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Abstract

This thesis introduces a new speci�cation and veri�cation approach for dynamic systems.
The introduced approach is able to provide type II error free results by de�nition, i.e. there
are no hidden faults in the veri�cation result. The approach is thus suitable to provide a
reliable veri�cation of safety critical systems.

A new notion of set based consistency for dynamic systems with a given speci�cation is
presented. Therefore Kaucher interval arithmetic is used to enclose the measurement data
in a bounded error sense. The resulting method is able to verify the speci�ed behavior of
a dynamic system against its measurement data even in the presence of noise and sensor
uncertainty. Consistency is de�ned using the Kaucher arithmetic united solution set which
leads to mathematically guaranteed results.

It is proven mathematically that the desired property holds for a wide class of systems, in-
cluding time invariant, interval type and hybrid systems, which can be used to describe even
nonlinearities. Several extensions are introduced, leading to a new iterative identi�cation and
segmentation algorithm for hybrid systems which is able to handle even unknown switching
times. In case the calculations can be done fast enough, the developed approach can also be
used for the diagnosis of dynamic systems.

The presented methods are successfully applied to several example systems, including theo-
retic settings and a variation of di�erent tank settings.

The new theories, methods and algorithms developed in this thesis form the foundation for
reliable safety analysis of highly automated safety critical systems.





Zusammenfassung

Diese Arbeit beschreibt einen neuen Spezi�kations- und Veri�kationsansatz für dynamische
Systeme. Der neue Ansatz ermöglicht dabei Ergebnisse, die per De�nition frei von Fehlern
2. Art sind. Dies bedeutet, dass das Ergebnis der Veri�kation keine versteckten Fehler enthal-
ten kann. Somit können zuverlässige Ergebnisse für die Analyse von sicherheitskritischen
Systemen generiert werden.

Dazu wird ein neues Verständnis von mengenbasierter Konsistenz dynamischer Systeme mit
einer gegebenen Spezi�kation eingeführt. Dieses basiert auf der Verwendung von Kaucher
Intervall Arithmetik zur Einschließung von Messdaten. Konsistenz wird anhand der vere-
inigten Lösungsmenge der Kaucher Arithmetik de�niert. Dies führt zu mathematisch
garantierten Ergebnissen. Die resultierende Methode kann das spezi�zierte Verhalten eines
dynamischen Systems auch im Falle von Rauschen und Sensorungenauigkeiten anhand von
Messdaten veri�zieren.

Die mathematische Beweisbarkeit der Konsistenz wird für eine große Klasse von Systemen
gezeigt. Diese beinhalten zeitinvariante, intervallartige und hybride Systeme, wobei letztere
auch zur Beschreibung von Nichtlinearitäten verwendet werden können. Darüber hinaus
werden zahlreiche Erweiterungen dargestellt. Diese führen bis hin zu einem neuartigen iter-
ativen Identi�kations- und Segmentierungsverfahren für hybride Systeme. Dieses ermöglicht
die Ver�kation hybrider Systeme auch ohne Wissen über Schaltzeitpunkte. Die entwickel-
ten Verfahren können darüber hinaus zur Diagnose von dynamischen Systemen verwendet
werden, falls eine ausreichend schnelle Berechnung der Ergebnisse möglich ist.

Die Verfahren werden erfolgreich auf eine beispielhafte Variation verschiedener Tanksysteme
angewendet.

Die neuen Theorien, Methoden und Algorithmen dieser Arbeit bilden die Grundlage für eine
zuverlässige Analyse von hochautomatisierten sicherheitskritischen Systemen.
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1 Introduction

The fast technological development in computer engineering in recent years led to very pow-
erful computing capacities that are now available at very low costs [Wil17]. As a result those
chips are used in an increasing number of products to make them “smart” and to enhance user
experience and functionality. These smart devices are interleaving the daily life of millions
of people and are used for an increasing number of tasks [Gho17]. State of the art techniques
are powerful and mature enough to take over even very complex and sensitive tasks - for
example in autonomous cars, in �ight assistance systems or in the control of critical infras-
tructure. Tasks that can potentially harm human beings or destroy valuable infrastructure
are called “safety critical” and special measures need to be taken during the development
cycle to ensure correct operation of such safety critical systems [IEC10][ISO11].

These special measures are given by safety analysis methods. A very relevant property of all
safety analysis methods is given by the amount of their type I and type II errors. Thereby
type I errors (false alarms) denote the situation in which a safety analysis method evaluates a
correct system to be faulty. The complementary condition is given by type II errors (hidden
faults). In this case a safety analysis method evaluates a faulty system to be correct. Type II
errors are of major importance in the context of safety critical systems. A faulty system that
is evaluated to work correctly poses uncontrollable risk to the user and the environment.
Thus there is a need for safety analysis methods that do not su�er from type II errors.
In the context of this thesis, veri�cation of dynamic systems means applying safety analysis
methods in an o�ine setting to ensure consistency of the veri�cation object (VO) with the
speci�cation. Guaranteed veri�cation means that type II errors are impossible by design. In
case the safety analysis is fast enough, it can be applied in an online setting which is then
called “diagnosis”. Diagnosis can also be used to detect runtime errors.
It is common opinion that there is currently no su�cient type II error free method available
in the state of the art and the state of science [Kap16].

Currently safety analysis methods use mostly falsi�cation approaches, e.g. methods from the
�eld of testing. To achieve con�dence about the absence of failures based on testing methods
it is necessary to use a su�ciently large amount of test cases. This leads to the fact that safety
analysis is more expensive as the development itself [Fos15] and costs are expected to rise
further with increasing complexity of the tasks assigned to the technical system.
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Besides costs, current safety measures are often based on the experience of the responsible
engineer or brute-force simulation approaches are applied [ZN09]. It is widely recognized
that those methods will not keep up with the complexity given by currently developed or
future systems [Ram17][Ott18].
The example which is predominant in public perception is located within the automotive in-
dustry. Current systems like automatic cruise control or autonomous parking pilots are ana-
lyzed by applying the previously mentioned experience and simulation based safety methods
[Zan12]. Nevertheless it is known that those are not suitable for the arising challenges, e.g.
in the context of autonomous driving [Wac17][Koe18].

A possibility to avoid this dilemma is to use formal methods that can proof speci�c properties
of a veri�cation object. A promising approach that gained great attention in recent years
is given by interval arithmetic safety analysis methods, see among others [Uga03][Wol10]
[San17]. Results obtained using those method are guaranteed to include all possible nominal
system behavior as well as additional non-nominal behavior (so called spurious solutions).
Due to this overapproximating property, there are no type I errors. However, for the same
reason type II errors are possible by design.

The goal of this thesis is to close the gap by developing a formal method for the safety analysis
of dynamic systems that is guaranteed to be free of type II errors.



2 State of Science

There are numerous methods and approaches concerned with (safety) analysis of develop-
ment results in di�erent communities. Also, there is a broad terminology with respect to the
veri�cation question. The primary goal of this chapter is to build a basic conceptualization
and the resulting terminology used in this thesis. This is necessary to follow the ideas and
approaches introduced in later chapters.
Furthermore, the most important and wide spread notions and methods used in engineering
and engineering science are introduced and discussed.

2.1 Conceptualization and Terminology

System behavior analysis can be conducted with respect to di�erent perspectives. This thesis
addresses the veri�cation of dynamic systems. A classi�cation of other perspectives is given
in Appendix A. To conduct the veri�cation of dynamic systems it is necessary to de�ne three
components. First a description of the intended system behavior is set up. The next step is
to de�ne the concept of deviating behavior. Finally the developed real system behavior has
to be assessed with respect to the intended behavior.

2.1.1 Behavior Description

The desire of the costumer needs to be documented in some kind of speci�cation to allow
any analysis in terms of veri�cation. There are as many speci�cation methods to de�ne
the nominal behavior as there are methods to check their ful�llment. The variety includes
very formless approaches in human language [Mac95] as well as very formal de�nitions us-
ing (runnable) models [AI15] or special speci�cation languages ([Par72][Spi89][Abr96]). The
choice of a suitable speci�cation formalism to be used in a project is a trade-o�. The less
formal a speci�cation, the less e�ort is necessary to set it up, leaving the e�ort to the de-
veloper who needs to interpret the speci�cation. During the veri�cation procedure it is nec-
essary to interpret the speci�cation which leads to a need for experienced experts [ZN09,
p. 120][Raj13][Bal16]. The more formal a speci�cation, the more e�ort is necessary to set
it up. An advantage of formal speci�cations is that they force the speci�cation engineer to
capture the requirements in a precise and structured way. Standardized speci�cation routines
help to avoid careless mistakes during the setup [Par86][Hal90][Sch15a].
On the other hand all properties that should be covered need to be representable in the spec-
i�cation, which can lead to requirements being impossible to be captured in a speci�c for-
malism. However, due to the precision of very formal speci�cations it is possible to analyze
them in a rather automated or “proof-like” way.
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Throughout this thesis it is assumed that the speci�cation itself is known, correct and rep-
resents the whole functionality, behavior and all properties that are necessary to ful�ll the
customers desire.

This work assumes a set based speci�cation. It is assumed that it is possible to represent
the desired behavior of a dynamic system in terms of a speci�c abstract set. This formal
speci�cation (FS) can be interpreted to include all dynamic system parametrizations that are
able to create the intended behavior. The set of intended or desired behavior can be given by
di�erently shaped sets e.g. a circle or a square. In case there is no variation in the desired
behavior, the set consists only of one parametrization which is given by a distinguished point.
Di�erent possible speci�cation sets are depicted in Fig. 2.1.

Figure 2.1: Exemplary set based speci�cations (Point, Circle, Square)

2.1.2 Behavior Deviation

Implemented systems can show behavior deviating from the desired behavior due to several
causes. From a very basic point of view it is possible to di�erentiate between mistake by
misfortune, mistake by accident without intention and mistake by deliberate wrong-doing
by an individual.1
The setting of this work tackles the second kind, mistake by accident without intention that
can happen at every point during the development process. A wide range of expressions is
used to di�erentiate the �eld of unintended behavior or unintended properties. However,
di�erent �elds of research and profession are using di�erent naming conventions.
The naming convention used in this thesis is given in Fig. 2.2.

Misfortune | Accident | Wrong-doing
Basic Mistakes

Fault

Error

Failure

Hazard

Figure 2.2: Failure terminology

1 This categories are inspired by Aristotle (384 - 322 BC) who thought about ethics and mistakes of human behavior
[Res07].
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The foundation of all unintended behavior is given by the basic mistakes. The next instance is
called fault and denotes the deviation of at least one system value from its intended value.This
deviation can happen due to all three of the basic mistakes. If a fault leads to unintended
system behavior it is called error.
A system perturbed by a fault and a resulting error can still be able to operate correctly. Only
if there is a persistent interruption of correct behavior the system is called to show a failure.
This failure introduces a hazard into the environment the system operates in. The hazard
can lead to consequences in the environment that potentially harm objects or even human
beeings.

Complementary, there is the concept of disturbance in a control engineering sense. The pro-
cess of capturing real world data and transferring them into any control system is always
superimposed by a process that creates a deviation between the real values and the measure-
ment values [Fra16, p. 65]. This deviation is called disturbance or noise and every system
needs to be adapted to the speci�c noise present in itself as well as in the particular environ-
ment.

2.1.3 Behavior Assessment

The assessment of the veri�cation object is done with respect to its behavior. Therefore it
is necessary to set up the formal speci�cation (FS) and additionally describe the behavior of
the veri�cation object (VO) using the same formalism. Both descriptions are assumed to be
represented by a convex set. The notion of set based basic consistency that is used throughout
this thesis is given in De�nition 2.1.

De�nition 2.1 (Set Based Basic Consistency)
A set based veri�cation object VO is called basic consistent with its set based formal spec-
i�cation FS if and only if there is an intersection between the formal speci�cation and the
veri�cation object behavior:

(𝐹𝑆 ∩ 𝑉 𝑂 ̸= ∅)⇔ 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.

A special case is given by full consistency, which means that all behavior given by the formal
speci�cation is available in the veri�cation object.

De�nition 2.2 (Set Based Full Consistency)
A set based veri�cation object VO is called full consistent with its set based formal speci�ca-
tion FS if and only if the formal speci�cation behavior is an subset of the veri�cation object
behavior:

(𝐹𝑆 ⊆ 𝑉 𝑂)⇔ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.
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The inverse is given by inconsistency according to De�nition 2.3.

De�nition 2.3 (Set Based Inconsistency)
A set based veri�cation object VO is called inconsistent with its set based formal speci�cation
FS if and only if there is no intersection between the veri�cation object behavior and the
formal speci�cation behavior:

(𝐹𝑆 ∩ 𝑉 𝑂 = ∅)⇔ 𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.

This means that none of the available VO behavior is given in the speci�cation.

The resulting situations are depicted in Fig. 2.3. It is assumed that the formal speci�cation
FS is given by the blue circle. The set of real VO behavior is given by the green and red
circles. De�nition 2.1 and De�nition 2.2 are ful�lled in the left and middle sub�gures, leading
to the verdict 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 and 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 for the depicted VO and the FS.
De�nition 2.3 is ful�lled in the right sub�gure, leading to the verdict 𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 for the
depicted VO and the FS.

VO Behavior
(Basic Consistency)

Formal Specification FS

VO Behavior
(Full Consistency)

Formal Specification FS

VO Behavior
(Inconsistency)

Formal Specification FS

Figure 2.3: Basic consistent, full consistent and inconsistent result of set based veri�cation

In the context of this thesis the veri�cation object is considered to be correct if there is spec-
i�ed behavior within the VO behavior. This is called “consistent behavior”.
For the ease of notation, the term 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 is used as soon as there is “consistent behav-
ior”, either due to 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 or due to the even stricter 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦. The
following considerations apply equivalently to both de�nitions.

In general, the VO behavior is not directly available and thus needs to be captured by an
approximation. If the behavior is given in terms of dynamic system parameters, the approx-
imation can be calculated using identi�cation methods [Lju99]. Therefore it is necessary to
interact with the real VO to determine the underlying behavior. Assumption 2.1 has to hold
to allow a successful identi�cation.

Assumption 2.1 (Persistent Excitation of the VO)
The veri�cation object VO is su�ciently excited to show all relevant behavior.
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Only behavior of the VO that is triggered or excited is included in the approximation and
can thus be analyzed [Ast95, p. 41][Ise10, p. 250]. Throughout this thesis it is assumed that
Assumption 2.1 holds.

There are two main set based calculation paradigms that can be used to determine the ap-
proximation of the VO: underapproximation (−) and overapproximation (+).
In case of overapproximation, there is spurious behavior in the resulting outer enclosure (see
rectangle in the left of Fig. 2.4). If underapproximation is used, some VO behavior is missing
in the inner enclosure (see rectangle in the right of Fig. 2.4).

Overapproximated
Behavior VO+

VO Behavior

Spurious
Behavior

VO Behavior

Underapprox.
Behavior VO−

Missing
Behavior

Figure 2.4: Set based overapproximation and set based underapproximation

As the true VO behavior is not available, the approximated behavior is used to reason about
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦. In case an overapproximation of the veri�cation object behavior (VO+) is used,
this leads to (︀

𝐹𝑆 ∩ 𝑉 𝑂+ ̸= ∅
)︀
⇔ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦+. (2.1)

It is very important to note that (2.1) yields the verdict 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦+ that holds only for the
overapproximated behavior VO+. It does not have to be valid for the true VO behavior. To
relate the verdict with the true VO behavior, the overapproximating property(︀

𝑉 𝑂 ⊆ 𝑉 𝑂+
)︀
⇒ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 ⊆ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦+ (2.2)

has to be taken into account, leading to(︀
𝐹𝑆 ∩ 𝑉 𝑂+ ̸= ∅

)︀
⇔ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦+ ⇐ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 ⇔

(︀
𝐹𝑆 ∩ 𝑉 𝑂 ̸= ∅

)︀
. (2.3)

It can be seen from (2.3) that the𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦+ verdict can not be extended to the true system
behavior VO. This situation is depicted in the lower left �eld of Tab. 2.1. This property holds
for both, 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 and 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.
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If an overapproximating method yields the result 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦+ and this result is general-
ized to 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦, it is possible that there is a “hidden fault” present in the system. This
situation is called type II error and it is a severe problem in the �eld of safety critical systems.
Type II errors are likely to harm people or the environment as the VO is showing wrong
behavior but the supervising system assumes correct functionality. Corrective actions that
are designed to prevent fault induced damage are not activated in case of a hidden fault. This
type of fault can thus proceed and potentially harm people. In safety critical systems, type II
errors need to be avoided under all circumstances.

Therefore it is bene�cial to use the underapproximation of the veri�cation object behavior
(VO−), leading to (︀

𝑉 𝑂− ⊆ 𝑉 𝑂
)︀
⇒ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⊆ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦. (2.4)

The resulting verdict 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− can be extended to the true system property:(︀
𝐹𝑆 ∩ 𝑉 𝑂− ̸= ∅

)︀
⇔ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 ⇔

(︀
𝐹𝑆 ∩ 𝑉 𝑂 ̸= ∅

)︀
. (2.5)

If the underapproximation of the veri�cation object VO− is consistent with the speci�cation,
it is guaranteed that the true veri�cation object is also consistent with the speci�cation (see
Tab. 2.1, lower right �eld). Thus the verdict is guaranteed to be free of type II errors. Again
this property holds for 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 and 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.

The new veri�cation approach developed in this thesis is based on the concept of underap-
proximation to avoid type II errors by design. This essential property is necessary to solve
the currently unsolved reliable veri�cation problem of safety critical systems.
However, the property comes at the costs of possible false alarms (see Tab. 2.1, upper right
�eld). Instead of additional spurious solutions there are missing solutions generated by the
underapproximation VO−. Even though there is consistent behavior in the VO, this behavior
is not included in the underapproximation, leading to a false alarm (type I error).
The situations in the remaining upper left �eld of Tab. 2.1 depicts the correct verdict
𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 than can be obtained using both, under- or overapproximation. This is due
to the fact that there is no consistent behavior for the real VO as well as for both approxima-
tions.
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Table 2.1: Error types

System is Faulty System is Correct

Veri�cation Result:
“Inconsistency”

Overapprox.
of VO Behavior

VO Behavior

Nominal Behavior
(Inconsistent)

VO Behavior

Underapprox.
VO Behavior

Nominal Behavior
False Alarm

Correct Result Type I Error

Veri�cation Result:
“Consistency”

Overapprox.
VO Behavior

VO Behavior

Nominal Behavior
Hidden Fault

VO Behavior

Underapprox.
VO Behavior

Nominal Behavior
(Consistent)

Type II Error Correct Result
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2.2 Interval Arithmetic Methods

The overapproximating property introduced in the previous section can be achieved using
the notion of interval arithmetic. Interval arithmetic is thereby used to enclose the e�ects of
noise and epistemic lack of knowledge that is always present in real systems. A �xed lower
and upper bound is used to describe a set of possible true values 𝑥𝑡𝑟𝑢𝑒 that are associated
with a given measurement value 𝑥𝑚𝑒𝑎𝑠:

𝑥𝑡𝑟𝑢𝑒 ∈ [𝑥𝑚𝑒𝑎𝑠 − 𝛿, 𝑥𝑚𝑒𝑎𝑠 + 𝛿]. (2.6)

The maximum tolerance 𝛿 is the only parameter needed to set up the interval. This interval
arithmetic notation of maximum deviation is widely used by sensor manufacturers [Kre95]
and in the fault detection community (e.g. in [Arm09][Zai14][AI17]). The true measurement
value is guaranteed to be included in the interval and it is guaranteed that the true value is
never outside the interval.
When interval enclosure is used on the measurement data, all succeeding calculations have
to apply the notions of interval arithmetic to preserve the guaranteed properties. The basic
property of interval arithmetic calculations is that all possible solutions are included in the
result. Therefore, interval arithmetic results are able to create the introduced overapproxi-
mation properties. The interval arithmetic solution set consists of real solutions and spurious
solutions. Spurious solutions denote solutions that do not exist in the real system but are in-
evitable artifacts that are introduced by interval arithmetic calculations and the �nal interval
arithmetic (and thus axis parallel) enclosure of the real solution [Bau87].

Interval arithmetic is widely used for veri�cation [Bal16] and diagnosis methods as type I
errors (false alarm) are prevented by de�nition. Therefore, models of the nominal system are
used to calculate a set of predicted outputs for the measured inputs of the system [Ven15].
This can be done by using intervals on the system parameters to calculate an interval range
of outputs [Pui06][Mes10][Wol10]. The system is assumed to be correct as long as the mea-
sured output values are within the predicted output interval, i.e. within the so called direct
image. Due to the used outer enclosure of the prediction, type II errors are possible using
this class of methods.
An alternative approach uses the so called inverse image [Pui06] or feasible set [Cas14], also
known as set-membership approach [Ing09]. In this case the input-output measurement data
is used to calculate the set of parameters that is able to generate the observed mapping. This
is possible if the system is linear or nonlinear but linear with respect to the parameters. If
there is a member of the set of nominal models within the feasible set of the measurement,
the measured data can be explained by the nominal model. This class of methods utilizes in-
terval arithmetic identi�cation based on outer enclosures. Therefore there are type II errors
possible by de�nition.
The feasible set resembles the solution set of the identi�cation problem given by the mea-
surement data that can be computationally hard to calculate [Hor13].
A wide spread possibility to approximate the solution set is given by subpavings using the
SIVIA algorithm (see [Jau01, p. 45�][Pui06][Mes10]). The bisection approach of SIVIA leads
to a large set of di�erent intervals with various size. Even though this result is very precise,
the great amount of intervals leads to a complex handling and to long calculation times.
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A more e�cient approach is given using a zonotope2 representation as shown in [Ing09].
The question how this approximation can be calculated in an e�cient way is still an active
research topic. Latest results [Koc19] use sparse polynomial zonotopes. Additionally, there
are methods to reduce the solution set by pruning spurious parts if possible. For example
the approach presented in [Wol10] uses measurement data to reduce the overapproximated
state set. Nevertheless, all approximation methods use outer enclosures and are thus prone
to type II errors.
Besides the �eld of diagnosis, di�erent interval arithmetic approaches are used for state es-
timation ([Jau01][Ram09][Mes10][E�13][Kre16][Kre18][Wan18]) and control [Rau06]. None
of these methods addresses type II errors.
Therefore it is necessary to develop a new veri�cation method that is able to guarantee the
absence of type II errors. This can be achieved by calculating an inner enclosure that consists
of a subset of the real solution as shown in the previous section. This thesis utilizes a special
extension of interval arithmetic called Kaucher interval arithmetic that provides powerful
theories to calculate the necessary inner enclosures.

2.3 Governing Complexity: Time Variant and Hybrid
Veri�cation Approaches

Linear time invariant (LTI) systems form the base for the most system theoretic methods and
approaches. Nevertheless, real world systems are normally neither linear nor time invariant.
It is thus the question how to handle the complexity inherently given in real world systems.
Some nonlinear systems can be handled using nonlinear theory which provides methods
for analysis and control [Kha15]. However those approaches are often subject to very strict
preliminaries and only applicable for a narrow class of systems. Therefore linearization is
often used in practice to handle nonlinearities. Another possibility is to model nonlinearities
by using time variant parameters in a linear system [Ble11]. In this case, the set of feasible
parameters can be bounded using interval arithmetic or any other set de�nition. It is also
possible to split the nonlinear dynamic into a sequence of linear dynamics [Oza14] that are
activated by a superimposed switching mechanism. The resulting model belongs to the class
of hybrid systems. Hybrid systems can also be used to model time variant linear systems
with piecewise constant parameters. Therefore the di�erent piecewise constant parameters
are represented using an individual dynamic subsystem each.

There is a wide theoretical framework available for hybrid systems [Eng02][Mah10]. The
topic of hybrid veri�cation is subject to current research in the cyber physical systems com-
munity (see e.g. [Sch15b][Kap16][Sch17a][Ara17] [Bar18][Har18][Lau18]). There are also
large research clusters in this area [AVA19][ENA19].
To apply the set based approach introduced in this thesis in a hybrid setting, it is necessary to
use hybrid identi�cation methods to determine the unknown system parameters from given
measurement data. The most relevant hybrid identi�cation approaches given in the literature
are introduced in the following.

2 A zonotope is a convex polytope that is point symmetric with respect to its center.



12 2 State of Science

The algebraic approach provided in [Vid08] interprets the identi�cation setting as a geomet-
ric problem. The measurement data as well as the parameters are interpreted as vectors that
have to be perpendicular in case the identi�ed parameters match the true parameters. The
goal is to �nd the parameter vector with minimal projection on the family of all measurement
vectors. A Bayesian approach based on stochastic properties is given by [Jul05]. The number
of models and the model order need to be known a priori for this procedure. A cluster based
approach was developed by [FT03] were machine learning methods are used to form groups
of similar behavior. Identi�cation methods based on optimization were developed and pre-
sented in [Mün05][Bor09][Lau18]. The bounded error approach introduced in [Bem05] and
used for time variant systems in [Bra16] assumes errors that are characterized by their max-
imum value. Even though this is close to the basic interpretation used in this thesis, those
approaches do not use interval arithmetic notations. Therefore they lack the guarantees that
are necessary in the safety critical context of this thesis.
A greedy approach based on [Oza12] was developed in [Die13a] and [Die13b]. This approach
is di�erent from the others as it is the only one that uses a multi-step prediction error in-
stead of the common one step prediction error. It was extended to cyber-physical systems in
[Sch17a] and to Kaucher interval arithmetic in [Sch19].

2.4 Other Common Veri�cation and Falsi�cation
Approaches

There is a wide range of veri�cation methods with di�erent degree of abstraction and for-
malization.
A strong diagnosis community is active in the control engineering �eld (see e.g. [Ise93]
[Sch03][Ven03a][Ven03b][Ven03c][Bla06][Arm09][Sch09][Pui10][Ise11][Cac13][Zol14]).
Also, a large testing and veri�cation community formed in the information technology com-
munity. This leads to a great range of veri�cation and validation methods, unfortunately
using a similar terminology (e.g. [Bar78][Boe84][Hay86] [TF91][Bar05]). Three of the most
relevant approaches are introduced in this section.

2.4.1 Testing

A wide spread - if not the most wide spread - approach to assess the properties of a technical
system is given by testing. Testing is a classic falsi�cation method, aiming on the detection of
counter examples that do not show the intended behavior. It is therefore necessary to de�ne
a well-chosen set of test cases, consisting of the system state at the beginning of the test case,
inputs that are applied during the run of the test case and outputs that are expected to appear
during or at the end of the test case. If the system under test (SUT) shows outputs deviating
from the expected outputs, the test case is called a “failed test” and further inspections of the
test case are necessary to identify the reason. In contrast to veri�cation methods, each result
is only valid for the speci�c applied test case. It is long known that the con�dence of the
results can only be increased by increasing the amount of test cases [Fut89, p. 3].
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Testing can be applied at di�erent stages of the development cycle and at di�erent abstraction
levels. The state of the art testing scheme is given by the V-model (see e.g. [Web09][ZN09]
[Raj13][Ott18]) as depicted in Fig. 2.5.
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Figure 2.5: V-model diagram (based on [Ott18])

The left part of the V-model is the speci�cation branch. It is applied in a top-down fashion.
The speci�cation is initialized on the highest level representing the customers desire. Then it
is propagated to lower levels and re�ned to match the degree of formalization of each level.
This structured procedure includes the decomposition of the overall task in several sub tasks
accompanied by the de�nition of interfaces between the sub tasks.
After every re�nement step the result is checked against the superimposed level to verify
that both requirements are consistent. The �nal (software) speci�cation is implemented at
the bottom level. The resulting SUT is checked against its speci�cation at the same level. If
the test succeeds, the function is used in higher levels and combined with other parts to meet
superimposed speci�cations. If a test fails, the system under test is rejected to the previous
level. The complexity of the SUT increases with rising level on the right veri�cation branch
of the V-model. It is also possible that a failed test at high levels (e.g. at system or acceptance
level) leads to changes in the respective high level speci�cation. This results in the need of
repeating the whole development process starting with the changed high level speci�cation
[Raj13][ZN09].
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There are several technologies that are used in di�erent phases of the V-model, sometimes
leading to additional branches. Fig. 2.5 includes cutting edge technologies like rapid proto-
typing, component HiL and cluster HiL that are used to speed up the time e�ort to perform
a complete cycle of the V-model.
An important part of the testing process is the test case generation. There are several possi-
bilities to set up the test cases. If there is experience with this kind of product, it is likely that
an existing test case database can be reused and adapted [Sax08][Bal16]. Another straight
forward approach is to determine the feasible range of all input variables and divide this
range in so called “equivalence classes” [Utt06]. The test cases are then formed by combining
one representative (or the minimum and maximum values) from each equivalence class with
all possible representatives of the other input variables [Utt06]. If it is not possible to form
equivalence classes, it is also possible to sample the valid range of a variable randomly or in
equidistant steps. This approach is straight forward and easy to understand but it will lead
to very large sets of test cases with increasing number of variables in the system or if a �ne
resolution of the variable ranges is necessary (i.e. [Hei05][AI15]).
The runtime for testing or simulation rises with the number of test cases, leading to large
computation times. If equidistant sampling is used, it is possible that much calculation time
is spent assessing “uninteresting” regions of the input space or that “interesting” regions are
only covered with few test cases. One major drawback of the testing approach is that all test
cases need to be redone if the SUT changes. As there are frequent iterative changes during
a development cycle (i.e. more than one iteration of the V-model is necessary), the test cases
need to be applied several times which leads to even longer computation times.

2.4.2 Reachability Analysis

By including more system theoretic knowledge, testing can be developed to reachability anal-
ysis. The basic requirement for this purpose is a speci�cation that includes some kind of state
space the system is operating in. Further, the speci�cation has to de�ne forbidden areas in
this state space.
The main idea of reachability analysis is to determine whether there is a sequence of inputs
that leads the SUT to enter the forbidden area. If an input sequence leading to a forbidden
area is found, the SUT is falsi�ed and needs to be improved to match the requirements (see
among others [Bha04][Alu06][Mit07][Alt08][Don10]). Reachability analysis is also aiming
on �nding a counter example which has the same basic problem as the testing scenario: no
detected counter example does not mean there is no fault present in the system as faults can
be hidden in uncovered parts of the state space.
Runtime limitations restrict all methods to a �nite number of samplings and thus to partial
coverage of the state space. There are smart coverage criteria available that allow an e�ective
calculation of the most important regions of the state space e.g. using rapidly exploring ran-
dom trees (RRT) (see i.e. [Bha04][Kap16][Pan17]). These approaches can be extended to the
so called method of star discrepancy [Dan11] or by applying the underminer method [Bal16].
Nevertheless, reachability analysis is still a falsi�cation method, based on the speci�cation of
the faulty case (forbidden areas). Therefore reachability analysis is not suitable to solve the
veri�cation problem addressed in this thesis.
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2.4.3 Formal Veri�cation

One possibility to avoid the counter example problem is given by more abstract approaches
from the veri�cation �eld. Those formal methods are used to reason about system proper-
ties in a mathematical rigorous way. To apply formal methods, the VO needs to be trans-
ferred to a strict mathematical notation, e.g. by using the Z speci�cation language (see e.g.
[Spi89][Bro05, p. 325]) or Prolog [Bro05, p. 334]. The formalized VO can then be used to carry
out mathematical proofs showing that speci�c system properties hold in all operating condi-
tions. The proof is thereby conducted by a so called theorem prover.
This approach is very powerful as the results are valuable and mathematically sound. Never-
theless, formal proofs can only be done for very distinct properties. Furthermore the methods
need very long runtime even for “small” academic problems. This leads to still unsolved run-
time issues for real world problems ([Bro05, p. 325][Bar18]).
A basic problem that cannot be omitted is that formal proofs cannot be conducted on the VO
directly. Therefore the results hold only for the image of the VO which is given in the used
formalism. Mistakes that are introduced when the system is transferred from the real world
into the modeling formalism cannot be detected.

2.5 Scienti�c Gap and Related Research Question

Testing is the state of the art for current systems and is successfully applied in various com-
munities. Nevertheless there are current systems, e.g. autonomous driving functions, that
show a number of relevant scenarios that cannot be covered by testing or simulations. Even
if this was possible, falsi�cation methods cannot prove the absence of all faults. They need
to stop at some point and have to assume that no undiscovered fault is present in the system.
There are established methods available that use interval enclosures to mathematically bound
the system behavior. Those methods use classic interval arithmetic, leading to overapproxi-
mating properties. Overapproximating methods are able to provide type I error free results,
meaning that there are no false alarms generated by the method. Nevertheless, the overap-
proximation can cover missing behavior, leading to an undetected hidden fault. In the case of
safety critical systems, hidden faults (type II errors) can lead to severe consequences threat-
ening human life. It can be concluded that the veri�cation of safety critical dynamic systems
is currently not solved.

A new veri�cation method has to be developed to close this gap. This method has to be free
of hidden failures, meaning that there are no type II errors. Therefore the speci�cation is
assumed to be formally given in terms of a set of dynamic system parameters. The behav-
ior of the VO has to be given in the same formalism, leading to an identi�cation problem.
Safety critical systems are often implemented as embedded systems that consist of a closely
connected discrete event system (the controller) and a dynamic system (the plant). Thus it is
necessary to develop a hybrid identi�cation method that is able to provide the desired guar-
antees.
The comprehensive research question tackled by this thesis is:

“How can the consistency of highly automated safety critical dynamic systems be evaluated
by a guaranteed veri�cation method?”





3 Methodical Approach and Mathematical
Preliminaries

Considering the state of science as well as the current and future challenges of system the-
ory there is a need for a new veri�cation method. The rising importance of safety critical
systems emphasizes the need for formal methods that target type II errors. This thesis intro-
duces such a formal method based on the notions of interval arithmetic, extended to Kaucher
interval arithmetic. First the necessary notations and de�nitions are given to provide a sound
theoretical base for further considerations.

3.1 Mathematical Preliminaries

All methods introduced in this thesis are based on interval arithmetic, appended by the prop-
erties of Kaucher interval arithmetic. In the following, the basic properties and notations of
interval arithmetic are introduced.
The goal of this chapter is to provide a brief overview of interval arithmetic that is neces-
sary for this thesis. The interested reader is referred to [Bau87][Rze08][Roh12][Sai14] for an
extensive coverage of the topic. Throughout this thesis the well known notation of interval
arithmetic extended by Kaucher interval arithmetic introduced in [Kup95][Sha96] is used.

3.1.1 Basic Interval Arithmetic

Interval arithmetic was initially developed to handle numerical calculation errors due to �oat-
ing point calculation used in computer algebra systems [Apo67]. It gained popularity outside
the numerical community with the rise of electronic computing in various �elds. When mea-
surement data is used in computing - as it is normally the case in engineering and natural
science - faults are already created by the measurement process itself [Kre95]. Furthermore,
the used values are given as samples at discrete time steps 𝑘. Every measurement 𝑦𝑚𝑒𝑎𝑠,𝑘 is
compromised by some noise 𝜖𝑘 that leads to a deviation between the real value 𝑦𝑡𝑟𝑢𝑒,𝑘 and
its measurement

𝑦𝑚𝑒𝑎𝑠,𝑘 = 𝑦𝑡𝑟𝑢𝑒,𝑘 + 𝜖𝑘. (3.1)

It is possible to de�ne intervals around the measurement that are guaranteed to include the
real system value

𝑦𝑡𝑟𝑢𝑒,𝑘 ∈ [𝑦𝑚𝑒𝑎𝑠,𝑘 − 𝛿, 𝑦𝑚𝑒𝑎𝑠,𝑘 + 𝛿] (3.2)

if the maximum 𝛿 of the absolute noise is known i.e. ∀𝑘 : |𝜖𝑘| ≤ 𝛿.
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Suitable values of 𝛿 can be determined from the data sheets provided by the sensor manufac-
turers.

The de�nition of a classical interval type variable 𝑥 as given in [Sai14] is

𝑥 := [𝑥, 𝑥] = {𝑥 ∈ R | 𝑥 ≤ 𝑥 ≤ 𝑥} . (3.3)

This de�nition includes all real numbers that are between or on the in�mum 𝑥 and the supre-
mum 𝑥. In case 𝑥 > 0 and 𝑥 > 0 the interval is called positive interval. If the in�mum is
negative (𝑥 < 0) and the supremum is positiv (𝑥 > 0) i.e. if 0 ∈ x, the interval is called zero
interval. A negativ interval is given if 𝑥 < 0 and 𝑥 < 0. One last de�nition covers the case
of supremum and in�mum being the same, i.e. 𝑥 = 𝑥, which is called a degenerated interval
[Dja17] or point real interval [Sai14].
The set of so called proper intervals is given by

IR := {𝑥 = [𝑥, 𝑥] | 𝑥 ≤ 𝑥 and 𝑥, 𝑥 ∈ R} . (3.4)

Despite this in�mum-supremum notation, each proper interval can be given using the cen-
ter

𝑥𝑐 :=
1

2
(𝑥 + 𝑥) (3.5)

and the radius

𝑥Δ :=
1

2
(𝑥− 𝑥) . (3.6)

of an interval. The interval can now also be stated in the center-radius notation

𝑥 = ⟨𝑥𝑐, 𝑥Δ⟩ . (3.7)

Furthermore, it is important to introduce the interval type vector matrix notation based on
[Jau01]. Vectors and matrices are written as capital letters 𝑋 and interval values are given
in bold font 𝑥, leading to interval matrices denoted as 𝑋 . An interval vector 𝑋 is de�ned as
cartesian product of 𝑛 closed intervals that includes a subset of the real numbers R:

𝑋 := 𝑥(1) × 𝑥(2) × . . . × 𝑥(𝑛), with 𝑥(𝑖) =
[︁
𝑥(𝑖), 𝑥(𝑖)

]︁
for 𝑖 ∈ {1, 2, . . . , 𝑛}. (3.8)

This notation can be interpreted as projection of the 𝑖-th interval component 𝑥(𝑖) to the 𝑖-th
axis of the vector space. An illustration for 𝑛 = 2 and 𝑛 = 3 is given in Fig. 3.1.
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𝑥(1)

𝑥(2)

𝑥(1)

𝑥(2) 𝑋 ∈ IR2

𝑥(3)

𝑥(1)

𝑥(2)

𝑥(3)

𝑥(1)

𝑥(2)

𝑋 ∈ IR3

Figure 3.1: Examples of the graphical representation of 𝑋 ∈ IR2 (left) and 𝑋 ∈ IR3 (right)

An (𝑚× 𝑛), 𝑚,𝑛 ∈ N, interval matrix 𝐴 can be interpreted as subspace of R𝑚×𝑛. Again it
is de�ned using the cartesian product of 𝑚 · 𝑛 closed intervals:

𝐴 =

⎛⎜⎝𝑎(1,1) . . . 𝑎(1,𝑛)

...
...

𝑎(𝑚,1) . . . 𝑎(𝑚,𝑛)

⎞⎟⎠ (3.9)

= 𝑎(1,1) × 𝑎(1,2) × . . . × 𝑎(𝑚,𝑛)

=
(︁
𝑎(𝑖,𝑗)

)︁
(3.10)

with 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛. The center matrix is de�ned element-wise as in [Hla14] to

𝐴𝑐 ∈ R𝑚×𝑛 :
(︁
𝑎(𝑖,𝑗)𝑐

)︁
=

1

2

(︁
𝑎(𝑖,𝑗) + 𝑎(𝑖,𝑗)

)︁
(3.11)

as well as the radius matrix

𝐴Δ ∈ R𝑚×𝑛 :
(︁
𝑎
(𝑖,𝑗)
Δ

)︁
=

1

2

(︁
𝑎(𝑖,𝑗) − 𝑎(𝑖,𝑗)

)︁
(3.12)

with 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.

The four basic arithmetic operations addition, subtraction, multiplication and division, i.e.
⋆ ∈ {+,−, ·, /}, are well de�ned for intervals. The general application of each operator on
two interval values 𝑥 = [𝑥, 𝑥] and 𝑦 =

[︀
𝑦, 𝑦

]︀
is given by

[𝑥, 𝑥] ⋆
[︀
𝑦, 𝑦

]︀
=
{︀
𝑧 = 𝑥 ⋆ 𝑦

⃒⃒
𝑥 ≤ 𝑥 ≤ 𝑥, 𝑦 ≤ 𝑦 ≤ 𝑦

}︀
(3.13)

according to [Apo67], which leads to the interval type calculation rule

[𝑥, 𝑥] ⋆
[︀
𝑦, 𝑦

]︀
=
[︀

min
(︀
𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑦

)︀
,

max
(︀
𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑦

)︀ ]︀
.

(3.14)

The di�erent elements within the min(·) and max(·) operations are due to the fact that the
combination of all extreme values need to be taken into account.
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Unfortunately, this property also causes two major drawbacks of interval arithmetic, the
dependency e�ect and the wrapping e�ect. Those e�ects are explained in Example 3.1 and
Example 3.2.

With the assumption 0 /∈
[︀
𝑦, 𝑦

]︀
it is possible to explicitly state the four basic operations as

in [Apo67]:

[𝑥, 𝑥] +
[︀
𝑦, 𝑦

]︀
=
[︀
𝑥 + 𝑦, 𝑥 + 𝑦

]︀
[𝑥, 𝑥]−

[︀
𝑦, 𝑦

]︀
=
[︀
𝑥− 𝑦, 𝑥− 𝑦

]︀
[𝑥, 𝑥] ·

[︀
𝑦, 𝑦

]︀
=
[︀
min

(︀
𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦

)︀
, max

(︀
𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦

)︀]︀
[𝑥, 𝑥] /

[︀
𝑦, 𝑦

]︀
= [𝑥, 𝑥] ·

[︂
1

𝑦
,

1

𝑦

]︂
.

(3.15)

It is shown in [Apo67] that associative and commutative property hold for interval values as
well. However, the distributive law is not applicable anymore and needs to be changed to

𝑥 · (𝑦 + 𝑧) ⊆ 𝑥 · 𝑦 + 𝑥 · 𝑧 (3.16)

which is known as the subdistributive property for the interval values 𝑥, 𝑦 and 𝑧.

While evaluating an expression, every appearance of an interval variable is treated individ-
ually as if it was independent from its other occurrences. Multiple occurrences of the same
variable thus lead to a widening of the enclosure. This property is called dependency ef-
fect and is illustrated in Example 3.1. One approach to mitigate the dependency e�ect is to
reformulate the expression such that each variable occurs only once, if possible.
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Example 3.1:
Assume the function

𝑓 (𝑥) = 1 +
1

𝑥
. (3.17)

The resulting enclosure for the interval 𝑥 = [1, 3] can be calculated straight forward using
the interval arithmetic de�nitions of (3.15) to 𝑓(𝑥) =

[︀
4
3 , 2

]︀
, which matches the true range

of the function within the interval. It is depicted by the blue dotted frame in Fig. 3.2.
If (3.17) is reformulated such that there are multiple occurences of 𝑥 e.g.

𝑓 (𝑥) =
𝑥 + 1

𝑥
(3.18)

the interval arithmetic evaluation yields 𝑓 (𝑥) =
[︀
2
3 , 4

]︀
. It can be seen that this is a large

overestimation of the true values of the function within 𝑥, depicted by the dashed frame in
Fig. 3.2.

0 1 2 3
0

1

2

3

4

𝑥
𝑥

𝑓 (𝑥)

Function 𝑓 (𝑥) Enclosure using 𝑓(𝑥) Enclosure using 𝑓(𝑥)

Figure 3.2: Dependency e�ect based on 𝑓(𝑥) and 𝑓(𝑥)
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Another e�ect occurring with interval calculations is the wrapping e�ect. This e�ect is
caused by iterative calculations based on previous overestimations. Such iterative calcula-
tions are e.g. necessary to solve an initial value problem or to evaluate a state space equation.
An example for the wrapping e�ect is given by the initial value problem of Moore [Bau87]
and is depicted in Example 3.2.

Example 3.2:
Assume the initial value problem for the di�erential equation

�̇� (𝑡) =

(︂
0 1
−1 0

)︂
𝑌 (𝑡) (3.19)

with 𝑌 (0) = [[−𝜖, 𝜖] , [1− 𝜖, 1 + 𝜖]]
𝑇 , 𝜖 > 0. When the equation is evaluated, the result-

ing solution set needs to be framed by axis parallel enclosures after each step. The solution
sets for 𝑡𝑖 = 𝑖 ·∆𝑡 , ∆𝑡 = 𝜋

6 , 𝑖 ∈ {0, 1, 2, 3} are depicted in Fig. 3.3. It can be seen, that
the overestimation is continually increasing, as the inherited overestimation is passed on and
used as base for further calculations.

𝑡 = 0
𝑡 = 𝜋

6

𝑡 = 𝜋
3

𝑡 = 𝜋
2

𝑡

𝑦(1)

𝑦(2)

Figure 3.3: Example for the wrapping e�ect using the initial value problem of Moore [Bau87]

The wrapping e�ect can reach a serious extent even after only one iteration. A minimal
example illustrating the extent of the problem after two steps is given in Example 3.3.
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Example 3.3:
This example clari�es the e�ect of interval calculations in the setting of a proportional gain
system with unknown gain 𝑝:

𝑢 · 𝑝 = 𝑦. (3.20)

The system setup is depicted in Fig. 3.4. The input and output ranges of the system are given
and can be included in the intervals 𝑢 = [2, 3] and 𝑦 = [4, 9]. The goal is to calculate the
gain that maps all possible input values 𝑢 ∈ 𝑢 to the speci�ed output range 𝑦.

𝑝

𝑢 = [2, 3] 𝑦 = [4, 9]

Figure 3.4: Proportional gain system with proper solution

Using the introduced interval arithmetic calculations leads to

𝑝 = 𝑦/𝑢

=
[︀
𝑦, 𝑦

]︀ [︂ 1

𝑢
,

1

𝑢

]︂
=

[︂
4

3
,

9

2

]︂
≈ [1.3, 4.5] . (3.21)

Re-substituting 𝑝 into the system equation yields

𝑦 = 𝑝𝑢

= [1.3, 4.5] [2, 3]

= [2.6, 13.5] ̸= [4, 9] (3.22)

which is a strong overestimation of the genuine output range.

The example shows that the system parameter calculated from input and output ranges can-
not be used to reason about the parameter set that is suitable to map the given input on the
given output. The wrapping e�ect is caused by considering the combination of the extreme
values of both intervals. Nevertheless, when regarding the task at hand in Example 3.3, the
goal is not to �nd all possible gains connecting the two intervals but to �nd those gains
reasonably connecting “the most” elements of the intervals. This slight but very important
change is illustrated in Example 3.4.
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Example 3.4:
Assume the setting of Example 3.3. The parameter interval is calculated as before using
𝑝 = 𝑦/𝑢. The question is now how many pairs (𝑢, 𝑦)|(𝑢 ∈ 𝑢), (𝑦 ∈ 𝑦) exist for each
parameter 𝑝 ∈ 𝑝. Therefore the intervals 𝑢 and 𝑦 are divided into equidistant parts of ∆𝑢 =
∆𝑦 = 0.0001. The resulting 10′001 discrete samples of 𝑢𝑠 are combined with the resulting
50′001 samples of 𝑦𝑠 to calculate the connecting parameter 𝑝𝑠 = 𝑦𝑠/𝑢𝑠. The histogram
formed by 500′060′001 values of 𝑝𝑠 is depicted in Fig. 3.5. It can be seen that the extreme
values of the outer enclosure of the solution 𝑝 = [1.3, 4.5] are only connected by a single
input-output pair each. On the other hand, there is a plateau between 𝑝𝑖 = [2, 3] that
connects a nearly constant number of input-output pairs. Substituting this interval value
into the system equation leads to

𝑦𝑖 = 𝑝𝑖𝑢

= [2, 3] [2, 3]

= [4, 9] = 𝑦 (3.23)

which is exactly the given output range. The interval 𝑝𝑖 is an inner enclosure of the solution
set of 𝑝 = 𝑦/𝑢.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

500,000
1,000,000
1,500,000
2,000,000
2,500,000

Parameter 𝑝

C
ou

nt

Figure 3.5: Distribution of parameters in the proper case

The plateau in Fig 3.5 contains those parameters 𝑝 that are able to map any 𝑢 ∈ 𝑢 to a value
𝑦 ∈ 𝑦. Note that not necessarily all values 𝑦 ∈ 𝑦 have to be met by 𝑝𝑢. The contour of the
histogram given in Fig. 3.5 can also be analytically calculated. The derivation of the exact
distribution is given in Appendix B.
The property leading to the wrapping e�ect displayed in Example 3.3 and Example 3.4 is
the non-existence of an inverse element in classical interval arithmetic [Apo67].The inverse
element in the real numbers is de�ned with respect to an operation and denotes an element
that maps itself on the neutral element of this operation (see [Bro08, p. 340]).
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Thereby the neutral element is also de�ned with respect to the same operation and denotes
an element that maps each other element on itself (see [Bro08, p. 339]).
There are neutral elements in classical interval arithmetic. For example the neutral element
for addition is given by 𝑒𝑎 = [0, 0] and for multiplication by 𝑒𝑚 = [1, 1]. Applying the
neutral elements to an arbitrary interval value 𝑟 = [𝑟, 𝑟] leads to

𝑟 + 𝑒𝑎 = [𝑟 + 0, 𝑟 + 0] = [𝑟, 𝑟] (3.24)
𝑟 · 𝑒𝑚 = [𝑟 · 1, 𝑟 · 1] = [𝑟, 𝑟] . (3.25)

However, in general there is no inverse element as can be seen in the following:
𝑟 + (−𝑟) = [𝑟 + (−𝑟), 𝑟 + (−𝑟)] ̸= 𝑒𝑎 if 𝑟 ̸= 𝑟 (3.26)

𝑟 ·
(︂

1

𝑟

)︂
=

[︂
𝑟

𝑟
,
𝑟

𝑟

]︂
̸= 𝑒𝑚 if 𝑟 ̸= 𝑟. (3.27)

Equations (3.26) and (3.27) hold if and only if 𝑟 = 𝑟 which means that 𝑟 is a degenerated
point real interval [Apo67].

3.1.2 Kaucher Interval Arithmetic

It is bene�cial to de�ne an extension to interval arithmetic that provides the existence of an
inverse element for all arithmetic operations. By using Kaucher interval arithmetic [Kau80],
the set of proper intervals can be extended by the introduction of a new set of so called
improper intervals. These improper intervals are de�ned complementary to classical inter-
vals:

KR = {x = [𝑥, 𝑥] | 𝑥 < 𝑥 and 𝑥, 𝑥 ∈ R} . (3.28)

The set of all proper and improper intervals is given by IR* = IR ∪KR and is depicted in
Fig. 3.6. The set of point real intervals is depicted as diagonal line in the �gure. The set of
proper intervals IR is formed by the half plain above the point real line. It can be seen, that
the improper intervals KR complete the IR* by covering the half plain below the point real
line.

The de�nitions of the basic arithmetic operations ⋆ ∈ {+,−, ·, /} need to be adapted to hold
as well for classical as for Kaucher interval arithmetic [Sha02].
Therefore, the de�nition of the negative part 𝑥⊖ and the positive part 𝑥⊕ of a real number 𝑥
is given by

𝑥⊖ = max (−𝑥, 0) and 𝑥⊕ = max (𝑥, 0) . (3.29)
The four classic operations can thus be written as follows:

𝑥 + 𝑦 =
[︀
𝑥 + 𝑦, 𝑥 + 𝑦

]︀
(3.30)

𝑥− 𝑦 =
[︀
𝑥− 𝑦, 𝑥− 𝑦

]︀
(3.31)

𝑥 · 𝑦 =
[︀
max

(︀
𝑥⊕𝑦⊕, 𝑥⊖𝑦⊖

)︀
−max

(︀
𝑥⊕𝑦⊖, 𝑥⊖𝑦⊕

)︀
,

max
(︀
𝑥⊖𝑦⊖, 𝑥⊕𝑦⊕

)︀
−max

(︀
𝑥⊖𝑦⊕, 𝑥⊕𝑦⊖

)︀]︀
(3.32)

𝑥/𝑦 = 𝑥 ·
[︀
1/𝑦, 1/𝑦

]︀
, for 𝑦 · 𝑦 > 0. (3.33)
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𝑥 ∈ R

KR

IR

𝑥

𝑥

Figure 3.6: Geometric interpretation of IR*. The diagonal line represents point real values (based on [Sai14, p. 18])

In addition the two unary operators

opp ([𝑥, 𝑥]) = [−𝑥, −𝑥] (3.34)
dual ([𝑥, 𝑥]) = [𝑥, 𝑥] . (3.35)

are introduced to toggle between proper and improper intervals. Using this operators leads
to the de�nition of inverse elements in Kaucher interval arithmetic:

𝑥 + opp (𝑥) = [𝑥, 𝑥] + [−𝑥, −𝑥] = [0, 0] =: 0 (3.36)
𝑥/dual (𝑥) = [𝑥, 𝑥] · [1/𝑥, 1/𝑥] = [1, 1] =: 1. (3.37)

Those comply with the classic interval analysis de�nitions if all used intervals are proper
[Sha02].

It is hard to imagine the nature of an improper interval as it is neither empty nor does it
include the same values as a proper interval with inverse borders. A possibility to grasp an
idea of the nature of an improper interval is given in Example 3.5.
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Example 3.5:
Assume the proportional gain setting of Fig. 3.7 which is similar to Example 3.3 but with a
di�erent output range 𝑦.

𝑝

𝑢 = [2, 3] 𝑦 = [4, 5]

Figure 3.7: Proportional gain system with improper solution

The question is again which values can be used as gain 𝑝 ∈ 𝑝 that maps all input values
𝑢 = [2, 3] to the output range 𝑦 = [4, 5]. The intervals are again divided into equidistant
parts of ∆𝑢 = ∆𝑦 = 0.0001. The resulting 10′001 discrete samples of 𝑢𝑠 are combined with
the 10′001 samples of 𝑦𝑠 to calculate the connecting parameter 𝑝𝑠 = 𝑦𝑠/𝑢𝑠. The resulting
100′020′002 parameter values are used to set up the histogram given in Fig. 3.8.
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Figure 3.8: Distribution of parameters in the improper case

In this case it can be seen that there is no plateau in the histogram. However, there are two
edges at 𝑝1 = 5/3 and 𝑝2 = 2. Substituting 𝑝1 into the system equation leads to

𝑦𝑝1
= 𝑝1𝑢

= 5/3 [2, 3]

≈ [3.33, 5] ̸= [4, 5] . (3.38)

The evaluation for 𝑝2 yields

𝑦𝑝2 = 𝑝2𝑢

= 2 [2, 3]

≈ [4, 6] ̸= [4, 5] . (3.39)
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It can be seen that both parameters are able to map some values of the input range 𝑢 into
the output range. Nevertheless there is not a single parameter that can map all values of 𝑢
to 𝑦. This observation can be combined with the fact that the inner enclosure is an improper
interval:

𝑝 = 𝑦/dual (𝑢)

=
[︀
𝑦, 𝑦

]︀ [︂ 1

𝑢
,

1

𝑢

]︂
=

[︂
4

2
,

5

3

]︂
≈ [2, 1.7] (3.40)

Therefore improper intervals can be interpreted as solutions of a setting with “eroded plateau”.

3.1.3 Interval Type Linear Equation Systems

The introduced interval arithmetic considerations can now be extended to a vector ma-
trix notation. Assume there are 𝑇 measurement values ⟨𝑢𝑘⟩𝑇𝑘=1 = [𝑢1,𝑢2, . . . ,𝑢𝑇 ]

𝑇 and
⟨𝑦𝑘⟩𝑇𝑘=1 = [𝑦1,𝑦2, . . . ,𝑦𝑇 ]

𝑇 , containing a valid range for each sample 𝑘 ∈ {1, 2, . . . , 𝑇}.
Each suitable parameter 𝑝 ∈ 𝑝 has to comply with all input and all output ranges. This
problem can be stated as an interval type linear equation system⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢1𝑝 = 𝑦1

𝑢2𝑝 = 𝑦2

... =
...

𝑢𝑇𝑝 = 𝑦𝑇

(3.41)

or more general, for vectorial input
[︁
𝑢
(1)
𝑘 , · · · ,𝑢(𝑛)

𝑘

]︁
, scalar output 𝑦𝑘 and 𝑛 parameters[︀

𝑝(1), · · · ,𝑝(𝑛)
]︀𝑇 :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑢
(1)
1 𝑝(1) + 𝑢

(2)
1 𝑝(2) + . . . + 𝑢

(𝑛)
1 𝑝(𝑛) = 𝑦1

𝑢
(1)
2 𝑝(1) + 𝑢

(2)
2 𝑝(2) + . . . + 𝑢

(𝑛)
2 𝑝(𝑛) = 𝑦2

...
...

...
...

𝑢
(1)
𝑇 𝑝(1) + 𝑢

(2)
𝑇 𝑝(2) + . . . + 𝑢

(𝑛)
𝑇 𝑝(𝑛) = 𝑦𝑇 .

(3.42)



3.1 Mathematical Preliminaries 29

The variables are used to set up the regressor matrix 𝐴 ∈ IR(𝑇×𝑛), the measurement vector
𝐵 ∈ IR(𝑇×1) and the respective parameter vector 𝑋 ∈ IR*(𝑛×1) with

𝐴 =
(︁
𝑎(𝑖,𝑗)

)︁
1≤𝑖≤𝑇, 1≤𝑗≤𝑛

=
(︁
𝑢
(𝑗)
𝑘

)︁
1≤𝑘≤𝑇, 1≤𝑗≤𝑛

(3.43)

𝐵 =
(︁
𝑏(𝑖)
)︁
1≤𝑖≤𝑇

= (𝑦𝑘)1≤𝑘≤𝑇 (3.44)

𝑋 =
(︁
𝑥(𝑗)

)︁
1≤𝑗≤𝑛

=
(︁
𝑝(𝑗)

)︁
1≤𝑗≤𝑛

(3.45)

The interval type linear equation system can thus be stated as

𝐴 ·𝑋 = 𝐵. (3.46)

This system can be interpreted as the collection of all point real linear equation systems that
can be formed from the enclosed interval values [Sha96].
Equation systems with a regressor matrix of dimension 𝑇 = 𝑛 are called quadratic. Dimen-
sion 𝑇 < 𝑛 stands for an underdetermined and dimension 𝑇 > 𝑛 results in an overdeter-
mined equation system. Underdetermined systems do not carry enough information to solve
the problem unambigiously. This thesis focuses on overdetermined systems which is the
most relevant case when regarding reasonable measurement times 𝑇 and system orders 𝑛.

The inverse of a quadratic point real matrix 𝐴 is de�ned if the matrix is non-singular i.e. 𝐴−1

exists if det(𝐴) ̸= 0. Analogously a quadratic interval type matrix 𝐴 is non-singular if all
point real matrices contained in the interval matrix are non-singular i.e. det(𝐴) ̸= 0 ∀𝐴 ∈ 𝐴
[Sha14].
For overdetermined point real systems the criterion changes to a rank condition. The point
real matrix 𝐴 ∈ R(𝑇×𝑛) with 𝑇 > 𝑛 is said to have full rank if rank (𝐴) = 𝑛. For interval
type overdetermined systems, this condition again changes to rank (𝐴) = 𝑛, ∀𝐴 ∈ 𝐴. This
means that all point real matrices included in the interval matrix need to show full rank.
Determining the rank of an interval type matrix is in general an 𝑁𝑃 -Hard problem [Sha14].
Nevertheless, several criteria to check if an interval matrix has full rank were collected in [Sta16]
based on [Sha14]. An introduction of the most relevant ones is given in Appendix C.

The full rank condition is connected with persistent excitation according to Assumption 2.1.
If the used input signal provides persistent excitation, the regressor matrix has full rank
[Sha14][Lak14]. This leads to Assumption 3.1.

Assumption 3.1 (Rank of the Regressor Matrix)
The interval type regressor matrix 𝐴 shows full rank according to [Sha96].

Throughout this thesis it is assumed that all speci�cations and measurements lead to an in-
terval regressor matrix 𝐴 that has full rank.
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In general there is no unique, component wise point real solution vector 𝑋 for such an in-
terval linear equation system. Instead, (3.46) is solved by a set of point real solutions

∑︀
. The

elements of the solution set 𝑋(𝑖) ∈
∑︀

depend on the speci�c interpretation of (3.46). This
interpretation is done by the interval quantors ∀ and ∃ as explained in [Sha02]. The notation
of

∀ [𝑎, 𝑎]𝑥 = ∃
[︀
𝑏, 𝑏
]︀

(3.47)

means that 𝑥 has to solve (3.47) for all elements of {𝑎 ∈ R|𝑎 ∈ [𝑎, 𝑎]} but only for at least
one speci�c element of

{︀
𝑏 ∈ R|𝑏 ∈

[︀
𝑏, 𝑏
]︀}︀

[Sha02].
Each element of a vector or matrix can be assigned with an individual quantor, i.e. it is pos-
sible to precisely de�ne a speci�c solution set for the interval type matrix equations. Vectors
and matrices with assigned quantors are denoted as 𝐵C or 𝐴C, respectively. A vector or ma-
trix containing only the elements with assigned ∀ quantor are denoted by 𝐵∀ and 𝐴∀, the
elements assigned with an ∃ quantor are given by 𝐵∃ and 𝐴∃. To split an assigned vector
𝐵C or a matrix 𝐴C depending on the quantors, the dualization of the intervals as given in
(3.37) has to be used.
According to [Sha02] the splitting is di�erent for matrices and vectors and it is given by the
following relation:

Vector: 𝐵C := dual
(︀
𝐵∀)︀+ 𝐵∃ (3.48)

Matrix: 𝐴C := 𝐴∀ + dual
(︀
𝐴∃)︀ . (3.49)

The speci�c elements of the matrices 𝐴∀ and 𝐴∃ are given by

𝑎∀(𝑖,𝑗) =

{︃
𝑎C(𝑖,𝑗) , if C = ∀
0 , else

(3.50a)

𝑎∃(𝑖,𝑗) =

{︃
𝑎C(𝑖,𝑗) , if C = ∃
0 , else.

(3.50b)

The elements for the vectors 𝐵∀ and 𝐵∃ are given by

𝑏∀(𝑖) =

{︃
𝑏C(𝑖) , if C = ∀
0 , else

(3.51a)

𝑏∃(𝑖) =

{︃
𝑏C(𝑖) , if C = ∃
0 , else.

(3.51b)

The most general solution set is given by a mixed assignment of both quantors to the interval
matrix 𝐴 as well as to the interval vector 𝐵. The resulting 𝐴𝐸-solution3 set

∑︀
𝐴𝐸 according

to [Hla14] is given by∑︀
𝐴𝐸

(︀
𝐴C,𝐵C

)︀
=
{︀
𝑋 ∈ R𝑛

⃒⃒
(3.52)(︀

∀𝐴∀ ∈ 𝐴∀)︀ ∧ (︀∀𝐵∀ ∈ 𝐵∀)︀ ∧ (︀∃𝐴∃ ∈ 𝐴∃)︀ ∧ (︀∃𝐵∃ ∈ 𝐵∃)︀ :
(︀(︀
𝐴∀ + 𝐴∃)︀𝑋 = 𝐵∀ + 𝐵∃)︀}︀.

3 The genuine notation of [Hla14, p. 2] is:
𝑋 ∈ R𝑛 is an 𝐴𝐸-solution if ∀𝐴∀ ∈ 𝐴∀,∀𝐵∀ ∈ 𝐵∀, ∃𝐴∃ ∈ 𝐴∃, ∃𝐵∃ ∈ 𝐵∃ : (𝐴∀+𝐴∃)𝑋 = 𝐵∀+𝐵∃.
This notation is slightly adapted for the sake of readability.
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Based on the general 𝐴𝐸-solution it is possible to de�ne four distinct solution sets as given
in [Sha96][Fie06][Hla14].

De�nition 3.1 (United Solution Set
∑︀

∃∃)
The united solution set is formed by all solutions of any of the point real systems𝐴 ·𝑋 = 𝐵
with 𝐴 ∈ 𝐴 and 𝐵 ∈ 𝐵 that are included in the interval system:∑︀

∃∃ (𝐴,𝐵) := {𝑋 ∈ R𝑛| (∃𝐴 ∈ 𝐴) ∧ (∃𝐵 ∈ 𝐵) : (𝐴 ·𝑋 = 𝐵)} . (3.53)

Note that not all𝐴 ∈ 𝐴 can match any element𝐵 ∈ 𝐵 by multiplication with any𝑋 ∈
∑︀

∃∃,
and that not all 𝐵 ∈ 𝐵 can be calculated using any 𝑋 ∈

∑︀
∃∃ and all available 𝐴 ∈ 𝐴. Fur-

thermore, the set
∑︀

∃∃ is not necessarily connected and not necessarily constrained by bor-
ders parallel to the coordinate axes. Using an enclosing interval 𝑋 ⊇

∑︀
∃∃ will likely create

spurious solutions.

De�nition 3.2 (Tolerable Solution Set
∑︀

∀∃)
The tolerable solution set includes all values of𝑋 that solve the interval type linear equation
system regardless of the chosen point real matrix 𝐴 ∈ 𝐴. This means the solution holds for
all included point real matrices:∑︀

∀∃ (𝐴,𝐵) := {𝑋 ∈ R𝑛| (∀𝐴 ∈ 𝐴) ∧ (∃𝐵 ∈ 𝐵) : (𝐴 ·𝑋 = 𝐵)} . (3.54)

Note that not all 𝐵 ∈ 𝐵 can be calculated using any 𝑋 ∈
∑︀

∀∃ and all available 𝐴 ∈ 𝐴. The
set
∑︀

∀∃ is not necessarily connected and not necessarily constrained by borders parallel to
the coordinate axes. Using an enclosing interval 𝑋 ⊇

∑︀
∀∃ will likely create spurious solu-

tions.
The controllable solution set applies the same principle to the measurement vector 𝐵.

De�nition 3.3 (Controllable Solution Set
∑︀

∃∀)
The elements of the controllable solution set are feasible regardless of the chosen point real
measurement vector 𝐵 ∈ 𝐵. This means there is a suitable regressor matrix 𝐴 ∈ 𝐴 for all
possible point real measurement vectors:∑︀

∃∀ (𝐴,𝐵) := {𝑋 ∈ R𝑛| (∃𝐴 ∈ 𝐴) ∧ (∀𝐵 ∈ 𝐵) : (𝐴 ·𝑋 = 𝐵)} . (3.55)

Note that not all 𝐴 ∈ 𝐴 can match an element 𝐵 ∈ 𝐵 by multiplication with any 𝑋 ∈
∑︀

∃∀.
The set

∑︀
∃∀ is not necessarily connected and not necessarily constrained by borders paral-

lel to the coordinate axes. Using an enclosing interval 𝑋 ⊇
∑︀

∃∀ will likely create spurious
solutions.
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A very strict criterion is given by the strong solution set.

De�nition 3.4 (Strong Solution set
∑︀

∀∀)
The strong solution set includes only parameters𝑋 that solve the interval type linear equa-
tion system for any regressor matrix and any measurement vector:∑︀

∀∀ (𝐴,𝐵) := {𝑋 ∈ R𝑛| (∀𝐴 ∈ 𝐴) ∧ (∀𝐵 ∈ 𝐵) : (𝐴 ·𝑋 = 𝐵)} . (3.56)

None of the limitations of the previous solution sets is necessary for the strong solution.
Nevertheless, the set

∑︀
∀∀ is not necessarily connected and not necessarily constrained by

borders parallel to the coordinate axes. Using an enclosing interval 𝑋 ⊇
∑︀

∀∀ will likely
create spurious solutions.
The algebraic solution di�ers in its de�nition as it is not quantor based.

De�nition 3.5 (Algebraic Solution Set
∑︀

𝑎)
The algebraic solution is de�ned by the interval type vectors𝑋𝑎 that solve the interval type
linear equation system straight forward:∑︀

𝑎 (𝐴,𝐵) := {𝑋𝑎 ∈ IR𝑛| (𝐴 ·𝑋𝑎 = 𝐵)} . (3.57)

Even though the elements of the algebraic solution are constrained parallel to the coordinate
axes, the solution is ambiguous, i.e. there might be several or none solution vectors 𝑋𝑎 that
ful�ll the equation [Kup95].
The di�erent solution sets are related as they are subsets of each other. The united solution
set is a superset of the algebraic solution set [Kup95], as well as of the tolerable and the
controllable solution set [Sha96]∑︀

𝑎 (𝐴,𝐵) ⊆
∑︀

∃∃ (𝐴,𝐵) (3.58)∑︀
∀∃ (𝐴,𝐵) ⊆

∑︀
∃∃ (𝐴,𝐵) (3.59)∑︀

∃∀ (𝐴,𝐵) ⊆
∑︀

∃∃ (𝐴,𝐵) . (3.60)

The strong solution set on the other hand is a subset of the tolerable as well as of the con-
trollable solution set [Fie06] ∑︀

∀∀ (𝐴,𝐵) ⊆
∑︀

∀∃ (𝐴,𝐵) (3.61)∑︀
∀∀ (𝐴,𝐵) ⊆

∑︀
∃∀ (𝐴,𝐵) . (3.62)

A visualization of the solution sets and their relations is given in Example 3.6.
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Example 3.6:
Consider the following 2×2 interval type linear equation system (ILES) taken from [Sha96]:(︂

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)︂
·𝑋 =

(︂
[−2, 2]
[−2, 2]

)︂
. (3.63)

The controllable solution set
∑︀

∃∀ and the strong solution set
∑︀

∀∀ are empty for the ILES
(3.63). It can be seen in Fig. 3.9 that the algebraic solution

∑︀
𝑎 is a subset of the tolerable

solution set
∑︀

∀∃ which is a subset of the united solution
∑︀

∃∃. It is also clearly visible that
neither the tolerable nor the united solution can be included in classical intervals parallel to
the axes without creating spurious solutions.

−4 −3 −2 −1 1 2 3 4

−4
−3
−2
−1

1
2
3
4

∑︀
∃∃

∑︀
∃∀ = ∅ and ∑︀

∀∀ = ∅

∑︀
∀∃

∑︀
𝑎

𝑥(1)

𝑥(2)

Figure 3.9: Di�erent solution sets for the interval type linear equation system

The calculation of all given solution sets is computational expensive, as the calculation of the
hulls is 𝑁𝑃 -Hard according to [Hor13]. Even to check whether a solution set is empty is still
an 𝑁𝑃 -Complete problem as shown by [Sha96].

The problem becomes more tractable, if it is regarded from a di�erent point of view. Assume
a given point real solution candidate 𝑋𝑠. The question is now to determine whether the
solution candidate 𝑋𝑠 belongs to any of the de�ned solution sets without calculating the sets
explicitly. The approach used in this thesis was introduced by [Bee72] and uses the so-called
theorem of Prager-Oettli [Oet64]. The resulting criterion for interval arithmetic problems in
Def. 3.6 is used to determine whether 𝑋𝑠 is a member of the united solution set

∑︀
∃∃.
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De�nition 3.6 (Theorem of Prager-Oettli)
A given solution candidate 𝑋𝑠 is part of the united solution set

∑︀
∃∃ i.e.

𝑋𝑠 ∈
∑︀

∃∃ (3.64)

if and only if 𝑋𝑠 ful�lls the inequality

|𝐴𝑐𝑋𝑠 −𝐵𝑐| ≤ 𝐴Δ |𝑋𝑠|+ 𝐵Δ (3.65)

based on center and radius of the regressor matrix 𝐴 = ⟨𝐴𝑐, 𝐴Δ⟩ and the measurement
vector 𝐵 = ⟨𝐵𝑐, 𝐵Δ⟩, given by the 𝑇 interval type measurement values ⟨𝑢𝑘⟩𝑇𝑘=1 and
⟨𝑦𝑘⟩𝑇𝑘=1 [Bee72, p. 235].

This theorem was extended by [Hla14] to the general 𝐴𝐸-solution:

𝑋𝑠 ∈
∑︀

𝐴𝐸 ⇔ |𝐴𝑐𝑋𝑠 −𝐵𝑐| ≤
(︀
𝐴∃

Δ −𝐴∀
Δ

)︀
|𝑋𝑠|+ 𝐵∃

Δ −𝐵∀
Δ. (3.66)

A solution candidate vector 𝑋𝑠 is part of the 𝐴𝐸-solution if and only if (3.66) holds. This
criterion can be specialized to �t the four other solutions sets as given in Tab. 3.1.

Table 3.1: Conditions for the membership of 𝑋𝑠 to a speci�c solution set.

Solution set Condition∑︀
∃∃ (united) |𝐴𝑐𝑋𝑠 −𝐵𝑐| ≤ 𝐴Δ |𝑋𝑠|+ 𝐵Δ∑︀
∀∃ (tolerable) |𝐴𝑐𝑋𝑠 −𝐵𝑐| ≤ −𝐴Δ |𝑋𝑠|+ 𝐵Δ∑︀
∃∀ (controllable) |𝐴𝑐𝑋𝑠 −𝐵𝑐| ≤ 𝐴Δ |𝑋𝑠| −𝐵Δ∑︀
∀∀ (strong) |𝐴𝑐𝑋𝑠 −𝐵𝑐| ≤ −𝐴Δ |𝑋𝑠| −𝐵Δ

Further considerations regarding existence and uniqueness of the solution are only avail-
able for the algebraic solution set

∑︀
𝑎. Two approaches for this purpose are sketched in

Appendix D.



4 Guaranteed Veri�cation of Point Real
Systems

The theoretical foundation of the thesis is developed and illustrated in this chapter. Therefore
a very simple and comprehensive linear time invariant model structure is used to focus on
the method itself. The general principles introduced in this chapter can be extended to other
types of system models.

4.1 System Setup

De�nition 4.1 (Linear Time Invariant System)
A discrete time, linear time invariant (LTI) system can be modeled as

𝑦𝑘 =

𝑛𝑎∑︁
𝑖=1

𝑎𝑖𝑦𝑘−𝑖 +

𝑛𝑐∑︁
𝑖=1

𝑐𝑖𝑢𝑘−𝑖 (4.1)

with the discrete time input 𝑢𝑘 and output 𝑦𝑘 , the input and output order 𝑛𝑎 and 𝑛𝑐 as well
as the input parameters [𝑎1, 𝑎2, . . . , 𝑎𝑛𝑎 ]

𝑇 and the output parameters [𝑐1, 𝑐2, . . . , 𝑐𝑛𝑐 ]
𝑇 .

This modeling approach is also known as AutoRegressive system with eXogenous input
(ARX).

Based on the model assumption of Def. 4.1 it is possible to set up the speci�cation of the
nominal system, as given in Def. 4.2. The set of nominal parameters as introduced in Sec. 2.1.1
is assumed to be given in the speci�cation.4 Two possibilities to determine these parameters
in practice are introduced in Appendix E.
Throughout this thesis the superscript �* will be used to denote values that are part of a
speci�cation or the nominal value. Note that the set of parameters is given by a distinguished
point real vector for the current LTI setting.5

4 For other applications, e.g. fault-tolerant control, the method works similarly but the speci�cation is given in a
di�erent manner.

5 The used model assumption does not allow a direct feedthrough as this property is not regarded in the given
setting. To allow a direct feedthrough the second sum needs to be changed to start from zero, leading to 𝑖 ∈
{0, 1, . . . , 𝑛𝑐}.
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De�nition 4.2 (Speci�cation of a Linear Time Invariant System)
The (direct) speci�cation𝑆*

𝑑 of an LTI system according to Def. 4.1 is given by themandatory
values

• 𝑛*
𝑎, the nominal output order

• 𝑛*
𝑐 , the nominal input order

• Θ* =
[︁
𝑎*1, 𝑎

*
2, . . . , 𝑎

*
𝑛*
𝑎
, 𝑐*1, 𝑐

*
2, . . . , 𝑐

*
𝑛*
𝑐

]︁𝑇
, the nominal parameters

and the optional values

• 𝑌 *
𝑖𝑛𝑖𝑡 = ⟨𝑦𝑘⟩

max(𝑛*
𝑎,𝑛

*
𝑐)

𝑘=1 , the initial output values

• 𝑈*
𝑖𝑛𝑖𝑡 = ⟨𝑢𝑘⟩

max(𝑛*
𝑎,𝑛

*
𝑐)

𝑘=1 , the initial input values

leading to the overall speci�cation

𝑆*
𝑑 = {Θ*, 𝑛*

𝑎, 𝑛
*
𝑐 , 𝑈

*
𝑖𝑛𝑖𝑡, 𝑌

*
𝑖𝑛𝑖𝑡} . (4.2)

If the initial values are known, the future evolution of the system output trajectory is only
dependent on the input signal. It is thus possible to compare the behavior of the trajectory
for di�erent inputs. If there are no initial values, the behavior of the trajectory will di�er for
the same inputs in the case of di�erent used initial values. If they are provided, there need
to be at least 𝑘𝑚𝑖𝑛 = max (𝑛*

𝑎, 𝑛
*
𝑐) + 1 initial values to enable the �rst evaluation of the

autoregressive system description according to Def. 4.1.

It is assumed that the nominal system is developed and built and ready to be veri�ed. Thereby
the veri�cation object (VO) is assumed to be available as a (physical) black box with one or
more input and output ports. It is possible to excite the system via the input and to measure
the resulting output. Further insights, like internal structure, components and wiring, soft-
ware, plans or internal states are not accessible. This approach can be applied in various states
of system development. Therefore there is a wide range of exact physical representations of
the VO black box such as models, program code, components or units.

The veri�cation method is running on a digital device that not necessarily generates the input
signal itself. Therefore input and output values need to be measured to be available for the
veri�cation method. Measurement data is always subject to noise which is assumed to be
modeled throughout the thesis based on the following de�nition.
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De�nition 4.3 (Sensor Noise Properties)
All available information about the VO is given in terms of measurement data of the input
⟨𝑢𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 and output ⟨𝑦𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1. The measurement data is obtained using sensors
providing guaranteed notions of sensor precision that allow interval type enclosure of the
measurement values.
All measurement values 𝑢𝑚𝑒𝑎𝑠,𝑘 and 𝑦𝑚𝑒𝑎𝑠,𝑘 are extended to intervals such that the true
system values 𝑢𝑡𝑟𝑢𝑒,𝑘 and 𝑦𝑡𝑟𝑢𝑒,𝑘 are guaranteed to be included in the interval 𝑢𝑚𝑒𝑎𝑠,𝑘

and 𝑦𝑚𝑒𝑎𝑠,𝑘 , respectively. There are three di�erent ways these guarantees can be obtained:

a) Absolute deviation
The sensor precision is denoted by a maximum deviation of ±𝛿𝑎. This leads to the
interval enclosure of

𝑢𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑢𝑘 = [𝑢𝑚𝑒𝑎𝑠,𝑘 − 𝛿𝑎𝑢, 𝑢𝑚𝑒𝑎𝑠,𝑘 + 𝛿𝑎𝑢] (4.3)
𝑦𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑦𝑘 =

[︀
𝑦𝑚𝑒𝑎𝑠,𝑘 − 𝛿𝑎𝑦 , 𝑦𝑚𝑒𝑎𝑠,𝑘 + 𝛿𝑎𝑦

]︀
. (4.4)

b) Relative deviation
In this case the sensor precision is given in terms of a relative deviation of 𝛿𝑟 ∈ [0, 1]
which is leading to

𝑢𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑢𝑘 = [𝑢𝑚𝑒𝑎𝑠,𝑘 · (1− 𝛿𝑟𝑢), 𝑢𝑚𝑒𝑎𝑠,𝑘 · (1 + 𝛿𝑟𝑢)] (4.5)
𝑦𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑦𝑘 =

[︀
𝑦𝑚𝑒𝑎𝑠,𝑘 · (1− 𝛿𝑟𝑦), 𝑦𝑚𝑒𝑎𝑠,𝑘 · (1 + 𝛿𝑟𝑦)

]︀
. (4.6)

c) Combined deviation
A common case is the combination of the both aforementioned deviation types. The
deviation is de�ned to be 𝛿𝑟 ∈ [0, 1] times the current measurement value but at
least ±𝛿𝑎, resulting in

𝑢𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑢𝑘 = 𝑢𝑚𝑒𝑎𝑠,𝑘 ·
[︂
min

(︂
(1− 𝛿𝑟𝑢),

(︂
1− 𝛿𝑎𝑢

𝑢𝑚𝑒𝑎𝑠,𝑘

)︂)︂
,

max

(︂
(1 + 𝛿𝑟𝑢),

(︂
1 +

𝛿𝑎𝑢
𝑢𝑚𝑒𝑎𝑠,𝑘

)︂)︂]︂
(4.7)

𝑦𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑦𝑘 = 𝑦𝑚𝑒𝑎𝑠,𝑘 ·
[︂
min

(︂
(1− 𝛿𝑟𝑦),

(︂
1−

𝛿𝑎𝑦
𝑦𝑚𝑒𝑎𝑠,𝑘

)︂)︂
,

max

(︂
(1 + 𝛿𝑟𝑦),

(︂
1 +

𝛿𝑎𝑦
𝑦𝑚𝑒𝑎𝑠,𝑘

)︂)︂]︂
. (4.8)

The properties of Def. 4.3 are used to set up interval type enclosures of the measurement data
that are guaranteed to include the true system value. The resulting structural setup of the
measurement process is depicted in Fig. 4.1.
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𝑢𝑚𝑒𝑎𝑠,𝑘

[︀
,

]︀

𝑢𝑚𝑒𝑎𝑠,𝑘

𝑦𝑚𝑒𝑎𝑠,𝑘

[︀
,

]︀

𝑦𝑚𝑒𝑎𝑠,𝑘

𝜖𝑢,𝑘
Measurement

𝜖𝑦,𝑘
Measurement

Verification Object
(VO)

𝑢𝑡𝑟𝑢𝑒,𝑘 𝑦𝑡𝑟𝑢𝑒,𝑘

Figure 4.1: Structure of measurement setup

A basic assumption in the �eld of parameter identi�cation is the property of persistent ex-
citation according to Assumption 2.1. The information provided in any data set is highly
dependent on the input signal that was used to generate the output. According to [Ast95,
p. 63�] there are several methods to ensure persistent excitation of a system. Exemplary per-
sistently exciting inputs are e.g. white noise, pseudorandom binary sequences or a moving
average process [Ise10, p. 251]. One possible excitation procedure �tted to the speci�c settings
regarded in this thesis was developed in [Rie17]. The main idea is sketched in Appendix F.

4.2 Time Invariant Full Consistency

The general notion of consistency introduced in Chapter 2 is now transferred to the speci�c
setting of LTI systems. The direct speci�cation 𝑆*

𝑑 includes one distinctive point real nominal
parameter vector. Thus all results show 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 according to Def. 2.2.
The observed behavior of the regarded VO is given in terms of input output measurement
data. The nominal behavior is speci�ed according to Def. 4.2. The VO is called full consistent
with its speci�cation if the measurement data can be explained by all speci�ed parameters.
The veri�cation question is formally stated in Problem 4.1.
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Problem 4.1 (Time Invariant Full Consistency)
Is the nominal system, speci�ed by a direct speci�cation

𝑆*
𝑑 = {Θ*, 𝑛*

𝑎, 𝑛
*
𝑐 , 𝑈

*
𝑖𝑛𝑖𝑡, 𝑌

*
𝑖𝑛𝑖𝑡} , (4.9)

full consistent with the input-output behavior given by the interval type enclosures of 𝑇
measurement values

[U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] =
[︁
⟨u𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨y𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(4.10)

i.e. can the measurement data be explained by the nominal system?

Problem 4.1 can be solved using the united solution set according to Def. 3.1.

Proposition 4.1 (Time Invariant Full Consistency)
The interval enclosure of the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠], given for the dis-
crete sampling points 𝑘 = {1, 2, . . . , 𝑇}, leading to the interval type regressor ma-
trix 𝐴𝑚𝑒𝑎𝑠 and the interval type measurement vector 𝐵𝑚𝑒𝑎𝑠, of a VO is called
full consistent with a direct speci�cation 𝑆*

𝑑 , if the speci�ed system parameters

Θ* =
[︁
𝑎*1, 𝑎

*
2, . . . , 𝑎

*
𝑛*
𝑎
, 𝑐*1, 𝑐

*
2, . . . , 𝑐

*
𝑛*
𝑐

]︁𝑇
are part of the united solution set

∑︀
∃∃ given

by the measurement data, i.e.

(Θ* ∈
∑︀

∃∃ (𝐴𝑚𝑒𝑎𝑠,𝐵𝑚𝑒𝑎𝑠))⇔ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦. (4.11)

Proof:
The nominal parameter vector Θ* =

[︁
𝑎*1, 𝑎

*
2, . . . , 𝑎

*
𝑛*
𝑎
, 𝑐*1, 𝑐

*
2, . . . , 𝑐

*
𝑛*
𝑐

]︁𝑇
, given by a direct

speci�cation 𝑆*
𝑑 according to Def. 4.2, can be interpreted as a solution candidate for the ILES

(3.46) which is set up by the interval type enclosure of the measurement data. If Θ* is part
of the solution set of the ILES (3.46), the speci�cation 𝑆*

𝑑 is able to explain the measurement
data.
The problem is formulated in Kaucher interval arithmetic, therefore it is necessary to de�ne
which solution set is used. Considering the interval enclosure of the measurement data given
in Def. 4.3, it is obvious that it is not possible to determine the true value 𝑢𝑡𝑟𝑢𝑒,𝑘 and 𝑦𝑡𝑟𝑢𝑒,𝑘
as there are two distortion steps between the true values and the interval enclosure. First
the true value is changed by the measurement random noise 𝜖. Second, the sensor is only as
precise as given by its property.
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However, it is guaranteed that the true values of 𝑢𝑡𝑟𝑢𝑒,𝑘 and 𝑦𝑡𝑟𝑢𝑒,𝑘 are included in the mea-
surement intervals

𝑢𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑢𝑚𝑒𝑎𝑠,𝑘 (4.12)
𝑦𝑡𝑟𝑢𝑒,𝑘 ∈ 𝑦𝑚𝑒𝑎𝑠,𝑘. (4.13)

Starting from time 𝑘𝑚𝑖𝑛 = max (𝑛*
𝑎, 𝑛

*
𝑐) + 1 there are enough measurement values to set

up the regressor equations. Each additional measurement value leads to an additional row in
the regressor matrix 𝐴.
The unknown true values can be assumed to form an unknown true point real regressor
matrix

𝐴𝑡𝑟𝑢𝑒 =

⎡⎢⎢⎢⎣
𝑦𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛−1 · · · 𝑦𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛−𝑛*

𝑎

𝑦𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛 · · · 𝑦𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛+1−𝑛*
𝑎

...
. . .

...
𝑦𝑡𝑟𝑢𝑒,𝑇−1 · · · 𝑦𝑡𝑟𝑢𝑒,𝑇−1−𝑛*

𝑎

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑢𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛−1 · · · 𝑢𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛−𝑛*

𝑐

𝑢𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛 · · · 𝑢𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛+1−𝑛*
𝑐

...
. . .

...
𝑢𝑡𝑟𝑢𝑒,𝑇−1 · · · 𝑢𝑡𝑟𝑢𝑒,𝑇−1−𝑛*

𝑐

⎤⎥⎥⎥⎦
(4.14)

and an unknown true point real measurement vector

𝐵𝑡𝑟𝑢𝑒 = [𝑦𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛
, 𝑦𝑡𝑟𝑢𝑒,𝑘𝑚𝑖𝑛+1, . . . , 𝑦𝑡𝑟𝑢𝑒,𝑇 ]

𝑇
. (4.15)

These elements are linked via an unknown true parameter vector Θ𝑡𝑟𝑢𝑒, that ful�lls

𝐴𝑡𝑟𝑢𝑒Θ𝑡𝑟𝑢𝑒 = 𝐵𝑡𝑟𝑢𝑒. (4.16)

Based on the enclosure of the true values in Def. 4.3 holds:

𝐴𝑡𝑟𝑢𝑒 ∈ 𝐴𝑚𝑒𝑎𝑠 (4.17)
𝐵𝑡𝑟𝑢𝑒 ∈ 𝐵𝑚𝑒𝑎𝑠. (4.18)

With the set de�nition (3.53) follows that Θ𝑡𝑟𝑢𝑒 is an element of the united solution set∑︀
∃∃ (𝐴𝑚𝑒𝑎𝑠,𝐵𝑚𝑒𝑎𝑠).

It is impossible to determine the true values 𝐴𝑡𝑟𝑢𝑒 and 𝐵𝑡𝑟𝑢𝑒 from the given measurement
data. Therefore each point real element of the interval type regressor matrix and the interval
type measurement vector is a possible true value. Thus the whole united solution set can be
considered as correct solution of the ILES.
The given direct speci�cation 𝑆*

𝑑 shows 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− with the given measurement
data [𝑈𝑚𝑒𝑎𝑠,𝑌𝑚𝑒𝑎𝑠], if and only if the nominal parameter vector Θ* is part of the united
solution set

∑︀
∃∃ (𝐴𝑚𝑒𝑎𝑠,𝐵𝑚𝑒𝑎𝑠). Due to the underapproximating property holds

𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (4.19)

and thus the VO is full consistent in the sense of this thesis.
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The calculation of the united solution set is computationally expensive as introduced in Sec-
tion 3.1.2. However, it is not necessary to calculate the whole solution set in this setting as
there is a candidate solution given in form of the speci�cation. Thus it is su�cient to check
whether the speci�ed parameter vector Θ* is part of the united solution set without calculat-
ing the solution set explicitly. Prop. 4.1 can be checked very e�ciently using the theorem of
Prager-Oettli according to De�nition 3.6 by evaluating the single equation (3.65). Therefore
(3.65) is reformulated for the given measurement values to

|𝐴𝑚𝑒𝑎𝑠,𝑐Θ
* −𝐵𝑚𝑒𝑎𝑠,𝑐| ≤ 𝐴𝑚𝑒𝑎𝑠,Δ |Θ*|+ 𝐵𝑚𝑒𝑎𝑠,Δ ⇔ Θ* ∈

∑︀
∃∃ (𝐴𝑚𝑒𝑎𝑠,𝐵𝑚𝑒𝑎𝑠) .

(4.20)

As stated in Section 3.1.3 the existence and uniqueness of the solution sets is still an open
question. A necessary condition for the existence of any solution set is that the ILES (3.46) is
solvable. For the general overdetermined setting, this can be checked using the approaches
given in Appendix C. However, their application is limited as the problem is in general 𝑁𝑃 -
hard. The only further considerations regard the algebraic solution set and are sketched in
Appendix D.

Note that the introduced method preserves time-invariance when checking for consistency.
This is due to the used speci�cation and represents a main di�erence to the direct image based
methods used in fault detection as introduced in Section 2.2. This property will become even
more clear in Chapter 5.

A further necessary condition is persistent excitation of the VO which is given in Assump-
tion 2.1, developed to ensure full rank according to Assumption 3.1.
Therefore it is in general not guaranteed that there is a nonempty united solution set avail-
able and thus there are situation in which the proposed method is not applicable.
However, it is possible to facilitate a favorable situation by proper experiment design. One
possibility to determine a bene�cial excitation signal is given in Appendix F.

The application of time invariant full consistency for LTI systems is demonstrated in Exam-
ple 4.1 and was presented to the scienti�c community in [Sch17b] and [Sch17c][Sch19].
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Example 4.1:

This example shows the veri�cation of a linear, time invariant system as introduced in
Prop. 4.1. Assume the following direct speci�cation

𝑆*
𝑑,1 = {Θ* = [0.9825, 0.0675] , 𝑛*

𝑎 = 1, 𝑛*
𝑐 = 1, 𝑈*

𝑖𝑛𝑖𝑡 = [0] , 𝑌 *
𝑖𝑛𝑖𝑡 = [0]} . (4.21)

The simulations are done with a virtual VO, correctly implemented as discrete time linear
ARX system

𝑦𝑘 = 0.9825𝑦𝑘−1 + 0.0675𝑢𝑘−1 (4.22)

with sampling time ∆𝑡 = 1s. The system is excited using a noise signal with uniformly
distributed amplitude 𝑢𝑡𝑟𝑢𝑒,𝑘 ∈ [0, 10] with mean 𝑢𝑚𝑒𝑎𝑛 = 5. It is assumed that the input
is measured using a sensor with a maximum relative fault of 𝛿𝑟𝑢 = 0.05. The resulting
enclosure of the input measurement signal U𝑚𝑒𝑎𝑠 is depicted in the �rst subplot of Fig. 4.2.
Nevertheless the system (4.22) is fed with the undisturbed input signal 𝑈𝑡𝑟𝑢𝑒. The resulting
output signal is measured using a sensor with the same properties as the input sensor. The
enclosed measurement output signal Y𝑚𝑒𝑎𝑠 is depicted in the second subplot of Fig. 4.2.
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Figure 4.2: Measured input signal 𝑈𝑚𝑒𝑎𝑠 with 𝛿𝑟𝑢 = 0.05
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It can be shown that Prop. 4.1 holds for 𝑆*
𝑑,1 and the measurement data 𝑌𝑚𝑒𝑎𝑠 and 𝑈𝑚𝑒𝑎𝑠

which proofs full consistency of measurement and speci�cation formally.
A graphical representation is given in Fig. 4.3. The lines depict borders of the united solution
set, generated by the di�erent rows of the regressor matrix. Feasible parameters need to be
located in between the borders of all rows of the measurement matrix. The parameters given
in speci�cation 𝑆*

𝑑,1 are marked with a green cross and form a feasible solution of the given
problem as they are located within the united solution set of all measurement data. Hence it
is possible to explain the measured data with the parameters given in speci�cation 𝑆*

𝑑,1.
All given measurement values are used in this example to set up the regressor matrix and the
measurement vector. This leads to 𝐴𝑚𝑒𝑎𝑠 ∈ IR(29×2). In this case, the full rank Assump-
tion 3.1 for 𝑛 = 2 parameters leads to rank (𝐴𝑚𝑒𝑎𝑠)

!
= 2 which is ful�lled for the given

dynamic and excitation signal.
An example with failed veri�cation can be given for the case that the veri�cation method is
applied using a di�erent speci�cation on the same measurement data. For this purpose

𝑆*
𝑑,2 = {Θ* = [1.15, 0.08] , 𝑛*

𝑎 = 1, 𝑛*
𝑐 = 1, 𝑈*

𝑖𝑛𝑖𝑡 = [0] , 𝑌 *
𝑖𝑛𝑖𝑡 = [0]} . (4.23)

is used.

A graphical representation of the parameters is given by the red mark in Fig. 4.3. In this
case, the parameters do not lie within the borders of the united solution set of the given
measurement data. Thus the system is not veri�ed.
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𝜃(1
)

Figure 4.3: Visualization of the united solution given by the measurement data
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4.3 Conclusion

The main idea of Kaucher arithmetic based veri�cation was introduced in this chapter. There-
fore the precise system and problem setting was de�ned and explained. The problem setup
leads to a very distinct situation with only poor knowledge about the true measurement val-
ues which are enclosed in intervals. If this setting is regarded from a di�erent point of view,
it can be interpreted as a speci�c quantor based solution set de�nition that matches exactly
the united solution set introduced in the mathematical preliminaries. This property can be
used to check full consistency of the measurement data and the speci�cation in a set member-
ship procedure that is computationally very e�ective. The assumption of a full rank interval
regressor matrix leads to preliminaries on the sensors and the noise assumptions. It is pos-
sible to check whether a speci�c solution candidate is part of the united solution given by
measurement data. This property was demonstrated using an illustrative example.

The main advantage of the introduced method is that it focuses on the united solution set.
Thereby it is possible to avoid wrapping and dependency e�ects and to calculate a solution
set free of spurious solutions. This property is very bene�cial in the case of safety critical
systems as it avoids type II errors (hidden alarms).



5 Guaranteed Veri�cation of Interval Type
Systems

The basic idea introduced in the previous chapter is now extended to an interval type speci-
�cation. Thus the parametrization is given by an interval type vector Θ* instead of a point
real vector Θ*.

De�nition 5.1 (Interval Type Speci�cation of a Linear System)
An interval type speci�cation 𝑆*

𝑖 of a linear system is given by the mandatory values

• 𝑛*
𝑎, the nominal output order

• 𝑛*
𝑐 , the nominal input order

• Θ* =
[︁
𝑎*
1,𝑎

*
2, . . . ,𝑎

*
𝑛*
𝑎
, 𝑐*1, 𝑐

*
2, . . . , 𝑐

*
𝑛*
𝑐

]︁
, the interval type nominal system param-

eter vector

and the optional values

• 𝑌 *
𝑖𝑛𝑖𝑡 = ⟨𝑦𝑘⟩

max(𝑛*
𝑎,𝑛

*
𝑐)

𝑘=1 , the initial output values

• 𝑈*
𝑖𝑛𝑖𝑡 = ⟨𝑢𝑘⟩

max(𝑛*
𝑎,𝑛

*
𝑐)

𝑘=1 , the initial input values.

This leads to the overall speci�cation

𝑆*
𝑖 = {Θ*, 𝑛*

𝑎, 𝑛
*
𝑐 , 𝑈

*
𝑖𝑛𝑖𝑡, 𝑌

*
𝑖𝑛𝑖𝑡} . (5.1)

Based on this speci�cation the system is implemented. It is assumed that the resulting VO is
given in a form that provides the input and output signals as described in the speci�cation.
Again, this can be the case for a variety of test objects, depending on the speci�c point of
the development cycle for which the speci�cation 𝑆*

𝑖 was de�ned. Methods to determine the
nominal parameters in practice are given in Appendix G.

Even though the speci�cation is now given by interval type values, the implemented system
has to provide real output data at any given time. Thus the real implementation of the VO
has to use a speci�c real parametrization. This leads to the de�nition of interval type linear
systems as given in Def. 5.2.
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De�nition 5.2 (Interval Type Linear System)
A discrete time, linear, interval type system can be modeled as

𝑦𝑘 =

𝑛𝑎∑︁
𝑖=1

𝑎𝑖,𝑘𝑦𝑘−𝑖 +

𝑛𝑐∑︁
𝑖=1

𝑐𝑖,𝑘𝑢𝑘−𝑖 (5.2)

with the discrete time input 𝑢𝑘 and output 𝑦𝑘 , the input and output order 𝑛𝑎 and 𝑛𝑐 as well
as the time variant parameters

Θ𝑘 = [𝑎1,𝑘, 𝑎2,𝑘, . . . 𝑎𝑛𝑎,𝑘, 𝑐1,𝑘, 𝑐2,𝑘, . . . 𝑐𝑛𝑐,𝑘]
𝑇 ∈ Θ*. (5.3)

The necessary data is available as disturbed, discrete time measurement data enclosed in
intervals according to Def. 4.3. Also the persistent excitation Assumption 2.1 and the full
rank Assumptions 3.1 are still required to hold.

The given system de�nition leads to the time variant regressor vector

𝐴𝑘 = [𝑦𝑘−1, 𝑦𝑘−2, . . . , 𝑦𝑘−𝑛𝑎
, 𝑢𝑘−1, 𝑢𝑘−2, . . . , 𝑢𝑘−𝑛𝑐

] (5.4)

and thus the system equation can be transferred to

𝑦𝑘 = 𝐴𝑘Θ𝑘 (5.5)

for a speci�c time step 𝑘 ≥ 𝑘𝑚𝑖𝑛 with 𝑘𝑚𝑖𝑛 = max (𝑛𝑎, 𝑛𝑐) + 1.

This can be interpreted as the realization of a time variant system whose interval type spec-
i�cation is given according to Def. 5.3.

De�nition 5.3 (Interval Enclosure of Time Variant Parameter)
The parameter values Θ𝑘 evolve during a speci�c time 𝑘 ∈ {1, 2, . . . , 𝑇} and can be en-
closed in the interval

Θ𝑘 ∈ Θ =
[︁
𝜃(1),𝜃(2), . . . ,𝜃(𝑛)

]︁𝑇
(5.6)

with 𝑛 = 𝑛𝑎 + 𝑛𝑐 and 𝜃(𝑖) =

[︂
min

(︂⟨
𝜃
(𝑖)
𝑘

⟩𝑇
𝑘=1

)︂
, max

(︂⟨
𝜃
(𝑖)
𝑘

⟩𝑇
𝑘=1

)︂]︂
, denoting the

minimum and maximum value of the 𝑖-th component within the regarded time.

The time variance is given only in the parameters, the model structure, especially the model
orders 𝑛𝑎 and 𝑛𝑐, are time constant. Furthermore this interpretation is not necessarily ben-
e�cial for all time variant systems as the resulting interval enclosures can be very large de-
pending on the time variant dynamic of the system parameters.
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5.1 Interval Type Full Consistency

In the case of an interval type speci�cation both consistency de�nitions (𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦
and 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦) according to Def. 2.2 and Def. 2.1 are possible. In this section, the
idea of 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 is extended to interval type systems. Then the situation is relaxed
to 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 in the next section.

Problem 5.1 (Interval Type Full Consistency)
Is the nominal system, speci�ed by an interval type speci�cation

𝑆*
𝑖 = {Θ*, 𝑛*

𝑎, 𝑛
*
𝑐 , 𝑈

*
𝑖𝑛𝑖𝑡, 𝑌

*
𝑖𝑛𝑖𝑡} , (5.7)

full consistent with the input-output behavior given by the interval type enclosures of 𝑇
measurement values

[U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] =
[︁
⟨u𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨y𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(5.8)

i.e. do all elements of the parameter vectorΘ* ful�ll Prop. 4.1 for all measurement data?

The full consistency problem is solved by Prop. 5.1.

Proposition 5.1 (Interval Type Full Consistency)
The interval enclosure of the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] given for the discrete
sampling points 𝑘 = {1, 2, . . . , 𝑇}, forming the regressor matrix𝐴𝑚𝑒𝑎𝑠 and the measure-
ment vector𝐵𝑚𝑒𝑎𝑠 of a VO, is called to be full consistent with an interval type speci�cation
𝑆*
𝑖 , if the complete set of speci�ed parameters Θ* is part of the united solution set

∑︀
∃∃

given by the measurement data, i.e.

(Θ* ⊆
∑︀

∃∃ (𝐴𝑚𝑒𝑎𝑠,𝐵𝑚𝑒𝑎𝑠))⇔ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (5.9)

Proof:
Full consistency follows directly from applying Prop. 4.1 to all possible point real parameter
vectors Θ* ∈ Θ* given in the interval type speci�cation 𝑆*

𝑖 .
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The inverse relation of Prop. 5.1 leads to the implications given in Prop. 5.2.

Proposition 5.2 (Inverse of Full Consistency)
If there is at least one Θ* ∈ Θ* that does not show full consistency according to Prop. 4.1,
the interval type speci�cation 𝑆*

𝑖 is not full consistent with the measurement data.

Proof:
Full consistency according to Prop. 5.1 is de�ned for all parameters Θ* ∈ Θ*. A parameter
Θ̃* ∈ Θ* that does not show full consistency according to Prop. 4.1 leads to

Θ* ̸⊆
∑︀

∃∃ (𝐴𝑚𝑒𝑎𝑠,𝐵𝑚𝑒𝑎𝑠) . (5.10)

and thus the interval type speci�cation 𝑆*
𝑖 is not full consistent with the measurement data.

Theoretically, Prop. 5.1 can be checked by applying the veri�cation equation (4.20) based on
the theorem of Prager-Oettli to each parameter vector Θ* ∈ Θ*. However, to realize this
approach in an algorithmic implementation it is necessary to draw 𝑛𝑐ℎ𝑒𝑐𝑘 discrete samples
from the continuous intervals. The number of discrete parameter vectors to check 𝑛𝑐ℎ𝑒𝑐𝑘

thus becomes a relevant design parameter. According to Prop. 5.2, a single inconsistent vec-
tor falsi�es the full consistency property. This leads to the requirement that 𝑛𝑐ℎ𝑒𝑐𝑘 has to be
very large to cover the given parameter range su�ciently. Even though a single evaluation
of the theorem of Prager-Oettli is computationally very e�ective as stated in Chapter 4, the
computation time rises proportionally with 𝑛𝑐ℎ𝑒𝑐𝑘 . Additionally, as this thesis aims on cal-
culating guaranteed results, the step size used to sample the interval type parameter vector
needs to be very �ne, even tending to zero. This high resolution needs to be applied to each
component of the parameter vector. Afterwards it is used to build all possible combinations
including the samples of the di�erent components. Assuming a resolution of 𝑛𝑠 samples on
each component of Θ* leads to

𝑛𝑐ℎ𝑒𝑐𝑘 = 𝑛
𝑛*
𝑎+𝑛*

𝑐
𝑠 (5.11)

applications of the theorem of Prager-Oettli . This number increases polynomial with 𝑛𝑠 and
leads to large computation times for su�ciently high resolutions. Thus the sampling based
approach is computationally infeasible.

Restructuring the problem can be used to avoid the necessity to cover the whole parameter
area. The verdicts can be calculated based on the vertexes𝒱 of the nominal parameter set only
and then can be generalized to the whole nominal set if convexity properties are ful�lled.
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The maximum number of points to check is thus reduced to

𝑛𝑐ℎ𝑒𝑐𝑘 = 2𝑛
*
𝑎+𝑛*

𝑐 (5.12)

which resembles a computationally feasible number, especially for low system orders 𝑛*
𝑎 and

𝑛*
𝑐 . The vertexes 𝒱 of the hyperrectangle given by the interval type parameter vector Θ* can

be determined according to Def. 5.4.

De�nition 5.4 (Vertexes of a Hyperrectangle)
The nominal interval vectorΘ* ∈ IR𝑛*

𝑎+𝑛*
𝑐×1 de�nes

𝑛 = 2𝑛
*
𝑎+𝑛*

𝑐 (5.13)

vertexes 𝒱 ∈ IR𝑛*
𝑎+𝑛*

𝑐×1 of a hyperrectangle that can be indexed using a decimal index
𝑣𝑑𝑒𝑐 ∈ {0, 1, . . . , 𝑛− 1}. The index is subsequently transformed to its binary representa-
tion 𝑉𝑏𝑖𝑛 that can be interpreted as (1× 𝑛*

𝑎 + 𝑛*
𝑐) dimensional vector were the 𝑖-th vector

component is denoted as 𝑉 (𝑖)
𝑏𝑖𝑛.

The speci�c values of the vertexes 𝑉𝑣𝑑𝑒𝑐 can be generated by interpreting the binary in-
dex 𝑉𝑏𝑖𝑛 component wise for 𝑖 ∈ {1, 2, . . . , 𝑛*

𝑎 + 𝑛*
𝑐} and extracting the limits from the

respective nominal parameter vector element:

𝑉 (𝑖)
𝑣𝑑𝑒𝑐

=

{︃
Θ*(𝑖) , if 𝑉 (𝑖)

𝑏𝑖𝑛 = 0

Θ
*(𝑖)

, if 𝑉 (𝑖)
𝑏𝑖𝑛 = 1.

(5.14)

An illustration of Def. 5.4 is given in Example 5.1.

Example 5.1:
Consider the following (2× 1) interval vector with 𝑛*

𝑎 = 𝑛*
𝑐 = 1

Θ* = [[2, 3] , [4, 6]]
𝑇 (5.15)

The resulting rectangle has 𝑛 = 22 = 4 vertexes with 𝑣𝑑𝑒𝑐 ∈ {0, 1, 2, 3} and 𝑖 ∈ {1, 2}
leading to the indexes given in Tab. 5.1.

Table 5.1: Vertexes of a hyperrectangle

Decimal index 𝑣𝑑𝑒𝑐 Binary index 𝑉𝑏𝑖𝑛 Coordinates 𝑉𝑣𝑑𝑒𝑐 according to (5.14)

0 [0 0] [2 4]
1 [0 1] [2 6]
2 [1 0] [3 4]
3 [1 1] [3 6]
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It is now possible to set up an alternative formulation of Prop. 5.1, that solves Problem 5.1
with vertex based full consistency.

Proposition 5.3 (Vertex Based Full Consistency)
The interval enclosure of the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] given for the discrete
sampling points 𝑘 = {1, 2, . . . , 𝑇}, forming the regressor matrix𝐴𝑚𝑒𝑎𝑠 and the measure-
ment vector𝐵𝑚𝑒𝑎𝑠 of a VO, is called to be full consistent with an interval type speci�cation
𝑆*
𝑖 , if all vertexes 𝒱 de�ned by the set of speci�ed parameters Θ* are located in the same

orthant and are part of the united solution set
∑︀

∃∃ given by the measurement data, i.e.

(𝒱 ⊆
∑︀

∃∃ (𝐴𝑚𝑒𝑎𝑠,𝐵𝑚𝑒𝑎𝑠))⇔ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐹𝑢𝑙𝑙 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦. (5.16)

Proof:
The united solution set can form various shapes, but it was shown by [Sha10] that the general
AE-solution is convex within each orthant. As the united solution set is a special case of the
general AE-solution, this property does also hold for

∑︀
∃∃ (𝐴𝑚𝑒𝑎𝑠,𝐵𝑚𝑒𝑎𝑠).

The speci�ed parameters Θ* and thus the resulting vertexes 𝒱 are all located within the same
orthant.
The theorem of Prager-Oettli can be checked for the 𝑛 = 2𝑛

*
𝑎+𝑛*

𝑐 vertexes in �nite time.
Based on the direct application of the de�nition of a convex set given in [Bro08, p. 662]
follows:
If (3.65) holds for any two of the vertexes 𝑉𝑖 and 𝑉𝑗 , with 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛− 1}, 𝑖 ̸= 𝑗, all
vectors Θ = 𝜆𝑉𝑖 + (1− 𝜆)𝑉𝑗 , with 0 ≤ 𝜆 ≤ 1 are also part of the united solution set.



5.1 Interval Type Full Consistency 51

Example 5.2:
Assume the same setting as in Example 4.1. However the speci�cation is now given as an
interval type speci�cation

𝑆*
𝑖 =

{︁
Θ* = [[0.9725, 0.9925] , [0.0665, 0.0685]]

𝑇
, 𝑛*

𝑎 = 1, 𝑛*
𝑐 = 1

}︁
. (5.17)

The simulations are done using the linear discrete time ARX system (4.22) leading to the
same measurement data as given in Fig. 4.2 in Example 4.1. The resulting veri�cation setting
is depicted in Fig. 5.1. The nominal parameters given in𝑆*

𝑖 are depicted as green square. It can
be seen that all four vertexes 𝒱 = {𝑉0, 𝑉1, 𝑉2, 𝑉3} are located within the united solution set
given by the measurement data. The speci�cation and the measurement are thus guaranteed
to be full consistent according to Prop. 5.3.

0.02 0.04 0.06 0.08 0.10 0.12 0.140.8

0.9

1.0

1.1

1.2

𝑉0

𝑉1

𝑉2

𝑉3

𝜃(2)

𝜃(1
)

Figure 5.1: Example setting for an interval type speci�cation 𝑆*
𝑖
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5.2 Interval Type Basic Consistency

Until now the set of VO behavior was assumed to be considerably larger than the speci�ca-
tion. When using interval type speci�cations this is not necessarily the case. It is possible
that the speci�cation set is of the same size as the set of VO behavior or even larger. Therefore
it is not longer possible to enclose the whole speci�cation in the VO behavior. The resulting
veri�cation question can be formulated as follows:

Problem 5.2 (Interval Type Basic Consistency)
Is the nominal system, speci�ed by an interval type speci�cation

𝑆*
𝑖 = {Θ*, 𝑛*

𝑎, 𝑛
*
𝑐 , 𝑈

*
𝑖𝑛𝑖𝑡, 𝑌

*
𝑖𝑛𝑖𝑡} , (5.18)

basic consistent with the input-output behavior given by the interval type enclosures of 𝑇
measurement values

[U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] =
[︁
⟨u𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨y𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(5.19)

i.e. is there at least one parameter vector Θ* ∈ Θ* that ful�lls Prop. 4.1?

The Venn chart of a basic consistent setting is depicted in Fig. 5.2. Due to the inner enclosure
of the VO behavior the achieved verdict is still type II error free. The consistent set is given
by the green shaded square.
This set it formally stated in Prop. 5.4 and solves Problem 5.2.

Underapprox.
VO Behavior

Nominal Behavior
Consistent Set

VO Behavior

Figure 5.2: Basic consistent result for a large speci�cation
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Proposition 5.4 (Interval Type Basic Consistency)
The interval enclosure of the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] given for the discrete
sampling points 𝑘 ∈ {1, 2, . . . , 𝑇}, forming the regressor matrix𝐴𝑚𝑒𝑎𝑠 and the measure-
ment vector 𝐵𝑚𝑒𝑎𝑠 of a VO, is called basic consistent with an interval type speci�cation
𝑆*
𝑖 , if there is a nonempty consistent set, i.e. a nonempty intersection between the nominal

set Θ* and the united solution set
∑︀

∃∃ (𝐴𝑚𝑒𝑎𝑠,𝐵𝑚𝑒𝑎𝑠)

(Θ* ∩
∑︀

∃∃ (𝐴𝑚𝑒𝑎𝑠,𝐵𝑚𝑒𝑎𝑠) ̸= ∅)⇔ 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.
(5.20)

Proof:
All parameter vectors included in the interval speci�cation Θ* are suitable representations
of the correct system behavior. Thus 𝑆*

𝑖 can be interpreted as a set of direct speci�cations
𝑆*
𝑑 . Each of these direct speci�cations 𝑆*

𝑑 ∈ 𝑆*
𝑖 can be used to check consistency according

to Prop. 4.1. If there is at least one full consistent direct speci�cation included in the interval
speci�cation, the VO behavior can be explained by this parameter and the VO is denoted as
basic consistent.

𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− is su�cient for the genuine system, as that there is at least one param-
eter within the nominal set that is able to explain the measurement data.

5.2.1 Algorithmic Solutions

A straight forward approach to check basic consistency uses the vertexes only. However,
the shape of the resulting consistent set will change if one or more vertexes are inconsistent.
This change is depicted exemplary for the 2𝐷 case in Fig. 5.3.

Feasible
Points 4 3 2 1

Figure 5.3: Degradation of the consistent set for di�erent consistent vertexes (green)

The shape changes from a rectangle, in case all four vertexes are part of the consistent set,
to a single point if only one vertex shows consistency. The main drawback of this procedure
is that there might be a consistent set, even if no initial vertex is consistent. This situation is
exemplary depicted in Fig. 5.5.
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Also, the basic shape of the resulting consistent set changes which can be a disadvantage for
the further algorithmic processing of the result.
A solution for the �rst problem is given by checking more points that are not a vertex. How-
ever this leads to the sampling based approach as introduced in the previous section, with
the respective runtime limitations explained there.
The problem of �nding the right resolution in the sampling based approach can be solved
using optimization methods. The idea is to use the logic of optimization algorithms to guide
the sampling process.6 Optimization procedures can be used to determine which discrete
points to check if one or more vertexes of the speci�cation are not element of the consistent
set.
To use optimization methods for the choice of sampling points the problem can be refor-
mulated to a feasibility problem. The interval type measurement data is used to set up the
constraints that frame the united solution set

∑︀
∃∃. As derived in the previous chapter, every

parameter within the united solution set
∑︀

∃∃ is able to explain the measurement data. The
constraints limit the search area of the feasibility problem. Feasible solutions need to ful�ll
all constraints. Parameter values that are located outside the united solution set

∑︀
∃∃ are not

feasible with respect to the constraints.

The interval type speci�cation 𝑆*
𝑖 includes the nominal parameter vector Θ* which can also

be denoted as nominal set 𝒩 . The nominal set represents the maximum area of potentially
consistent parameters. This initial restrictions can be stated in terms of linear inequality
constraints as follows:

De�nition 5.5 (Constraints Given by the Nominal Set)
The interval type parameter vector Θ* given in the speci�cation 𝑆*

𝑖 can be used to set up
the set 𝑐𝒩 of 2(𝑛*

𝑎 + 𝑛*
𝑐) linear inequality constraints that restrict the feasibility problem

to the nominal set 𝒩 :

𝑐
(𝑖)
𝒩 (Θ) := 𝜃*(𝑖) − 𝜃(𝑖) ≤ 0 (5.21)

𝑐
(𝑛*

𝑎+𝑛*
𝑐+𝑖)

𝒩 (Θ) := −𝜃*(𝑖) + 𝜃
(𝑖) ≤ 0 (5.22)

with the number of parameters 𝑖 ∈ {1, 2, . . . , 𝑛*
𝑎 + 𝑛*

𝑐}.

6 Suitable optimization methods are e.g. grid search, golden section search or dichotomous search [Wil64] if there
is only minimal information available. If there is further knowledge about the shape of the problem, there are
more sophisticated algorithms that can direct the search e�ort very e�ciently into the relevant regions, e.g.
Newton method, simplex method or interior point method [Noc06].
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The united solution set
∑︀

∃∃ can be reformulated in terms of the interval type measurement
data as linear matrix inequality constraints (LMI) as given in Def. 5.6.

De�nition 5.6 (Constraints Given by the Measurement Data)

The measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] =
[︁
⟨u𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨y𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
forming the

regressor matrix𝐴𝑚𝑒𝑎𝑠 and the measurement vector𝐵𝑚𝑒𝑎𝑠 of a VO, can be used to set up
the set 𝑐ℳ of 2 (𝑇 −max (𝑛*

𝑎, 𝑛
*
𝑐)) linear inequalities

𝑐
(𝑖)
ℳ (Θ) := −(𝐴𝑚𝑒𝑎𝑠 ·Θ)

(𝑖)
+ 𝐵(𝑖)

𝑚𝑒𝑎𝑠 ≤ 0 (5.23)

𝑐
(𝑇−max (𝑛*

𝑎,𝑛
*
𝑐)+𝑖)

ℳ (Θ) := (𝐴𝑚𝑒𝑎𝑠 ·Θ)
(𝑖)
−𝐵

(𝑖)

𝑚𝑒𝑎𝑠 ≤ 0 (5.24)

with the number of rows in the regressor matrix 𝑖 ∈ {1, 2, . . . , 𝑇 −max (𝑛*
𝑎, 𝑛

*
𝑐)}, i.e. the

number of system equations instantiated by di�erent measurement points.

Each pair of constraints represents the upper and lower bound of the solution set derived
from one line of the ILES (3.46). They can be interpreted as hyperstripes in the parameter
space, leading to the setting shown in Fig. 5.4 for the 2𝐷 case. Using constraints according to
Def. 5.6 limits the search area of the optimization algorithm to the inner approximation and
thus guarantees that there are no type II errors possible in the resulting consistent set. The
consistent set is given by the shaded region.

𝑐
(3)
ℳ

𝑐
(1)
ℳ

𝑐
(2)
ℳ

𝑐
(4)
ℳ

𝑐
(1)
𝒩

𝑐
(2)
𝒩

𝑐
(3)
𝒩

𝑐
(4)
𝒩

Figure 5.4: Exemplary constraints of the feasibility problem in 2𝐷

Note that the number of constraints in 𝑐ℳ is directly related with the number of used sam-
pling points 𝑇 and that the number of parameters 𝑛 = 𝑛*

𝑎 + 𝑛*
𝑐 is of minor importance.

However there have to be at least 𝑇 = 𝑘𝑚𝑖𝑛 = max(𝑛*
𝑎, 𝑛

*
𝑐) + 1 samples in the measure-

ment to set up the �rst hyperstripe. It is now possible to determine an alternative solution
for Problem 5.2, based on the constraints of Def. 5.5 and Def. 5.6.
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Proposition 5.5 (Feasibility Based Basic Consistency)
The interval enclosure of the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] given for the discrete
sampling points 𝑘 ∈ {1, 2, . . . , 𝑇}, forming the regressor matrix𝐴𝑚𝑒𝑎𝑠 and the measure-
ment vector 𝐵𝑚𝑒𝑎𝑠 of a VO, is called basic consistent with an interval type speci�cation
𝑆*
𝑖 , if the consistent set 𝒞 is nonempty, i.e. if there is at least one solution Θ̃ that ful�lls all

constraints(︁(︁
𝑐𝒩 (Θ̃) ≤ 0

)︁
∧
(︁
𝑐ℳ(Θ̃) ≤ 0

)︁)︁
⇔ 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦− ⇒ 𝐵𝑎𝑠𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

(5.25)

Proof:
According to Prop. 5.4 there needs to be at least one parameter that is part of the united so-
lution set

∑︀
∃∃ as well as part of the parameter set given in the interval type speci�cation

𝑆*
𝑖 to ensure basic consistency. All parameters that ful�ll the constraint set 𝑐ℳ of Def. 5.6

are part of the united solution set
∑︀

∃∃. All parameters that ful�ll the constraint set 𝑐𝒩 of
Def. 5.5 are part of the parameter set given in the interval type speci�cation 𝑆*

𝑖 . If there is at
least one parameter vector Θ̃ that ful�lls 𝑐𝒩 and 𝑐ℳ, all conditions for basic consistency are
ful�lled.

The resulting situation is exemplary depicted in Fig. 5.5. It can be seen that no initial vertex
shows consistency, as none of them is part of the underapproximation. Therefore there is no
vertex based basic consistency. Feasibility based basic consistency can be achieved as there
is a consistent set within the inner approximation and the nominal set. The consistent set is
depicted as the shaded green area.

Underapprox.
VO Behavior

Nominal Set

VO Behavior

Consistent Set

Figure 5.5: Example setting showing feasibility based consistency
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5.3 Conclusion

This chapter introduced the extension of the Kaucher based method to interval type speci�-
cations. The resulting nominal set is required to be located within one orthant. The de�nition
of full consistency is still applicable if all parameters given in the interval type speci�cation
are part of the united solution set. A straight forward approach was introduced that used the
orthant wise convexity of the united solution set to de�ne full consistency based only on the
vertexes of the speci�ed parameter set.
Nevertheless, full consistency is a rather strict criterion and it is likely that there are some
speci�ed parameters that are part of the united solution and some that are not. Following
the concept of basic consistency, it is su�cient to show that there is at least one parameter
vector that is part of the united solution set as well as of the speci�ed parameter range. This
property can be veri�ed by checking individual arbitrary points for consistency. The choice
of these points can be structured by using the concept of a feasibility problem. Therefore the
notions de�ning the united solution as well as the speci�ed parameter set are transferred to
linear matrix inequality constraints. If there is a solution of the feasibility problem, the VO
and the speci�cation are guaranteed to be basic consistent.
The method is still free of type II errors as the feasibility based consistent set is constrained
by the genuine united solution set.
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Switched hybrid systems consist of two distinct parts with di�erent properties and modeling
goals. The dynamic part is used to model the plant dynamics as introduced and used in the
previous chapters. The additional discrete event part models the superimposed switching
logic. Based on logical rules, the discrete event part can activate di�erent discrete states that
will show di�erent dynamic behavior. Di�erent operation modes can thus be modeled as
several subsystems, showing individual behavior. All subsystems are interconnected by the
discrete event switching mechanism.
The switched hybrid system structure is depicted in Fig. 6.1 and is formally introduced in this
section7.

𝑠(1)

𝑠(2)

...

𝑠(𝑛𝑞)

𝑦
(1)
𝑘

𝑦
(2)
𝑘

𝑦
(𝑛𝑞)
𝑘

𝑢 𝑦

State Machine 𝑍

Hybrid System 𝐻

Set of Dynamic Systems 𝒮

Switch signal / State Signal

𝑦
(1)
𝑘−1

𝑦
(2)
𝑘−1

𝑦
(𝑛𝑞)
𝑘−1

Figure 6.1: Structure of the hybrid system model 𝐻

The hybrid systemℋ consists of a set of dynamic subsystems𝒮 and a superimposed switching
mechanism represented by the state machine 𝑍 .

The subsystems 𝑠(𝑖) ∈ 𝒮 show di�erent behavior based on an individual parametrization.
The state machine produces a switch signal which resembles its current discrete state. This
signal is used to control an input and an output switch that determines which subsystem is
activated.

7 To improve readability the term “hybrid system” is used instead of “switched hybrid system” throughout this
thesis.
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The activated subsystem is fed with the general input signal and the resulting output signal
is connected to the output of the hybrid system. It is possible to use the optional input and
output values that are speci�ed in the nominal system to start the active subsystem after a
switch. Otherwise the current input and output values are kept across the switch. The input
and output signals are also fed to the state machine where they are used to update the discrete
state of the discrete event system. Due to this extended structure there are additional subjects
included in the veri�cation question that will be covered in this chapter. First the formalized
model structure needs to be appended to a hybrid formulation. Therefore the discrete event
part is modeled in the following, based on [Cas99, p. 66�].
Then the veri�cation problem is split in two subproblems: veri�cation of the dynamic part
and veri�cation of the discrete event part. If both parts are veri�ed individually, the next
step is to examine their connection and interaction. This is done in three steps of increasing
complexity.
Initially, the setting is simpli�ed by assuming the discrete state to be measurable. This setting
is used to introduce the basic hybrid method. Second this assumption is dropped such that
the current active discrete state needs to be determined for a given set of switches. Finally an
algorithm is developed that is able to determine the switching times and the active discrete
states from measured input and output data only.

The necessary knowledge for the veri�cation procedure is thus the same as in the previous
chapters except that there are now several nominal systems and an additional speci�cation
of the discrete event system part.

De�nition 6.1 (Discrete State)
A discrete state

𝑞(𝑖) ∈ 𝒬 :=
{︁
𝑞(1), 𝑞(2), . . . , 𝑞(𝑛𝑞)

}︁
(6.1)

is a vertex of a graph e.g. of a state machine. It is part of a given set of discrete states 𝒬.

Note that for the ease of notation the “discrete state” is called “state” in the reminder of this
thesis.
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To implement logical conditions and constraints in the state machine a set of events is de-
�ned:

De�nition 6.2 (Event)
There is a set of events

ℰ :=
{︁
𝑒(1), 𝑒(2), . . . , 𝑒(𝑛𝑒)

}︁
. (6.2)

Each event 𝑒(𝑖) is dependent on speci�c activation limits

𝑙(𝑖) =
[︁
𝑙(𝑖), �̄�(𝑖)

]︁
, (6.3)

with 𝑖 ∈ {1, 2, . . . , 𝑛𝑒}, de�ned for a given enabler signal 𝑊 := ⟨𝑤𝑘⟩𝑇𝑘=1. The event 𝑒
(𝑖)

is de�ned to be active as long as the value of the enabler signal 𝑊 lies within the given
thresholds

𝑤𝑘 ∈ 𝑙(𝑖). (6.4)

Note that Def. 6.2 does not pose any conditions on the activation limits. Therefore it is pos-
sible that several events are active at the same time. In the context of this thesis, events are
allowed to be active for several time steps, e.g. as long as the enabler signal stays within the
speci�ed limits.
The transitions of the state machine are de�ned by a transition function.

De�nition 6.3 (Transition Function)
A transition function

𝑓 : 𝒬× ℰ → 𝒬 (6.5)

represents a directed connection between two states, labeled by an event. In general 𝑓 is a
partial function on its domain.

The notation 𝑡(1) : 𝑓
(︀
𝑞(1), 𝑒(1)

)︀
= 𝑞(2) means that transition 𝑡(1) forms a directed connec-

tion from state 𝑞(1) to state 𝑞(2), dependent on event 𝑒(1).
A transition can change the state of a state machine if the assigned event is active, but not
necessarily has to. This is due to the fact that several events can be active at any given time,
but there is not more than one transition allowed to conduct a switch. However it is also
possible that the state does not change even though there are several activated transitions.

6 Guaranteed Veri�cation of Hybrid Systems
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Based on the above de�nitions it is possible to set up the state machine representing the
discrete event part.

De�nition 6.4 (State Machine)
A state machine is de�ned to be given by the 4-Tupel

𝑍 :=
{︁
𝒬, ℰ , 𝑓, 𝑞(1)

}︁
, (6.6)

with a �nite set of states 𝒬, a �nite set of events ℰ , a transition function 𝑓 and an initial
state 𝑞(1).

The state of the discrete event part can be used to determine the system orders and parame-
ters of the dynamic part necessary to set up a system according to Def. 5.2. This leads to the
de�nition of a state dependent, discrete time, linear, interval type system:

De�nition 6.5 (State Dependent Discrete Time Linear Interval Type System)
The state dependent, discrete time, linear, interval type system can be modeled as

𝑠(𝑞𝑘) := 𝑦𝑘 = −
𝑛𝑎(𝑞𝑘)∑︁
𝑖=1

𝑎𝑖(𝑞𝑘)𝑦𝑘−𝑖 +

𝑛𝑐(𝑞𝑘)∑︁
𝑖=1

𝑐𝑖(𝑞𝑘)𝑢𝑘−𝑖 (6.7)

with the discrete time input 𝑢𝑘 , output 𝑦𝑘 and state 𝑞𝑘 . The input and out-
put orders 𝑛𝑎(𝑞𝑘) and 𝑛𝑐(𝑞𝑘) as well as the interval type system parameters
Θ =

[︀
𝑎1(𝑞𝑘),𝑎2(𝑞𝑘), . . . ,𝑎𝑛𝑎(𝑞𝑘)(𝑞𝑘), 𝑐1(𝑞𝑘), 𝑐2(𝑞𝑘), . . . , 𝑐𝑛𝑐(𝑞𝑘)(𝑞𝑘)

]︀
are dependent

on the current state 𝑞𝑘 . All subsystems 𝑠(𝑞𝑘) form the set of subsystems

𝒮 =
{︁
𝑠(1), 𝑠(2), . . . , 𝑠(𝑛𝑞)

}︁
. (6.8)

Each dynamic subsystem is directly linked with a discrete state. Therefore the state depen-
dent dynamic subsystem 𝑠(𝑞

(𝑖)) is denoted by 𝑠(𝑖) for the ease of notation. It is now possible
to de�ne the overall hybrid system.
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De�nition 6.6 (Hybrid System)
A hybrid systemℋ consists of two system parts:

Discrete Event Part The superimposed switching mechanism given by a state machine

𝑍 =
{︁
𝒬, ℰ , 𝑓, 𝑞(1)

}︁
, (6.9)

according to Def. 6.4.

Dynamic Part The discrete time linear interval type systems are given by a �nite set of
subsystems

𝒮 =
{︁
𝑠(1), 𝑠(2), . . . , 𝑠(𝑛𝑞)

}︁
(6.10)

where each subsystem 𝑠(𝑞𝑘) is active if and only if 𝑞𝑘 is the current state. The sub-
systems 𝑠(𝑞𝑘) are de�ned according to Def. 6.5.

In general it is not possible to measure the current state of the state machine. However, for
didactic reasons Assumption 6.1 is introduced and later dropped.

Assumption 6.1 (Measured State Signal)
The current state of the state machine can be measured and it is correctly given in the state
signal

𝑄𝑚𝑒𝑎𝑠 := ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 . (6.11)

The measured state signal 𝑄𝑚𝑒𝑎𝑠 consists of several segments with di�erent active states. A
change in the active state is called switch.

De�nition 6.7 (Switch)
The �rst time index 𝑘 at which a new state is active i.e.

𝑞𝑚𝑒𝑎𝑠,𝑘 ̸= 𝑞𝑚𝑒𝑎𝑠,𝑘−1, (6.12)

is called switch 𝑘𝜏 .

The switches within a state signal are additionally indexed in chronological order 𝑘𝜏,𝑖, 𝑖 ∈
{1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ} with the total number of switches denoted by 𝑛𝑠𝑤𝑖𝑡𝑐ℎ. The time index
given by the �rst sampling point of the measurement data represents the �rst occurrence of
the initial state and is thus de�ned to be 𝑘𝜏,1 = 1.

6 Guaranteed Veri�cation of Hybrid Systems
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The time index right before a switch, i.e. the last time index the current state is active, is
called end of the current segment 𝑘𝜏 ′,𝑖 = 𝑘𝜏,𝑖+1 − 1. The end of the last segment is given by
the last time index of the measurement data 𝑇 which leads to 𝑘𝜏 ′,𝑛𝑠𝑤𝑖𝑡𝑐ℎ

= 𝑇 . A schematic
sketch for 𝑛𝑠𝑤𝑖𝑡𝑐ℎ = 3 is given in Fig. 6.2.

𝑘

1
𝑘𝜏,1

2 3
𝑘𝜏 ′,1

4
𝑘𝜏,2

5 6 7
𝑘𝜏 ′,2

8
𝑘𝜏,3

9 10 11
𝑘𝜏 ′,3

Segment 1 Segment 2 Segment 3

Figure 6.2: Schematic view of switches

6.1 Veri�cation of Hybrid Systems with Mapped State
Signal

The introduced de�nitions can be used to set up the speci�cation of a hybrid system.

De�nition 6.8 (Speci�cation of an Interval Type Hybrid System)
An interval type speci�cation of a hybrid system according to Def. 6.6 is given by

𝑆*
𝐻,𝑖 := {𝑍*,𝒮*𝑖 } (6.13)

with the nominal state machine 𝑍* according to Def. 6.4 and the set of nominal dynamic
systems 𝒮*𝑖 , according to Def. 5.1.

A special case of Def. 6.8 is given if the parameters of the dynamic subsystems are point real
values.

De�nition 6.9 (Speci�cation of a Point Real Hybrid System)
A point real speci�cation of a hybrid system according to Def. 6.6 is given by

𝑆*
𝐻,𝑑 := {𝑍*,𝒮*𝑑} (6.14)

with the nominal state machine 𝑍* according to Def. 6.4 and the set of nominal dynamic
systems 𝒮*𝑑 , according to Def. 4.2.

The dynamic part of a system according to Def. 6.9 is also called linear time variant system
with piecewise constant parameters.
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The veri�cation method developed in this chapter is again based on interval enclosures of
the input and output measurement data

[𝑈𝑚𝑒𝑎𝑠,𝑌𝑚𝑒𝑎𝑠] =
[︁
⟨𝑢𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨𝑦𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(6.15)

extended by a measured state signal 𝑄𝑚𝑒𝑎𝑠 according to Assumption 6.1. The state signal
𝑄𝑚𝑒𝑎𝑠 leads to a set of measured states 𝒬𝑚𝑒𝑎𝑠. It is assumed that the elements of the set of
measured states can be mapped on the set of speci�ed states. In this case, the set is called
mapped set of states according to Def. 6.10.

De�nition 6.10 (Mapped Set of States)
The set of measured states 𝒬𝑚𝑒𝑎𝑠, consisting of the unique values of the state signal
𝑄𝑚𝑒𝑎𝑠 = ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1, is called mapped with the speci�cation 𝑆*

𝐻,𝑖, if all measured states

𝑞
(𝑗)
𝑚𝑒𝑎𝑠 ∈ 𝒬𝑚𝑒𝑎𝑠 with 𝑗 ∈ {1, 2, . . . , |𝒬𝑚𝑒𝑎𝑠|} can be mapped to an equivalent nominal
state 𝑞(𝑖(𝑗))* ∈ 𝒬* given in the speci�cation i.e.

𝑞(𝑗)𝑚𝑒𝑎𝑠 = 𝑞(𝑖(𝑗))*, 𝑗 ∈ {1, 2, . . . , |𝒬𝑚𝑒𝑎𝑠|}. (6.16)

As 𝑆*
𝐻,𝑑 is a special case of 𝑆*

𝐻,𝑖, Def. 6.10 is also valid for 𝑆*
𝐻,𝑑. In case 𝒬𝑚𝑒𝑎𝑠 is a mapped

set of states, the state signal 𝑄𝑚𝑒𝑎𝑠 is called mapped state signal. If the mapped state 𝑞𝑖(𝑗)*

is known, the respective mapped nominal subsystem 𝑠𝑖(𝑗)* is also known. The hybrid veri�-
cation problem can now be formulated as follows:

Problem 6.1 (Mapped Set of States Based Point Real Hybrid Consistency)
Is the nominal hybrid system, speci�ed by a point real hybrid speci�cation

𝑆*
𝐻,𝑑 = {𝑍*,𝒮*𝑑} (6.17)

consistent with the input-output behavior given by the interval type enclosures of 𝑇 mea-
surement values

[𝑈𝑚𝑒𝑎𝑠,𝑌𝑚𝑒𝑎𝑠] =
[︁
⟨𝑢𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨𝑦𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(6.18)

and the measured mapped state signal 𝑄𝑚𝑒𝑎𝑠, i.e. can the measurement data be explained
by the nominal system?

The problem can be solved by tackling the two system parts individually. This is possible due
to an implicit connection given by the matching of the discrete states which is done based
on the dynamic parameters. First the dynamic subsystem is considered and veri�ed in the
next section. Afterwards the veri�cation of the discrete event part is introduced. Finally the
results are combined to verify the overall hybrid system.
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6.1.1 Veri�cation of the Dynamic Subsystems

To verify the individual dynamic subsystems it is necessary to split the interval type mea-
surement data [U𝑚𝑒𝑎𝑠,Y𝑚𝑒𝑎𝑠] based on the information given in the mapped state signal.
The resulting segments⟨[︁

U(𝑗)
𝑚𝑒𝑎𝑠,Y

(𝑗)
𝑚𝑒𝑎𝑠

]︁⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
=
⟨[︁
⟨u𝑚𝑒𝑎𝑠,𝑘⟩

𝑘𝜏′,𝑗
𝑘=𝑘𝜏,𝑗

, ⟨y𝑚𝑒𝑎𝑠,𝑘⟩
𝑘𝜏′,𝑗
𝑘=𝑘𝜏,𝑗

]︁⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
(6.19)

can be veri�ed individually against the respective speci�cation in the set of subsystems 𝒮*𝑑 .
It is possible to verify the individual dynamic behavior8 of each state present in the measure-
ment data 𝑞

(𝑗)
𝑚𝑒𝑎𝑠 ∈ 𝑄𝑚𝑒𝑎𝑠 as de�ned in Prop. 6.1.

Proposition 6.1 (Dynamic Consistency of a Segment)
The interval type enclosure of the measurement data is split into 𝑗 ∈ {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ}
parts, given by the segments

[︁
U

(𝑗)
𝑚𝑒𝑎𝑠,Y

(𝑗)
𝑚𝑒𝑎𝑠

]︁
. Each segment repre-

sents a speci�c state 𝑞
(𝑗)
𝑚𝑒𝑎𝑠, a regressor matrix 𝐴

(𝑗)
𝑚𝑒𝑎𝑠 and a measure-

ment vector 𝐵
(𝑗)
𝑚𝑒𝑎𝑠. The segment 𝑗 is dynamic consistent with the respec-

tive mapped subsystem 𝑠(𝑖(𝑗))* ∈ 𝒮*𝑑 , if the speci�ed system parameters

Θ(𝑖(𝑗))* =
[︁
𝑎*1(𝑖(𝑗)), 𝑎*2(𝑖(𝑗)), . . . , 𝑎*𝑛*

𝑎(𝑖(𝑗))
(𝑖(𝑗)), 𝑐*1(𝑖(𝑗)), 𝑐*2(𝑖(𝑗)), . . . , 𝑐*𝑛*

𝑐(𝑖(𝑗))
(𝑖(𝑗))

]︁𝑇
are part of the united solution set

∑︀(𝑗)
∃∃ =

∑︀
∃∃(𝐴

(𝑗)
𝑚𝑒𝑎𝑠,𝐵

(𝑗)
𝑚𝑒𝑎𝑠), i.e. if

Θ(𝑖(𝑗))* ∈
∑︀(𝑗)

∃∃ . (6.20)

Proof:
The measured state signal 𝑄𝑚𝑒𝑎𝑠 includes the true active states. It is thus guaranteed that
only measurement data generated by subsystem 𝑠

(𝑗)
𝑚𝑒𝑎𝑠 based on the active state 𝑞

(𝑗)
𝑚𝑒𝑎𝑠 is

included in
[︁
U

(𝑗)
𝑚𝑒𝑎𝑠,Y

(𝑗)
𝑚𝑒𝑎𝑠

]︁
and that this data is not corrupted by measurement generated

by other subsystems. The current state 𝑞
(𝑗)
𝑚𝑒𝑎𝑠 is a mapped state according to Def. 6.10 and

thus the connection between measurement and speci�cation is also correct and the respective
nominal subsystem 𝑠(𝑖(𝑗))* is known.
Using this information, the setting can be reduced to the time invariant consistency problem
given in Problem 4.1 for segment 𝑗 and subsystem 𝑠(𝑖(𝑗))* and time invariant consistency can
be checked according to Prop. 4.1 which proves Prop. 6.1.

The considerations are now extended to the complete set of measurement data, consisting of
several segments.

8 As a direct speci�cation 𝒮*
𝑑 is used in the de�nition, “dynamic consistency” means “time invariant full consis-

tency” throughout this chapter.
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Proposition 6.2 (Dynamic Consistency of the Measurement Data)
The mapped state signal 𝑄𝑚𝑒𝑎𝑠 and the segmented measurement data⟨[︁

U
(𝑗)
𝑚𝑒𝑎𝑠,Y

(𝑗)
𝑚𝑒𝑎𝑠

]︁⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
of a VO, leading to the state 𝑞

(𝑗)
𝑚𝑒𝑎𝑠, the regressor matri-

ces 𝐴
(𝑗)
𝑚𝑒𝑎𝑠 and the measurement vectors 𝐵

(𝑗)
𝑚𝑒𝑎𝑠 with 𝑗 = {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ}, are

dynamic consistent with a set of direct speci�cations 𝒮*𝑑 , if there is dynamic consistency of
each segment given in the measurement data with its respective mapped subsystem 𝑠(𝑖(𝑗))*

i.e.

Θ(𝑖(𝑗))* ∈
∑︀(𝑗)

∃∃ , ∀𝑗 ∈ {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ}. (6.21)

Proof:
Prop. 6.2 results straight forward by applying Prop. 6.1 to all 𝑗 = {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ} seg-
ments given in the segmented measurement data

⟨[︁
U

(𝑗)
𝑚𝑒𝑎𝑠,Y

(𝑗)
𝑚𝑒𝑎𝑠

]︁⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
.

It is possible to reformulate this proposition to get the inverse relation similar to Prop. 5.2.

Proposition 6.3 (Inverse of Dynamic Consistency of the Measurement Data)
The mapped state signal 𝑄𝑚𝑒𝑎𝑠 and the segmented measurement data⟨[︁

U
(𝑗)
𝑚𝑒𝑎𝑠,Y

(𝑗)
𝑚𝑒𝑎𝑠

]︁⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
of a VO, leading to the state 𝑞

(𝑗)
𝑚𝑒𝑎𝑠, the regressor matri-

ces 𝐴(𝑗)
𝑚𝑒𝑎𝑠 and the measurement vectors 𝐵(𝑗)

𝑚𝑒𝑎𝑠 with 𝑗 = {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ} are called
dynamic inconsistent with a set of direct speci�cations 𝒮*𝑑 , if there is at least one segment
𝑗 ∈ {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ} given in the measurement data that does not show dynamic
consistency with its respective mapped subsystems 𝑠(𝑖(𝑗))* according to Prop. 6.1, i.e.

∃𝑗 = {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ}
⃒⃒⃒

Θ(𝑖(𝑗))* ̸∈
∑︀(𝑗)

∃∃ . (6.22)

Proof:
For dynamic consistency of the measurement data according to Prop. 6.2 it is necessary that
all segments of the measurement data are dynamic consistent according to Prop. 6.1. If there
is a segment that does not show dynamic consistency, this segment can not be explained
by the speci�cation. Thus there is unspeci�ed behavior and it is not possible to explain the
whole measurement data by the speci�cation.

Note that these propositions are based on the segments given in the measurement data. How-
ever it is possible that there is nominal behavior that is not present in the measurement data.
Though this will not change the dynamic consistency result for the measurement, it will
in�uence the discrete event veri�cation result introduced in the next section.
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Also note that a mapped state signal is used in Prop. 6.2 and Prop. 6.3. This means that all
segments given in the measurement data can be mapped to the speci�cation, as stated in
Def. 6.10.

6.1.2 Veri�cation of the Discrete Event System

The next step in the veri�cation of the hybrid system is given by regarding the discrete event
part. Therefore it is necessary to determine the state machine 𝑍𝑚𝑒𝑎𝑠 that generated the
measurement data. The active states given in the mapped state signal𝑄𝑚𝑒𝑎𝑠 represent a trace
of the unknown generating state machine 𝑍𝑚𝑒𝑎𝑠. The system dynamics represent the state
of the system and not an emission of a state or an event. Therefore it is in this case possible
to reconstruct 𝑍𝑚𝑒𝑎𝑠 based on this trace. The reconstructed generating state machine 𝑍𝑚𝑒𝑎𝑠

can then be compared with the speci�ed state machine 𝑍* by comparing the corresponding
states and transitions.

Proposition 6.4 (Full State Consistency)
The mapped state signal 𝑄𝑚𝑒𝑎𝑠 given for the discrete sampling points 𝑘 = {1, 2, . . . , 𝑇},
leading to the mapped set of states𝒬𝑚𝑒𝑎𝑠 of the discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is called
full state consistent with the nominal state machine 𝑍*, if

𝒬* = 𝒬𝑚𝑒𝑎𝑠. (6.23)

Proof:
All nominal states 𝒬* are given in the speci�cation of the state machine 𝑍*. The states
implemented in 𝑍𝑚𝑒𝑎𝑠 are given in the mapped set of states 𝒬𝑚𝑒𝑎𝑠. According to Def. 6.10,
this means that both sets are de�ned on the same elements. Full state consistency means that
exactly the speci�ed states are given in the measurement data, i.e. that both sets contain the
same elements. This comparison is given in (6.23) and proves full state consistency.

Due to a measurement scenario that does not cover all states it is possible that not all dynam-
ics are present in the measurement data. This case leads to partial state consistency.

Proposition 6.5 (Partial State Consistency)
The mapped state signal 𝑄𝑚𝑒𝑎𝑠 given for the discrete sampling points 𝑘 = {1, 2, . . . , 𝑇},
leading to the mapped set of states𝒬𝑚𝑒𝑎𝑠, of the discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is called
partial state consistent with the nominal state machine 𝑍*, if

𝒬* ⊃ 𝒬𝑚𝑒𝑎𝑠. (6.24)
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Proof:
Based on Prop. 6.4 and Def. 6.10, 𝒬𝑚𝑒𝑎𝑠 and 𝒬* are de�ned on the same elements, i.e. there
is a mapping 𝑞

(𝑗)
𝑚𝑒𝑎𝑠 = 𝑞(𝑖(𝑗))* for 𝑗 ∈ {1, 2, . . . , |𝒬𝑚𝑒𝑎𝑠|}. If additionally (6.24) holds,

𝑞(𝑗)𝑚𝑒𝑎𝑠 ∈ 𝒬𝑚𝑒𝑎𝑠 ⇒ 𝑞(𝑗)𝑚𝑒𝑎𝑠 = 𝑞(𝑖(𝑗))* ∈ 𝒬* (6.25)

holds as well. This means that all implemented states 𝑞
(𝑗)
𝑚𝑒𝑎𝑠 ∈ 𝒬𝑚𝑒𝑎𝑠 are also part of the

speci�cation 𝒬*. Thus there are only speci�ed states in the measurement data. However,
there are states in the speci�cation that are not part of the implementation and prevent full
state consistency. The discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is hence called partial state consis-
tent.

Partial consistency of the discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is a hint to improve the measure-
ment scenario or to collect more measurement data.
If there is neither full nor partial consistency, the system is state inconsistent according to
Prop. 6.6.

Proposition 6.6 (State Inconsistency)
The state signal𝑄𝑚𝑒𝑎𝑠 given for the discrete sampling points 𝑘 = {1, 2, . . . , 𝑇}, leading to
the set of states𝒬𝑚𝑒𝑎𝑠, of the discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is called state inconsistent
with the nominal state machine 𝑍*, if

𝒬* ̸⊇ 𝒬𝑚𝑒𝑎𝑠. (6.26)

Proof:
If (6.26) holds, there are implemented states 𝑞(𝑗)𝑚𝑒𝑎𝑠 ∈ 𝒬𝑚𝑒𝑎𝑠 that are not part of the speci-
�cation 𝒬*. Thus there are unspeci�ed states in the measurement data. The discrete event
part 𝑍𝑚𝑒𝑎𝑠 of a VO is hence called state inconsistent.

Prop. 6.6 can be connected with the inverse of dynamic consistency of the measurement data
as given in Prop. 6.3. If there is an additional state 𝑞

(𝑗)
𝑚𝑒𝑎𝑠 /∈ 𝒬*, the respective measurement

data
[︁
U

(𝑗)
𝑚𝑒𝑎𝑠,Y

(𝑗)
𝑚𝑒𝑎𝑠

]︁
cannot be explained by any 𝑠(𝑖)* within the speci�cation. In this case

there is both, dynamic inconsistency according to Prop. 6.3 and state inconsistency according
to Prop. 6.6.

The second part of the discrete event system to be veri�ed is the transition function. Addition-
ally to the mapped state signal9 ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇−1

𝑘=1 , the set of measured events ℰ𝑚𝑒𝑎𝑠 needs to be
obtained. According to Def. 6.2 there is an active event 𝑒(𝑖)𝑚𝑒𝑎𝑠,𝑘 ∈ ℰ𝑚𝑒𝑎𝑠 if 𝑤𝑚𝑒𝑎𝑠,𝑘 ∈ 𝑙(𝑖)*.

9 The last measurement value for 𝑘 = 𝑇 can not be evaluated as there is no following state 𝑘 = 𝑇 + 1.
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Full transition consistency is then de�ned as follows:

Proposition 6.7 (Full Transition Consistency)
The mapped state signal ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇−1

𝑘=1 and the set of events ℰ𝑚𝑒𝑎𝑠 of the discrete event part
𝑍𝑚𝑒𝑎𝑠 of a VO are called full transition consistent with the nominal state machine 𝑍*, if(︁
∀𝑞𝑚𝑒𝑎𝑠,𝑘 ∈ ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇−1

𝑘=1

)︁
∧
(︁
∃𝑒(𝑖)𝑚𝑒𝑎𝑠,𝑘 ∈ ℰ𝑚𝑒𝑎𝑠

)︁
:
(︀
𝑓*(𝑞𝑚𝑒𝑎𝑠,𝑘, 𝑒

(𝑖)
𝑚𝑒𝑎𝑠,𝑘) = 𝑞𝑚𝑒𝑎𝑠,𝑘+1

)︀
.

(6.27)

Proof:
All nominal transitions are given in the transition function 𝑓* according to Def. 6.3. The tran-
sition function 𝑓*(𝑞𝑚𝑒𝑎𝑠,𝑘, 𝑒

(𝑖)
𝑚𝑒𝑎𝑠,𝑘) is evaluated for the current measurement state 𝑞𝑚𝑒𝑎𝑠,𝑘

and the current events 𝑒(𝑖)𝑚𝑒𝑎𝑠,𝑘 . If the transition function yields the following measurement
state 𝑞𝑚𝑒𝑎𝑠,𝑘+1 for at least one event 𝑒(𝑖)𝑚𝑒𝑎𝑠,𝑘 the right hand side of (6.27) holds. Thus the
observed transition at time 𝑘 is part of the nominal transition function.
If the right hand side of (6.27) holds for the measurement sequence 𝑘 = {1, 2, . . . , 𝑇 − 1}, i.e.
(∀𝑞𝑚𝑒𝑎𝑠,𝑘 ∈ ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇−1

𝑘=1 ), all observed state transitions are de�ned in the nominal transi-
tion function 𝑓*. Thus the measurement is full transition consistent.

Prop. 6.7 also implies that the current values of the enabler signal 𝑤𝑚𝑒𝑎𝑠,𝑘 are within the
nominal limits 𝑙(𝑖)* at each switch 𝑘 = 𝑘𝜏,𝑖 − 1 with 𝑖 = {2, 3, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ}.10 Other than
state consistency, full transition consistency can be achieved although a nominal transition
is not triggered by the measurement data.

The notion of partial transition consistency includes speci�ed transitions that are triggered
at unexpected times.

Proposition 6.8 (Partial Transition Consistency)
The mapped state signal ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇−1

𝑘=1 , and the set of measured events ℰ𝑚𝑒𝑎𝑠 of the discrete
event part 𝑍𝑚𝑒𝑎𝑠 of a VO are called partial transition consistent with the nominal state
machine 𝑍*, if(︁
∃𝑞𝑚𝑒𝑎𝑠,𝑘 ∈ ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇−1

𝑘=1

)︁
∧
(︀
∃𝑒 ∈ ℰ*

)︀
:
(︀
𝑓*(𝑞𝑚𝑒𝑎𝑠,𝑘, 𝑒) = 𝑞𝑚𝑒𝑎𝑠,𝑘+1

)︀
∧
(︀
𝑒 ̸= 𝑒

(𝑖)
𝑚𝑒𝑎𝑠,𝑘

)︀
.

(6.28)

10 It is not necessary to check the �rst switch, as it represents the begin of the experiment.
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Proof:
The transition function 𝑓* is evaluated as explained in Prop. 6.7, but using the set of nominal
events ℰ* instead of the set of measured events ℰ𝑚𝑒𝑎𝑠. Thus 𝑓*(𝑞𝑚𝑒𝑎𝑠,𝑘, 𝑒) can yield the
correct following measurement state 𝑞𝑚𝑒𝑎𝑠,𝑘+1 for any speci�ed event 𝑒 ∈ ℰ*, regardless of
the current measured events 𝑒(𝑖)𝑚𝑒𝑎𝑠,𝑘 .
Condition (6.28) is ful�lled if there is at least one transition in the measurement sequence
𝑘 = {1, 2, . . . , 𝑇 − 1} that was triggered by an unexpected event 𝑒 ̸= 𝑒

(𝑖)
𝑚𝑒𝑎𝑠,𝑘 .

Unspeci�ed transitions and transitions connecting unspeci�ed states lead to transition in-
consistency according to Prop. 6.9. This represents the situation, where it is not possible to
explain the observed transition by the transition function.

Proposition 6.9 (Transition Inconsistency)
The mapped state signal ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇−1

𝑘=1 , and the set of events ℰ𝑚𝑒𝑎𝑠 of the discrete event
part 𝑍𝑚𝑒𝑎𝑠 of a VO are called transition inconsistent with the nominal state machine 𝑍*,
if (︀
∃𝑞𝑚𝑒𝑎𝑠,𝑘 ∈ ⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇−1

𝑘=1

)︀
∧
(︀
∀𝑒 ∈ ℰ*

)︀
:
(︀
𝑓*(𝑞𝑚𝑒𝑎𝑠,𝑘, 𝑒) ̸= 𝑞𝑚𝑒𝑎𝑠,𝑘+1

)︀
. (6.29)

Proof:
Condition (6.29) is ful�lled if there is at least one unspeci�ed transition at a state 𝑞𝑚𝑒𝑎𝑠,𝑘 ∈
⟨𝑞𝑚𝑒𝑎𝑠,𝑘⟩𝑇−1

𝑘=1 that is not de�ned for any nominal event 𝑒 ∈ ℰ*. Therefore the measured
transition is unspeci�ed, which is inconsistent in the sense of this thesis.

The results of state and transition consistency are combined such that the weakest result
of the individual conditions determines the result of the whole discrete event system. The
respective propositions are given in the following.

Proposition 6.10 (Full Discrete Consistency)
The discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is called full discrete consistent with the nominal
state machine 𝑍*, if there is full state consistency according to Prop. 6.4 and full transition
consistency according to Prop. 6.7.
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Proof:
The main components of the discrete event part 𝑍𝑚𝑒𝑎𝑠 according to Def. 6.4 are the set of
states 𝒬*, the �nite set of events ℰ* and the transition function 𝑓*. The consistency of
this components is veri�ed using the propositions about state and transition consistency.
Only if all components show full consistency according to the respective propositions, the
overall system also shows full consistency. Thus full discrete consistency is only given if
there is full state consistency according to Prop. 6.4 and full transition consistency according
to Prop. 6.7.

Proposition 6.11 (Discrete Inconsistency)
The discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is called discrete inconsistent with the nominal state
machine 𝑍*, if there is state inconsistency according to Prop. 6.6 or transition inconsistency
according to Prop. 6.9.

Proof:
Discrete inconsistency is also an integral property of the main components of the discrete
event part 𝑍𝑚𝑒𝑎𝑠 as shown in Prop. 6.10. Therefore the overall discrete system is inconsis-
tent as soon as there is at least one inconsistent component, i.e. if there is state inconsistency
according to Prop. 6.6 or transition inconsistency according to Prop. 6.9.

Proposition 6.12 (Partial Discrete Consistency)
The discrete event part 𝑍𝑚𝑒𝑎𝑠 of a VO is called partial discrete consistent with the nominal
state machine 𝑍*, if there is neither full discrete consistency according to Prop. 6.10 nor
discrete inconsistency according to Prop. 6.11.

Proof:
If there is neither full discrete consistency according to Prop. 6.10 nor discrete inconsistency
according to Prop. 6.11, there is at least one main component that shows partial consistency
according to Prop. 6.5 or Prop. 6.8. Even though the other main component might show full
consistency according to Prop. 6.4 or Prop. 6.7, the integral property can not be better than
the properties of the included main components.

The implementation of this propositions is straight forward, as all necessary sets and values
are available in the used setting. More realistic scenarios assuming less a priori knowledge
are introduced in Section 6.2 and Section 6.3.
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6.1.3 Combination of the Dynamic and the Discrete Veri�cation
Results

The results of the discrete event system part can be joined with the results of the dynamic sys-
tem part to achieve the overall assessment of the hybrid system. The solution of Problem 6.1
is thus given by Prop. 6.13 as follows:

Proposition 6.13 (Mapped Set of States Based Point Real Hybrid Consistency)
The mapped state signal 𝑄𝑚𝑒𝑎𝑠, the interval type enclosures of the measurement data
[𝑈𝑚𝑒𝑎𝑠,𝑌𝑚𝑒𝑎𝑠] and the set of events ℰ𝑚𝑒𝑎𝑠 of the veri�cation object 𝐻𝑚𝑒𝑎𝑠 are called
consistent with a direct hybrid speci�cation 𝑆*

𝐻,𝑑, if

• the speci�ed state machine 𝑍* is full discrete consistent and

• the speci�ed subsystems 𝑠(𝑖)* ∈ 𝒮*𝑑 are full dynamic consistent.

Proof:
Based on the mapped state signal according to Def. 6.10 the currently active subsystem is
known at each time step. The resulting trace of the state machine is checked for consistency
with the discrete event speci�cation 𝑍* by regarding the states and transitions. Consistency
of the states can be checked by Prop. 6.4 and consistency of the transitions by Prop. 6.7. If
both parts are consistent, the measurement is consistent with the speci�ed state machine.
The dynamic of the included subsystems can be checked according to Prop. 6.2, again assum-
ing a mapped set of measured states 𝒬𝑚𝑒𝑎𝑠. If both system parts are consistent, the overall
hybrid system is consistent.

Consistency of the hybrid system results from the combination of results for the dynamic and
discrete subsystems according to Prop. 6.13. Inconsistency of the hybrid system is given as
soon as one subsystem is inconsistent. Else the hybrid system is partial consistent, meaning
that there is no inconsistent subsystem but at least on subsystem is partial consistent.
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An overview of the di�erent propositions and possible results is given in Tab. 6.1.

Table 6.1: Consistency criteria

Property
Part of the System full consistency partial consistency inconsistency
Dynamic Subsystems Prop. 6.2 not applicable Prop. 6.3
States Prop. 6.4 Prop. 6.5 Prop. 6.6
Transitions Prop. 6.7 Prop. 6.8 Prop. 6.9
State Machine Prop. 6.10 Prop. 6.12 Prop. 6.11

Prop. 6.3
Hybrid System Prop. 6.13 else or

Prop. 6.11

By applying Prop. 6.2, consistency of the dynamic part of the hybrid system can be shown in
a straight forward way. The results are calculated based on the propositions of the previous
chapters and thus show the same guaranteed properties as de�ned there. A direct speci�-
cation 𝒮*𝑑 was used throughout the chapter for notational simplicity. It is straight forward
to extend all propositions to hold also for an interval type speci�cation 𝒮*𝑖 . This is due to
the fact that the dynamic veri�cation is based on the united solution set given by the mea-
surement data. Therefore all properties stay the same except that the veri�cation of dynamic
consistency is done based on Prop. 5.1 instead of Prop. 4.1.
Subsystems that are veri�ed using the Kaucher based approach are guaranteed to be correct
and it is not possible that there are any hidden faults present in the system.
The state machine has to use point real numbers in both cases. Therefore the de�nitions and
propositions for the discrete event part are unchanged.
An example of the hybrid veri�cation procedure for a mapped set of measured states is given
in Example 6.1.
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Example 6.1:
Assume a direct hybrid speci�cation 𝑆*

𝐻,𝑑 = [𝑍*,𝒮*𝑑 ]. The nominal state machine 𝑍* is
depicted in Fig. 6.3.

𝑞(1)start 𝑞(2)

𝑒(1)

𝑒(2)

𝑒(3) 𝑒(4)

Figure 6.3: Speci�ed state machine 𝑍*

The state machine consists of two states 𝒬* =
{︀
𝑞(1)*, 𝑞(2)*

}︀
= {1, 2}, the events are based

on the enabler signal that is de�ned to be the output signal 𝑤 = 𝑦:

𝑒(1)* : 𝑤𝑘 ∈ 𝑙(1) = [1, 2] (6.30)
𝑒(2)* : 𝑤𝑘 ∈ 𝑙(2) = [31, 33] (6.31)
𝑒(3)* : 𝑤𝑘 ∈ 𝑙(3) = [−∞, ∞] (6.32)
𝑒(4)* : 𝑤𝑘 ∈ 𝑙(4) = [−∞, ∞] . (6.33)

The events 𝑒(3)* and 𝑒(4)* are enabled for all values of the enabler signal, leading to the
permanent possibility to stay in the current state, based on the transition function:

𝑓*
(︁
𝑞(1)*, 𝑒(1)*

)︁
= 𝑞(2)* (6.34)

𝑓*
(︁
𝑞(2)*, 𝑒(2)*

)︁
= 𝑞(1)* (6.35)

𝑓*
(︁
𝑞(1)*, 𝑒(3)*

)︁
= 𝑞(1)* (6.36)

𝑓*
(︁
𝑞(2)*, 𝑒(4)*

)︁
= 𝑞(2)*. (6.37)

The set of dynamic systems 𝒮*𝑑 is given by �rst order systems, i.e. 𝑛𝑎(𝑖) = 𝑛𝑐(𝑖) = 1,
∀ 𝑖 ∈ {1, 2} leading to

𝑠(𝑖)* : 𝑦𝑘 = 𝑎*1(𝑖)𝑦𝑘−1 + 𝑐*1(𝑖)𝑢𝑘−1. (6.38)

The nominal parameters of the dynamic subsystems are given in Tab. 6.2.

Table 6.2: Nominal parameters of the subsystems 𝑠(1)* and 𝑠(2)*

Subsystem 𝑎*1 𝑐*1

𝑞(1)* 0.1 1
𝑞(2)* 2.0 1
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There are no optional initial input and output values given. Thus the input and output values
are kept across the switches.
The implementation is assumed to be done by one or more human developers. Therefore there
might be inconsistencies in the resulting VO. Note that the implemented system is assumed
to consist of real hard- and software and to include a given plant that cannot be changed.
Therefore the corresponding state machine 𝑍𝑚𝑒𝑎𝑠 and its dynamical subsystems 𝒮𝑚𝑒𝑎𝑠 are
not directly known. Nevertheless it is possible to excite the system and measure its output and
state signals. The random excitation signal used in this example is given by

𝑢𝑘 = 1 + 0.2𝜂𝑘, (6.39)

where 𝜂𝑘 is drawn from a standard normal distribution. The resulting measurement data
is given in Fig. 6.4. Thereby the output was enclosed by intervals using an additive fault of
𝛿𝑎𝑦 = 0.5. The switching times are based on the information given in the mapped state signal

𝑄𝑚𝑒𝑎𝑠 = [1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1] (6.40)

leading to the switches 𝑘𝜏 = [1, 6, 10]. The relevant values of the enabler signal are given
at the time steps right before a switch 𝑤𝑘𝜏,𝑖−1 with 𝑖 ∈ {2, 3} i.e. 𝑤5 = [0.6, 1.1] and
𝑤9 = [31.9, 32.9].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20
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35

Time step 𝑘 with ∆𝑡 = 1s

y

Measurement
Enclosure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

u

Figure 6.4: Measured trajectory and subsystem switches
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Dynamic Consistency

The subsystems are veri�ed using the introduced Kaucher based method. The resulting fea-
sibility signals are depicted in Fig. 6.5. The �rst veri�cation result can be calculated for
𝑘𝑚𝑖𝑛 = max(𝑛𝑎, 𝑛𝑐) + 1. Due to the autoregressive system of order 𝑛𝑎 = 𝑛𝑐 = 1 in
this example it is thus not possible to calculate a veri�cation result for the very �rst element
of each segment. It can be seen, that all three segments 𝑗 = {1, 2, 3} can be explained by the
respective mapped nominal states 𝑖 = {1, 2} using the Kaucher based method according to
Prop. 6.2. Therefore the dynamic subsystems 𝒮𝑚𝑒𝑎𝑠 are full consistent with the speci�cation
𝒮*𝑑 .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 2 and 𝑠(2)*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 1 and 𝑠(1)*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 3 and 𝑠(1)*

Figure 6.5: Veri�cation result for each segment (using a mapped state signal)
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Discrete Consistency

There is a mapped set of states given in this example. Therefore the measured set of states is
given by the unique values in the mapped state signal 𝑄𝑚𝑒𝑎𝑠

𝒬𝑚𝑒𝑎𝑠 = {1, 2} =
{︁
𝑞(1)*, 𝑞(2)*

}︁
= 𝒬* (6.41)

which leads to full state consistency according to Prop. 6.4.
The set of measured events can be extracted from the measurement data. First, the events
leading to the switches in 𝑘 ∈ {6, 10} are determined:

𝑒
(1)
𝑚𝑒𝑎𝑠,5 : 𝑤5 = [0.6, 1.6] ∩ [1, 2] ̸= ∅ : 𝑒(1)* (6.42)

𝑒
(2)
𝑚𝑒𝑎𝑠,5 : 𝑤5 = [0.6, 1.6] ∩ [−∞, ∞] ̸= ∅ : 𝑒(3)* (6.43)

𝑒
(3)
𝑚𝑒𝑎𝑠,5 : 𝑤5 = [0.6, 1.6] ∩ [−∞, ∞] ̸= ∅ : 𝑒(4)* (6.44)

𝑒
(1)
𝑚𝑒𝑎𝑠,9 : 𝑤9 = [31.9, 32.9] ∩ [31, 33] ̸= ∅ : 𝑒(2)* (6.45)

𝑒
(2)
𝑚𝑒𝑎𝑠,9 : 𝑤9 = [31.9, 32.9] ∩ [−∞, ∞] ̸= ∅ : 𝑒(3)* (6.46)

𝑒
(3)
𝑚𝑒𝑎𝑠,9 : 𝑤9 = [31.9, 32.9] ∩ [−∞, ∞] ̸= ∅ : 𝑒(4)* . (6.47)

This means that
{︀
𝑒(1)*, 𝑒(3)*, 𝑒(4)*

}︀
are activated at 𝑘 = 5 and

{︀
𝑒(2)*, 𝑒(3)*, 𝑒(4)*

}︀
are

activated at 𝑘 = 9. The events can now be applied to the nominal transition function:

𝑓*
(︁
𝑞𝑚𝑒𝑎𝑠,5, 𝑒

(1)
𝑚𝑒𝑎𝑠,5

)︁
= 𝑓*

(︁
𝑞(1)*, 𝑒(1)*

)︁
!
= 𝑞(2)* = 𝑞𝑚𝑒𝑎𝑠,6 (6.48)

𝑓*
(︁
𝑞𝑚𝑒𝑎𝑠,5, 𝑒

(2)
𝑚𝑒𝑎𝑠,5

)︁
= 𝑓*

(︁
𝑞(1)*, 𝑒(3)*

)︁
!
= 𝑞(1)* ̸= 𝑞𝑚𝑒𝑎𝑠,6 (6.49)

𝑓*
(︁
𝑞𝑚𝑒𝑎𝑠,5, 𝑒

(3)
𝑚𝑒𝑎𝑠,5

)︁
= 𝑓*

(︁
𝑞(1)*, 𝑒(4)*

)︁
= ∅ (6.50)

𝑓*
(︁
𝑞𝑚𝑒𝑎𝑠,9, 𝑒

(1)
𝑚𝑒𝑎𝑠,9

)︁
= 𝑓*

(︁
𝑞(2)*, 𝑒(2)*

)︁
!
= 𝑞(1)* = 𝑞𝑚𝑒𝑎𝑠,10 (6.51)

𝑓*
(︁
𝑞𝑚𝑒𝑎𝑠,9, 𝑒

(2)
𝑚𝑒𝑎𝑠,9

)︁
= 𝑓*

(︁
𝑞(2)*, 𝑒(3)*

)︁
= ∅ (6.52)

𝑓*
(︁
𝑞𝑚𝑒𝑎𝑠,9, 𝑒

(3)
𝑚𝑒𝑎𝑠,9

)︁
= 𝑓*

(︁
𝑞(2)*, 𝑒(4)*

)︁
!
= 𝑞(2)* ̸= 𝑞𝑚𝑒𝑎𝑠,10. (6.53)

It can be seen that (6.48) and (6.51) hold. This leads to the veri�cation of the transition
function in 𝑘 ∈ {5, 9}, that generates the switches 𝑘𝜏 ∈ {6, 10}. The events 𝑒(3)* and 𝑒(4)*

are enabled for all 𝑘 ∈ {1, 2, . . . , 15} and provide the possibility to stay in the same state
for several time steps. To improve readability, only the veri�cation of one exemplary step is
shown. The activated events are

𝑒
(1)
𝑚𝑒𝑎𝑠,8 : 𝑤8 = [15.3, 16.3] ∩ [−∞, ∞] ̸= ∅ : 𝑒(3)* (6.54)

𝑒
(2)
𝑚𝑒𝑎𝑠,8 : 𝑤8 = [15.3, 16.3] ∩ [−∞, ∞] ̸= ∅ : 𝑒(4)*. (6.55)

These are applied to the nominal transition function

𝑓*
(︁
𝑞𝑚𝑒𝑎𝑠,8, 𝑒

(1)
𝑚𝑒𝑎𝑠,8

)︁
= 𝑓*

(︁
𝑞(2)*, 𝑒(3)*

)︁
= ∅ (6.56)

𝑓*
(︁
𝑞𝑚𝑒𝑎𝑠,8, 𝑒

(2)
𝑚𝑒𝑎𝑠,8

)︁
= 𝑓*

(︁
𝑞(2)*, 𝑒(4)*

)︁
!
= 𝑞(2)* = 𝑞𝑚𝑒𝑎𝑠,9. (6.57)
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Thus the behavior is valid at time 𝑘 = 8. Similar results are obtained for all other time steps.
The nominal transition function holds ∀𝑞𝑚𝑒𝑎𝑠,𝑘 ∈ 𝑄𝑚𝑒𝑎𝑠, which leads to full transition
consistency according to Prop. 6.7. Hence full state consistency (Prop. 6.4) and full transi-
tion consistency (Prop. 6.7) hold in the given example. This leads to full discrete consistency
between 𝑍𝑚𝑒𝑎𝑠 and 𝑍* according to Prop. 6.10.

Hybrid Consistency

The previous partial results are now combined with respect to hybrid consistency as given in
Prop. 6.13. It was shown that𝑍𝑚𝑒𝑎𝑠 is full consistent with𝑍* and that𝒮𝑚𝑒𝑎𝑠 is full consistent
with 𝒮*𝑑 . Therefore the veri�cation object 𝐻𝑚𝑒𝑎𝑠 and the speci�cation 𝑆*

𝐻,𝑑 are consistent.
This means that the superimposed state machine as well as the linear dynamic subsystems of
the VO that produced the measurement in Fig. 6.4 are full consistent with the speci�cation of
𝑆*
𝐻,𝑑 given in this example. Therefore the VO is veri�ed with respect to the nominal system.
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6.2 Veri�cation of Hybrid Systems With Given Switching
Times

In general it is not possible to measure the internal signals and states of a VO. Therefore the
setting is changed and the assumption of an available mapped state signal 𝑄𝑚𝑒𝑎𝑠 is dropped.
Nevertheless, it is still assumed that the correct times of the switches 𝑘𝜏 are available, even
though the respective active states are unknown. The resulting consistency problem is given
in the following:

Problem 6.2 (Point Real Hybrid Consistency with Given Switches)
Is the nominal hybrid system, speci�ed by a direct hybrid speci�cation

𝑆*
𝐻,𝑑 = {𝑍*,𝒮*𝑑} (6.58)

consistent with the input-output behavior given by the interval type enclosures of 𝑇 mea-
surement values

[𝑈𝑚𝑒𝑎𝑠,𝑌𝑚𝑒𝑎𝑠] =
[︁
⟨𝑢𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨𝑦𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(6.59)

and the set of switches

{𝑘𝜏,𝑗}𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1 , (6.60)

i.e. can the measurement data be explained by the nominal system?

To solve the problem, it is necessary to determine a mapped state signal 𝑄. The measurement
data can be segmented based on the given switches. The result can be interpreted as an
unmapped state signal as it is not known which state is active after each switch. Therefore
is is necessary to determine the correct nominal subsystem for each segment. There are two
important assumptions that need to hold to ensure an unambiguous mapping from nominal
subsystems to measurement segments.

Assumption 6.2 (Prager-Oettli-Distinguishability of the Set of Subsystems)
Each two nominal subsystems 𝑠(𝑖)*, 𝑠(𝑗)* ∈ 𝒮*𝑑 with 𝑖 ̸= 𝑗 are called Prager-Oettli-
Distinguishable (PO-Distinguishable) with respect to speci�c segmented measurement data⟨[︁

U
(𝑗)
𝑚𝑒𝑎𝑠,Y

(𝑗)
𝑚𝑒𝑎𝑠

]︁⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
, if there is no segment 𝑗 ∈ {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ} that ful�lls

Prop. 4.1 for both subsystems 𝑠(𝑖)* and 𝑠(𝑗)*.

This means that two distinct nominal subsystems given in the speci�cation are su�ciently
di�erent with respect to the measurement data, noise assumptions and the interval enclosure.
The second assumption transfers this property to the segments of the measurement data.
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Assumption 6.3 (Mappability of the Measurement)

The segmented measurement data
⟨[︁

U
(𝑗)
𝑚𝑒𝑎𝑠,Y

(𝑗)
𝑚𝑒𝑎𝑠

]︁⟩𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1
is called mappable to the set

of dynamic subsystems 𝒮*𝑑 , if there is no speci�ed subsystem 𝑠(𝑖)* ∈ 𝒮*𝑑 that ful�lls Prop. 4.1

for any segment
[︁
U

(𝑗)
𝑚𝑒𝑎𝑠,Y

(𝑗)
𝑚𝑒𝑎𝑠

]︁
that was generated by another dynamic system 𝑠(𝑗) with

𝑠(𝑗) ̸= 𝑠(𝑖)*.

If Assumption 6.2 and 6.3 hold, it is possible to determine a mapped state signal. Therefore
Problem 6.2 can be solved by the following proposition:

Proposition 6.14 (Point Real Hybrid Consistency with Given Switches)
The direct hybrid speci�cation 𝑆*

𝐻,𝑑, the interval type enclosures of the measurement data
[𝑈𝑚𝑒𝑎𝑠,𝑌𝑚𝑒𝑎𝑠] and the set of switches {𝑘𝜏,𝑗}𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1 of a veri�cation object 𝐻𝑚𝑒𝑎𝑠 can
be used to set up a mapped state signal 𝑄 if the speci�ed set of subsystems 𝑆*

𝑑 is PO-
distinguishable with respect to the measurement data according to Assumption 6.2 and the
measurement data is mappable to 𝑆*

𝑑 according to Assumption 6.3.
The availability of a mapped state signal𝑄 transforms the problem to a mapped set of states
based point real hybrid consistency problem. This problem can be solved using Prop. 6.13.

Proof:
An unmapped state signal can directly be constructed from the given correct switches
{𝑘𝜏,𝑗}𝑛𝑠𝑤𝑖𝑡𝑐ℎ

𝑗=1 according to (6.19). As Assumption 6.2 and 6.3 hold, individual nominal sub-
systems within the speci�cation 𝒮*𝑑 can be distinguished from each other.
Also, the united solution set

∑︀(𝑗)
∃∃ de�ned by the measurement data of each segment[︁

U
(𝑗)
𝑚𝑒𝑎𝑠,Y

(𝑗)
𝑚𝑒𝑎𝑠

]︁
, generated by a dynamic system 𝑠(𝑗), cannot be explained by any other

nominal system 𝑠(𝑖)* ∈ 𝒮*𝑑 , with 𝑠(𝑗) ̸= 𝑠(𝑖)*. The generating subsystem can thus be de-
termined unambiguously for each segment. The mapped nominal subsystems can be used
to determine the active states 𝑞𝑘 with 𝑘 ∈ {𝑘𝜏,𝑗 , 𝑘𝜏,𝑗 + 1, . . . , 𝑘𝜏 ′,𝑗} for all segments 𝑗 ∈
{1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ}. The resulting signal 𝑄 is a mapped state signal according to Def. 6.10.
The given measurement data [𝑈𝑚𝑒𝑎𝑠,𝑌𝑚𝑒𝑎𝑠], together with the given set of nominal subsys-
tems 𝒮*𝑑 and the extracted mapped state signal 𝑄 represents the setting of Problem 6.1 that
can be solved by Prop. 6.13.
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Segments generated by an unspeci�ed subsystem 𝑠 /∈ 𝒮*𝑑 cannot be mapped to a nominal
subsystem 𝑠(𝑖)* if 𝑠 is PO-Distinguishable from all nominal subsystems 𝑠(𝑖)* ∈ 𝒮*𝑑 according
to Assumption 6.2. If this is not the case, the measurement data generated by 𝑠 can be ex-
plained by at least one nominal subsystem 𝑠(𝑖)* ∈ 𝒮*𝑑 and thus it is impossible to recognize
the subsystem 𝑠. Note that the de�nition is based on all measurement data of a segment,
i.e. it is possible that partial measurement data of a segment can be included in more then
one nominal subsystem.

The method leads to a mapping algorithm that compares the dynamic of each nominal subsys-
tem, given by the 𝑛𝑞 states, with every segment 𝑗 ∈ {1, 2, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ} of the measurement
data. This comparison is done based on the united solution set, as given in Prop. 4.1. The
�owchart of the algorithm is given in Fig. 6.6.
An exemplary application of point real hybrid consistency with known switches is given in
Example 6.2.

𝑗 ≤ 𝑛𝑠𝑤𝑖𝑡𝑐ℎ?

𝑖 ≤ 𝑛𝑞?
No matching state

for segment 𝑗

𝑠(𝑖)* ∈ ∑︀(𝑗)
∃∃ ?

Assign state 𝑖
to segment 𝑗

𝑗 = 0

𝑗 ← 𝑗 + 1

yes

yes

Stop

no

no

no

yes 𝑖 = 0
𝑖← 𝑖 + 1

Figure 6.6: Flowchart of the mapping algorithm
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Example 6.2:
Assume the same setting as introduced in Example 6.1, without the assumption of a given
measured mapped state signal. Instead, a set of switches is given by

𝑘𝜏 ∈ {1, 6, 10} . (6.61)

Based on the switches and the length 𝑇 = 15 of the measurement data, the endpoints of the
segments can be calculated:

𝑘𝜏 ′ ∈ {5, 9, 15} . (6.62)

The nominal parameters given in Tab. 6.2 and the algorithm of Fig. 6.6 are used to determine
the mapping between segments and states.
To show the correct classi�cation of all subsystems, the algorithm is altered such that it com-
pares all possible nominal subsystems with each segment instead of proceeding to the next
segment as soon as a consistent subsystem is found.
The results are depicted in Fig. 6.7. Each sub�gure shows the evaluation of both nominal
subsystems 𝑠(1)* and 𝑠(2)* for one of the segments 𝑗 ∈ {1, 2, 3}. The shaded areas mark
measurement data that does not belong to the segments and thus is not taken into account for
the respective veri�cation. It can be seen, that only one generating nominal subsystem can
be veri�ed for each of the three segments. This leads to an unambiguous mapping

𝑄 = [1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1] (6.63)

which is the same as given in (6.40).
The matching algorithm is based on Prop. 6.1. Therefore dynamic consistency is given, if
it is possible to generate a mapped state signal 𝑄. The discrete veri�cation can be done as
described in the previous section. The combination of both yields the hybrid veri�cation result.
Both results are equivalent with the calculations and results demonstrated in Example 6.1 and
are thus not repeated here.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 1

𝑠(1)*

𝑠(2)*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 3

Figure 6.7: Veri�cation Result for each segment (without mapped set of states)

6.3 Veri�cation of Hybrid Systems With Unknown
Switching Times

In the last step even the knowledge about the switching times is dropped. Only the speci�-
cation and the input and output measurement data are available. Thus the switching times
as well as the respective modes need to be reconstructed from the measurement data only.
Therefore an additional segmentation step is necessary in the procedure. This step aims at
�nding the unknown switches 𝑘𝜏 , at which the active generating subsystem changes. The
corresponding veri�cation problem is given in Problem 6.3.
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Problem 6.3 (Point Real Hybrid Consistency)
Is the nominal hybrid system, speci�ed by a direct hybrid speci�cation

𝑆*
𝐻,𝑑 = {𝑍*,𝒮*𝑑} (6.64)

consistent with the input-output behavior given by the interval type enclosures of 𝑇 mea-
surement values

[𝑈𝑚𝑒𝑎𝑠,𝑌𝑚𝑒𝑎𝑠] =
[︁
⟨𝑢𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨𝑦𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(6.65)

without any knowledge about the state or the switching times?

The problem can be solved, if it is possible to determine a mapped state signal from the input-
output data only. If this signal is constructed, Problem 6.3 can again be reduced to Problem 6.1
which is solved by Prop. 6.13. However, in this setting there is no information about the active
states or the switches. Therefore an additional identi�cation and segmentation procedure is
necessary. The procedure introduced in this thesis is based on previous work of the author,
published in [Die13a], [Die13b] and used in [Die17]. However, while the original work aims
on identifying an a priori unknown library of subsystems from the measurement data, the
concept is adapted in this thesis to consider a given set of nominal subsystems. Additionally,
it is extended to the interval arithmetic context of guaranteed veri�cation.
First, switches that are detected by the segmentation and identi�cation method are de�ned.

De�nition 6.11 (Detected Switch)
The time instant 𝑘 that does not show dynamic consistency according to Prop. 6.1 of any
nominal subsystems 𝑠(𝑖)* ∈ 𝒮*𝑑 with the current regressor matrix𝐴𝑚𝑒𝑎𝑠,𝑘 and the current
measurement vector𝐵𝑚𝑒𝑎𝑠,𝑘 is called detected switch 𝑘𝜏,𝑗+1 = 𝑘.

To ensure correct segmentation, the available measurement data needs to be Prager-Oettli-
Segmentable:

Assumption 6.4 (Prager-Oettli-Segmentability)

The measurement data
[︁
U

(𝑗)
𝑚𝑒𝑎𝑠,Y

(𝑗)
𝑚𝑒𝑎𝑠

]︁
and

[︁
U

(𝑗+1)
𝑚𝑒𝑎𝑠 ,Y

(𝑗+1)
𝑚𝑒𝑎𝑠

]︁
of two consecutive seg-

ments 𝑗 and 𝑗 + 1 that are generated by distinct subsystems 𝑠(𝑗)* ̸= 𝑠(𝑗+1)* are called
Prager-Oettli-Segmentable with respect to a given set of subsystems 𝒮*𝑑 , if there is no sub-
system 𝑠(𝑖)* ∈ 𝒮*𝑑 that ful�lls Prop. 6.1 for all measurement data points in the combined
segment [𝑘𝜏,𝑗 , 𝑘𝜏 ′,𝑗+1].

Assumption 6.4 implies Prager-Oettli-Distinguishability of the set of subsystems 𝒮*𝑑 accord-
ing to Assumption 6.2. Based on the segmentability assumption it is possible to extract a
mapped state signal to solve Problem 6.3.
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Proposition 6.15 (Point Real Hybrid Consistency)
The direct hybrid speci�cation 𝑆*

𝐻,𝑑 and the interval type enclosures of the measurement
data [𝑈𝑚𝑒𝑎𝑠,𝑌𝑚𝑒𝑎𝑠] of a veri�cation object 𝐻𝑚𝑒𝑎𝑠 can be used to set up a mapped state
signal 𝑄, if the measurement data is PO-segmentable with respect to 𝑆*

𝐻,𝑑.
The availability of a mapped state signal𝑄 transforms the problem to a mapped set of states
based point real hybrid consistency problem. This problem can be solved using Prop. 6.13.

Proof:
If Prager-Oettli-Distinguishability (Assumption 6.2) and mappability of the measurement (As-
sumption 6.3) are ful�lled, there is only one possible consistent subsystem 𝑠(𝑖)* ∈ 𝒮*𝑑 at the
end of a segment 𝑘𝜏 ′,𝑗 = 𝑘𝜏,𝑗+1 − 1. This subsystem needs to represent the active state of
the whole segment

[︁
𝑘𝜏,𝑗 , 𝑘𝜏 ′,𝑗

]︁
.

On the other hand, it is impossible that this subsystem is consistent with the measurement
data of the entire next segment generated by a di�erent subsystem 𝑠(𝑗+1). A nominal sub-
system 𝑠(𝑖)* ∈ 𝒮*𝑑 that ful�lls Prop. 6.1 for all measurement points in the entire combined
segment [𝑘𝜏,𝑗 , 𝑘𝜏 ′,𝑗+1] will also ful�ll Prop. 6.1 for any part of the combined segment. This
holds especially for the parts [𝑘𝜏,𝑗 , 𝑘𝜏 ′,𝑗 ] and [𝑘𝜏,𝑗+1, 𝑘𝜏 ′,𝑗+1], i.e. the same nominal subsys-
tem is consistent with two distinct segments

[︁
U

(𝑗)
𝑚𝑒𝑎𝑠,Y

(𝑗)
𝑚𝑒𝑎𝑠

]︁
and

[︁
U

(𝑗+1)
𝑚𝑒𝑎𝑠 ,Y

(𝑗+1)
𝑚𝑒𝑎𝑠

]︁
. This

is only possible if 𝑠(𝑖)* = 𝑠(𝑗) = 𝑠(𝑗+1) which is not allowed in the case of mappability of
the measurement according to Assumption 6.3.
Thus it is possible to determine a switch 𝑘𝜏,𝑗 ≥ 𝑘𝜏,𝑗 for each 𝑗 ∈ {2, 3, . . . , 𝑛𝑠𝑤𝑖𝑡𝑐ℎ}, i.e. the
true number of segments is determined even if the detected switches do not exactly match the
real ones. Based in this result it is possible to determine the respective active subsystem for
all segments, whereas each estimated segment

[︁
𝑘𝜏,𝑗 , 𝑘𝜏 ′,𝑗

]︁
at least partly overlaps with the

true segment [𝑘𝜏,𝑗 , 𝑘𝜏 ′,𝑗 ]. This leads to a mapped state signal with correct mapping for all
segments, even if the detected segment boundaries might slightly di�er from the true ones.11

Thus Problem 6.3 is transformed to Problem 6.1 which completes the proof.

If Prager-Oettli-Segmentability according to Assumption 6.4 does not hold, it is not possi-
ble to determine the switch. The �owchart of the algorithm implementing the introduced
identi�cation and segmentation method is given in Fig. 6.8.

11 A detailed proof of this property is given in Section 6.3.1.
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𝑖 ≤ 𝑛𝑞? 𝑠(𝑖)* ∈ ∑︀(𝑗)
∃∃ ? Add 𝑠(𝑖)* to 𝒮𝑐𝑜𝑛,𝑘

𝒮𝑐𝑜𝑛,𝑘 = ∅?

Switch
𝑘𝜏,𝑗+1 = 𝑘 detected

Store
𝒮𝑐𝑜𝑛,𝑘−1

for segment 𝑗

Reinitialization

𝑗 = 0
𝑗 ← 𝑗 + 1, 𝑘 = 𝑘𝑠𝑡𝑎𝑟𝑡 − 1
𝑘 ← 𝑘 + 1, 𝑖 = 0
𝑖← 𝑖 + 1

no

yes

yes yes

no

no

𝑖-loop
𝑘-loop
𝑗-loop

Figure 6.8: Flowchart of the identi�cation and segmentation algorithm

The inner loop (’𝑖-loop’) depicted in the �ow chart compares all 𝑛𝑞 = |𝒮*𝑑 | nominal subsys-
tems 𝑠(𝑖)* ∈ 𝒮*𝑑 , with the current segment. If there is a consistent nominal subsystem, it is
added to the set of consistent subsystems 𝒮𝑐𝑜𝑛. The next loop (’𝑘-loop’) is running as long as
the set of consistent subsystems 𝒮𝑐𝑜𝑛,𝑘 is non-empty. If this is the case, the current segment
can be explained by at least one nominal subsystem. Therefore the segment is extended by
one time step.
This new segment is again veri�ed by the 𝑖-loop. If the set of consistent subsystems is empty,
i.e. 𝒮𝑐𝑜𝑛 = ∅, none of the nominal subsystems is able to explain the current segment. How-
ever, the measurement was veri�ed in the previous step. Therefore a detected switch12 is
recognized at 𝑘𝜏,𝑗+1 = 𝑘 and the active subsystems for the segment 𝑗 are given by 𝒮𝑐𝑜𝑛,𝑘−1.
Note that due to Assumption 6.3 only one subsystem is allowed to explain an entire segment
of the measurement data. This leads to

⃒⃒⃒
𝒮𝑐𝑜𝑛,�̂�𝜏′,𝑗

⃒⃒⃒
!
= 1.

However, multiple consistent subsystems |𝒮𝑐𝑜𝑛,𝑘| ≥ 1 are possible for partial segments
𝑘 ∈ {𝑘𝜏,𝑗 + 1, 𝑘𝜏,𝑗 + 2, . . . , 𝑘𝜏 ′,𝑗 − 1}.
Detecting a switch and determining the state of the �nished segment ends the 𝑘-loop of the
algorithm in Fig. 6.8. The measurement values belonging to the just �nished segment are
removed from the considered measurement data.
12 The �rst switch of a system is de�ned to be 𝑘𝜏,1 = 1, according to Def. 6.7�.
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All counters and intermediate values are reinitialized and the next iteration of the outer loop
(’𝑗-loop’) starts for the following segment.

In order to achieve the hybrid veri�cation result, the discrete and dynamic results are com-
bined according to Section 6.1.3. An application of the procedure is given in Example 6.3.

Example 6.3:
Assume the same setting as introduced in Example 6.1 except that there are neither a mapped
state signal nor any information about the switches.
The �rst iteration of the 𝑗-loop of the identi�cation and segmentation algorithm (Fig. 6.8) is
depicted in the �rst subplot of Fig. 6.9.

Both subsystems are considered for veri�cation in each step of the 𝑘-loop. It is possible to
verify subsystem 𝑠(1)* for 𝑘 ∈ {2, 3, 4, 5}. The �rst result can again be calculated for 𝑘 = 2
and the �rst switch is recognized at 𝑘𝜏,2 = 6. This is the �rst time both dynamic subsystems
show inconsistency, i.e. 𝒮𝑐𝑜𝑛,6 = ∅.
Note that the algorithm will break the 𝑘-loop at 𝑘 = 6. However this was not done in Fig. 6.9
to show that the veri�cation results stay infeasible for all regarded segments in the remaining
measurement time.
In the reinitialization step, the detected �rst segment is deleted from the measurement data.
This is depicted as shaded area in sub�gure 2 and 3 of Fig. 6.9. The second iteration of the
𝑗-loop veri�es subsystem 𝑠(2)* for 𝑘 ∈ {7, 8, 9} and detects the next switch at 𝑘𝜏,3 = 10.
Subsystem 𝑠(1)* is evaluated to be infeasible for the whole available measurement. Again the
infeasible result for both subsystems are given until the end of the measurement in contrary
to the genuine break of the 𝑘-loop.
The third segment shows consistency with subsystem 𝑠(1)* for 𝑘 ∈ {11, 12, 13, 14, 15}which
leads to 𝑘𝜏 ′,3 = 𝑇 . This is feasible with respect to Def. 6.7�. The subsystem 𝑠(2)* is evaluated
to be infeasible for segment 3.
The results can be used to set up the matched state signal

𝑄 = [1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1] (6.66)

which corresponds again with the ground truth given in (6.40). The successful mapping for
all time steps implies continuous consistency as there is an unambiguous nominal subsystem
mapped to each time step.
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The nominal state machine 𝑍* of Example 6.1 is used here as well. Due to 𝑄 = 𝑄𝑚𝑒𝑎𝑠,
all values needed for the veri�cation of the discrete part are the same as in Example 6.1.
This leads to full discrete consistency between the unsegmented measurement data and the
speci�cation.
Finally, full hybrid consistency can also be concluded for this setting. This shows a successful
veri�cation of a hybrid system only based on interval type measurements of the input-output
data and the nominal system 𝑆*

𝐻,𝑑.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Initial Verification Result 𝑠(1)*

𝑠(2)*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
infeasible

feasible
Verification Result Segment 3

Figure 6.9: Veri�cation result for each segment (without segmentation)
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6.3.1 Convergence of the Identi�cation and Segmentation Algorithm

To show convergence of the identi�cation and segmentation algorithm it is possible to extract
more information about the switches from the measurement data by adding a backward iter-
ation. As a basic property of the identi�cation and segmentation algorithm the true switches
are always overestimated and never underestimated. This can be shown by considering ex-
treme values of the additive noise 𝜖 as follows:

Noise tending to zero (𝜖→ 0) When the noise tends to zero, the interval enclosure nec-
essary to bound the noise tends to zero, too. Prop. 4.1 has thus to be ful�lled for each
line of the regressor matrix individually without any deviations. If there is at least
one measurement point added to the regressor matrix that is generated by a di�erent
and Prager-Oettli-Distinguishable subsystem, the data is not consistent anymore. The
switch can thus be detected at the �rst time step of the new interval, i.e. at the true
switch with 𝑘𝜏,𝑗 = 𝑘𝜏,𝑗 .

Noise tending to infinity (𝜖→∞) When the noise tends to in�nity, the enclosing interval
width also tends to in�nity to contain the noisy data. Therefore the regressor matrix
provides as well in�nite possible entries to ful�ll Prop. 4.1 which leads to consistency
for any measurement data. Hence it is ensured that for the detected switch holds 𝑘𝜏,𝑗 ≥
𝑘𝜏,𝑗 .

Note that 𝜖 → ∞ will also lead to the violation of Prager-Oettli-Segmentability given in
Assumption 6.4, as well as the violation of the full rank Assumption 3.1. In practice it is thus
important to ensure a suitable 𝜖 such that all assumptions of distinguishability, segmentability
and the rank are met.
It is not possible to determine the precise amount of time 𝑘𝑜𝑣𝑒𝑟 = 𝑘𝜏,𝑗 − 𝑘𝜏,𝑗 the switch
will be overestimated. Nevertheless there will be a gradient from instantaneous detection
𝑘𝑜𝑣𝑒𝑟 = 0 in the case of 𝜖→ 0 and the maximum overestimation in the case of 𝜖→∞.

To determine the switch more precisely, the detection algorithm can be extended with an an-
tichronological iteration. The end time of the last segment is thereby given as the time of the
last measurement 𝑘𝜏 ′,𝑛𝑠𝑤𝑖𝑡𝑐ℎ

= 𝑇 by de�nition. The regressor matrix is set up such that it in-
cludes the values from a variable time 𝑘𝑠𝑡𝑎𝑟𝑡 up to the �nal time 𝑇 . If the dynamic consistency
of Prop. 4.1 is ful�lled for all measurement values

[︁
⟨u𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=𝑘𝑠𝑡𝑎𝑟𝑡

⟨y𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=𝑘𝑠𝑡𝑎𝑟𝑡

]︁
, the

segment is extended backwards in time by reducing 𝑘𝑠𝑡𝑎𝑟𝑡 ← 𝑘𝑠𝑡𝑎𝑟𝑡 − 1. If the segment
extends over a switch, i.e. 𝑘𝑠𝑡𝑎𝑟𝑡 < 𝑘𝜏,𝑗 , data from two distinct subsystems is included in the
regressor matrix. The detection of this switch is dependent on the same assumptions as in
forward direction, namely Prager-Oettli-Distinguishability and Prager-Oettli-Segmentability.
The switches detected backwards in time show the same behavior of overestimation as the
switches detected in the forward iteration.

The initial switch is guaranteed to be correct, as it is given by the �rst measurement data point
by de�nition. The results of the backward and forward iteration will occur chronologically
alternating, see Fig. 6.10. The time between the switch detection in backward direction and
the switch detection in forward direction is guaranteed to frame the true switching time.
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The true switching time is thus overapproximated as well in forward direction 𝑘𝜏,𝑗,𝑓 as in
backward direction 𝑘𝜏,𝑗,𝑏, leading to a switch segment

𝑘𝜏,𝑗 ∈ [𝑘𝜏,𝑗,𝑏, 𝑘𝜏,𝑗,𝑓 ]. (6.67)

The measurement data between the switch segments, i.e. for the time steps

𝑘 ∈ [𝑘𝜏,𝑗,𝑓 , 𝑘𝜏,𝑗+1,𝑏] (6.68)

belong to a so called trust segment. The trust segment is guaranteed to contain only mea-
surement data generated by a single subsystem. Veri�cation results calculated based on trust
segments are not disturbed by measurement data generated by other dynamic systems. The
results of the algorithm converge to the true values for a suitable setting of the enclosed noise
𝜖 and the enclosing interval width 𝛿.

𝑘

𝑘𝜏,1 = 1 𝑘𝜏 ′,3 = 𝑇

Switch segment 1

𝑘𝜏,2

𝑘𝜏,2,𝑏 𝑘𝜏,2,𝑓

Switch segment 2

𝑘𝜏,3

𝑘𝜏,3,𝑏 𝑘𝜏,3,𝑓

Trust segment 1 Trust segment 2 Trust segment 3

Figure 6.10: Example of the alternating occurrence of trust and switch segments

6.4 Conclusion

The concept of veri�cation of dynamic systems based on Kaucher interval arithmetic intro-
duced in Chapter 4 was extended to hybrid systems in this chapter. Therefore a hybrid model
consisting of a discrete time, value continuous, dynamic system and a discrete event state ma-
chine were formally introduced. The behavior of the dynamic part is given by parameters
that are determined by the discrete event states. As long as there is only one discrete state
active, the dynamic veri�cation can be done as in the nonhybrid case. If the active state
changes, the procedure has to be adapted. Each segment of measurement data generated by
a single active subsystem can be veri�ed individually.

The problem becomes more complex, if it is necessary to determine the segments and the
active subsystems within the segments. Three di�erent approaches to solve this problem
were introduced.

In a �rst step, the state signal was measured and the given states were assumed to be mapped
with the speci�cation. In a second step, only the switching times were known and it was nec-
essary to determine the respective active states. Conditions of Prager-Oettli-
Distinguishability on the speci�cation and the mappability of the measurement data were
introduced that ensure the theoretical possibility of determining this information.
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In a third step, there was no information at all about the switches and the active states.
Therefore an algorithm was developed that is able to determine both, switches and states, in
an iterative identi�cation and segmentation procedure. If the introduced property of Prager-
Oettli-Segmentability holds, this procedure can be applied successfully.

The veri�cation of the discrete event part can be done in the same way for all three settings.
The trace given by the mapped state signal is used to set up the measured state machine
which can be compared easily with the de�ned state machine. Therefore the set of states and
the transition function are compared with the nominal values given in the speci�cation.

This approach was partially developed in [Hen15] and published in [Sch17a]. Also it was ap-
plied to the practical example of a battery management system [Lem15] and a hybrid braking
system [Glü17] and it was presented in [Sch16][Sch18a][Sch19].



7 Extended Kaucher Based Guaranteed
Veri�cation

This chapter introduces several extensions to the Kaucher based veri�cation framework de-
veloped in the previous chapters. Therefore the point of view is changed from �nding “at
least one” consistent parameter to calculating the “largest possible set” of parameters within
the united solution set. This is bene�cial as the calculation of the exact solution set is an 𝑁𝑃 -
Hard problem as stated in Section 3.1.3. This chapter introduces a method that combines the
Kaucher based method with optimization techniques to calculate the maximum inner approx-
imation of the feasible set.
This approximation is done using di�erent shapes given by the combination of the objective
function and the constraints. Three di�erent shapes are presented and analyzed. The basic
approach uses orthogonal enclosure leading to classic interval type borders.
In a second step, this approach is extended to zonotopic sets to exploit speci�c properties
of the measurement data. It is widely known in the interval community that using zono-
topic sets avoid large underapproximations that arise from axis parallel orthogonal enclosure
[Jau01][Asa06][Pui06][Alt08][Ing09][Mai16][Roe16][Wan17]. Finally all restrictions on the
shape of the resulting set are dropped and a general polytope is accepted as result. Although
this is the most general shape and yields the largest inner enclosures, it is impossible to de-
scribe the result in terms of interval values, thus limiting the usability of this approach.
The last section of the chapter introduces an alternative application of the Kaucher based
veri�cation method in an online setting. Therefore the veri�cation procedure is extended
to allow an iteratively increasing measurement set. It is thus necessary to provide repeated
approximations of the solution set as well as repeated verdicts to evaluate the consistency.
This resembles the situation of an ongoing diagnosis process of a running application.
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7.1 Solution Set Approximations

Instead of solving the problem whether a particular (nominal) parameter vector is part of
the united solution set, the question is now to �nd the (whole) feasible set given by the
measurement data. Therefore the constraints 𝑐ℳ of the feasibility problem given by the
measurement data - as de�ned in Def. 5.6 - are regarded.13 The feasible set is based only on
the measurement data and thus no information about the consistency of the VO is included.
The feasible set is de�ned as:

De�nition 7.1 (Feasible Set)
The feasible set ℱ is given by

ℱ =
{︁

Θ ∈ R𝑛*
𝑎+𝑛*

𝑐 : 𝑐
(𝑖)
ℳ (Θ) ≤ 0, ∀𝑖 ∈ {1, 2, . . . , 2 (𝑇 −max (𝑛*

𝑎, 𝑛
*
𝑐))}

}︁
, (7.1)

i.e. the set of all parameters Θ that ful�ll the constraints given by the measurement data as
de�ned in Def. 5.6.

Note that the genuine feasible set here is given according to Def. 5.6 which represents the
united solution set

∑︀
∃∃. The feasible set is thus not necessarily connected and not necessar-

ily constrained by borders parallel to the axis (see Section 3.1.2).

The feasible set can also be de�ned by a set of vertexes:

De�nition 7.2 (Vertex Based Feasible Set)
The feasible set ℱ is constrained by the convex hull (see [Bro08, p. 663]), given by the set of
vertexes 𝒱 =

{︀
𝑉0, 𝑉1, . . . , 𝑉|𝒱|−1

}︀
:

ℱ (𝒱) =

⎧⎨⎩Θ ∈ R𝑛*
𝑎+𝑛*

𝑐 : Θ =

|𝒱|−1∑︁
𝑖=0

𝛼𝑖𝑉𝑖

⃒⃒⃒⃒
⃒⃒ (∀𝑖 : 𝛼𝑖 ≥ 0) ∧

|𝒱|−1∑︁
𝑖=0

𝛼𝑖 = 1

⎫⎬⎭ . (7.2)

With this de�nition it is possible to transfer the setting into an optimization problem based
on the vertexes of the convex hull. The shape of the resulting approximation of the feasible
set ℱ becomes a design parameter that is re�ected by the objective function and the con-
straints. The solution of the optimization is thus not necessarily of the same shape as the
genuine feasible set.
The approximation of the feasible set can be done in di�erent ways. This thesis uses three dif-
ferent approaches: hyperrectangular approximation, zonotopic approximation and polytopic
approximation. All three approaches are introduced in the next sections.

13 The constraints of the nominal set 𝑐𝒩 de�ned in Def. 5.5 are not necessary for the calculation of the feasible
set.
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7.1.1 Hyperrectangular Solution Set Approximation

In the hyperrectangular case, the objective function is set up such that the optimization yields
the largest hyperrectangle area within the united solution set. This shape represents an in-
terval type result, constrained parallel to the coordinate axis.
The solution set is determined using an optimization setting as given in Prop. 7.1.

Proposition 7.1 (Optimization Based Hyperrectangular Solution Set)
The hyperrectangular approximation of the feasible set ℱ2 is given by the set of vertexes
𝒱2. The set of vertexes 𝒱2 is calculated based on the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠]
given for the discrete sampling points 𝑘 ∈ {1, 2, . . . , 𝑇} of a VO. It is de�ned as the solution
of the optimization problem

𝒱2 = argmax
Θ

(𝐽2 (Θ)) (7.3)

with the objective function

𝐽2 (Θ) =

𝑛*
𝑎+𝑛*

𝑐∏︁
𝑖=1

(︁
𝜃
(𝑖) − 𝜃(𝑖)

)︁
(7.4)

that is subject to the constraints

𝑐
(𝑖)
𝒫 (Θ) := 𝜃(𝑖) − 𝜃

(𝑖) ≤ 0 (7.5)

𝑐ℳ(Θ) ≤ 0 (7.6)

for 𝑖 = {1, 2, . . . , 𝑛*
𝑎 + 𝑛*

𝑐}. Thereby 𝑐𝒫 constrains the solution to be proper and 𝑐ℳ is
given by the measurement data according to Def. 5.6.

Proof:
The result of the optimization problem (7.3) is given by the set of vertexes 𝒱2 that de�nes
the hyperrectangular approximation ℱ2. The hyperrectangular approximation is proper in
all dimensions due to (7.5). The united solution set is given by the measurement data and
consists of all parameters that ful�ll (7.6) according to Def. 5.6. As the optimization problem
(7.3) is constrained by (7.6), all elements of the resulting set of vertexes are part of the united
solution set

∑︀
∃∃ and thus

ℱ2 = ℱ (𝒱2) ⊆ ℱ =
∑︀

∃∃ . (7.7)



96 7 Extended Kaucher Based Guaranteed Veri�cation

In general, an 𝑛-dimensional parameter space leads to |𝒱2| = 2𝑛 di�erent vertexes that
determine the solution set. In the hyperrectangular case, the set of vertexes 𝒱2 is directly
given by the interval type parameter vector as illustrated in Example 7.1.

Example 7.1:
For an 𝑛 = 2 dimensional interval type parameter vector

Θ =
[︁
𝜃(1), 𝜃(2)

]︁𝑇
(7.8)

the resulting rectangle is given by the set of |𝒱2| = 2𝑛 = 4 vertexes:

𝒱2 =
{︁[︁

𝜃(1), 𝜃(2)
]︁
,
[︁
𝜃
(1)

, 𝜃(2)
]︁
,
[︁
𝜃
(1)

, 𝜃
(2)
]︁
,
[︁
𝜃(1), 𝜃

(2)
]︁}︁

. (7.9)

Without the constraint set 𝑐𝒫 given in (7.5), the setting can lead to improper solutions. These
solutions cannot be interpreted and therefore are useless with respect to a real system. This is
due to the fact that there is no width de�ned for improper intervals. Nevertheless, the objec-
tive function is de�ned on in�mum and supremum of the intervals and can thus be evaluated
even for improper intervals. In case of an even number of parameters being improper, the
area multiplication in (7.4) yields a positive value. This value can be increased to in�nity
in the “improper direction” leading to impossible results. Such improper solutions are not
suitable for the veri�cation setting, as the measurement was obtained from a real system,
with real generating parameters. An illustration of the rectangular inner enclosure is given
in Example 7.2.

Example 7.2:
Assume the united solution of the measurement data to be given as the blue shape in Fig. 7.1.
The solution is in general not unique because there might be other possible solutions of the
same size. Two possible area maximal inner enclosures are given by the green rectangles.
Note that this example is showing the basic concept of the enclosure and thus the denoted
values are chosen arbitrary.
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United Solution Set of the Measurement Data
Hyperrectangular Approximation

Figure 7.1: Area maximal axis parallel hyperrectangular inner approximation of the united solution set
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7.1.2 Zonotopic Solution Set Approximation

In this approach, the united solution set is constrained by a set of hyperstripes in the pa-
rameter space, generated by the measurement data. The orientation of these hyperstripes
is similar for consistent measurement data. This leads to a united solution set showing a
zonotopic shape which is depicted as the shaded area in Fig. 7.2.

The formal description of the hyperstripes is done based on [Ble11] such that each line of the
regressor matrix de�nes a set of feasible parameters ℱ (𝑘). Thereby ℱ (𝑘) denotes the feasible
set at the speci�c time step 𝑘. The feasible hyperstripes are given by

ℱ (𝑘) = {Θ ∈ R𝑛*
𝑎+𝑛*

𝑐 : −𝛿𝑎 ≤ 𝐵𝑚𝑒𝑎𝑠,𝑘 −𝐴𝑚𝑒𝑎𝑠,𝑘Θ ≤ 𝛿𝑎} (7.10)

with 𝛿𝑎 being the width of the interval enclosure, i.e. the maximum absolute sensor fault.
The hyperstripe can be written in normalized form as

ℱ (𝑘) =

{︂
Θ ∈ R𝑛*

𝑎+𝑛*
𝑐 :

⃒⃒⃒⃒
𝐵𝑚𝑒𝑎𝑠,𝑘

𝛿𝑎
− 𝐴𝑚𝑒𝑎𝑠,𝑘

𝛿𝑎
Θ

⃒⃒⃒⃒
≤ 1

}︂
. (7.11)
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Figure 7.2: Constraints showing the general zonotopic shape (shaded area) of the united solution set in the case of
two parameters

The feasible set ℱ𝑘 that includes all measurement information up to time step 𝑘, can be
determined recursively by intersecting the hyperstripes ℱ (𝑘):

ℱ𝑘 = ℱ𝑘−1 ∩ ℱ (𝑘). (7.12)

Therefore the resulting feasible set for all available measurement data is given by ℱ𝑇 . The
approximation of this set can be done by a zonotopic set with a very good �t. De�nition 7.3
describes such a general zonotopic set 𝒵 as given in [Ble11].
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De�nition 7.3 (Zonotopic Set)
A zonotopic set 𝒵 is constrained by the convex hull of the set of vertexes
𝒱◇ =

{︀
𝑉0, 𝑉1, . . . , 𝑉|𝒱◇|−1

}︀
. The calculation of the vertexes is done by

𝒱◇ = 𝑃 0 ⊕𝐻0𝐾𝑉 =
{︀
𝑃 0 + 𝐻0𝑧 : 𝑧 ∈𝐾𝑉

}︀
(7.13)

with the center of the zonotope 𝑃 0 ∈ R(𝑛*
𝑎+𝑛*

𝑐×1), the radius matrix 𝐻0 ∈ R(𝑛*
𝑎+𝑛*

𝑐×𝑉 )

and a unitary box 𝐾𝑉 composed of an arbitrary number of 𝑉 unitary interval vectors
𝐾 = [−1, 1].

The ⊕-operator denotes the Minkowski-Sum [Ber08, p. 291] that is used to calculate the
vertexes of the zonotope. This means that the center 𝑃 0 is added to the given unitary vectors
(i.e. corners) that are scaled by the respective radius value. The adaption to the zonotopic
approximation of the feasible set is done in Def. 7.2, leading to the notationℱ◇. The respective
optimization problem is set up such that a zonotopic approximationℱ◇ of the united solution∑︀

∃∃ is achieved.

Proposition 7.2 (Optimization Based Zonotopic Solution Set)
The zonotopic approximation of the feasible set ℱ◇ is given by the set of vertexes 𝒱◇. The
set of vertexes 𝒱◇ is calculated based on the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] given for
the discrete sampling points 𝑘 ∈ {1, 2, . . . , 𝑇} of a VO. It can be computed based on the
optimal scaling parameter

𝛼◇ = argmax
𝛼

(𝐽◇ (𝛼)) , (7.14)

the initial center 𝑃 0 and the radius matrix𝐻0 given by the outer enclosure of the measure-
ment data. The vertexes of the zonotope 𝒱◇ are calculated by

𝒱◇ = 𝑃 0 ⊕ 𝛼◇𝐻0𝐾𝑉 =
{︀
𝑃 0 + 𝛼◇𝐻0𝑧 : 𝑧 ∈𝐾𝑉

}︀
. (7.15)

The optimization problem consists of the objective function

𝐽◇ (𝛼) = 𝛼 (7.16)

that is subject to the constraints

𝑐ℳ(𝒱◇) ≤ 0 (7.17)

given by the measurement data according to Def. 5.6.
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Proof:
The result of the optimization problem (7.14) is given by the set of vertexes 𝒱◇ that de�nes
the zonotopic approximation ℱ◇. The zonotopic approximation is proper in all dimensions
as it is based on an initial outer approximation calculated using classic interval arithmetic
and subsequently scaled using a point real parameter. The united solution set is given by the
measurement data and consists of all parameters that ful�ll (7.17) according to Def. 5.6. As
the optimization problem (7.14) is constrained by (7.17), all elements of the resulting set of
vertexes are part of the united solution set

∑︀
∃∃ and thus

ℱ◇ = ℱ (𝒱◇) ⊆ ℱ =
∑︀

∃∃ . (7.18)

This method has its roots in [Ble11] and [Sch17c] and was developed in [Sch18b]. The initial
parameters of the optimization are given by the center 𝑃 0 and the radius matrix 𝐻0 which
are determined by calculating the outer enclosure as in [Ble11], given in (7.10)-(7.12) extended
to Kaucher arithmetic notation.
The initial zonotope to calculate this outer enclosure needs to be chosen suitably. One pos-
sibility is to use the nominal region Θ* = [Θ*

𝑐 −Θ*
Δ, Θ*

𝑐 + Θ*
Δ] expressed as 𝑃 0 = Θ*

𝑐 and
𝐻0 = 𝐼Θ*

Δ. It is also possible to calculate the point real central solution Θ𝑐 using the center
matrizes 𝐴𝑚𝑒𝑎𝑠,𝑐 and 𝐵𝑚𝑒𝑎𝑠,𝑐. The initial zonotope is then given by 𝑃 0 = Θ𝑐 and 𝐻0 = 𝐼𝜖
with an arbitrary small value 𝜖 > 0.

Each measurement interval is iteratively interpreted as a hyperstripe containing the possible
parameters. The intersection between the hyperstripe and the zonotope is calculated and the
common region is used to calculate the new radius matrix. This procedure leads to a zono-
topic outer enclosure of the feasible parameter set. Due to the repeated calculation of outer
enclosures, the area of the zonotope might grow with the considered measurement data.
Starting from the �nal outer enclosure that frames the intersection of all available measure-
ment data, the scaling factor 𝛼 is minimized until all vertexes of the zonotope are part of the
united solution. This can be checked using Prop. 4.1.
The center point of the zonotope is not moved by the shrinking procedure. The idea of maxi-
mum possible parameter variability within the zonotope is realized by the objective function
(7.16) that maximizes the scaling factor 𝛼.
Additional assumptions on the optimization problem are:

• The interval solution has to be bounded to one orthant.

• All values of the input signal need to have the same sign, either all positive or all
negative.

The �rst assumption is due to the fact that intervals containing zero can be interpreted erro-
neously as inverse elements and thus cancel the in�uence of some parameters. The second
assumption is necessary to prevent increasing intervals that may arise even when Kaucher
interval arithmetic is used.
A sketch of a zonotopic inner approximation is given in Example 7.3.
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Example 7.3:
Assume the united solution of the measurement data to be given as the blue shape in Fig. 7.3.
The center of the zonotope is depicted by the green circle. It is given by the center of the outer
enclosure that is used as initial zonotope. The algorithm does not change the center, leading
to the area maximal inner enclosure given by the green zonotope.
Note that there might be solutions of equal or larger size possible for a di�erent zonotope
center. However the choice of an optimal center is not included in the current version of the
algorithm. The denoted values are chosen arbitrary in this example.
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Figure 7.3: Exemplary area maximal zonotopic approximation of the united solution set

7.1.3 Polytopic Solution Set Approximation

The most general enclosure is given by the shape of a convex polytope. However in this case
the solution is represented by a list of points instead of a mathematical description such as
intervals (in the hyperrectangular case) or center and radius matrix (in the zonotopic case).
The only conditions on a valid polytopic enclosure consists of the requirement that points of
the list are part of the united solution set

∑︀
∃∃ according to Prop. 4.1 and that the resulting

polytope is convex. The computational e�ort of the polytopic approximation is in the same
order of magnitude as the computational e�ort of the hyperrectangular approximation. The
respective solution of the optimization problem is given in proposition Prop. 7.3.
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Proposition 7.3 (Optimization Based Polytopic Solution Set)
The polytopic approximation of the feasible set ℱD is given by the set of vertexes 𝒱D. The
set of vertexes 𝒱D is calculated based on the measurement data [U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] given for
the discrete sampling points 𝑘 ∈ {1, 2, . . . , 𝑇} of a VO.
It is de�ned as the solution of the optimization problem

𝒱D = argmax
ΘD

(𝐽D (ΘD)) (7.19)

with the objective function

𝐽D (ΘD) = area (ΘD) . (7.20)

The function area (·) calculates the hypervolume of a polytope given by a list of points ΘD.
All points of the list, i.e. vertexes of the set ℱD, are subject to the constraints

𝑐ℳ(ΘD) ≤ 0 (7.21)

with 𝑐ℳ given by the measurement data according to Def. 5.6.

Proof:
The result of the optimization problem (7.19) is given by the set of vertexes 𝒱D that de�nes
the polytopic approximation ℱD. The polytopic approximation is proper in all dimensions
as it is the convex hull of 𝒱D. The united solution set is given by the measurement data and
consists of all parameters that ful�ll (7.21) according to Def. 5.6. As the optimization prob-
lem (7.19) is constrained by (7.21), all elements of the resulting set of vertexes are part of the
united solution set

∑︀
∃∃ and thus

ℱD = ℱ (𝒱D) ⊆ ℱ =
∑︀

∃∃ . (7.22)

The choice of the vertexes of the initial list is of minor importance. Possible choices are the
vertexes of the nominal set, the vertexes of a zonotopic outer enclosure or the vertexes given
by the central solution disturbed by a small parameter 𝜖 > 0.
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Example 7.4:
Assume the united solution of the measurement data to be given as the blue shape in Fig. 7.4.
A possible inner enclosure is given by the green polytope.
Note that this solution is not unique. There might be other possible solutions of the same size.
Again, this example is showing the basic concept of the enclosure and thus the denoted values
are chosen arbitrary.
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Figure 7.4: Exemplary polytopic inner approximation of the united solution set

7.2 Kaucher Based Diagnosis

The consistency for interval type systems was introduced in Chapter 5. Prop. 5.4 focuses on
basic consistency and includes the main result that forms the foundation of the considera-
tions in this chapter. All other assumptions and de�nitions are assumed to be ful�lled and
applicable as well.
In case the calculation of the veri�cation method can be fast enough with respect to the re-
garded dynamic system, the method can be applied in an online setting to tackle the diagno-
sis problem. In the resulting diagnosis setting, the interpretation of the problem includes the
temporary feasible set ℱ𝑘 that is approximated using one of the three approximation shapes
introduced in Section 7.1. The intersection between the temporary feasible set ℱ𝑘 and the
nominal set 𝒩 forms an inner enclosure of the consistent set for the whole measurement
time according to Sec. 5.2.
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Proposition 7.4 (Approximation Based Basic Consistency)
The input-output behavior given by all available interval type enclosures of 𝑇 measurement
values

[U𝑚𝑒𝑎𝑠, Y𝑚𝑒𝑎𝑠] =
[︁
⟨u𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1 , ⟨y𝑚𝑒𝑎𝑠,𝑘⟩𝑇𝑘=1

]︁
(7.23)

is basic consistent with the nominal system speci�ed by an interval type speci�cation

𝑆*
𝑖 = {Θ*, 𝑛*

𝑎, 𝑛
*
𝑐 , 𝑈

*
𝑖𝑛𝑖𝑡, 𝑌

*
𝑖𝑛𝑖𝑡} , (7.24)

if the intersection between nominal set 𝒩 and temporary feasible set ℱ𝑘 is nonempty, i.e.

𝒩 ∩ ℱ𝑘 ̸= ∅. (7.25)

Proof:
The nominal set𝒩 consists of all parameters within the speci�cation Θ*. Basic consistency
according to Prop. 5.4 is given, if there is at least one parameter Θ ∈ Θ* within the speci�ed
parameter set that is able to explain the measurement data.
According to Def. 7.1, all parameters of the feasible set ℱ𝑘 are able to explain the measure-
ment data for 𝑘 ∈ {1, 2, . . . , 𝑇}.
The intersection between the nominal set𝒩 and the feasible setℱ𝑘 contains parameters that
are both, part of the nominal set and part of the feasible set. If this intersection is nonempty,
there is at least one parameter that is consistent according to Prop. 4.1.

It is in general not possible that the method yields full consistency in the diagnosis setting.
However, the approximation methods described in the previous section can be used to verify
dynamic systems given by an interval type speci�cation 𝑆*

𝑖 .14

In the diagnosis setting, an approximation of the feasible set is used to calculate an inner en-
closure of the consistent set. The veri�cation result is guaranteed in the sense of this thesis as
it is based on Kaucher arithmetic. The de�nition of consistency uses the united solution set
as given in Def. 3.1. The choice of vertex points used during the veri�cation is done based on
the introduced optimization procedure hence ensuring an e�ective coverage of the feasible
area given by the measurement data. The shape of the calculated solution is determined di-
rectly by the setup of the objective function and the additional constraints. Furthermore, the
calculated inner approximation aims at �nding an area maximal representation of the united
solution set in terms of the de�ned approximation shape. Thus the feasible set represents the
maximum possible parameter variability in the given setting that is guaranteed to be able to
explain the measurement data.

14 This method is also applicable to a point real speci�cation. Nevertheless a point real speci�cation can be veri�ed
directly by Prop. 4.1 and does not need the optimization based extensions in order to approximate the feasible
set.
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It is assumed that the diagnosis algorithm is running in parallel with the VO. The diagnosis
system is supplied with a new measurement value in each sampling cycle which is used to
calculate a temporary result. This leads to the diagnosis algorithm as given in Fig. 7.5.

Initialization of
the Iterative
Algorithm

Get Nominal
Set 𝒩 from
Specification

Calculate Ap-
proximation of
Feasible Set ℱ𝑘

Intersect Approxi-
mation of Feasible

Set ℱ𝑘 with
Nominal Set 𝒩

𝒩 ∩ ℱ𝑘 = ∅
Measurement is
basic consistent

with Specification

Measurement
might be in-

consistent with
Specification

𝑘 = 1
𝑘 ← 𝑘 + 1

no yes

Figure 7.5: Diagnosis algorithm

A VO that is basic consistent for all measurement data at the �nal time 𝑇 , considering all
measurement data with 𝑘 < 𝑇 according to Prop. 7.4, is assumed to be also basic consistent
for 𝑇 < 𝑇 .
If the algorithm yields basic consistency between the measurement data and the speci�ca-
tion, the verdict is guaranteed to be correct. Therefore there are no hidden faults i.e. no type
II errors possible.
If the algorithm yields inconsistency, the verdict might be erroneous, i.e. showing a false
alarm. This is due to the used inner approximation of the feasible set which does not neces-
sarily cover all feasible parameters.

Three exemplary settings and the resulting solution sets are depicted in Fig. 7.6. The black
lines depict the constraints given by the measurement data that frame the united solution.
The nominal parameters are given by the black dashed rectangle.



7.2 Kaucher Based Diagnosis 105

Zonotopic Approximation

Rectangular Approximation

Polytopic Approximation

Figure 7.6: Exemplary results for the three di�erent approximation shapes

The �rst plot shows an inner approximation using an rectangular shape. It can be seen that
the location and shape of the rectangle is not unique and that other rectangles of the same size
might be possible within the united solution. The second picture shows the approximation
by a zonotope. The general �t of the zonotope is better as it can follow the contour of the
constraints to some extent. The third �gure shows the approximation by a polytope. This
setting shows the best �t, even though the resulting shape is given by a list of four points
instead of an algebraic description. All three examples show an intersection between the
nominal set and the approximation of the united solution set, given by the shaded areas. The
regarded example setting thus shows a situation with guaranteed basic consistency between
measurement and speci�cation.



106 7 Extended Kaucher Based Guaranteed Veri�cation

7.2.1 The Center Misplacement E�ect

The zonotopic approximation leads to the best tradeo� between accuracy and ease of de-
scription. This shape is chosen for the further explanations of the diagnosis approach. As
already mentioned, false alarms are possible for all regarded shapes due to the usage of inner
approximation of the feasible set.
In the special case of a zonotopic approximation, false alarms can also result from the so
called Center MisPlacement E�ect (CMP). CMP denotes the e�ect of disregarding feasible
results due to a bad center and shape of the zonotope.
An exemplary situation showing a CMP e�ect is given in Fig. 7.7.
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Figure 7.7: Center misplacement e�ect

The blue lines depict the constraints given by the measurement data. The center of the zono-
tope is given by the green circle within the green zonotope. Center and shape of the zonotope
were calculated from an outer approximation of the solution set as in [Ble11]. Afterwards
the scaling parameter 𝛼 was adapted such that all vertexes of the zonotope are within the
united solution of the problem, given by the shaded area. Temporary feasible vertexes of the
zonotope that were checked during this optimization procedure are given by green crosses.15

Due to the location of the center and the shape of the zonotope, the scaling factor 𝛼 needs to
be very small to ensure that the vertexes 𝑉2 and 𝑉3 stay within the united solution set.
The resulting zonotope does not intersect with the nominal set, from which the lower right
corner is depicted by the dashed black square in the left of the �gure.
Even though the �nal vertex is rejected there are consistent intermediate vertexes (green
crosses within the nominal set) that are rejected because the respective temporary zonotope
was rejected as not all vertexes were part of the united solution for this value of the scaling
parameter 𝛼.

Certain measures can be taken to avoid CMP. The most straight forward is to move the center
of the zonotope or to change its shape. However, in general it is not trivial to chose a suitable
change in center and shape algorithmically.

15 Temporary vertexes of the zonotope that were checked during the optimization procedure and found to be
infeasible are marked as red circles.
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As the method is also designed for higher dimensions and should work as automatically
and autonomously as possible, it is neither possible nor suitable to visualize the setting and
request a human operator to adapt the center or the shape.
An algorithmic workaround is given by the use of intermediate vertexes that are checked
during the optimization. The optimization can be stopped as soon as there is at least one
feasible intermediate vertex detected, i.e. if a green cross is evaluated. Nevertheless this will
lead to point-wise results instead of a feasible set of a given shape. An e�ective way to avoid
CMP is provided by the enclosure of the nominal set in the constraints of the optimization
problem. However, this will also pose higher restrictions on the feasible set.

7.3 Conclusion

This chapter introduced extensions to the Kaucher based veri�cation method developed in
the previous chapters.
The �rst extension is given by calculating the largest inner approximation of the united so-
lution set. This was done using an optimization setting. The precise setup of the objec-
tive function and the constraints determines the resulting shape of the so called feasible set.
The feasible set was approximated using three di�erent geometric shapes (hyperrectangle,
zonotope, polytope). The resulting set is an inner approximation of the united solution set,
meaning that there are several equivalent approximations within the united solution set.

The second extension is given by the application of the veri�cation method in a diagnosis
setting. The diagnosis algorithm was introduced in an iterative setting, calculating temporary
results for each sampling cycle. Due to the inner approximation used, the results can show a
false alarm. A vivid cause of a false alarm is given by the center misplacement e�ect, that can
occur in case of a zonotopic approximation. The applicability of the Kaucher based diagnosis
method depends on the speci�c settings of the regarded system. Therefore it is necessary to
evaluate each system individually before applying Kaucher based diagnosis.
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This chapter presents the application of the developed methods to tank systems with a vary-
ing number of tanks and an adjustable set of connections. The settings are analyzed in sim-
ulation and practice.
Tank systems form a class of wide spread theoretic control applications. The basic setting is
usually given by one or more tanks with a nominal out�ow and a controllable in�ow. The goal
is to adjust or maintain a nominal height of the �uid in a tank. The process can be disturbed
by additional leakages or in�ows or by congestions in the in- or out�ow pipes. Depending
on the speci�c setup, cross �ows between tanks are possible. Those cross �ows are in gen-
eral dependent on the current �lling level of the concerned tanks. All measurement data is
obtained using a real three-tank process available at the Institute of Control Systems (IRS) at
the Karlsruhe Institute of Technology (KIT). A picture of the lab setting is shown in Fig. 8.1.
The algorithmic calculations are done on a Lenovo ThinkPad T460s powered by
an Intel® Core™ i7-6600 CPU using 12GB main memory. The implementation was
done in Matlab© 2012b.

Figure 8.1: Three-tank process lab setting at the Institute of Control Systems (IRS)
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The following subsections set up the dynamic models and introduce the properties and pos-
sibilities of the di�erent scenarios. First the methods of Chapter 5 “Guaranteed Veri�cation
of Interval Type Systems” are applied to real measurement data obtained from a single-tank
process.
Second, the application is extended to a two-tank setting showing hybrid behavior. A mapped
state signal is used to demonstrate the basic functionality of the method developed in Chap-
ter 6 “Guaranteed Veri�cation of Hybrid Systems”. The results are discussed and interpreted.
Third, the diagnosis method developed in Chapter 7 “Extended Kaucher Based Guaranteed
Veri�cation” is applied to simulation data of a four-tank process. Three di�erent fault types
are used to demonstrate the fault detection properties of the Kaucher based method. Several
fault intensities demonstrate the possibility of the method to detect even very small faults.
Finally the diagnosis method is applied to real measurement data provided by a single-tank
process. It is shown that all of the regarded faults can be detected successfully using the
introduced methods.

8.1 Application: Guaranteed Veri�cation for Interval
Type Systems (Single-Tank)

The basic setting is given by a single-tank process which is sketched in Fig. 8.2.

ℎ2

Tank 2

Leakage outflow valve

Leakage outflow

Lower connection valve 𝑣32𝑙

Lower connection flow

Nominal outflow valve 𝑣𝑜𝑢𝑡2

Nominal outflow 𝑓𝑙𝑜2

Pump 2 𝑣2

Inflow 𝑓𝑙𝑖2

Figure 8.2: Sketch of the single-tank

It is possible to set up a single-tank system consisting only of tank 2 by closing the respective
valves in the three-tank lab system.16 All valves in the system are binary valves which are
only open or closed. The height ℎ2 of tank 2 is measured, as well as the �ow 𝑣2 of pump 2.

16 Note that the number of the tanks in the lab setting is (from left to right) 1 - 3 - 2.



8.1 Application: Guaranteed Veri�cation for Interval Type Systems (Single-Tank) 111

The out�ow of each tank is governed by the formula of Torricelli [Tip00, p. 360] which leads
to the nonlinear time continuous dynamic of a single-tank

dℎ2(𝑡)

d𝑡 = − 1

𝐴2
𝑎2
√︀

2𝑔ℎ2(𝑡)⏟  ⏞  
out�ow

+
1

𝐴2
𝛾2𝑣2(𝑡).⏟  ⏞  

in�ow pump 2

(8.1)

with the out�ow pipe cross section 𝑎2, the tank cross section 𝐴2, the gravitational force 𝑔
and the constant 𝛾2 according to Appendix G, Tab. G.1. The following simpli�cations and
the resulting model equations are based on the considerations in [Ble11].

The model is discretized using the Euler method with sampling time ∆𝑡 leading to

ℎ2,𝑘 =ℎ2,𝑘−1 −
𝑎2
𝐴2

√︀
2𝑔ℎ2,𝑘−1∆𝑡 +

𝛾2
𝐴2

𝑣2,𝑘−1∆𝑡 + 𝑒2,𝑘 (8.2)

where 𝑒2,𝑘 is the additive disturbance including sensor and discretization faults. Equation
(8.2) is reformulated to the pseudo linear regressor form

𝜙𝑘𝜃𝑘 = 𝑦𝑘 (8.3)

with

𝜙𝑘 = ℎ2,𝑘−1 (8.4)

𝜃𝑘 = 1− 𝑎2
𝐴2

√︃
2𝑔

ℎ2,𝑘−1
∆𝑡 +

𝑒2,𝑘
ℎ2,𝑘−1

(8.5)

𝑦𝑘 = ℎ2,𝑘 −
𝛾2
𝐴2

𝑣2,𝑘−1∆𝑡. (8.6)

It can be seen that the parameter 𝜃𝑘 given in (8.5) is depending on the height ℎ2,𝑘−1 which
renders it time variant. The range of the time variant parameter can be interpreted as an
interval set that includes all possible parameter values as well as some spurious solutions.
The interval enclosure of the parameter is given by the bounding box of the time variant
parameter.

It is possible to calculate the interval enclosure of the time variant parameter 𝜃𝑘 for a spe-
ci�c nominal setting (𝑒2,𝑘 = 0). This setting consists of a given operation range ℎ2 ∈
[ℎ2,𝑚𝑖𝑛, ℎ2,𝑚𝑎𝑥] and a �xed sampling time ∆𝑡. The calculated parameter interval can then
be used as the nominal set in further considerations.

Based on the tank properties given in Appendix G, Tab. G.1 it is possible to set up the pa-
rameter range for a nominal and a faulty tank con�guration. To realize the faulty behavior
all available valves are opened. This means the leakage out�ow valve, the lower connec-
tion valves and the nominal out�ow valves. The resulting height dependent parameter 𝜃𝑘 is
depicted in Fig. 8.3 and can be used a priori to reason about detectability.



112 8 Application and Results
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Figure 8.3: Values of 𝜃𝑘 depending on ℎ2 for di�erent out�ow con�gurations

It can be seen that there is a gap between the nominal behavior (green line) and the faulty
behavior using all possible out�ows (red line). This leads to the hypothesis that it is possible
to separate the nominal behavior from the faulty tank con�guration using the method from
Chapter 5. Due to the upper valve position ℎ𝑣𝑢 = 30cm, the depicted values are valid in the
case of a closed upper connection valve 𝑣23𝑢 only. The nominal parameter 𝜃* = [0.93, 0.98]
is used for tank levels in the range ℎ2 ∈ [5, 30] cm.

The hypothesis is veri�ed using the following steps: First, a nominal description i.e. a speci�-
cation, of the system in the necessary ARX form is set up. Second, the system is implemented
i.e. the real tank is manufactured and used to collect measurement data. Third, a faulty ver-
sion of the system is implemented, i.e. unspeci�ed out�ows are added to the tank by opening
the respective valves.
The collected measurement data for ℎ2 is then enclosed by interval values

ℎ2,𝑘 =
[︀
ℎ2,𝑘(1− 𝛿𝑟ℎ2

), ℎ2,𝑘(1 + 𝛿𝑟ℎ2
)
]︀

(8.7)

and used to verify the correct system with respect to the nominal parameters. Finally, mea-
surement data from the faulty system is used to show that it is not possible to verify the faulty
behavior using the nominal parameters.
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The initial height is set to ℎ2,𝑚𝑖𝑛 = 5cm, the nominal out�ow valve 𝑣𝑜𝑢𝑡2 is open and pump 2
is constantly running, providing the maximal in�ow of 𝑣2 = 6.5l/m. The resulting nominal
setting is depicted in Fig. 8.4. It can be seen that it is possible to verify the measurement of the
fault free system supposing a relative fault of 𝛿𝑟ℎ2

= 0.02 for the measurement signal of the
height ℎ2. The basic consistency as introduced in Chapter 5 is used to calculate the results.
The calculation time for the algorithm is 𝑇𝑐𝑎𝑙𝑐 = 16.8s which is less than the duration of the
experiment 𝑇 = 60s.
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Figure 8.4: Implementation of the single-tank setting that is basic consistent with the speci�cation
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Now a faulty implementation of the tank system is considered. Therefore the faulty setting
is realized by opening the leakage out�ow, the lower connection and the nominal out�ow
valves which leads to a major change in the system dynamics.
The changed dynamics are not able to reach the nominal �nal height of ℎ2,60 = 29.1cm as the
maximum pump �ow cannot compensate the additional out�ow. The resulting measurement
data is depicted in Fig. 8.5. It is again analyzed using a relative fault of 𝛿𝑟ℎ2

= 0.02. Fig. 8.5
shows that it is not possible to verify the faulty implementation for 𝑘 ≥ 4. The necessary
calculation time is 𝑇𝑐𝑎𝑙𝑐 = 47.5s.
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Figure 8.5: Implementation of the single-tank setting that is inconsistent with the speci�cation due to additional
out�ows
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The change in the system dynamics has to be strong to prevent the veri�cation of the faulty
system. If there is only a slight change in the system dynamics, the faulty system is veri�ed
because the new behavior can be explained with the range of the nominal parameter set. This
is the case, if a faulty system is implemented consisting of other combinations of out�ows
and connection valves except the introduced setting.
When having a closer look on the tank parameters, this is rather intuitive. The connection
valves cross section 𝑎32𝑙 and 𝑎32𝑢 are the same as the nominal out�ow 𝑎2. The leakage 𝑎𝑙𝑒𝑎𝑘
is only slightly bigger that the nominal out�ow. Thus each individual valve leads to none,
respectively very slight variations with respect to the nominal behavior. Any combination of
two out�ows is also veri�ed using the original setting.

This concludes the �rst application example concerning the guaranteed veri�cation for in-
terval type systems as introduced in Chapter 5. It is clear that the results are depending on
the value of the used relative fault 𝛿𝑟ℎ2

. Increasing the fault increases the variety of enclosed
trajectories and can thus be interpreted as increasing the available system behavior. This
leads to a higher chance to achieve nominal behavior enclosed in the measurement data and
thus to verify the system.

8.2 Application: Guaranteed Veri�cation for Hybrid
Systems (Two-Tank)

The single-tank-system can be extended by adding another tank, connected via two horizon-
tal valves. There is no additional pump and thus no external in�ow to the new tank. However
the new tank has a nominal out�ow and it is possible to open and close the connection valves.
A schematic description is depicted in Fig. 8.6.
The dynamic of the main tank needs to be extended with the �ows induced by the new tank.
Those �ows depend on the height di�erences between the two levels, related to the static
height of the lower and upper valves ℎ32𝑙 and ℎ32𝑢:

∆2,3,𝑙,𝑘 = max(ℎ2,𝑘, ℎ32𝑙)−max(ℎ3,𝑘, ℎ32𝑙) (8.8)
∆2,3,𝑢,𝑘 = max(ℎ2,𝑘, ℎ32𝑢)−max(ℎ3,𝑘, ℎ32𝑢). (8.9)

The resulting model is again discretized using the Euler method with sampling time ∆𝑡

ℎ2,𝑘 = ℎ2,𝑘−1 −
1

𝐴2
𝑎2
√︀

2𝑔ℎ2,𝑘−1∆𝑡⏟  ⏞  
out�ow

− 1

𝐴2
sign(∆2,3,𝑙,𝑘−1)𝑎32𝑙

√︁
2𝑔|∆2,3,𝑙,𝑘−1|∆𝑡⏟  ⏞  

lower cross �ow tank 3

− 1

𝐴2
sign(∆2,3,𝑢,𝑘−1)𝑎32𝑢

√︁
2𝑔|∆2,3,𝑢,𝑘−1|∆𝑡⏟  ⏞  

upper cross �ow tank 3

+
1

𝐴2
𝛾2𝑣2,𝑘−1∆𝑡⏟  ⏞  
in�ow pump 2

+𝑒2,𝑘

(8.10)

with all values according to Appendix G, Tab. G.1.
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Figure 8.6: Schematic sketch of the two-tank experiment

The cross sections of both tanks are the same, i.e. 𝐴2 = 𝐴3, leading to symmetric height
changes induced by the cross �ow. The term 𝑒2,𝑘 is the additive disturbance including sensor
and discretization fault. The system description can again be transformed to the pseudo linear
regressor form (8.3) with

𝜙𝑘 = [ℎ2,𝑘−1, |∆2,3,𝑙,𝑘−1|, |∆2,3,𝑢,𝑘−1|] (8.11)

Θ𝑘 =
[︁
𝜃
(1)
𝑘 , 𝜃

(2)
𝑘 , 𝜃

(3)
𝑘

]︁𝑇
(8.12)

𝑦𝑘 = ℎ2,𝑘 −
𝛾2
𝐴2

𝑣2,𝑘−1∆𝑡. (8.13)

The elements of the parameter vector Θ𝑘 are given by

𝜃
(1)
𝑘 = 1− 𝑎2

𝐴2

√︃
2𝑔

ℎ2,𝑘−1
∆𝑡 + 𝑒′2,𝑘 (8.14)

𝜃
(2)
𝑘 = sign(∆2,3,𝑙,𝑘−1)

𝑎32𝑙
𝐴2

√︃
2𝑔

|∆2,3,𝑙,𝑘−1|
∆𝑡 + 𝑒′′2,𝑘 (8.15)

𝜃
(3)
𝑘 = sign(∆2,3,𝑢,𝑘−1)

𝑎32𝑢
𝐴2

√︃
2𝑔

|∆2,3,𝑢,𝑘−1|
∆𝑡 + 𝑒′′′2,𝑘 (8.16)

with unknown composition of the fault 𝑒2,𝑘 = 𝑒′2,𝑘/ℎ2,𝑘−1 + 𝑒′′2,𝑘/|Δ2,3,𝑙,𝑘−1| + 𝑒′′′2,𝑘/|Δ2,3,𝑢,𝑘−1|.
The parameters 𝜃(2)𝑘 and 𝜃

(3)
𝑘 given in (8.15) and (8.16) show singularities in case |∆2,3,𝑙,𝑘−1|

or |∆2,3,𝑢,𝑘−1| approach zero.
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Therefore the enclosing intervals 𝜃(2) and 𝜃(3) become very large when the operation range
[ℎ2,𝑚𝑖𝑛, ℎ2,𝑚𝑎𝑥] is including or close to the height of the valve ℎ32𝑢. It is thus necessary to
chose the operation range with a su�cient distance to ℎ32𝑢 to achieve meaningful parameter
intervals.

8.2.1 Measurement With Mapped State Signal

The �rst approach for the veri�cation of the resulting hybrid system was introduced in Sec-
tion 6.1 and used a so called “mapped state signal” according to De�nition 6.10.
This means that the exact switching times and the respective active subsystems are known
correctly. Therefore the hybrid veri�cation task is reduced to sequential veri�cation of the
subsystems present in the measurement data.
The general system behavior given in equation (8.10) is therefore transferred to a more spe-
ci�c setting. Tank 3 is assumed to be empty (ℎ3,1 = 0cm) with its nominal out�ow valve
open and the lower connection valve 𝑣32𝑙 closed. The upper connection valve 𝑣32𝑢 is open,
as well as the nominal out�ow valve of tank 2.
The resulting hybrid scenario consists of two states: State 1 is active if ℎ2,𝑘 ≤ ℎ32𝑢, i.e.
the upper connection valve does not in�uence the system dynamics. State 2 is active for
ℎ2,𝑘 > ℎ32𝑢, i.e. an additional out�ow is given through the upper connection valve.

The hybrid scenario is described as follows:
In state 1, starting at ℎ2,1 = 5cm, pump 2 is used to �ll tank 2. The nominal behavior of tank
2 is identical with the single-tank behavior described in Section 8.1.
State 2 is reached, when ℎ2 rises above the height of the upper connection valve, i.e.
ℎ2,𝑘 > ℎ32𝑢 = 30cm. Thus the system dynamic changes due to the additional cross �ow
from tank 2 to tank 3 through the connection valve.

The resulting dynamic of state 2 is given by

ℎ2,𝑘 = ℎ2,𝑘−1 −
1

𝐴2

⎛⎜⎜⎝𝑎2
√︀

2𝑔ℎ2,𝑘−1∆𝑡⏟  ⏞  
nominal out�ow

+ 𝑎32𝑢

√︁
2𝑔|ℎ2,𝑘−1 − ℎ32𝑢|∆𝑡⏟  ⏞  

upper cross �ow to tank 3

− 𝛾2𝑣2,𝑘−1∆𝑡⏟  ⏞  
in�ow by pump 2

+𝑒2,𝑘

⎞⎟⎟⎠ .

(8.17)

In state 2 the level of tank 2 is always higher than the upper connection valve i.e.
ℎ2,𝑘−1 ≥ ℎ32𝑢. Therefore the absolute value operator | · | on (ℎ2,𝑘−1−ℎ32𝑢) can be dropped
and the singularity present in (8.16) is avoided.
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The upper cross �ow to tank 3, given in (8.17) can thus be reformulated:

𝑎32𝑢

√︁
2𝑔(ℎ2,𝑘−1 − ℎ32𝑢)∆𝑡 (8.18)

= 𝑎32𝑢(ℎ2,𝑘−1 − ℎ32𝑢)

√︃
2𝑔

(ℎ2,𝑘−1 − ℎ32𝑢)
∆𝑡 (8.19)

= 𝑎32𝑢ℎ2,𝑘−1

√︃
2𝑔

(ℎ2,𝑘−1 − ℎ32𝑢)
∆𝑡− 𝑎32𝑢ℎ32𝑢

√︃
2𝑔

(ℎ2,𝑘−1 − ℎ32𝑢)
∆𝑡 (8.20)

= ℎ2,𝑘−1

(︃
𝑎32𝑢

√︃
2𝑔

(ℎ2,𝑘−1 − ℎ32𝑢)
∆𝑡− 𝑎32𝑢ℎ32𝑢

√︃
2𝑔

ℎ2
2,𝑘−1(ℎ2,𝑘−1 − ℎ32𝑢)

∆𝑡

)︃
(8.21)

Finally, the model for state 2 is given in in pseudo linear regressor form (8.3) with

𝜙𝑘 = ℎ2,𝑘−1 (8.22)

𝜃𝑘 = 1− 𝑎2
𝐴2

√︃
2𝑔

ℎ2,𝑘−1
∆𝑡 − 𝑎32𝑢

𝐴2

√︃
2𝑔

(ℎ2,𝑘−1 − ℎ32𝑢)
∆𝑡

+
𝑎32𝑢
𝐴2

ℎ32𝑢

√︃
2𝑔

ℎ2
2,𝑘−1(ℎ2,𝑘−1 − ℎ32𝑢)

∆𝑡 +
𝑒2,𝑘

ℎ2,𝑘−1
(8.23)

𝑦𝑘 = ℎ2,𝑘 −
𝛾2
𝐴2

𝑣2,𝑘−1∆𝑡. (8.24)

The nominal parameter 𝜃𝑘 can again be determined depending on the level ℎ2,𝑘−1 for di�er-
ent out�ow con�gurations. The resulting parameter ranges are depicted in Fig. 8.7. and are
used to determine the nominal values of the system parameters.
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Figure 8.7: Values of 𝜃𝑘 depending on ℎ2 for di�erent out�ow con�gurations at state 1 (left) and state 2 (right)
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State 1 is assigned with the same values as in Section 8.1 i.e.

𝜃(1)* = [0.93, 0.98] . (8.25)

In state 2, i.e. starting from ℎ2,𝑘−1 = 30cm, the time variant parameter for nominal out�ow
only can be enclosed by the interval

𝜃(2)* = [0.965, 0.974] . (8.26)

The nominal parameters are now used to verify the hybrid setting. Again the collected mea-
surement data of the height ℎ2 is enclosed by interval values

ℎ2,𝑘 =
[︀
ℎ2,𝑘(1− 𝛿𝑟ℎ2

), ℎ2,𝑘(1 + 𝛿𝑟ℎ2
)
]︀

(8.27)

with 𝛿𝑟ℎ2
= 0.15.

The upper part of Fig. 8.8 shows a hybrid test run, starting with tank 3 being empty and the
level of tank 2 being at ℎ2,1 = 5cm. The level of tank 2 is increased using pump 2 and thus
crosses the valve height ℎ32𝑢 at 𝑘 = 64 seconds. The tank dynamics are changed by the
crossing as the upper connection valve now acts as an additional out�ow of tank 2.
The veri�cation results are depicted in the lower part of Fig. 8.8. State 1 can be veri�ed as
long as the level in tank 2 is below the connection valve, i.e. ℎ2,𝑘 ≤ ℎ32𝑢. Afterwards, state 2
is veri�ed until the end of the measurement sequence.

Note that in this case it is not necessary to perform cross validation, i.e. applying the param-
eters of state 2 to measurement from state 1 and vice versa. This is due to the fact that the
real switching time and the respective active state are given by the mapped state signal.
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Figure 8.8: Veri�cation result in the hybrid case for state 1 and state 2 with a mapped state signal
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8.2.2 Measurement Without Mapped State Signal

The introduced setting is now generalized by omitting the mapped state signal, still assuming
known switching times. This means that it is still known there is a state change at 𝑘 = 64 in
the scenario, but now it is unknown whether the system switches from state 1 to state 2 or
vice versa. Therefore all segments have to be analyzed twice, using the nominal parameters
of both states. This cross veri�cation is used to determine the active state of the respective
subsystem.
To ensure successful cross validation, Prager-Oettli-Distinguishability as given in Assump-
tion 6.2 has to be ful�lled. Therefore the nominal parameters of state 1 and state 2 are in-
vestigated. It is obvious that the nominal parameters of state 2 are a subset of the nominal
parameters of state 1, as

𝜃*(1) = [0.93, 0.98] ⊃ [0.965, 0.974] = 𝜃*(2) (8.28)

which leads to the existence of a common parameter

𝜃*
𝑐𝑜𝑚 = 𝜃*(1) ∩ 𝜃*(2) = [0.965, 0.974] . (8.29)

Therefore all parameters that are within the set of common parameters 𝜃*
𝑐𝑜𝑚 are consistent

with both states by de�nition.
It is hence not possible to distinguish the states as Prager-Oettli-Distinguishability is not
ful�lled in the current setting. Since this property is the main preliminary of hybrid veri�ca-
tion without mapped state signal it is formally impossible to demonstrate the viability of the
method using this setting.

The performance of the algorithm in case of ful�lled Prager-Oettli-Distinguishability was
demonstrated in Example 6.2. Furthermore it was shown that it is possible to segment and
verify the measurement data even without information about the switches if Prager-Oettli-
Segmentability holds. The respective setting and the results are given in Example 6.3.
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8.3 Simulation: Diagnosis By Kaucher Based Guaranteed
Veri�cation (Four-Tank)
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𝑣𝑖𝑛2𝑣𝑖𝑛1

Figure 8.9: Schematic view of the used four-tank system

The regarded setting is now changed to a slightly di�erent four-tank setup. The four-tank
process is an established benchmark in literature and was proposed by [Joh00]. Here it is
used to apply the diagnosis method introduced in Chapter 7. This application was published
and presented in [Sch18b].
The four-tank setting is depicted in Fig. 8.9. For symmetry reasons the setting can be reduced
to tank 1 and tank 3.
The dynamic of tank 1 is chosen to be the objective of the veri�cation. The heights ℎ1 and ℎ3

of both tanks are measured, as well as the on/o� signal 𝑣1 of pump 1. The �ow of pump 1 is
split by the input valve 𝑣𝑖𝑛1 leading to 𝑣𝑖𝑛1 = 0.7 of the �ow going to tank 1 and (1− 𝑣𝑖𝑛1)
of the �ow going to tank 4. The �ows from pump 1 as well as from tank 3 are considered as
inputs. The respective equations are similar to (8.2), now taking into account an additional
in�ow depending on ℎ3.

All simpli�cations and the resulting model equations are based on the considerations of
[Ble11].
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Discretization using Euler Method and sampling time ∆𝑡 leads to

ℎ1,𝑘 =ℎ1,𝑘−1 −
𝑎1
𝐴1

𝑎1
√︀

2𝑔ℎ1,𝑘−1∆𝑡⏟  ⏞  
out�ow

+
1

𝐴3
𝑎3
√︀

2𝑔ℎ3,𝑘−1∆𝑡⏟  ⏞  
in�ow from tank 3

+
1

𝐴1
𝑣𝑖𝑛1𝛾1𝑣1,𝑘−1∆𝑡⏟  ⏞  

in�ow by pump 1

+𝑒1,𝑘

(8.30)

with parameters according to Appendix G, Tab. G.2. The additive disturbance 𝑒1,𝑘 includes
sensor and discretization faults.
The pseudo linear regressor form (8.3) is now given by

𝑦𝑘 = ℎ1,𝑘 −
𝑣𝑖𝑛1𝛾1
𝐴1

𝑣1,𝑘−1∆𝑡 (8.31)

𝜙𝑘 = [ℎ1,𝑘−1 ℎ3,𝑘−1] (8.32)

Θ𝑘 =
[︁
𝜃
(1)
𝑘 𝜃

(2)
𝑘

]︁𝑇
(8.33)

with the time variant parameters

𝜃
(1)
𝑘 = 1− 𝑎1

𝐴1

√︃
2𝑔

ℎ1,𝑘−1
∆𝑡 (8.34)

𝜃
(2)
𝑘 =

𝑎3
𝐴3

√︃
2𝑔

ℎ3,𝑘−1
∆𝑡. (8.35)

It is assumed that the operation range of the tank system is ℎ1,𝑘 ∈ [2, 10.5] cm and
ℎ3,𝑘 ∈ [1, 15] cm which leads to 𝜃(1)* = [0.921, 0.965] and 𝜃(2)* = [0.029, 0.112].
The resulting midpoint radius expressions of the parameters are 𝜃(1)*𝑐 = 0.943, 𝜃(1)*Δ = 0.022

and 𝜃
(2)*
𝑐 = 0.0705, 𝜃(2)*Δ = 0.0415.

The optimization based diagnosis approach using a zonotopic approximation is chosen in this
example. Therefore the measurement data and the nominal parameter set are used to set up
the constraints of the optimization problem.
The nominal feasible parameter box Θ* is used to build the initial zonotope with:

𝑃 0 =
[︁
𝜃
(1)*
𝑐 𝜃

(2)*
𝑐

]︁𝑇
(8.36)

𝐻0 =

[︃
𝜃
(1)*
Δ 0

0 𝜃
(2)*
Δ

]︃
. (8.37)

Afterwards the outer enclosure of the intersection between initial zonotope and measurement
data is calculated using (7.10)-(7.12). The resulting zonotope is used as starting point 𝑃 0

0 , 𝐻0
0

of the optimization problem. The solution of the optimization problem is thus a zonotopic
approximation of the united solution set given by 𝒵 . All parameter vectors included in the
optimal solution set 𝒵 are solutions of the ILES (3.46). If the intersection of the speci�cation
and measurement is nonempty, the algorithm calculates a feasible set in this area. The results
and limitations of the approach are demonstrated in the following, using several di�erent
settings.
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8.3.1 Fault Free Setting

First a fault free scenario is given as depicted in Fig. 8.10. The scenario includes parts with
pump on and o� and thus shows a variety of di�erent water level dynamics both in tank 1
and tank 3. The measurement data of ℎ1 and ℎ3 are enclosed using intervals with radius
𝛿𝑎ℎ1

= 𝛿𝑎ℎ3
= 0.05cm leading to the interval values

ℎ1,𝑘 =
[︀
ℎ1,𝑘 − 𝛿𝑎ℎ1

, ℎ1,𝑘 + 𝛿𝑎ℎ1

]︀
(8.38)

ℎ3,𝑘 =
[︀
ℎ3,𝑘 − 𝛿𝑎ℎ3

, ℎ3,𝑘 + 𝛿𝑎ℎ3

]︀
. (8.39)

The results of the optimization based zonotopic method are given in subplot 4 of Fig. 8.10.
The algorithm calculated a feasible set of parameters for the time segments [1, 𝑘𝑒𝑛𝑑] with
𝑘𝑒𝑛𝑑 ∈ [[1, 1297] , [1572, 2000]]. However, time segments starting in the beginning and
ending in 𝑘𝑒𝑛𝑑 ∈ [1298, 1571] are not veri�ed. Therefore there is temporarily no consistency
according to Prop. 7.4 given in this segment. This is due to the CMP e�ect as introduced in
Section 7.2.1.
A detailed view on the relevant time instants is given in Fig. 8.11 which displays the change
of the result from consistent to inconsistent and back.

The constraints given by the measurement data are depicted by the blue lines in Fig. 8.11, the
nominal set by the shaded area and the zonotopic approximation of the united solution set is
shown as the green zonotope.
At 𝑘 = 1297, the measurement data is proven to be basic consistent with the speci�cation as
there is a nonempty intersection between nominal set and the approximation of the united
solution set (orange part of the zonotope in Fig. 8.11, sub�gure 1).
At 𝑘 = 1298, the veri�cation result is inconsistent for the �rst time. However, there is still
a feasible region within the nominal parameter set, shown by the green crosses that depict
vertexes ful�lling Prop. 4.1 (Fig. 8.11, sub�gure 2). Those points were used by the algorithm
while calculating a suitable factor 𝛼. However there is no intersection between the �nal
green zonotope and the shaded nominal region. This behavior re�ects exactly the de�nition
of the CMP e�ect introduced in Section 7.2.1. The CMP e�ect is observable until 𝑘 = 1571,
(Fig. 8.11, sub�gure 3).
Starting from 𝑘 = 1572, additional constraints given by new measurement data are taken
into account. Therefore, the center and shape of the outer enclosure is changed. This results
in a zonotopic approximation of the united solution set that provides a nonempty intersection
with the nominal set again (Fig. 8.11, sub�gure 4), leading to a successful veri�cation.
As those later results are calculated based on all measurement data, including the possibly
inconsistent times 𝑘 ∈ [1298, 1571], the results showing the CMP e�ect are corrected and
the veri�cation result for 𝑘 > 1571 can be generalized for all 𝑘 ∈ [1, 2000].
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The method is applied iteratively to calculate an individual veri�cation result for each time
step 𝑘. The calculations are done o�ine and the necessary calculation time for the complete
data set is 𝑇𝑐𝑎𝑙𝑐 = 703.8s < 2000s = 𝑇 .
Regarding the calculation time of each measurement time step shows that 𝑇𝑐𝑎𝑙𝑐,𝑘 < 1s which
means that the method might in general be real time capable. However, the algorithm is based
on an optimization procedure with non-deterministic runtime. Therefore special measures
need to be taken to ensure deterministic runtime of each step. For an initial estimate the
average runtime of the optimization algorithm is used by regarding the total runtime of the
method throughout this chapter.

8.3.2 Additive Faults

There are several phenomena that can lead to an additive fault of an sensor. A possible
sensor fault is called “freeze”, when the sensor will return a �xed constant value. Another
common sensor fault is “o�set”, which means that the sensor will add a constant bias to the
true measurement value. A third additive sensor property is the speci�c sensor noise. Noise
is not regarded as an e�ect to be detected here. However it is crucial to know the sensor noise
precisely to choose the bound of the interval enclosure correctly.

Given the correct faultless but noisy sensor data 𝑠𝑘 , a freeze fault of value 𝑓𝑓 , occurring at
time 𝑘𝑒𝑟𝑟 , can be expressed as follows:

𝑠𝑓,𝑘 =

{︃
𝑠𝑘 ∀𝑘 ∈ [1, 𝑘𝑒𝑟𝑟 − 1]

𝑓𝑓 ∀𝑘 ∈ [𝑘𝑒𝑟𝑟, 𝑇 ] .
(8.40)

The measurement values of ℎ1 and ℎ3 are enclosed using 𝛿𝑎ℎ1
= 𝛿𝑎ℎ3

= 0.05cm. The case of
a freeze fault of 𝑓𝑓 = 6.0cm on measurement ℎ1 at 𝑘𝑒𝑟𝑟 = 650 is depicted in Fig. 8.12. It can
be seen that the detection time is equal to the fault time 𝑘𝑑𝑒𝑡 = 650 = 𝑘𝑒𝑟𝑟 which means
that the freeze fault is detected instantaneously.
The results for several di�erent freeze fault amplitudes on ℎ1 and the respective fault detec-
tion times 𝑘𝑑𝑒𝑡 are given in Tab. 8.1. All detected faults were checked in detail to identify
settings showing the CMP e�ect.
In case of 𝑓𝑓 = 6.2cm a CMP condition occurred. This is due to the fact that the used
freeze fault intensity is enclosed in the 𝛿𝑎ℎ1

= 0.05cm interval around the real value of
ℎ1,650 = 6.22cm. Thus at 𝑘 = 651 the freeze fault case is really close to the correct value
of ℎ1,650+1, meaning that there is a feasible parameter mapping ℎ1,𝑘 = 6.2 to ℎ1,𝑘+1 = 6.2.
Subsequent points do not provide additional information, as the sensor value is �xed by the
freeze fault. The only additional information is provided by the pump signal 𝑣1. The varying
pump signal leads to a movement of the center of the outer enclosing zonotope. At 𝑘𝑑𝑒𝑡 = 684
the center of the zonotope is moved to a position that generates a CMP e�ect that is erro-
neously interpreted as an inconsistency.
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Figure 8.12: Veri�cation results for freeze fault of 𝑓𝑓 = 6.0cm at 𝑘𝑒𝑟𝑟 = 650
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All calculation times for freeze faults given in Table 8.1 are less than the time of the measure-
ment signal 𝑇𝑐𝑎𝑙𝑐 < 2000s = 𝑇 .

Table 8.1: Di�erent fault amplitudes and resulting detection times for freeze fault

Fault 𝑓𝑓 Time step of Quality Calculation Time
in cm Fault 𝑘𝑒𝑟𝑟 Detection 𝑘𝑑𝑒𝑡 𝑇𝑐𝑎𝑙𝑐 in s

7.0 650 650 no CMP 1181.0
6.5 650 650 no CMP 1200.9
6.2 650 684 CMP occurred 743.4
6.0 650 650 no CMP 1461.7

The second regarded malfunction is an o�set fault. In this case the sensor value is not �xed,
but a speci�c value is added to each measurement:

𝑠𝑜,𝑘 =

{︃
𝑠𝑘 ∀𝑘 ∈ [1, 𝑘𝑒𝑟𝑟 − 1]

𝑠𝑘 + 𝑓𝑜 ∀𝑘 ∈ [𝑘𝑒𝑟𝑟, 𝑇 ] .
(8.41)

Again the measurement values of ℎ1 and ℎ3 are enclosed using 𝛿𝑎ℎ1
= 𝛿𝑎ℎ3

= 0.05cm. The
results for an o�set fault of 𝑓𝑜 = 0.7cm on sensor ℎ1 are depicted in Fig. 8.13. Again the
veri�cation result changes to infeasible right at the moment the fault gets e�ective i.e., at
𝑘𝑑𝑒𝑡 = 650 = 𝑘𝑒𝑟𝑟 .
Further results for di�erent fault amplitudes are given in Table 8.2. Instantaneous detection is
possible up to a fault amplitude of 𝑓𝑜 = 0.15cm. Note that the measurement noise is enclosed
using 𝛿𝑎ℎ1

= 𝛿𝑎ℎ3
= 0.05cm which leads to an interval width of 2𝛿𝑎ℎ1

= 0.1cm. This is very
close to the fault amplitude 𝑓𝑜 = 0.15cm. When using 𝑓𝑜 = 0.1cm - which is exactly the
interval width - the CMP e�ect occurs. The necessary calculation time is less than the signal
duration for all regarded o�set fault intensities.

Table 8.2: Di�erent fault amplitudes and resulting detection times for o�set fault

Fault 𝑓𝑜 Time step of Quality Calculation Time
in cm Fault 𝑘𝑒𝑟𝑟 Detection 𝑘𝑑𝑒𝑡 𝑇𝑐𝑎𝑙𝑐 in s

0.70 650 650 no CMP 1367.9
0.30 650 650 no CMP 1475.0
0.20 650 650 no CMP 1361.5
0.15 650 650 no CMP 1210.0
0.10 650 650 CMP occurred 1036.8
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Figure 8.13: Veri�cation results for o�set fault of 𝑓𝑜 = 0.7cm at 𝑘𝑒𝑟𝑟 = 650
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8.3.3 Multiplicative Faults

Multiplicative faults can be related to faults in system components i.e. a congested or leaking
pipe or decreasing pump performance. Such a multiplicative fault 𝑓𝜃 directly in�uences the
system parameter:

𝜃𝑒𝑟𝑟,𝑘 =

{︃
𝜃𝑘 ∀𝑘 ∈ [1, 𝑘𝑒𝑟𝑟 − 1]

𝜃𝑘 + 𝑓𝜃 ∀𝑘 ∈ [𝑘𝑒𝑟𝑟, 𝑇 ] .
(8.42)

A maximum absolute deviation of 𝛿𝑎ℎ1
= 𝛿𝑎ℎ3

= 0.05cm is used to enclose the measurement
values of ℎ1 and ℎ3. An exemplary setting for 𝑓𝜃(1) = 0.035 at 𝑘𝑒𝑟𝑟 = 1200 is depicted in
Fig. 8.14, further results are given in Tab. 8.3.
It can be seen, that the faulty parameter in�uences the value of ℎ1. This change in system
dynamic is recognized by the veri�cation method at 𝑘𝑑𝑒𝑡 = 1200 = 𝑘𝑒𝑟𝑟 .
All detected inconsistencies were checked in detail. Reliable results are possible up to
𝑓𝜃1 = 0.010. This is a very small value with respect to the nominal parameter variability
𝜃
(1)
Δ = 0.025 which shows the new method is very sensitive.

The condition 𝑇𝑐𝑎𝑙𝑐 < 2000s = 𝑇 holds for all entries in Tab. 8.3.

Table 8.3: Di�erent fault amplitudes and resulting detection times for parameter fault

Fault 𝑓𝜃(1) Time step of Quality Calculation Time
Fault 𝑘𝑒𝑟𝑟 Detection 𝑘𝑑𝑒𝑡 𝑇𝑐𝑎𝑙𝑐 in s

0.035 1200 1200 no CMP 1036.6
0.022 1200 1215 no CMP 1123.9
0.020 1200 1227 no CMP 1166.7
0.010 1200 1572 no CMP 764.7
0.005 1200 1638 CMP occurred 746.7
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Figure 8.14: Veri�cation results for multiplicative fault of 𝑓𝜃(1) = 0.035 at 𝑘𝑒𝑟𝑟 = 1200
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8.4 Application: Diagnosis By Kaucher Based Guaranteed
Veri�cation (Single-Tank)

The diagnosis method is now applied to real measurement data instead of simulation data
as in the previous chapter. Therefore the IRS three-tank setting (introduced in Section 8.1)
is used, again reduced to the single-tank setup. The respective geometric parameters can be
taken from Appendix G, Tab. G.1.
The following scenario is regarded: The water level in tank 2 has an initial height of
ℎ2,1 = 24.48cm and is rising due to the input �ow from pump 2. Pump 2 is running at a
high load with varying intensity.
First, the fault free setting is evaluated to show that the method is able to verify the nominal
setting. Then the additive sensor faults “freeze” and “o�set” are applied to the measurement
data. Finally a scaling fault on the height measurement data is considered.

The results of di�erent fault intensities as well as the detection and calculation times are
given in several tables. Each result was evaluated carefully to determine CMP conditions.
The results were initially published and presented in [Sch18c].

8.4.1 Fault Free Setting

The regarded operation range is de�ned to be ℎ2 ∈ [24, 46] cm and used with (8.5) to obtain
the nominal range 𝜃* = [0.971, 0.979].
The result is calculated by using an interval width of 𝛿𝑎ℎ2

= 0.4cm to enclose the measure-
ment data of ℎ2. The pump measurement data is assumed to be noiseless and thus used as
point real value.
The fault free behavior is depicted in Fig. 8.15. It is veri�ed for the entire measurement time.
The necessary calculation time is 𝑇𝑐𝑎𝑙𝑐 = 34.4s < 120s = 𝑇 .
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Figure 8.15: Fault free measurement data of the single-tank diagnosis scenario
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8.4.2 Additive Faults

The �rst considered additive fault is given by a sensor freeze. The used mathematical model to
distort the fault free measurement data of ℎ2 is given by (8.40). The measurement is enclosed
using an absolute deviation of 𝛿𝑎ℎ2

= 0.4cm. The resulting system run for 𝑓𝑓 = 37.9cm on
the measurement of ℎ2 at 𝑘𝑒𝑟𝑟 = 60 is depicted in Fig. 8.16.
It can be seen that it is not possible to verify the measurement data as soon as the freeze
fault is active. The failure is detected at 𝑘𝑑𝑒𝑡 = 60 = 𝑘𝑒𝑟𝑟 , i.e. at the very �rst time the
measurement is distorted.
An evaluation of the performance of the method for several di�erent freeze fault intensities
𝑓𝑓 is listed in Tab. 8.4. It can be seen that it is possible to detect faults in a large range
from 𝑓𝑓 = 42.0cm to 𝑓𝑓 = 37.9cm. The lower value is very close to the correct value
ℎ2,𝑘𝑒𝑟𝑟 = 37.54cm.
All faults are detected directly at their �rst appearance, i.e. at 𝑘𝑑𝑒𝑡 = 60 = 𝑘𝑒𝑟𝑟 . All results
were checked carefully to ensure that there is no CMP e�ect present in the results.
All calculation times are less than the measurement time, i.e. 𝑇𝑐𝑎𝑙𝑐 < 120s = 𝑇 .

Table 8.4: Di�erent freeze fault amplitudes for 𝑠𝑘𝑒𝑟𝑟 = ℎ2,60 = 37.54cm

Fault 𝑓𝑓 Time step of Quality Calculation Time
in cm Fault 𝑘𝑒𝑟𝑟 Detection 𝑘𝑑𝑒𝑡 𝑇𝑐𝑎𝑙𝑐 in s

42.0 60 60 no CMP 99.6
39.0 60 60 no CMP 49.6
38.5 60 60 no CMP 50.2
38.0 60 60 no CMP 80.8
37.9 60 60 no CMP 31.0
37.7 60 not detected no CMP 24.9
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Figure 8.16: Measurement data with freeze fault 𝑓𝑓 = 37.9cm
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Second, an o�set fault setting is applied. Therefore a constant o�set 𝑓𝑜 is added to the faultless
measurement data of ℎ2, according to (8.41). Again, an absolute deviation of 𝛿𝑎ℎ2

= 0.4cm
is used to enclose the measurement. The performance of the method is shown exemplary in
Fig. 8.17 and Fig. 8.18.
The large o�set of 𝑓𝑜 = 5cm in Fig. 8.17 is rather obvious and could also be detected by an
expert. On the other hand, the very small o�set of 𝑓𝑜 = 0.35cm in Fig. 8.18 is very hard to
distinguish from the fault free measurement depicted in green.
Nevertheless the zonotopic method is able to detect it at the moment of its �rst appearance.
This is a very powerful property as the detected o�set of 𝑓𝑜 = 0.35cm is smaller than the
used interval radius of 𝛿𝑎ℎ2

= 0.4cm.
This performance is due to the dynamic between time instant 𝑘𝑒𝑟𝑟 − 1 and time instant 𝑘𝑒𝑟𝑟
that is created by the appearance of the o�set fault. This dynamic is detected instantaneously
as it is outside of the nominal parameter range.

Several results for di�erent o�set intensities are given in Tab. 8.5. The table shows that in-
stantaneous detection, i.e. 𝑘𝑑𝑒𝑡 = 𝑘𝑒𝑟𝑟 is possible within the range of 𝑓𝑜 = 0.35cm and
𝑓𝑜 = 5cm. No result shows the CMP e�ect which means that they are of good quality and
provide reliable results using a zonotopic approximation of the united solution set.
The calculation time of all results is also given in Tab. 8.5. It can be seen that the measure-
ment data can be processed in less than the genuine signal time, i.e. 𝑇𝑐𝑎𝑙𝑐 < 120s = 𝑇 holds
for all fault intensities.

Table 8.5: Di�erent o�set fault amplitudes for 𝑠𝑘𝑒𝑟𝑟 = ℎ2,60 = 37.54cm

Fault 𝑓𝑜 Time step of Quality Calculation Time
in cm Fault 𝑘𝑒𝑟𝑟 Detection 𝑘𝑑𝑒𝑡 𝑇𝑐𝑎𝑙𝑐 in s

5.00 60 60 no CMP 97.2
2.00 60 60 no CMP 92.0
1.00 60 60 no CMP 59.3
0.50 60 60 no CMP 60.1
0.35 60 60 no CMP 57.0
0.20 60 not detected no CMP 25.2
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Figure 8.17: Measurement data with o�set fault 𝑓𝑜 = 5cm
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Figure 8.18: Measurement data with o�set fault 𝑓𝑜 = 0.35cm
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8.4.3 Scaling Faults

In the diagnosis scenario discussed in this section so far, real measurement data from a single-
tank process is used. To realize multiplicative faults with the same measurement data, a
scaling fault in the corresponding sensor of ℎ2 is assumed. This leads to the following scaling
fault model

𝑠𝑠,𝑘 =

{︃
𝑠𝑘 ∀𝑘 ∈ [1, 𝑘𝑒𝑟𝑟 − 1]

𝑠𝑘 · 𝑓𝑠 ∀𝑘 ∈ [𝑘𝑒𝑟𝑟, 𝑇 ]
(8.43)

which replaces the former multiplicative fault (8.42). The absolute deviation to enclose the
measurement of ℎ2 remains 𝛿𝑎ℎ2

= 0.4cm. The results are depicted in Fig. 8.19 and Fig. 8.20
for 𝑓𝑠 = 0.95 and 𝑓𝑠 = 1.01 respectively.
It can be seen that even factors very close to one (e.g. 𝑓𝑠 = 1.01, meaning a deviation of 1%)
can be detected.

Results for an extensive range of factors are given in Tab. 8.6.
It is not possible to detect the fault intensity of 𝑓𝑠 = 0.97 as this parameter is very close to
the nominal parameter 𝜃* = [0.971, 0.979] representing the desired system dynamics. This
means there is a deviation of 0.1% between 𝑓𝑠 = 0.97 and 𝜃* = 0.971 which is one order of
magnitude less than for 𝑓𝑠 = 1.01.

All successfully detected faults lead to 𝑘𝑑𝑒𝑡 = 60 = 𝑘𝑒𝑟𝑟 , i.e. they are detected right at their
appearance. There was no CMP condition present in the regarded settings.
Again, it is possible to calculate the results for all fault amplitudes in less than the genuine
signal time, i.e. 𝑇𝑐𝑎𝑙𝑐 < 120s = 𝑇 .

Table 8.6: Di�erent scaling fault amplitudes for 𝑠𝑘𝑒𝑟𝑟 = ℎ2,60 = 37.54cm

Fault 𝑓𝑠 Time step of Quality Calculation Time
Fault 𝑘𝑒𝑟𝑟 Detection 𝑘𝑑𝑒𝑡 𝑇𝑐𝑎𝑙𝑐 in s

1.10 60 60 no CMP 77.7
1.05 60 60 no CMP 80.4
1.03 60 60 no CMP 77.3
1.01 60 60 no CMP 64.6
0.97 60 not detected no CMP 31.9
0.95 60 60 no CMP 108.8
0.90 60 60 no CMP 96.6
0.75 60 60 no CMP 75.2
0.50 60 60 no CMP 117.8
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Figure 8.19: Measurement data with scaling fault 𝑓𝑠 = 0.95
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Figure 8.20: Measurement data with scaling fault 𝑓𝑠 = 1.01
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8.5 Conclusion

The methods and theories developed throughout this thesis were applied and demonstrated
in this chapter.

First, simulation data of a single-tank process was used to show the performance of the ver-
i�cation method based on Kaucher arithmetic and zonotopic inner enclosures of the united
solution set.
This approach was extended to the hybrid setting given by a two-tank system. It was shown
that the introduced method is able to verify the correct system in case of known switching
times and known active subsystems.
The application to a four-tank process showed that it is not possible to verify the system in
various faulty settings even for very small fault amplitudes. This is a relevant indicator that
a fault is present in the system and can thus be used for fault detection. The performance of
the developed method was shown for three di�erent and common fault types, namely freeze
fault, o�set fault and multiplicative fault.
The same diagnosis algorithm was �nally applied to real measurement data provided again
by the single-tank process. It could be shown that the algorithm obtains valuable results by
detecting even very small faults from real world data.

The calculation time of all introduced examples was less than the genuine time of experi-
ment on a standard laptop. Therefore the application might in general be suitable for online
application in a diagnosis setting.





9 Conclusion

Modern engineering is able to develop and build complex and powerful systems to an un-
precedented extend. The functionality of these systems is rapidly increasing and masters
tasks that used to be subject to highly trained humans. The challenge how to build such sys-
tems is nearly completed. Still remaining is the question how to ensure correct functionality
of such powerful safety critical systems. Current safety analysis relies on sophisticated meth-
ods from the �eld of testing. Even though these methods are very mature, they are essentially
falsi�cation approaches meaning that there are type II errors by de�nition. However, in the
case of safety critical systems, it is necessary to ensure the absence of type II errors.
This thesis provides the foundations for a new speci�cation and veri�cation approach able
to provide the necessary type II error free results.

Therefore a new notion of set based consistency for dynamic systems with a given speci-
�cation is presented. Kaucher interval arithmetic is used to enclose the measurement data
in a bounded error sense. Thus, the speci�ed behavior of a dynamic system can be veri�ed
by measurement data even in the presence of noise and sensor uncertainty. Consistency is
de�ned using the Kaucher arithmetic united solution set which leads to mathematically guar-
anteed results. The verdicts calculated by the new Kaucher based method can not show type II
errors (hidden faults) by de�nition and are thus suitable to provide a reliable veri�cation of
safety critical systems.

It was proven mathematically that this holds for a wide class of systems, including time in-
variant, interval type and hybrid systems, which can be used to describe even nonlinearities.
The notion of consistency was extended to include the discrete event part of a hybrid system
and requirements on the connection of the two system classes were derived. Several exten-
sions were introduced, leading to a new iterative identi�cation and segmentation algorithm
for hybrid systems which is able to handle even unknown switching times. In case the calcu-
lations can be done fast enough, the developed approach can also be used for the diagnosis
of dynamic systems. Requirements on sampling time and hardware performance have to be
determined for each speci�c setting individually.

The presented methods were successfully applied to several example systems, consisting of
a variation of di�erent tank settings. The results were shown, interpreted and discussed.

The results provide the base to answer the research question that governed this thesis. The
new theories, methods and algorithms developed in this thesis form the foundation for reli-
able safety analysis of highly automated safety critical systems. The results of this thesis can
be used to solve the arising problems of current powerful and interconnected systems that
are increasingly interleaving our daily live.





A Analysis Perspectives

A popular de�nition to distinguish di�erent analysis perspectives was coined by [Boe84]: val-
idation means “building the right product” whereas veri�cation means “building the product
right”.
This is used to set up a high level di�erentiation between validation and veri�cation / falsi�-
cation as given in Fig. A.1. Validation is always concerned with the desire of the customer and
evaluates the question whether the developed functionality ful�lls this desire. The �eld of val-
idation is very important and large research e�ort including psychology, behavioral science
and linguistics has been put on it in the last decades [Mac95][Que98][Fau03][Fol08][Bar13].
Nevertheless validation is not part of this thesis.
The objective of security focuses on the detection of intentional misuse by (un)authorized
subjects, e.g. due to hacking attacks or user errors. The whole �eld of security, including
conscious misuse, hacking or manipulation is also not in the scope of this thesis.

Specification
⇓

Human
Implementation

Verification

Falsification

ValidationCustomer

Diagnosis

Development Process Runtime

Figure A.1: Evaluation terminology

The realization of the speci�cation is done by human engineers, therefore it is likely that
there are mistakes during the process of implementation. A wide spread approach to �nd
these mistakes is given by the concept of falsi�cation, which tries to determine a so called
counter example that shows unspeci�ed or wrong behavior. If it is not possible to determine
a counter example it is assumed that there are no counter examples at all and thus the system
is considered to be correct. However, due to limited runtime of the falsi�cation process it is
possible that there are undetected (hidden) faults in the implementation. Therefore type II
errors are possible which is an disadvantage in case of safety critical systems.
If the speci�cation is very formal, the implemented system can be analyzed in a formal way.
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Veri�cation methods aim on proving the correctness of the implemented system in (all) op-
erating conditions. The goal is to prove that the system always shows nominal behavior.
Veri�cation and falsi�cation methods are in general conducted during the development pro-
cess, while the system operates in some kind of arti�cial environment. The evaluation can be
done o�ine and might thus need more calculation time or can be run several times during the
development process. Mistakes occurring during system operation are tackled by methods
of the diagnosis and monitoring �eld. They need to run online in parallel to the real system
operation and are thus required to be very fast.
In case of model based diagnosis, a model of the nominal system is generated that is used to
calculate the nominal system output in parallel to the real veri�cation object (VO). Therefore
the inputs of the VO are measured and also applied to the nominal model. The resulting out-
puts are compared with the measured outputs of the VO which leads to a so called residual
vector (see among others [Ise93][Ven03a][Ven03c][Ble10]). In case of an undisturbed system,
the residual vector is zero if there is no fault present in the VO. A fault is detected if there
is a non-zero residual vector. If it is necessary to gain further knowledge of the fault, more
sophisticated methods can be applied to localize the exact point of fault occurrence within
the VO ([Ven03a][Ven03c][Che14]). A drawback of the diagnosis approach is that - due to
measurement noise and model imprecision - the residual vector is not always exactly zero
even in the fault free case [Ise06, p. 198].



B Derivation of the Interval Distribution

This appendix provides the derivation of a probability distribution on the parameter 𝑝 con-
necting two intervals 𝑢 and 𝑦.
Two examples are presented in Chapter 3. Example 3.4 shows a setting with a proper result
of 𝑝 and Example 3.5 demonstrates a setup leading to an improper solution. The interval
ranges of 𝑢 and 𝑦 are sampled with ∆𝑢 = ∆𝑦 = 0.0001 and used to calculate the resulting
parameter 𝑝𝑠 for all possible combinations.
It is also possible to theoretically derive the shown results. Therefore, two random variables
𝑢 and 𝑦 are de�ned with uniform distribution between the in�mum and the supremum of the
interval values 𝑢 and 𝑦. The probability density functions of the two random variables are
given by:

𝑓𝑢 (𝑢) =

{︂ 1
𝑢−𝑢 , ∀𝑢 | 𝑢 ≤ 𝑢 ≤ 𝑢

0 , else (B.1)

and

𝑓𝑦 (𝑦) =

{︃
1

𝑦−𝑦 , ∀𝑢 | 𝑢 ≤ 𝑢 ≤ 𝑢

0 , else.
(B.2)

A general probability density function according to [Bro08, p. 816] has to ful�ll the assump-
tions

𝑓 (𝑥) ≥ 0, ∀𝑥 (B.3)∫︁ ∞

−∞
𝑓 (𝑥) 𝑑𝑥 = 1. (B.4)

Assumption (B.3) is valid for (B.1) and (B.2) by de�nition. Assumption (B.4) can be shown as
follows: ∫︁ ∞

−∞
𝑓𝑢 (𝑢) 𝑑𝑢 = 1

=

∫︁ 𝑢

−∞
𝑓𝑢 (𝑢) 𝑑𝑢⏟  ⏞  
0

+

∫︁ 𝑢

𝑢

𝑓𝑢 (𝑢) 𝑑𝑢⏟  ⏞  
[ 1
𝑢−𝑢𝑢]

𝑢

𝑢

+

∫︁ ∞

𝑢

𝑓𝑢 (𝑢) 𝑑𝑢⏟  ⏞  
0

=

[︂
1

𝑢− 𝑢
𝑢

]︂
−
[︂

1

𝑢− 𝑢
𝑢

]︂
= 1. �
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The proportional parameter 𝑝 with

𝑢 · 𝑝 = 𝑦 (B.5)

thus can be interpreted as random variable

𝑝 = 𝑔 (𝑢, 𝑦) =
𝑦

𝑢
. (B.6)

There are di�erent possible realizations of 𝑢 and 𝑦 depending on the speci�c values of 𝑝.
Therefore the probability density function of 𝑝 is according to [Jon02, p. 118] given as

𝑓𝑝 (𝑝) =

∫︁ ∞

−∞
|𝑢| 𝑓𝑢 (𝑢) 𝑓𝑦 (𝑢 · 𝑝) 𝑑𝑢. (B.7)

With the constant densities of the uniform distributions 𝑓𝑢 (𝑢) and 𝑓𝑦 (𝑦), and assuming only
non-negative input values 𝑢 > 0, (B.7) can be relaxed to

𝑓𝑝 (𝑝) =

∫︁ ∞

0

𝑢 𝑓𝑢 (𝑢)⏟  ⏞  
constant for
𝑢≤𝑢≤𝑢

else 0

𝑓𝑦 (𝑢 · 𝑝)⏟  ⏞  
constant for
𝑦/𝑢≤𝑝≤𝑦/𝑢

else 0

𝑑𝑢. (B.8)

The antiderivative is zero for all 𝑝 /∈ [𝑦/𝑢, 𝑦/𝑢] and 1/𝑝 /∈ [𝑢/𝑦, 𝑢/𝑦]. Else the densities consist
of constant values, leading to the antiderivative

𝑓𝑝 (𝑝) =

[︂
1

2
𝑐𝑢𝑐𝑦𝑢

2

]︂∞
0

(B.9)

with 𝑐𝑢 = 1
𝑢−𝑢 and 𝑐𝑦 = 1

𝑦−𝑦 . The evaluation of 𝑓𝑝 (𝑝) depends on the in�mum and supre-
mum of 𝑢 and 𝑦 and can be generalized as

𝑓𝑝 (𝑝) =
1

2
𝑐𝑢𝑐𝑦 max

(︃
0,

(︂
min

(︁
𝑢,max

(︀
𝑦/𝑝, 𝑦/𝑝

)︀)︁)︂2

−
(︂

max
(︁
𝑢,min

(︀
𝑦/𝑝, 𝑦/𝑝

)︀)︁)︂2
)︃
.

(B.10)

It is now possible to draw the derived density function for speci�c values of 𝑢 and 𝑦. Exem-
plary plots for a proper and an improper setting are given in Example B.1.
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Example B.1:
The plot for the values of 𝑢 = [2, 3] and 𝑦 = [4, 9] according to Example 3.4 is depicted
in Fig. B.1. The density function has the same shape as the sampling based result given in
Fig. 3.5. The plateau in the �gure shows that the solution is proper.
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Figure B.1: Probability density function 𝑓𝑝(𝑝) for the proper case
The plot of an improper setting according to Example 3.5 is given in Fig. B.2. The input and
output intervals are𝑢 = [2, 3] and 𝑦 = [4, 5] leading to an improper solution and an eroded
plateau.
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Figure B.2: Probability density function 𝑓𝑝(𝑝) for the improper case
These results are in accordance with the theory introduced in Chapter 3.
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C Full Rank Criteria

It is in general 𝑁𝑃 -hard to determine whether a given interval matrix 𝐴 has full rank, re-
spectively to check the matrix for singularity [Sha14]. However, there are some criteria to
determine the property of full rank [Sha14]. Four su�cient conditions and one necessary and
su�cient condition are given in the following.
It is necessary to introduce the absolute value of an interval

|𝑥| = max (|𝑥| , |𝑥|) (C.1)

and the magnitude

𝑥+ =

{︃
min (|𝑥| , |𝑥|) , if 0 /∈ 𝑥

0 , else.
(C.2)

The �rst su�cient condition for quadratic problems is based on diagonal dominance. The
interval matrix 𝐴 ∈ IR(𝑛×𝑛) is nonsingular, if it is diagonal dominant. This means the
inequality

𝑎(𝑖𝑖)+ >

𝑛∑︁
𝑗=1
𝑗 ̸=𝑖

⃒⃒⃒
𝑎(𝑖𝑗)

⃒⃒⃒
(C.3)

holds for 𝑖 ∈ {1, 2, . . . , 𝑛}.
There are two approaches to extend this condition to overdetermined equation systems, i.e.
𝐴 ∈ IR(𝑚×𝑛) with 𝑚 > 𝑛. The �rst approach searches for diagonal dominant subsquares
within the overdetermined interval matrix. If there is such a diagonal dominant subsquare,
the whole interval matrix has full rank. However there might be no diagonal dominant sub-
square even though the matrix has full rank. This can be due to permutation of rows of the
matrix. Even though permuted lines do not change the rank of a matrix, it does change the
appearance of diagonal dominant subsquares. However, the property that permuting rows
does not change the rank of the matrix can also be used to solve the problem. The lines
can be permuted algorithmically such that diagonal dominant subsquares are created. This
condition is still su�cient for overdetermined systems.



XXX C Full Rank Criteria

A second su�cient condition for full rank of an interval matrix 𝐴 ∈ IR(𝑚×𝑛) is based on
the spectral radius. Thereby the spectral radius 𝜌 (𝐴) is de�ned to be the largest absolute
singular value of the matrix 𝐴 [Lax02, p. 195]. If the spectral radius ful�lls

𝜌
(︁⃒⃒⃒

(𝐴𝑐)
d
⃒⃒⃒
𝐴Δ

)︁
< 1 (C.4)

and the center matrix 𝐴𝑐 has full rank, also the interval matrix 𝐴 has full rank. Thereby
𝐴d =

(︀
𝐴𝑇𝐴

)︀−1
𝐴𝑇 denotes the pseudo inverse of the matrix 𝐴 ∈ R(𝑚×𝑛) with 𝑚 ≥ 𝑛.

A third su�cient condition is based on the singular values of the matrix 𝐴 ∈ IR(𝑚×𝑛). If the
condition

𝜎max (𝐴Δ) < 𝜎min (𝐴𝑐) (C.5)

is ful�lled, the interval matrix 𝐴 has full rank. Thereby 𝜎max (𝐴) and 𝜎min (𝐴) denote the
greatest, respectively smallest, singular value of the matrix𝐴. The singular values are de�ned
as the nonnegative solutions to the system(︂

0 𝐴𝑇

𝐴 0

)︂(︂
𝑥
𝑦

)︂
= 𝜎

(︂
𝑥
𝑦

)︂
. (C.6)

Condition four uses an absolute subordinate matrix norm || · || of 𝐴 ∈ IR(𝑛×𝑚). Assuming
full rank of the center matrix 𝐴𝑐, the su�cient condition is given by

||𝐴Δ|| < ||𝐴d
𝑐||−1. (C.7)

If (C.7) holds, 𝐴 has full rank. The proofs of all four su�cient conditions are given in
[Sha14].

According to [Roh12] there is a �fth, necessary and su�cient condition: An interval matrix
𝐴 ∈ IR(𝑚×𝑛) with 𝑚 ≥ 𝑛 has full rank i�

|𝐴𝑐𝑋| ≤ 𝐴Δ |𝑋| (C.8)

with 𝑋 ∈ R𝑛 can only be solved by the zero solution 𝑋 = [0, 0, . . . , 0]
𝑇 .

Su�ciency is based on the idea that there is a non trivial solution 𝑋 ̸= [0, 0, . . . , 0]
𝑇 as

soon as the matrix 𝐴 does not have full rank. Necessity follows from the existence of the
non trivial solution. If this is the case, 𝐴 cannot have full rank or the non trivial solution
does not solve (C.8). An extensive proof of this condition is given in [Sha14]. However, the
approach directly aims on an 𝑁𝑃 -Hard problem which means that it can only be checked
approximately.



D Existence and Uniqueness of the Algebraic
Solution Set

The su�cient conditions on the existence of an algebraic solution given in [Sha96], [Mar99]
and [Lak99] are sketched in this appendix. To follow those ideas, two more interval arithmetic
notations are necessary.
Using the dual (·) operator given in (3.37), the proper projection pro (𝑥) is de�ned as

pro (𝑥) =

{︃
𝑥 , if 𝑥 is proper
dual (𝑥) , else.

(D.1)

The second property is 𝚤-nonsingularity. A quadratic point real matrix 𝑄 ∈ R(𝑛×𝑛) is called
𝚤-nonsingular if

𝑄𝑥 = 0⇔ 𝑥 = 0 ∈ IR𝑛 (D.2)

holds. Otherwise 𝑄 is called 𝚤-singular.

According to [Sha96] there is an algebraic solution
∑︀

𝑎 to the interval linear equation
𝐴𝑥 = 𝐵 with 𝐴 ∈ IR(𝑛×𝑛) for any 𝐵 ∈ IR𝑛, if 𝐴 is su�ciently narrow and pro (𝐴)
contains an 𝚤-nonsingular point matrix.

Thereby “su�ciently narrow” means that |𝐴Δ| is su�ciently small.

The proof of existence given in [Mar99] is based on the iterative approach to determine the
algebraic solution set given in [Kup95]. For this proof, the notation of the diagonal matrix
𝐷(𝐴) is introduced for an interval matrix 𝐴 ∈ IR(𝑛×𝑛)

𝐷(𝐴) =
(︁
𝑑(𝑖,𝑗)

)︁
1≤𝑖≤𝑛,1≤𝑗≤𝑛

=

{︃
𝑎(𝑖,𝑗) , if 𝑖 = 𝑗

0 , if 𝑖 ̸= 𝑗.
(D.3)

The inverse of the diagonal matrix is given by

𝐷−1(𝐴) =
(︁
𝑑(𝑖,𝑗)

)︁
1≤𝑖≤𝑛,1≤𝑗≤𝑛

=

{︃
1/dual(𝑎(𝑖,𝑗)) , if 𝑖 = 𝑗

0 , if 𝑖 ̸= 𝑗.
(D.4)
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Using the dual (·) operator from (3.37). The iterative solution algorithm given in [Kup95]
converges to the algebraic solution

∑︀
𝑎 if

||𝐷−1 (𝐴) || ≤ 1 (D.5)
||𝐴 + opp (𝐷(𝐴)) || ≤ 1 (D.6)

holds, with opp (·) according to (3.34). The used matrix norm || · || is the maximum of the
linewise sum of the absolute interval values (C.1):

||𝐴|| = max
1≤𝑖≤𝑛

(︃
𝑛∑︁

𝑘=1

⃒⃒⃒
𝑎(𝑖,𝑘)

⃒⃒⃒)︃
. (D.7)

The interested reader is referred to [Mar99] for further considerations.

A generalized approach for overdetermined systems𝐴 ∈ IR(𝑚×𝑛) was introduced in [Lak99].
The regressor matrix 𝐴 is split in three parts with 𝐴 = 𝐴0 + 𝐴1 + 𝐴2 and

𝐴0 =
(︁
𝑎
(𝑖,𝑗)
0

)︁
1≤𝑖≤𝑚,1≤𝑗≤𝑛

=

{︃
𝑎(𝑖,𝑗) , if 𝑎(𝑖,𝑗)𝑎(𝑖,𝑗) ≥ 0

0 , else
(D.8)

𝐴1 =
(︁
𝑎
(𝑖,𝑗)
1

)︁
1≤𝑖≤𝑚,1≤𝑗≤𝑛

=

{︃
𝑎(𝑖,𝑗) , if 𝑎(𝑖,𝑗) < 0 < 𝑎(𝑖,𝑗)

0 , else
(D.9)

𝐴2 =
(︁
𝑎
(𝑖,𝑗)
2

)︁
1≤𝑖≤𝑚,1≤𝑗≤𝑛

=

{︃
𝑎(𝑖,𝑗) , if 𝑎(𝑖,𝑗) > 0 > 𝑎(𝑖,𝑗)

0 , else.
(D.10)

The problem can be reformulated as an extended system that considers the upper and lower
bounds of the interval values explicitly, as given in [Lak99]. This problem can then be trans-
ferred to a set of inequality conditions. It is possible to show that there is not more than one
solution for any 𝑏 ∈ 𝐵 if the derived set of inequality conditions has zero as unique solution.
The extensive proof is given in [Lak99].



E System Behavior Speci�cation

The veri�cation methods developed in this thesis are based on the assumption of a system
speci�cation available in ARX form. In a practical setting, it is necessary to determine these
nominal parameters. Control engineering speci�cations are in general based on tolerance
bands, steady-state errors, rise and settling times or acceptable overshoots. Such speci�ca-
tions inherently show interval properties - even though in general no interval arithmetic is
used.
This appendix provides two approaches to determine the ARX parameters of such intuitive
graphic speci�cations. In the time domain, a method is introduced to determine the parame-
ters from a desired step response. This step response can be set up using the drag-and-drop
function provided by a toolbox. A second method determines the parameters from the fre-
quency domain. Therefore only the tolerance band widths and pass/cut-o� frequencies of a
�lter function need to be speci�ed. In case the Kaucher based method is applied in a diagnosis
setting, it is bene�cial to use a nominal physical model of the regarded process. This physical
model can also be used to determine the desired ARX parameters.

E.1 Time Domain Speci�cation

This speci�cation approach allows an intuitive speci�cation of the desired behavior based on
time domain input-output behavior. The �rst step is to specify an input signal and the desired
resulting output signal. Also the class of the desired system behavior has to be given. The time
domain input-output behavior is then used to determine the parameters of a transfer function
in the complex s-plane. In this appendix a step input is used to determine the properties of
a proportional gain �rst order time delay system (PT1). The method given in [Föl13, p. 77]
can be used to determine the system parameters based on a given step response. A time
continuous step response denotes the output values 𝑦(𝑡) generated by a step input

𝑢(𝑡) = 𝜎(𝑡) =

{︃
0, 𝑘 < 0

1, 𝑘 ≥ 0.
(E.1)

The complex frequency domain transfer function of a basic PT1 system is given by

𝐺(𝑠) =
𝑘𝑝

1 + 𝑇𝑠
(E.2)

with gain 𝑘𝑝 and time delay 𝑇 . If both parameters are determined, 𝐺(𝑠) can be transformed
to its discrete time representation. The desired nominal parameters Θ* are then given by the
parameters of the discrete time transfer function.
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For given input-output data [𝑢(𝑡), 𝑦(𝑡)] with 𝑡 ∈ [0, 𝑇 ] it is possible to determine the transfer
function parameters. The gain 𝑘𝑝 is given by the stationary value 𝑘𝑝 = 𝑦∞ which is de�ned
to be the last point of the measurement 𝑦(𝑇 ), assuming 𝑇 is large enough to allow 𝑦(𝑡) to
settle. If the output signal is sampled with sampling time ∆𝑡, the information of the resulting
points can be used to calculate the time delay 𝑇 . Therefore each available sampling point
𝑦𝑘 = 𝑦(𝑘∆𝑡) is used to calculate an auxiliary value

𝜂𝑘 = 1− 𝑦𝑘
𝑦∞

(E.3)

which is then used to determine the time delay

𝑇𝑘 = − 𝑘∆𝑡

ln (𝜂𝑘)
. (E.4)

The time delay of the transfer function 𝑇 is given by the arithmetic mean of all 𝑛𝑘 = 𝑇
Δ𝑡

values of 𝑇𝑘 , i.e.

𝑇 =
1

𝑛𝑘

𝑛𝑘∑︁
𝑘=1

𝑇𝑘. (E.5)

Afterwards the transformation to discrete time is done. The resulting parameters Θ* are used
to determine the ARX step response.
The introduced functionality is implemented in a Toolbox. The application of this Toolbox is
demonstrated in Example E.1.
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Example E.1:
Based on an initial arbitrary input-output signal, the toolbox provides the possibility to
move the sampling points via drag-and-drop. Fig. E.1 shows an exemplary output signal
that was created as the step response of a PT1 system with gain 𝑘𝑃 = 10 and 𝑇 = 2.
The resulting continuous trajectory was sampled with ∆𝑡 = 1s. The blue points depict the
sampling points that can be moved using drag-and-drop. The user can move the sampling
points such that the resulting trajectory shows the desired behavior. In this case, the toolbox
calculates the system parameters according to (E.3)-(E.5). The resulting system is able to
generate the desired values for the given step input. The depicted setting leads to the time
discrete ARX parameters 𝑎 = 0.64227, 𝑐 = 3.6077. The respective time discrete step response
is given by the red trajectory in Fig. E.1.
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Figure E.1: Time domain speci�cation toolbox
It can be seen in Fig. E.1 that the time discrete trajectory (red) is close to the speci�ed points
(blue). This demonstrates that it is possible to determine the ARX parameters of a system by
using a graphical user interface with drag-and-drop to set up the desired step response.

E.2 Frequency Domain Speci�cation

This speci�cation approach allows an intuitive speci�cation of the desired behavior based
on designing the amplitude response of the system. First order systems can be interpreted
as low pass �lters. Each Filter has a speci�c frequency domain characteristic consisting of
the location and the width of the passband and the stopband. Based on this information, the
method of [Lüc80, p. 147�] is used to determine the �lter coe�cients. The resulting �lter can
be transformed to discrete time which leads to the desired ARX coe�cients.
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The method is applicable for low-pass, high-pass, bandpass and band-rejection �lters. In
this appendix the design of a low-pass is presented. Therefore the cut o� frequency Ω𝑝,
the stop band frequency Ω𝑠 and the respective passband width ∆𝑝 and stopband width ∆𝑠

(see Fig. E.2) need to be de�ned by the user. These frequencies are de�ned with respect to the
periodic interval of the frequency response 0 ≤ Ω ≤ 𝜋. The frequencies are now transformed
into the 0 ≤ 𝑓 ≤ ∞ domain by

𝑓𝑝 = tan (Ω𝑝/2) (E.6)
𝑓𝑠 = tan (Ω𝑠/2) . (E.7)

These values lead to the normalized low-pass representation

𝑓𝑝,𝑛𝑜𝑟𝑚 = 1 (E.8)
𝑓𝑠,𝑛𝑜𝑟𝑚 = 𝑓𝑠/𝑓𝑝. (E.9)

The normalized low-pass representation can be achieved for all four kinds of �lters, by using
di�erent transformations. The following design routine is thus applicable in every setting.
To ensure that the given passband and stopband limits are met, the auxiliary variables

∆̃𝑑 =

√︀
2∆𝑑 −∆2

𝑑

1−∆𝑑
, for 0 ≤ 𝑓 ≤ 1 (Passband) (E.10)

∆̃𝑠 =

√︀
1−∆2

𝑠

∆𝑠
, for 𝑓𝑠,𝑛𝑜𝑟𝑚 ≤ 𝑓 (Stopband) (E.11)

are calculated. The transfer function of an exponential �lter is then given by

𝐺(𝑓) = 𝐺0
1∏︀𝑞

𝑖=1 𝑓 − 𝑓∞,𝑖
(E.12)

with poles 𝑓∞,𝑖 and normalization constant 𝐺0. The denominator order 𝑞 ∈ N can be calcu-
lated with

𝑞 ≥
log10

(︀
Δ̃𝑠/Δ̃𝑑

)︀
log10 (𝑓𝑠,𝑛𝑜𝑟𝑚)

. (E.13)

The real part and the imaginary part of a complex pole 𝑓∞,𝑖 are given by

ℜ (𝑓∞,𝑖) = −𝜖−1/𝑞 sin

(︂
2𝑖− 1

𝑞

𝜋

2

)︂
(E.14)

ℑ (𝑓∞,𝑖) = 𝜖
−1/𝑞 cos

(︂
2𝑖− 1

𝑞

𝜋

2

)︂
. (E.15)

The factor 𝜖 and the respective normalization can be used to adjust the level of the frequency
response. The used value of 𝜖 can be chosen from the interval

𝜖 = [𝜖, 𝜖] =

[︃
∆̃𝑠

(𝑓𝑠,𝑛𝑜𝑟𝑚)
𝑞 , ∆̃𝑑

]︃
. (E.16)
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Thereby choosing 𝜖 = 𝜖 means that the frequency response touches the constrained region at
the end of the passband 𝑓𝑝,𝑛𝑜𝑟𝑚, whereas 𝜖 = 𝜖 means that it touches the constrained region
at the beginning of the stopband 𝑓𝑠,𝑛𝑜𝑟𝑚.
The normed lowpass is now transformed back to its genuine frequency form and afterwards
into the time discrete representation in order to extract the desired nominal parameters Θ*

of the transfer function. An application of this method is given in Example E.2.

Example E.2:
The frequency domain speci�cation of a low-pass �lter is given by ∆𝑝 = 0.1, ∆𝑠 = 0.2,

Ω𝑝 = 0.4𝜋 and Ω𝑠 = 0.7𝜋. This means that the desired frequency response is located within
the green area in Fig. E.2. The introduced �lter design procedure of [Lüc80, p. 147�] is applied
to the setting.
Based on the speci�ed values, the choice 𝜖 = 𝜖 leads to the ARX coe�cients

[𝑎1, 𝑎2, 𝑎3] = [0.1425,−0.3387, 0.0130] (E.17)
[𝑐1, 𝑐2, 𝑐3, 𝑐4] = [0.1479, 0.4437, 0.4437, 0.1479] . (E.18)

The respective frequency response is depicted as solid blue line in Fig. E.2.
Using the same values but choosing 𝜖 = 𝜖 leads to

[𝑎1, 𝑎2, 𝑎3] = [−0.2643,−0.3518,−0.0244] (E.19)
[𝑐1, 𝑐2, 𝑐3, 𝑐4] = [0.2051, 0.6152, 0.6152, 0.2051] , (E.20)

displayed as dashed line in Fig. E.2.
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Figure E.2: Frequency domain speci�cation toolbox





F Excitation Signal Design

Hybrid system veri�cation poses speci�c requirements on the excitation signal. It is assumed
that these requirements are ful�lled throughout this thesis. However, determining a suitable
excitation signal is in general not trivial. The excitation signal of a measurement is often
chosen depending on the intended purpose of the experiment. Arbitrary noise signals (white
Gaussian noise) can be used to ensure persistent excitation of all frequencies. Arbitrary mean-
ingful signals (impulse or step signal) are used to perform control theoretic modeling such as
impulse response or step response. Also there are speci�cally designed input signals �tted to
the implemented logic in the current veri�cation object.
In the context of hybrid systems as regarded in this thesis, there are two properties that need
to be ful�lled. Each subsystem with its respective individual dynamic needs to be persistently
excited. Furthermore, all states of the superimposed state machine need to be activated once.
Therefore the respective switching thresholds have to be met to enable the switch event. The
situation that a switch is triggered during the excitation and identi�cation phase of each sub-
system has to be avoided. A �rst possible solution idea was developed in the master thesis
[Rie17]. The basic outline is sketched in this appendix. The method uses three steps:

1. Path calculations to ensure state coverage of the superimposed state machine

2. Design of a persistent excitation signal without leaving the subsystem

3. E�cient transfer of the subsystem to its switch threshold

F.1 Path Calculation

The superimposed state machine is transformed to its graph representation 𝒢𝑍 . A coverage
algorithm is used to determine paths that include all states and all transitions of the graph.
Additionally, the length of the path needs to be minimal to enable short measurement times.
If such an optimal excitation signal is used, missing states or transitions can be used to prove
inconsistency.
The problem of state and transition coverage can be reduced to transition coverage only.
This is due to the structure of the speci�cation, where each state needs to be connected to a
transition.
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To use a modi�ed depth �rst state coverage algorithm, the graph 𝒢𝑍 is transformed such
that all transitions are represented by states in the transformed graph 𝒢′𝑍 and vice versa (see
Fig. F.1).

𝑠(1)

𝑠(2) 𝑠(3)

𝑘(2)′ 𝑘(3)′

𝑘(4)′

𝑘(5)′

𝑘(6)′

𝑘(2)

𝑘(1)

𝑘(3)

𝑘(4)

𝑘(5)

𝑘(6)

𝑘(1)′

Figure F.1: Genuine graph 𝒢𝑍 (left) and transformed graph 𝒢′
𝑍 (right)

A modi�ed recursive depth �rst algorithm is started in a speci�ed initial state and checks the
number of possible successors of each successor of the current state. Also the distance to the
successors are taken into account to enable short paths. The result of the algorithm is a path
that covers all states of 𝒢′𝑍 and thus all transitions of 𝒢𝑍 . This result is used to identify each
subsystem in the path.

F.2 Persistent Excitation Based on Fisher Information
Matrix

Persistent excitation of each subsystem is ensured by a speci�c input signal. This input signal
is calculated based on the Fisher information matrix [Eba14][Man10], which is only applicable
for stable systems. Using the Fisher information matrix 𝑀 , the parameter covariance of an
estimator is limited by the Cramer Rao Bound [Goo77] to

𝑐𝑜𝑣(Θ) ≥ 1

𝑀
. (F.1)
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Thereby 𝑀 is de�ned using the expectation 𝐸 {·} as

𝑀(Θ, 𝑈) = 𝐸

{︃[︂
𝜕𝑙𝑜𝑔 (𝑝 (𝑦 | Θ, 𝑈))

𝜕Θ

]︂𝑇 [︂
𝜕𝑙𝑜𝑔 (𝑝 (𝑦 | Θ, 𝑈))

𝜕Θ

]︂}︃
. (F.2)

The probability 𝑙𝑜𝑔 𝑝(𝑦 | Θ, 𝑈) resembles the situation that 𝑦 is observed if the true parame-
ters are given by Θ while using the input 𝑈 = ⟨𝑢𝑘⟩𝑁𝑘=1. To achieve a parameter covariance as
close as possible to the Cramer Rao Bound, the Fisher matrix has to be maximal with respect
to the input signal used and the parameters. This can be achieved by using D-optimality for
the given nominal parameters as de�ned in [Man10]:

𝑈* = −min
𝑈

(𝑙𝑜𝑔 𝑑𝑒𝑡(𝑀(Θ*, 𝑈))). (F.3)

To solve the optimization Problem F.3, an initial feasible input signal 𝑈𝑖𝑛𝑖𝑡 is chosen. This
signal is then optimized iteratively for each time step 𝑢𝑖𝑛𝑖𝑡,𝑘 until the optimization converges.
Each input value 𝑢*

𝑘 is thereby bounded to the range of feasible input values given by the
user.

F.3 Transfer to the Switch Threshold

After the identi�cation of the subsystem, it is necessary to activate the successive switch.
This is done by transferring the relevant system value within its activation limits 𝑙(𝑖).
The speci�c event and thus the activated transition are already determined in the result
of the path calculation. This is done using the well known Hamilton formalism. There-
fore the objective function is set up in terms of the di�erence between the desired value
𝑦
𝑙
(𝑖)
𝑐

= 1
2

(︁
𝑙(𝑖) + 𝑙

(𝑖)
)︁

and the current value 𝑦𝑘 , i.e. ∆𝑦𝑘 = 𝑦𝑘− 𝑦
𝑙
(𝑖)
𝑐

. The resulting objective
function is given by

𝐽 =
1

2
∆𝑦𝑇𝑆∆𝑦𝑇 +

1

2

𝑇−1∑︁
𝑘=1

∆𝑦𝑘𝑄∆𝑦𝑘 (F.4)

with the penalty matrices 𝑆 = 1
𝜖𝑑𝑒𝑠

and 𝑄 = 1. It is now possible to set up and solve the
Hamilton equations [Sag68]. The �rst step is to transfer the ARX system description to a
vector matrix notation:⎡⎢⎢⎢⎣

𝑦𝑘+1

𝑦𝑘
...

𝑦𝑘−𝑛𝑎+2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑎1 𝑎2 . . . 𝑎𝑛𝑎

1 0 . . . 0
...

. . . . . .
...

0 . . . 1 0

⎤⎥⎥⎥⎦
⏟  ⏞  

𝐴

⎡⎢⎢⎢⎣
𝑦𝑘

𝑦𝑘−1

...
𝑦𝑘−𝑛𝑎+1

⎤⎥⎥⎥⎦
⏟  ⏞  

𝑌𝑘

+

⎡⎢⎢⎢⎣
𝑐1 . . . 𝑐𝑛𝑐

0 . . . 0
...

. . .
...

0 . . . 0

⎤⎥⎥⎥⎦
⏟  ⏞  

𝐶

⎡⎢⎢⎢⎣
𝑢𝑘

𝑢𝑘−1

...
𝑢𝑘−𝑛𝑐+1

⎤⎥⎥⎥⎦
⏟  ⏞  

�̃�𝑘

. (F.5)

Then the Hamilton equation is set up:

𝐻(𝑦𝑘, 𝑢𝑘, 𝑘) =
1

2
∆𝑦𝑘𝑆∆𝑦 + 𝜆𝑇

𝑘+1(𝐴𝑌𝑘 + 𝐶�̃�𝑘). (F.6)
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The derivative of 𝐻 is given by

𝜕𝐻

𝜕𝑢
= 𝜆𝑘C

𝑇 . (F.7)

with

𝜆𝑘 = ∆y𝑘 + A𝑇 𝜆𝑘+1 (F.8)

leading to

∆𝑢 = − 𝛼
𝜕𝐻

𝜕𝑢
, (F.9)

𝑢
(𝑖+1)
𝑘 = 𝑢

(𝑖)
𝑘 + ∆𝑢𝑘. (F.10)

The parameter 𝛼 is used to scale the result in case the calculated solution violates the feasible
input range.

This procedure is applied to all subsystems within the calculated path to construct the overall
excitation signal. This signal is then applied to the VO and the resulting output values are
measured. The resulting input and output measurement data can then be used in any of the
methods introduced in this thesis.



G Tables of Geometric Parameters

The parameters of the three-tank lab setting at the Institute of Control Systems (IRS) are
given in Tab. G.1.

Table G.1: System properties of the IRS three-tank lab setting

Value Unit Property

ℎ32𝑢 30.0 cm Height of upper connection valve
ℎ32𝑙 0.0 cm Height of lower connection valve

𝑎1 0.5 cm2 Cross section nominal out�ow tank 1
𝑎2 0.5 cm2 Cross section nominal out�ow tank 2
𝑎3 0.5 cm2 Cross section nominal out�ow tank 3
𝑎13𝑢 0.5 cm2 Cross section upper connection valve 𝑣13𝑢

𝑎13𝑙 0.5 cm2 Cross section lower connection valve 𝑣13𝑙

𝑎32𝑢 0.5 cm2 Cross section upper connection valve 𝑣32𝑢

𝑎32𝑙 0.5 cm2 Cross section lower connection valve 𝑣32𝑙

𝑎𝑙𝑒𝑎𝑘 0.8 cm2 Cross section leakage out�ow (only tank 2)

𝐴1 154.0 cm2 Cross section tank 1
𝐴2 154.0 cm2 Cross section tank 2
𝐴3 154.0 cm2 Cross section tank 3

𝑔 981.0 cm/s2 Gravitational force

𝛾1 16.7 min cm3/(l s) Constant tank 1
𝛾2 16.7 min cm3/(l s) Constant tank 2
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The parameters of the four-tank simulation setting are given in Tab. G.2.

Table G.2: System properties of the simulated four-tank lab setting

Value Unit Property

𝑣𝑖𝑛1 0.7 Valve 1 �ow to tank 1

𝑎1 0.071 cm2 Cross section nominal out�ow tank 1
𝑎2 0.071 cm2 Cross section nominal out�ow tank 2
𝑎3 0.071 cm2 Cross section nominal out�ow tank 3
𝑎4 0.071 cm2 Cross section nominal out�ow tank 4

𝐴1 28.0 cm2 Cross section tank 1
𝐴2 28.0 cm2 Cross section tank 2
𝐴3 28.0 cm2 Cross section tank 3
𝐴4 28.0 cm2 Cross section tank 4

𝑔 981.0 cm/s2 Gravitational force

𝛾1 3.33 cm3/s Geometric constant
𝛾2 3.33 cm3/s Geometric constant
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This book introduces a new specification and verification approach for dynamic systems. The 
introduced approach is able to provide type II error free results by definition, i.e. there are 
no hidden faults in the verification result. The approach is thus suitable to provide a reliable 
verification of safety critical systems.

A new notion of set based consistency for dynamic systems with a given specification is pre-
sented. Therefore Kaucher interval arithmetic is used to enclose the measurement data in a 
bounded error sense. The resulting method is able to verify the specified behavior of a dynamic 
system against its measurement data even in the presence of noise and sensor uncertainty. 
Consistency is defined using the Kaucher arithmetic united solution set which leads to math-
ematically guaranteed results.

It is proven mathematically that the desired property holds for a wide class of systems, in-
cluding time invariant, interval type and hybrid systems, which can be used to describe even 
nonlinearities. Several extensions are introduced, leading to a new iterative identification and 
segmentation algorithm for hybrid systems which is able to handle even unknown switching 
times. In case the calculations can be done fast enough, the developed approach can also be 
used for the diagnosis of dynamic systems.

The presented methods are successfully applied to several example systems, including theo-
retic settings and a variation of different tank settings.

The new theories, methods and algorithms developed in this work form the foundation for 
reliable safety analysis of highly automated safety critical systems.

Ge
dr

uc
kt

 a
uf

 F
SC

-z
er

tifi
zi

er
te

m
 P

ap
ie

r

9 783731 509653

ISBN 978-3-7315-0965-3


	Preface
	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	Abbreviations and Symbols
	Introduction
	State of Science
	Conceptualization and Terminology
	Behavior Description
	Behavior Deviation
	Behavior Assessment

	Interval Arithmetic Methods
	Governing Complexity: Time Variant and Hybrid Verification Approaches
	Other Common Verification and Falsification Approaches
	Testing
	Reachability Analysis
	Formal Verification

	Scientific Gap and Related Research Question

	Methodical Approach and Mathematical Preliminaries
	Mathematical Preliminaries
	Basic Interval Arithmetic
	Kaucher Interval Arithmetic
	Interval Type Linear Equation Systems


	Guaranteed Verification of Point Real Systems
	System Setup
	Time Invariant Full Consistency
	Conclusion

	Guaranteed Verification of Interval Type Systems
	Interval Type Full Consistency
	Interval Type Basic Consistency
	Algorithmic Solutions

	Conclusion

	Guaranteed Verification of Hybrid Systems
	Verification of Hybrid Systems with Mapped State Signal
	Verification of the Dynamic Subsystems
	Verification of the Discrete Event System
	Combination of the Dynamic and the Discrete Verification Results

	Verification of Hybrid Systems With Given Switching Times
	Verification of Hybrid Systems With Unknown Switching Times
	Convergence of the Identification and Segmentation Algorithm

	Conclusion

	Extended Kaucher Based Guaranteed Verification
	Solution Set Approximations
	Hyperrectangular Solution Set Approximation
	Zonotopic Solution Set Approximation
	Polytopic Solution Set Approximation

	Kaucher Based Diagnosis
	The Center Misplacement Effect

	Conclusion

	Application and Results
	Application: Guaranteed Verification for Interval Type Systems (Single-Tank)
	Application: Guaranteed Verification for Hybrid Systems (Two-Tank)
	Measurement With Mapped State Signal
	Measurement Without Mapped State Signal

	Simulation: Diagnosis By Kaucher Based Guaranteed Verification (Four-Tank)
	Fault Free Setting
	Additive Faults
	Multiplicative Faults

	Application: Diagnosis By Kaucher Based Guaranteed Verification (Single-Tank)
	Fault Free Setting
	Additive Faults
	Scaling Faults

	Conclusion

	Conclusion
	Analysis Perspectives
	Derivation of the Interval Distribution
	Full Rank Criteria
	Existence and Uniqueness of the Algebraic Solution Set
	System Behavior Specification
	Time Domain Specification
	Frequency Domain Specification

	Excitation Signal Design
	Path Calculation
	Persistent Excitation Based on Fisher Information Matrix
	Transfer to the Switch Threshold

	Tables of Geometric Parameters
	References
	Public References
	Own Publications and Conference Contributions
	Supervised Theses




