points in one image correspond to a set of points in another image.

If we compute a ground truth transformation, we can map the coordinate space of one 

image to the other and compare the overlap of the two interest points.  If the error in overlap 

(calculated  as  1  –  intersection/union)  is  below  .4,  then  these  two  points  are  said  to  be 
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corresponding.  The repeatability score, then, is the percentage of points in either image that have 

a corresponding point in the other image.  [19]

From a  survey of  the  literature  we  observe  that  many of  the  more  robust  detection 

methods have efficient,  highly discrete approximations.  Such approximations are sometimes 

comparable in repeatability.   A high level of repeatability is desirable; however, since object 

recognition  problems  frequently  have  real-time  constraints,  there  are  applications  where  the 

speed of the detector may be equally important.

Feature Descriptors
A feature descriptor attempts to characterize a region in a robust way that is invariant to 

natural  viewing  changes.   This  may  include  scale,  rotation,  lighting,  and  affine/viewpoint 

variance.   While  many such  descriptors  have  been  proposed,  the  SIFT [11]  and  SURF [1] 

descriptors have been shown to outperform many existing approaches. [1]

The SIFT descriptor consists of image gradient histograms.  The image gradient at every 

point in the region is calculated.  Then, the region is divided into 16 sub-regions (4x4).  For each 

sub-region, the gradients are reduced to eight directions and combined to form a histogram.  The 

resulting 128 values (8 directional values for 16 regions) are the SIFT descriptor.  Also note that 

interpolation is used to reduce the “boundary” effect; thus, values in the center of a sub-region 

are  weighted  higher  than  values  on  the  edge.   This  makes  the  descriptor  robust  to  small 

deformations in varying viewpoints.  [11]

The SURF descriptor acknowledges the high matching performance of SIFT and attempts 

to replicate this performance while improving speed.  The region of interest is divided into a 

square grid of 4x4 sub-regions, like SIFT.  However,  instead of using a histogram of image 

gradients  to  characterize  each  sub-region,  SURF  measures  the  response  of  Haar  wavelets 

summed over the sub-region.   Both a  “vertical”  and “horizontal” Haar wavelet  response are 

calculated.  The actual directions are relative to the interest point’s orientation.  There are four 

values in the descriptor for each region: the sum of the response for each wavelet, and the sum of 

the absolute value of the response for each wavelet.  [1]

While both of these descriptors were developed along with a particular interest  point 

detector, they are commonly used with other interest point detectors.  Their high performance 

makes them attractive candidates for combining with other algorithms.
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CHAPTER 3 - Homogeneous Color Detector

This detector is built for applications where speed is of the utmost importance.  As such 

our  characterization  of  an  interest  point  must  be  very  basic,  yet  retain  some  discriminative 

quality.  The focus is on comparing the average intensity of a region with the average intensity of 

surrounding regions, and looking for discrepancies.

Homogeneous Color
Two regions are defined to be homogeneous if the difference between the average light 

intensity (color) values of each region is within a threshold.  In general, many of the pixels in one 

region will have nearly same color, so the average color will be representative of the region as a 

whole.  For similar reasons, if two regions are adjacent, they may likely have similar colors.

If, on the other hand, two adjacent regions have significantly different average colors, this 

could be indicative of an edge.  If a region is inhomogeneous with numerous adjacent regions, 

then there are edge responses in multiple directions.  This is somewhat similar to the machine 

vision definition of a corner, such as in Harris' corner detector.  It is also the basis for defining 

our interest points in this detector.
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Figure 1 - An Example Image With Detected Interest Regions

This is an example image and the interest regions detected (test image from the Boat test 

set provided by Mikolajczyk).  Boxes of differing sizes were found at differing scales during the 

selection process.

Algorithm
To determine whether two regions are homogeneous, we must first define a threshold for 

homogeneity.  The sample picture above was generated with a threshold of 20.  To clarify, every 

region has an average intensity from 0 to 255, and two regions are homogeneous if their average 

intensities differ by less than 20.  As is common in vision processing techniques, the optimal 

value of the threshold should be determined empirically for a given application.

For scale invariance,  interest  points must be detected at  multiple  scales in the image. 

Rather than use Gaussian smoothing to observe different scales, we simply reduce the size of the 

image by a factor of 2.  Thus, at an arbitrary scale n (starting at 1 for the original image), one 
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pixel represents a 2n-1 x 2n-1 region.  This is significantly faster to compute than even Gaussian 

smoothing.   Additionally,  rather than using integral images to find the average intensity of a 

region, the regions of a given scale are represented by single pixel values.

Once the image has been scaled (this won't be necessary if we begin at scale = 1), a 

sweep over the image can be performed.  For each candidate point, we observe a 3x3 grid of 

pixels centered on that particular point.  Again, each pixel represents a 2n-1 x 2n-1 region (where n 

is the scale).  If the center pixel is homogeneous with 4 or more of the 8 surrounding pixels, then 

it is too similar to its surroundings and it is ignored.

If, however, the center pixel is homogeneous with 3 or fewer surrounding pixels, then it 

is probably an interest point.  There is only one more check to reduce edge responses.  If there 

are  2  or  3  homogeneous  pixels,  we  require  that  they  are  adjacent  to  each  other,  either 

horizontally or vertically.  This check is not applicable if there are 0 or 1 homogeneous pixels in 

the surroundings.

In the far left example, the point is rejected because the center pixel is homogeneous with 

all surrounding pixels.  In the next example, the point is accepted because the center pixel is 

inhomogeneous with all surrounding pixels.  In the third example, the point is accepted because 

the 3 inhomogeneous regions are adjacent (1 adjacent to 2, which is in turn adjacent to 3).  In the 

final example, the point is rejected because 1 is not adjacent to 2.  It is categorized as a potential 

edge and thrown out.

Because  so  few operations  are  necessary  to  confirm or  reject  an  interest  point,  it  is 

possible to check every pixel in a given scale.  The algorithm does in fact check each point at a 
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given scale, then reduces the image and repeats the process until the number of scales checked 

reaches the pre-determined  threshold.

Theoretical Analysis of Running Time
This  detector  is  fast  compared with existing methods,  because the key component of 

analysis (the average color of a region) is already found during the scaling process.    This is 

similar to how SIFT's Difference-of-Gaussians is calculated using the values already necessary 

for Gaussian scaling.  For each scaling, we require only 4 integer additions and 1 integer division 

per pixel in the new scale.

One  of  the  significant  improvements  in  speed  comes  from  avoiding  floating-point 

operations entirely.  There are, in fact, only 8 integer subtractions (and use of absolute value) 

necessary to determine whether the surrounding pixels are homogeneous with the center.  After 

these Booleans have been calculated, the remaining operations are simply Boolean checks.

Both the Difference-of-Gaussians and Fast-Hessian methods search for local maxima in 

order  to  localize  an  interest  point.   This  step  is  omitted  in  the  homogeneous  color  detector 

because candidate points are only checked at certain intervals.  Points selected at a given scale 

cannot overlap.
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CHAPTER 4 - Performance Testing

As discussed in the literature review, repeatability is the primary measure of an interest 

point detector.   Recall  that  repeatability is  the percentage of correctly corresponding interest 

points found by a detector in two images of the same scene.  A low repeatability score could 

indicate an inferior detector.  However, a lower repeatability could also be justified in certain 

cases if it results in a significant increase in speed.  This interest point detector has comparable 

repeatability to leading detectors in most cases, while offering noticeable improvements in the 

running time.

Speed
Below is a comparison of the computation time of the Fast-Hessian detector versus the 

homogeneous color detector.  It was performed on the first image in the Graffiti test set provided 

by Mikolajczyk.

Detector # points found Time (ms)
Fast-Hessian 1580 290
Homogeneous 
Color

3304 30

Table 1 - Computation Time

Clearly this interest point detector is significantly faster than the Fast-Hessian detector, 

which runs quicker than other current detectors.  Furthermore, the homogeneous color detector 

was  not  fully  optimized  and  was  coded  in  Java  as  a  proof-of-concept.   The  Fast-Hessian 

implementation  tested  was coded in  C++.   Minor  improvements  in  the  running  time  of  the 

homogeneous  color  detector  are  likely  possible  with  optimizations  and  with  conversion  to 

another programming language.

Repeatability
The following figures represent repeatability testing of the homogeneous color detector, 

and direct comparison to the Fast-Hessian and Difference-of-Gaussian detectors used with SURF 
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and SIFT (respectively).  The testing software is provided by Mikolajczyk [19].  Note that the 

homogeneous color detector actually performs better  than the other descriptors tested on the 

“Leuven”  image  set.   Also  note  that  for  the  following  figures,  the  repeatability  results  for 

Difference-of-Gaussian and Fast-Hessian were found in [1].

The “Graffiti” test set is the first of two sets to analyze the robustness of detectors with 

respect to viewing angle.  The test set consists of six images with gradually changing viewing 

angles.  Each value plotted represents the repeatability when comparing the first image against a 

subsequent image.  For the fifth and sixth images, the affine transformation is too extreme for 

any of the detectors to correctly find corresponding interest points.
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The “Wall”  test  set  also analyzes the robustness of detectors with respect to  viewing 

angle.  All descriptors display a higher repeatability score in this test set than in the “Graffiti” set. 

This may be because the “Wall” set subjectively appears less interesting.

The  “Leuven”  test  set  consists  of  pictures  with  gradually  decreasing  light.   The 

homogeneous color detector displays higher repeatability on this test set than the Fast-Hessian 
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and Difference-of-Gaussian detectors.   This may be due to the type of scene depicted in the 

images, which places three cars prominently in the center.  The sharp color contrasts of different 

features  on  the  cars  are  easily  recognized  by  the  homogeneous  color  detector,  even  at  low 

lighting.
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CHAPTER 5 - Conclusion

The interest point detector that has been presented is a suitable algorithm for time-critical 

applications.  It is able to operate much faster than leading methods with only minor sacrifices in 

repeatability.

Future work should improve the robustness of the descriptor with respect to rotational 

invariance.  Since the algorithm currently relies on axis-oriented regions, responses to rotations 

are sometimes favorable, but sometimes unpredictable.

In addition, research towards a complementary feature descriptor is also possible.  Even 

the fastest current feature descriptors still require more computation time than this interest point 

detector.  The total running time of an object detection algorithm that combines this detector with 

an existing descriptor will  be dominated by the descriptor.   An ideal  complementary feature 

descriptor would run in approximately the same amount of time as the detector.
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