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AN APPLICATION OF CUBICAL COHOMOLOGY TO

ADINKRAS AND SUPERSYMMETRY REPRESENTATIONS

CHARLES F. DORAN, KEVIN M. IGA, AND GREGORY D. LANDWEBER

Abstract. An Adinkra is a class of graphs with certain signs marking its ver-

tices and edges, which encodes off-shell representations of the super Poincaré
algebra. The markings on the vertices and edges of an Adinkra are cochains

for cubical cohomology. This article explores the cubical cohomology of

Adinkras, treating these markings analogously to characteristic classes on
smooth manifolds.

1. Introduction

Supersymmetry posits that the physical fields in nature form a representation
of an algebra called the N -extended super Poincaré algebra, which is defined given
two positive integers N and D (the number D represents the dimension of space-
time). [26]

In recent years it has become apparent that even for D = 1, the representation
theory is surprisingly intricate. [1, 2, 11, 12, 13, 17, 21, 22, 23, 24] In 2004,
M. Faux and S. J. Gates introduced a graphical diagram called an Adinkra to
describe some commonly studied representations of the super Poincaré algebra in
D = 1 dimensions. [11] These diagrams are directed graphs, where the vertices
and edges have certain markings and colorings. An Adinkra is similar in spirit to
the concept of a Cayley graph or a Schreier graph in combinatorial group theory
(see, for instance, Sec. 1.6 of [20]). These Adinkra diagrams have broadened
our knowledge of the representation theory of the super Poincaré algebra in one
dimension. [4, 5, 6, 7, 9, 18, 25]

In this paper, we will show how a certain combinatorial cohomology theory on
the Adinkra, called cubical cohomology, can be used to determine which kinds of
markings are possible.

1.1. Marked Graphs and Adinkras. To define an Adinkra, it is first necessary
to describe the kinds of markings to be put on vertices and edges.

A directed graph consists of V , a finite set of vertices, and a set of directed
edges E ⊂ V × V . If e is an edge, and e = (v, w), then we say e points from v to
w, and e is incident to both v and w.
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A bipartition is a partition of V into V0 t V1, so that each edge of the graph is
incident with one element of V0 and one element of V1. The elements of V0 are
called bosons and the elements of V1 are called fermions. We draw the elements
of V0 as empty circles, and the elements of V1 as filled circles. A graph together
with a bipartition is called a bipartite graph.

Fix a positive integer N . We choose N colors, one for each of the numbers in
{1, . . . , N}. An edge coloring is a mapping χ : E → {1, . . . , N}. We draw each
edge e ∈ E using the color corresponding to χ(e).

A dashing is a mapping µ : E → {0, 1}. The edge e ∈ E is drawn with a solid
line if µ(e) = 0 and drawn with a dashed line if µ(e) = 1.1

In this paper, we use the term marked graph to mean a directed graph, together
with a bipartition, an edge coloring, and a dashing. An example of a marked graph
is Example 1.1.

Given a marked graph and a subset J ⊂ {1, . . . , N}, we can take the subgraph
given by the same vertex set, but for the edge set take E′ = χ−1(J); that is,
the edges whose colors are in J . The bipartition of the vertices will be the same
and the colorings and dashing of the edges will be restricted to E′. Connected
components of this marked subgraph will be called J-color-faces of the marked
graph. If k is an integer with 0 ≤ k ≤ N , a k-face is a J-color-face where #J = k
(the cardinality of a set J is denoted by #J).

A circuit is a connected marked graph where each vertex is incident to exactly
two edges. A quadrilateral is a circuit with 4 vertices.

An Adinkra is a marked bipartite graph with the following properties: [11]

(1) (Color-regular) For every vertex v and color j ∈ {1, . . . , N}, there is a
unique edge incident with v of color j.

(2) (Square) Every 2-face is a quadrilateral.
(3) (Non-escheric) Suppose f is a 2-face. In traversing the boundary of f in

either direction, the same number of edges are oriented along the direction
of the path as are oriented against the path.

(4) (Odd) Every 2-face has an odd number of dashed edges.2

Example 1.1. Consider the following Adinkra for N = 3:

1This is equivalent to the notion of a signed graph, defined by Frank Harary, [14] where +1
and −1 are used instead of 0 and 1. The difference is that we will use additive notation instead
of multiplicative notation for the group of order 2. The relationship of dashed edges with the
supersymmetry representation actually suggests the multiplicative notation, and it may be that

future work will motivate a switch to this notation, but since the purpose of this paper is to
establish the relationship to cohomology, the additive notation will be used.

2In the language of Harary, [14] every 2-face is negative.
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More generally, for all N , the 1-skeleton of an N -dimensional cube is the un-
derlying graph of some Adinkra. In fact, all connected Adinkras are obtained by
quotients of these cubes. [9]

Given an Adinkra, and a vertex v in the Adinkra, a vertex switch produces
another Adinkra identical to the first, except that every edge incident with v
changes dashedness; i.e., if it was dashed, it becomes solid, and vice versa. A
vertex switch does not change the oddness of the dashing since every 2-face either
does not contain the vertex being switched (in which case nothing happens to the
edges in it) or it does, in which case two edges are switched. Therefore, the result
is an Adinkra.

Example 1.2. If we do a vertex switch on v4 in the previous example, we get the
following Adinkra. Note that each 2-face still has an odd number of dashed edges.

v1

v2

v3

v4

v5
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1.2. Purpose of this paper. The purpose of this paper is to characterize the
odd dashings on an Adinkra, up to vertex switches. The machinery to understand
this is cubical cohomology, which is a combinatorial counterpart to simplicial co-
homology, but using cubes instead of simplices.

This paper fits into a program to classify all Adinkras, as follows. Since the dis-
joint union of Adinkras is an Adinkra, it suffices to describe connected Adinkras.
If we ignore the direction of the edges and the dashings, so that we are consid-
ering only the underlying undirected graph with the edge colorings, then these
are obtained by taking the quotient of a cube by a binary doubly-even code. [9]
The ways of assigning the directions of the edges were explored in the “Hanging
Gardens” theorem. [4] This paper solves the problem of identifying the ways in
which the dashings may be chosen, up to vertex switches.

1.3. Review of Codes. In this paper all codes will be binary linear block codes
of length N . That is, they are linear subspaces of Z2

N as vector spaces over Z2.
We review a few basic concepts in the theory of codes to establish notation and
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conventions. The interested reader can find a thorough introduction to the theory
of codes in [15].

If C ⊂ Z2
N is a code, then elements of C are called codewords. If a codeword

w = (w1, . . . , wN ) ∈ Z2
N , the weight of w, denoted wt(w), is the number of j with

wj = 1. An even code is one where all codewords have even weights. A doubly
even code is one where all codewords have weights divisible by 4.

A basis for C is called a generating set. A generating set is not unique, but all
generating sets have the same cardinality: the dimension of the code, denoted as
k, which is the dimension of C as a vector space. If a code is a binary linear block
code of length N of dimension k, it is called an [N, k] code.

A generating set is often arranged as rows of a matrix, called the generating
matrix. Given two generating matrices for C, there is a sequence of row operations
taking one generating matrix to another.

2. Cubical cohomology

This paper uses a kind of combinatorial cohomology, similar to simplicial coho-
mology, but using cubes instead of simplices. This kind of homology/cohomology
theory was introduced by Kan. [16] This description is simplified here because we
do not use degeneracy maps, and because we are using Z2 coefficients and hence,
we ignore orientation issues.

Definition 2.1. A cubical complex is a sequence of sets X0, X1, X2, . . ., with maps

∂αm : Xk → Xk−1

for integers k ≥ 1, 1 ≤ m ≤ k, and 0 ≤ α ≤ 1, so that for e ∈ Xk, and m < n ≤ k,
there is a (multi-)set equality

(1)
{
∂αm∂

β
n(e) |α, β ∈ {0, 1}

}
=
{
∂βn−1∂

α
m(e) |α, β ∈ {0, 1}

}
.

In the applications for this paper, we expect ∂0m∂
0
n(e), ∂0m∂

1
n(e), ∂1m∂

0
n(e), and

∂1m∂
1
n(e) to be all different, but if they are not, the multiplicity of each element is

assumed to be preserved in the above multiset equality (1).

Example 2.1. The N -dimensional cube (also called an N -cube) is the space IN =

[0, 1]N . It is a CW complex with 3N different cells, each of the form
∏N
i=1 Yi, where

Yi is either {0}, {1}, or [0, 1]. The dimension of the cell is the number of factors
Yi that are equal to [0, 1]. The set Xk is then the set of all cells of IN of dimension
k. Given a k-cell f in this CW complex, we can define ∂αmf , where m ∈ {1, . . . , k}
and α ∈ {0, 1}, to be the k−1-cell obtained by replacing the mth occurence of [0, 1]
in the product with {α}. Then (1) follows, and IN defines a cubical complex.

Let X be a cubical complex. For each integer k define the group of k-chains
Ck(X) to be the free Z2-vector space spanned by Xk. If σ ∈ Xk, we define

∂σ =

k∑
n=1

1∑
α=0

∂αn (σ).

This operator is extended linearly to all of Ck(X) for each k (for σ ∈ C0(X) we
define ∂σ = 0). It is straightforward to show that ∂∂σ = 0 for all σ.
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We define the cubical homology of X, Hk(X), to be the homology of this chain
complex. Likewise, we define the cochain groups Ck(X) = Hom(Ck(X),Z2), define
d : Ck(X)→ Ck+1(X) so that dα(σ) = α(∂σ), and define the cubical cohomology
of X, Hk(X), to be the cohomology of this cochain complex.

In fact, these cubical homology groups and cohomology groups are isomorphic
to the ordinary singular homology and cohomology groups of their geometric re-
alizations, as can be proven using a spectral sequence using the filtration given by
the skeleta of the cubical sets, as is commonly done with CW complexes.

Given a finite cubical complex X, we define the following special cocycles ω̃k ∈
Ck(X): if f is any k-cell, let ω̃k(f) = 1. The fact that dω̃k = 0 follows from
the fact that every k + 1 cell has an even number of k cells in its boundary. Let
wk = [ω̃k] ∈ Hk(X) be its cohomology class.

Given a graph, we can construct a cubical complex X where X0 is the set of
vertices and X1 is the set of edges. The boundary operators ∂α1 send an edge e to
the two vertices incident to e. Which is ∂01(e) and which is ∂11(e) is an arbitrary
choice which must be determined beforehand, but will be otherwise unimportant
in what follows.

If this graph is marked with an edge coloring that is color-regular and square (as
in Section 1.1, we can add the 2-faces as elements of X2. We choose an ordering
of the colors, and given a {i, j}-face f , with i < j, we define ∂α1 (f) to be the two
edges of color i, and ∂α2 (f) to be the two edges of color j in f . Again, which is
α = 0 and which is α = 1 can be chosen arbitrarily.

More generally, given an Adinkra A, there is a cubical complex where Xk is the
set of k-faces. If J is a set of colors, and f is a J-color-face, and if j is the ith
color in J , then by looking at subgraphs obtained by deleting the edges of color j,
we end up with either one or two J − {j}-color-faces. We define ∂0i (f) and ∂1i (f)
to be these two J −{j}-color-faces if they are different, and to be equal to the one
J − {j}-color-face if there is only one. Again, which is ∂0i (f) and which is ∂1i (f)
is an arbitrary choice.

3. Dashed edges

If X is a cubical complex, a dashing on X can be recorded by a 1-cochain
µ ∈ C1(X) that assigns 1 to every dashed edge and 0 to every solid edge. A vertex
switch on a set of vertices can be recorded as a 0-cochain that assigns 1 to a vertex
if it is in the set and 0 otherwise.

Proposition 3.1. The dashing µ is odd if and only if dµ = ω̃2. If µ is a dashing
that is obtained from doing a vertex switch T to µ, then µ = µ+ dT .

Proof. For µ to be odd means for every 2-cell f , dµ(f) = µ(∂f) = 1.
A vertex switch T to µ is obtained by changing the dashing on an edge if and

only if exactly one vertex incident to it is in the set. The 1-cocycle dT is 1 on
every edge that has one vertex incident to an element of the set. �

Theorem 3.2. Let X be a cubical complex. There exists an odd dashing on X
if and only if w2 = 0. The set of such is an affine space modeled on the set of
1-cocycles on X. Modulo vertex switchings, this is an affine space modeled H1(X).
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Proof. Since dω̃2 = 0, the existence of a µ as given in Proposition 3.1 is equivalent
to whether or not w2 = 0 in H2(X).

If µ0 is an odd dashing, then by Proposition 3.1, µ is an odd dashing if and
only if dµ = dµ0 = ω̃2, which is equivalent to saying that µ is µ0 plus a 1-cocycle.

The second part of Proposition 3.1 shows that modulo vertex switching is pre-
cisely the quotient by 1-coboundaries. �

Remark: This is remarkably similar to the situation with spin structures on
manifolds: the existence of a spin structure on an orientable manifold M is de-
termined by the second Stiefel–Whitney class of the tangent bundle w2(TM) ∈
H2(M ;Z2). A necessary and sufficient condition for spin structures to exist is
w2(TM) = 0, and the difference of two such spin structures is characterized by
an element in H1(M ;Z2), so that the set of spin structures is in bijection with
H1(M ;Z2). As it turns out, there is a relationship, explained in [10], which uses
the work of Cimasoni and Reshetikhin, where edge dashings on surface graphs
correspond to spin structures. [3]

Example 3.3. When X is an N -dimensional cube, then since the geometric re-
alization of X is a CW complex, cubical cohomology coincides with ordinary sin-
gular cohomology. Since H2(X) = 0, w2 = 0, and an odd dashing exists. Since
H1(X) = 0, this odd dashing is unique up to vertex switching.

Example 3.4. We now consider a quotient of a 4-cube by the code

d4 = {(0, 0, 0, 0), (1, 1, 1, 1)}.

The graph is obtained by taking two copies of the 3-cube (colored black, red, and
green), connected by blue lines representing the fourth color. When we identify
antipodal vertices, we are left with only one 3-cube, and the blue lines connect
antipodal vertices in the 3-cube. The result is the following:

As a CW complex, the 4-cube is a 4-ball, with its boundary 3-sphere as its 3-
skeleton. The quotient acts on the 3-sphere by antipodal mapping, and sends the
4-cell to itself in a way that the boundary is two copies of the 3-sphere. Thus, the
corresponding chain complex is that of the real projective space RP4. It is known
that H1(RP4;Z2) ∼= Z2, so there are two odd dashings up to vertex sign flips.
These correspond to the chiral3 and twisted chiral multiplets. We will show this in
Example 6.6, once we have the more general theory in place.

3More precisely, the dimensional reduction to D = 1 of the D = 4 chiral multiplet
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4. The Cubical Cohomology of an Adinkra

4.1. Computation of Cohomology Groups. It was proved in [9] that every
connected Adinkra is a quotient of the graph of IN by a binary linear code C
of length N . Specifically, the quotients are realized by compositions of reflection
maps of the following type.

For every 1 ≤ j ≤ N , define the reflection map rj : IN → IN to be reflection
in the plane xj = 1/2, and for all (t1, . . . , tN ) ∈ {0, 1}N , define

r(t1,...,tN ) = rt11 ◦ · · · ◦ r
tN
N .

These maps preserve the cubical structure described above, and thus define maps
ρj and ρ(t1,...,tN ) among the k-cells. This can be viewed as an action of Z2

N on

the set of k-cells of IN .
If C is a code of length N , then by restriction we get an action of C on the set

of k-cells of IN . Quotienting by this action of C, we get a cubical complex. Its
1-skeleton is then a graph. The result in [9] is that every connected Adinkra has
as its graph the quotient of the 1-skeleton of IN by some doubly even code C.

In this section we compute some homology and cohomology groups of such a
quotient of an N -cube by a doubly even binary linear code C.

Theorem 4.1. Let A be a quotient of an N -cube by a doubly even binary linear
[N, k] block code C. Then we have the following.

H0(A) ∼= H0(A) ∼= Z2

H1(A) ∼= H1(A) ∼= Z2
k

Proof. Since A is connected, H0(A) ∼= Z2. To compute Hk(A) for k ≤ 2, we
can replace IN with its 3-skeleton, denoted IN(3), and A with IN(3)/C. Since
the minimal weight of a non-zero codeword in C is greater than or equal to 4,
the fixed points of C on IN lie in cells of dimension 4 and higher. Thus, C
acts freely on IN(3), and IN(3) is the universal covering space of IN(3)/C. Then
H1(A) ∼= H1(IN(3)/C) ∼= π1(IN(3)/C) ∼= C ∼= Z2

k. The cohomology groups follow
from the universal coefficient theorem. �

Remark: It is possible to prove thatH2(A) ∼= (Z2)k+(k
2) through a more involved

argument, replacing IN(3)/C with the classifying space BC ∼= (RP∞)k, but that
computation will not be used in this paper. This can be used to prove the existence
of odd dashing if and only if C is doubly even, a fact already proved in Ref. [9].

4.2. Lifting paths and squares. To represent homology classes in A it will be
convenient to have a combinatorial version of path lifting.

Lemma 4.2. Let A be a graph with edge coloring that is color-regular. Suppose
v0 is any vertex of A. Given a sequence of colors j1, . . . , jr, there is a unique path
starting at v0 of length r so that the ith edge in the path has color ji.

Proof. This can be proved by induction on the length r of the sequence of colors,
using the color-regularity property. �

Likewise, it will be useful to lift squares, and so we prove the following lemma:
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Lemma 4.3. Let A be a graph with edge coloring that is color-regular, and for
which the 2-faces are quadrilaterals. Suppose v0 is any vertex of A. Given two
different colors i and j, and the graph G with edge colors

s s
s s

i

i

j j

P Q

RS

there is a unique mapping of G to A where P is sent to v0 and edges are sent to
edges of the same color. There is a unique {i, j}-color-face in A with this boundary.

Proof. We first view this square as a path with sequence of colors i, j, i, j:

s s s s s
P Q R S T

i j i j

By Lemma 4.2, there is a unique path in A that lifts this path where P goes
to v0. Since there are two colors, this path is part of an {i, j}-color-face σ. Since
the 2-faces of A are quadrilaterals, the path must close, so that P and T go to the
same vertex in A. Thus, the square G maps into A. The boundary of σ is that
path. �

4.3. Generators for homology and cohomology. For j ∈ {1, . . . , N}, we de-
fine 1-cochain εj to be 1 on all edges of color j, and 0 on all other edges.

Proposition 4.4. The 1-cochain εj is a 1-cocycle.

Proof. Let σ be any 2-face. Then dεj(σ) = εj(∂σ) =
∑2
n=1(εj(∂

1
nσ) + εj(∂

0
nσ)).

The edge ∂1nσ is of color j if and only if ∂0nσ is. So this sum is zero modulo 2. �

We will sometimes use the notation εj to denote the cohomology class repre-
sented by εj .

Theorem 4.1 says that H1(A) is isomorphic to the code C, but it will be useful
to have a more constructive description of this isomorphism.

Definition 4.1. Pick a vertex v0 from the Adinkra A. Let w = (w1, . . . , wN ) ∈ C
be a word of length N and weight r. Let 1 ≤ j1 < j2 < · · · < jr ≤ N be the integers
so that wji = 1.

We use Lemma 4.2 to find a path v0Pw in A starting from v0 so that the ith
edge is of color ji for all i. We interpret v0Pw as a sum in C1(A) of its edges.
When v0 is understood, we will write Pw.

Example 4.5. Example 3.4 has as its code {(0, 0, 0, 0), (1, 1, 1, 1)}. Take the code-
word w = (1, 1, 1, 1), so that j1 < j2 < j3 < j4 is 1 < 2 < 3 < 4. Pick the bosonic
vertex on the lower left of the diagram. The ordering of the ji means we go up
from this vertex along color 1 (black), then to the right along color 2 (red), then to
the back face using color 3 (green), then across the diagonal along color 4 (blue).
Note that this brings us back to the starting point. This path is P(1,1,1,1). The
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interested reader may verify that a similar path, starting at any other vertex, will
also form a loop.

Proposition 4.6. Fix a vertex v0 in A. For every codeword w ∈ C, v0Pw is a 1-
cycle. The mapping Π: C → H1(A) sending w ∈ C to the homology class [v0Pw] ∈
H1(A) is a monomorphism, and if C is doubly even, then Π is an isomorphism.

Proof. There is a vertex x = (x1, . . . , xN ) in {0, 1}N that goes to v0 under the

quotient of IN by C. Use Lemma 4.2 to find a path xP̃w in IN starting at x so
that the ith edge is of color ji. Under the quotient by C, this path results in a
similar path starting from v0 so that the color of the ith edge is ji for all i. By
the uniqueness of such a path, this must be v0Pw. Since xP̃w ends at x + w and
w ∈ C, it must be that v0Pw ends at v0. Therefore, v0Pw is a cycle.

We now show that the map Π is a homomorphism. Suppose v and w are two
words in C, with corresponding sequence of colors i1 < . . . < iq and j1 < . . . < jr,
respectively.

Consider the color sequence i1, . . . , iq, j1, . . . , jr. Write this sequence as k01, . . . , k
0
s .

We obtain a path F 0 starting at v0 following this sequence of colors. This path
consists of a sequence of vertices v00 , . . . , v

0
s and edges e01, . . . , e

0
s so that for each

i, e0i is incident with v0i−1 and v0i , and is of color k0i . As a homology class,

[F 0] = [Pv] + [Pw].
At each stage t, we perform a sequence of adjacent swaps, that is, for some

index 1 ≤ n < s, we define

kti =


kt−1n , if i = n+ 1

kt−1n+1, if i = n

kt−1i , otherwise.

The choice of n at each stage t is given by the bubble sort algorithm to obtain for
some t a sequence kti that is non-decreasing. We can ensure that for no t do we
swap identical colors.

For each t, we produce a path F t starting at v0 and following the colors in kti .
More specifically, F t consists of a sequence of vertices vt0 = v0, . . . , v

t
s and edges

et1, . . . , e
t
s with eti incident to vti−1 and vti and color kti , for all i. Consider the swap

done at stage t, and let n be the index such that ktn = kt−1n+1. If we consider the

vertex vn−1 in F t−1, and let S be the square in A starting at vn−1 with colors ktn
and ktn+1 (see Prop. 4.3), then S is a face so that ∂S is the union of the edges

et−1n , et−1n+1, e
t
n, e

t
n+1. Thus, F t = F t−1 + S. In this way, by induction, [F t] = [F 0]

for all t.
Let t be the stage at which the kti are non-decreasing. Then Πt consists of a

path, possibly with backtracks when two adjacent colors are identical. Note that
runs of identical colors may be at most 2 edges long. When there is a backtrack
corresponding to a run of 2 identical colors, then as an element of C1(A), these
two edges cancel, and the corresponding pair of colors may be deleted. The result
of removing such pairs shows that Πt is the path starting at v0 with colors corre-
sponding to the non-zero entries in the codeword v+w. Since C is a finite group,
this suffices to prove that Π is a homomorphism.
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To establish that Π has trivial kernel, let w = (w1, . . . , wN ) be any non-zero
codeword, and let j be any index so that wj = 1. Then εj([Pw]) =

∑r
i=1 εj(ei) = 1,

and therefore, [Pw] 6= 0. Thus, Π is a monomorphism.
If C is doubly even, then Theorem 4.1 applies and C and H1(A) are vector

spaces of the same finite dimension over Z2. Thus, Π being a monomorphism
implies it is an isomorphism. �

5. Classification of odd dashings modulo vertex switches

Suppose we have an Adinkra A that is a quotient of an N -cube by a doubly
even code C. We know from Theorem 3.2 that the set of odd dashings modulo
vertex switches is an affine space modeled on H1(A), which, by Theorem 4.1, is
isomorphic to (Z2)k. We will now describe a particular isomorphism from the
set of odd dashings modulo vertex switches to (Z2)k. The point is to describe a
complete invariant (s1, . . . , sk) ∈ (Z2)k for the set of odd dashings modulo vertex
switches which can be used in computations.

Definition 5.1. Suppose c1, . . . , ck is a generating set for the code C. Pick a
vertex v0 of A. As in Section 4.3, for each i, let v0Pci be the path starting from v0
and corresponding to the colors indicated by ci. For each µ ∈ C1(A) associated with
an odd dashing, define v0s(µ) = (s1, . . . , sk) ∈ (Z2)k with si equal to the number,
modulo 2, of dashed edges of µ along v0Pci . As before, when v0 is understood, we
can write s(µ).4

Example 5.1. In Example 4.5, we followed a path that involved zero dashed edges.
So s in this case is 0. The interested reader can try this with other starting points,
and should note in this case that s is 1 if the starting vertex is a fermion, and 0
if the starting vertex is a boson.

Theorem 5.2. The map s from the set of odd dashings modulo vertex switches to
(Z2)k is a bijection.

Proof. First, note that s is unchanged under vertex switches (since Pc is a cycle
and dT is a coboundary), so the domain of s can be taken to be odd dashings
modulo vertex sign switches. Also, s is affine-linear. That is, if we let µ0 be an
odd dashing, then s(µ)− s(µ0) is a linear function of µ−µ0. The map s is then a
bijection if and only if the corresponding linear function is one as well. Since the
dimensions of the domain and range are equal, the only thing we need to check is
that this linear map is an injection.

Suppose s(µ) − s(µ0) = 0; in other words, µ(Pci) − µ0(Pci) = 0 for all i. By
linearity, µ(Pc)− µ0(Pc) = 0 for all c ∈ C. Therefore, µ− µ0 = 0 in cohomology,
and µ− µ0 = dT for some vertex switch T . �

Remark. Even though the paths [Pci ] generate H1(A), the application of µ
to such a 1-cycle is not well-defined on the homology class; that is, it may differ
when a path is modified to something homologous. The reason is that µ is not a
1-cocycle: dµ is ω̃2, not 0.

4More invariantly, but less convenient computationally, v0s(µ) could be viewed as a linear
functional on the code C.
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Along these lines, note that the actual sequence s1, . . . , sk depends on v0. It
also depends on the ordering of the colors when lifting the sequence of colors to
Pci , which we chose by specifying j1 < · · · < jr. But if these choices are fixed
for a given Adinkra, then this theorem says that s(µ) is a complete invariant for
dashings modulo vertex switches. We will consider the effect of changing v0 in
Section 6.

5.1. Edge sign flips. To enumerate all Adinkras, it will be useful to find all odd
dashings modulo vertex switches for a given Adinkra. This involves inverting the
map s, meaning given a k-tuple (s1, . . . , sk), we wish to find an odd dashing µ.
Actually, we assume that some other odd dashing µ0 is already given, with some
s(µ0) = (σ1, . . . , σk). Then we describe what to do to µ0 to change s(µ0) to any
other k-tuple. This will be achieved with what are called edge sign flips, described
next.

If we are given an odd dashing, and j is a color, then an edge sign flip of color
j takes the dashing and reverses the dashing of all edges of color j. An example
of this was reversing the dashing on the blue edges in Example 3.4.

Proposition 5.3. Let A be an Adinkra with odd dashing described by µ1 ∈ C1(A).
Let j be a color. The result of an edge sign flip of color j is a dashing described
by µ2 = µ1 + εj. This resulting dashing is odd. If G is the generating matrix for
the code, then s(µ2) is s(µ1) plus the jth column of G, taken modulo 2.

Proof. Recall that εj takes the value 1 on every edge of color j, and 0 on all other
edges. Therefore, adding it modulo 2 to µ1 reverses every edge of color j. We
recall that dεj = 0, so µ2 is odd if µ1 was. For each i we see that si(µ2)−si(µ1) =
εj(Pci) = (ci)j = Gij . �

More generally, we can consider a series of edge sign flips: for every word
x = (x1, . . . , xN ) ∈ (Z2)N we perform an edge sign flip of every color j where
xj = 1.

Theorem 5.4. Let A be an Adinkra that is an N -cube quotiented by a code C,
and suppose A has odd dashing µ0. Let x ∈ (Z2)N be a word of length N . The
result of performing a series of edge sign flips using the colors j where xj = 1 on
µ0 results in another odd dashing µx.

If we write x and s(µ) as column vectors, and G is the generating matrix for
the code, then

(2) s(µx) ≡ s(µ0) +Gx (mod 2).

Proof. The result of the series of edge sign flips using x on µ0 is

µx ≡ µ0 +

N∑
j=1

xjεj .

If w = (w1, . . . , wN ) ∈ C is a codeword, we take the above equation and evaluate
it on the 1-chain Pw, and the result is

sa(µx) ≡ sa(µ0) +

N∑
j=1

xjwj (mod 2)
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for all a. In particular for the ith generating word of G,

wj = Gi,j ,

and then (2) follows from writing this statement in matrix form. �

We are now able to find an odd dashing for each k-tuple (s1, . . . , sk), using the
following:

Algorithm 1. Input:

• a generating matrix G for a code C
• a vertex v0 of the Adinkra A = IN/C
• an odd dashing µ0 on A
• a k-tuple (s1, . . . , sk) ∈ (Z2)N

Output: an odd dashing µ on A with v0s(µ) = (s1, . . . , sk)
Procedure:
Use Gauss–Jordan elimination on G. Then G is in reduced row-echelon form,

with leading 1s in columns j1 < · · · < jk. Compute v0s(µ0). Let

(σ1, . . . , σk) = (s1, . . . , sk)− s(µ0) (mod 2).

Perform an edge sign flip on µ0 for color ji for every i with σi = 1. Let µ be the
resulting dashing after all these edge flips are accomplished.

By Theorem 5.4,
v0s(µ) = v0s(µ0) + (σ1, . . . , σk),

which is (s1, . . . , sk).

Edge sign flips are powerful enough to generate all of the different odd dashings
up to vertex switches, as we see in the following theorem.

Corollary 5.5. Let A be a connected Adinkra, and let µ1 and µ2 be two odd
dashings on A. There is a sequence of edge sign flips and vertex switches that
turns µ1 into µ2.

Proof. Every connected Adinkra is a quotient of an N -cube by a code C. Let G
be a generating matrix for C. Pick a vertex v0 in the Adinkra. Apply the above
Algorithm to G, v, µ1, and v0s(µ2) − v0s(µ1), to find an odd dashing µ3 with
s(µ3) = s(µ2). By Theorem 5.2, µ2 can be obtained from µ3 by a series of vertex
switches. �

6. Changing the starting vertex v0

We now have a complete invariant, v0s(µ), of the odd dashing. But it depends
on the starting vertex v0. Let us consider the effect of changing v0 on the k-tuple
v0s(µ). As before, we assume the Adinkra A is connected, and therefore, it is a
quotient of IN by a code C.

Let v1 be another vertex in A. There is a path P connecting v0 to v1. If we
follow the sequence of colors in P , we form a word x, where xj = 1 if and only if
color j appears in the path P .
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Theorem 6.1. Suppose A is an Adinkra, with odd dashing given by µ. Let v0,
v1, and x be as above. If we write x and s(µ) as column vectors, and G is the
generating matrix for the code, then

v1s(µ) ≡ v0s(µ) +Gx (mod 2).

Proof. As in the proof of Theorem 5.4, we actually prove that if w = (w1, . . . , wn)
is a codeword in C, then

(3) µ (v1Pw) ≡ µ (v0Pw) +

N∑
j=1

xjwj (mod 2).

We take for w each generator of C, that is, each row of the matrix G. Gathering
this into matrix notation, we then would have the desired result.

As before, let j1 < · · · < jr be the integers so that wji = 1.
To prove (3), first consider the situation where the x is all zeros except for a

single 1 at position m. That is, xm = 1 and xi = 0 for all i 6= m.
Case 1: wm = 0
If wm = 0, then consider the following diagram.

· · ·s
s

s
s

v0 v0

v1 v1

j1 j2 jr−1 jr

j1 j2 jr−1 jr

m m m m m m

Use Lemma 4.3 iteratively to map this figure into A with the bottom left vertex
going to v0, and the edges going to edges colored with the labels shown. The
leftmost edge connects v0 to v1. Then the bottom edge of this diagram goes to
the path v0Pw, and the top edge goes to the path v1Pw. Both of these paths are
circuits, and so the left edge of this diagram matches the right edge. Let F be
the sum of the faces that this diagram gets sent to in A. The boundary of F is
v0Pw + v1Pw. Therefore we have (mod 2):

µ(v1Pw) ≡ µ(v0Pw + ∂F )

≡ µ(v0Pw) + µ(∂F )

≡ µ(v0Pw) + dµ(F )

≡ µ(v0Pw) + ω̃2(F ).

But ω̃2(F ) is the number of 2-faces in F , which is r, the weight of the codeword
w, which is even. Therefore µ(v1Pw) ≡ µ(v0Pw) (mod 2).

Case 2: wm = 1
In this case, jn = m for some n, and we have the following diagram.
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· · ·

· · ·s
s

s
s

s
s

v0 v1

v1 v0

j1 jr

j1

jn−1

jn−1

jn+1

jn+1 jr

m m m m = jn m m m

Q

P

Again, use Lemma 4.3 iteratively to map this figure into A with the bottom left
vertex going to v0, and the edges going to edges colored with the labels shown.
The leftmost edge connects v0 to v1.

The path v0Pw is in the image of the path that goes from the lower left corner
along the lower edge until the point Q, then going up to P , then going across the
top edge to the point in the upper right. Similarly, the path v1Pw is in the image
of the path that goes along the top from the upper left to P , then down to Q,
then along the bottom edge to the lower right. Again, let F be the sum of the
faces that this diagram gets sent to in A. As before,

µ(v1Pw) ≡ µ(v0Pw) + ω̃2(F ) (mod 2),

but ω̃2(F ), the number of 2-faces in F , is now r − 1, which is odd. Therefore
µ(v1Pw) ≡ µ(v0Pw) + 1.

General case: We return to the situation where we consider words x with
wt(x) > 1. We iterate the above procedure for every j so that xj = 1. Note
that ρx is the composition of the ρj for which xj = 1. The result follows. �

6.1. Node choice symmetry. We have seen how the k-tuple v0s(µ) = (s1, . . . , sk)
captures the properties of µ that are invariant under vertex switches. But it de-
pends on the choice of a vertex v0, as we have just seen. These vertices can
sometimes be easily distinguished: for instance, some are bosons and others are
fermions; some have many arrows pointing away from it, others have few; and so
on. But in other cases, there is no property that can distinguish them, and these
are node choice symmetries.

Definition 6.1. A node choice symmetry of an Adinkra A is a permutation of the
vertices and edges in A that preserves

(1) the incidence relation between edges and vertices,
(2) the bipartition (V0, V1) of the vertices,
(3) the colors of the edges, and
(4) the orientation of the arrows on the edges.

That is, it preserves all the features of the Adinkra except for the dashedness.

Let us assume A is connected. By the color-regular property of Adinkras,
criteria 1 and 3 in the definition guarantees that the permutation is determined
uniquely by where it sends a given vertex v0 (to, say, v1). The path from v0 to
v1 can be described as a word x ∈ (Z2)N . The permutation given by ρx satisfies
criterion 1 and 3, and by uniqueness, must be the original permutation. Therefore,
every node choice symmetry is given by ρx for some x.
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Criterion 2 is equivalent to wt(x) being even, and criterion 4 can be described
in terms of height assignments by saying that ρx(v) and v have the same height
(equivalently, the same engineering dimension) for every vertex v. This motivates
the definition of the following code:

Definition 6.2. The node choice code H of a connected Adinkra is the set of words
x ∈ (Z2)N so that for all vertices v in the Adinkra, ρx(v) has the same engineering
dimension as v.

Note that H is a group under addition modulo 2, and is therefore a linear code.
Suppose A is a quotient of IN by the doubly even code C. Then C is a subgroup
of H. The map x 7→ ρx describes an action of H on the Adinkra via node choice
symmetries, and C is the subgroup that acts trivially on the Adinkra. All node
choice symmetries are obtained in this way.5 Criterion 2 implies H is an even code.
There is a generating matrix H whose rows are the generating words for H.

The point here is that by considering the invariant k-tuple v0s(µ), one might
be under the impression that there are 2k odd dashings on A = IN/C, where k is
the dimension of the code C. But the node choice symmetries act on the vertices,
and therefore on the possible k-tuples by changing v0. If we identify the various
possible k-tuples, the result will give us invariants that identify the odd dashings
on an Adinkra modulo vertex switches.

Theorem 6.2. Let A be a quotient of IN by a code C with generating matrix G.
Let H be the generating matrix for the node choice code. Let µ be an odd dashing
on A, and let v0, v1 be vertices of A. There exists a node choice symmetry from
v0 to v1 if and only if there exists a column vector y so that

GHT y = v1s(µ)− v0s(µ).

Proof. If ρx is a node choice symmetry, then since the columns of HT generate
the node choice group, x can be written as HT y for some column vector y. The
result then follows from Theorem 6.1. �

Example 6.3. Consider the N = 6 example given below. This is an Adinkra but
the arrows have been removed for the sake of clarity. Instead, the vertices have
been placed at heights so that every arrow is assumed to point upward along its
edge. The fact that this can be done is explained in [4].

A

j jth color
1 black
2 orange
3 red
4 purple
5 blue
6 green

5In [8] we defined the node choice group to beH, and a node choice symmetry to be an element

of H, whereas by our definition, a node choice symmetry is given by the actual permutation ρx,

which is determined by an element in H/C. This distinction will not be relevant for our purposes.
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The code is d6, generated by 111100 and 001111. The generating matrix is thus

G =

[
1 1 1 1 0 0
0 0 1 1 1 1

]
.

Since d6 is two-dimensional, there should be 22 = 4 different dashings. The

matrix G is not in reduced row-echelon form, but since we have

[
1
0

]
and

[
0
1

]
as colums, we can see that the other 3 dashings can be obtained by edge sign flips
with color 1, color 5, and with both, as illustrated below.

There are no node choice symmetries, since any such symmetry must send the
bottom node to itself. Because a node choice symmetry is determined by where it
sends any one vertex, the only node choice symmetry is the identity.

Take v0 to be the lowest vertex, labelled A in the diagram. We trace a path
with colors 1, 2, 3, then 4 (in that order) from v0 and count the number of dashed
edges, modulo 2. This is s1. We do the same with the colors 3, 4, 5, then 6 to get
s2.

Example 6.4. Now consider a different hanging of the same N = 6 Adinkra:

A B

In this case, G is the same, but there is now a node choice symmetry that sends A
to B. This can be described as a path from A to B following color 1 (black), then
color 6 (green). Hence, the matrix H is

H =

 1 1 1 1 0 0
0 0 1 1 1 1
1 0 0 0 0 1

 .
The first two rows are simply the rows in G, to acknowledge that C is a subgroup
of H; they will be irrelevant anyway. We compute:

GHT =

[
0 0 1
0 0 1

]
.
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Therefore the effect of a node choice symmetry on (s1, s2) is to either do nothing,
or to toggle both s1 and s2. We can thus use s1 + s2 as a complete invariant of
dashings, modulo vertex switches and node choice symmetries.

Example 6.5. We now consider the same N = 6 Adinkra, but hung as a valise;
that is, all bosons on one level, and all fermions on the other. In this case, the
arrows go from bosons to fermions, which in [11] was termed a base Adinkra.6

(s1, s2):

(s1, s2):

φ1
(1,0)

φ2
(1,1)

φ3
(0,1)

φ4
(0,0)

φ5
(0,1)

φ6
(0,0)

φ7
(1,0)

φ8
(1,1)

ψ1
(0,0)

ψ2
(0,1)

ψ3
(1,1)

ψ4
(1,0)

ψ5
(1,1)

ψ6
(1,0)

ψ7
(0,0)

ψ8
(0,1)

Given any two bosons, there is a node choice symmetry that takes one to the other.
Thus, the node choice group is the set of even weight words. This is generated by
words of weight 2 where the 1s are adjacent.

H =


1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1

 .
Then we have

GHT =

[
0 0 0 1 0
0 1 0 0 0

]
,

and note that the columns span the whole space (Z2)2. In particular, a node sym-
metry given by y = (0, 0, 0, 1, 0), corresponding to x = HT y = (0, 0, 0, 1, 1, 0),
involving ρ4 followed by ρ5, will change the value of s1 without changing s2. Like-
wise, y = (0, 1, 0, 0, 0), corresponding to x = HT y = (0, 1, 1, 0, 0, 0), involving ρ2
followed by ρ3, will change the value of s2 without changing s1. And doing both
changes both s1 and s2. Therefore, the valise Adinkra for d6 has only one dashing
up to node choice symmetries.

Example 6.6. In the case N = 4 with the code d4 generated by 1111, consider a
valise Adinkra. There are two dashings, shown below.

φ1 φ2 φ3 φ4
(0) (0) (0) (0)

ψ1
(1)

ψ2
(1)

ψ3
(1)

ψ4
(1)

A1:

j jth color
1 black
2 red
3 green
4 blue φ1 φ2 φ3 φ4

(1) (1) (1) (1)

ψ1
(0)

ψ2
(0)

ψ3
(0)

ψ4
(0)

A2:

6A similar example could be obtained if the arrows go from fermions to bosons; this is the

Klein flip of a base Adinkra. A base Adinkra or its Klein flip is called a Valise Adinkra.
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The numbers in the parentheses are the values of s1(µ) at each vertex. For the
Adinkra A1 on the left, every boson has s1 = 0 and every fermion has s1 = 1. We
do an edge sign flip on any edge (in this case, blue) and obtain the Adinkra A2

on the right, where every boson has s1 = 0 and every fermion has s1 = 0. Since
every node choice symmetry preserves the bipartition of the vertices, no node choice
symmetry can swap the two, and so A1 and A2 are really different. Note that GHT

is
[

0 0 0
]
, which confirms this result. If we do a Klein flip on A1 (swap V0

and V1 in the bipartition), then do vertex lifts so that the bosons are still on the
bottom of the diagram, the result will be (up to vertex switches) A2.

The distinction between the two dashings is the same as that between the chiral
and the twisted chiral superfield, except that the chiral and twisted chiral superfields
are not Valise Adinkras.

Example 6.7. Consider the valise Adinkra for N = 8 with C = e8:

s1 + s3:

s1 + s3:

(s1, s2, s3, s4):

(s1, s2, s3, s4):

φ1
(1,1,0,1)

1

φ2
(1,1,0,0)

1

φ3
(1,0,0,1)

1

φ4
(1,0,0,0)

1

φ5
(0,0,1,1)

1

φ6
(0,0,1,0)

1

φ7
(0,1,1,1)

1

φ8
(0,1,1,0)

1

ψ1
(0,1,0,0)

0

ψ2
(0,1,0,1)

0

ψ3
(0,0,0,0)

0

ψ4
(0,0,0,1)

0

ψ5
(1,0,1,0)

0

ψ6
(1,0,1,1)

0

ψ7
(1,1,1,0)

0

ψ8
(1,1,1,1)

0

Color key:
j jth color
1 black
2 red
3 green
4 orange
5 blue
6 purple
7 yellow
8 brown

Here the generating matrix for e8 is

G =


1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0

 .
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The node choice code has generating matrix

H =



1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1


,

and we compute

GHT =


0 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 0 1 0 0 0
1 1 1 1 1 1 1

 .
Note that the first and third rows are the same, but other than that, the rows are
linearly independent. Thus, node choice symmetries can produce 23 = 8 different
s(µ) sequences. These correspond to the 8 bosons: note in the figure that the
s(µ) sequences are listed at each vertex. As long as the symmetry sends bosons
to bosons, we cannot alter s1 + s3, which is truly invariant. But other non-trivial
linear combinations of the sa can always be changed. Hence, there are two distinct
dashings on an N = 8 valise Adinkra that are a quotient of I8 by the code e8.

The other dashing can be obtained by edge flipping any color, for instance Q8

(brown):

s1 + s3:

s1 + s3:

(s1, s2, s3, s4):

(s1, s2, s3, s4):

φ1
(1,1,1,1)

0

φ2
(1,1,1,0)

0

φ3
(1,0,1,1)

0

φ4
(1,0,1,0)

0

φ5
(0,0,0,1)

0

φ6
(0,0,0,0)

0

φ7
(0,1,0,1)

0

φ8
(0,1,0,0)

0

ψ1
(0,1,1,0)

1

ψ2
(0,1,1,1)

1

ψ3
(0,0,1,0)

1

ψ4
(0,0,1,1)

1

ψ5
(1,0,0,0)

1

ψ6
(1,0,0,1)

1

ψ7
(1,1,0,0)

1

ψ8
(1,1,0,1)

1

Example 6.8. Suppose more generally we have any connected Valise Adinkra
A = IN/C. The node choice code is the set E of even weight words in (Z2)N . The
matrix H is then

H =


1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
0 0 0 0 · · · 1 1

 .
Let the ith row of H be denoted hi.

Consider the generating matrix G for the code C. Let z be the length N word
(1, . . . , 1).

The dimension D of the span of the columns of GHT can be determined by
doing Gauss–Jordan elimination. This dimension is k minus the number of rows



20 C. F. DORAN, K. M. IGA, AND G. D. LANDWEBER

of 0s of the reduced row-echelon form of GHT . Thus, D = k if and only if no non-
trivial linear combination of the rows of GHT is zero. Such a linear combination
can be done on G, resulting in a non-trivial linear combination of the generating
words, i.e., a codeword w ∈ C, with wHT = 0 (here w is written as a row matrix).
But unless w = 0 or w = z, there will be a row of H, hi, so that

N∑
j=1

wjhi,j ≡ 1 (mod 2).

To see this, simply locate a column of w where w changes from 0 to 1 or vice versa.
So the only non-trivial codeword w with wHT = 0 is z.

This demonstrates that if z 6∈ C, then D = k, and therefore any s(µ) can be
turned into 0 by choosing v0 appropriately. In other words, if z 6∈ C, then there is
only one odd dashing up to node choice symmetries and vertex switches.

If z ∈ C, then since there is only one non-trivial w with
∑N
j=1 wjhi,j ≡ 1

(mod 2), there is only one row of 0s in the reduced row-echelon form of GHT .
Thus, D = k−1. Choose the generating set for C so that z is one of the generating
words, say, the first one. Then s1(µ) is not altered by any node choice symmetry
(since all elements of H are even, they do nothing to z), but the other sa for a > 1
can be turned into 0 by choosing v0 appropriately. In other words, if z ∈ C, then
there are two odd dashings up to node choice symmetries and vertex switches.

Since C is doubly even, a necessary condition for z ∈ C is that N is a multiple
of 4. And when N is a multiple of 4, if C is maximal, then z ∈ C, since otherwise,
the span of C and z forms a larger doubly even code.

This is in accordance to the following observations. First, valise representations
of the N -extended super Poincaré algebra are in one-to-one correspondence with
supermodules of the Clifford algebra Cl(0, N), which in turn are in one-to-one cor-
respondence with representations of Cl(0, N +1). [8] Second, when N is a multiple
of 4, there are exactly two isomorphism classes of such irreducible representations,
and otherwise, there is just one such. [19]

6.2. Dashing invariants. The results of the previous section indicate that the
sequence (s1, . . . , sk) does not in general work as an invariant for a dashing, because
of node choice symmetries. But the methods of the previous section also suggest
a solution: find linear combinations of the si that are invariant under every node
choice symmetry.

Algorithm 2. Input: code generator matrix G and Node choice code generator
matrix H

Output: A set of linear combinations of the si that is invariant under node
choice symmetries

Procedure:
Create an augmented matrix, consisting of GHT on the left, and a k×k identity

matrix on the right.
Perform Gauss–Jordan elimination on this augmented matrix.
For each row of the resulting matrix where the left side has only zeros, we will

create an invariant. On such a row, look on the right side of the matrix. For each
column i on the right with a 1, include a summand si.
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Example 6.9. Take the N = 6 Example 6.4 above. Here we have

GHT =

[
0 0 1
0 0 1

]
,

which we augment with an identity matrix, as demanded in the algorithm:[
0 0 1 1 0
0 0 1 0 1

]
.

Doing Gauss–Jordan elimination gives[
0 0 1 1 0
0 0 0 1 1

]
,

and there is one row which has 0 on the left of the line: the second row. The right
side of this is

1 1,

which indicates that s1 + s2 is an invariant of both node symmetries and vertex
switches.

7. Other applications of cubical cohomology to Adinkras

This paper has been about odd dashings. But cubical cohomology has other
applications to the mathematics of Adinkras.

7.1. Bipartitions. The existence and classification of bipartitions is analogous to
that of odd dashings, but where the role of w2 is replaced by w1. Just as a dashing
gives rise to a 1-cochain, a partition of the vertices is equivalent to a 0-cochain µ,
where bosons are assigned 0, and fermions are assigned 1. This is a bipartition if
and only if every edge is incident with one boson and one fermion, i.e., if for every
edge e, µ(∂e) = 1. This is equivalent to saying that dµ = ω̃1. Since dω̃1 = 0, this
is possible if and only if w1 = 0 in H1(A).

This choice of µ is unique up to an element of H0(A). If A is connected, then
there are only two choices, up to swapping all bosons and fermions (called a Klein
flip in [11]). If A is not connected, then a Klein flip could be done independently
in each connected component.

7.2. Arrows. If we define cohomology of an Adinkra using Z coefficients instead
of Z2 coefficients, then an orientation (that is, drawing an arrow on every edge) on
a cubical graph gives rise to a one-cochain µ in C1(A;Z) in the following manner:
for every oriented edge e going from vp to vq, we define µ(e) to be 1 if the arrow
points from vp to vq, and −1 otherwise. Then the orientation is non-escheric if and
only if dµ = 0. Since H1(A;Z) = 0, a non-escheric orientation µ can be described
as df for some 0-cochain f . Such a cochain is an assignment of an integer to each
vertex, which if we imagine is a placement of the vertices at different “heights” on
the page. Since µ takes its values in ±1, it must be that edges connect vertices of
adjacent height. This height assignment is unique up to adding an integer additive
constant for each connected component of the Adinkra.

This height function provides what in particle physics is called engineering
dimension or mass dimension. Quantities in physics come with units of time, dis-
tance, mass, or combinations of these. If we choose units so that the speed of light
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c = 1 and Planck’s constant ~ = 1, then units can be written as a power of the unit
of mass. This power is the engineering dimension. Assuming the transformation
rules do not involve constants that have dimension, the function that takes each
field and returns twice the engineering dimension is a height assignment.

A non-cohomological proof of these facts, and an application of these ideas to
classifying all non-escheric orientations, is given in [4].

The escheric central charge example in [11] admits a similar 1-form with values
in Z4.
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Adinkras and the dynamics of superspace prepotentials. Adv. S. Th. Phys., 2(3):113–164,
2008, hep-th/0605269.

[6] C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga, and G. D. Landweber. On
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